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Abstract 

 

CdSe/CdS core-shell nanocrystals are, at the time this thesis is being written, one of the most researched 

systems in the field of semiconducting nanocrystals. These kind of materials have the big advantage of 

highly tuneable physical properties by varying parameters such as the size of the particles or the 

changing the relation between radius of by core and shell-thickness. 

Because these parameters are all adjusted through the synthesis of the particles, it is very important to 

understand the influence of the process itself on the particle resulting geometry, crystal structure and 

phase composition. This is why we used X-ray anomalous small angle scattering and wide angle 

scattering (ASAXS/WAXS) to retrieve information about these properties from samples synthesised by 

our partners from the ETH Zürich using a novel approach. This approach is based on the so called “hot 

injection” methods, in which the growth is stimulated by increased temperatures around 300°C. The 

particles investigated exhibit Wurtzite structure and are expected to yield higher optical performance 

than traditionally synthesised batches via a technique called cation exchange at lower temperatures. 

The investigated samples are all taken during the “hot injection” synthesis of the shell on three different 

core sizes at different times, hence exhibiting different relations between core size and shell thickness. 

It becomes apparent that with increasing core diameter, the nanocrystals exhibit an increasingly elliptical 

shape. This result is retrieved from the peak width for select Bragg peaks and from the solutions via 

shape retrieval of the SAXS data. From the ASAXS analysis, no evidence for interdiffusion between 

core and shell has been extracted from the anomalous scattering data, hence a sharp interface between 

core and shell is implied. 

In addition, we could detect an increasing amount of Zincblende crystal phase present within the core, 

which so far cannot be directly related to the elliptical shape. We propose a simple mechanism of 

martensitic phase transformation between the original Wurtzite and the Zincblende structure, which is 

due to condensation of planar growth faults in the particles. 

All of these findings may help to explain differences in the optical performance of the particles measured 

by our partners at the ETH and help further design of future material systems for colloidal core-shell 

nanocrystals. 
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Kurzfassung 

 

CdSe/CdS Kern-Schale Nanokristalle sind, zu der Zeit in der die Arbeit geschrieben wurde, eines der 

meistuntersuchten Materialsysteme im Bereich der Halbleiter-Nanokristalle. Diese Art von Materialien 

haben den großen Vorteil stark modifizierbare physikalische Eigenschaften zu besitzen, die unter 

anderem von der Größe der Partikel oder dem Verhältnis des Kerndurchmessers zur Schalendicke 

abhängen. 

Da die physikalischen Eigenschaften in der Synthese eingestellt werden, ist es von besonderer 

Bedeutung den Einfluss des Herstellungsprozesses selbst auf die Nanokristalle bezüglich resultierender 

Geometrie, Kristallstruktur und Phasenzusammensetzung zu kennen. Daher haben wir anomale Klein- 

und Weitwinkelröntgenstreuung (ASAXS/WAXS) verwendet um Informationen über diese 

Eigenschaften zu erhalten. Die Proben dafür wurden an der ETH Zürich von unseren Partnern in einem 

neuartigen Prozess hergestellt, in dem die Nanokristalle bei erhöhter Temperatur hergestellt wurden und 

damit in der Wurtzitstruktur wachsen. Wegen der erhöhten Temperatur in der Synthese, fällt diese in 

die Klasse der „hot-injection“ – Methoden. Von den so gewonnen Kristallen wird eine bessere optische 

Performance erwartet, als traditionell durch Kationenaustausch bei niedrigeren Temperaturen 

hergestellte Teilchen. 

Die untersuchten Proben wurde während unterschiedlicher Zeiten beim Schalenwachstum auf Kerne 

dreier unterschiedlicher Größen entnommen. Daher zeigen diese unterschiedliche Verhältnisse von 

Schalendicke zu Kerngröße. Aus der Analyse der Klein- und Weitwinkelstreudaten wird erkenntlich, 

dass mit steigender Kerngröße die Form der Nanokristalle zusehends elliptischer wird. Dieser Umstand 

kann auch in der Verbreiterung der Peakbreiten bestimmter Braggreflexe nachvollzogen werden. 

Zusätzlich kann kein Hinweis auf Interdiffusion zwischen Kern und Schale gefunden werden, was auf 

eine scharfe Grenzfläche zwischen Kern und Schale hindeutet. 

Zusätzlich scheint mit steigender Kerngröße ein zunehmender Anteil an Zinkblendekristallstruktur in 

den CdSe-Kernen vorhanden zu sein, was bis jetzt noch nicht mit der größeren Elliptizität in 

Zusammenhang gebracht werden konnte. Zudem schlagen wir einen simplen Mechanismus für den 

Phasenübergang zwischen Wurtzite und Zinkblende vor, der auf der Kondensation von Stapelfehlern 

der Basalebene beruht. 

All diese Ergebnisse können helfen die von unseren Partnern an der ETH gemessenen Unterschiede in 

der optischen Performance zu erklären und in Zukunft neue Materialsysteme für kolloidale Kern-Schale 

Nanokristalle zu designen. 
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Introduction: 
 

Over the last 30 years’ reliable techniques have been developed to synthesise particles with diameters 

of sizes of 10 nanometers and below. This happened simultaneously with the increasing use of the term 

“nanotechnology” in the marketing of products and subsequently in the growing scepticism of the public 

to this term. Aside from particles that are supposed to dampen the effects of body odour and other 

ailments of the modern-human condition, “nanotechnology” offers a seemingly endless array of 

applications in biological imaging, technology and medicine. [1] 

The base of these advances are colloidal nanocrystals, which have gathered increasing interest of various 

scientific communities over the last decades because of their seemingly simple synthesis, ease to conduct 

experiments on them and the many applications which can be realised without too much investment in 

radically new production technologies. For instance, these kind of systems can be easily applied as a 

paste, a drying film etc. [1] The term “nanocrystal” (NC) itself refers to a poly- or single crystalline 

particle with dimensions in the range of 1 to maximum 100 nanometers. Colloidal NCs generally involve 

at least one outer-layer of organic molecules to guarantee solubility in a medium. 

