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Abstract 

The precise knowledge of the hydraulic pressure losses while drilling is one of the crucial 

factors for the success of the entire drilling process. The pump must operate providing the 

desired flow rate necessary for e.g. hole cleaning requirements and should do that within a 

predictable and accurate pressure range. The operating pressure is thereby concurrently 

limited by pipe and equipment constraints. Pore pressure, formation fracture gradients and 

resulting maximum allowable equivalent circulating density introduce additional complexity 

to the hydraulic system. However, taking the complete drilling system under consideration, 

severe challenges arise in representing the reality for pump pressure prediction due to the 

restricted knowledge of several relevant parameters at any given point in time. 

This work demonstrates a method for simulating drilling hydraulics, applicable in real-time, 

as well as during the planning phase. The proposed method combines deterministic with 

non-linear heuristic approaches.  

The deterministic approaches are based on classical rheological models incorporating fluid 

properties, borehole geometry, casing and drill string configuration as well as detailed 

information regarding the well path. Although the deterministic approaches work well 

when all input parameters of the model are well defined and known, in real-world 

applications a lack of accuracy is caused by several uncertainties: mud properties change 

with temperature and pressure along the flow path thru the wellbore; the relative 

roughness of the borehole wall, as well as the borehole diameter in open holes is typically 

not known as some examples. 

To tackle those un-knowns and their non-linear impact on results, the classical models have 

been extended by data driven models, namely neural networks. Based on real-time sensor 

measurements, those extended models were trained for simulating the standpipe pressure 

on both, single and multi-well scenarios.  
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Furthermore, the concept has been extended by the addition of automated operation 

recognition results, allowing the variety of different operational states to influence the 

creating of individual state driven models for hydraulic analysis. 

Finally, in order to meet the current requirements for a drilling hydraulics simulator, the 

results are presented in a clear and understandable interface, ensuring a detailed real-time 

wellbore hydraulic overview, including equipment and formation pressure limitations as 

well hole cleaning requirements. 
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Kurzfassung 

Die genaue Kenntnis der hydraulischen Druckverluste beim Bohren ist einer der 

entscheidenden Faktoren für den Erfolg des gesamten Bohrprozesses. Die Pumpe muss mit 

der erforderlichen Durchflussrate arbeiten, um beispielsweise Loch-

Reinigungsanforderungen zu erfüllen, und sollte dies in einem in einem exakt definierten 

Druckbereich tun. Der Betriebsdruck wird dabei gleichzeitig durch Rohr- und 

Gerätebeschränkungen begrenzt. Der Porendruck, die Formationsbruchgradienten und die 

daraus resultierende maximal zulässige äquivalente Zirkulationsdichte führen zu einer 

zusätzlichen Komplexität des Hydrauliksystems. Betrachtet man das gesamte Bohrsystem, 

ergeben sich bei der Darstellung der Pumpendruckvorhersage aufgrund der 

eingeschränkten Kenntnis von mehreren relevanten Parametern schwerwiegende 

Herausforderungen. Diese Arbeit veranschaulicht eine Methode zur Simulation von 

Bohrhydraulik, die sowohl in Echtzeit während des Bohrbetriebs als auch in der 

Planungsphase anwendbar ist. Die vorgeschlagene Methode kombiniert deterministische 

mit nichtlinearen heuristischen Ansätzen.  

Die deterministischen Ansätze basieren auf klassischen rheologischen Modellen, die 

Fluideigenschaften, Bohrlochgeometrie, Verrohrung- und Bohrgestänge-Konfiguration, 

sowie detaillierte Informationen über den Bohrungspfad beinhalten.  

Die deterministischen Ansätze zeigen bei bekannten und gut definierten 

Eingangsparameter für das Modell bei der praktischen Anwendung Ungenauigkeiten durch 

mehrere Faktoren: Eigenschaften der Bohrspülung sind Temperatur und Druck abhängig 

und ändern sich hierdurch entlang des Strömungsweges im Bohrloch; die relative Rauigkeit 

der Bohrlochwand sowie der Bohrlochdurchmesser in offenen Bohrloch sind in der Regel 

nicht genau bekannt.  
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Um diese Unbekannten und ihre nichtlinearen Auswirkungen auf die Ergebnisse zu 

bekämpfen, werden die klassischen Modelle um datengestützte Modelle erweitert, nämlich 

die sogenannten neuronalen Netze. Basierend auf Echtzeit-Sensor-Messungen wurden 

diese erweiterten Modelle für die Simulation des Standrohrdrucks auf sowohl Einzel- als 

auch Multi-Bohrungs-Szenarien trainiert. Darüber hinaus wurde das Konzept mit einer 

automatisierten Erkennung der Drilling Operation States erweitert, sodass die Vielfalt 

unterschiedlicher Betriebszustände und die damit verbundene Erstellung einzelner „State“-

angetriebener Modelle für die hydraulische Analyse berücksichtig werden kann. 

Um die aktuellen Anforderungen an einen Bohrhydraulik-Simulator zu erfüllen, werden die 

Ergebnisse in einer klaren und verständlichen Schnittstelle präsentiert, sodass eine 

detaillierte Echtzeit-Bohrloch-Hydraulik-Übersicht, inklusive Ausrüstungs- und 

Formationsdruckbegrenzungen sowie Lochreinigungsanforderungen, gewährleistet ist.
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1 Introduction 

Every business venture is driven by economic profitability and efficiency. The investors are 

constantly thinking about possibilities to reduce the capital and operational expenditures. 

The petroleum industry, amongst others, could be ranked as one of the riskiest and most 

expensive ventures known today. The largest portion of up to 60% of the funds invested in 

field developments can be allocated to the drilling process itself. 

Oil well drilling is a complex process, involving many different operational stages, various 

technical expertise and a number of operational functions of the personnel involved. 

Modern sensor and real-time data streaming technologies, offer the possibility for a 

continuous observation of the drilling process. Using real time rig sensor data, the industry 

can monitor and perform a variety of different analysis thus recognizing unexpected events 

at an early stage and performing all necessary counteractions to assure no harm is done to 

the involved personnel or the nature. 

A drilling hydraulics monitor could be regarded as an indispensable part of any drilling rig. 

It is important to realize safe and efficient drilling. Furthermore, it is required to successfully 

detect and predict abnormal events while drilling, ideally with early problem-recognition 

prior to the problem occurring. 

In the times of modern rotary drilling, a fluid needs to be circulated down the drill string, 

through the bit and up the annulus back to the surface.  The circulation is required in order 

to remove the formation cuttings produced and to cool down the bit. Initially water was 

used for this task, however with the increased complexity of the drilling operations, the 

composition of the drilling fluids became more sophisticated in pursuance of a specific 

design which will limit the formation damage, improve cuttings transport, prevent shale 

swelling and generally boost the drilling performance. 
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Figure 1 Drilling Rig Circulation System 

The hydraulic power that is required to provide the circulation of the drilling fluid is 

provided by the mud pumps. Although several pumps may be used simultaneously, there 

are still maximum operating limits, which need to be taken into account. 

Besides considering the pumps limitations, the pressure along the wellbore annulus should 

be additionally maintained within a safe pore pressure and fracture pressure window.  

Thus, the task of a drilling engineer is to plan the operations in a way that the pressure is 

kept within a safe range by managing the various parameters and tubular design. This 

makes hydraulics monitoring all that more important. 
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1.1 Problem Statement and Objectives 

This thesis will give insight to a novel approach, combining numerical methods with real-

time operation recognition algorithms, for an optimal hydraulics’ feedback while drilling 

with a reduced set of parameters and a simplified data input technique. 

The presented hydraulic simulator, operates with mud logging sensor data, which are 

commonly available during drilling operations and thus the dependency on complex 

metadata, e.g. drill string configuration, is eliminated. It provides real-time evaluation of 

the wellbore status concerning hydraulics as well as capabilities for assistance in well 

planning procedures. 

The simulated results are then presented in a graphical user interface, which aids the driller 

with decision making by clearly indicating the actual downhole conditions. 

The first part of the work will describe the current industry standards regarding drilling 

hydraulics. A typical deterministic model will be briefly investigated and analyzed. The 

advantages and disadvantages of such an approach will be evaluated. 

In the second part of the thesis, the general deterministic model will be replaced by the 

introduction of advanced numerical methods, namely by the usage of neural networks and 

automatic operation recognition algorithms.  

In the final part, the described simulator is utilized to analyze several test scenarios, showing 

the impact of the drilling parameters on the stand pipe pressure, ECD’s and the possibility 

for abnormal event recognition. 
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2 Conventional Industry Practices 

2.1 Overview 

Drilling hydraulics has been thoroughly discussed before; therefore, a detailed description 

and literature review is way beyond of the scope of this work. Relevant information is 

provided via an extensive list of reference to cover this aspect (Bourgoyne, Millheim, 

Chenevert, & Young Jr., 1986), (Zoellner, Thonhauser, Lueftenegger, & Spoerker, 2011), (De 

Sa & Martins, 1994). However, the following brief revision has the intention to give a basic 

overview of the drilling hydraulics practices used in the industry today. 

