Montanuniversität Leoben Franz-Josef-Straße 18

http://avaw.unileoben.ac.at/ A-8700 Leoben

Der Lehrstuhl ist Teil des Departments für Umwelt- und Energieverfahrenstechnik

Masterarbeit

zur Erlangung des akademischen Grades eines Diplom-Ingenieur (Dipl.-Ing./DI) der Studienrichtung "Industrieller Umweltschutz, Entsorgungstechnik und Recycling" an der Montanuniversität Leoben.

Abschätzung der durch Probenaufbereitung hervorgerufenen Messunsicherheit für umweltanalytische Parameter

erstellt für das

umwelt- und prozessanalytische Labor des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft

Vorgelegt von: Betreuer:

Schmitt Oliver Dipl. Ing. Alexia Aldrian m0735099 Univ-.Prof. DI Dr. mont. Roland Pomberger

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

AFFIDAVIT

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

DANKSAGUNG

Jede Masterarbeit trägt die Handschrift des Erstellers, und doch ist sie niemals die Arbeit eines Einzelnen. Deswegen möchte ich mich am Ende meines Studienlebens bei einigen Personen für ihre Unterstützung bedanken.

Allen voran danke ich den Mitarbeitern des umwelt- und prozessanalytischen Labors des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft, die mir auch schon im Zuge meiner Bachelorarbeit stets mit Rat und Tat zur Seite gestanden sind und mich auch tatkräftig bei der Durchführung meiner Versuche unterstützt haben.

Ganz besonderer Dank gilt meiner Betreuerin Frau Dipl.-Ing. Alexia Aldrian, die jederzeit für meine Fragen und Probleme ein offenes Ohr hatte und mit hilfreichen Anregungen zur Stelle war und so erst eine rasche Vollendung meiner Arbeit ermöglichte.

Zum Schluss gilt mein besonderer Dank noch meiner Familie, die mich im Laufe meines doch recht langen Studentendaseins immer vollauf unterstützt hat. Denn ohne diese Unterstützung wäre es mir niemals möglich gewesen das Studium, das für mich zum Teil auch sehr schwere Zeiten bereithielt, durchzuziehen und jetzt mit dieser Abschlussarbeit zu krönen. Meinem Vater danke ich außerdem noch für die vielen Stunden, die er mit Korrekturlesen verbracht hat.

Auch meine Freunde und Studienkollegen möchte ich nicht vergessen zu erwähnen. Sie haben mir öfters auch mit Unterlagen ausgeholfen und so manche Stunden kurzweilig gestaltet.

Kurzfassung

Abschätzung der durch Probenaufbereitung hervorgerufenen Messunsicherheit für umweltanalytische Parameter

In der Umweltanalytik sind die Schritte zur Erhaltung von Ergebnissen oft sehr komplex. Umfangreiche Probenvorbereitungen und Probenaufbereitungen sind notwendig. Durch jeden der benötigten Arbeitsschritte steigt auch die Unsicherheit des Prüfwertes. Jedoch sind diese Fehler oftmals nicht exakt quantifizierbar, da auch der wahre Wert unbekannt ist. Dennoch muss für die Verwendung und Interpretation der Messwerte diese Messunsicherheit abgeschätzt werden. Für das Analyseverfahren an sich ist die Messunsicherheit fast immer schon bekannt; denn hier ist eine Abschätzung mit Messstandards bekannter Konzentration relativ leicht durchzuführen. Wesentlich komplexer wird es hingegen, wenn die Messunsicherheit um die Faktoren Probenahme und Probenaufbereitung erweitert werden soll.

Im Zuge dieser Diplomarbeit wurde der Beitrag der Probenaufbereitung zur Messunsicherheit in zwei konkreten Fällen ermittelt. Einerseits wurde dabei der Schritt der Probenvorbereitung in Form eines Eluats aus synthetisch erzeugtem Restmüll für die Parameter Schwermetalle, anionische Tenside, Leitfähigkeit, pH, Total Organic Carbon (TOC), Abdampfrückstand und Anionen untersucht. Andererseits wurde der Beitrag der Probenaufbereitung durch die Probenzerkleinerung mittels Backenbrechers und Kugelmühle sowie die Verjüngung mittels Viertelung anhand gesteinsartiger Proben auf Schwermetalle und Aschegehalt getestet. Für jede dieser Testreihen wurden 20-25 synthetisch hergestellte Proben generiert, um Probeninhomogenitäten bestmöglich auszuschließen, und diese analysiert. An den erhaltenen Daten wurden diverse statistische Auswertungen vorgenommen.

Für die Parameter Mangan in den Gesteinsproben, sowie Nickel in den Eluaten und Chlorid im Eluat wurden die Beiträge der Probenvor-/-aufbereitung zur Messunsicherheit berechnet. Für alle weiteren Parameter wurde die Datengrundlage geschaffen.

Abstract

Estimation of the uncertainty of measurements caused by the sample preparation for environmental parameters

The steps to generate a measuring result can be very complex. Therefore, extensive sample preparation and sample conditioning are necessary. Each of these required steps increases the uncertainty of test results. However, these failures are not exactly quantifiable, because the true value is unknown. Nevertheless, this uncertainty must be calculated. For an analytical method, the uncertainty is nearly always well-known; because in this case the estimation is easily to perform by using standards of known concentration. It is significantly more complex to find the uncertainty of measurement if the parameters' sample preparation and sample conditioning are included.

In the course of this Master Thesis, the input of the sample preparation and sample conditioning were examined for two different preparation tasks. On the one hand, the step of the sample conditioning in form of a leachate of synthetically produced residual waste for the parameters of heavy metals, anionic tenside, conductivity, pH, total organic carbon (TOC), dry residue and anions was conducted. On the other hand, the influence of the sample preparation through the grinding of a sample made of stone likely material with a jaw crusher and a ball mill as well as the sample reduction using the quartering method for the parameters' heavy metals and ash content was analysed. 20-25 synthetically produced samples were determined for each test series, so the influence of the inhomogeneity of the samples themselves could be eliminated. The collected data were analysed for various statistical evaluation.

For the parameters 'manganese in the stone samples', as well as 'nickel in the leachates' and 'chloride in the leachates', the contribution of the sample preparation and sample conditioning to the measuring uncertainty were estimated. For all the other parameters the data base was created.

Inhaltsverzeichnis

Inhaltsverzeichnis

				Seite
1	EIN	NLEI	TUNG	4
	1.1	Pro	blemstellung	4
	1.2	Zie	lsetzung	5
2	ТН	EOF	RETISCHE GRUNDLAGEN	6
	2.1	De	finitionen	9
	2.2	Sta	tistische Parameter	12
	2.3	Ern	nittlung von Ausreißern nach Hampel	13
3	AB	SCH	HÄTZUNG DES BEITRAGES DER ELUATHERSTELLUNG ZUR	
	ME	SSU	JNSICHERHEIT	14
	3.1	Voi	bereitung des synthetischen Restmülls	16
	3.2	He	rstellung der Eluate	17
	3.3	Ме	ssung des pH-Wertes und der Leitfähigkeit	18
	3.4	Bes	stimmung des TOC	19
	3.5	Bes	stimmung des Abdampfrückstandes	19
	3.6	Bes	stimmung der Anionen	20
	3.7	Bes	stimmung der anionischen Tenside	20
	3.8	Bes	stimmung der Schwermetalle sowie Ca und Mg	21
	3.9	Erg	jebnisse der Eluatversuche	22
	3.9	.1	Auswertung der Ergebnisse der pH-Wert-Bestimmung	22
	3.9	.2	Auswertung der Leitfähigkeit	23
	3.9	.3	Auswertung des TOC-Gehaltes	24
	3.9	.4	Auswertung des Abdampfrückstands	25
	3.9	.5	Auswertung der Anionen-Gehalte	26
	3.9	.6	Auswertung der anionischen Tenside	27
	3.9	.7	Auswertung der Schwermetall-Gehalte	28
	3.10		ssunsicherheit der Nickelbestimmung mittels ICP-MS unter	
			rücksichtigung der Eluatherstellung	
	3.1		Beitrag der Kalibration zur Messunsicherheit	
		0.2	Beitrag der Verdünnung zur Messunsicherheit	
	3.1	0.3	Beitrag der Wiederholbarkeit zur Messunsicherheit	
	3.1	0.4	Beitrag der Probenvorbereitung zur Messunsicherheit	37

Inhaltsverzeichnis 2

3.	11	Ме	ssunsicherheit der Chloridbestimmung mittels Ionenchromatographie	
		unt	er Berücksichtigung der Eluatherstellung	
	3.1	1.1	Beitrag der Kalibration zur Messunsicherheit	
	3.1	1.2	Beitrag der Verdünnung zur Messunsicherheit	42
	3.1	1.3	Beitrag der Wiederholbarkeit zur Messunsicherheit	
	3.1	1.4	Beitrag der Probenaufbereitung zur Messunsicherheit	43
4	ΑB	SCH	HÄTZUNG DES BEITRAGES DER PROBENAUFBEREITUNG	
	GE	STE	INSARTIGER MATERIALIEN ZUR MESSUNSICHERHEIT	45
4.	1	Zer	kleinerung der Proben	47
4.	2	Bes	stimmung des TC-Gehalts	47
4.	3	Bes	stimmung des Aschegehalts	48
4.	4	Tot	alaufschluss der Proben	48
4.	5	Bes	stimmung der Schwermetalle	48
4.	6	Erg	jebnisse der Probenaufbereitungsversuche an Gesteinsproben	49
	4.6	.1	Auswertung des Aschegehalts	49
	4.6	.2	Auswertung der Schwermetalle	50
4.	7	Ме	ssunsicherheit der Manganbestimmung mittels ICP-MS unter	
		Ber	rücksichtigung des Totalaufschlusses und der Probenaufbereitung	56
	4.7	.1	Beitrag der Kalibration zur Messunsicherheit	58
	4.7	.2	Beitrag der Verdünnung zur Messunsicherheit	58
	4.7	.3	Beitrag des Aufschlussvolumen zur Messunsicherheit	
	4.7	.4	Beitrag der Einwaage zur Messunsicherheit	
	4.7	.5	Beitrag des Mikrowellengerätes zur Messunsicherheit	
	4.7	.6	Beitrag der Wiederholbarkeit zur Messunsicherheit	
	4.7	.7	Beitrag der Probenaufbereitung zur Messunsicherheit	59
5	ZU	SAN	MENFASSUNG	62
6	ΑU	SBL	ICK	64
7	VF	R7F	CICHNISSE	I
7. -			eratur	
7. -			kürzungsverzeichnis	
7. -			pellen	
7.			oildungen	
ANI	IAP	۱G		l
A	nha	ng I	: Tabelle der genauen Einwaagen der einzelnen Restmüllfraktionen un	d
		des	s deionisiertem Wassers für sämtliche Eluate	1

Inhaltsverzeichnis	(

Anhang II: Tabelle der Einzelergebnisse der Eluatversuche	
Anhang III: Tabelle der Einzelergebnisse der Gesteinsproben	VI

Kapitel 1 – Einleitung

1 Einleitung

In fast allen Bereichen der Industrie, der Abfallwirtschaft, des Umweltmonitorings etc. wird es immer wichtiger, chemische Parameter zu analysieren und mit möglichst geringer Unsicherheit quantifizieren zu können. Dies gilt beispielhaft im Bereich der Qualitätssicherung, Grenzwertbestimmungen oder auch bei den Analysen zur Bestimmung der Herkunft bestimmter Materialien.

Jede Analyse besteht aus fehlerbehafteten Vorgängen, die in Summe die Messunsicherheit der Methode darstellen. Je mehr einzelne Schritte für eine Methode nötig sind, desto wahrscheinlicher ist es, dass der Fehler, der dabei entsteht, größer wird. Es ist noch relativ leicht möglich, die Messunsicherheit der Messung selbst zu identifizieren. Dafür werden sorgfältig hergestellte Standards und deren penibel durchgeführte Messung oder Ringversuche verwendet. Nur wenn solche Daten vorhanden sind, können Ergebnisse dieses Labors oder dieser Prüfstelle tatsächlich sinnvoll interpretiert und verwertet werden.

So eine Unsicherheit zu bestimmen wird freilich wesentlich komplexer, wenn nicht mehr "nur" der Messfehler an sich gemessen werden soll, sondern der Gesamtfehler festgestellt werden soll, der wesentlich durch die Schritte der Probenahme und Probenaufbereitung mitbeeinflusst wird. Denn entscheidend ist ja nicht die Probe an sich, sondern wie sich das Messergebnis der Probe zur Grundgesamtheit verhält. Deswegen ist es enorm wichtig zu wissen, in welchem Intervall, das den Messwert umgibt, sich der "wahre Wert" befindet.

1.1 Problemstellung

Da das umwelt- und prozessanalytische Labor des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft in erster Linie Proben untersucht, die sich aus Abfällen und ähnlichen Materialien zusammensetzen, ist eine sofortige, unmittelbare Analyse dieser Stoffe nur in Ausnahmefällen möglich. Meist müssen die angelieferten Proben noch zusätzlich aufbereitet werden, um chemische Analysen durchführen zu können. Diese Probenaufbereitung schließt die unterschiedlichsten Behandlungsschritte mit ein. Wie z.B. die Probenzerkleinerung, die Probentrocknung, die Probenverjüngung, den Aufschluss oder auch die Herstellung eines Eluates aus dem Probenmaterial. Jeder einzelne Behandlungsschritt ist selbstverständlich wieder, wie die Analyse an sich auch, fehlerbehaftet. Diese Unsicherheiten sind sicherlich nicht zu vernachlässigen; dennoch sind diese bis jetzt kaum näher untersucht und für viele Verfahren noch nicht verifiziert.

Auf Grund dieser so gut wie gar nicht vorhanden Datengrundlage ist es im Moment in vielen Fällen lediglich möglich, eine allgemeine, äußerst unspezifische Abschätzung abzugeben, wodurch natürlich die Aussagekraft der Messergebnisse zum Teil erheblich eingeschränkt wird, beziehungsweise eine Fehlerminimierung in der Probenaufbereitung nicht möglich ist. Dadurch wird auch eine sinnvolle Beurteilung hinsichtlich Grenzwerteinhaltung erschwert, bzw. ist diese nicht immer möglich, weshalb auch rechtliche und wirtschaftliche Konsequenzen drohen können. Deswegen ist es äußerst sinnvoll, sämtliche Behandlungsschritte in die Betrachtung der Unsicherheit miteinzubeziehen.

Kapitel 1 – Einleitung 5

1.2 Zielsetzung

Die vorliegende Masterarbeit soll für ausgewählte Verfahren, die im umwelt- und prozessanalytischen Labor angewendet werden, die Messunsicherheit, die durch die Probenaufbereitung zu Stande kommt, abschätzen, respektive berechnen. Dadurch sollte es möglich sein, Messergebnisse von Proben, die eine Probenauf- oder -vorbereitung durchlaufen haben, besser beurteilen zu können. Ein weiteres Ziel dieser Arbeit ist die Fehlerquellen bezüglich der Probenauf- bzw. -vorbereitung zu identifizieren und Vorschläge zu deren Verringerung abzugeben.

Zur Bestimmung der Messunsicherheit ist eine Messserie nötig, die bereits vor der Probenaufbereitung sehr homogenes Material als Proben benötigt. Dafür wird das benötigte Probenmaterial künstlich erzeugt und anschließend aufbereitet und analysiert.

Für diese Arbeit werden ein Probenaufbereitungs- und ein Probenvorbereitungsweg ausgewählt und untersucht. Die Eluatherstellung im 24 h Überkopfschüttelversuch mit synthetisch hergestelltem Restmüll aus sortenreinen Materialien sowie die Probenzerkleinerung mittels Backenbrecher und Kugelmühle für gesteinsartiges Material aus drei verschiedenen Mineralien.

Bei den Eluatversuchen werden 25 Eluate mit jeweils eigens hergestelltem möglichst identem Material angesetzt und anschließend auf verschiedene Parameter untersucht. Aus dem berechnetem Mittelwert und den dadurch erhaltenen Standardabweichungen kann unter Berücksichtigung der Analysenunsicherheit auf die um die Probenaufbereitung erweiterte Messunsicherheit geschlossen werden.

Für die Gesteinsproben, bei denen sowohl die Zerkleinerung als auch die Probenverjüngung als Unsicherheitsquellen vorhanden sind, wird ähnlich vorgegangen. Dabei werden nach jedem Zerkleinerungsschritt die Proben geviertelt und jede der beiden neuen Proben weiterbehandelt bzw. analysiert.

2 Theoretische Grundlagen

Messungen jeglicher Art sind niemals zu 100 % korrekt und weisen immer eine gewisse Unsicherheit auf. Da jedoch auf Grund von Messwerten Entscheidungen getroffen werden (z.B. im Bereich der Qualitätssicherung oder der Prozesssteuerung) [1] bzw. Messergebnisse rechtliche und wirtschaftliche Konsequenzen auslösen können [2], wenn sie beispielhaft zur Überprüfung von Grenzwerten herangezogen werden, ist die Kenntnis über die Größe der Messunsicherheit solcher Werte von größter Bedeutung. Leider ist es sehr aufwendig, teuer und komplex, diese zu bestimmen, da die Messunsicherheit für jede Methode und jeden einzelnen Parameter einzeln ermittelt werden muss.

Ein weiteres wesentliches Problem bei der exakten Bestimmung von Messwerten besteht darin, dass aus einer mitunter sehr großen Gesamtmenge eine nur wenige Milligramm schwere Analysenprobe generiert werden soll (vgl. Abbildung 1). Diese muss aber noch immer repräsentativ für die Grundgesamtheit sein. Dafür sind die verschiedensten Probenauf- und -vorbereitungsschritte nötig, die alle unterschiedlichste Fehlerquellen und Unsicherheiten beinhalten [2].

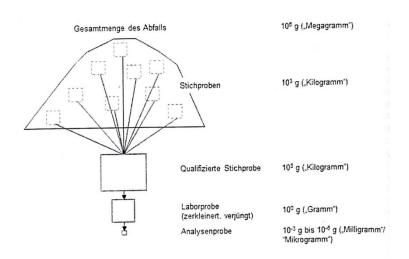


Abbildung 1: Mengenverhältnisse der Abfallmenge bis zur Analysenprobe [2, S. 274]

Auch die Wahl der Anzahl und der Stellen der Stichprobennahme kann gerade im Abfallbereich, wo die Materialien sehr starke Inhomogenität aufweisen, von großer Bedeutung sein. Als Beispiel sei hier die Bleianalyse des umwelt- und prozessanalytischen Labors des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft angeführt. Dabei wurden zwanzig Stichproben aus einem Ballen Siedlungsabfall gezogen. Diese wurden sowohl einzeln, als auch eine, aus diesen zwanzig Stichproben gewonnene Mischprobe analysiert. Dabei zeigte sich, wie in Abbildung 2 zu sehen, dass die Messergebnisse der einzelnen Proben zum Teil sehr stark streuen. Jedoch passt der Mittelwert sämtlicher Einzelproben (21,1 mg/kg TS) recht gut zum Ergebnis der Mischprobe (28,6 mg/kg TS) [2]. Deswegen ist es enorm wichtig, die Repräsentativität in jedem einzelnen Behandlungsschritt der Proben aufrecht zu erhalten.

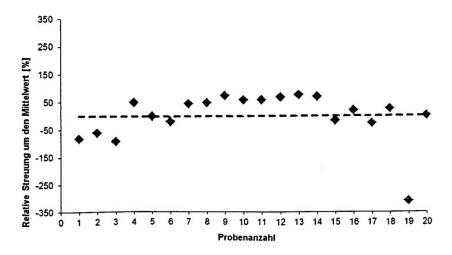


Abbildung 2: Streuung von 20 separat entnommenen Einzelproben für das Element Blei [2, S. 279]

Meist wird die Messunsicherheit der Analysenmethoden selbst bestimmt, wodurch aber nur die Präzision der Messung an sich ermittelt wird. Diese sind auch relativ leicht feststellbar und weitestgehend in allen Labors bekannt. Da damit aber nur der Fehler, der durch die Messung selbst entsteht, berücksichtigt wird, ist diese Unsicherheit für den Endbenutzer bei Feststoffproben, welche Probenvor- bzw. -aufbereitungsschritte durchlaufen, relativ unbedeutend. Denn für ihn ist entscheidend, welche Eigenschaften die Grundgesamtheit aufweist und nicht, wie die Analysenprobe zusammengesetzt ist [3]. Daher wird es immer wichtiger, auch die Fehler der Probenahme und der Probenaufbereitung zu identifizieren und anschließend eine, um diesen Betrag erweiterte Unsicherheit zu bestimmen. Dies scheint besonders wichtig, da in der Literatur bei Berücksichtigung des gesamten Analyseprozesses – von der Probenahme bis zum Messwert – Analyseunsicherheiten von bis zu 1000 % [2] angegeben werden (siehe Abbildung 3). Jedoch ist bis jetzt in der Literatur noch kaum etwas über die Unsicherheit gesamter Analysenprozesse im Abfallbereich für einzelne Parameter zu finden, da solche Untersuchungen erst seit kurzem vorangetrieben werden. Die vorhandene Literatur beschränkt sich fast ausschließlich auf grobe Abschätzungen.

Meistens kommt laut Literatur der größte Anteil der Unsicherheit durch die Probennahme und -aufbereitung zustande. Dies ist jedoch nicht immer der Fall. Wie Simon Prikler et al. [4] in ihrem Beispiel anhand von Ersatzbrennstoff zeigen, haben dort die Probenahme und Probenaufbereitung ungefähr den gleichen Einfluss wie die Analyse selbst. Dadurch wird deutlich, dass eine allgemein gültige Abschätzung der Messunsicherheit nicht von vornherein möglich ist und aufwendige, genaue und vor allem fallspezifische Untersuchungen benötigt werden.

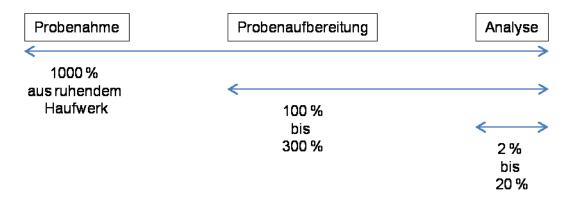


Abbildung 3: Theoretische Unsicherheit für einzelne Teilschritte, nach [2, S. 279]

Zu beachten ist dabei aber, dass die Unsicherheit für die Probenahme oder Probenaufbereitung alleine nicht bestimmbar ist, da das Endergebnis immer auch die Messunsicherheit der Analysen selbst enthält. Daraus wird ersichtlich, dass man, nachdem man die Messunsicherheit der Analysen ermittelt hat, diese erst einmal um die Probenaufbereitung erweitern muss. Damit beschäftigt sich auch die vorliegende Masterarbeit. Und anschließend sollte diese nun ermittelte Messunsicherheit auch um die Probenahme erweitert werden. Nur so lassen sich aus den Differenzen der einzelnen Messunsicherheiten die Unsicherheiten der Teilschritte ermitteln, und dadurch kann auch festgestellt werden, wo die größte Streuung entsteht und wie diese minimiert werden kann.

Generell ist zu sagen, dass im Normalfall die analytische Präzision höher ist als die der Wiederholbarkeit [3]. Das heißt, dass wenn eine Probe unter gleichen Bedingungen in unterschiedlichen Labors gemessen wird, die Ergebnisse einen geringeren Fehler aufweisen, als wenn sie im selben Labor mehrmals hintereinander bestimmt werden. Auch wenn normalerweise eine Analyse nur in einem Labor durchgeführt wird und daher die Präzision unbekannt ist, kann man annehmen, dass sich sämtliche Proben ähnlich verhalten. Deswegen kann man davon ausgehen, dass die Wiederholbarkeit sehr stark mit Unsicherheiten behaftet ist und die Messabweichung wesentlich beeinflusst.

Im Umweltbereich wird meistens die erweiterte Messunsicherheit mit einem Faktor von 2 [5] angegeben. Dies bedeutet, dass in ca. 95 % aller Fälle der richtige Wert in diesem Intervall liegt. Jedoch wird das Intervall in vielen Fällen damit auch zu weit gefasst. Gerade im Abfallund Umweltbereich sind durch die Heterogenität der Materialien die ermittelten Messwerte "nur ein sehr unsicheres Abbild der Realität" [2]. Durch die sehr stark unterschiedlichen Eigenschaften eines Abfalls beispielweise hinsichtlich der Teilchengröße, Härte, Dichte und Schadstoffbeladung ist eine repräsentative Probenahme und Probenaufbereitung umso wichtiger, da gerade im Umweltbereich eher die Spurenelemente ermittelt werden müssen und damit bereits relativ kleine "Fehler" die Messwerte gravierend von der Realität abweichen lassen können. Aus diesem Grund wurde im Zuge dieser Arbeit versucht, den Einfluss auf die Messunsicherheit nach der Aufbereitung von Restmüllproben zu identifizieren. Da dies aber nur mit einer homogenen Restmüllprobe möglich ist, wurde diese – wie in Kapitel 3 gezeigt – künstlich hergestellt.