The most important reason why these kind of particles have garnered a lot of attention lately are unique 

properties, that can be related to the small size of the crystals. For instance, magnetic properties are 

heavily influenced, once one enters the nanodomain and can therefore find use in medical applications 

for example. [2] An example of the difference of physical properties is shown in Fig. 1 from ref. [3], 

where the particle size dependence of the optical properties is visible by the difference in colour. 

 

 

 

 

 

 

 

Figure 1: The difference in emitted wavelength for the fluorescence, dependent on the size of the 

nanoparticles is shown for CdSe-NCs, with the diameter increasing from left to right. Ref. [3] 

The particles investigated in this work are colloidal Cadmiumselenide (CdSe)/ Cadmiumsulfide (CdS) 

core-shell nanocrystals, meaning that these particles are constituted of a CdSe core on which a protective 
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CdS shell has been grown on. As shown by Ref [4] on PbS/CdS core-shell NCs, the crystal structure 

and thickness of the shell in relation to the core influence the optical performance and stability of these 

particles. This also implies the possibility of engineering these particles to fit ones needs within certain 

limits.  

In the aforementioned reference [4] a dependence of the physical properties of the particles and the 

crystalline and geometric constitution of the particle has been explored. The particles investigated in 

this study were synthesised via cation exchange, which simply describes the growth of the shell by 

exchange of a certain element in the unit cell of the crystal. This process is also diffusion controlled, 

which leads to a shell, in which the exchange has already been performed, and an unaltered core. 

As a consequence, it would be of interest to study whether a: 

a) different synthesis route and 

b) different system  

would exhibit the same characteristics. The synthesis of choice was a so called “hot injection” method, 

which supposedly leads to CdSe/CdS particles in Wurtzite structure, that yield higher performance and 

stability than chemically identical, yet structurally different particles [5]. The “hot injection” method 

gets its name from the simple fact, that the synthesis is performed at relatively elevated temperatures of 

ca. 300°C. But the significant difference between this method and cation exchange is the epitaxial 

growth of the shell on the core, thus being in contrast to a shell that grows via phase change of the outer 

regions of an already existing core. 

To gain understanding, experimental techniques such as Transmission Electron Microscopy (TEM), x-

ray diffraction (XRD) and photoluminescence (PL) are usually applied [5]. These unfortunately have 

severe limitations, as TEM images only show a few particles and reveal a two dimensional projection 

of a crystal, which doesn’t allow definitive conclusions on the shape, size or polydispersity with its 

limited sample size. There is the possibility of TEM-tomography [6], but this technique also doesn’t 

allow for the determination of structure of a statistically significant number of particles in a reasonable 

amount of time. In addition, the experimental requirements in preparation are more laborious for TEM 

when compared to small angle scattering (SAS) in the case of colloidal nanocrystals. XRD in return 

seems to allow a more or less reliable and statistical accurate extraction of the mean crystalite size, 

through the Scherrers formula, but information on the shape is very hard to retrieve, even via refinement 

methods [7]. There have been some developments in shape retrieval methods [7], but these still heavily 

rely on previous information from other sources, such as the aforementioned experimentally expensive 

TEM. Other extensions to x-ray techniques try for the determination of the macro- and microstrain 

present in crystalline samples in addition to the mean size. The effect of different stacking faults and/or 

point defects however complicates the picture. As a consequence, detailed analysis of nanocrystals 
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proves to be still quite challenging, which sparked a lot of progress in this field in the last few years 

regarding such techniques as Rietveld analysis and Whole Powder Pattern Modelling [7].  

The only experimental technique that probes the geometry of NCs with acceptable effort and required 

precision is small angle scattering (SAS), which reveals the mean geometric properties, such as size, 

shape and polydispersity, of samples. In the light of application of these particles, this is actually of 

much use, as only large numbers of nanocrystals will be used at once in many microelectronic and 

macroscopic optical devices. As the typically irradiated volume of the sample contains approximately 

1010 particles, the data gained through this method is therefore of high statistical value. This 

circumstance has led to the acceptance of this technique in the determination of protein structures and 

sparked the development of program packages by various groups to retrieve parameters of interest such 

as the shape, polydispersity and possible agglomeration of colloidal NCs. Regarding compositional 

information, it’s extraction relies heavily on assumptions on the system, as all the chemical information 

is inferred via the contrast. Evaluation is consequently “guesswork”, where model dependent analysis 

is modified to fit previous knowledge with techniques like regularisation and other penalizing 

functionals. These approaches naturally may deliver useful data for very well-known systems, but 

potentially influence results of yet unexplored samples negatively.  

Consequently, one can rightfully claim that to gain full understanding of the particles synthesised by a 

specific process, all of the techniques mentioned above only represent necessary, but not complete, 

pieces of a puzzle to be solved. Even x-rayflouresence based techniques, such as energy dispersive 

electron microscopy, don't allow atomic resolution of the chemical composition of nanometre sized 

particles. To retrieve such information, the variance of the scattering factor of an element with the energy 

of an incident x-ray beam can be used to retrieve spatial information about the species constituting the 

NCs under investigation. In the case of small angle scattering this technique is called anomalous small 

angle x-ray scattering (ASAXS) and simply varies the contrast of a designated phase with x-rays of 

differing, yet precisely tuned energies. Unfortunately, laboratory sources don’t allow for continuously 

varying x-ray energies, thus only synchrotron sources can be used for this technique [8]. But even in the 

case of these great machines, only the technical advances of the last few decades and the resulting third 

generation of synchrotrons allow to reliably extract information in such a way. In the case of neutron 

diffraction, variation of contrast has been possible for quite some time now, as for instance the contrast 

can be varied to a higher degree via, for example, deuterated water or lithium. Unfortunately for us, 

certain elements, such as the, in our particles present, Cadmium are excellent absorbers of neutrons and 

consequently make successful investigation with neutrons of samples containing this element hard to 

conduct. 