2.2 Pressure Losses 

The pressure change during pumping is a function of the fluid flow. The total pressure loss 

can be represented as: 

 ∆𝑃𝑃 = ∆𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻. + ∆𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + ∆𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 + ∆𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵

+ ∆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 + ∆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 Eq.( 2-1 ) 

2.2.1 Hydrostatic Pressure 

Hydrostatic pressure results from the pressure exerted by a fluid column. It is a function of 

the fluid density and the vertical length of the fluid column. 

 ∆𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻. =  𝜌𝜌𝑓𝑓.𝑔𝑔. ℎ  Eq.( 2-2 ) 

In oil well drilling, a common practice is to refer to hydrostatic pressures in terms of a 

pressure gradient. This will give the increase in pressure per unit of vertical depth. 
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2.2.2  Drill Pipe Pressure Losses 

The drill pipes provide the connection between the bottom hole assembly and the surface 

equipment. Their function is to transmit torsional and axial forces and provide a conduit for 

the fluid circulation required for cooling the bit and cleaning the hole. 

The losses in the pipes depend on their size, the mud rheological properties and the type of 

flow regime 

2.2.3 Bottom Hole Assembly (BHA) Pressure Losses 

The bottom hole assembly (BHA) is the part of the drill string which is located just above 

the bit and below the last drill pipe joint. Modern bottom hole assemblies may include a 

variety of components, each having different and rather small inner diameter. Thus, the 

frictional pressure losses across the bottom hole assembly may contribute significantly to 

the overall pressure loss. 

2.2.4 Bit Pressure Losses 

The drilling bit usually incorporates nozzles which have the purpose to improve the cleaning 

action of the drilling mud at the bottom of the hole. Years back, before jet nozzles were 

introduced, the bit performance was significantly reduced, since the rock particles were not 

entirely removed, and much of the action was consumed in regrinding these fragments. 

• Bit nozzle velocity: 

 𝑉𝑉𝑛𝑛 =
𝑄𝑄

38,71.𝐴𝐴
  Eq.( 2-3 ) 

Since the nozzles represent a short section of greatly reduced diameter, the pressure losses 

through this part of the drill string are significant. 

• Pressure drop trough the nozzles: 
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∆𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 =

𝑑𝑑.𝑄𝑄2

2959,41. (0.95)2.𝐴𝐴2
  Eq.( 2-4 ) 

2.2.5 Annular Pressure Drop 

The annular pressure drop is critical in order to ensure safe drilling operations and not 

fracture the formation. Furthermore, the annular velocity should be sustained within 

certain limits in order to establish effective cuttings transport while avoiding any hole 

erosion. 

The prediction of the annular pressure losses however is not straightforward. Annulus 

eccentricity, drill string motion, mud rheology and tool joints add to the complexity of the 

pressure loss calculations. 

• Annular Velocity [field units]: 

 𝑣𝑣𝑎𝑎 =
𝑄𝑄
𝐴𝐴

=
1270 ∗ 𝑄𝑄

(𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐶𝐶𝐶𝐶𝐶𝐶
2 − 𝑑𝑑𝑂𝑂𝑂𝑂

2)
  Eq.( 2-5 ) 

Typically, an additional measure called equivalent circulation density (ECD) is used for 

evaluating the circulating conditions in the hole. The ECD shows the pressure losses in the 

annulus, expressed as a unit of density. 

 𝐸𝐸𝐸𝐸𝐸𝐸 =
∆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇𝑇𝑇.𝑔𝑔

+ 𝜌𝜌𝑓𝑓  Eq.( 2-6 ) 

2.2.6 Surface Pressure Drop 

As the simulator can calculate the pressure drop at every point in the drill string and the 

annulus, for the surface losses which occur due to the flow through various surface 

components, such as goose necks, swivels, top drive or kelly, an overall surface component 

pressure loss is added, which is calculated according the latest API guidelines. 

Basically, depending on the specific rig setup, these pressure losses can be classified into 

five standard types (American Petroleum Institute, 2009). 
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Case Standpipe Hose Swivel Kelly CSC 

1 40 ft. x 3.0-in ID 45 ft. x 2.0-in ID 4 ft. x 2.0-in ID 40 ft. x 2.25-in ID 1,00 

2 40 ft. x 3.5-in ID 55 ft. x 2.5-in ID 5 ft. x 2.5-in ID 40 ft. x 3.25-in ID 0,36 

3 45 ft. x 4.0-in ID 55 ft. x 3.0-in ID 5 ft. x 2.5-in ID 40 ft. x 3.25-in ID 0,22 

4 45 ft. x 4.0-in ID 55 ft. x 3.0-in ID 6 ft. x 3.0-in ID 40 ft. x 4.00-in ID 0,15 

5 100 ft. x 5.0-in ID 85 ft. x 3.5-in ID 22 ft. x 3.5-in ID  0,15 
Table 1 Surface Component Coefficients 

 

The coefficient CSC can then be used as follows [field units]:  

 
∆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑆𝑆𝑆𝑆 .𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . �

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
100

�
2

  Eq.( 2-7 ) 

2.3 Deterministic Approach 

When the drilling mud leaves the discharge pump, it travels through the surface lines, top-

drive or kelly, passes downward through the complete drill string and jetted through the bit 

nozzles it makes its way through the annulus back to the surface. 

A common approach to handle the hydraulics throughout this cycle is to monitor the losses 

at each point in the system.  One way of dealing with this challenge is to use a deterministic 

approach.  

By definition, a deterministic system is a model where everything that happens and occurs 

in the system is well known and understood. The outcome is entirely based on physical 

effects and reactions. These events are then added up and can theoretically show the status 

of the system at any point in time (Weiss, 2013). 

In terms of the drilling process, in order to approach the hydraulics deterministically one 

would require a precise knowledge of all necessary parameters. Amongst others, this 

includes a detailed description of the drill string, exact mud rheology, the wellbore 
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construction elements, temperature, pore and fracture pressure gradients as well as the 

surface component specifications. 

Once these parameters are obtained, a proper rheological model should be chosen. 

Rheological models are mathematical models, used to predict fluid behavior across a wide 

range of shear rates and provide a shear rate – shear stress relation, resulting in a viscosity 

to, in practical means, calculate the surface pumping pressure for a given fluid flow rate in 

the system.  

No matter which rheological model is used, the frictional pressure drop calculations depend 

on whether the flow regime is turbulent or laminar. In this sense, a determination of an 

adequate critical flow regime criterion is of absolute importance for the success of the 

simulation. 

2.3.1 Rheology of the Drilling Muds 

The drilling fluid is one of the most important elements in the drilling process. It has a 

number of functions the most important of which are subsurface pressure control, cuttings 

removal and transport, suspension of the solid particles and bit cooling and lubrication. 

Beside these tasks, a proper selection of the mud will help in preventing formation damage; 

it may seal permeable formations or even control corrosion. 

While circulating, the drilling fluid lifts the cuttings from the bottom of the hole to the 

surface. Efficient hole cleaning requires adequate circulating rates in order to prevail on the 

force of gravity acting upon the rock particles. Further factors for establishing a proper hole 

cleaning program include the drilling fluid density and rheology, annular velocity, hole angle 

and cutting slip velocity. 

When speaking about drilling muds, one must differentiate between Newtonian and non-

Newtonian fluid behavior. 

Newtonian fluids represent the majority of the common fluids such as water, oils, various 

gases, etc. From a rheological point of view, they express the simplest model that accounts 



Conventional Industry Practices 
 

 
Author: Dimitar Todorov  Page: 23 
  

for viscosity. A fluid is categorized as Newtonian if it exhibits a constant viscosity at a given 

temperature and pressure. In other words, we can define a fluid as Newtonian if its shear 

stress is directly proportional to its shear rate with a constant of proportionality known as 

the viscosity. 

• Newtonian Fluid Model: 

 𝜏𝜏 = 𝜇𝜇. 𝛾𝛾  Eq.( 2-8 ) 

 

Figure 2 Shear Stress vs. Shear Rate Relationship for Newtonian Fluids 

 

In case of a Newtonian fluid a high shear rate (i.e. a fast movement of the fluid), will result 

in a linear increase in shear stress. Generally, this has a positive effect on the cuttings 

transport efficiency since high shear stress on the cuttings moves them better as turbulence 
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is created. However, when observing the situation in the annulus, it is clear that the velocity 

is not high enough. This leads to lower shear rates and shear stress on the cuttings which 

are not desired. Another important argument against the Newtonian fluids is the fact that 

high velocities in the drill pipe will result in enormous frictional pressure losses due to the 

pipe’s smaller diameter.  

When looking at the current drilling mud standards, we immediately realize that the non-

compressive Newtonian rheological models are far away from fulfilling the real-life 

conditions. The drilling fluid properties must differ significantly from those of the 

Newtonian fluids. 

To tackle these challenges the mud should meet certain criteria. Usually, what is desired is 

a fluid which exhibits a non-linear relationship between the shear stress and shear rate. 