Um die Unsicherheit zu verringern, darf nicht nur die Unsicherheit der Messung verringert werden, sondern es ist sicherlich auch notwendig, die Unsicherheit der Probenahme und -aufbereitung zu verringern und die Anzahl der untersuchten Mischproben zu erhöhen [5]. Mit zunehmender Anzahl der zu untersuchenden Proben steigen auch die damit verbundenen Kosten stark an (vgl. Formel (1)) [3].

$$Kosten = \frac{(\sqrt{A} + \sqrt{B})^2}{u_t^2}$$
 (1)

Dabei sind u_t die erweiterte Messunsicherheit, A die Probenherstellungskosten und B die Analysekosten.

Oft werden Messergebnisse zur Kontrolle von gesetzlichen Grenzwerten herangezogen. Jedoch ist mit dem Wissen über Messunsicherheiten auch klar, dass eine geringe Überschreitung dieser Grenzwerte, nicht unbedingt gleichbedeutend damit ist, dass das Material tatsächlich die Grenzwerte übertritt. Es kann sich dabei durchaus um Ausreißer handeln oder die Grenzwerte liegen innerhalb der Schwankungsbreite der Messergebnisse. Dies wurde in den letzten Jahren auch von der Gesetzgebung erkannt. Deswegen sind die Festlegung von Toleranzbereichen wie in der Deponieverordnung [6] oder die Bewertung statistischer Parameter wie des Medians (siehe Kapitel 2.2) und des 80-er Perzentils laut Abfallverbrennungsverordnung,[7] (siehe 2.1) gute Möglichkeiten, um Ausreißer in der Praxis auch tatsächlich als solche behandeln und somit ignorieren zu können [2]. Dies trägt wesentlich dazu bei, dass diese Grenzen für Anwender wesentlich leichter und eindeutiger anwendbar sind. Leider sind solche Regelungen noch eher die Ausnahme, jedoch ist zu hoffen, dass diese in Zukunft öfters auch in anderen Gesetzen Anwendung finden.

2.1 Definitionen

Gleich zu Beginn dieser Arbeit sollen einige relevanten Begriffe definiert werden, diese wurden dem EURACHEM Leitfaden 2003 [8, S. 5-6] entnommen:

Messabweichung:

"Die Messabweichung ist definiert als Differenz zwischen einem individuellen Ergebnis und dem wahren Wert der Messgröße. Als solcher ist eine Messabweichung ein einzelner Wert. Im Prinzip kann der Wert einer bekannten Messabweichung als Korrektur des Ergebnisses verwandt werden." [8, S. 5]

"Zufällige Messabweichung sind bedingt durch unvorhersagbare Schwankungen der Einflussgrößen. Diese zufälligen Effekte verursachen Schwankungen bei den wiederholten Bestimmungen einer Messgröße. Die zufällige Messabweichung einer analytischen Messgröße kann nicht

kompensiert werden, aber sie kann üblicherweise durch eine steigende Anzahl von Bestimmungen reduziert werden." [8, S. 5]

"Die **Systematische Messabweichung** ist als die Komponente definiert, die bei der mehrfachen Bestimmung der Messgröße konstant bleibt oder sich in vorhersagbarer Weise verändert. Sie ist unabhängig von der Anzahl der Messungen und kann deshalb auch nicht durch eine steigende Anzahl an Messungen unter konstanten Messbedingungen verringert werden." [8, S. 5-6]

Unsicherheit:

"Die Unsicherheit stellt ein Intervall dar und kann, wenn sie für eine analytische Methode und eine definierte Probe bestimmt wird, für alle Bestimmungen, die auf genau diese Art durchgeführt sind, herangezogen werden. Allgemein darf der Wert der Unsicherheit nicht zur Korrektur eines Messergebnisses verwendet werden.

Dieser Unterschied kann wie folgt illustriert werden: Ein Messergebnis kann nach Korrektur zufällig nahe dem (wahren) Wert der Messgröße liegen und damit einen vernachlässigbaren Fehler besitzen. Aufgrund der Messunsicherheit kennt der Analytiker die Annäherung an den wahren Wert jedoch nicht. Die Unsicherheit des Ergebnisses kann immer noch sehr hoch sein, da der Analyst weiterhin unsicher ist, wie nahe ein Ergebnis dem wahren Wert ist." [8, S. 5]

Die **erweiterte Unsicherheit** U [8, S. 9] stellt ein Intervall dar, in dem der Wert der Messgröße mit einem höheren Konfidenzniveau vermutet wird. U wird durch Multiplikation der kombinierten Standardunsicherheit mit einem Erweiterungsfaktor k erhalten. Für ein angenähertes Konfidenzniveau von 95 % ist der Wert für k = 2.

Fehler:

"Grobe Fehler sind nicht immer offensichtlich; üblicherweise ist es bei Vorhandensein einer ausreichenden Zahl von Wiederholungsmessungen angemessen, einen Ausreißertest anzuwenden, um auf verdächtige Messergebnisse zu prüfen. Jedes positive Ergebnis eines solchen Tests sollte mit Vorsicht betrachtet werden und der Urheber des Resultates, wenn möglich, zum Zwecke der Bestätigung konsultiert werden. Es ist generell unklug, einen Wert aus rein statistischen Gründen zu verwerfen." [8, S. 6]

Weiters sollten noch folgende Begriffe definiert werden:

Probenaufbereitung: "Ziel der Probenaufbereitung ist die Herstellung einer geeigneten Analysenprobe von nur wenigen Milligramm aus einer Feldprobe mit mehreren Gramm bis Kilogramm" [2, S. 275] Dabei sind meist mehrere Schritte nötig, die je nach Material sehr unterschiedlich durchgeführt werden können bzw. müssen. Diese umfassen beispielsweise die Zerkleinerung, Trocknung, Verjüngung oder auch die Störstoffentfernung. Dabei ist natürlich immer die Repräsentativität zu beachten und es dürfen auf keinen Fall die zu analysierenden Substanzen verloren gehen (durch z.B. Verflüchtigung).

Probenvorbereitung: Diese ist nur bei indirekten Messmethoden nötig und kann zum Teil sehr aufwendige Prozessschritte beinhalten. Indirekte Messmethoden beschreiben jene, bei denen nicht die gewonnene Feststoffprobe selbst analysiert wird, sondern diese, erst nach weiterer Behandlung und Überführung der Probe in einen meist flüssigen Zustand analysiert werden kann [2]. Typische Analysenverfahren indirekte Messmethoden wären die Massenspektrometrie mit induktiv gekoppeltem Plasma oder die Hochdruckflüssigchromatografie. Gerade im Umweltbereich kommen als Vorbereitungsverfahren der Aufschluss, die Extraktion oder das Eluat zur Anwendung. Solche Analysen sind oft auch gesetzlich gefordert. Als Beispiel sei hier auf die Deponieverordnung Anhang 4 [6], für die Grenzwertbestimmung verwiesen.

Probenverjüngung:

Bei der Probenverjüngung wird die Menge der Probe reduziert, ohne dabei die Zusammensetzung der Probe bzw. deren Repräsentativität zu verändern. Dabei stehen einige Ansätze zur Verfügung, wie die Viertelmethode, Riffelteiler oder auch fraktionierte Schaufeln [2]. Je nach Probe Materialmenge eignet sich die eine oder andere Methode besser. Dabei sollte aber die Methode nicht innerhalb einer Messserie verändert werden. da die unterschiedlichen Methoden nicht zwangsweise als Äquivalent anzusehen sind. Im Zuge dieser Arbeit wurde die Viertelmethode verwendet und in Kapitel 4.1 beschrieben.

80-er Perzentil:

"Das 80-er Perzentil ist derjenige Wert, der die nach ihrer Größe geordnete Wertereihe in zwei Teile zerlegt, sodass 80% aller Werte kleiner oder gleich und 20% aller Werte größer oder gleich sind. Dazu wird die Anzahl der Werte mit 0,8 multipliziert. Ergibt dieses Produkt keine ganze Zahl, so muss die dem

Produkt nachfolgende ganze Zahl bestimmt werden. Der zu dieser Zahl zugehörige Wert der Wertereihe stellt das 80-er Perzentil dar. Ergibt dieses Produkt eine ganze Zahl, so muss der dieser Zahl entsprechende Wert der Wertereihe zu dem nächsten Wert der Wertereihe addiert und die Summe durch zwei dividiert werden." [7]

2.2 Statistische Parameter

Die Statistischen Parameter, die für diese Masterarbeit von Bedeutung waren, sind im Folgenden beschrieben und erläutert. In den unten angeführten Formeln steht x_i für den Messwert und n für die Anzahl der Messwerte.

Der Median ist der mittlere Wert einer geordneten Zahlenreihe, wobei je nach Anzahl der Werte dieser nach Formel (3) bzw. (4) bestimmt wird. Ein Vorteil des Medians ist, dass er robuster als der Mittelwert \bar{x} (vgl. Formel (2)) gegenüber Ausreißern ist [9].

Die Varianz s² (5) wird über die Quadrate der Differenz zwischen Wert und Mittelwert berechnet und hat dadurch eine andere Einheit als die Messwerte an sich. Deswegen wird meistens die Wurzel der Varianz - Standardabweichung [9] genannt - zur Beurteilung der Streuung einer Messung benutzt. Diese, bezogen auf den Mittelwert, liefert die relative Standardabweichung, wie in Formel (6) gezeigt [9].

Gemäß dem Gesetz der Fehlerfortpflanzung (8) ist die Gesamtvarianz die Summe der Einzelvarianzen [2, S. 272]. In dieser Arbeit wird jedoch der Term der Probennahme ausgespart um eine Bestimmung des Terms der Probenauf- bzw. vorbereitung durchführen zu können.

Mittelwert
$$\bar{\mathbf{x}} = \sum_{i=1}^{n} x_i$$
 (2)

Median für n gerade
$$\bar{x}_{Median} = x_{\left(\frac{n+1}{2}\right)}$$
 (3)

Median für n ungerade
$$\bar{x}_{\text{Median}} = \frac{1}{2} \left(x_{\left(\frac{n+1}{2}\right)} + x_{\left(\frac{n}{2}\right)} \right)$$
 (4)

Varianz
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{(n-1)}$$
 (5)

relative Standardabweichung
$$s = \frac{\sqrt{\frac{\sum (x_i - \bar{x})^2}{(n-1)}}}{\bar{x}}$$
 (6)

Konfidenzintervall (95 %) = 1,96 *
$$\sqrt{s^2} / \sqrt{n}$$
 (7)

$$s^2_{Gesamt} = s^2_{Probennahme} + s^2_{Probenaufbereitung} + s^2_{Probenvorbereitung} + s^2_{Analytik} + s^2_{Datenauswertung}$$
 (8)

2.3 Ermittlung von Ausreißern nach Hampel

Um etwaige Ausreißer im Rahmen dieser Masterarbeit identifizieren zu können, wurde für alle Untersuchungen der Ausreißertest nach Hampel [10, S. 5-6] durchgeführt. Dabei werden die Analysenergebnisse nach folgenden Schritten untersucht:

Es wird zuerst der Median (x_{median}) der Analysenergebnisse identifiziert, danach werden noch die Absolutwerte der Differenz (r_i) zwischen Einzelwert (x_i) und Median bestimmt (siehe Formel (9)). Aus diesen Beträgen wird abermals der Medianwert (y_{median}) ermittelt und mit dem Hampelwert H (10) die Ausreißergrenze nach Formel (11) definiert.

$$r_{i} = |x_{i} - x_{\text{median}}| \tag{9}$$

$$H = 1,483 * (1 + \frac{1,90}{(n-0,8)^{1,2}})$$
 (10)

$$|\mathbf{r}_{\mathbf{i}}| \ge 3 * \mathbf{y}_{\text{median}} * \mathbf{H} \tag{11}$$

3 Abschätzung des Beitrages der Eluatherstellung zur Messunsicherheit

Zur Abschätzung des Beitrages der Probenvorbereitung zur Messunsicherheit wird auf den folgenden Seiten die Vorgehensweise beschrieben. In dieser Arbeit wurde als Probenvorbereitungsschritt die Eluatherstellung gewählt. Dieses Eluat soll aus Restmüll gewonnen werden. Jedoch muss der Restmüll um Inhomogenität ausschließen zu können, synthetisch hergestellt werden. Zuerst wird die Herstellung des Eluats sowie die Probenkonservierung beleuchtet, danach die Messung der unten angeführten Parameter sowie deren Auswertung. Abschließend wird in diesem Kapitel die Bestimmung der Messunsicherheit der Nickel- sowie Chloridbestimmung durchgeführt.

Insgesamt wurden 25 Eluate und zusätzlich ein Blindwert angesetzt und diese laut ÖNORM EN 12457-4 [11] 24 h in einem Überkopfschüttler eluiert. Der systematische Ablauf der Versuche ist in Abbildung 4 dargestellt.

Folgende Analysen wurden an den Eluatproben durchgeführt:

- pH-Wert-Bestimmung
- Leitfähigkeitsmessung
- TOC-Bestimmung
- Anionengehalt
- anionischer Tensidgehalt
- Abdampfrückstands-Bestimmung
- Schwermetallgehalt

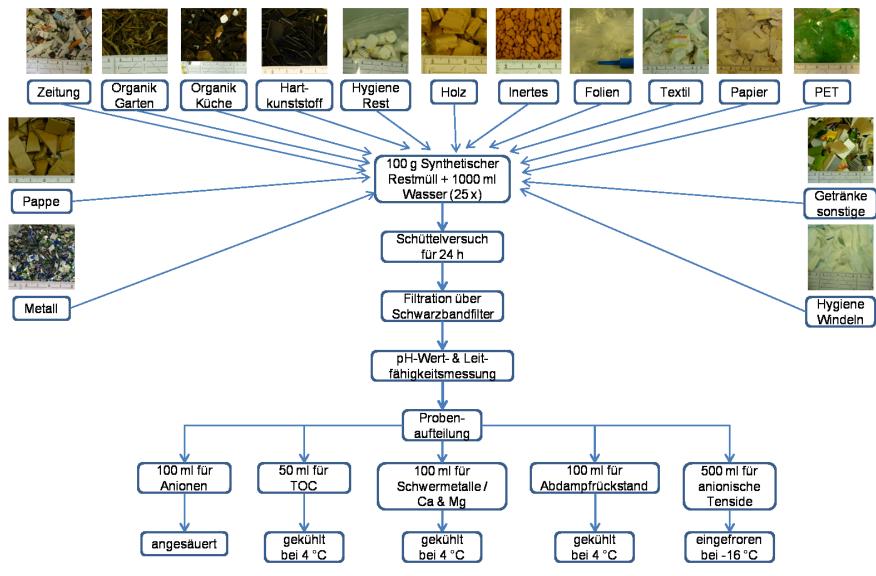


Abbildung 4: Ablaufplan für die Versuchsdurchführung der 25 Eluate aus synthetischem Restmüll

3.1 Vorbereitung des synthetischen Restmülls

Da es zur Ermittlung der Messunsicherheit sehr wichtig war, eine möglichst homogene und exakte Kenntnis über die Zusammensetzung des Abfalls zu haben, wurde dieser aus sauberen, rein vorliegenden Fraktionen selbst zusammengemischt. Dafür wurden insgesamt 15 Fraktionen herangezogen, deren Zusammensetzung sich laut Restmüllanalyse 2009 [12, S. 26] ergab. Dabei wurde die Fraktion 20-40 mm miteinbezogen, die Fraktionen Feund NE-Metalle zusammengefasst und die Glasfraktion vernachlässigt. Auch die Fraktionen Problemstoffe, Sonstiges und der Anteil < 20 mm wurden ausgeschlossen. Daraus ergab sich die in Tabelle 1 gezeigte Zusammensetzung. Ebenfalls ersichtlich sind die verwendeten Materialien, die auf eine ungefähre Korngröße von 1 cm (siehe Abbildung 5) händisch zerkleinert wurden, da diese Korngröße für das Eluat It. ÖNORM 12457-4 [11] verlangt wird.

Damit eine geringe Menge Tenside, für die Tensidbestimmung, vorhanden war, wurden die Textilien in Wasser mit wenig Spülmittel eingeweicht und anschließend bei 100 °C getrocknet.

Abbildung 5: Darstellung der Fraktionen für die Eluate (von links oben nach rechts unten): Getränke sonstige, Inertes, Organik Küche, PET, Organik Garten, Textil, Zeitung, Hygiene Windeln, Metall, Pappe, Hygiene Rest, Hartkunststoff, Papier, Holz, Folien

Tabelle 1: Zusammensetzung des synthetischen Restmülls und dafür verwendetes Material

Restmüllfraktionen	Anteil	Gewicht auf 100 g Probe	Material
	[%]	[9]	
Zeitung	3,2	3,2397	Salzburger Nachrichten, Modekatalog
Pappe	2,1	2,0518	Kartonage
Papier	9,8	9,8203	Bedrucktes 120 g/m² Papier, Taschentücher
Folien	6,5	6,5469	LDPE-Folie
Hartkunststoff	4,1	4,1037	Blumentöpfe
PET	1,0	0,9719	Mineralwasserflaschen
Getränke sonstige	12,3	12,2876	Saft- & Milchverpackungen
Metall	4,3	4,2790	Getränkedosen
Textil	6,6	6,5544	Leintuch
Holz	1,2	1,1631	Spanplatte
Inertes	5,1	5,1099	Seramis-Tonkugeln
Organik Garten	22,2	22,1653	Laub/Grasschnitt
Organik Küche	12,9	12,8510	Bananenschalen, Eierschalen, Kaffeesud
Hygiene Windeln	8,2	8,2073	Windeln
Hygiene Rest	0,6	0,6479	Tampons
Summe	100	100,0	

3.2 Herstellung der Eluate

Für die Eluate wurden jeweils insgesamt 100 g des synthetischen Restmülls nach Tabelle 1 auf einer Laborwaage fraktionsmäßig eingewogen (siehe Abbildung 4).

Da es für die Auswertung der Versuche von entscheidender Bedeutung war, möglichst homogene Proben zu erzeugen, wurde auf die konstante Einwaage ein besonderes Augenmerk gelegt. Dadurch ergab sich eine durchschnittliche Abweichung vom errechneten Wert von lediglich 0,7 ‰. Jedoch wich die Einwaage einmal auch um 1 % und ein weiteres Mal um 1,9 % ab. Die genauen Mengen sind in Anhang I, Tabelle 25 zu finden. Durch die konstante Einwaage war es möglich, immer von einem unveränderten Material mit identischer Zusammensetzung auszugehen, wodurch der Vergleich der einzelnen Eluate erst ermöglicht wurde.

Die Fraktionen wurden bei jedem Eluat in einer 2 I Duranflasche (siehe Abbildung 6) gefüllt und anschließend mit 1 I deionisiertem Wasser aufgefüllt. Danach wurden die Flaschen in einem Überkopfschüttler fixiert und für 24 h bei 7 Umdrehungen pro Minute geschüttelt.

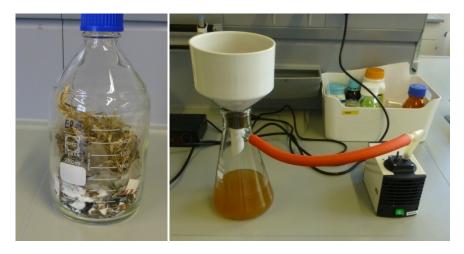


Abbildung 6: links: Duranflasche mit 100 g Restmüllprobe; rechts: Filtration der Eluatansätze mittels Vakuumpumpe

Filtration & Konservierung der Eluate

Nach dem 24 h-Schüttelversuch wurden die Proben für 15 min stehen gelassen, damit eine Sedimentation stattfinden konnte. Danach wurden die Proben mittels Schwarzbandfilter und Vakuumpumpe, wie in Abbildung 6 gezeigt, abfiltriert.

Anschließend wurde das gewonnene Filtrat aufgeteilt und für die einzelnen Messungen entsprechend konserviert. Alle Proben wurden gekühlt (4 °C) eingelagert, bzw. für die Tenside eingefroren (-16 °C) und für die Schwermetalle sowie Ca und Mg mit HNO₃ angesäuert.

3.3 Messung des pH-Wertes und der Leitfähigkeit

Sowohl die pH-Wert-Bestimmung nach DIN EN ISO 10523 [13] als auch Leitfähigkeitsbestimmung nach DIN EN 27888 [14] erfolgten unmittelbar nach der Filtration der Eluate (siehe Abbildung 7). Um eine Verschleppung zwischen den Proben zu verhindern, wurden die Sensoren jeweils mit deionisiertem Wasser gespült und anschließend getrocknet.

Das pH-Meter pH3110 mit dem Sensor SenTix81 der Firma wTw wurde vor den Messungen mittels Zwei-Punkt-Kalibrierung im sauren Milieu kalibriert. Dafür wurden Standards mit den pH-Werten 7,00 und 4,01 verwendet.

Die Leitfähigkeitsmessung erfolgte mit dem Modell Cond315i und dem Sensor TetraCop325, jeweils von der Firma wTw, und konnte nach Reinigung und Trocknung direkt durchgeführt werden.

Durch integrierte Sensoren zeigten beide Geräte zusätzlich die Temperatur an, womit bei der Leitfähigkeit eine Temperaturkorrektur möglich wurde, wie sie in Kapitel 3.3 beschrieben wird. Erst durch diese Temperaturkorrektur wird es möglich die Leitfähigkeit der einzelnen Eluate zu vergleichen.

Abbildung 7: pH-Meter und Leitfähigkeitsmessung der 26 Eluate

3.4 Bestimmung des TOC

Die Bestimmung des Total Organic Carbons (TOC) wurde durch das umwelt- und prozessanalytische Labor des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft durchgeführt.

Die Eluatproben wurden dafür nach ÖNORM EN 1484 [15] untersucht und dabei in einem Verhältnis von 1:10 verdünnt und in 20 ml Vials abgefüllt. Danach wurden sie in den Autosampler aufgegeben und mittels Total Organic Cabon Analyzer (TOC-L) der Firma Shimadzu vollautomatisch analysiert.

3.5 Bestimmung des Abdampfrückstandes

Für den Abdampfrückstand nach DIN 38409-1 [16] wurde ein Teil des Eluats, nach der Filtration mit dem Schwarzbandfilter noch zusätzlich bei 14.000 min⁻¹ zentrifugiert, und anschließend bei 0,45 µm filtriert. Dies erwies sich jedoch als recht aufwendig, da die Proben ein verhältnismäßig zähes Verhalten zeigten und die Filter sehr schnell, wie in Abbildung 8 zu sehen, verlegt waren.

Anschließend wurden 50 ml des Filtrats in ein zuvor exakt verwogenes Becherglas eingefüllt und bei 105 °C über Nacht getrocknet. Sobald sämtliches Wasser verdampft (siehe Abbildung 8) und Gewichtskonstanz erreicht wurde, wurde das Becherglas erneut auf der Laborwaage verwogen. Aus der Gewichtsdifferenz bezogen auf die Einwaage (siehe Formel (14)) konnte abschließend der Abdampfrückstand berechnet werden.

Abbildung 8: links: Abdampfrückstand eines Eluats; rechts: $0,45~\mu m$ -Filter nach der Filtration des Eluates für den Abdampfrückstand

3.6 Bestimmung der Anionen

Zur Bestimmung der Chlorid- und Sulfationen laut DIN EN ISO 10304-1 [17] wurde die benötigte Menge der Probe mittels Spritzenfilter über 0,45 μ m filtriert und anschließend in einem Verhältnis von eins zu zehn mit deionisiertem Wasser verdünnt. Diese Verdünnung wurde in die Vials für den Autosampler eingefüllt und im Ionenchromatographen (ICS2000 von Dionex) aufgegeben. Die eigentliche Messung wurde von Mitarbeitern des umwelt- und prozessanalytischen Labors durchgeführt und erfolgte vollautomatisch. Die daraus folgende Auswertung wurde manuell kontrolliert. Durch ein vorab durchgeführtes Exempel wurde ersichtlich, dass es lediglich sinnvoll ist die Bestimmung von Chlorid (Cl⁻) und Sulfat (SO_4^{2-}) durchzuführen, da sämtliche anderen Anionen unter der Bestimmungsgrenze lagen.

3.7 Bestimmung der anionischen Tenside

Die Bestimmung der Tenside erfolgte mittels Methylenblau-Index laut Arbeitsanweisung des umwelt- und prozessanalytischen Labors [18] bzw. nach ÖNORM 903 [19]. Dafür wurden 100 ml der Probe in einen Scheidetrichter eingefüllt und mit 10 ml Pufferlösung (pH 10) sowie 5 ml neutraler Methylenblau-Lösung vermengt. Zusätzlich kamen noch 15 ml Chloroform (CHCl₃) hinzu. Diese Mischung wurde für 60 sec geschüttelt und nach erfolgter Phasentrennung (siehe Abbildung 9) wurde die Chloroformphase in einen weiteren Scheidetrichter überführt. Zu dieser Phase wurden noch 110 ml deioniesiertes Wasser und 5 ml saure Methylenblau-Lösung zugegeben. Nach dem erneuten einminütigen Schütteln wurde wieder die untere Phase in einen Erlenmeyerkolben über einen Trichter mit in Chloroform getränkter Watte abgefüllt. Der Vorgang wurde zwei Mal wiederholt, jedoch wurden dabei nur mehr je 10 ml Chloroform im neutralen Scheidetrichter zugesetzt. Anschließend wurde die Watte mit Chloroform in den 50 ml Erlenmeyerkolben nochmals gespült und dieser bis zur Markierung aufgefüllt. Diese Lösung wurde mittels Zwei-Strahl-Photometer (UniCam UV4) bei 650 nm Wellenlänge gemessen. Darüber hinaus wurde ein

Blindwert mitbestimmt. Dieser wurde exakt gleich behandelt; nur wurde statt 100 ml Probe deioniesiertes Wasser verwendet.