Thus, we conducted ASAXS experiments on the CdSe/CdS core-shell NCs in combination with wide 

angle x-ray scattering (WAXS) to retrieve not only the NCs geometry and spatial distribution of 

Selenium within the particles, but also the crystal structure of particles grown by the so-called “hot 
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injection” method. This builds on the aforementioned study performed by R.T. Lechner [4], who 

conducted his investigations on core-shell particles synthesised by ion exchange. Hence we hope to 

understand whether his results concerning optical properties in dependence of thickness and of phase 

fractions within the shell are replicable, or if this system behaves differently. Ultimately, 

recommendations on the optimal geometric configuration should be given to maximise optical 

performance.  
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Theory: 
 

Scattering Theory: 

 

The first few of the following paragraphs will only be concerned with the elastic scattering of x-rays, 

while the latter paragraphs will specifically treat anomalous scattering.  

X-rays are photons or classically transverse electromagnetic waves with a wavelength in the range of 

10-10 m, allowing for probing structures within the same size range. The basic principle of generation of 

these waves can be described through Maxwell’s equations and basically breaks down to the emission 

of photons by accelerated charges. Synchotron radiation sources work by that exact principle, whereby 

electrons are guided to travel within a storage ring [8]. Once an x-ray beam hits matter, it can react 

elastically and inelastically. [9] As mentioned above we for now only care about elastic interaction of 

particles, known as elastic scattering. For the sake of scientific accuracy, the wave length used in the 

experiments conducted in this work is around 1 Angström at an energy of roughly 2·10-15 Joule, which 

means that the scattering present actually falls within a grey area between the Mie regime and regular 

scattering. But because the results apparently don’t differ much when using general scattering to 

describe the phenomena of small angle (x-ray) scattering in systems such as the one investigated here, 

we will stick to general scattering. 

General Scattering: 

 

When an electromagnetic wave interacts with matter of any kind it can be absorbed, scattered or just 

passed through. Elastic scattering is defined as an interaction in which the total energy of the incident 

and exiting beam are equal, while inelastic scattering usually is linked to loss of some part of the entering 

beams energy, may it be through excitation of an electron onto a different orbit or through the Compton-

effect. [8] 

An incident plane wave with the angular frequency � and propagation vector �  is defined as 

���(�, 
) = ����(�·����) (1) 

 

The intensity of a beam is correlated to the square of its electric field, thus to the signal measured, or 

“scattering cross section”. Alternatively, from the detectors point of view, the measured intensity is 

equal to the number of recorded scattered photons is ��� over a detection angle ΔΩ , with an incoming 

flux of ��. This gives: 

dσdΩ = ����� ∗ ΔΩ = |E� !|" #"|E$%|"  
(2) 
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If we would want to calculate the scattering by a single, free electron, the formula above would read 

dσdΩ = &" · cos"(*) 

 

(3) 

 

where * is the angle between the direction of propagation and the observation point. This equation is 

important, because it shows that a free electron doesn’t have a scattering length that is dependent on the 

energy of the incident wave. &, called the Thomson scattering length and purely dependent on natural 

constants, reads as  

& = �"4πϵmc" ~2.82 · 10�56 

 

(4) 

 

A real beam, directed on a sample, is not a mathematically sharp line, as it probes a finite volume of 

material at once. It is thus advantageous to define an electron number-density ρ(&), which interacts like 

a mass of free electrons in most models used to describe scattering. To further simplify our treatment, 

we neglect the interaction of the scattered waves with the electromagnetic field generated by the 

interaction itself, which is called the Born approximation. [10] 

If we now direct a monochromatic, polarized beam on a crystal not the entirety of it will interact and 

some of it will pass through. In this work, we are only interested in the scattered beams, which interacted 

elastically with the electron gas surrounding the atoms of the probed crystal. These rays have the same 

energy and Euclidian magnitude of momentum as the incident beam. We now consider two points at a 

distance r, at which a scattering event occurs, in Fig. 2: 

 

 

 

 

 

 

Figure 2: The incidence vector is denoted with k1, the scattered vector with k2. Owing to elastic 

scattering, they both have the same magnitude 2π/λ. (Graphic with courtesy from Oskar Paris) 

incoming beam, k1 

2θ 

sample 

Q 
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The difference in phase Δ of these two rays with the incident momentum k1 and the scattered momentum 

k2 now is: 

Δ(8) = (�9 − �;) · � = < · � 

 

(5) 

 

The vector Q is called the scattering vector or vector of momentum transfer. As a scalar quantity, with 

λ being the wavelength of the incident and diffracted beams and Φ representing the half of the scattering 

angle, it equates to: 

Q = 4> sin (Φ )B  

 

(6) 

 

An assembly of electrons, represented by a number density ρ(�), creates the following amplitude of 

elastic scattering 

C(D) = ∫ dr G(&) exp (−K < · �) 

 

(7) 

 

As the electron is essentially delocalized in an ideally spherical volume around the atom, a dependence 

of the electron number density on � is necessary for a more complete description. Of interest is the fact 

that we actually need to use the Δ G (�). This needs to be done as we can only identify differences in 

contrast. In the case of X-ray diffraction this is the electron density of the scatterer to the overall mean 

density, and not the total density [11]. 

As already noted earlier, the intensity of a wave is equal to its amplitude squared. If we assume a 

symmetric, homogenous distribution of electrons around a nucleus, the intensity can be expressed as 

� (D) = C (D) ∗ C (D)________ = Abs (Δρ ∫ O8 exp (−K < · �)) 

 

(8) 

 

Scattering by a crystal: XRD 

 

As Photons are scattered by the electrons surrounding the atoms of a crystal, we essentially probe the 

electron density G(�) of the crystal. To correctly calculate the scattering intensity, we first need to 

consider the scattering by a single atom i and thus write equation 7 again as: 

P� = ∫ dV G�(�)exp (−i R · �) 

 

(9) 

 

We simply integrate over the volume of the electron density of an atom under investigation. The 

argument of the exponential can be rewritten with a basic property of dot products between two vectors: 

< · � = D& cos (S) (10) 
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This leads to a simplified expression called the form factor of an atom if we assume a spherical volume 

in which the electron is present, which is closely related to the form factors acquired for SAS. The dot 

product above allows us to integrate over all possible incident angles of the directional vector � and the 

scattered vector <, if we put part of the integrational variable to T(cos (S)) and integrate from -1 to 1. 