Such fluids are classified as non – Newtonian. We can also speak of thixotropic fluids where 

the viscosity decreases with time after a shear rate is applied or rheopectic fluids – the 

viscosity increases with time after the shear rate is applied. 

There are various models where viscosity decreases with increasing shear rate: 

• Bingham – Plastic Model 

 𝜏𝜏 = 𝜏𝜏0 + 𝜇𝜇𝑝𝑝. 𝛾𝛾  Eq.( 2-9 ) 

The Bingham plastic fluids represent the simplest non – Newtonian fluids, which differ from 

the Newtonian fluids only in that their linear relationship between shear stress and shear 

rate does not go through the origin (see Figure 2). A Bingham plastic fluid flow curve is a 

straight line with a yield stress τ0 which must be exceeded to initiate flow (Korobeinikov, 

2000). The slope of the line defines the plastic viscosity. 
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• Power – Law Model 

 𝜏𝜏 = 𝐾𝐾. 𝛾𝛾𝑛𝑛  Eq.( 2-10 ) 

The Power – Law model is more sophisticated than the Bingham Plastic model. It overcomes 

the weaknesses of the Bingham model at low shear rates. A Power – Law model does not 

assume a linear relationship between shear stress and shear rate. For this model, just as in 

the case of the Newtonian fluids, the plot begins from the origin (see Figure 2). 

The Power Law index n indicates the degree of non – Newtonian behavior over a given shear 

rate range. If n=1 the behavior of the fluid is considered Newtonian. As n decreases in value 

the fluid becomes more non – Newtonian. 

The consistency index K is a measure of the thickness of the fluid. An increase in K indicates 

an increase in the overall hole cleaning effectiveness of the fluid. 

• Herschel – Bulkley (Yield Power – Law) Model 

 𝜏𝜏 = 𝜏𝜏0 + 𝑘𝑘. 𝛾𝛾𝑛𝑛  Eq.( 2-11 ) 

The Herschel – Bulkley model is the most accurate Non-Newtonian model but also the most 

complex among all and thus more difficult to implement. 

The model reduces to the Bingham Plastic model when n=1 and it reduces to Power Law 

when τ0=0 (see Figure 2). 
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Figure 3 Shear Stress vs. Shear Rate Relationship for non - Newtonian Fluids 

2.3.2 Pressure Drop Calculations 

Once a rheological model has been chosen, one should predict whether the fluid is in 

laminar or a turbulent flow regime. For a fluid flow in laminar regime, analytical pressure 

drop solutions are available, whereas in the case of a turbulent flow, an empirical model 

must be applied. 

The classical approach for defining the flow regime is through the usage of the Reynolds 

number. The Reynolds number is defined as the ratio of inertial forces to viscous forces. 
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 𝑁𝑁𝑅𝑅𝑒𝑒 =
𝜌𝜌. 𝑣𝑣.𝑑𝑑
𝜇𝜇

  Eq.( 2-12 ) 

In case of a Newtonian fluid a Reynolds number of 2100 is used as the boundary between 

laminar and turbulent flow. Theoretically there is a transition range between these two flow 

regimes. However, this zone is ignored as a separate flow regime since no analytical solution 

exists and the empirical solutions are weaker than those for fully turbulent flow. If case of 

a non – Newtonian fluid, a critical Reynolds number must be calculated, which will 

determine whether the flow is laminar or turbulent. 

The following equations are used for the pressure drop calculations though the pipe and 

annulus for a Power – Law fluid: 

• Pipe Flow [field units] 

 𝑛𝑛 = 3,32 log
Θ600
Θ300

  Eq.( 2-13 ) 

 𝐾𝐾 =
Θ300
511𝑛𝑛

  Eq.( 2-14 ) 

 𝑉𝑉𝑝𝑝 =
25,4.𝑄𝑄
𝑑𝑑𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2  Eq.( 2-15 ) 
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 Eq.( 2-16 ) 

If Vp > Vc the flow is turbulent and the following pressure drop equation should be used: 

 
Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡 =

8,91. 10−5.𝜌𝜌0,8.𝑄𝑄1,8. �𝜇𝜇𝑝𝑝�
0.2. 𝐿𝐿

𝑑𝑑𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
4,8   Eq.( 2-17 ) 

If Vp < Vc the flow is laminar and the following pressure drop equation should be used: 
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  Eq.( 2-18 
) 

• Annular Flow [field units] 

 𝑉𝑉𝑎𝑎 =
24,5.𝑄𝑄

𝑑𝑑ℎ
2 − 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2  Eq.( 2-19 ) 

 
𝑉𝑉𝑐𝑐 = �

3,878. (104).𝐾𝐾
𝜌𝜌 �

� 1
2−𝑛𝑛�

. �
2,4

�𝑑𝑑ℎ − 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
.
2.𝑛𝑛 + 1

3.𝑛𝑛 �
� 𝑛𝑛
1−𝑛𝑛�

  Eq.( 2-20 ) 

If Va > Vc the flow is turbulent and the following pressure drop equation should be used: 

 
∆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑡𝑡 =

8,91. 10−5.𝜌𝜌0,8.𝑄𝑄1,8. �𝜇𝜇𝑝𝑝�
0.2. 𝐿𝐿

�𝑑𝑑ℎ − 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
4,8   Eq.( 2-21 ) 

If Va < Vc the flow is laminar and the following pressure drop equation should be used: 
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 Eq.( 2-22 ) 

2.3.3 Temperature Effects and Density Behavior 

Temperature is another important parameter that has an impact on the rheological and 

density properties of the drilling fluids. While the surface temperature of the mud can be 

easily measured and monitored, the actual temperature distribution down hole varies 

significantly from the one measured at surface conditions. 

An easy and frequently used technique to represent the temperature distribution down 

hole is to create a linear fit between the surface temperature and the static bottom hole 

temperature. This method is suggested by the current API standards, with a correction 

factor accounting for the fact that the mud is in circulation and therefore unlikely to reach 

the geothermal temperature levels. This approach is simple and gives a brief approximation 
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about the down hole temperature distribution. However, it fails in representing the true 

values along the complete well path. 

During the years, the challenge of the wellbore temperature prediction has been thoroughly 

studied. Several mathematical models have been developed, based on thermodynamical 

energy balance equations (Holmes & Swift, 1970). These consider different effects such as 

conduction and convection. The results of these efforts are ordinary differential equations 

which’s solutions lead to a temperature gradient as a function of the depth. As in the case 

of the less complex API approach, these analytical models have also a number of 

shortcomings. One of the biggest limitations arises from the fact that these models assume 

an increase in the geothermal gradient with the increase in measured depth. This limits 

their application to vertical wells. An expression of the true vertical depth as a function of 

the measured depth will solve this issue, however the resulting equations are strongly non-

linear and extremely complex to solve. 

To add to the complexity of the thermal calculations, one should also acknowledge a 

number of other heat sources such as the fluid heating due to friction and the thermal 

effects due to the pressure drop. 

The density of the drilling fluids is another parameter which varies throughout the wellbore 

length. In case of water based muds, these variations may be ignored due to the fact that 

such fluids are relatively uncompressible at the expected real-life conditions. This statement 

is however inaccurate when we consider oil based muds which possess a higher 

compressibility than the water based muds.  

Regarding the solids content, typically laboratory models are generated using material 

balance equations. These can then be applied in real life environments. 
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2.3.4 Time Based Behavior of the Drilling Mud 

The simulation of the pump start-up sequences after the drilling mud has had a period of 

static conditions, e.g. during slip to slip connections, is a major element of any drilling 

hydraulics simulator (Zoellner, Thonhauser, Lueftenegger, & Spoerker, 2011). 

The drilling mud has the property to build a gel strength when left static. This is essential to 

keep the drilled cuttings and mud weighting additives suspended. Once the mud gets 

“gelled”, an additional amount of energy would be necessary to break the mud and gain 

normal circulation back again (Bjørkevoll , Rommetveit, Aas, Gjeraldstvei, & Merlo, 2003).  

A pressure peak will be observed on the stand pipe pressure log. 

In narrow operating windows this pressure peak might be sufficient enough to cause issues 

such as formation fracturing, lost circulation or even lead to a collapse of the wellbore. 

Pump start-up sequences provide an additional barrier for a deterministic approach, since 

these events are hard to model. However, they must be an essential part of every real-time 

hydraulics simulator since the impact of these pressure surges might be catastrophic. 

2.3.5 Dynamic Surge und Swab Pressure Predictions 

Pressure surges are known to cause well control issues. Pressure surges from pipe swabbing 

may cause a formation fluid influx which in term, in extreme cases, may lead to a blowout. 

At the same time, measured positive pressure surges cause formations fracturing, lost 

circulation problems, etc. and are also considered as a serious danger for the wellbore. 

Usually, the magnitude of these surges is not critical for most of the wellbores, since proper 

casing designs and mud programs leave large enough margins between fracture pressures 

and formation fluid pressures.   

However, there is still a portion of wells which do not have these safe margins. In these 

cases, the pressure must be held in narrow windows to assure intact operations. 

Additionally, there are examples where the margins may be large enough but pressure 
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surges might still be a problem during specific operations, e.g. running of low clearance 

liners in deep wells (Mitchell, 1988). 