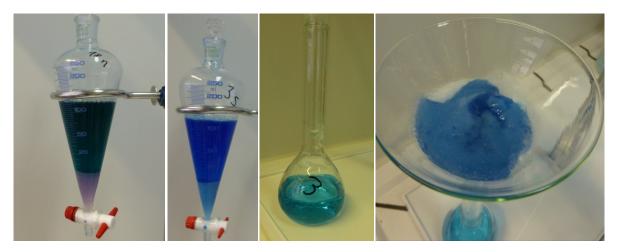


Abbildung 9: von links nach rechts: Scheidetrichter mit neutraler Lösung, mit saurer Lösung, fertige Messlösung für die Bestimmung der anionischen Tenside in den Eluaten und gallertartige Masse nach der Durchführung der Extraktion der methylenblauaktiven Substanzen aus den Eluaten in Filterwatte

Beide Methylenblau-Lösungen wurden 24 h vorher angesetzt. Für die neutrale Lösung wurde 0,175 g Methylenblau mit 500 ml deionisiertem Wasser versetzt. Bei der sauren Lösung wurden 0,175 g Methylenblau mit 250 ml Deionat gelöst, mit 3,25 ml Schwefelsäure (98 %) vermengt und auf 500 ml mit deionisiertem Wasser aufgefüllt.

Während der Durchführung der Extraktionen bildete sich in relativ großer Menge eine blaue gallertartige, zähe Masse (vgl. Abbildung 9), die in der Watte aufgefangen wurde. In diesem Gel war zum Teil auch Wasser gebunden, welches sich erst langsam in die Chloroformphase absetzte. Diese Wasserphase wurde anschließend mittels Pipette so vollständig wie möglich wieder abgesaugt, um die Messung nicht zu verfälschen.

3.8 Bestimmung der Schwermetalle sowie Ca und Mg

Die Bestimmung der Schwermetalle erfolgte nach ÖNORM EN ISO 17294-2 [20] durch das umwelt- und prozessanalytische Labor; dabei wurden alle Proben, die zuvor mittels Spritzenfilter bei 0,45 µm abfiltriert wurden, in einem Verhältnis von 1:2 verdünnt. Für die vollautomatische Analyse der Elemente nach der Aufgabe der Proben (siehe Abbildung 10) wurde das Massenspektrometer mit induktiv gekoppeltem Plasma (ICP-MS) Agilent 7500CX verwendet.

Abbildung 10: Messserienbehälter für die ICP-MS

3.9 Ergebnisse der Eluatversuche

In sämtlichen, in dieser Masterarbeit gezeigten Diagrammen, stellt die rote horizontale Linie den ermittelten Mittelwert dar und die blauen Punkte entlang der Linie die einzelnen Messwerte. Gelb markierte, mit einem Kreuz versehene Messwerte, kennzeichnen Ausreißer, die nach dem in Kapitel 2.3 beschriebenen Hampel-Ausreißertest bestimmt wurden. Solche ermittelten Ausreißer wurden zwar in den Diagrammen kenntlich gemacht, jedoch nur aus der Berechnung entfernt, wenn auch eine visuelle Betrachtung den Schluss zuließ, dass es sich bei den genannten Werten eindeutig um Ausreißer handelt. In solchen Fällen wird im Text dezidiert darauf hingewiesen. Dies wird auch im EURACHEM Leitfaden [8, S. 6] so gehandhabt.

Die angeführten Probenbezeichnungen der Eluate El1 bis El25 entsprechen den 25 angesetzten Eluaten aus dem synthetischen Restmüll. Zusätzlich wurde noch das Eluat El0 angesetzt, wobei es sich aber um den Blindwert handelt. Deswegen scheint dieser in den Diagrammen nicht auf.

Desweiteren wird in Tabellenform jeweils der Mittelwert nach Formel (2), die Varianz nach Formel (5), die relative Standardabweichung nach Formel (6) und das Konfidenzintervall nach Formel (7) der einzelnen Messungen angeführt (siehe Kapitel 2.2).

3.9.1 Auswertung der Ergebnisse der pH-Wert-Bestimmung

Die Ergebnisse der pH-Wert-Messung sind in Abbildung 11 ersichtlich und wurden wie in Kapitel 3.3 beschrieben ermittelt. Die Einzelmessergebnisse sind in Anhang II, Tabelle 27 ersichtlich und die daraus berechneten statistischen Parameter in Tabelle 2 dargestellt.

Tabelle 2: Statistische Parameter für den pH-Wert der Eluate aus Restmüll

Statistische Parameter für den pH-Wert	
	[-]
Mittelwert	6,59
Varianz	0,024
Relative Standardabweichung	2,37 %
Konfidenzintervall (95 %)	± 0,061

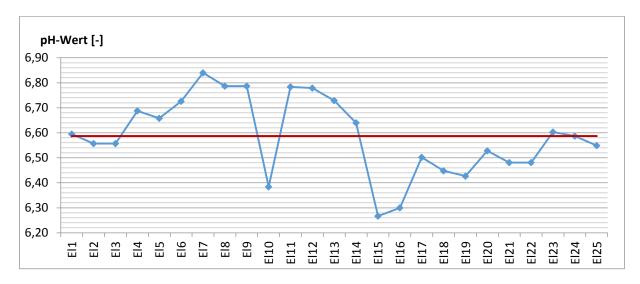


Abbildung 11: pH-Werte der Eluate der 25 Restmüllproben

3.9.2 Auswertung der Ergebnisse der Leitfähigkeit

Wie in Kapitel 3.3 erklärt, wurde die Leitfähigkeit der Eluate bestimmt. Anschließend wurde noch eine Temperaturkorrektur laut DIN EN 27888 [14] durchgeführt. Dafür wurde je nach Temperatur ein Temperaturkorrekturfaktor aus Tabelle 3 der DIN EN 27888 [14, S. 11 (Tabelle 3)] herausgesucht und nach Formel (12) umgerechnet. Dabei ist γ die Leitfähigkeit und θ der Temperaturkorrekturfaktor. Die auf 25 °C bezogenen Werte sind in Abbildung 12 abgebildet und in Tabelle 3 die statistischen Parameter aufgelistet. Die Messergebnisse für die einzelnen Eluate sind in Anhang II, Tabelle 27 ersichtlich.

$$\gamma_{25^{\circ}C} = \gamma_{\theta} * \theta \tag{12}$$

Tabelle 3: Statistische Parameter für die Leitfähigkeit der Eluate aus Restmüll

Statistische Parameter für die Leitfähigkeit bei 25 °C	
	[µS/cm]
Mittelwert	3,74
Varianz	0,042
Relative Standardabweichung	5,48 %
Konfidenzintervall (95 %)	± 0,080

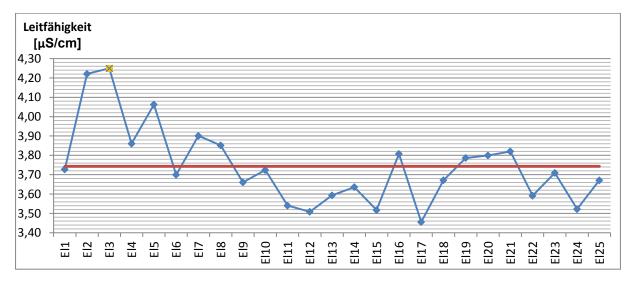


Abbildung 12: Leitfähigkeit der Eluate der 25 Restmüllproben

3.9.3 Auswertung der Ergebnisse des TOC-Gehaltes

Die erhaltenen Ergebnisse waren in mg/l Eluat angegeben. Nach der Bestimmung des TOC-Gehaltes mussten die Werte noch auf mg/kg Trockenmasse (TM) umgerechnet werden. Da die Eluate in einem Verhältnis von 1:10 angesetzt waren, wurden deswegen die Messergebnisse mit zehn multipliziert (siehe Formel (13)).

$$TOC [mg/kg] = \frac{TOC [mg/l]}{\frac{1[kg Probe]}{10 [l Wasser]}} = TOC [mg/l] * 10 [l/kg]$$
(13)

Die so berechneten Werte sind in Anhang II, Tabelle 27 abgebildet und deren statistische Parameter sind in Tabelle 4 und Abbildung 13 verdeutlicht.

Tabelle 4: Statistische Parameter für den TOC-Gehalt der Eluate aus Restmüll

Statistische Parameter für den TOC Gehalt der Eluate	
	[mg/kg TM]
Mittelwert	12.880
Varianz	7.636.000
Relative Standardabweichung	21,45 %
Konfidenzintervall (95 %)	± 1083

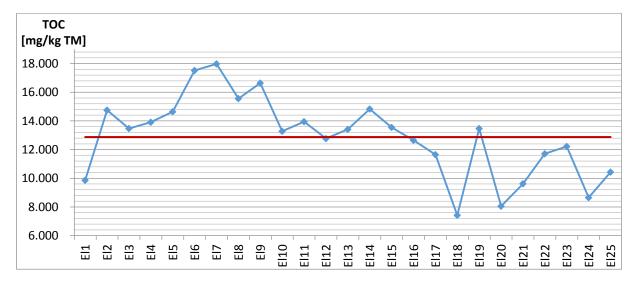


Abbildung 13: TOC-Gehalt der Eluate der 25 Restmüllproben

3.9.4 Auswertung der Ergebnisse des Abdampfrückstands

Aus der Differenz zwischen Leergewicht (m_{leer}) und Gewicht nach dem Verdampfen ($m_{Trocken}$) der gesamten Flüssigkeit konnte der Abdampfrückstand (β) ermittelt werden. Mittels Formel (14) durch Rückrechnung mit dem eingewogenen Volumen (Vol_{eingesetzt}) sowie dem Liquid/Solid-Verhältnis kann das Resultat wieder auf kg Trockenmasse bezogen werden. Die Einzelmessergebnisse sind in Anhang II, Tabelle 27 zu finden.

$$\beta = \frac{m_{Trocken} - m_{leer} [mg]}{Vol_{eingesetzt} [l]} * \frac{10 [l]}{1 [kg TM]}$$
(14)

Die Ergebnisse sind in Tabelle 5 und Abbildung 14 abgebildet.

Tabelle 5: Statistische Parameter für den Abdampfrückstand der Eluate aus Restmüll

Statistische Parameter für den Abdampfrückstand der Eluate	
	[mg/kg TM]
Mittelwert	34,65
Varianz	32,59
Relative Standardabweichung	16,47 %
Konfidenzintervall (95 %)	± 2,238

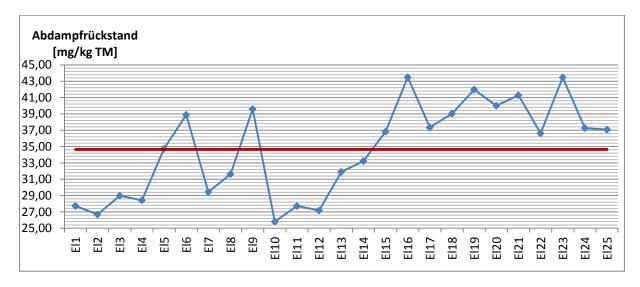


Abbildung 14: Abdampfrückstand der Eluate der 25 Restmüllproben

3.9.5 Auswertung der Ergebnisse der Anionen-Gehalte

Die Auswertung wurde durch Angleichen der Integralflächen abgeglichen und mittels Liquid/Solid Faktor von 10 auf kg Trockenmasse bezogen. In Tabelle 6 und Abbildung 15 sowie Abbildung 16 sind die Ergebnisse bildlich dargestellt, in Anhang II, Tabelle 27 sind die Messergebnisse der einzelnen Eluate ersichtlich.

Tabelle 6: Statistische Parameter für den Anionengehalt der Eluate aus Restmüll

Statistische Parameter für den Anionengehalt der Eluate		
	Chlorid	Sulfat
	[mg/kg TM]	[mg/kg TM]
Mittelwert	1736,6	289,62
Varianz	75.915	12.555
Relative Standardabweichung	15,866 %	38,690 %
Konfidenzintervall (95 %)	± 108,00	± 43,923

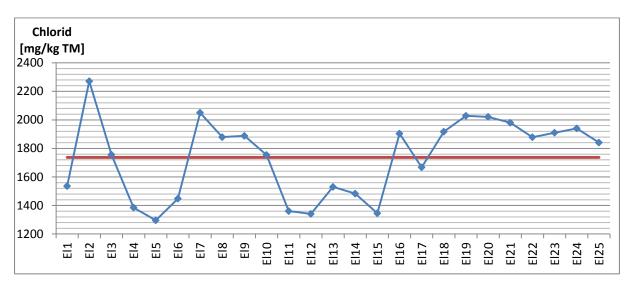


Abbildung 15: Chloridgehalt der Eluate der 25 Restmüllproben

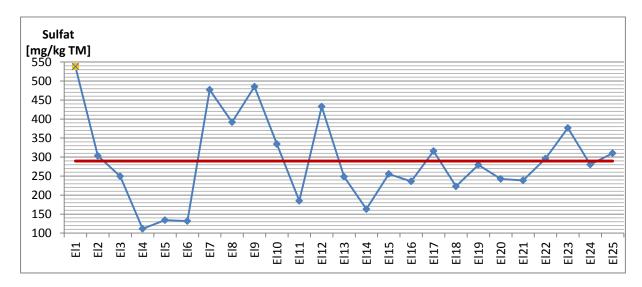


Abbildung 16: Sulfatgehalt der Eluate der 25 Restmüllproben

3.9.6 Auswertung der Ergebnisse der anionischen Tenside

Die Auswertung der Tenside war durch das Doppelstrahlspektrometer einfach, da geräteintern der Blindwert bereits abgezogen wurde und das Resultat nur noch von mg/l auf mg/kg TM mit dem Faktor 10 (Liquid/Solid) umgerechnet werden musste. Die einzelnen Messergebnisse sind in Anhang II, Tabelle 27 ersichtlich und in Abbildung 17 abgebildet. Die statistischen Parameter sind in Tabelle 7 dargestellt.

Tabelle 7: Statistische Parameter für den anionischen Tensidgehalt der Eluate aus Restmüll

Statistische Parameter für den anionischen Tensidgehalt der Eluate	
	[mg/kg TM]
Mittelwert	2,97
Varianz	2,11
Relative Standardabweichung	48,8 %
Konfidenzintervall (95 %)	± 0,569

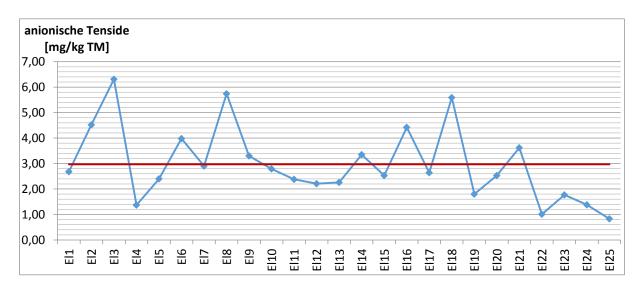


Abbildung 17: Anionischer Tensidgehalt der Eluate der 25 Restmüllproben

3.9.7 Auswertung der Ergebnisse der Schwermetall-Gehalte

Die Messung erfolgte wie in Kapitel 3.8 beschrieben. Zur Umrechnung wurden die erhaltenen und um den Blindwert bereinigten Ergebnisse (c) noch mit dem Verdünnungsfaktor f_{verd} multipliziert und anschließend mit dem Liquid/Solid-Faktor von zehn auf kg Trockenmasse umgerechnet (siehe Formel (15)). Weiters wurden die Ergebnisse mit der Bestimmungsgrenze abgeglichen. Die Elemente Cadmium und Chrom wurden deshalb nicht ausgewertet, da die Messwerte unter der Bestimmungsgrenze lagen. Aus den Messwerten (siehe Anhang II, Tabelle 26) ergaben sich jene Werte, die in Tabelle 8 aufgelistet und in den Abbildungen 18 - 26 abgebildet sind. Zu beachten sind hierbei aber die unter den Elementen angegeben Einheiten, da sie zur besseren Übersicht teilweise auch in mg und nicht in μ g angegeben wurden.

$$C\left[\frac{mg}{kg\,TM}\right] = \frac{c\left[\frac{\mu g}{1}\right] * f_{\text{verd}} * L/S\left[\frac{1}{kg}\right]}{1000\left[\frac{\mu g}{mg}\right]} \tag{15}$$

Bei fünf der nachfolgenden Grafiken (Abbildungen 18, 20, 21, 25 und 26) wurde jeweils ein als Ausreißer identifizierter Wert nach dem Ausreißertest nach Hampel und visueller Überprüfung (vgl. Kapitel 2.3) aus der Berechnung ausgeschlossen. Dennoch werden diese im jeweiligen Diagramm dargestellt.

Tabelle 8: Statistische Parameter für die Metallgehalte der Eluate aus Restmüll

Statistische Parameter für die Metallgehalte der Eluate				1	
Element	Antimon	Arsen	Blei	Calcium	Cobalt
	[µg/kg TM]	[µg/kg TM]	[µg/kg TM]	[mg/kg TM]	[µg/kg TM]
Mittelwert	31,12	181,7	189,9	1451	181,9
Varianz	105,9	818,8	11390	13900	6173
Relative Standardabweichung	33,06 %	15,75 %	56,20 %	8,126 %	43,20 %
Konfidenzintervall (95 %)	± 4,116	± 11,22	± 42,69	± 47,16	± 30,80
Element	Magnesium	Mangan	Nickel	Zink	
	[mg/kg TM]	[mg/kg TM]	[µg/kg TM]	[mg/kg TM]	
Mittelwert	130,0	7,043	257,1	2,074	
Varianz	552,0	3,716	4787	0,1082	
Relative Standardabweichung	18,08 %	27,37 %	26,92 %	15,86 %	_
Konfidenzintervall (95 %)	± 9,209	± 0,7556	± 28,28	± 0,1316	

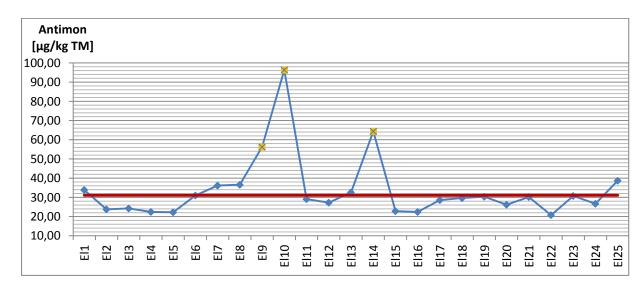


Abbildung 18: Antimongehalt der Eluate der 25 Restmüllproben mit Ausreißer El10

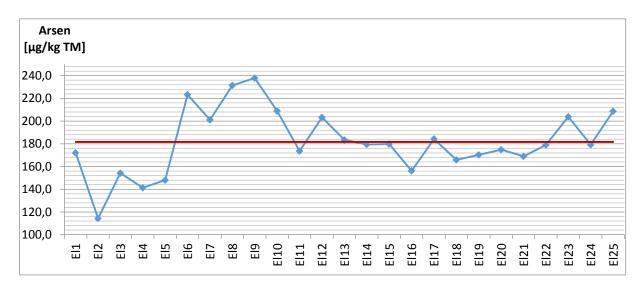


Abbildung 19: Arsengehalt der Eluate der 25 Restmüllproben

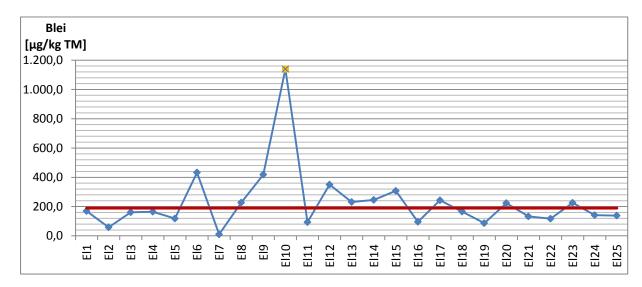


Abbildung 20: Bleigehalt der Eluate der 25 Restmüllproben mit Ausreißer El10

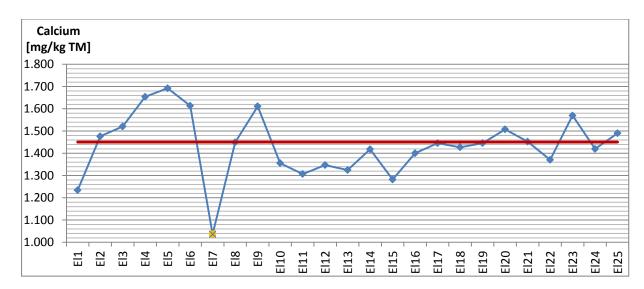


Abbildung 21: Calciumgehalt der Eluate der 25 Restmüllproben mit Ausreißer El7

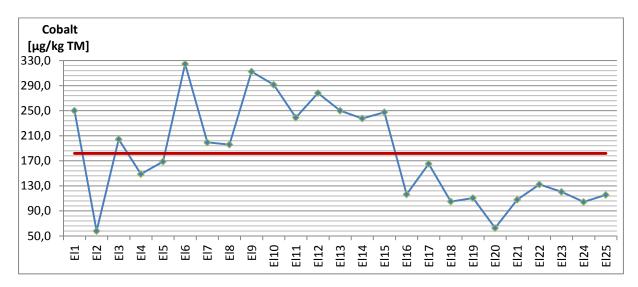


Abbildung 22: Cobaltgehalt der Eluate der 25 Restmüllproben

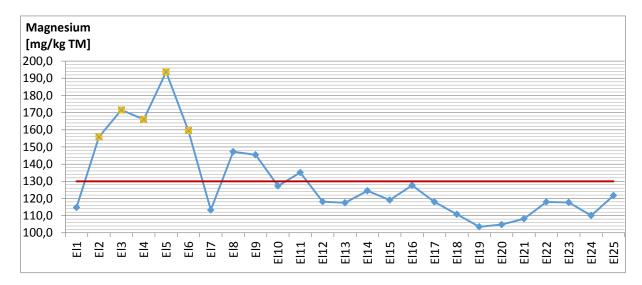


Abbildung 23: Magnesiumgehalt der Eluate der 25 Restmüllproben

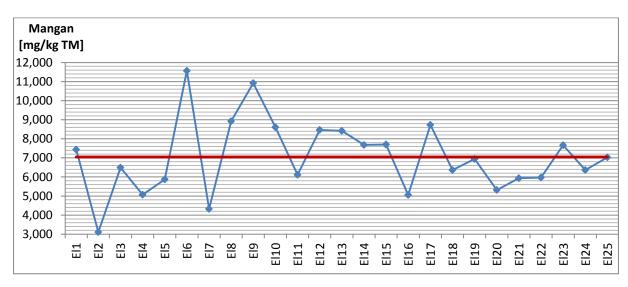


Abbildung 24: Mangangehalt der Eluate der 25 Restmüllproben

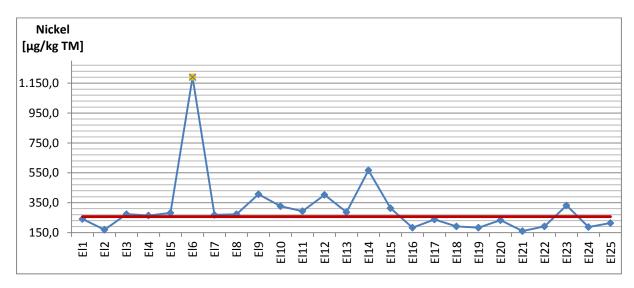


Abbildung 25: Nickelgehalt der Eluate der 25 Restmüllproben mit Ausreißer El6

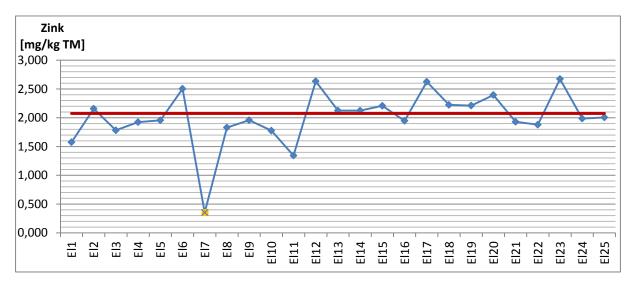


Abbildung 26: Zinkgehalt der Eluate der 25 Restmüllproben mit Ausreißer El7

3.10 Messunsicherheit der Nickelbestimmung mittels ICP-MS unter Berücksichtigung der Eluatherstellung

Die Messunsicherheit wird aus den Einzelbeiträgen der Messunsicherheiten berechnet. Die dafür nötigen Daten wurden vom umwelt- und prozessanalytischen Labor [21] zur Verfügung gestellt. Die Auswertung erfolgte wie im EURACHEM Leitfaden [8] beschrieben. Nach erfolgter Auswertung wurden die errechneten Unsicherheiten anschließend mit den vom umwelt- und prozessanalytischen Labor berechneten Messunsicherheiten verglichen. Dafür wird zuerst ein kurzer Verfahrensüberblick in Abbildung 27 gegeben, wobei IS für Internen Standard steht. Die genauere Vorgehensweise der Nickelbestimmung ist in Kapitel 3.8 nachzulesen.