This evaluates to: 

P� = U dr 4π G(�) &" sin (< · �)< · �
V

  

 

(11) 

 

This essentially represents a Fourier transform of the electron density; the square is proportional to the 

scattered intensity from an atom i. 

A perfect crystal can be represented very simply by a stacking of identical and therefore interchangeable 

unit cells. Each of these unit cells then can be described by the position of objects within this cell and 

the nature of these objects. In crystallography the position is described by a so called Bravais lattice and 

the objects on the positions are called the basis of a crystal. If we now imagine a crystal and put atoms 

as a basis on the Bravais-lattice of the crystal, we simply need to sum over the projections r of all atom 

positions within a cell on the scattering vector of a crystal plane of our choosing to calculate the 

interference of the scattering of a whole crystal cell! Written down as a formula this reads: 

WX (Y,Z,[) = \ P] exp(−K < · �)   ] ^= \  ] P] exp(−K _ · �`�a)b 

 

(12) 

 

S is a quantity called the structure factor of a lattice; f represents the atomic form factor derived above 

in eq. 11.  Equation 12 is completely general, but for the case of a crystal Q coincides with the reciprocal 

lattice vector G and r with a lattice vector �`�a. Hence, plugging in the vectors G and �`�a of a crystal, 

the structure factor basically determines which reflexes are visible [8] at which angle and represents the 

scattering amplitude. Therefore, it’s square is proportional to the scattering intensity at a certain value 

of Q. Now, as the position of the atoms within the unit cell are hidden in the structure factor within the 

vector �, a change in the lattice spacing results in a visible shift of the peaks in a recorded spectrum as 

the exponential still needs to be proportional to 2π to guarantee positive interference of a scattered 

coherent wave. This can be achieved by introducing strain to a crystal, for the sake of simplicity we 

assume macroscopic strain, which yields: 

c = ΔdT = T − TT = TT − 1 =  dd − 1 

 

(13) 
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with d =  2> T⁄ . Therefore, the nature of the strain, meaning compressive or tensile, can be seen by the 

direction of the shift with its sign being reverse to the sign of  Δq(= d − d). Hence an increase in the 

lattice spacing implicates a tensile strain, which is given a positive sign by convention, where as in 

reciprocal space this leads to a shift to the left and hence to a negative sign. By evaluating multiple peaks 

and introducing models of the strained unit cell, which relates the spacing of the atoms to the state of 

stress, one can even calculate the whole stress tensor using this simple idea.  

So far, we have only considered perfect crystals, with infinite dimensions, meaning we would get 

perfect, delta-function like peaks if we were to conduct a scattering experiment on a crystal. But if we 

reduce the amount of planes that contribute to the reflection by limiting the size of the crystal, the peak 

broadens. This fact can be calculated for example for a small parallelopipedon crystal [12]:  

� = �gW" sin (hi< · j;)"sin (< · j;)" sin (h"< · j9)"sin (< · j9)" sin (hk< · jl)"sin (< · jl)"  (14) 
 

 

This equation, with the vectors of the crystal m� and total number of cells h� in the indexed direction, 

can be used to arrive at Scherrer’s equation. This equation is used to estimate the crystal diameter d by 

analysis of diffraction peaks [12]: 

n(2o) = p BT · cos(o) ; n (<) = 2> pT  

 

(15) 

 

Here we use the second version, as all of our data was already translated into Q and the integral breadth 

B, or alternatively FWHM, were calculated through peak fitting. If one chooses to evaluate the FWHM, 

the value auf the constant K changes, but the quality of the overall solution does not. The FWHM is 

more widely used, because it’s evaluation was simpler in the earlier times of X-ray diffraction in contrast 

to the integral breadth B. [12] Even though this equation was derived under the assumption of cubic 

crystals, it has some use for the estimation of non-cubic crystals, such as one of the systems under 

investigation in this treatise: Wurtzite. 

An increase in breadth of a peak can also be caused, for instance, by: 

• macroscopic strain 

• microstrain 

• dislocations 

• stacking faults   

• instrumental broadening 

To gain information on the crystal size and the type and magnitude of the strain, we must first eliminate 

the instrumental contribution to the peak. In general, the measured profile is a convolution of the 
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instrumental function r(s) and the samples peak function P(s), which results in the measured 

curve ℎ (s). [12] As this can be done both in the q and the 2θ regime, x can be substituted accordingly. 

 

 

 

 

 

Figure 3: A fictive pattern and its composition is displayed. On the left the measured function, which 

represent a convolution of the middle and right functions, representing the actual profile and the 

instrumental peak. [12] 

There are some general ways to separate the two contributions to the peak shape, such as the Stokes 

deconvolution, which essentially represents all the functions in their complex Fourier-series form. This 

results in a trivially solvable integral, in which the Fourier coefficients u� and v� are constant and finally 

yield 

ℎ (s) = ∫ r(w)P(s − w)dz → ℎ(s) = \  v� u� (�"y �$% (z){ )�  (16) 

 

which leads to 

u� = |�v�  

 

(17) 

 

Consequently, the unaltered profile can be obtained upon back transformation [12]. A different and more 

popular way to clean up the recorded pattern works via integral breadth methods. [13] The advantage of 

these methods is the ease of implementation and evaluation, its major drawback is the fact, that 

assumptions about the peak form heavily influence the results obtained and may give misleading results. 