The demand on the pressure surge predictions lead to several fluid-flow models. Burkhardt 

(Burkhardt, 1961), Fontenot and Clark (Fontenot & Clark, 1974) and Schuh (Schuh, 1964) 

provided the most complete steady-state pressure surge models. The models consider the 

complexities of the non-Newtonian behavior of the drilling mud. However, these models 

lack on the ability to predict dynamic pressure surges, particularly negative pressure surges 

resulting from fluid backflow when the pipe is brought into rest. 

The first dynamic model was presented by Lubinski (Lubinski, Hsu, & Nolte, 1977). 

Comparing all these models, a conclusion has been made that some effects cannot be 

predicted with a steady-flow-surge model (Mitchell, 1988). Moreover, the steady-state flow 

models tend to overpredict the peak surges with the error increasing with depth. A dynamic 

pressure surge model deals with these disadvantages but still lot more analysis and MWD 

data are needed to evaluate the quality of the predictions. 

No matter the type of model used, analytical surge and swab pressure predictions are a 

major challenge for every drilling hydraulics simulator. 

2.3.6 Downhole tools 

A modern BHA is made up of various downhole components. Drill collars, heavy weight-drill 

pipe, downhole motors, rotary steerable systems, logging and surveying tools, subs, jars, 

just to name a few. The actual pressure drop through these components would be quite 

different compared to the pressure drop when modelling them simply as drill collars. These 

pressure differentials should not be ignored in accurate hydraulic simulation. 

Usually two methods for downhole tool related pressure drop are used in the practice. One 

can either used a fixed pressure drop or a pressure drop coefficient. The fixed pressure drop 

is directly added to the pressure change across the grid point where the tool is placed. 
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Diverter subs and rotary steerable systems tend to be modelled better by using a fixed 

pressure drop. 

The coefficient method is used to calculated the pressure drop as a function of the flow 

rate. Measurement and logging tools are usually modelled using the coefficient approach.  

Downhole motors are a special case as their pressure drop is a function of the torque they 

produce which in turn is a function of the operating parameters.  Each rotor-stator 

configuration for a given motor size can have a different, nonlinear relationship between 

the flow rate and the pressure drop. To include this additional pressure drop, the user must 

calculate the motor’s pressure drop as a function of the flow and weight on bit as per 

manufacturer’s manuals and enter the number into the simulation (Leonard, 2006). 

From everything said so far, it is obvious that the simulation of the pressure drop across the 

BHA with its complex flow paths and geometries is challenging and can’t be easily handled 

by an analytical model. 

2.4 Disadvantages of the Deterministic Approach 

As described so far, the prediction of the pressure losses throughout the drilling phase of a 

wellbore involves a series of complex models, approximations and calculation algorithms.  

Good estimations of the downhole conditions are highly dependent on an accurate 

hydraulic model. Additionally, a continuous observation of the data and evaluation of 

possible deviations are obligatory. The influence of special equipment and components 

must not be neglected. Therefore, the calculated model should be periodically calibrated 

and calculated values should be corrected in respect to values measured downhole (PWD). 

With recent developments, the effects of fluid and pipe movements are also handled in a 

satisfactory level. For such a system to work a complete set of information is required 

including description of the drill string, wellbore construction elements (risers, casing 

strings, cement etc.), survey readings (MD, TVD, inclination), mud rheology, rheological 
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models, turbulence criteria, pump specifications and architecture. Density and temperature 

readings are as well critical factors which contribute to the accuracy of the calculations.  

Reliable sensor instrumentations are crucial for the success of the monitoring system. 

Another important factor is the calculation time. Since all calculations are done in real time 

an acceptable delay should be ensured. 

Most of the available commercial wellbore hydraulic tools follow a similar data input 

procedure. The input can be divided into two main streams. The first one involves a manual 

data input routine. The user should load the data related to the drill pipe and BHA 

components such as IDs and ODs and lengths. Pressure differentials across specific tools like 

the mud motor or MWD equipment must be also included. Furthermore, the mud 

rheological parameters including the density, fan readings, temperature must also be 

precisely defined. Even a small error in these values may result in a big difference between 

the modelled and the real pressure drop (e.g. 0,01 SG means 1 bar deviation over 1000m 

TVD). Rock properties, bit design details, pump specification curves etc. must be also 

specified.  

The second part of the input involves a real-time data input which is transmitted e.g. via 

WITS or WITSML data streams and loaded automatically in the simulator. In most cases, this 

part only includes the bit measured depth and the flow rate. Some of the more 

sophisticated tools however, may also include the torque or other specific data channels. 

The real-time part is pretty much straightforward and isn’t considered as a drawback for 

the deterministic concept. With current standards of the rig data transmission, the 

necessary data input is provided with a sufficient reliability and accuracy. Therefore, 

regarding the disadvantages, the focus is entirely set on the manual data input section. 

It may be considered pretty easy to collect all these data parameters. However, experience 

so far shows that gathering this data actually represents an enormous challenge at present 

days. It is almost impossible to get all these parameters at a decent quality and on time. In 
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most of the cases, we rely on morning reports to find out the necessary information, but 

these are quite subjective and very incomplete. Mud weight for instance is generally 

reported only once or twice a day, which is not good enough for a wellbore hydraulic model. 

Solids control equipment efficiency, changing the mud weight from flow out to flow in is 

crucial to know. Presumed that the data required is provided on time, one will still struggle 

with the amounts of data input required. The level of detail and the amount of input fields 

required makes such data loading procedures relatively complex and user unfriendly not to 

mention the increased possibility of human input errors. These difficulties are especially 

valid when we consider large real-time operating centers where the capability of multiple 

well handling and analysis is a basic requirement. Under such circumstances, one will need 

an increased amount of professional workforce and trained drilling engineers to configure 

and run the system. 

Therefore, after experimenting with and analysis of this conventional approach in terms of 

monitoring wellbore hydraulics, a conclusion was made that the monitoring concept needs 

to be generally improved and simplified to fit into the current requirements to avoid all 

previously mentioned issues. 
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3 Concept Overview 

3.1 Objective and Requirements 

An analytical representation of the drilling hydraulics, as shown in the previous chapters, 

typically suffers from the lack of data throughout the simulation. Acknowledging this fact, 

the specifications and requirements for a novel, less demanding hydraulic simulator which 

overcomes the shortcomings of the standard deterministic approach were defined. 

The main objective is to avoid the long data loading routines. Since detailed BHA data can 

be pretty much inconsistent, the program should be able to perform the simulations 

without the necessity of a drill string description. Another important point arises from the 

fact that mud rheology is also something, which is difficult to track on a real-time base. 

Therefore, mud information is also excluded from the input parameters. For this work, 

survey data was not used as an input parameter, since some research done previously, 

showed that it also has inconsistent quality.  

A decision has been made to ignore the data described previously and try to simulate the 

standpipe pressure by using rig sensor data. Usually, rig sensor data is available. The data 

might still have problems, but if used accurately especially when sufficient quality control 

routines are applied, it can provide the necessary input for a good hydraulic simulator. 

When performing any kind of simulations based on heuristic methods, one should be 

careful with the type and quality of the input data in respect to the simulated data range. 

Numerical methods can lead to uncertainties and errors if handled wrong. The user should 

ensure that the training and simulation are both done on identical wellbore phases, 

equipment and lithological characteristics. This is one slight disadvantage of such systems 

which might come into account if not considered for. 
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Summarizing, the specifications for the novel hydraulics monitoring concept can be defined 

as follows: 

• No detailed data loading routines required 

• No BHA information required 

• No rheology needed 

• No survey data 

• Sensor data input 

• Improve the simulation through external data driven drilling modeling packages – 

namely automatic operation recognition algorithms 

3.2 Workflow 

One of the main objectives of this thesis is to introduce a real-time hydraulics monitor. 

Usually, the products available regarding hydraulics calculations focus mainly on well 

planning tasks. These are used to simulate performance prior to real operations in order to 

get an overview about the specific equipment and material requirements as well as the 

operational parameters (Cayeux, Daireaux, Dvergsnes, & Saelevik, 2012). 

The model described here aims at a different application – more precisely – the real-time 

monitoring of the drilling hydraulics. 

For such a tool, to work accurately, some conditions should be met. A constant rig sensor 

data stream between the well site and the software client must be provided. The received 

data should be automatically checked for data uncertainties and errors. After the primary 

quality check is performed, the required data channels are fed into the model, which on 

hand, performs the necessary calculations. Finally, the output should be provided to user 

(e.g. the driller) in an understandable and user-friendly form. And last but not least, the 
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entire process must be performed in an exactly defined time frame in order to ensure real-

time capabilities. 

 

Figure 4 Model workflow 

The program has been written in MATLAB ver. 2011b and makes use of built-in toolboxes, 

which allowed the author to concentrate primarily on the model itself. The graphical 

representations of the results are given using the proNova Plot software package and are 

loaded directly from a MySQL database. 

3.3 Artificial Neural Networks 

Once the specifications and workflow of the simulator are well defined, a mathematical 

model for simulating the stand pipe pressure only by the usage of real time sensor data 

should be chosen. 