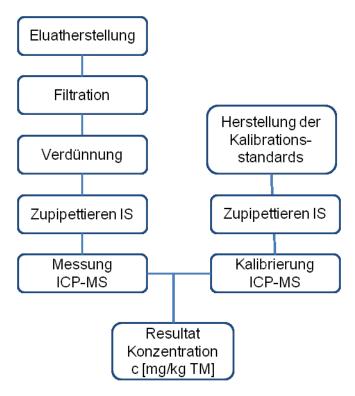


Abbildung 27: Ablaufschema der ICP-MS-Messung eines Eluats

In dem Ursachen-Wirkungsdiagramm (vgl. Abbildung 28) sind alle erkannten und relevanten Unsicherheitsquellen ersichtlich, deren Unsicherheitsbeiträge einzeln ermittelt wurden.

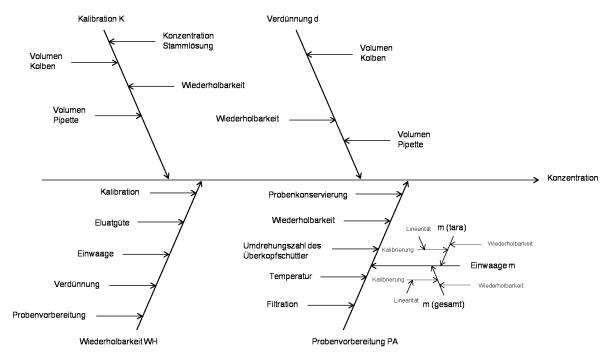


Abbildung 28: Ishikawa-Diagramm für die Ermittlung der Unsicherheit der Nickelbestimmung eines Eluats aus Restmüll

Die eigentliche Messung basiert auf folgender Formel [21, S. 2]:

$$c = \frac{(CPS - CPS_0)}{k} * f * IS * WH * f_{PV} = K * f * WH * f_{PV}$$
 (16)

Dabei steht: für:

c die Konzentration des Elements

CPS die Counts der Probe

CPS₀ die Counts des Blindwertes

k die Steigung der Geraden

f den Verdünnungsfaktor

IS die Korrektur durch den internen Standard

K den Kalibrationsfaktor

WH die Wiederholbarkeit

f_{PV} den Faktor der Probenvorbereitung

Zu beachten ist dabei, dass der gesamten Berechnung immer das Fehlerfortpflanzungsgesetz (siehe Kapitel 2.1) zu Grunde liegt und deswegen die Gesamtwerte niemals die reine Summe der Teilbeträge sondern immer die Wurzel der Quadratsumme der Teilbeträge sind.

Im Folgenden ist die Berechnung der einzelnen Teilbeiträge zur Messunsicherheit beschrieben, die zu unten gezeigten Ergebnissen führen.

3.10.1 Beitrag der Kalibration zur Messunsicherheit

Der Beitrag der Kalibration zur Messunsicherheit setzt sich aus dem Volumen des Vials, dem Volumen der Pipette, der Konzentration der Stammlösung sowie der Wiederholbarkeit zusammen. Die einzelnen Werte sind in Tabelle 9 ersichtlich und deren Ermittlung ist nachfolgend beschrieben.

Tabelle 9: Messunsicherheit der Kalibration der ICP-MS für die Nickelbestimmung von Eluaten aus Restmüll

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Vial [ml]	1	0,0001	0,0001
Volumen Pipette [µl]	100	0,3113	0,0031
Konzentration Stammlösung [mg/l]	1	0,0500	0,0500
Wiederholbarkeit	1	0,0066	0,0066
Kalibration Gesamt			0,0505

Der Beitrag des **Volumens des Vials** wird durch die maximal erlaubte Abweichung und der Messunsicherheit der Waage beeinflusst.

Die **Konzentration der Stammlösung** ist vom Hersteller mit einer bestimmten Unsicherheit angegeben, wodurch diese Werte direkt eingesetzt werden können.

Die Wiederholbarkeit wurde nach dem EURACHEM-Leitfaden [8, S. 73] über eine mehrfache Messung und der Methode der linear kleinsten Fehlerquadrate ermittelt.

Der Anteil des **Volumens der Pipette** wird, wie in Tabelle 10 gezeigt, durch die Kalibrierung, die Wiederholbarkeit sowie die Temperatur beeinflusst. Dabei wird die Kalibrierung nach Herstellerangaben unter der Annahme einer Dreiecksverteilung errechnet. Der Unsicherheitsbetrag der Wiederholbarkeit wird mittels Wiederholbarkeitsversuch an einem Musterexemplar vollzogen und die Temperaturunsicherheit wird aus Herstellerangaben, Schätzung des Temperaturbereiches und des Volumenausdehnungskoeffizienten der Flüssigkeit bestimmt.

Tabelle 10: Einzelbeiträge des Volumens der Pipette zur Messunsicherheit

Beitrag	Datenbasis	Unsicherheit
Kalibrierung	"Der Hersteller gibt das Volumen des Kolbens mit 100 ml ± 0,1 ml an, gemessen bei einer Temperatur von 20 °C. Der Wert der Unsicherheit wird ohne ein Vertrauensniveau oder eine Information über die Verteilung angegeben, also ist eine Annahme notwendig. Hier wird die Standardunsicherheit unter der Annahme einer Dreieckverteilung errechnet. ANMERKUNG: Eine Dreieckverteilung wurde gewählt, weil in einem effektiven Produktionsprozess der Nennwert wahrscheinlicher ist als die Extremwerte. Die resultierende Verteilung wird besser durch eine Dreieckverteilung als eine Rechteckverteilung dargestellt." [8, S. 38]	$\frac{0,1}{\sqrt{6}} = 0,041$
Wiederholbarkeit	"Die Unsicherheit aufgrund der unterschiedlichen Befüllung kann durch einen Wiederholbarkeitsversuch mit einem Musterexemplar der verwendeten Messkolben geschätzt werden. Eine Serie von 10 Befüll- und Wiegeversuchen mit einer typischen 100 ml-Flasche gab eine Standardabweichung von 0,02 ml. Diese kann direkt als Standardunsicherheit verwendet werden." [8, S. 38]	0,300
Temperatur	Laut Angaben des Herstellers ist der Messkolben bei einer Temperatur von 20 °C kalibriert worden, während die Labortemperatur innerhalb \pm 6 °C schwankt. Die Unsicherheit für diesen Effekt kann aus der Schätzung des Temperaturbereichs und des Volumenausdehnungskoeffizienten errechnet werden. Der Volumenausdehnungskoeffizient für Wasser ist 2,1·10 ⁻⁴ °C, das zu einer Volumenänderung von \pm 0,126 ml führt. Die Standardunsicherheit wird unter der Annahme einer Rechteckverteilung für die Temperaturänderung, d.h. zu 0,126 ml / $\sqrt{3}$ = 0,0727 ml berechnet [21].	0,073
Gesamt		0,311

3.10.2 Beitrag der Verdünnung zur Messunsicherheit

Das Volumen des Kolbens und das Volumen der Pipette sind die Beiträge der Verdünnung zur Messunsicherheit. Diese werden in Tabelle 11 gezeigt.

Tabelle 11: Beitrag zur Messunsicherheit der Verdünnung für die Nickelbestimmung von Eluaten aus Restmüll

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Kolben [ml]	1	0,0001	0,0001
Volumen Pipette [μΙ]	1	0,0031	0,0031
Verdünnung Gesamt			0,0031

Die Werte in Tabelle 11 wurden auf die gleiche Art und Weise wie unter Kapitel 3.10.1 berechnet.

3.10.3 Beitrag der Wiederholbarkeit zur Messunsicherheit

Der Beitrag der Wiederholbarkeit zur Messunsicherheit kommt aus den selbst durchgeführten Versuchen und ist ident mit der relativen Standardabweichung, die aus den erhaltenen Daten berechnet wurde und in Tabelle 8 dargestellt ist. Die relative Standardabweichung für die Nickelbestimmung beträgt **26,92** %. Dieser Wert wurde als Wiederholbarkeit verwendet.

Um die Unsicherheit des Probenvorbereitungsschrittes zu ermitteln, ist es nötig, auch die Unsicherheit der Analyse an sich zu ermitteln. Dafür wurden die gleichen Werte, wie eben beschrieben, verwendet. Jedoch wurde für die Wiederholbarkeit die Standardabweichung der einzelnen Elemente direkt aus den Regelkarten der Vorperiode übernommen.

3.10.4 Beitrag der Probenvorbereitung zur Messunsicherheit

In Tabelle 12 sind die beiden Messunsicherheiten mit und ohne Probenvorbereitung (Eluatherstellung) berechnet. Aus der Differenz dieser beiden Werte lässt sich nun der Beitrag der Aufbereitung zur Messunsicherheit bestimmen:

0.2765 - 0.0816 = 0.1949 = 19.49 %

Tabelle 12: Berechnung des Beitrages der Probenvorbereitung der Nickelbestimmung

Beschreibung des		Messunsicherheit $\mathbf{u}(\mathbf{x})$		u(x)/x	
Beitrages	Wert x	mit Vorbereitung	ohne Vorbereitung	mit Vorbereitung	ohne Vorbereitung
Kalibration	1	0,0505	0,0505	0,0505	0,0505
Einfluss Interner Standard	1	0,0380	0,0380	0,0380	0,0380
Verdünnung	1	0,0031	0,0031	0,0031	0,0031
Wiederholbarkeit	1	0,2692	0,05150	0,2692	0,05150
Gesamt (Relativer Wert)				0,2765	0,0816

Aus den durchgeführten Versuchen zur Bestimmung der Messunsicherheit ergaben sich die in Tabelle 13 gezeigten Werte für die Messunsicherheit und die erweiterte Messunsicherheit der Nickelbestimmung mittels ICP-MS aus Eluaten. Dabei wurde die erweiterte Messunsicherheit mit einem Faktor von 2, wie in Kapitel 2.1 beschrieben, berechnet. Bei der durchgeführten Nickelbestimmung ist auffallend, dass sich die Messunsicherheit um das 3,4-fache erhöht, wenn die Probenvorbereitung in Form einer Eluatherstellung in die Betrachtung miteinbezogen wird.

Tabelle 13: Messunsicherheit der Nickelbestimmung mit und ohne Aufbereitung sowie die erweiterte Unsicherheit

ICP-MS Nickelbestimmung	Messunsicherheit u [%]	Erweiterte Messunsicherheit U [%]
ohne Vorbereitung	8,159	16,32
mit Vorbereitung	27,65	55,30

Der Beitrag der Probenvorbereitung zur Unsicherheit beträgt

19,49 %

bzw.

zur erweiterten Unsicherheit

38,98 %.

In Abbildung 29 ist ersichtlich, dass die größten Beiträge zur Messunsicherheit in diesem Fall die Probenvorbereitung bzw. die Wiederholbarkeit darstellen. Dadurch wird klar, dass sowohl eine exakte und möglichst fehlerfreie sowie repräsentative Probenvorbereitung nötig ist, um eine nicht noch wesentlich größere Unsicherheit zu erhalten.

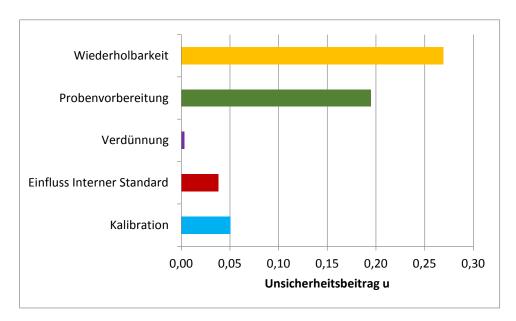


Abbildung 29: Balkendiagramm der Beiträge zur Unsicherheit der Nickelbestimmung aus Eluaten

3.11 Messunsicherheit der Chloridbestimmung mittels lonenchromatographie unter Berücksichtigung der Eluatherstellung

Die erweiterte Messunsicherheit wird aus den Einzelbeiträgen der Messunsicherheiten berechnet. Dafür wird zuerst ein kurzer Verfahrensüberblick in Abbildung 30 gegeben. Die genaue Vorgehensweise bei der Chloridbestimmung mittels Ionenchromatographie (IC) ist in Kapitel 3.6 nachzulesen.

Bei der eigentlichen Messung wird auf folgende Formel zurückgegriffen:

$$c = \frac{(E - E_0)}{k} * f * WH * f_{PV} = K * f * WH * f_{PV}$$
 (17)

Dabei steht: für:

c die Konzentration des Elements

E die Extinktion der Probe

E₀ die Extinktion des Blindwertes

k die Steigung der Geraden

f den Verdünnungsfaktor

WH die Wiederholbarkeit

K den Kalibrationsfaktor

f_{PV} den Faktor der Probenvorbereitung

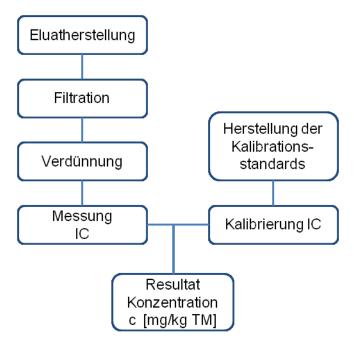


Abbildung 30: Ablaufschema der IC Messung eines Eluates

Aus den durchgeführten Eluatversuchen ergab sich der in Tabelle 6 angeführte Wert der relativen Standardabweichung von **15,87** % für die Chloridbestimmung mittels lonenchromatographie. Mittels diesem und weiteren Werten wurde die Messunsicherheit, wie unten beschrieben, ermittelt (siehe Tabelle 17). Die erweiterte Messunsicherheit wird mit einem Faktor von 2 (vgl. Kapitel 2.1) bestimmt. In Abbildung 31 werden die Unsicherheitsquellen für die Chloridbestimmung mittels Ionenchromatographie inklusive Probenvorbereitung (Eluatherstellung) gezeigt.

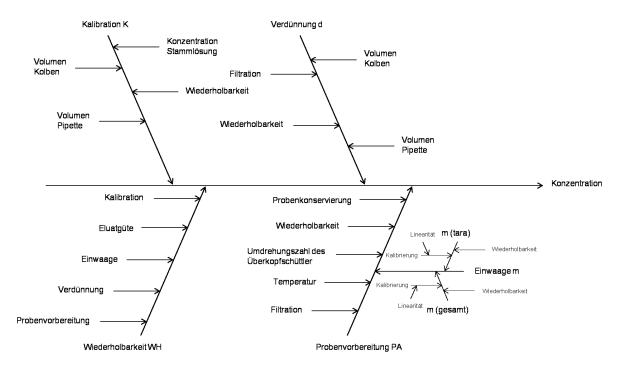


Abbildung 31: Ishikawa-Diagramm für die Ermittlung der Messunsicherheit der Chloridbestimmung eines Eluates aus Restmüll

3.11.1 Beitrag der Kalibration zur Messunsicherheit

Der Beitrag der Kalibration zur Messunsicherheit setzt sich aus den in Tabelle 14 gezeigten Beiträgen zusammen. Die Herkunft der Werte wird anschließend erläutert.

Tabelle 14: Messunsicherheit der Kalibration der IC für die Chloridbestimmung von Eluaten aus Restmüll

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Kolben [ml]	100	0,1028	0,0010
Volumen Pipette [µl]	100	0,3114	0,0031
Konzentration Stammlösung [mg/l]	999,9	2	0,0020
Wiederholbarkeit	2	0,0136	0,0068
Kalibration Gesamt			0,0078

Der Beitrag des **Kolbens** und auch jener der **Pipette** wird jeweils wieder durch die Kalibrierung, die Temperatur sowie die Wiederholbarkeit beeinflusst. Die Berechnung erfolgt gleich wie unter Kapitel 3.10.1 beschrieben, wobei die Wiederholbarkeit für den Kolben mittels gravimetrischer Bestimmung ermittelt wurde.

Die Unsicherheit der Konzentration der Stammlösung ist aus der Herstellerangabe abzulesen.

Die **Wiederholbarkeit** wird über Versuchsmessungen mittels der Methode der linear kleinsten Fehlerquadrate bestimmt.

3.11.2 Beitrag der Verdünnung zur Messunsicherheit

Der Beitrag der Verdünnung zur Messunsicherheit setzt sich aus dem Volumen des Kolbens bzw. dem Volumen der Pipette (siehe Tabelle 15) zusammen.

Tabelle 15: Messunsicherheit der Verdünnung der IC für die Chloridbestimmung von Eluaten aus Restmüll

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Kolben [ml]	100	0,1028	0,0010
Volumen Pipette [µl]	100	0,3114	0,0031
Verdünnung Gesamt			0,0033

Die Ermittlung der Teilbeträge in Tabelle 15 wird in Kapitel 3.10.1 erklärt.

3.11.3 Beitrag der Wiederholbarkeit zur Messunsicherheit

Der Beitrag der Wiederholbarkeit kommt für die Messunsicherheit der Analyse selbst aus der Regelkarte (Vorperiode) und kann aus den Messdaten als Standardabweichung ermittelt werden.

Für die Unsicherheit der Analyse inklusive Probenvorbereitung kommt der Beitrag aus den selbst durchgeführten Versuchen und der daraus ermittelten relativen Standardabweichung. Diese betrug für die Chloridbestimmung, wie in Tabelle 6 gezeigt, **15,87 %.** Um daraus die Unsicherheit des Probenvorbereitungsschrittes zu ermitteln ist es nötig, dass mit beiden Wiederholbarkeiten eine gesamte Messunsicherheit bestimmt und die Differenz daraus gezogen wird.

3.11.4 Beitrag der Probenaufbereitung zur Messunsicherheit

In Tabelle 16 sind beide Messunsicherheiten mit und ohne Probenvorbereitung berechnet. Die Differenz ergibt somit die Messunsicherheit der Aufbereitung.

0,1589 - 0,0816 = 0,1221 = 12,21 %

Tabelle 16: Berechnung des Beitrages der Probenaufbereitung der Chloridbestimmung

Beschreibung des Wort v		Messunsic	herheit u(x)	u(x)/x		
Beitrages	Wert x	mit Vorbereitung	ohne Vorbereitung	mit Vorbereitung	ohne Vorbereitung	
Kalibration	1	0,0078	0,0078	0,0078	0,0078	
Verdünnung	1	0,0033	0,0033	0,0033	0,0033	
Wiederholbarkeit	1	0,1587	0,0358	0,1587	0,0358	
Gesamt (Relativer Wert)				0,1589	0,0368	

Tabelle 17: Messunsicherheit der Chloridbestimmung mit und ohne Aufbereitung sowie die erweiterte Unsicherheit

IC-Chloridbestimmung	Messunsicherheit u [%]	Erweiterte Messunsicherheit U [%]
ohne Vorbereitung	3,677	7,355
mit Vorbereitung	15,89	31,78

Der Beitrag der Probenvorbereitung zur Messunsicherheit beträgt

12,21 %

bzw.

zur erweiterten Messunsicherheit

24,42 %.

Bei der Chloridbestimmung steigt folglich die Unsicherheit bei Berücksichtigung der Probenvorbereitung um das **4,3-fache**. Wie in Abbildung 32 ersichtlich, sind auch hier (wie bei der Messunsicherheit bei der Nickelbestimmung (vgl. Kapitel 3.10)) die größten Einflussgrößen auf die Messunsicherheit der Chloridbestimmung die Probenvorbereitung und die Wiederholbarkeit der Versuche.

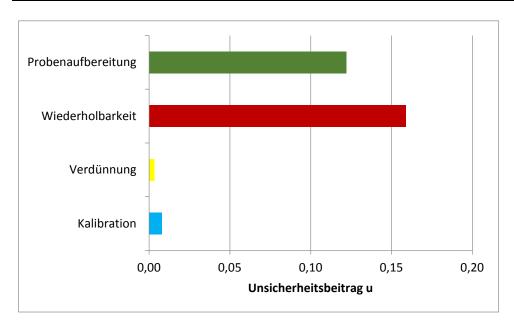


Abbildung 32: Balkendiagramm der Beiträge zur Unsicherheit der Chloridbestimmung aus Eluaten

4 Abschätzung des Beitrages der Probenaufbereitung gesteinsartiger Materialien zur Messunsicherheit

In diesem Kapitel wird die Vorgehensweise zur Ermittlung des Beitrages zur Messunsicherheit der Probenaufbereitung beschrieben. In dieser Arbeit wurde als Aufbereitungsweg die Grobzerkleinerung des gesteinsartigen Materials mittels Backenbrecher und die Feinzerkleinerung mittels Kugelmühle gewählt. Die Probenverjüngung erfolgte dabei jeweils mittels Viertelungsmethode. Zuerst wird die Herstellung sowie deren Messung behandelt und anschließend die Auswertung der einzelnen Ergebnisse. Zum Abschluss dieses Kapitels ist die Berechnung des Unsicherheitsbeitrages der Aufbereitung der Manganbestimmung dargestellt.

Zuerst wurden fünf einzelne Proben so hergestellt, dass am Ende nach der Zerkleinerung und Probenverjüngung – wie in Abbildung 33 gezeigt – insgesamt 20 Proben zur Verfügung standen. Anschließend wurden der jeweilige TC-Gehalt, Aschegehalt und nach Totalaufschluss der Schwermetallgehalt analysiert.

Folgende Analysen wurden an den Gesteinsproben durchgeführt:

- TC-Gehalt
- Aschegehalt
- Schwermetallgehalt

Dafür wurden jeweils 80 g der drei einzelnen Fraktionen (siehe Abbildung 34) eingewogen. Diese bestanden aus Granitsplit (8-12 mm), Quarzsplit (16-25 mm) und Tongranulat (Seramis, 2-4 mm). Der Granitsplit kam von der Firma Quarzwerke Österreich mit der Artikelnummer MEG812FK25F. Beim Quarzsplit handelte es sich um den Zierkies Quarz hell der Firma WECO GmbH mit der Artikelnummer 1501271227. Das Tongranulat kam aus einer 2,5 I Packung Seramis Tongranulat für Zimmerpflanzen mit der Nummer 3271M0G99.

Dabei wurde wieder auf eine sehr genaue Einwaage, wie in Tabelle 18 ersichtlich, geachtet, um idente Proben herzustellen. Die durchschnittliche Abweichung der Einwaage um 0,51 % ist durch die unterschiedliche Korngröße zu erklären und wäre nur durch eine vorherige Zerkleinerung vermeidbar gewesen. Dies hätte jedoch die Untersuchungsziele, die Ermittlung der Messunsicherheit durch die Probenaufbereitung, wesentlich beeinflusst und wurde deswegen nicht durchgeführt.

Tabelle 18: Einwaagen der einzelnen Probenfraktionen für die Gesteinsproben

Probe	Tongranulat [g]	Granit [g]	Quarz [g]
1	80,0172	80,2324	80,3718
2	80,0262	80,1872	81,0294
3	80,0293	80,0636	81,7219
4	80,0068	80,1345	80,8357
5	80,0258	80,1016	80,7938

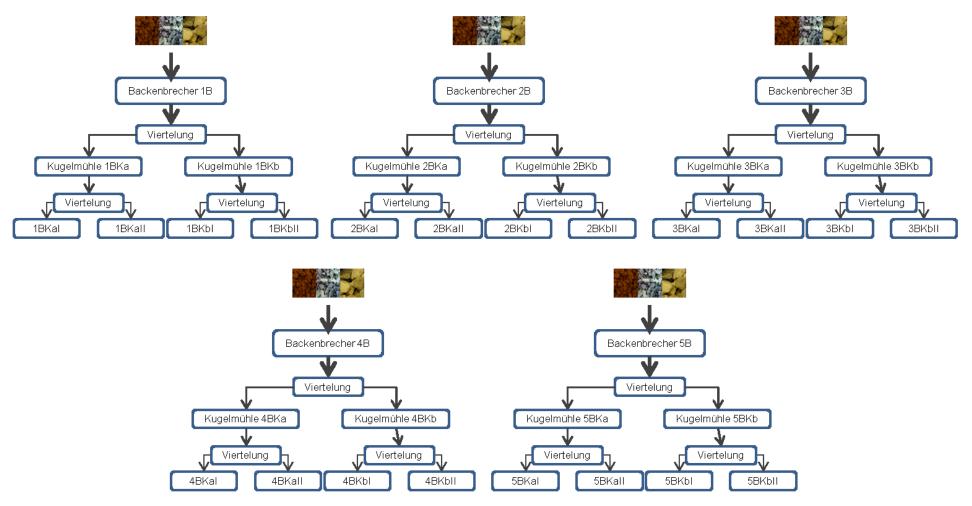


Abbildung 33: Probenaufbereitungsplan der Gesteinsmischung

Abbildung 34: Tongranulat, Granit, Quarz – Probenmaterial für die Gesteinsproben

4.1 Zerkleinerung der Proben

Die wie zuvor beschrieben erzeugten Proben wurden nach in Abbildung 33 gezeigtem Plan zerkleinert. Dabei stellt der dicke obere Pfeil die fünf in Tabelle 18 gezeigten Ausgangsproben dar.