[7] Still, these methods are a quick and qualitatively sound way for a first glance on data. To get rid of 

the instrumental contribution it is assumed that the broadening due to the instrument is of the same kind 

and represents a convolution of two Gaussians or Lorentzians or a combination of both [13], 

respectively, one representing the instrumental and one the crystal function. Therefore, fits of both and 

the widths or breadths therein are used. The breadths/widths of the measured instrumental and physical 

profile under the assumption of a Gaussian shape convolute to  

}"~� = }"�� + }"�� (18) 
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With }~� representing the measured, }�� the instrumental and }�� the specimens peak functions. In the 

case of Lorentzians this results in a simple addition of the two contributions 

}Y� = }�� + }�� 

 

(19) 

 

To measure the instrumental contribution, it is necessary to record a standardized sample with no 

broadening due to the specimen used. Popular choices of such samples are zirconia and para bromo 

benzoic acid (PBBA). It is therefore possible to further analyse the pattern with the method of the 

Williamson-Hall-Plot [14]. This method falls within a family of methods with the same general idea 

behind them: 

Δq ∝ 1� + P(d) 

 

(20) 

 

Usually one assumes that the integral breadth increases or decreases linearly and monotonous with d, in 

which case Δq can be fit with a simple linear regression. This simply yields a line, whose intersection 

at q = 0 represents the breadth used to calculate the crystal size and whose slope equals the isotropic 

strain in the crystal. If the integral breadths don’t follow this monotonously growing trend, an anisotropy 

in shape or various other effects such as faulting, twinning or plastic deformation are implicated [14]. 

Warren has shown for various crystal structures that the broadening follows certain arithmetic rules 

concerning the hkl of the reflections [12]. For hcp crystals like our CdSe/CdS particles in Wurtzite 

structure the following equation applies for stacking faults of the basal plane: 

− �dAdL� = 1� + |�|T�" (ℎ − �)(3S + } 3�i��$% (�"[)�) 

 

(21) 

 

A represents the cosine Fourier Coefficient of a peak, L a virtual distance within the crystal perpendicular 

to the plane investigated, d the lattice spacing, c the spacing of the 00l plane, S the faulting probability 

of deformation faults and } the likelihood of planar stacking faults, the Miller indices correspond to the 

peak under investigation. If h equals k and/or l has a value of zero, no broadening should be seen, but if 

the first 2 indices of a plane differ and l is even, the broadening due to stacking faults increases threefold 

in comparison to l being odd. [12] There has been a lot of progress made in this field, with differentiation 

between intrinsic, extrinsic, condensed extrinsic stacking faults, pyramidal and non-pyramidal twinning 

etc. To keep a long story short, extrinsic stacking faults in hcp materials don’t broaden peaks with h ≠ k 

and l being even [12]. Additionally, extrinsic stacking faults actually recover the Zincblende structure 

in Wurtzite materials via a sort of martensitic transformation and can possibly be realised through two 

intrinsic, or also called growth, faults with one plane in between. [15] 
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Figure 4: Stacking of the typical hcp lattice is shown on the left, an example of extrinsic faulting on the 

right. The highlighted region corresponds to a Zincblende cell. [12] 

Small Angle Scattering: 

 

If we consider the interference function for any object, may it be crystalline or amorphous, there exists 

a term, that does not depend on the internal structure of the sample itself [18]. This term only depends 

on the shape and size of the particle under investigation. If we define the angular width as 

� = BT 

 

(22) 

 

with d being the diameter of the particle and B being the wavelength of the X-ray beam used to probe a 

sample. If we now assume a wavelength of ca. 0.1 nm and an angular width of ca 10-2 nm-1, the diameter 

of the particle investigated needs to be 0.1 µm or less to record a useful scattering pattern. With our 

particles exhibiting a diameter of ca. 10 nm, we easily fall within the small angle scattering regime. As 

stated above, the derivation of the atomic scattering factor is pretty similar to the form factors in SAS in 

mathematical structure. We simply conduct a Fourier transform of an object with an electron 

density G(&), and follow exactly the same route as before, but normalised to the volume of our particle. 

Translated to the picture used here: 

u (D) = 1�� U dr 4> Δρ(�) &" sin(< · �)< · �
V

  

 

(23) 

 

Thus, if we set the electron density constant, we arrive at the spherical form factor: 

u��~���(D) = 3 ΔG sin(D&) − D& cos (D&)(D&)k = 3 ΔG �i(D&)D&  
(24) 
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�i represents a Spherical Bessel function of the first kind, which we will later use to derive a form factor 

for an ellipsoid of revolution. One also could think of systems with more than one phase und 

consequently contrast. One example of such systems are called core-shell systems, as investigated in 

this work, and can for instance be generalized as a series of layered geometries [16]: 

u��i �~���� = Gi �i ui(D, #i) + ∑ (G� − G��i) �� ui(D, #�)���"Gi �i + ∑ �� (G� − G��i)���"  

 

(25) 

 

The denominator above is necessary to normalize the form factor to one, as Q approaches 0. This simply 

represents the transmitted intensity of the sample. [16] 

The total intensity is proportional to the square of the form factor, but also the number of particles N, 

the particle volume squared and a structure factor S [9]. 

�(D) = N S(Q) Δρ" ❘F (Q)❘" ��" 
(26) 

 

This factor should not be confused with the structure factor of a crystal, but it represents a quality of 

similar fashion, as it describes structural effects between the particles itself on the total intensity I. 

Glatter introduced an alternative way to calculate the intensity, the so called “Pair-Distance-

Distribution-Function”, such that [11] 

� (D) = 4> U �(&) sin (D&)D& drV
  

(27) 

 

with  

�(&) = Δρ�(&)" &" = ∫ Δρi Δ ρ(&i − &) dri &" 

 

(28) 

 

This basically represents the autocorrelation function of the electron density of a geometric body, which 

means that the �(&) is directly related to the structure and size of a particle. 

Yet a different and more general way, as it is not only limited to SAS, is the calculation of the intensity 

by Debye’s equation [11]: 

I(D) = 1h¡" \  ¢£
�� \  ¢£

�¤] u]u�  sin¥D&�]¦D&�]  

 

(29) 

 

Here r represents the distance between two scatterers, h¡ the total amount of scattering bodies. The 

derivation of this formula works just as described above in eq. 27.For instance following the example 

of two atoms at a distance Abs(&i�") from each other and plugging this into said equation [8]: 
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A(D) = Pi + P" exp(−K D &i�") 

 

(30) 

 

Thus one can write 

< �(D) >=< A(D)" >= Pi" + P"" + 2 PiP"  < exp(K D &i�") > 
(31) 

 

With the same idea as stated above with the atomic form factor, we can average over the exponential, 

normalize to 1 and consequently arrive at Debye’s formula above. 