From a variety of curve fitting methods, a decision was made to use artificial neural 

networks. 
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Neural nets are widely used in pattern recognition because of their ability to generalize and 

to respond to unexpected inputs and patterns. Such methods are successfully being used in 

medicine, in financing, in oceans salinity prediction etc. They are useful when no concrete 

rules are available and thus a numerical approach will be less demanding than a model 

based approach. Because of these properties, the artificial neural networks gained 

extensive popularity in recent years. 

The artificial neural networks mimic the basic behavior of the human brain. In general, they 

simulate essential functions of the human nervous system and thus are considered as a 

mathematical model of a biological neural system (Razi, Arzandeh, Naderi, Razi, & 

Ghayyem, 2013). 

For a system to be classified as a neural network, it must have a labelled directed graph 

structure of artificial neurons (nodes) and connections. In turn, the nodes perform simple 

computations and each connection transmits a signal from one node to another called 

“connection strength” or “weight” giving the magnitude to which a signal has been 

amplified or diminished. 

 

Figure 5 Two-layer feed-forward neural network 

3.3.1 Neural Network Architectures 

Single nodes are often insufficient for complex problems, and therefore more intricate 

networks must be used. The way the network is configured plays a key role in the 

performance and therefore should be carefully designed by the neural network developer. 
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The following subsections will give a general overview of the typical neural network 

architectures. 

• Fully connected neural networks 

An artificial neural network where the nodes in each layer are connected to all nodes in the 

following layer. The connections between the nodes may be either excitatory (positive 

weights), inhibitory (negative weights), or irrelevant (almost zero weights). This architecture 

is rarely used since it requires a large set of parameters. 

 

Figure 6 Symmetric fully connected network. Note that node I is an input as well as an output node 

• Layered neural networks 
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These are networks in which the nodes are distributed within layers with no connection 

from layer j to layer k if j>k.  

 

Figure 7 Layered network 

• Acyclic neural networks 

Acyclic networks represent a subclass of the layered neural networks with a specific 

configuration where connections are allowed between any layers i and j if i<j, but no 

connections are allowed in the case when i=j. This architecture requires less computational 

resources than the long and complex cyclic configurations. These types of networks are also 

known as recurrent networks.  
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Figure 8 Acyclic network 

• Feedforward neural networks 

Feedforward networks represent a subclass of the acyclic networks where connections are 

only allowed from layer i to layer i+1. These networks are among the most common neural 

network setups. Their popularity is so high that neural networks are often thought to mean 

only feedforward networks. 
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Figure 9 Feedforward 3-2-3-2 network 

• Modular neural networks 

Many problems are solved best by using the so called modular networks. This architecture 

consists of separate modules with interconnections within them. Such, certain tasks can be 

solved in independent small networks and then combine the results in an appropriate 

manner. 

3.3.2 Training Multilayer Neural Networks 

The objective of training a neural network consists in finding a set of weights that will cause 

the output values from the network to match the already known target values as precise as 

possible. Several configuration parameters should be considered when designing the 

network. First, one should determine how many hidden layers must be used in the network. 
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In the practice, the size of the neural network is commonly selected on a trial and error 

approach. A lot has been written covering the topic, but a general solution is still not clearly 

defined. A simple network with fewer nodes may not be sufficient for solving complex 

training tasks. On the contrary, a huge network may require lots of computation time. 

Furthermore, oversizing the network may lead to “memorization” of the training samples. 

Such networks are said to be over fitted. This phenomenon leads to bad results on new data 

sets, or in other words – the network has a poor generalization. The network is considered 

successful only if it performs well on new data samples. 

Another challenge when training neural networks is to find the optimum set of weights that 

will give us an accurate output. The amount of these weights is often in the range of 

hundreds. Therefore, seeing the global picture and avoiding local minima is of significant 

importance. If we were dealing with a linear model, finding the global minimum would have 

been an easy task. With neural networks, the output as a function of the inputs is highly 

non-linear which results in a complex optimization process. To illustrate this problem, the 

error is plotted as a function of the weights as shown below 

 

Figure 10 Example local/global minima 
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What we see is a rough surface with many local minima. It should be noted, that this is a 

highly simplified example, showing only a single weight value. In reality, a typical neural 

network will produce a 200-dimensional, rough surface with hundreds of local minima 

valleys.  

Different methods are available, which deal with the problem of avoiding local minima. The 

easiest is to try a number of random starting points and take the one with the best value. 

More complex techniques, like the so called simulated annealing provide improved results 

by trying widely spread random values and slowly reducing the jumps with the hope that 

the location is getting closer to the global minimum. Typically, since the error space cannot 

be known a priori, neural network analysis often involves a number of individual runs to 

determine the best solution. 

Neural network training algorithms mostly follow a certain iteration procedure (loops) in 

other to gain the optimal weight values. The first step is to run a set of values through the 

network using an initial random set of weights. The difference between the predicted value 

and the actual target value for this case is computed and the error information is averaged 

over the entire training set. The error is propagated backward through the network and the 

gradient of the change in error with respect to the changes in weight values is computed. 

Finally, the weights are adjusted to reduce the error. The complete cycle is known as an 

epoch. Since the error information is propagated backwards through the neural network, 

this kind of training technique is called backward propagation. 

The quality of the training process is increased by normalizing the data. Both input and 

target vectors are scaled to match the input neuron range.  

MATLAB’s function mapminmax uses the following algorithm to scale inputs and targets to 

fall in a certain range: 

 
𝑦𝑦 =

(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) ∗ (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

+ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  Eq.( 3-1 ) 
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where: 

ymax = maximum value after normalization (default value for the mapminmax function is 1) 

ymin = minimum value after normalization (default value for the mapminmax function is -1) 

x = value to be scaled. 

xmax = maximum value in the range of interest 

xmin = minimum value in the range of interest 
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3.4 Inputs 

Real-time rig surface data transmission has been a widely covered topic in recent years and 

is way beyond the scope of this work. However, since the described model relies entirely 

on such data streams, a brief explanation regarding the current state of the technology will 

be given below. Furthermore, the data selection criteria and an introduction of an 

automatic operation recognition system will be presented. 

3.4.1 Data exchange standards in the petroleum industry (WITSML History) 

As the technologies evolve, data-mining processes become more common and find practical 

applications on every modern drilling rig. Rig sensors, data flows between data producers 

and data consumers, advanced data quality control algorithms etc. have all been 

assimilated and implemented into the design and operation of various oilfield services. On 

the other hand, the increased amount of data due to the greater availability of these 

technologies led to the necessity of new data transmission methods. 

Currently, the standard for broadcasting technical data in the petroleum industry is given 

by WITSML (Wellsite Information Transfer Standard Markup Language). WITSML is a XML 

based language, in which data sets are encapsulated within single xml files. These files are 

transmitted between a WITSML server and a WITSML client (Deeks & Halland, 2008). 

WITSML is an evolution of WITS (Wellsite Information Transfer Specification) which was 

designed and implemented into the oil and gas industry until the early 90’s. WITS included 

25 different data records, covering a wide variety of operations. The records were given in 

one of the two units’ systems: FPS (foot, pound, second; common US oil field units) or metric 

units. Generally, WITS data streams were transmitted via serial interfaces, TCP/IP network 

sockets, or as discrete files on magnetic or optical media. 

Despite its advantages, WITS also had several limitations. Among these, we should mention 

the outdated MWD data records, the restrictions on the number of drill strings and casing 
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sections, the inflexibility for handling different units of measurement and the limitations 

when handling static well information. 

Today, the improved WITSML technology opens greater possibilities in the rig data transfer. 

It also provides an application programming interface, known as “API”, which allows 

programmers and software developers to build custom data exchange capabilities. WITSML 

is object oriented, web based and built on WC3 standards. With all these capabilities, many 

companies are building centralized real-time operation centers with specialized teams 

working with real-time data (Oil & Gas Journal, 2013). 

3.4.2 Input Data Selection 

A precise analysis and selection of the input parameters is perhaps the most important part 

of the simulation process, more so even than the selection of the training algorithm. Since 

artificial neural networks rely on the quality and not on the quantity of the data, the major 

goal is to define input data which are not only generally available but also have sufficient 

quality for the training process. 

In general, the following rules have been considered: 

1. Get as much clean data as possible. 

2. Conduct data analysis. You need to understand your data before using it. 

a. Use filter algorithms if necessary 

b. Fill/Delete missing values if necessary 

c. Correct/Ignore bad data whenever possible 

Following the data selection requirements, and exchanging experience with other rig data 

mining research groups a preliminary list of nine data channels has been compiled. These 

nine input channels include: 
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• Bit measured depth 

• Hole measured depth 

• Block position 

• Hook load 

• Torque 

• RPM 

• Flow in 

• Weight on bit 

• Rate of penetration 

After further analyzing the available data, a decision was made to drop out the weight on 

bit and rate of penetration channels. Weight of bit is typically calculated based on the hook 

load readings. Therefore, considering this correlation the data will have no direct influence 

on the performance since the neural network will have already registered this relationship. 