Diese wurden zuerst in einem Backenbrecher (B) auf 2,5 mm zerkleinert, geviertelt und anschließend mit einer Kugelmühle (K) gemahlen. Danach wurden die Proben erneut geviertelt, womit insgesamt 20 zu untersuchende Proben erhalten wurden. Das Modell BB200WC des Backenbrechers der Firma Retsch besaß Manganplatten. Die Mahlwerkzeuge der Kugelmühle S1000 der Firma Retsch bestanden aus Zirkonoxid.

Die Viertelung erfolgte nach ÖNORM EN 15002:2006 [22] und ist in Abbildung 35 dargestellt. Dabei wurde die Probe zu einem Haufen aufgeschüttet, in vier Teile geteilt und jeweils die gegenüberliegenden Teile zu einer kleineren Probe zusammen gefasst. Dabei musste die Repräsentativität bestmöglich erhalten bleiben; die Menge jedoch wurde halbiert.

Abbildung 35: Viertelung der Gesteinsproben

4.2 Bestimmung des TC-Gehalts

Die Bestimmung erfolgte nach ÖNORM EN 13137:2001 [23], mit den Geräten C-MAT 5500 und D-03GTE der Firma Stöhlin Instruments. Jedoch ergaben die Analysen auch bei Einwaagen über 100 mg nach Verbrennung im Sauerstoffstrom bei 1000 °C keine verwertbaren Ergebnisse, da anscheinend der Kohlenstoffgehalt der Gesteinsproben zu

gering war. Aus diesem Grund wurde auf eine vollständige Ermittlung und Auswertung des TC-Gehalts verzichtet.

4.3 Bestimmung des Aschegehalts

Zur Bestimmung des Aschegehaltes wurde laut DIN 51719 [24] eine Doppelbestimmung der 20 Proben durchgeführt. Dafür wurde jeweils $1,00\pm0,01\,\mathrm{g}$ der Probe in Keramikbehälter eingewogen und anschließend nach genormter Aufheizrate bei 815 °C für 60 min in einem Muffelofen (siehe Abbildung 36) geglüht. Danach kühlten die Proben in einem Exsikkator ohne Silikagel aus und wurden erneut verwogen. Anschließend wurde die Probe erneut bei 815 °C geglüht, abgekühlt und wieder gewogen. Sobald die Differenz zwischen erster und zweiter Wägung nicht mehr als 1 mg betrug, wurde Gewichtskonstanz angenommen.

Abbildung 36: Muffelofen bei 815 °C & Exsikkator ohne Silikagel für die Bestimmung des Aschegehalts der Gesteinsproben

4.4 Totalaufschluss der Proben

Der Totalaufschluss wurde vom umwelt- und prozessanalytischen Labor durchgeführt und erfolgte mittels Mikrowelle immer zweifach nach Arbeitsanweisung ÖNORM EN 13656 [26]. Dafür wurden in Teflonbehälter jeweils 0,2 ± 0,07 g eingewogen. Dann wurden 6 ml HCl, 2 ml HNO₃ und 2 ml HF zugegeben. Nach abgeklungener Reaktion wurden die Gefäße verschlossen und in den Rotorsegmenten der Mikrowelle Ethos von MLS GmbH eingespannt. Danach wurde das Mikrowellenprogramm gestartet. Nach erfolgter Komplexierung mittels 22 ml H_3BO_3 und Durchlaufen des entsprechenden Temperaturprogramms wurde die Lösung über einen Schwarzbandfilter in einen 50 ml Kolben überführt und mit Reinstwasser aufgefüllt.

4.5 Bestimmung der Schwermetalle

Die Proben wurden nach dem Totalaufschluss mit deionisiertem Wasser im Verhältnis 1:2 verdünnt und anschließend mittels ICP-MS Agilent 7500CX vollautomatisch durch das Personal des umwelt- und prozessanalytischen Labors bestimmt.

4.6 Ergebnisse der Probenaufbereitungsversuche an Gesteinsproben

In sämtlichen, in dieser Masterarbeit gezeigten Diagrammen, stellt die rote horizontale Linie den ermittelten Mittelwert dar und die blauen Punkte entlang der Linie die einzelnen Messwerte. Gelb markierte, mit einem Kreuz versehene Messwerte, kennzeichnen Ausreißer, die nach dem in Kapitel 2.3 beschriebenen Hampel-Ausreißertest bestimmt wurden. Solche ermittelten Ausreißer wurden zwar in den Diagrammen kenntlich gemacht, jedoch nur aus der Berechnung entfernt, wenn auch eine visuelle Betrachtung den Schluss zuließ, dass es sich bei den genannten Werten eindeutig um Ausreißer handelt. In solchen Fällen wird im Text dezidiert darauf hingewiesen. Dies wird auch im EURACHEM Leitfaden [8, S. 6] so gehandhabt.

Desweiteren wird in Tabellenform jeweils der Mittelwert nach Formel (2), die Varianz nach Formel (5), die relative Standardabweichung nach Formel (6) und das Konfidenzintervall nach Formel (7) der einzelnen Messungen angeführt (vgl. Kapitel 2.2).

Die unter den Diagrammen angegebenen Probenbezeichnungen sollen anhand eines Beispiels erklärt werden:

1BKal1

- Die erste Zahl bedeutet, dass diese Probe aus der ersten Ausgangsprobe entstanden ist. (Diese Zahl kann die Werte 1-5 annehmen.)
- Die Probe ist danach durch den Backenbrecher (B) zerkleinert worden und wurde bei der anschließenden Viertelung der a-Probe zugeteilt. (Dieser Wert kann a oder b sein.)
- Danach wurde die Probe in die Kugelmühle (K) aufgegeben und abschließend wieder geviertelt. Dabei wurde diese Probe der I-Probe zugewiesen. (Dieser Wert kann I oder II sein.)
- Die letzte 1 steht für die erste Bestimmung, da immer eine Doppelbestimmung durchgeführt wurde. (Dieser Wert kann 1 oder 2 sein.)

4.6.1 Auswertung der Ergebnisse des Aschegehalts

Die Berechnung des Aschegehalts A erfolgte nach Formel (18) wobei $m_{gl\ddot{u}h}$ die Masse der Schale nach dem Gl\u00fchen, m_{leer} die der leeren Schale und $m_{Einwaage}$ die Masse der Einwaage darstellt.

$$A = \frac{(m_{gl\ddot{u}h} - m_{leer})}{m_{Einwaage}} \tag{18}$$

Die Ergebnisse der einzelnen Proben sind in Anhang III, Tabelle 28 aufgelistet. Die Daten sind in Tabelle 19 zusammengefasst und in Abbildung 37 abgebildet.

Tabelle 19: Statistische Parameter für den Aschegehalt der 40 Gesteinsproben

Statistische Parameter für den Aschegehalt der Gesteinsproben	
	[%]
Mittelwert	99,02
Varianz	1,155*10 ⁻⁶
Relative Standardabweichung	0,1085 %
Konfidenzintervall (95 %)	± 3,417*10 ⁻⁴

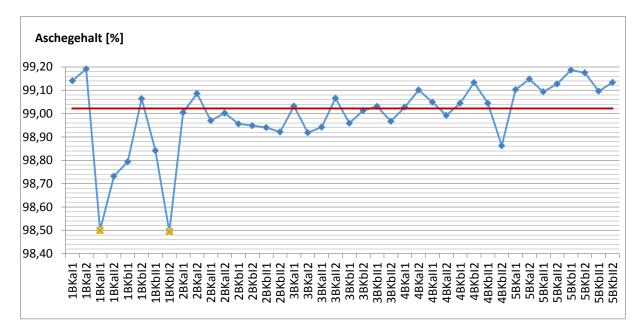


Abbildung 37: Aschegehalt der 40 Gesteinsproben mit Ausreißer 1BKall1 und 1BKbll2

4.6.2 Auswertung der Ergebnisse der Schwermetalle

Die Berechnung der Schwermetallgehalte erfolgte nach Formel (19) wobei f_{verd} den Verdünnungsfaktor, V das Volumen des Aufschlusses und $m_{Einwaage}$ die Masse der Einwaage darstellt. Des Weiteren wurde für jedes Element die Bestimmungsgrenze ermittelt und mit den Messergebnissen abgeglichen. Aus diesem Grund konnte keine Auswertung für die Elemente Antimon, Selen sowie Cadmium vorgenommen werden. Die Messergebnisse der einzelnen Gesteinsproben sind in Anhang III, Tabelle 29 aufgelistet und in Tabelle 20 zusammengefasst sowie in den Abbildungen 38 - 46 dargestellt.

$$C\left[\frac{mg}{kg\,TM}\right] = \frac{c\left[\frac{\mu g}{l}\right] * f_{\text{verd}} * V\left[\text{ml}\right]}{1000\left[\frac{\mu g}{mg}\right] * m_{Einwaage\left[g\right]}} \tag{19}$$

Tabelle 20: Statistische Parameter für die Schwermetallgehalte der 40 Gesteinsproben

Statistische Parameter für die Gesteins					
Flores	Arsen	Blei	Calcium	Chrom	Cobalt
Element	[mg/kg TM]				
Mittelwert	5,92	21,9	2627	60,4	6,99
Varianz	0,550	2,92	768200	52,2	0,520
Relative Standardabweichung	12,5 %	7,79 %	33,36 %	12,0 %	10,3 %
Konfidenzintervall (95 %)	± 0,230	± 0,530	± 271,6	± 2,24	± 0,223
	•				
Element	Magnesium	Mangan	Nickel	Zink	
Element	[mg/kg TM]	[mg/kg TM]	[mg/kg TM]	[mg/kg TM]	
Mittelwert	190	140	27,9	46,1	
Varianz	590	211	25,3	153	
Relative Standardabweichung	40,3 %	10,4%	18,0 %	26,8 %	
Konfidenzintervall (95 %)	± 23,8	± 4,50	± 1,56	± 3,93	

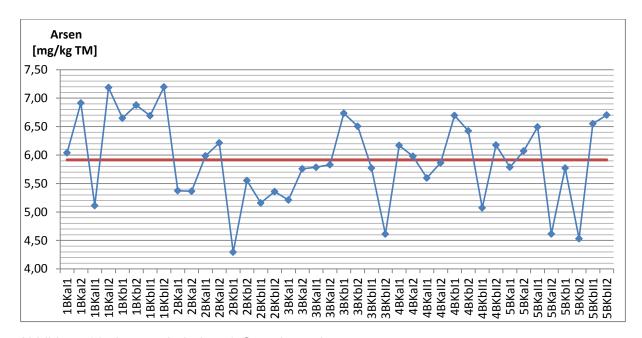


Abbildung 38: Arsengehalt der 40 Gesteinsproben

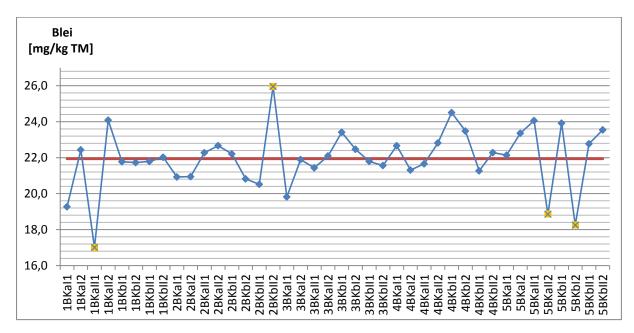


Abbildung 39: Bleigehalt der 40 Gesteinsproben

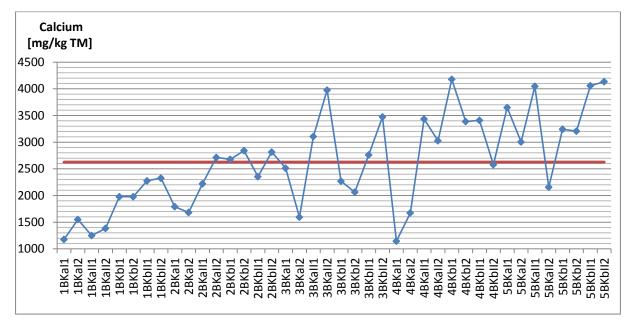


Abbildung 40: Calciumgehalt der 40 Gesteinsproben

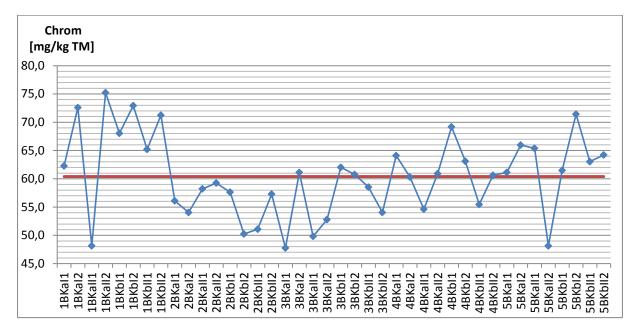


Abbildung 41: Chromgehalt der 40 Gesteinsproben

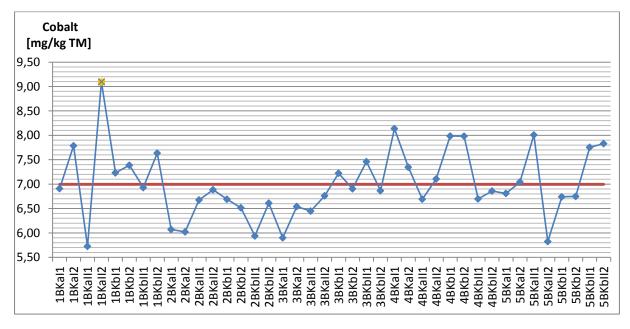


Abbildung 42: Cobaltgehalt der 40 Gesteinsproben

Abbildung 43: Magnesiumgehalt der 40 Gesteinsproben

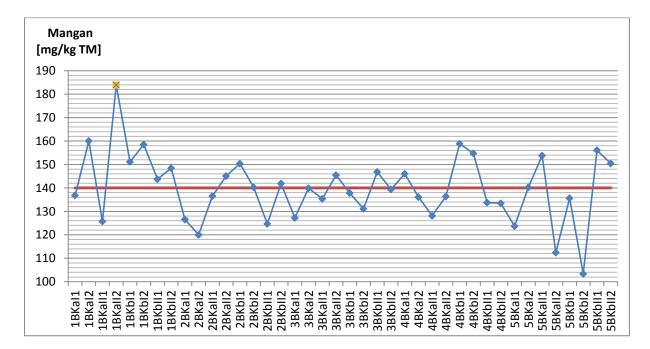


Abbildung 44: Mangangehalt der 40 Gesteinsproben

Abbildung 45: Nickelgehalt der 40 Gesteinsproben

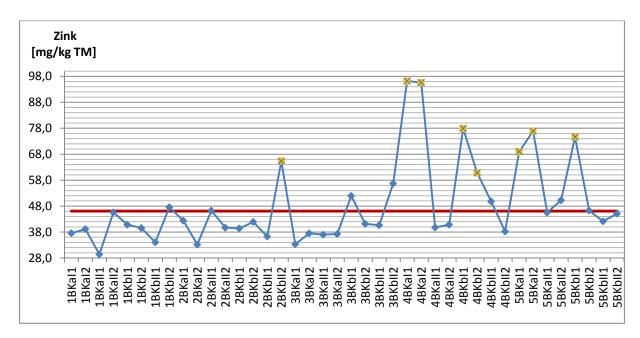


Abbildung 46: Zinkgehalt der 40 Gesteinsproben

4.7 Messunsicherheit der Manganbestimmung mittels ICP-MS unter Berücksichtigung des Totalaufschlusses und der Probenaufbereitung

Die Berechnung der Messunsicherheit der Manganmessung mittels ICP-MS nach Totalaufschluss und Probenaufbereitung erfolgt aus den Teilbeiträgen der einzelnen Unsicherheitsquellen. Ein grober Verfahrensüberblick ist in Abbildung 47 gezeigt, wobei IS für den internen Standard steht. Eine genauere Beschreibung des Verfahrens ist in den Kapiteln 4.4 und 4.5 nachzulesen. Die einzelnen Unsicherheitsquellen sind im Ishikawa-Diagramm in Abbildung 48 aufgelistet. Die Formel, auf der die eigentliche Messung beruht, ist in Formel (20) dargestellt.

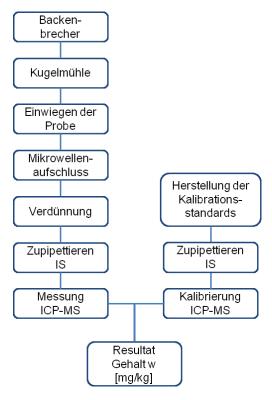


Abbildung 47: Ablaufschema der ICP-MS Messung einer Gesteinsprobe nach Aufschluss

Abbildung 48: Ishikawa-Diagramm der Messunsicherheit der Manganbestimmung mittels ICP-MS mit dem Gesteinstotalaufschluss inklusive Probenaufbereitung

$$c = \frac{(CPS - CPS_0)}{k} * \frac{V}{m} * f * IS * WH * f_{PA} = K * \frac{V}{M} * f * WH * f_{PA}$$
 (20)

Dabei steht: für:

c die Konzentration des Elements

CPS die Counts der Probe

CPS₀ die Counts des Blindwertes

k die Steigung der Geraden

V das Aufschlussvolumen

m die Einwaage für den Aufschluss

f den Verdünnungsfaktor

IS die Korrektur durch den internen Standard

K den KalibrationsfaktorWH die Wiederholbarkeit

f_{PA} den Faktor der Probenaufbereitung

Aus den gewonnenen statistischen Parametern der durchgeführten Versuche und weiteren Daten konnte die Unsicherheit u der Messung des Mangangehaltes nach Totalaufschluss gesteinsartiger Proben berechnet werden. Es ergaben sich die in Tabelle 24 gezeigten Werte. Wobei sich die erweiterte Messunsicherheit laut Kapitel 2.1 als $U = 2^*u$ darstellt.

Wieder sei auf das Fehlerfortpflanzungsgesetz aus Kapitel 2.1 verwiesen.

4.7.1 Beitrag der Kalibration zur Messunsicherheit

Der Beitrag der Kalibration zur Messunsicherheit setzt sich aus den in Tabelle 21 gezeigten Teilen zusammen.

Tabelle 21: Messunsicherheit der Kalibration der Manganbestimmung mittels ICP-MS der Gesteinsproben

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Vial [ml]	1	9,147*10 ⁻⁵	9,147*10 ⁻⁵
Volumen Pipette [µl]	1	0,0031	0,0031
Konzentration Stammlösung [mg/l]	1	0,0500	0,0500
Wiederholbarkeit	1	0,0425	0,0425
Kalibration Gesamt			0,0657

Die Ermittlung der Teilbeträge der Kalibration aus Tabelle 21 werden in Kapitel 3.10.1 beschrieben.

4.7.2 Beitrag der Verdünnung zur Messunsicherheit

Der Beitrag der Verdünnung zur Messunsicherheit setzt sich aus der Unsicherheit des Volumen des Vials sowie des Volumen der Pipette zusammen.

Tabelle 22: Messunsicherheit der Verdünnung der Manganbestimmung mittels ICP-MS der Gesteinsproben

Beschreibung des Beitrages	Wert x	Messunsicherheit u(x)	u(x)/x
Volumen Vial [ml]	1	9,147*10 ⁻⁵	9,147*10 ⁻⁵
Volumen Pipette [µl]	1	0,0031	0,0031
Verdünnung Gesamt			0,0031

Die Beiträge der Verdünnung laut Tabelle 22 zur Messunsicherheit kommen wie in Kapitel 3.10.2 beschrieben zustande.

4.7.3 Beitrag des Aufschlussvolumen zur Messunsicherheit

Der Beitrag des Aufschlussvolumens zur Messunsicherheit beruht auf drei Faktoren: der Kalibrierung, der Wiederholbarkeit und der Temperatur.

Die Berechnung der Beträge erfolgte nach EURACHEM [8, S. 38] wobei

• für die **Kalibrierung** die Herstellerangabe von 50 ± 0.08 ml und die Annahme einer Dreiecksverteilung herangezogen wurde, womit sich der Wert auf $0.08/\sqrt{6} = 0.033$ belief.

- die **Wiederholbarkeit** mittels Wiederholbarkeitsversuch an einem Musterexemplar überprüft wurde und sich dabei ein Wert von 0,245 ergab.
- der **Temperatureffekt**, wie in Tabelle 10 beschrieben, berechnet und dabei ein Wert von 0,036 erhalten wurde.

Aus diesen drei Werten ergab sich die in Tabelle 23 angeführte Messunsicherheit des Aufschlussvolumens von 0,050 pro ml.

4.7.4 Beitrag der Einwaage zur Messunsicherheit

Der Einfluss der Einwaage beruht auf der Unsicherheit der verwendeten Waage. Aus deren Kalibrierschein, der von einem externen Kalibrierdienst erstellt wurde, geht folgende Formel hervor:

$$U = 0.00008 g + 8.34 * 10^{-6} * R (21)$$

Damit ergibt sich bei einer Einwaage von 0,2 g eine Wert von U = 0,000081668.

4.7.5 Beitrag des Mikrowellengerätes zur Messunsicherheit

Der Beitrag des verwendeten Mikrowellengerätes wurde am umwelt- und prozessanalytischen Labor anhand von Versuchsreihen bestimmt und dabei eine Unsicherheit von 0,0433333 ermittelt.

4.7.6 Beitrag der Wiederholbarkeit zur Messunsicherheit

Zur Bestimmung der Messunsicherheit des Analyseverfahrens selbst wurde ein Wiederholbarkeitsversuch durchgeführt, wobei mehrere unterschiedliche Materialien nach Totalaufschluss untersucht wurden. Der Mittelwert der relativen Standardabweichung aus einer 3-fach Bestimmung wurde als Unsicherheit herangezogen.

Für die Bestimmung der Messunsicherheit der Analyse inklusive der Probenaufbereitung wurde aus den Versuchen aus Kapitel 4.5 die relative Standardabweichung ermittelt und als Wiederholbarkeit eingesetzt.

4.7.7 Beitrag der Probenaufbereitung zur Messunsicherheit

In Tabelle 23 sind beide Messunsicherheiten mit und ohne Probenaufbereitung berechnet. Die Differenz ergibt somit die Messunsicherheit der Aufbereitung.

0,1937 - 0,1792 = 0,0145 = 1,45 %

Beschreibung des	Wert	Messunsicherheit u(x)		u(x)/x	
Beitrages	X	mit Aufbereitung	ohne Aufbereitung	mit Aufbereitung	ohne Aufbereitung
Kalibration	1	0,0657	0,0657	0,0657	0,0657
Verdünnung	1	0,0031	0,0031	0,0031	0,0031
Einwaage [g]	0,2	0,0001	0,0001	0,0004	0,0004
Aufschlussvolumen [ml]	50	0,0050	0,0050	0,1434	0,1434
Einfluss Interner Standard	1	0,1434	0,1434	0,0433	0,0433
Mikrowellengerät	1	0,0433	0,0433	0,1037	0,1037
Wiederholbarkeit	1	0,1037	0,0729	0,1037	0,0005
Gesamt (Relativer Wert)			0,1937	0,1792	

Tabelle 24: Messunsicherheit der Manganbestimmung mit und ohne Aufbereitung sowie die erweiterte Unsicherheit

ICP-MS Manganbestimmung	Messunsicherheit u [%]	erweiterte Messunsicherheit U [%]
ohne Aufbereitung	17,92	35,84
mit Aufbereitung	19,37	38,74

Der Beitrag der Probenaufbereitung zur Messunsicherheit beträgt

1,45 %

bzw.

zur erweiterten Messunsicherheit

2,90 %.

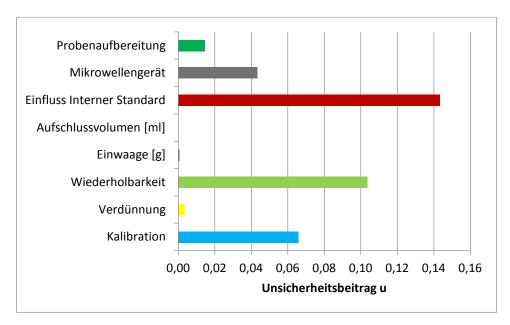


Abbildung 49: Balkendiagramm der Beiträge zur Messunsicherheit der Manganbestimmung nach Totalaufschluss gesteinsartiger Proben

Auffallend bei der Manganbestimmung ist, dass die Einbeziehung der Probenaufbereitung die Messunsicherheit lediglich um einen Faktor von rund 1,1 vergrößert. Abbildung 49 zeigt sehr deutlich, dass bei der Bestimmung von Mangan nach Totalaufschluss und Probenaufbereitung nicht die Probenaufbereitung die größte Unsicherheit beinhaltet, sondern, dass der Einfluss des internen Standards wesentlich massiver ist. Daraus ist ableitbar, dass der Versuch, die Unsicherheit des internen Standards zu reduzieren, die Gesamtunsicherheit wesentlich stärker reduzieren kann als der Versuch die Unsicherheit der Probenaufbereitung oder der Verdünnung zu verringern. Der zweite starke Einflussparameter auf die Messunsicherheit ist die Wiederholbarkeit, die fast immer eine große Rolle bei der Messunsicherheit spielt.