If we choose to polynomially expand the cardinal sinus and assume equivalent form factors for any 

particle in eq. 29, one gets [17]: 

I(D)u" = 1 − 13 © 12h¡" \  ¢£
�� \  &$ª"¢£

�¤]  « D" + 160  12h¡" \  ¢£
�� \  ¢£

�¤] &$ª® ¯ D®

+ 12520 © 12h¡" \  ¢£
�� \  ¢£

�¤] &$ª±« D± + ² (D³) 

 

(32) 

 

As has been shown if ref [17], the equation above can be transformed into an integral by the definition 

of the Riemann integral. This yields the following three formulas:  

Δr" =  12h¡" \  ¢£
�� \  ¢£

�¤] &$ª" = 1�� U &"dV
µ́

 

 

(33) 

 

Δr® = 12h¡" \  ¢£
�� \  ¢£

�¤] &$ª® = 1��" (�� U &®dV
µ́

+ ( U &"dV
µ́

)" + 2 U  
µ́

U(&� &])"dV�dV]
µ́

) (34) 

 

Δr± = 12h¡" \  ¢£
�� \  ¢£

�¤] &$ª±
= 1��" (�� U &±dV

µ́
+ 3 U &®dV

µ́
U &"dV
µ́

+ 12 U  
µ́

U &�" (&� &])"dV�dV]
µ́

) 

 

(35) 

 

These represent the second, fourth and sixth moment of our shape. Equation 33 is commonly referred 

to as the squared radius of gyration and gives an indication about the particle size. Two particles with 

the same radius of gyration don’t necessarily have the same shape. This is where the fourth and sixth 

moments come in to play, as these represent the aspect ratios or “peakedness”. [17] 
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If we plug in different shapes, we can derive formulas for simple bodies like cuboids and spheroids and 

can fit these to the first few points of a recorded pattern. [17] This allows us to roughly estimate not only 

the size, but also the general dimensions and aspect ratios of a particle and use this information for 

further evaluations. This process is not easily implementable for core-shell particles, thus only the cores 

can generally be evaluated this way. 

The above analysis only works well for monodisperse systems. Considering this fact, it is possible to 

model polydisperse samples under the assumption of a monomodal distribution of the core sizes [11]: 

< u (D, #)" >= 1h U u (D, &)" ¶(&, �) �� �·" drV
  

 

(36) 

 

with 

h = U ¶(&, �) �� �·" drV
  

 

(37) 

 

� (&, �) represents a particle size distribution with the parameter vector � of a distribution. But the 

numerical integration, if an analytical solution does not exist, can be cumbersome and use up many 

resources when performing a fit. It is easier to simply “create” different species with radii scattered 

around a mean and weigh them accordingly to the distribution � (&, �) to correctly calculate the 

intensity. 

A more complete treatise of SAS can be found in [11] or [18]. 

Anomalous Small Angle X-Ray Scattering: 

 

The expression of the atomic form factor in eq. 7 doesn’t deliver a complete picture of the physics behind 

it. Let’s imagine a bound electron spinning around a nucleus, like in a classical, planetary-like 

description of atoms, in an alternating electrical field with a restoring force similar to a spring equation. 

The resulting equation of motion effectively describes a damped, forced oscillation with an amplitude 

of [19]: 

m = ��̧
(¶" − ¶" + � r"¶"¸" )  

 

(38) 
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The amplitude of the electric field is �, e represents the electron charge, m the mass, g the damping 

due to the velocity and the spring constant � is as always hidden in ¶" = � ¸⁄  . When the frequency 

of the acceleration, tuned by the energy of the x-rays, exhibits a certain value, the amplitude reaches its 

maximum. In the simplified picture of a nucleus surrounded by electrons on circular orbits, the electron 

switches onto a different orbit and part of the incident x-ray beams energy is diminished. The atomic 

form factor for an element thus varies with the energy of the beam used to probe the material and even 

shows absorption like features, which can ultimately be expressed as a relative factor [20]: 

�P¹ = �Pº» + P�¼ + �P� '' 
 

(39) 

 

The energy dependence of P�′ and P� '' on close to an absorption edge for the element Selenium is depicted 

in Fig. 5:  

Figure 5: Both parts of the complex scattering factor of Selenium are plotted versus the x-ray energy 

within the region of the edge used in this thesis to vary the scattered intensity. A clear discontinuity is 

discernible for both parts, f’ and f’’. 

Equation 39 can be related to the form factor of a given geometric configuration according to [21]: 

u(D, �) = u�(D) + ¥P ¼(�) + � P ''(�)¦¾ (D) 

 

(40) 

 

The intensity follows with: 

�(D) = u�(D)" + 2P¼(�)¼u�(v) ¾(D) + ¿¥P¼(�)¦" + (P''(E))"À ¾ (D)" 
(41) 

 

The first term of the sum equals the scattering of the whole shape as we previously calculated, but the 

second and third term contain the spatial distribution  ¾ (D)  of the element whose scattering factor we 
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vary! The second term is accordingly called the cross term, but most of the information is contained in 

the unfortunately relatively small third, also called resonant, term.  

Through varying energies, at which a scattering pattern is recorded, one can use the resulting variations 

in contrast to determine the spatial distribution of an element in a multispecies crystal. Because the effect 

is very small, it is necessary to increase the contrast as much as possible, which means to measure 

energies near and also above the absorption edge. Concerning the energies above the adsorption edge, 

experimentally the fluorescence has to be taken into account, but the step-like increase of the  P '' allows 

for greater contrast between spectra and consequently easier evaluation. [21] From eq. 41 it can be 

readily seen, that with a minimum of three energies a matrix equation can be formulated: 

©�(�i, D)�(�", D)�(�k, D)« = ©Δf" 2 Δf P(�i)′ [(P(�i)′)" + (P(�i)'')"]Δf" 2 Δf P(�")′ [(P(�")′)" + (P(�")'')"]Δf" 2 Δf P(�k)′ [(P(�k)′)" + (P(�k)'')"]« © u�(D)"u�(D) ¾ (D)¾(D)" « 
(42) 

 

 

As the solution vector is already known from the measurement and the entries in the matrix are known 

beforehand, eq. 42 poses an inverse problem. This class of problems is one of the most important, as it 

allows to determine parameters that are not directly measurable. Equation 42 can be solved for  ¾(D)"  

in several ways, ranging from Gaussian to Eigenvalue decomposition, but according to [21, 22] with 

increasing number of energies evaluated the absolute error in matrix inversions grows. This means, that 

the crucial factor is the quality of the singular measurement and not the number of curves recorded. It is 

therefore also possible to measure at a different edge to gain additional, meaningful equations without 

compromising the quality of the matrix inversion. 