The same is valid for the rate of penetration which is directly related to the hole measured 

depth channel. 

At the end seven data channels were the ones that could be used in most of the cases. Of 

course, as soon as a client ensures additional channels these could be easily added and such 

the quality of the simulation will be improved. 

3.4.3 Automatic Operation Recognition 

Most drilling hydraulics simulators have one common shortcoming – they assume full load 

on the bit and respond as if one was performing permanently drilling operations. However, 

when the bit is off bottom and performing wellbore conditioning jobs (e.g. 

reaming/washing in or out of hole, circulating) there is significantly less pressure losses as 
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when drilling hole. In such cases, the calculated pressure losses are usually overrated and 

do not match the real values. 

To cope with this disadvantage and to improve performance through separating such 

operations, the results on an automatic event recognition system were integrated into the 

primary basic parameters. 

The automatic recognition system used for this work is a patented approach and is proven 

to work with a very high accuracy. Basically, it uses high frequency rig sensor data and 

provides very good results. The output of it are the so-called operation states, such as 

drilling rotary or sliding, circulation, ream in or out, washing in or out of hole, etc. To get 

proper results out of the operation recognition system, a data stream with a frequency of 

0.1 Hz or better should be provided. The operation recognition runs in parallel as an 

additional service, and delivers the recognized states to a MySQL database from where 

these are then read and loaded in the hydraulic simulator. A total of ten operation states 

are being used for the simulations. These are considered as the main states and include: 

• Drilling rotating 

• Drilling sliding 

• Ream upwards 

• Ream downwards 

• Wash upwards 

• Wash downwards 

• Run in hole 

• Pull out of hole 

• Circulate hole 



Concept Overview 
 

 
Author: Dimitar Todorov  Page: 50 
  

• Make connection 

The hydraulic simulator is adapted completely to the automated operation recognition 

system, allowing any custom configuration of operational states to be used as an input for 

various simulations and analysis. 

 

Figure 11 Automatic operation recognition example 

The advantage of such a model over the traditional approach is that one can focus on the 

hydraulics during specific operations performed on rig as well as use the gathered 

information form the automated recognition algorithms to improve the result neural 

network results. With the introduction of the operation states, the system has been 

upgraded to the so called “State aware” setup which will be shown later in chapter 4.2. 
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4 Calculations and Results 

The following chapters will demonstrate the procedures used to perform the hydraulic 

simulations. It should be noted that all units utilize metric units unless otherwise stipulated. 

The tests are performed on onshore and offshore scenarios using anonymous source data.  

Upon execution of the simulator the results will be graphically visible in the plot window. 

The proNova plot may also be switched in a real – time mode, configuring a predefined 

refresh rate. This option gives the user a live view of all drilling parameters plus the 

simulated theoretical standpipe pressure. 

The additional calculations (incl. cross plots and histograms), which convey more 

information regarding the results are done separately in Microsoft Excel.  

4.1 Basic Setup 

As previously described, the basic setup includes 7 input channels. These seven channels 

are used as inputs for the neural network training and are mapped to the target stand pipe 

pressure. The network has one hidden neuron and the uses the Bayesian regulation 

backpropagation function trainbr. Trainbr is a network training function that updates the 

weight and bias values according to Levenberg-Marquardt optimization. It minimizes a 

combination of squared errors and weights, and then determines the correct combination 

to produce a network that generalizes well (Demuth, Beale, & Hagan, 2009). 

In this stage, the training mode is set to a moving window, meaning that the network uses 

a predefined time frame for training and then steps in to the prediction mode for a given 

period. Once the prediction period is over, the training window moves one prediction 

period further and proceeds with the second training cycle. This goes on until the complete 

data set is covered.  
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Figure 12 Moving window training mode 

The neural network uses one hidden layer, one hidden neuron and a 70/15/15 setup 

(training / validation / testing). This configuration indicates that 70% of the data will be used 

for training, and the network will be adjusted according to its error. The 15% assigned for 

validation will be used to check whether the generalization stops improving. Once this 

happens, the training will be halted. The remaining 15% represent the part of the data set 

which is used for testing. This is an independent measure of the network performance and 

have no effect on the training itself. 

Once the network is created, the actual Bit Measured Depth, Hole Measured Depth, Block 

Position, Hook Load, Torque, RPM and Flow In values are read from the data base and fed 

into the prepared network. Based on this, a theoretical stand pipe pressure can be obtained. 
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Figure 13 Initial model configuration 

4.1.1 Land Rigs 

The first test trials were done using the basic configuration on land rigs. Onshore 

exploration is generally economical, less complex and widely spread. Due to specificity of 

the equipment and operations, the sensor data from onshore wells is perfectly suitable for 

testing purposes due to its more stable parameter – standpipe pressure relationship. Such 

wells provided a perfect testing environment to tune up and calibrate the tool.  

Furthermore, these scenarios will add significantly to the overall understanding of the 

presented hydraulic monitor. 

Another important task of these initial land rig trials is figuring out the exact influence of 

the particular input parameters on the output – the theoretical pressure loss. 

The initial test was done on a land rig data set from a well, which during the contents of this 

work will be referred as “Well A”. In the selected time frame, the rig was drilling the 6.75” 

production hole. Throughout the selected interval a vertical section of approximately 

1074m (from 1312.5m to 2386.2m) has been drilled. 
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Figure 14 Data and results from well A using the basic setup 

The plot in Figure 13 shows the main drilling parameters as well as both hole measured 

depth and bit measured depth. Additionally, the simulated stand pipe pressure is plotted in 

light blue on the second track. It must be noted that the focus of any hydraulic model is not 

necessarily mirroring the sensor data, but rather to be able to follow the trend of the real 

values. If this is achieved, the model can be easily calibrated to represent the real 

conditions. 
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Figure 15  Well A - SPP/Simulated SPP cross plot 

The standpipe pressure has been cross plotted vs. the simulated standpipe pressure. As it 

can be seen on Figure 14, the overall data fit, with some exceptions is satisfactory. To give 

a number to the results, the coefficient of determination or R-squared value has been 

generated. The R-squared number is a coefficient which demonstrates how well the data 

fits a statistical model. A value of 1 indicates that the regression line is a perfect fit, whereas 

a value of 0 will show that there is no fit at all. In the current case, the coefficient of 

determination has a value of 0.8749 which is a proof for the accuracy of the simulation. 
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Figure 16 Error histogram - Basic setup/Land Rig/Moving Window 

The data plot and the error cross plot express the results in general. With the data plot, we 

can visualize the results and note the sections where the hydraulic model performs better 

or worse. In other words, one gets a clear view about the exactness of the simulation. The 

cross plot, and especially the coefficient of regression delivered a numerical value to the 

results. 

The final part of this first run’s analysis involves plotting the error histogram. This chart 

shows the error distribution. The histogram has 11 bins, starting from -25 bar and increasing 

with a step of 5 bar to errors greater than 25 bar. Furthermore, the basic statistical methods: 

mean, median and the standard deviation are calculated. 

The results after the first simulation on land rig data indicate an average error of -2.5 bar 

and a standard deviation of 25.2 bar. As it can be seen, the average error lies in acceptable 

ranges. On the other hand, the spread – determined by the standard deviation ideally 

should be more tightly clustered around the mean value. 
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Figure 17 Error histogram highlighting errors between -9 and 10 bar 

After a detailed look, highlighting the bins between -9 and 10 bar, we can see that the errors 

in this range, which are considered as a good reference for an accurate prediction, cover 

67.1% of the results. 

Overall, after looking at the first simulation, we can definitely conclude that there is a clear 

correlation between the sensor data channels and the simulated pressure losses. With 

some exceptions, the accuracy of the simulation is significant and proves the theory behind 

the model. 
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4.1.2 Offshore Rigs 

Offshore drilling usually involves more complex well designs and state of the art equipment. 

The work is often performed under harsh conditions. It is common understanding that such 

wells can be a greater challenge than those drilled onshore. 

Technologically, todays offshore drilling units are far more superior to those used 10-15 

years ago. Thousands of meters of water depth can be conquered to ensure safe and 

reliable operations. The machinery has matured from a rough – and – ready approach to 

models that utilize performance and HSE standards. 

There are a variety of units available today each involving different technical, economical 

or governmental requirements to accomplish a certain drilling program. The range of the 

mobile offshore drilling units includes floating rigs such as drill ships and semi-submersibles 

or bottom supported rigs like the fixed platforms, jack-ups or barges. No one type can satisfy 

all requirements for every drilling location. 

Offshore drilling is much more expensive compared to drilling from an onshore facility. The 

extreme costs can be attributed amongst other things to the expensive subsea equipment, 

lost times due to trouble events or bad weather, complicated logistics and high 

transportation costs (supply boats, helicopters, etc.). A typical offshore unit in the North 

Sea may costs several hundreds of thousands per day. Since the costs for these units are so 

high the companies are anxious to reduce the drilling time and thus cut the spending 

wherever possible. 