5 Zusammenfassung

Jeder Behandlungsschritt, der zu einem Analysenergebnis führt, ist fehlerbehaftet. Da aber die erhaltenen Messwerte für verschiedenste Zwecke, wie zur Qualitätsprüfung oder zur Kontrolle von Grenzwerten, verwendet werden, ist es sehr wichtig diese Unsicherheiten zu kennen. In der Literatur sind gerade im Abfallbereich nur grobe Abschätzungen verfügbar. Einzig die Unsicherheit der Analysen selbst ist meistens sehr exakt bekannt. Dies ist jedoch nicht ausreichend, da Abfallproben fast immer mehrere Probenauf- bzw. -vorbereitungsschritte durchlaufen müssen bis sie der eigentlichen Analyse zugeführt werden können. Gerade diese vor der Analyse durchgeführten Schritte sind in der Regel sehr stark mit Fehlern behaftet und vergrößern somit das Unsicherheitsintervall erheblich. Der Aufwand zur Ermittlung solcher Unsicherheiten ist nicht unbeträchtlich, da Probenmaterial mit sehr homogener Zusammensetzung verwendet werden muss, solange nicht auch die Probenahme in die Berechnung miteinbezogen werden soll.

Zu diesem Zweck wurde im Zuge dieser Arbeit das Probenmaterial synthetisch hergestellt. Der synthetische Restmüll wurde aus 15 Fraktionen zusammengemischt und damit wurden 25 Eluate hergestellt. Mit diesen Eluaten wurden verschiedene Parameter (siehe Kapitel 3) gemessen und aus den Parametern Nickelgehalt sowie Chloridgehalt die Unsicherheit berechnet. Durch einen Vergleich der selbst ermittelten Unsicherheit mit der Messunsicherheit des gewählten Verfahrens konnte aus der Differenz der Beitrag der Probenvorbereitung zur Messunsicherheit bestimmt werden.

Nach diesem Schema wurde auch bei den selbst zusammengestellten Gesteinsproben vorgegangen. Dafür wurden drei verschiedene Materialien exakt verwogen und vermischt. Diese fünf hergestellten Ausgangsproben wurden über einen Backenbrecher zerkleinert, geviertelt, in einer Kugelmühle gemahlen und wieder geviertelt, wodurch insgesamt 20 Proben entstanden (siehe Abbildung 33). Diese Proben wurden auf ihren Asche- und Schwermetallgehalt hin untersucht. Der Mangangehalt wurde hinsichtlich der Unsicherheit analysiert und wieder mit der Messunsicherheit der Analyse verglichen.

Beim Vergleich der erweiterten Unsicherheiten des **Nickelgehaltes** konnte ein Anteil der Probenvorbereitung von **38,98** % ermittelt werden. Die erweiterte Gesamtunsicherheit der Analyse stieg um das **3,4**-fache von **16,32** % auf **55,30** % bei Berücksichtigung der Probenvorbereitung.

Der Vergleich der erweiterten Unsicherheiten des **Chloridgehaltes** lieferte ein ähnliches Bild. Dabei stieg die Analysenunsicherheit von **7,36** % auf **31,78** % bei der Gesamtunsicherheit. Dies entspricht dem **4,3**-fachen. Der Anteil der Probenvorbereitung beträgt dabei **24,42** %.

Ganz anderes und eigentlich gegen die Erwartungen sah das Ergebnis beim **Mangangehalt** der Gesteinsproben aus. Dabei stieg die erweiterte Unsicherheit von der Analyse von **35,84** % auf den Wert der Gesamtunsicherheit von **38,74** %. Dies entspricht einem Faktor von lediglich **1,1** und einer erweiterten Unsicherheit der Probenaufbereitung

von nur 2,90 %. Dies ist besonders auffallend, da in der Literatur die Probenauf-/vorbereitung als der Beitrag angesehen wird, der wesentlich stärker zur Unsicherheit beiträgt als die Analyse selbst (siehe Abbildung 3). Hier jedoch ist der Probenaufschluss der Beitrag der die Unsicherheit am stärksten beeinflusst. Die Aufbereitung mittels Backenbrecher und Kugelmühle scheint fast gar keinen Einfluss auf die Unsicherheit des Analysenprozesses zu haben. Womit zumindest für die Manganbestimmung klar ist, dass der Unsicherheitsbeitrag des Aufschlusses jene Größe ist, die minimiert werden sollte. Bei beiden anderen Parametern (Nickel und Chlorid) ist, wie erwartet, die Eluatherstellung (als Probenvorbereitungsschritt) der entscheidende Beitrag zur Unsicherheit.

Kapitel 6 – Ausblick 64

6 Ausblick

Diese Arbeit hat lediglich einen kleinen Beitrag zur Ermittlung der Messunsicherheit in einigen wenigen Fällen geleistet und deswegen müssen noch weitere Untersuchungen folgen. Zuerst sollten einmal sämtliche in dieser Arbeit ermittelten Daten aus den Versuchen hinsichtlich ihres Beitrages zur Messunsicherheit der jeweiligen Bestimmungsmethode der einzelnen Elemente ausgewertet werden. Weiters müssten noch ähnliche Versuchsreihen zur Bestimmung anderer Parameter, wie beispielweise dem Heizwert oder aber auch anderer Probenvorbereitungsschritte wie Königswasseraufschluss etc. durchgeführt werden. Erst wenn die Unsicherheiten inklusive der Probenaufbereitung- und -vorbereitungsschritte hinreichend bekannt sind, müsste, um die komplette Unsicherheit eines Verfahrens bestimmen zu können, auch der Probenahmenschritt in die Bestimmung miteinbezogen werden.

Denn solange eine Unsicherheit bzw. Repräsentativität der Grundmenge nicht gegeben bzw. belegbar ist, wird es immer möglich sein, die Interpretation von Messergebnissen in Frage zu stellen und möglicherweise auch rechtliche und wirtschaftliche Konsequenzen zu umgehen.

Es ist allerdings gerade im Abfallbereich nicht wirklich abschätzbar, ob es überhaupt gelingen kann, für möglichst universelle Fälle solche Messunsicherheiten ermitteln zu können, da gerade Abfälle sehr heterogen sind und eine zumeist unbekannte Zusammensetzung aufweisen.

Anhang

7 Verzeichnisse

7.1 Literatur

[1] Heine, Adriaan Marten; Van der Veen; Alink, Anton: A practitioner's approach to the assessment of sampling, sample preparation, and subsampling in Accreditation and Quality Assurande (1998), 3, Berlin: Springer Verlag 1998. S. 20-26.

- [2] Pomberger, Roland; Aldrian, Alexia; Sarc, Renato: Grenzwerte Technische Sicht zur rechtlichen Notwendigkeit, 2015, in: Piska, Christian (Hrsg.): Abfallwirtschaftsrecht Jahrbuch 2015.; Graz: NWV Neuer wissenschaftlicher Verlag, 2015. S. 269-289.
- [3] Thompson, Michael; Uncertainty of sampling in chemical amalysis in Accreditation and Quality Assurande (1998), 3, Berlin: Springer Verlag 1998. S. 117-121.
- [4] Prikler, Simon; Garvens, Hans-Jürgen; Winterstein, Michael; Einax Jürgen, W. Estimating the Sampling Uncertainty for the Analysis of Solid Refused Fuel. in CLEAN Soil Air Water, Band 41, Weinheim: WILEY-VCH 2013. S. 816-819.
- [5] Winterstein, Michael; Einax, Jürgen W; Prikler, Simon; Garvens, Hans-Jürgen: Erweiterte Unsicherheit der Probennahme bestimmen 2014, in Nachrichten aus der Chemie, Juni 2014. S. 644-649.
- [6] BGBI II 2008/39: Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft vom 31. Mai 2014 über Deponien (Deponieverordnung DVO 2008).
- [7] BGBI II Nr 389/2002: Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft und des Bundesministers für Wirtschaft, Familie und Jugend vom 11. Juli 2013 über die Verbrennung von Abfällen (Abfallverbrennungsverordnung AVV).
- [8] EURACHEM/CITAC: Leitfaden zur Ermittlung der Messunsicherheit bei analytischen Messungen, 2 Auflage; 2003.
- [9] Hödl, Rebecca: Einfluss der Probenaufbereitung auf die Messunsicherheit bei der Bestimmung umweltrelevanter chemisch-physikalischer Parameter, Leoben: Diplomarbeit an den Lehrstühlen für Abfallverwertungstechnik und Abfallwirtschaft bzw. Entsorgungs- und Deponietechnik, 2013.
- [10] Scheffknecht, Christoph: Kläranlagenüberwachung Laborringversuch 2013, Bregenz: Umweltinstitut des Landes Vorarlberg, 2014.

Anhang

[11] ÖNORM EN 12457-4: Charakterisierung von Abfällen - Auslaugung - Übereinstimmungsuntersuchung für die Auslaugung von körnigen Abfällen und Schlämmen (ÖNORM 12457-4:2003), Österreichisches Normungsinstitut, 2003.

- [12] Vogel, Erich; Steiner, Martin; Quickert, Alexander: Siebgestützte Restmüllanalysen im Land Steiermark erstellt im Auftrag des Amts der Steiermärkischen Landesregierung, Fachabteilung 19D und der ARA AG, Innsbruck: Technisches Büro für Umweltschutz Ges.m.b.H., 2009.
- [13] DIN EN ISO 10523: Wasserbeschaffenheit Bestimmung des pH-Werts (ISO 10523:2008), Deutsches Institut für Normungen e.V., 2012.
- [14] DIN EN 27888: Wasserbeschaffenheit Bestimmung der elektrischen Leitfähigkeit (ISO 7888:1985), Deutsches Institut für Normungen e.V., 1993.
- [15] ÖNORM EN 1484: Wasseranalalytik Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC) (EN 1484:1997), Österreichisches Normungsinstitut, 1997.
- [16] DIN 38409-1: Summarische Wirkungs- und Stoffkenngrößen (Gruppe H), Bestimmung des Gesamttrockenrückstandes, des Filtrattrockenrückstandes und des Glührückstandes (DIN 38409-1:1987), Deutsches Institut für Normungen e.V., 1987.
- [17] DIN EN ISO 10304-1: Wasserbeschaffenheit Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie (ISO 10304-1:2007), Deutsches Institut für Normen e.V., 2009.
- [18] Tauterer, Carina: Arbeitsanweisung MBAS ÖNORM EN 903, Leoben: umwelt- und prozessanalytische Labor des Lehrstuhls Abfallverwertungstechnik und Abfallwirtschaft, 2015.
- [19] ÖNORM EN 903: Wasserbeschaffenheit Bestimmung von anionischen oberflächenaktiven Stoffen durch Messung des Methylenblau-Index MBAS (ISO 7875-1:1984 modifiziert), Österreichisches Normungsinstitut, 1994.
- [20] ÖNORM EN ISO 17294-2: Wasserbeschaffenheit Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) (ISO 17294-2:2003), Österreichisches Normungsinstitut, 2005.
- [21] Aldrian, Alexia: Bestimmung der Messunsicherheit ICP-MS, Leoben: umwelt- und prozessanalytische Labor des Lehrstuhls Abfallverwertungstechnik und Abfallwirtschaft, 2013.
- [22] ÖNORM EN 15002: Charakterisierung von Abfällen Herstellen von Prüfmengen aus der Laboratoriumsprobe (EN 15002:2006), Österreichisches Normungsinstitut, 2006.

[23] ÖNORM EN 13137: Charakterisierung von Abfall - Bestimmung des gesamten organischen Kohlenstoffs (TOC) in Abfall, Schlämmen und Sedimenten (EN 13137:2001), Österreichisches Normungsinstitut, 2001.

- [24] DIN 51719: Bestimmung des Aschegehaltes (DIN 51719:1997), Deutsches Institut für Normungen e.V., 1997.
- [25] Grasser, Corinna: Arbeitsanweisung Mikrowellenaufschluss Total ÖNORM EN 13565, Leoben: umwelt- und prozessanalytische Labor des Lehrstuhls Abfallverwertungstechnik und Abfallwirtschaft, 2013.
- [26] ÖNORM EN 13656: Charakterisierung von Abfällen Aufschluss mittels Mikrowellengerät mit einem Gemisch aus Fluorwasserstoffsäure (HF), Salpetersäure (HNO3) und Salzsäure (HCI) für die anschließenden Bestimmung der Elementen in Abfällen (EN 13656:2002), Österreichisches Normungsinstitut, 2002.

7.2 Abkürzungsverzeichnis

°C Grad Celsius abh. abhängig

BG Beurteilungsgrenze

etc. et cetera H_3BO_3 Borsäure HCI Salzsäure HF Flusssäure HNO_3 Salpetersäure

IC Ionenchromatographie

ICP-MS Massenspektrometrie mit induktiv gekoppeltem Plasma

IS Interner Standard

min Minute

Mn Mangan

NE Nichteisen

sec Sekunden

TM Trockenmasse

TC Total Carbon (Gesamtkohlenstoff)

TOC Total Organic Carbon (Gesamtkohlenstoff)

U erweiterte Messunsicherheit

v.a. vor allemz.Z. zur Zeitnm Nanometer

7.3 Tabellen

Tabelle 1: Zusammensetzung des synthetischen Restmülls und dafür verwendetes Material17
Tabelle 2: Statistische Parameter für den pH-Wert der Eluate aus Restmüll23
Tabelle 3: Statistische Parameter für die Leitfähigkeit der Eluate aus Restmüll24
Tabelle 4: Statistische Parameter für den TOC-Gehalt der Eluate aus Restmüll25
Tabelle 5: Statistische Parameter für den Abdampfrückstand der Eluate aus Restmüll26
Tabelle 7: Statistische Parameter für den anionischen Tensidgehalt der Eluate aus Restmüll
Tabelle 8: Statistische Parameter für die Metallgehalte der Eluate aus Restmüll29
Tabelle 9: Messunsicherheit der Kalibration der ICP-MS für die Nickelbestimmung von Eluaten aus Restmüll
Tabelle 10: Einzelbeiträge des Volumens der Pipette zur Messunsicherheit36
Tabelle 11: Beitrag zur Messunsicherheit der Verdünnung für die Nickelbestimmung von Eluaten aus Restmüll
Tabelle 12: Berechnung des Beitrages der Probenvorbereitung der Nickelbestimmung38
Tabelle 13: Messunsicherheit der Nickelbestimmung mit und ohne Aufbereitung sowie die erweiterte Unsicherheit
Tabelle 14: Messunsicherheit der Kalibration der IC für die Chloridbestimmung von Eluaten aus Restmüll41
Tabelle 15: Messunsicherheit der Verdünnung der IC für die Chloridbestimmung von Eluaten aus Restmüll42
Tabelle 16: Berechnung des Beitrages der Probenaufbereitung der Chloridbestimmung43
Tabelle 17: Messunsicherheit der Chloridbestimmung mit und ohne Aufbereitung sowie die erweiterte Unsicherheit43
Tabelle 18: Einwaagen der einzelnen Probenfraktionen für die Gesteinsproben45
Tabelle 19: Statistische Parameter für den Aschegehalt der 40 Gesteinsproben50
Tabelle 20: Statistische Parameter für die Schwermetallgehalte der 40 Gesteinsproben51
Tabelle 21: Messunsicherheit der Kalibration der Manganbestimmung mittels ICP-MS der Gesteinsproben58
Tabelle 22: Messunsicherheit der Verdünnung der Manganbestimmung mittels ICP-MS der Gesteinsproben58
Tabelle 23: Berechnung des Beitrages der Probenaufbereitung der Manganbestimmung60

Tabelle 24: Messunsicherheit der Manganbestimmung mit und ohne Aufbereitung sowie of erweiterte Unsicherheit	
Tabelle 25: Genaue Einwaagen der einzelnen Fraktionen der Restmüllproben für die Eluatherstellung	I
Tabelle 26: Einzelmessergebnisse der Schwermetalluntersuchung der Eluate	III
Tabelle 27: Eluatergebnisse pH, Leitfähigkeit, TOC, Chlorid, Sulfat, Tenside, Abdampfrückstand	V
Tabelle 28: Einzelmessergebnisse der Aschegehalte der Gesteinsproben	VI
Tabelle 29: Einzelmessergebnisse der Schwermetalluntersuchung der Gesteinsproben	VI
7.4 Abbildungen	
Abbildung 1: Mengenverhältnisse der Abfallmenge bis zur Analysenprobe [2 S. 274]	6
Abbildung 2: Streuung von 20 separat entnommenen Einzelproben für das Element Blei [2 279]	
Abbildung 3: Theoretische Unsicherheit für einzelne Teilschritte, nach [2 S. 279]	8
Abbildung 4: Ablaufplan für die Versuchsdurchführung der 25 Eluate aus synthetischem Restmüll	15
Abbildung 5: Darstellung der Fraktionen für die Eluate (von links oben nach rechts unten): Getränke sonstige, Inertes, Organik Küche, PET, Organik Garten, Textil, Zeitung, Hygiene Windeln, Metall, Pappe, Hygiene Rest, Hartkunststoff, Papier, Holz, Folien	
Abbildung 6: links: Duranflasche mit 100 g Restmüllprobe; rechts: Filtration der Eluatansä mittels Vakuumpumpe	
Abbildung 7: pH-Meter und Leitfähigkeitsmessung der 26 Eluate	19
Abbildung 8: links: Abdampfrückstand eines Eluats; rechts: 0,45 μm-Filter nach der Filtrati des Eluates für den Abdampfrückstand	
Abbildung 9: von links nach rechts: Scheidetrichter mit neutraler Lösung, mit saurer Lösur fertige Messlösung für die Bestimmung der anionischen Tenside in den Eluaten und gallertartige Masse nach der Durchführung der Extraktion der methylenblauaktiven Substanzen aus den Eluaten in Filterwatte	
Abbildung 10: Messserienbehälter für die ICP-MS	
Abbildung 11: pH-Werte der Eluate der 25 Restmüllproben	
Abbildung 12: Leitfähigkeit der Eluate der 25 Restmüllproben	
Abbildung 13: TOC-Gehalt der Eluate der 25 Restmüllproben	
Abbildung 14: Abdampfrückstand der Eluate der 25 Restmüllproben	26

Abbildung 15: Chloridgehalt der Eluate der 25 Restmüllproben	27
Abbildung 16: Sulfatgehalt der Eluate der 25 Restmüllproben	27
Abbildung 17: Anionischer Tensidgehalt der Eluate der 25 Restmüllproben	28
Abbildung 18: Antimongehalt der Eluate der 25 Restmüllproben mit Ausreißer El10	29
Abbildung 19: Arsengehalt der Eluate der 25 Restmüllproben	30
Abbildung 20: Bleigehalt der Eluate der 25 Restmüllproben mit Ausreißer El10	30
Abbildung 21: Calciumgehalt der Eluate der 25 Restmüllproben mit Ausreißer El7	30
Abbildung 22: Cobaltgehalt der Eluate der 25 Restmüllproben	31
Abbildung 23: Magnesiumgehalt der Eluate der 25 Restmüllproben	31
Abbildung 24: Mangangehalt der Eluate der 25 Restmüllproben	31
Abbildung 25: Nickelgehalt der Eluate der 25 Restmüllproben mit Ausreißer El6	32
Abbildung 26: Zinkgehalt der Eluate der 25 Restmüllproben mit Ausreißer El7	32
Abbildung 27: Ablaufschema der ICP-MS-Messung eines Eluats	33
Abbildung 28: Ishikawa-Diagramm für die Ermittlung der Unsicherheit der Nickelbestimmu eines Eluats aus Restmüll	•
Abbildung 29: Balkendiagramm der Beiträge zur Unsicherheit der Nickelbestimmung aus Eluaten	39
Abbildung 30: Ablaufschema der IC Messung eines Eluates	40
Abbildung 31: Ishikawa-Diagramm für die Ermittlung der Messunsicherheit der Chloridbestimmung eines Eluates aus Restmüll	41
Abbildung 32: Balkendiagramm der Beiträge zur Unsicherheit der Chloridbestimmung aus Eluaten	
Abbildung 33: Tongranulat, Granit, Quarz – Probenmaterial für die Gesteinsproben	47
Abbildung 34: Probenaufbereitungsplan der Gesteinsmischung	46
Abbildung 35: Viertelung der Gesteinsproben	47
Abbildung 36: Muffelofen bei 815 °C & Exsikkator ohne Silikagel für die Bestimmung des Aschegehalts der Gesteinsproben	48
Abbildung 37: Aschegehalt der 40 Gesteinsproben mit Ausreißer 1BKall1 und 1BKbll2	50
Abbildung 38: Arsengehalt der 40 Gesteinsproben	51
Abbildung 39: Bleigehalt der 40 Gesteinsproben	52
Abbildung 40: Calciumgehalt der 40 Gesteinsproben	52
Abbildung 41: Chromgehalt der 40 Gesteinsproben	53
Abbildung 42: Cobaltgehalt der 40 Gesteinsproben	53

VII Anhang Abbildung 43: Magnesiumgehalt der 40 Gesteinsproben 54

Abbildurig 45. Magnesiurigeriait dei 40 Gesteirisproberi	.J -1
Abbildung 44: Mangangehalt der 40 Gesteinsproben	.54
Abbildung 45: Nickelgehalt der 40 Gesteinsproben	.55
Abbildung 46: Zinkgehalt der 40 Gesteinsproben	.55
Abbildung 47: Ablaufschema der ICP-MS Messung einer Gesteinsprobe nach Aufschluss.	.56
Abbildung 48: Ishikawa-Diagramm der Messunsicherheit der Manganbestimmung mittels ICP-MS mit dem Gesteinstotalaufschluss inklusive Probenaufbereitung	.57
Abbildung 49: Balkendiagramm der Beiträge zur Messunsicherheit der Manganbestimmun nach Totalaufschluss gesteinsartiger Proben	•

Anhang I

Anhang

Anhang I: Tabelle der genauen Einwaagen der einzelnen Restmüllfraktionen und des deionisiertem Wassers für sämtliche Eluate

In Tabelle 25 sind die Einwaagen der einzelnen Fraktionen für die Eluate (El 1 bis El 25) ersichtlich. Der berechnete Soll-Wert ist in Tabelle 1 zu finden.