This is of utmost importance as all fitting algorithms, should one decide to use this method of evaluation, 

involve at least one matrix inversion. Thus, the reliability of the data is potentially negatively affected 

and the resulting data tainted with non-negligible errors. A first upper estimate of the error made with 

one inversion can be made using Turing’s number, as can be seen in [22]. Turing’s number actually 

represents a conditioning number of a matrix, which relates the error of the input with the error of the 

output. Therefore, this concept can also be used to calculate the minimum value of flux necessary for a 

given illumination time or vice versa, to arrive at a ratio of error of measurement to total intensity ∆� �Å that renders the resulting equation “well-conditioned”. For the sake of brevity, we won’t go into 

more detail at this point [22]. 
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Small Angle Scattering: Modelling 

 

When modelling data, one usually tries to achieve minimal discrepancy between the model and the 

measurement. This usually involves minimizing a least squares problem, although more robust 

measurements of deviation can be chosen. Still, most program packages use some variant of the reduced 

chi-squared: 

Æ" = 1Ç − P ∑��i
� (��z�(D�) − �Èº!(D�))É�"

"
 

(43) 

 

with n being the number of points measured and f being the number of fit parameters to be minimized. 

This has the obvious advantage, that deviations at high values are weighted somewhat the same as lower 

values. When the discrepancy comes out to be around the total average measured error É, this equates 

to 1 and represents a “perfect” fit and represents statistical agreement between the fitted model and the 

measured data [16]. This is unfortunately no always the physically meaningful solution to the problem 

at hand, even though the system itself may be well conditioned. 

Linear Methods: 

 

If the resulting equation is purely linear in its coefficients, standard least squares methods can be 

employed [16]. Any function that can be written as  

I(D)Èº! = \ SZ X(D)Z
Z

��i  
(44) 

 

 

is essentially a linear expression, where Ë (D)Z represents a set of basis-functions [11]. As a 

consequence, it can be easily solved by the standard methods in a timely manner. 

The great achievement of the indirect Fourier transformation (IFT), which calculates the pair correlation 

function �(&) of a SAS curve by spline interpolation using equation [11], is the linearization through 

the coefficients of the interpolating functions.  

�Èº!(D) = \ SZ · ËZ(D)Ì
Z�i = 4>∫ � (&) sin (D&)D& dr 

(45) 

 

Where 

� (&) = \ SZ  nZ(&)Ì
Z�i  

(46) 
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This also allows for a simple, linear Tikhonov regularization resulting in the functional [11,16]: 

Min (Æ" + B[ \ (S]Îi − S])" + Si" + SÌ"]Ì�i
]�i ) (47) 

 

with the additional term being a measure for smoothness, weighed by the regularization parameter B . 

This is similar to the method employed by Svergun [23] in his program GNOME, which is part of 

package ATSAS,to which we will refer later. 

Non-linear Methods 

 

If the model function is of the nonlinear kind, different methods have to be used to solve for the 

parameters of the given function. In this case for instance Levenberg-Marquardt[25], Reduced 

Gradient[26], Nelder Mead [27] or Simulated Annealing [27] can be employed. Even the above 

mentioned Tikhonov regularisation can be used in this case too [28], if the function to be minimized 

represents an ill-conditioned problem [29]: 

Min (Æ(D, �)" + B"Ï (�)") 
(48) 

 

Differently than before, the optimal value for the parameter B needs to be recalculated every single 

iteration, using different paths such as the discrepancy or L-curve criterion [51]. This needs to be done, 

because with decreasing Æ" the regularizing, second term contributes more and more and might 

“oversmooth” the solution. To use this method confidently the algorithms above have to be modified, 

as was done with the Levenberg-Marquardt algorithm in Ref [30]. 

Also in the realm of non-linear methods is the shape retrieval software DAMMIN [31] used in this work. 

Here a Simulated-Annealing algorithm is being used to iterate to the final shape of the desired particle. 

More information on the general concept of this approach and evaluation techniques can be found in 

[32]. 
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Experimental Section: 
 

As mentioned in the introduction, knowledge about the synthesis process of colloidal NCs and the ability 

to tune the properties of the systems to the field of application is essential for optimal performance. To 

investigate the structural and physical implications of our system CdSe-CdS, the following three series 

of nanoparticles have been prepared at the ETH by Maksym Kovalenko’s group. 

On three batches of differing CdSe core sizes with diameters of 1.8 nm, 2.2nm and 2.5 nm, 4, 6 and 8 

monolayers of CdS have been epitaxially grown on in a wet chemical synthesis. [5] The CdSe cores 

were synthesized via the following procedure: Mixing of CdO, octadecylphosphonic acid (ODPA) and 

trioctylphosphine oxide (TOPO) and subsequent degassing for one hour after heating up to 150°C. 

Afterwards the temperature was elevated up to 320°C to form a colourless solution, upon which 

trioctylphosphine (TOP) was injected. Again the temperature was increased until it reached 380°C, at 

which point Se/TOP solution was swiftly injected. This induced the growth of CdSe-cores, a temperature 

driven process, meaning that the growth can be stopped, after for instance reaching a desired size, by 

rapid cooling. The resulting CdSe particles were then precipitated by adding acetone and dispersed in 

hexane as a stock solustion. [5]  

On these particles the CdS shell was grown by loading the hexane solution containing the naocrystals 

in a mixture of 1-octadecene (ODE) and oleylamine (OAm). The reaction solution was degassed 

afterwards at room temperature under vacuum for one hour and subsequently for 20 minutes at 120°C. 