With all this said the introduction of a reliable real time hydraulic monitoring system may 

assist and be of huge advantage to an offshore unit and its crew. Being able to monitor and 

control the status of the wellbore at any moment can drastically reduce the risks of any 

unwanted hazardous events which may harm nature or personnel. Further than that it will 

have a positive impact the complete drilling performance, ensuring any trouble events are 

recognized and avoided in time. 
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The tests on offshore data followed the previous simulations done on land rigs. The selected 

24 hours timeframe is from a Jack-up rig, drilling an 8.50” section with a standard RSS BHA 

on a well which we will refer to in this work as “Well B”. The total depth drilled during the 

selected timeframe is approximately 1418m – from 1812m to about 3230m. 

For this testing stage, just as described in the previous chapter the basic setup was applied. 

A moving window training/predicting mode with seven data channels and the standard 

network configuration have been used. Once again three plots where generated to display 

the results including the data plot, showing the major drilling parameters with the simulated 

standpipe pressure included, a SPP/Simulated SPP cross plot with a regression analysis and 

the error histogram plot. 

The data plot, shown in Figure 17 gives an outline of the mudlogging data. One can 

recognize the trip in hole at the beginning, the drilled stands, sections where the string is in 

slips as well as the corresponding weight-to-weight connections. 

It can be seen that the simulated pump pressure, labelled prespumpsim on the second track 

closely follows the original standpipe pressure. Despite the overall positive results there are 

a couple of flaws are also observed. The model responds rapidly to data inaccuracies. Such 

data deceptions are a common issue with the huge volumes of data transferred from the 

rig site. However, since these are mostly sudden single events an algorithm for filtering 

these out may be implemented. Furthermore, the alarm triggering mechanism may be 

configured in a way that only events with a certain pattern or duration will be taken into 

account. 

The next issue seen on the data plot occurs at approximately between timestamps 4084 

and 4086 where the simulated results do not follow accurately the real data readings. This 

issue is assigned to the network as a result of the short training window. Obviously, the data 

pattern up to this point is quite different, as the operations switch from tripping to drilling 

with a short reaming interval in between. The network has no possibility to account for this 
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difference at the beginning and need a while to adjust. Unlike the first issue, this problem 

can result in adverse action by an automatic safety system. 

 

 

Figure 18 Data plot using the basic setup on an offshore rig 

Figure 18 again displays the standpipe pressure data received from the mudlogging unit 

versus the simulated pressure data delivered by the model. The coefficient of determination 

has been once again calculated. In contrast to the onshore data, here much lower values 

were initially expected. This effect was awaited largely due to the above-mentioned issues 

– the data inaccuracies as well as the network training and prediction model limitations. 

However, after the first run, the simulated standpipe pressure showed a significant 

accuracy. 
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 Figure 19 SPP/Simulated SPP - basic setup, offshore rig  

As it can be seen on Figure 20, the cases in which the results are within the acceptable limits 

(-9 to 10 bar) cover 87.92% of the data. 

After the first round of simulation tests on both onshore and offshore data sets the 

conclusion can be made that additional parameters are required in order to improve the 

results in the cases where complex data sets and technologies are present. 
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Figure 20 Error histogram - basic setup, offshore rig 

 

Figure 21 Histogram highlighting the errors between -9 and 10 bar 
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4.2 State Aware Setup 

Using the basic setup described in chapter 4.1, the first preliminary tests have been 

performed. Generally, the results were promising and the performance was good. However, 

in order to further improved the quality and reduce the margin of error of the simulation a 

decision was made to include a classification system into the training configuration.  

With this in mind, the model was upgraded by feeding the neural network additionally with 

operation recognition states. The automatic operation recognition system used in this 

thesis offers a wide variety of operation states. Beginning from the most typical drilling 

operations such as drilling rotary or sliding, making connections, main wellbore conditioning 

operations, running and pulling out of hole and extending further to more complex states 

like weight-to-weight connections, drilling stands, etc. the system has the capability to 

recognize a wide variety of states. 

As described in chapter 3.4.3, the test cases shown in this work uses a reduced configuration 

set including the ten most general drilling operations. These operation states are added as 

an additional input to the training and prediction algorithms. Such, the system is upgraded 

to the so-called state aware setup. 
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4.2.1 Land Rigs 

 

Figure 22 Data and results using the „state aware“ setup 

The second test trials on onshore rig data are done using the same data from “Well A” but 

adding the automatic operations recognition results to the training and prediction 

processes. 

The results with the „state aware“ setup show a slight improvement compared to those 

delivered using the basic configuration. However, with the onshore data set the level of 

improvement is almost negligible. The operations in the data set are quite homogeneous, 

including mostly rotary drilling, some short wellbore conditioning events during the weight-

to-weight connections and the slip-to-slip connections. This explains the weak effect of the 

operation recognition system in the current example. 

There is once section, around the 860 timestamp where the performance of the model is 

not as good as desired. The inaccurate simulation results during this range are accounted 

to data uncertainties in this part of the data. 
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The R-squared value of 0.88 is similar to the result achieved with the basic configuration. 

The cross plot shows well scattered data with a few outliers. 

 

Figure 23 SPP/Simulated SPP cross plot after „state aware“ simulation 

The slight impact of the automatic operation recognition system can be also confirmed by 

the following error histograms seen on Figure 23 and Figure 24. The state aware setup 

delivered 67.7% of the results with an error within the range of -9 and 10 bar. This gives less 

than 1% improvement compared to the basic configuration. 
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Figure 24 Land rig - „state aware“ setup - error histogram 

 

Figure 25 Land rig – „state aware“ setup error histogram highlighting errors between -9 and 10 bar 
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4.2.2 Offshore Rigs 

The same state aware setup was applied to the offshore data set. Using the chosen 

configuration, a simulation was performed. The results can be seen on the figures below. 

As it can be seen on the plots, there hasn’t been any improvement in the simulation 

accuracy. This can be assigned to the fact that the automatic operation recognition feature 

needs sufficient training data to be able to affect the simulation in a positive way. With the 

current setup, using a moving window with two hours for training and one hour for the 

subsequent simulation, the network can’t cover many states during the training period. 

Thus, the network has a poor operation states library at the point where the prediction 

begins. To overcome this issue, one should reconsider the exact duration of the training and 

prediction windows. 

The figures below represent the results of the „state aware“ simulation on Well B. 

 

Figure 26 Data and results - Well B – “State aware” setup 
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Figure 27 Error cross plot - Well B - „State aware“ setup 
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Figure 28 Error histogram - Well B - „State aware“ setup 

 

Figure 29 Highlighted error bins -9 to 10 bar for Well B 
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4.3 Incremental Training Setup 

As shown previously, the configurations applied so far relied on a moving window training 

and prediction approach. This method worked sufficiently on both land and offshore data. 

It also coped with the basic and „state aware“ setup. Yet, the full advantage of the 

automatic recognition system couldn’t be used, since either the operations were too 

homogenous and monotone (as in the land case on Well A) or the selected training window 

wasn’t sufficient enough to gather information regarding states that occurred during the 

prediction period (as in the offshore case on Well B). Therefore, the next step was to 

develop a new method for training and predicting which will be able to deal with the 

drawback of the moving window approach. 

Several options have been considered. At the end, the list came down to two approaches. 

The first one was based on the idea to train the network on offset well data and use the 

created network for real time predictions.  

The second approach used an incremental training approach, adding more data to the 

training interval and such updating and improving the neural network. 

The first approach required a sufficient volume of data, structured and organized in a way 

that the desired rig data may easily be extracted and prepared for training. This approach 

goes way beyond the framework of this thesis and may be an interesting topic for future 

research. 

Figure 29 sketches the basic concept and idea behind the incremental training approach. 

Basically, the training routine starts with a predefined data range. Once the training process 

is completed the model steps into prediction mode for a certain time frame.  As the 

simulation is over, the network is re-trained with the new data range. The process goes on 

until the bit is out of hole. A threshold was added additionally, with the function to indicate 
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the start and end of the BHA run. This depth based threshold was used to reset the neural 

network and ensure that the next BHA run will start with a new network. 

 

Figure 30 Incremental setup training and simulation concept 

The incremental training model was tested on both land and offshore data and the results 

will be provided in the following chapters. 

4.3.1 Land Rigs 

The first test using the incremental training approach was once again performed on the 

onshore rig using the same data set from Well A. Since the training set used for this 

configuration will cumulatively increase, the “Out of Hole” threshold must be carefully set, 

to ensure that the network is built using information only from the current run. If this is not 

the case, the training will continue over the complete well and may take too long to ensure 

a desired speed. Thus, the real-time capability of the simulator might be impeded. 

Figure 30 shows the simulated stand pipe pressure plotted along the other main drilling 

parameters. Compared to the Basic setup and the „state aware“ setup, we can now see that 

the predicted pressure curve, almost exactly follows the real measured standpipe pressure. 