Tabelle 25: Genaue Einwaagen der einzelnen Fraktionen der Restmüllproben für die Eluatherstellung

							,	Abfallart [g]								
Eluat	Zeitung	Pappe	Papier	Folien	Hartkunst	PET	Getränke sonstige	Metall	Textil	Holz	Inertes	Organik Garten	Organik Küche	Hygiene Windeln	Hygiene Rest	Summe	Liquid
El 1	3,2399	2,0517	9,8200	6,5465	4,1073	0,9710	12,2879	4,2790	6,5542	1,1636	5,1096	22,1632	12,8564	8,2073	0,6472	100,00	1000,2
El 2	3,2395	2,0517	9,8201	6,5433	4,1086	0,9735	12,2868	4,2784	6,5543	1,1413	5,1090	22,1668	12,8564	8,2083	0,6465	99,98	1000,1
El 3	3,2391	2,0510	9,8202	6,5452	4,1047	0,9743	12,2876	4,2784	6,5538	1,1713	5,1102	22,1652	12,8567	8,2070	0,6462	100,01	1000,3
El 4	3,2391	2,0513	9,8206	6,5469	4,1055	0,9748	12,2881	4,2798	6,5524	1,1756	5,1097	22,1676	12,8563	8,2080	0,6470	100,02	1000,5
El 5	3,2392	2,0517	9,8200	6,5495	4,1059	0,9737	12,2882	4,2799	6,5559	1,1584	5,1096	22,1678	12,8503	8,2083	0,6475	100,01	1000,0
El 6	3,2397	2,0509	9,8204	6,5455	4,1036	0,9722	12,2872	4,2804	6,5552	1,1581	5,1099	22,1614	12,8522	8,2076	0,6466	99,99	1000,2
El 7	3,2402	2,0512	9,8200	6,5454	4,1040	0,9752	12,2878	4,2795	6,5569	1,1608	5,1097	22,1640	12,8585	8,2079	0,6477	100,01	1000,0
El 8	3,2392	2,0516	9,8209	6,5468	4,1026	0,9743	12,2898	4,2795	6,5578	1,1641	5,1105	22,1627	12,8586	8,2064	0,6467	100,01	1000,4
El 9	3,2398	2,0517	9,8197	6,5466	4,1055	0,9760	12,2891	4,2803	6,5549	1,1609	5,1094	22,1638	12,8584	8,2070	0,6463	100,01	1000,1
El 10	3,2390	2,0516	9,8207	6,5459	4,1040	0,9738	12,2864	4,2800	6,5574	1,1659	5,1089	22,1650	12,8537	8,2078	0,6467	100,01	1000,1
El 11	3,2391	2,0519	9,8196	6,5484	4,1031	0,9755	12,2894	4,2782	6,5523	1,1659	5,1080	22,1652	12,8523	8,2066	0,6479	100,00	1000,4

Anhang I

Tabelle 25 (Fortsetzung): Genaue Einwaagen der einzelnen Fraktionen der Restmüllproben für die Eluatherstellung

							,	Abfallart [g]								
Eluat	Zeitung	Pappe	Papier	Folien	Hart-kunst	PET	Getränke sonst	Metalle	Textil	Holz	Inertes	Organik Garten	Organik Küche	Hygiene Windeln	Hygiene Rest	Summe	Liquid
El 12	3,2386	2,0525	9,8198	6,5431	4,1014	0,9729	12,2888	4,2793	6,5570	1,1642	5,1072	22,1616	12,8522	8,2086	0,6472	99,99	1000,1
El 13	3,2391	2,0517	9,8197	6,5465	4,1045	0,9729	12,2888	4,2793	6,5570	1,1620	5,1105	22,1625	12,8525	8,2093	0,6450	100,00	1000,1
El 14	3,2407	2,0509	9,8198	6,5450	4,1051	0,9724	12,2890	4,2792	6,5580	1,1699	5,1115	22,1667	12,8559	8,2075	0,6451	100,02	1000,4
El 15	3,2384	2,0515	9,8209	6,5443	4,1051	0,9707	12,2861	4,2788	6,5525	1,1642	5,1099	22,1680	12,8552	8,2080	0,6486	100,00	1000,2
El 16	3,2391	2,0521	9,8201	6,5468	4,1054	0,9728	12,2869	4,2769	6,5544	1,1705	5,1078	22,1623	12,8565	8,2065	0,6463	100,00	1001,0
El 17	3,2395	2,0514	9,8209	6,5433	4,1039	0,9713	12,2847	4,2790	6,5540	1,1624	5,1107	22,1636	12,8554	8,2091	0,6456	99,99	1000,4
El 18	3,2399	2,0520	9,8204	6,5491	4,1019	0,9701	12,2843	4,2788	6,5573	1,1699	5,1068	22,1633	12,8535	8,2076	0,6435	100,00	1000,1
El 19	3,2410	2,0515	9,8204	6,5455	4,1013	0,9736	12,2885	4,2790	6,5537	1,1629	5,1118	22,1685	12,8536	8,2070	0,6456	100,00	1000,1
El 20	3,2397	2,0521	9,8209	6,5450	4,1022	0,9719	12,2878	4,2802	6,5570	1,1628	5,1098	22,1625	12,8550	8,2050	0,6468	100,00	1000,2
El 21	3,2399	2,0511	9,8199	6,5439	4,1033	0,9733	12,2872	4,2789	6,5548	1,1693	5,1131	22,1676	12,8520	8,2052	0,6438	100,00	1000,2
El 22	3,2386	2,0521	9,8209	6,5456	4,1044	0,9700	12,2855	4,2791	6,5527	1,1624	5,1144	22,1631	12,8541	8,2090	0,6452	100,00	1000,2
El 23	3,2402	2,0507	9,8207	6,5439	4,1068	0,9782	12,2876	4,2795	6,5575	1,1671	5,1038	22,1643	12,8527	8,2088	0,6440	100,01	1000,1
El 24	3,2394	2,0513	9,8209	6,5482	4,1052	0,9753	12,2889	4,2797	6,5520	1,1630	5,1060	22,1685	12,8526	8,2079	0,6470	100,01	1000,2
El 25	3,2399	2,0513	9,8208	6,5428	4,1033	0,9745	12,2855	4,2789	6,5556	1,1690	5,1070	22,1655	12,8578	8,2083	0,6456	100,01	1000,0

Anhang II

Anhang II: Tabelle der Einzelergebnisse der Eluatversuche

In Tabelle 26 sind die Messergebnisse für die einzelnen Schwermetalle je Eluat angegeben. Tabelle 27 zeigt alle weiteren Messwerte wie pH; Leitfähigkeit; TOC; Chlorid- und Sulfat-Gehalt; Tensidmenge und Abdampfrückstand. Weiters ist die Bestimmungsgrenze (BG), der Mittelwert (Mittel) sowie der maximale (Max) und minimale (Min) Wert ersichtlich.

Tabelle 26: Einzelmessergebnisse der Schwermetalluntersuchung der Eluate

Eluat	AI	As	Ва	Ca	Cd	Со	Cr	Cu	Fe	Li	Mg	Mn
Liuat	[mg]	[µg]	[mg]	[mg]	[µg]	[µg]	[µg]	[µg]	[mg]	[µg]	[mg]	[mg]
El 0	0,4822	27,16	0,0132	0,3932	ı	0,0128	ı	178,3	0,2794	-	0,3722	0,0127
										I	T	
El 1	35,94	172,0	1,227	1.234	<bg< th=""><th>250,0</th><th><bg< th=""><th>184,1</th><th>24,28</th><th>129,5</th><th>114,7</th><th>7,435</th></bg<></th></bg<>	250,0	<bg< th=""><th>184,1</th><th>24,28</th><th>129,5</th><th>114,7</th><th>7,435</th></bg<>	184,1	24,28	129,5	114,7	7,435
El 2	32,94	114,2	1,102	1.476	<bg< th=""><th>57,96</th><th><bg< th=""><th>517,1</th><th>8,293</th><th>144,7</th><th>155,8</th><th>3,109</th></bg<></th></bg<>	57,96	<bg< th=""><th>517,1</th><th>8,293</th><th>144,7</th><th>155,8</th><th>3,109</th></bg<>	517,1	8,293	144,7	155,8	3,109
El 3	34,28	154,1	1,430	1.521	<bg< th=""><th>204,4</th><th><bg< th=""><th>317,5</th><th>44,62</th><th>135,3</th><th>171,5</th><th>6,493</th></bg<></th></bg<>	204,4	<bg< th=""><th>317,5</th><th>44,62</th><th>135,3</th><th>171,5</th><th>6,493</th></bg<>	317,5	44,62	135,3	171,5	6,493
El 4	41,86	141,3	1,200	1.654	<bg< th=""><th>148,8</th><th><bg< th=""><th>620,9</th><th>25,54</th><th>142,2</th><th>166,1</th><th>5,069</th></bg<></th></bg<>	148,8	<bg< th=""><th>620,9</th><th>25,54</th><th>142,2</th><th>166,1</th><th>5,069</th></bg<>	620,9	25,54	142,2	166,1	5,069
El 5	36,58	148,0	1,401	1.692	<bg< th=""><th>168,8</th><th><bg< th=""><th>692,9</th><th>26,22</th><th>140,1</th><th>193,7</th><th>5,871</th></bg<></th></bg<>	168,8	<bg< th=""><th>692,9</th><th>26,22</th><th>140,1</th><th>193,7</th><th>5,871</th></bg<>	692,9	26,22	140,1	193,7	5,871
El 6	107,9	223,2	2,209	1.614	<bg< th=""><th>324,6</th><th><bg< th=""><th>691,7</th><th>132,6</th><th>236,2</th><th>159,5</th><th>11,57</th></bg<></th></bg<>	324,6	<bg< th=""><th>691,7</th><th>132,6</th><th>236,2</th><th>159,5</th><th>11,57</th></bg<>	691,7	132,6	236,2	159,5	11,57
El 7	10,49	201,0	0,1061	1.036	<bg< th=""><th>199,3</th><th><bg< th=""><th>917,9</th><th>22,28</th><th>131,8</th><th>113,2</th><th>4,323</th></bg<></th></bg<>	199,3	<bg< th=""><th>917,9</th><th>22,28</th><th>131,8</th><th>113,2</th><th>4,323</th></bg<>	917,9	22,28	131,8	113,2	4,323
El 8	39,52	231,4	1,458	1.449	<bg< th=""><th>196,0</th><th><bg< th=""><th>510,3</th><th>59,34</th><th>150,5</th><th>147,2</th><th>8,921</th></bg<></th></bg<>	196,0	<bg< th=""><th>510,3</th><th>59,34</th><th>150,5</th><th>147,2</th><th>8,921</th></bg<>	510,3	59,34	150,5	147,2	8,921
El 9	55,60	237,8	1,926	1.611	<bg< th=""><th>312,4</th><th><bg< th=""><th>541,5</th><th>105,4</th><th>166,7</th><th>145,4</th><th>10,92</th></bg<></th></bg<>	312,4	<bg< th=""><th>541,5</th><th>105,4</th><th>166,7</th><th>145,4</th><th>10,92</th></bg<>	541,5	105,4	166,7	145,4	10,92
El 10	39,04	208,8	1,476	1.356	<bg< th=""><th>291,4</th><th><bg< th=""><th>600,9</th><th>57,96</th><th>135,4</th><th>127,3</th><th>8,607</th></bg<></th></bg<>	291,4	<bg< th=""><th>600,9</th><th>57,96</th><th>135,4</th><th>127,3</th><th>8,607</th></bg<>	600,9	57,96	135,4	127,3	8,607
El 11	18,51	173,6	0,6410	1.307	<bg< th=""><th>239,0</th><th><bg< th=""><th>265,1</th><th>25,14</th><th>101,6</th><th>135,1</th><th>6,113</th></bg<></th></bg<>	239,0	<bg< th=""><th>265,1</th><th>25,14</th><th>101,6</th><th>135,1</th><th>6,113</th></bg<>	265,1	25,14	101,6	135,1	6,113
El 12	79,84	203,2	1,918	1.347	<bg< th=""><th>278,2</th><th><bg< th=""><th>976,7</th><th>88,94</th><th>215,8</th><th>118,1</th><th>8,467</th></bg<></th></bg<>	278,2	<bg< th=""><th>976,7</th><th>88,94</th><th>215,8</th><th>118,1</th><th>8,467</th></bg<>	976,7	88,94	215,8	118,1	8,467
El 13	40,74	183,4	1,590	1.325	<bg< th=""><th>250,0</th><th><bg< th=""><th>597,1</th><th>47,10</th><th>136,0</th><th>117,5</th><th>8,417</th></bg<></th></bg<>	250,0	<bg< th=""><th>597,1</th><th>47,10</th><th>136,0</th><th>117,5</th><th>8,417</th></bg<>	597,1	47,10	136,0	117,5	8,417
El 14	36,94	179,4	1,487	1.418	<bg< th=""><th>237,6</th><th><bg< th=""><th>2.194</th><th>45,84</th><th>137,3</th><th>124,5</th><th>7,679</th></bg<></th></bg<>	237,6	<bg< th=""><th>2.194</th><th>45,84</th><th>137,3</th><th>124,5</th><th>7,679</th></bg<>	2.194	45,84	137,3	124,5	7,679
El 15	44,34	179,8	2,743	1.282	<bg< th=""><th>247,6</th><th><bg< th=""><th>1.152</th><th>47,78</th><th>145,7</th><th>119,1</th><th>7,703</th></bg<></th></bg<>	247,6	<bg< th=""><th>1.152</th><th>47,78</th><th>145,7</th><th>119,1</th><th>7,703</th></bg<>	1.152	47,78	145,7	119,1	7,703
El 16	30,16	156,2	1,053	1.400	<bg< th=""><th>116,4</th><th><bg< th=""><th>396,5</th><th>14,39</th><th>112,9</th><th>127,6</th><th>5,055</th></bg<></th></bg<>	116,4	<bg< th=""><th>396,5</th><th>14,39</th><th>112,9</th><th>127,6</th><th>5,055</th></bg<>	396,5	14,39	112,9	127,6	5,055
El 17	59,66	184,2	1,835	1.446	<bg< th=""><th>165,2</th><th><bg< th=""><th>481,3</th><th>48,26</th><th>151,2</th><th>118,0</th><th>8,731</th></bg<></th></bg<>	165,2	<bg< th=""><th>481,3</th><th>48,26</th><th>151,2</th><th>118,0</th><th>8,731</th></bg<>	481,3	48,26	151,2	118,0	8,731
El 18	49,38	165,9	1,457	1.427	<bg< th=""><th>105,1</th><th><bg< th=""><th>290,9</th><th>26,94</th><th>126,4</th><th>110,8</th><th>6,363</th></bg<></th></bg<>	105,1	<bg< th=""><th>290,9</th><th>26,94</th><th>126,4</th><th>110,8</th><th>6,363</th></bg<>	290,9	26,94	126,4	110,8	6,363
El 19	47,48	170,3	1,136	1.446	<bg< th=""><th>110,6</th><th><bg< th=""><th>434,7</th><th>23,34</th><th>135,3</th><th>103,5</th><th>6,943</th></bg<></th></bg<>	110,6	<bg< th=""><th>434,7</th><th>23,34</th><th>135,3</th><th>103,5</th><th>6,943</th></bg<>	434,7	23,34	135,3	103,5	6,943
El 20	38,56	174,8	1,005	1.508	<bg< th=""><th>62,68</th><th><bg< th=""><th>488,9</th><th>23,42</th><th>120,5</th><th>104,8</th><th>5,317</th></bg<></th></bg<>	62,68	<bg< th=""><th>488,9</th><th>23,42</th><th>120,5</th><th>104,8</th><th>5,317</th></bg<>	488,9	23,42	120,5	104,8	5,317
El 21	50,78	168,9	1,310	1.453	<bg< th=""><th>107,9</th><th><bg< th=""><th>430,7</th><th>21,02</th><th>143,3</th><th>108,2</th><th>5,937</th></bg<></th></bg<>	107,9	<bg< th=""><th>430,7</th><th>21,02</th><th>143,3</th><th>108,2</th><th>5,937</th></bg<>	430,7	21,02	143,3	108,2	5,937
El 22	39,32	179,0	1,120	1.371	<bg< th=""><th>132,2</th><th><bg< th=""><th>457,5</th><th>19,08</th><th>114,0</th><th>118,0</th><th>5,967</th></bg<></th></bg<>	132,2	<bg< th=""><th>457,5</th><th>19,08</th><th>114,0</th><th>118,0</th><th>5,967</th></bg<>	457,5	19,08	114,0	118,0	5,967
El 23	47,50	203,8	1,594	1.570	<bg< th=""><th>120,5</th><th><bg< th=""><th>427,7</th><th>32,42</th><th>125,8</th><th>117,7</th><th>7,663</th></bg<></th></bg<>	120,5	<bg< th=""><th>427,7</th><th>32,42</th><th>125,8</th><th>117,7</th><th>7,663</th></bg<>	427,7	32,42	125,8	117,7	7,663
El 24	61,78	179,2	1,235	1.420	<bg< th=""><th>104,4</th><th><bg< th=""><th>480,5</th><th>23,82</th><th>151,6</th><th>110,1</th><th>6,363</th></bg<></th></bg<>	104,4	<bg< th=""><th>480,5</th><th>23,82</th><th>151,6</th><th>110,1</th><th>6,363</th></bg<>	480,5	23,82	151,6	110,1	6,363
El 25	51,02	208,6	1,360	1.490	<bg< th=""><th>115,5</th><th><bg< th=""><th>325,1</th><th>22,24</th><th>135,8</th><th>121,7</th><th>7,031</th></bg<></th></bg<>	115,5	<bg< th=""><th>325,1</th><th>22,24</th><th>135,8</th><th>121,7</th><th>7,031</th></bg<>	325,1	22,24	135,8	121,7	7,031
BG	0,1	100	0,02	10	20	10	200	20	1	10	0,1	0,1
Mittel	45,20	181,7	1,401	1434	3,195	181,9	145,1	599,7	40,65	142,6	130,0	7,043
Max	107,9	237,8	2,743	1692	-	324,6	-	2194	132,6	236,2	193,7	11,57
Min	10,5	114,2	0,1	1036,2	•	58,0	•	184,1	8,3	101,6	103,5	3,1

Anhang II IV

Tabelle 26 (Fortsetzung): Einzelmessergebnisse der Schwermetalluntersuchung der Eluate

Fluet	Ni	P	Pb	Sb	Se	Sn	Ti	V	Zn
Eluat	[µg]	[mg]	[µg]	[µg]	[µg]	[µg]	[µg]	[µg]	[mg]
El 0	ı	0,0100	15,83	2,160	53,28	1,470	3,616	6,850	0,1726
El 1	241,0	496,0	169,3	33,88	59,26	10,88	907,4	158,0	1,575
El 2	169,3	360,0	58,33	23,78	99,42	6,020	618,8	99,78	2,157
El 3	273,4	394,6	161,1	24,24	75,24	7,664	765,2	130,8	1,782
El 4	264,6	315,4	164,6	22,44	75,88	38,78	634,2	121,6	1,923
El 5	281,8	514,8	118,1	22,26	62,70	16,97	987,4	130,6	1,955
El 6	1.190	347,8	432,8	30,98	60,44	12,44	1.039	363,6	2,503
El 7	268,2	274,2	10,15	36,14	41,60	12,32	1.022	185,0	0,354
El 8	273,2	444,6	227,2	36,58	60,96	17,83	1.664	232,2	1,829
El 9	406,8	402,8	418,6	56,22	45,32	14,16	1.279	259,4	1,957
EI 10	326,8	339,8	1.139	96,32	43,26	20,12	959,0	196,9	1,777
EI 11	293,4	266,2	93,27	29,08	41,96	10,26	751,6	113,3	1,343
El 12	402,6	314,6	350,0	27,26	42,20	4,958	756,6	298,0	2,633
EI 13	286,4	265,2	231,2	32,60	36,48	5,692	624,0	162,7	2,123
El 14	566,8	296,4	245,6	64,34	38,66	95,76	670,6	150,2	2,123
EI 15	313,2	305,6	307,4	22,84	36,30	9,048	686,8	171,1	2,207
El 16	182,9	252,2	95,65	22,42	34,50	6,080	521,2	90,62	1,947
EI 17	237,8	232,2	242,8	28,58	38,36	12,35	564,6	186,9	2,625
EI 18	191,3	212,0	165,7	29,64	31,90	8,410	560,0	119,2	2,223
EI 19	182,9	215,6	86,55	30,38	37,98	13,41	930,0	146,8	2,211
EI 20	232,8	199,1	223,8	26,20	41,20	17,94	801,6	115,2	2,395
El 21	160,1	206,6	132,5	30,22	32,62	8,990	770,2	132,8	1,929
El 22	191,6	204,2	117,2	20,78	33,00	7,356	464,2	107,8	1,879
EI 23	331,4	264,2	225,8	30,74	32,70	17,42	1.181	149,1	2,673
El 24	187,2	208,8	141,3	26,68	34,84	9,382	672,8	143,7	1,985
EI 25	213,8	232,0	138,4	38,68	33,68	16,50	558,4	123,2	2,005
BG	100	0,1	20	20	100	20	10	10	0,2
Mittel	306,8	302,6	227,9	33,73	46,82	16,03	815,6	163,5	2,005
Max	1190	514,8	1139	96,32	99,42	95,76	1664	363,6	2,673
Min	160,1	199,1	10,2	20,8	31,9	5,0	464,2	90,6	0,4

Anhang II V

Tabelle 27: Eluatergebnisse pH, Leitfähigkeit, TOC, Chlorid, Sulfat, Tenside, Abdampfrückstand

Eluat	Т	рН	Leit- fähigkeit	TOC fl	Chlorid	Sulfat	Tenside	Trocken- rückstand
	°C		[mS/cm]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[g/kg TM]
EI 0	23,3	7,307	0,013	7,937	13,406	0,093	0	0,00
El 1	22,6	6,595	3,73	9.860	1535,96	537,79	2,68	27,73
El 2	23,5	6,557	4,22	14.750	2271,57	303,33	4,52	26,69
El 3	23	6,557	4,25	13.470	1756,27	249,55	6,31	28,99
El 4	23,2	6,688	3,86	13.910	1385,10	111,49	1,37	28,42
El 5	23,1	6,658	4,06	14.640	1296,06	134,16	2,4	34,74
El 6	23,1	6,726	3,70	17.520	1447,88	131,73	3,98	38,88
El 7	22,3	6,840	3,90	17.980	2050,43	477,03	2,9	29,44
El 8	23,0	6,787	3,85	15.560	1879,24	391,77	5,74	31,62
El 9	23,15	6,787	3,66	16.640	1888,11	485,15	3,3	39,59
EI 10	22,15	6,384	3,72	13.280	1754,20	334,21	2,79	25,80
El 11	22,35	6,784	3,54	13.950	1360,69	184,92	2,38	27,72
El 12	22,15	6,779	3,51	12.770	1341,10	432,88	2,21	27,18
EI 13	22,25	6,729	3,59	13.410	1530,07	248,45	2,26	31,90
El 14	22,40	6,640	3,64	14.830	1483,11	163,12	3,35	33,22
EI 15	22,50	6,267	3,52	13.550	1345,11	255,59	2,53	36,82
El 16	22,85	6,300	3,81	12.650	1903,81	236,30	4,42	43,48
EI 17	22,8	6,502	3,46	11.650	1667,75	315,85	2,64	37,34
EI 18	22,85	6,448	3,67	7.417	1917,23	222,95	5,59	39,04
El 19	22,95	6,427	3,79	13.470	2028,89	279,68	1,8	41,98
El 20	23,05	6,528	3,80	8.049	2021,37	242,58	2,53	40,00
El 21	23,15	6,481	3,82	9.620	1980,39	238,70	3,62	41,28
El 22	23,1	6,481	3,59	11.710	1878,78	296,06	1,01	36,62
El 23	23,1	6,603	3,71	12.220	1910,34	376,63	1,77	43,46
El 24	23,15	6,587	3,52	8.650	1940,39	280,28	1,38	37,26
El 25	23,25	6,549	3,67	10.430	1841,05	310,21	0,83	37,08
Mittel		6,587	3,74	12.879	1736,596	289,616	2,972	34,651
Max		6,840	4,25	17.980	2271,570	537,790	6,310	43,475
Min		6,267	3,46	7.417	1296,060	111,490	0,830	25,800

Anhang III VI

Anhang III: Tabelle der Einzelergebnisse der Gesteinsproben

In Tabelle 28 ist der Aschegehalt der Proben ersichtlich und in Tabelle 29 sind die Messergebnisse für die einzelnen Schwermetalle je Gesteinsprobe angegeben. Weiters ist die Bestimmungsgrenze (BG), der Mittelwert (Mittel) sowie der maximale (Max) und minimale (Min) Wert ersichtlich.