Since the training data continuously increases, the neural network engine can sort out the 

majority of the data issues and thus the spikes caused by the data quality, which were 

observed in the previous approaches, can are now sorted out and fixed.  
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Figure 31 Data and results from Well A using the Incremental setup 

The improved performance can also be seen on the cross plot given in Figure 31. The R-

squared number rose from values in the ranges of approximately 0.88 for the previous tests 

to values in the order of approximately 0.92 for the current configuration. 
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Figure 32 Well A - SPP/Simulated SPP cross plot after incremental simulation 

The lower standard deviation indicates that the errors are less dispersed and are closer to 

the mean (also called expected value). 

The highlighted bins in the histogram on figure 33 indicate that approximately 70% of the 

errors lie in the range between -9 and 10 bars. This is another signal that improvement has 

been achieved using an incremental training and simulation approach. 
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Figure 33 Land rig - incremental setup - error histogram 

 

Figure 34 Land rig – incremental setup error histogram highlighting errors between -9 and 10 bar 
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4.3.2 Offshore Rigs 

When looking back to the simulations on the offshore rig, no improvement has been made 

using the „state aware“ configuration so far. This was due to the fact that a small, 1 hour 

moving window, could not cover a wide range of operation states. Thus, the addition of the 

automatic recognition system didn’t add much to the simulator. Even more, the extension 

of the parameter set had a slightly negative effect on the neural network and thus on the 

overall performance. 

The theory for overcoming this issue by using the incremental training and simulation 

method has indeed proved successful and the results are listed in the figures shown below. 

One can immediately recognize the change in the performance, especially at the start and 

end section of the data set, where previous simulations struggled to perform well.  

 

Figure 35 Data and results - Well B – Incremental setup 
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The linear regression analysis demonstrates that this new approach adds significantly to the 

overall quality of the simulation. The R-squared number rose from approximately 0.80 for 

the basic setup to above 0.87 when using the incremental training and simulation 

configuration.  

A further sign for the importance of such a configuration is the improvement in the standard 

deviation values where a reduction of about 6 bar - from over 22 bar (for the „state aware“ 

setup) to around 16 bar has been achieved. 

The mean lies in the range of 1.6 bar, which by itself is also a good indicator for the model 

performance.  

 

Figure 36 Error cross plot - Well B - Incremental setup 

Consequently, the post-analysis showed that with this approach, the user is able to “flatten” 

the error peaks and achieve less dispersed and smoother results. 
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With all this being said, one can conclude that the incremental setup fulfils the 

requirements for this type of rigs and operations. 

 

Figure 37 Error histogram - Well B - Incremental setup 
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Figure 38 Highlighted histogram - Well B - Incremental setup 
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5 Output Interface 

The chapters so far gave an overview of the methodology behind the hydraulic simulator 

covered in this thesis. Additionally, the system has been tested on two scenarios – an 

onshore- and an offshore well using different configurations. 

The final part that needs to be illustrated is an output graphical interface that uses the 

described real-time hydraulic simulator and provides instant feedback to the driller thus 

giving him the option for immediate reaction if critical or suspicious wellbore conditions are 

observed.   

Of course, the software used during the tests covered in this thesis, proNova Plot®, is 

sufficient for performing sophisticated analysis in office or laboratory environments. It 

provides the required real-time visualization capabilities plus various features and 

configuration options. 

On the other side, using a complex software tool like this is probably not the optimal 

solution in regard to outdoor or rig floor conditions. For these harsh environments, where 

the time factor is of massive importance, one needs a simple-, user friendly and clear 

indicator showing the current downhole status. The driller should be aware of the situation 

by just throwing a look at the screen. 

In this respect, a simplified hydraulic monitor will be presented together with an idea for a 

traffic light warning system. It should be noted that none of these were fully developed as 

software products. Some prototypes have been tested, however the full development 

remains outside the scope of this thesis. 
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5.1 Hydraulic monitor including simulated curves 

The idea behind this concept is to define and visualize a safe operation window. The real-

time standpipe pressure readings are overlaid on this safe operation window. The window 

is determined by plotting several operational parameters: 

o The minimum flow rate required for cutting transport 

o The maximum flow rate before fracturing the formation 

o ECD 

o Pump efficiency and limitations 

o Simulated standpipe pressure 

Depending on the operating parameters and the bit position, the safe operating window 

may shrink or expand. 

Additionally, predefined abnormal event curves might be plotted which may be used to 

recognize the type of event that occurs. A library with different abnormal events may be 

defined and the actual pattern of the simulated curve can be compared with those stored 

in the database. The library may include a variety of technical issues such as: plugged bit 

nozzles, washed pipes, pump malfunctions, etc. 

Additionally, different pre-sets can be also integrated in the tool, which can control and 

operate equipment on the rig floor. These routines ideally will be derived from operation 

practices or manufacture recommendations. Pump start-up sequences are a good example 

for such an application. 

A sketch of a hydraulic monitor window is shown on Figure 38 below. 
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Figure 39 Hydraulic monitor concept 

 

5.2 Simplified “traffic light” warning system 

The driller’s decision making can be assisted be the use of a simple “traffic light” warning 

system. The hydraulic simulator presented, might be implemented in such a system. Once 

again, the core of the warning system should consist of a comparison between actual and 

simulated values. Depending on specific deviation ranges, traffic light alarms will be 

triggered. These will indicate if the driller is operating in the safe zone (green light), is he is 

approaching critical conditions (yellow light) or immediate reaction is required (red light). 
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6 Conclusions and Recommendations 

6.1 Conclusions 

This thesis provides a concept and procedures to create a real-time drilling hydraulic 

monitor. Given the mud logging data normally available, the program is able to reasonably 

predict the theoretical stand pipe pressure without any sophisticated and long data input 

routines. Furthermore, the simulation is fully independent of morning reports, drill string 

and BHA descriptions, temperature profiles or any additional information. 

The program shown in this work has been tested and quality controlled against the data 

from an offshore and an onshore drilling rig. Some of these test results are provided as 

examples in the thesis. 

The core of the simulator is an artificial neural network with one hidden neuron. The 

network uses the Bayesian regulation backpropagation function. In addition to the neural 

network an automatic operation recognition system was introduced to enhance the 

simulation and to enable an operation based training and recognition mode. 

Using this setup, the simulation was tested in three modes: using a moving window without 

the operation recognition, using a moving window and the operation recognition and finally 

using an incremental training and prediction approach including the operation states. 

What can be concluded after these test trials is that the type of training and prediction 

model is crucial for some wells and less critical for others. The one hour moving window is 

way too short to cover a wide variety of states during training (the used data sets had 

relatively homogeneous operation recognition results), meaning that there is a high chance 

that the prediction will be made based on states that hasn’t be trained for. Therefore, the 

best results were achieved using the incremental training and prediction mode. 
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Additionally, the automation recognition states add less to the simulation quality on 

onshore data, but have a major impact on offshore data.  

With all this being said, the model presented provides a great approach for early abnormal 

event detection by comparing theoretical results with real data. The process can be run in 

real-time or historical mode. The simulation results can be visualized in different graphical 

interfaces. The program can also control and operate specific equipment (e.g. operate 

pumps, etc.) and can be part of an advanced rig automation system.  

Last but not least, the type of training and prediction approach used in this work can be 

applied to other data channels which are often of interest. 

6.2 Future work 

Regarding features that might be considered in future developments the author would like 

to mention the following points: 

• Graphical visualization 

The author mentioned two options in this work. However, the development of these 

hasn’t been completed so far. These were considered prototypes and have been just 

provisionally programmed to test the concept. 

• Library of abnormal events 

As mentioned already, the simulation can be performed in a way that the simulated 

theoretical pressure is artificially altered so that it mimics an abnormal event case. 

These manipulated values are compared to the actual ones and in case of a match, 

an alarm should be triggered. The option, for including these simulated events may 

be of great interest for future developments. 
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• Offset well training and simulation 

Another interesting approach will be if the training process is performed on an offset 

well instead of directly training and simulating on the current data set. For this to be 

possible, one must build or use a database, where the rig data is strictly organized 

and classified in a way that the appropriate data for training can be pulled anytime. 

This includes, rig, well, hole sections, depths, equipment etc. 

The given ideas are just a part of the possibilities that can be created based on a good real-

time hydraulic simulation. Of course, if thinking bigger, one may imagine it being part of an 

advanced rig automation system. Finding the optimal setup and parameters is still a 

challenge and will need systematic effort. The final results however, will be of great benefit 

to hydraulic aspect of the drilling process. 
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7 Nomenclature 

A Surface area 

BHA Bottom hole assembly 

dh Hole diameter 

din,pipe Pipe inner diameter 

dout,pipe Pipe outer diameter 

ECD Equivalent circulation density 

FPS Foot, pound, second 

g Gravitational acceleration 

K Consistency index 

MD Measured depth 

MWD Measurement while drilling 

n Non-Newtonian index 

NRE Reynolds number 

Q Flow rate 

R2 Coefficient of determination 

RPM Revolutions per minute 

TVD True vertical depth 

Va Annular velocity 

Vc Critical velocity 

Vn Nozzle velocity 
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Vp Pipe velocity 

WITS Wellsite Information Transfer Specification 

WITSML Wellsite information transfer standard markup 
language 

γ Shear rate 

μ Viscosity 

ρ Density 

τ Shear stress 
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