Tabelle 28: Einzelmessergebnisse der Aschegehalte der Gesteinsproben

Probe	Aschegehalt
Probe	[-]
1BKal1	0,9914
1BKal2	0,9919
1BKall1	0,9850
1BKall2	0,9873
1BKbl1	0,9879
1BKbl2	0,9906
1BKbll1	0,9884
1BKbll2	0,9849
2BKal1	0,9900
2BKal2	0,9909
2BKall1	0,9897
2BKall2	0,9900
2BKbl1	0,9896
2BKbl2	0,9895

Probe	Aschegehalt
Probe	[-]
3BKal1	0,9903
3BKal2	0,9892
3BKall1	0,9894
3BKall2	0,9907
3BKbl1	0,9896
3BKbl2	0,9901
3BKbll1	0,9903
3BKbll2	0,9897
4BKal1	0,9903
4BKal2	0,9910
4BKall1	0,9905
4BKall2	0,9899
4BKbl1	0,9904
4BKbl2	0,9913

Probe	Aschegehalt
Probe	[-]
5BKal1	0,9910
5BKal2	0,9915
5BKall1	0,9909
5BKall2	0,9913
5BKbl1	0,9919
5BKbl2	0,9918
5BKbll1	0,9910
5BKbll2	0,9913
Mittel	0,9900
Max	0,9919
Min	0,9849

Tabelle 29: Einzelmessergebnisse der Schwermetalluntersuchung der Gesteinsproben

Draha	AI	As	Ва	Ca	Cd	Со	Cr	Cu	Fe	Li
Probe	[mg]	[mg]	[mg]	[mg]	[µg]	[mg]	[mg]	[mg]	[mg]	[mg]
BW	0,6337	0,01	0,0093	10,7049	0	0,0	0,041	0,014	0,1431	0,001
1BKal1	17.546,3	6,0	294,5	1.176,6	<bg< th=""><th>6,9</th><th>62,3</th><th>11,6</th><th>20.625,9</th><th>27,5</th></bg<>	6,9	62,3	11,6	20.625,9	27,5
1BKal2	20.808,7	6,9	336,0	1.549,6	<bg< th=""><th>7,8</th><th>72,6</th><th>17,5</th><th>23.526,9</th><th>27,1</th></bg<>	7,8	72,6	17,5	23.526,9	27,1
1BKall1	16.934,4	5,1	251,8	1.249,0	<bg< th=""><th>5,7</th><th>48,1</th><th>7,3</th><th>17.925,9</th><th>19,0</th></bg<>	5,7	48,1	7,3	17.925,9	19,0
1BKall2	21.753,6	7,2	355,6	1.383,4	<bg< th=""><th>9,1</th><th>75,2</th><th>13,2</th><th>25.989,7</th><th>27,9</th></bg<>	9,1	75,2	13,2	25.989,7	27,9
1BKbl1	23.032,1	6,6	345,3	1.977,5	<bg< th=""><th>7,2</th><th>68,0</th><th>11,6</th><th>22.336,9</th><th>25,8</th></bg<>	7,2	68,0	11,6	22.336,9	25,8
1BKbl2	25.213,5	6,9	330,9	1.977,2	<bg< th=""><th>7,4</th><th>72,9</th><th>11,3</th><th>23.051,7</th><th>24,5</th></bg<>	7,4	72,9	11,3	23.051,7	24,5
1BKbII1	23.377,7	6,7	330,1	2.275,2	<bg< th=""><th>6,9</th><th>65,2</th><th>10,2</th><th>21.361,0</th><th>23,8</th></bg<>	6,9	65,2	10,2	21.361,0	23,8
1BKbII2	20.175,4	7,2	332,6	2.325,3	<bg< th=""><th>7,6</th><th>71,2</th><th>24,1</th><th>23.512,3</th><th>27,7</th></bg<>	7,6	71,2	24,1	23.512,3	27,7
2BKal1	27.620,5	5,4	323,2	1.790,2	<bg< th=""><th>6,1</th><th>56,1</th><th>10,2</th><th>19.740,4</th><th>24,6</th></bg<>	6,1	56,1	10,2	19.740,4	24,6
2BKal2	26.651,3	5,4	302,7	1.681,6	<bg< th=""><th>6,0</th><th>54,0</th><th>10,8</th><th>19.449,3</th><th>24,7</th></bg<>	6,0	54,0	10,8	19.449,3	24,7
2BKall1	21.380,3	6,0	331,1	2.219,7	<bg< th=""><th>6,7</th><th>58,2</th><th>11,7</th><th>21.957,4</th><th>27,0</th></bg<>	6,7	58,2	11,7	21.957,4	27,0
2BKall2	20.347,6	6,2	338,2	2.712,7	<bg< th=""><th>6,9</th><th>59,2</th><th>9,6</th><th>22.351,5</th><th>30,5</th></bg<>	6,9	59,2	9,6	22.351,5	30,5

Anhang III VII

Drobo	AI	As	Ва	Са	Cd	Со	Cr	Cu	Fe	Li
Probe	[mg]	[mg]	[mg]	[mg]	[µg]	[mg]	[mg]	[mg]	[mg]	[mg]
2BKbl1	26.560,2	4,3	324,2	2.677,6	<bg< th=""><th>6,7</th><th>57,6</th><th>11,5</th><th>22.343,2</th><th>28,2</th></bg<>	6,7	57,6	11,5	22.343,2	28,2
2BKbl2	19.553,4	5,6	339,1	2.840,6	<bg< th=""><th>6,5</th><th>50,2</th><th>9,7</th><th>19.972,3</th><th>27,7</th></bg<>	6,5	50,2	9,7	19.972,3	27,7
2BKbll1	18.345,6	5,2	308,9	2.353,4	<bg< th=""><th>5,9</th><th>51,1</th><th>10,4</th><th>19.053,8</th><th>25,5</th></bg<>	5,9	51,1	10,4	19.053,8	25,5
2BKbII2	19.735,7	5,4	349,6	2.814,3	<bg< th=""><th>6,6</th><th>57,3</th><th>26,0</th><th>20.877,1</th><th>29,5</th></bg<>	6,6	57,3	26,0	20.877,1	29,5
3BKal1	25.260,1	5,2	315,6	2.513,0	<bg< th=""><th>5,9</th><th>47,8</th><th>10,4</th><th>18.430,1</th><th>26,9</th></bg<>	5,9	47,8	10,4	18.430,1	26,9
3BKal2	23.559,0	5,8	326,0	1.594,4	<bg< th=""><th>6,5</th><th>61,1</th><th>11,3</th><th>21.323,8</th><th>29,8</th></bg<>	6,5	61,1	11,3	21.323,8	29,8
3BKall1	18.674,3	5,8	332,9	3.104,9	<bg< th=""><th>6,4</th><th>49,8</th><th>10,3</th><th>20.052,7</th><th>29,1</th></bg<>	6,4	49,8	10,3	20.052,7	29,1
3BKall2	19.699,0	5,8	356,5	3.975,2	<bg< th=""><th>6,8</th><th>52,8</th><th>12,4</th><th>21.270,5</th><th>30,5</th></bg<>	6,8	52,8	12,4	21.270,5	30,5
3BKbl1	19.193,0	6,7	330,5	2.269,0	<bg< th=""><th>7,2</th><th>62,0</th><th>14,1</th><th>22.945,6</th><th>33,2</th></bg<>	7,2	62,0	14,1	22.945,6	33,2
3BKbl2	18.692,9	6,5	323,5	2.063,6	<bg< th=""><th>6,9</th><th>60,8</th><th>16,5</th><th>22.066,8</th><th>31,5</th></bg<>	6,9	60,8	16,5	22.066,8	31,5
3BKbll1	19.944,2	5,8	353,1	2.760,2	<bg< th=""><th>7,5</th><th>58,5</th><th>8,1</th><th>23.249,1</th><th>33,0</th></bg<>	7,5	58,5	8,1	23.249,1	33,0
3BKbll2	22.148,3	4,6	322,1	3.473,3	<bg< th=""><th>6,9</th><th>54,0</th><th>7,9</th><th>21.086,6</th><th>33,3</th></bg<>	6,9	54,0	7,9	21.086,6	33,3
4BKal1	15.724,0	6,2	319,5	1.144,4	<bg< th=""><th>8,1</th><th>64,1</th><th>15,4</th><th>24.063,0</th><th>40,6</th></bg<>	8,1	64,1	15,4	24.063,0	40,6
4BKal2	19.690,6	6,0	331,9	1.673,9	<bg< th=""><th>7,3</th><th>60,3</th><th>11,9</th><th>22.810,4</th><th>35,8</th></bg<>	7,3	60,3	11,9	22.810,4	35,8
4BKall1	20.852,8	5,6	311,6	3.432,9	<bg< th=""><th>6,7</th><th>54,6</th><th>7,8</th><th>20.520,2</th><th>34,4</th></bg<>	6,7	54,6	7,8	20.520,2	34,4
4BKall2	20.416,0	5,9	329,5	3.025,8	<bg< th=""><th>7,1</th><th>60,9</th><th>8,9</th><th>21.910,9</th><th>38,4</th></bg<>	7,1	60,9	8,9	21.910,9	38,4
4BKbl1	27.959,5	6,7	361,7	4.177,3	<bg< th=""><th>8,0</th><th>69,2</th><th>13,1</th><th>25.402,9</th><th>41,9</th></bg<>	8,0	69,2	13,1	25.402,9	41,9
4BKbl2	25.839,4	6,4	351,6	3.386,6	<bg< th=""><th>8,0</th><th>63,1</th><th>13,0</th><th>24.319,1</th><th>39,7</th></bg<>	8,0	63,1	13,0	24.319,1	39,7
4BKbII1	18.590,0	5,1	314,7	3.409,0	<bg< th=""><th>6,7</th><th>55,5</th><th>7,8</th><th>20.819,9</th><th>36,8</th></bg<>	6,7	55,5	7,8	20.819,9	36,8
4BKbll2	21.802,9	6,2	314,7	2.578,0	<bg< th=""><th>6,9</th><th>60,6</th><th>10,9</th><th>22.051,9</th><th>39,5</th></bg<>	6,9	60,6	10,9	22.051,9	39,5
5BKal1	21.359,8	5,8	326,7	3.648,3	<bg< th=""><th>6,8</th><th>61,1</th><th>12,0</th><th>20.389,1</th><th>35,8</th></bg<>	6,8	61,1	12,0	20.389,1	35,8
5BKal2	17.863,4	6,1	336,7	3.003,2	<bg< th=""><th>7,0</th><th>66,0</th><th>13,3</th><th>21.622,9</th><th>36,8</th></bg<>	7,0	66,0	13,3	21.622,9	36,8
5BKall1	24.456,1	6,5	367,6	4.047,0	<bg< th=""><th>8,0</th><th>65,4</th><th>9,8</th><th>25.910,7</th><th>43,1</th></bg<>	8,0	65,4	9,8	25.910,7	43,1
5BKall2	23.944,0	4,6	271,5	2.156,3	<bg< th=""><th>5,8</th><th>48,1</th><th>8,7</th><th>18.249,1</th><th>32,8</th></bg<>	5,8	48,1	8,7	18.249,1	32,8
5BKbl1	21.795,0	5,8	327,4	3.241,6	<bg< th=""><th>6,7</th><th>61,5</th><th>16,4</th><th>20.910,2</th><th>36,4</th></bg<>	6,7	61,5	16,4	20.910,2	36,4
5BKbl2	25.364,3	4,5	291,1	3.206,7	<bg< th=""><th>6,7</th><th>71,4</th><th>11,8</th><th>15.853,6</th><th>29,9</th></bg<>	6,7	71,4	11,8	15.853,6	29,9
5BKbII1	25.421,5	6,6	355,0	4.057,1	<bg< th=""><th>7,8</th><th>63,0</th><th>9,6</th><th>24.367,6</th><th>41,3</th></bg<>	7,8	63,0	9,6	24.367,6	41,3
5BKbll2	32.280,6	6,7	373,8	4.133,3	<bg< th=""><th>7,8</th><th>64,2</th><th>10,8</th><th>24.494,0</th><th>41,9</th></bg<>	7,8	64,2	10,8	24.494,0	41,9
BG	2,5	2,5	0,5	250	500	0,25	5	0,5	25	0,25
Mittel	21989,2	5,9	328,5	2627,0	158	7,0	60,4	12,0	21704,9	31,8
Max	32280,6	7,2	373,8	4177,3	-	9,1	75,2	26,0	25989,7	43,1
Min	15724,0	4,3	251,8	1144,4	-	5,7	47,8	7,3	15853,6	19,0

Anhang III VIII

Tabelle 29 (Fortsetzung): Einzelmessergebnisse der Schwermetalluntersuchung der Gesteinsproben

	Mg	Mn	Ni	Р	Pb	Sb	Se	Sn	Ti	V	Zn
Probe	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[µg]	[mg]	[mg]	[mg]	[mg]
BW	0,0540	0,0019	0,0112	0,0252	0,0056	-	-	0,0109	0,0854	0,0492	0,0149
1BKal1	232,5	136,8	26,3	291,7	19,3	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.085,9</th><th>51,8</th><th>37,6</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.085,9</th><th>51,8</th><th>37,6</th></bg<>	2,5	3.085,9	51,8	37,6
1BKal2	216,5	160,0	28,5	328,5	22,4	<bg< th=""><th><bg< th=""><th>2,6</th><th>3.487,4</th><th>57,3</th><th>39,1</th></bg<></th></bg<>	<bg< th=""><th>2,6</th><th>3.487,4</th><th>57,3</th><th>39,1</th></bg<>	2,6	3.487,4	57,3	39,1
1BKall1	197,3	125,7	23,4	245,9	17,0	<bg< th=""><th><bg< th=""><th>1,8</th><th>2.676,0</th><th>41,6</th><th>29,4</th></bg<></th></bg<>	<bg< th=""><th>1,8</th><th>2.676,0</th><th>41,6</th><th>29,4</th></bg<>	1,8	2.676,0	41,6	29,4
1BKall2	234,1	183,9	30,9	332,6	24,1	<bg< th=""><th><bg< th=""><th>2,8</th><th>3.778,9</th><th>60,8</th><th>45,6</th></bg<></th></bg<>	<bg< th=""><th>2,8</th><th>3.778,9</th><th>60,8</th><th>45,6</th></bg<>	2,8	3.778,9	60,8	45,6
1BKbl1	214,0	151,1	26,8	303,1	21,8	<bg< th=""><th><bg< th=""><th>2,3</th><th>3.252,5</th><th>53,1</th><th>40,8</th></bg<></th></bg<>	<bg< th=""><th>2,3</th><th>3.252,5</th><th>53,1</th><th>40,8</th></bg<>	2,3	3.252,5	53,1	40,8
1BKbl2	133,6	158,5	27,5	284,2	21,7	<bg< th=""><th><bg< th=""><th>2,2</th><th>3.452,7</th><th>54,3</th><th>39,6</th></bg<></th></bg<>	<bg< th=""><th>2,2</th><th>3.452,7</th><th>54,3</th><th>39,6</th></bg<>	2,2	3.452,7	54,3	39,6
1BKbII1	182,8	143,7	24,9	330,6	21,8	<bg< th=""><th><bg< th=""><th>1,7</th><th>3.271,0</th><th>49,4</th><th>34,0</th></bg<></th></bg<>	<bg< th=""><th>1,7</th><th>3.271,0</th><th>49,4</th><th>34,0</th></bg<>	1,7	3.271,0	49,4	34,0
1BKbII2	196,7	148,4	29,2	329,0	22,0	<bg< th=""><th><bg< th=""><th>2,0</th><th>3.450,1</th><th>57,0</th><th>47,6</th></bg<></th></bg<>	<bg< th=""><th>2,0</th><th>3.450,1</th><th>57,0</th><th>47,6</th></bg<>	2,0	3.450,1	57,0	47,6
2BKal1	137,9	126,5	22,9	296,6	20,9	<bg< th=""><th><bg< th=""><th>2,1</th><th>2.967,2</th><th>48,7</th><th>42,4</th></bg<></th></bg<>	<bg< th=""><th>2,1</th><th>2.967,2</th><th>48,7</th><th>42,4</th></bg<>	2,1	2.967,2	48,7	42,4
2BKal2	140,0	120,0	22,5	273,6	20,9	<bg< th=""><th><bg< th=""><th>2,1</th><th>3.051,3</th><th>47,6</th><th>33,2</th></bg<></th></bg<>	<bg< th=""><th>2,1</th><th>3.051,3</th><th>47,6</th><th>33,2</th></bg<>	2,1	3.051,3	47,6	33,2
2BKall1	120,8	136,5	24,7	302,1	22,3	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.326,6</th><th>53,6</th><th>46,3</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.326,6</th><th>53,6</th><th>46,3</th></bg<>	2,5	3.326,6	53,6	46,3
2BKall2	150,2	145,1	24,9	323,7	22,7	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.427,1</th><th>55,7</th><th>39,7</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.427,1</th><th>55,7</th><th>39,7</th></bg<>	2,5	3.427,1	55,7	39,7
2BKbl1	287,1	150,4	29,9	313,0	22,2	<bg< th=""><th><bg< th=""><th>2,0</th><th>3.395,7</th><th>54,0</th><th>39,4</th></bg<></th></bg<>	<bg< th=""><th>2,0</th><th>3.395,7</th><th>54,0</th><th>39,4</th></bg<>	2,0	3.395,7	54,0	39,4
2BKbl2	291,1	140,2	23,1	340,8	20,8	<bg< th=""><th><bg< th=""><th>2,4</th><th>2.995,2</th><th>48,8</th><th>41,9</th></bg<></th></bg<>	<bg< th=""><th>2,4</th><th>2.995,2</th><th>48,8</th><th>41,9</th></bg<>	2,4	2.995,2	48,8	41,9
2BKbII1	115,3	124,7	23,0	292,1	20,5	<bg< th=""><th><bg< th=""><th>2,4</th><th>2.955,9</th><th>46,3</th><th>36,3</th></bg<></th></bg<>	<bg< th=""><th>2,4</th><th>2.955,9</th><th>46,3</th><th>36,3</th></bg<>	2,4	2.955,9	46,3	36,3
2BKbII2	116,4	141,9	25,5	302,6	26,0	<bg< th=""><th><bg< th=""><th>2,7</th><th>3.300,9</th><th>52,5</th><th>65,3</th></bg<></th></bg<>	<bg< th=""><th>2,7</th><th>3.300,9</th><th>52,5</th><th>65,3</th></bg<>	2,7	3.300,9	52,5	65,3
3BKal1	179,9	127,2	20,8	293,6	19,8	<bg< th=""><th><bg< th=""><th>2,2</th><th>2.813,5</th><th>45,5</th><th>33,3</th></bg<></th></bg<>	<bg< th=""><th>2,2</th><th>2.813,5</th><th>45,5</th><th>33,3</th></bg<>	2,2	2.813,5	45,5	33,3
3BKal2	149,2	139,9	24,4	308,2	21,9	<bg< th=""><th><bg< th=""><th>2,7</th><th>3.244,8</th><th>52,7</th><th>37,5</th></bg<></th></bg<>	<bg< th=""><th>2,7</th><th>3.244,8</th><th>52,7</th><th>37,5</th></bg<>	2,7	3.244,8	52,7	37,5
3BKall1	173,7	135,4	23,0	330,9	21,4	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.051,8</th><th>49,4</th><th>37,0</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.051,8</th><th>49,4</th><th>37,0</th></bg<>	2,5	3.051,8	49,4	37,0
3BKall2	136,8	145,4	22,8	344,3	22,1	<bg< th=""><th><bg< th=""><th>2,7</th><th>3.248,9</th><th>52,0</th><th>37,3</th></bg<></th></bg<>	<bg< th=""><th>2,7</th><th>3.248,9</th><th>52,0</th><th>37,3</th></bg<>	2,7	3.248,9	52,0	37,3
3BKbl1	97,0	137,8	28,6	336,2	23,4	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.568,7</th><th>58,9</th><th>52,0</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.568,7</th><th>58,9</th><th>52,0</th></bg<>	2,5	3.568,7	58,9	52,0
3BKbl2	89,9	131,1	26,9	318,3	22,5	<bg< th=""><th><bg< th=""><th>2,6</th><th>3.361,0</th><th>55,6</th><th>41,2</th></bg<></th></bg<>	<bg< th=""><th>2,6</th><th>3.361,0</th><th>55,6</th><th>41,2</th></bg<>	2,6	3.361,0	55,6	41,2
3BKbII1	297,8	146,8	29,3	318,8	21,8	<bg< th=""><th><bg< th=""><th>2,0</th><th>3.325,4</th><th>54,3</th><th>40,7</th></bg<></th></bg<>	<bg< th=""><th>2,0</th><th>3.325,4</th><th>54,3</th><th>40,7</th></bg<>	2,0	3.325,4	54,3	40,7
3BKbII2	402,7	139,4	24,8	343,3	21,6	<bg< th=""><th><bg< th=""><th>1,6</th><th>3.305,9</th><th>53,4</th><th>56,7</th></bg<></th></bg<>	<bg< th=""><th>1,6</th><th>3.305,9</th><th>53,4</th><th>56,7</th></bg<>	1,6	3.305,9	53,4	56,7
4BKal1	198,5	146,0	40,0	323,8	22,7	<bg< th=""><th><bg< th=""><th>3,2</th><th>3.468,6</th><th>58,8</th><th>96,2</th></bg<></th></bg<>	<bg< th=""><th>3,2</th><th>3.468,6</th><th>58,8</th><th>96,2</th></bg<>	3,2	3.468,6	58,8	96,2
4BKal2	188,1	136,1	33,6	302,3	21,3	<bg< th=""><th><bg< th=""><th>2,4</th><th>3.238,9</th><th>53,7</th><th>95,6</th></bg<></th></bg<>	<bg< th=""><th>2,4</th><th>3.238,9</th><th>53,7</th><th>95,6</th></bg<>	2,4	3.238,9	53,7	95,6
4BKall1	258,8	128,1	24,5	319,8	21,7	<bg< th=""><th><bg< th=""><th>1,9</th><th>3.194,7</th><th>52,0</th><th>39,8</th></bg<></th></bg<>	<bg< th=""><th>1,9</th><th>3.194,7</th><th>52,0</th><th>39,8</th></bg<>	1,9	3.194,7	52,0	39,8
4BKall2	235,1	136,4	26,1	341,2	22,8	<bg< th=""><th><bg< th=""><th>2,0</th><th>3.456,9</th><th>54,9</th><th>40,8</th></bg<></th></bg<>	<bg< th=""><th>2,0</th><th>3.456,9</th><th>54,9</th><th>40,8</th></bg<>	2,0	3.456,9	54,9	40,8
4BKbl1	118,4	158,8	44,3	362,5	24,5	<bg< th=""><th><bg< th=""><th>2,5</th><th>3.560,8</th><th>58,5</th><th>77,9</th></bg<></th></bg<>	<bg< th=""><th>2,5</th><th>3.560,8</th><th>58,5</th><th>77,9</th></bg<>	2,5	3.560,8	58,5	77,9
4BKbl2	115,8	154,7	33,7	349,2	23,5	<bg< th=""><th><bg< th=""><th>2,4</th><th>3.517,5</th><th>57,0</th><th>60,8</th></bg<></th></bg<>	<bg< th=""><th>2,4</th><th>3.517,5</th><th>57,0</th><th>60,8</th></bg<>	2,4	3.517,5	57,0	60,8
4BKbll1 4BKbll2	292,3	133,7	24,5	332,9	21,3	<bg< th=""><th><bg< th=""><th>1,6</th><th>3.299,2</th><th>53,5 57.1</th><th>49,8</th></bg<></th></bg<>	<bg< th=""><th>1,6</th><th>3.299,2</th><th>53,5 57.1</th><th>49,8</th></bg<>	1,6	3.299,2	53,5 57.1	49,8
	265,5 93,1	133,5	26,4	315,2	22,3	<bg <bg< th=""><th><bg <bg< th=""><th>1,9</th><th>3.539,7 3.131,5</th><th>57,1 51.5</th><th>38,2</th></bg<></bg </th></bg<></bg 	<bg <bg< th=""><th>1,9</th><th>3.539,7 3.131,5</th><th>57,1 51.5</th><th>38,2</th></bg<></bg 	1,9	3.539,7 3.131,5	57,1 51.5	38,2
5BKal1 5BKal2	91,1	123,7 140,2	32,5 34,7	323,3 315,8	22,1	<bg< th=""><th><bg< th=""><th>1,9 2,2</th><th>3.345,1</th><th>51,5 54,7</th><th>69,0 76,9</th></bg<></th></bg<>	<bg< th=""><th>1,9 2,2</th><th>3.345,1</th><th>51,5 54,7</th><th>69,0 76,9</th></bg<>	1,9 2,2	3.345,1	51,5 54,7	69,0 76,9
5BKall1	274,7	153,8	32,0	355,5	24,1	<bg< th=""><th><bg< th=""><th>2,2</th><th>3.744,2</th><th>61,2</th><th>45,5</th></bg<></th></bg<>	<bg< th=""><th>2,2</th><th>3.744,2</th><th>61,2</th><th>45,5</th></bg<>	2,2	3.744,2	61,2	45,5
5BKall1	283,3	112,4	24,5	238,4	18,9	<bg< th=""><th><bg< th=""><th>1,4</th><th>2.918,9</th><th>45,5</th><th>50,3</th></bg<></th></bg<>	<bg< th=""><th>1,4</th><th>2.918,9</th><th>45,5</th><th>50,3</th></bg<>	1,4	2.918,9	45,5	50,3
JENAIIZ	200,0	112,4	24,5	230,4	10,9	\DG	\DG	1,4	2.910,9	45,5	50,5

Anhang III IX

Probe	Mg	Mn	Ni	P	Pb	Sb	Se	Sn	Ti	V	Zn
Probe	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[µg]	[mg]	[mg]	[mg]	[mg]
5BKbl1	78,4	135,6	29,7	312,7	23,9	<bg< th=""><th><bg< th=""><th>2,2</th><th>3.285,8</th><th>52,7</th><th>74,6</th></bg<></th></bg<>	<bg< th=""><th>2,2</th><th>3.285,8</th><th>52,7</th><th>74,6</th></bg<>	2,2	3.285,8	52,7	74,6
5BKbl2	105,0	103,4	27,6	209,8	18,3	<bg< th=""><th><bg< th=""><th>1,1</th><th>2.820,8</th><th>40,4</th><th>46,3</th></bg<></th></bg<>	<bg< th=""><th>1,1</th><th>2.820,8</th><th>40,4</th><th>46,3</th></bg<>	1,1	2.820,8	40,4	46,3
5BKbII1	273,4	156,1	36,5	340,5	22,8	<bg< th=""><th><bg< th=""><th>1,9</th><th>3.631,6</th><th>58,3</th><th>42,1</th></bg<></th></bg<>	<bg< th=""><th>1,9</th><th>3.631,6</th><th>58,3</th><th>42,1</th></bg<>	1,9	3.631,6	58,3	42,1
5BKbII2	251,5	150,4	30,5	344,4	23,5	<bg< th=""><th><bg< th=""><th>1,8</th><th>3.561,9</th><th>58,4</th><th>45,1</th></bg<></th></bg<>	<bg< th=""><th>1,8</th><th>3.561,9</th><th>58,4</th><th>45,1</th></bg<>	1,8	3.561,9	58,4	45,1
BG	2,5	2,5	2,5	2,5	0,5		2500	0,5	0,25	0,25	5
Mittel	190,4	140,0	27,9	314,3	21,9	-	701	2,2	3287,8	53,1	48,6
Max	402,7	183,9	44,3	362,5	26,0	-	•	3,2	3778,9	61,2	96,2
Min	78,4	103,4	20,8	209,8	17,0	-	-	1,1	2676,0	40,4	29,4