The solution was again heated up to 310°C with a heating rate of ~ 20°C/min und nitrogen flow and 

magnetic stirring.  Upon reaching 240°C while heating a desired amount of shell-forming cadmium (II) 

oleate and octanethiol was injected dropwise at ca. 3 ml/hr via a syringe pump. After the desired amount 

was injected oleic acid was quickly introduced to stop shell growth and the solution was further annealed 

at 310°C for an hour. [5] Aliquots were extracted at times that should ideally correspond to the above 

mentioned shell thicknesses of around 4, 6 and 8 monolayers of CdS under the assumption that some 

amount, which so far is only known to our partner, of the total of the injected precursors have formed 

shells. This synthesis was carried through to produce particles in Wurtzite structure, which have 

demonstrated superior quantum yield over similar systems of differing crystal structure. [5] The 

resulting particles were all diluted in toluene, since other solvents, such as hexane or chloroform, are 

too poisonous to handle in a in-situ set up to measure the samples. 

With 3 aliquots taken at different times before annealing for all three core sizes, we are left with three 

series potentially giving insight on the processes through synthesis. These series consist of one core of 

yet undetermined size, three core-shell systems with increasing shell thickness and one annealed batch 

of core-shell particles for a total of 15 samples. An overview of the samples synthesised and the names 

used from this point is listed in table [1]: 
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Table [1]: Listing of all the abbreviations used for the samples measured: 

 core thinnest shell medium shell largest shell annealed 

smallest core sc st sm sl sa 

medium core mc mt mm ml ma 

largest core lc lt lm ll la 

 

The ASAXS and WAXS experiments on these samples were all carried out at the ESRF at beamline 

ID02 under the guidance of the local contact Michael Sztucki and Peter Boesecke. ID02 is one of few 

beamlines equipped to measure ASAXS and WAXS simultaneously. The element whose contrast was 

varied was Selenium (Se), which should theoretically only be found in the core of our particles. The 

absorption edge used was at 12.658 keV and seven energies at or below and three above this value were 

chosen to take measurements at. This results in a total of 10 energies summed up in table [2], of which 

the ones above the edge additionally had to be corrected for the occurring fluorescence. To reduce 

radiation damage to our sample, the dissolved nanocrystals were continuously pushed through a flow-

cell by a piezoelectric system. [20] Also an empty and a water-filled capillary were measured for all 

energies. 

Table 2: scattering factors and the corresponding energies used in the experiment 

Energy [keV] f’ f’’ 

12.000 -2.5163 0.5511 

12.580 -4.5789 0.5177 

12.612 -5.1239 0.5263 

12.644 -6.4534 0.59504 

12.650 -7.1094 0.6839 

12.653 -7.6897 0.8356 

12.655 -8.3271 1.1864 

12.657 -8.964 2.6264 

12.676 -6.002 3.7693 

12.732 -4.5132 3.781 

 

The ASAXS and WAXS spectra were recorded at once by two different, stacked 2D detectors (Fig. 6) 

and the resulting data were integrated and corrected. These corrections included not only standard 

operations like correction for dark current, flat field, normalisation to absolute scattering units and Ewald 

sphere projections, but also accounted for various effects like fluorescence above the absorption edge, 
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Detector 1: 

WAXS regime 

transmission correction, background etc., and were performed on site online using a provided script by 

Michael Sztucki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: In this rough sketch the setup of the detectors is being shown, hence the actual arrangement. 

The SAXS detector is embedded into the WAXS detector to cover the entire SAXS and WAXS range with 

the smallest gap possible between both regimes. 

The detector sample distance was also set accordingly to the energy of the beam used, to ensure a Q-

range from around 0.1  nm-1 to about 5  nm-1, the WAXS interval reached from about 8 to 43  nm-1. 

The distance between detector and sample to achieve this at a wavelength of approximately 0.98 CÐ was 

at ca. 21.35 cm. This resulted in a total of 9 measurable peaks in this regime, with a maximum of 2 

orders for the {100} and {101} planes. 

2θ 

Detector 2: 

SAXS regime 
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Unfortunately, the correct measurement of the background didn’t always work properly for the first 

series with the biggest core, as the high brilliance of the beam seemed to alter the concentration of the 

solution locally and also burnt some of the sample to the walls of the capillary. Thus the background 

was altered for the following measurement despite the flow-through setup and the reduction of the used 

undulators from two to one and hence decreasing the flux onto the sample. To prevent these effects, 

extensive cleaning after each measurement, shortening of the time of measure to 0.05 seconds and re-

recording of the background after a small number of runs were needed. 
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Data Analysis 
 

This chapter will focus on the numerical analysis of the recorded SAXS and WAXS data using available 

commercial and freeware software packages such as GIFT [33] and ATSAS [24] and self-written routines 

using Mathematica and Excel. 

All of the 2D images were reduced and corrected for the fluorescence, background and other effects, 

such as the signal of the filled and empty capillary, online by scripts written by Michael Sztucki. 

Unfortunately, error propagation was not included, which actually is of utmost importance as the 

variance of the scattering is only in the range of 6% at most at the absorption edge and considerably less 

away from it. As we used the reduced Æ"-method, this value is of utmost importance. Therefore, we re-

binned the data using the software PCGTools by G. Popovski, which essentially takes the average of the 

amount of the points one wants to be binned and calculates the error made by the merging of the points 

[34]. These curves are then used to fit the SAXS data and evaluate the WAXS spectra. 

Anomalous Small Angle X-Ray Scattering Data 

 

The data recorded was analysed in several ways using various fit methods. The general routine involves 

the calculation of the intensity of the scattering by our particles by eq. 26.  

Decomposition of the three contributions 

 

It would have also been desirable to simply decompose the measured spectra into non-resonant, cross 

and resonant terms, to evaluate the resonant term with the traditional SAXS methodologies. But, as 

stated in the experimental section, the conditioning number of the system needs to be low enough to 

ensure a unique and meaningful solution to any matrix inversion. As we had to decrease the time of 

measure to about 0.05 sec, the counting statistics and the resulting relation between the total intensity 

and the error in intensity were seemingly not favourable enough to arrive at a good result using this 

precise method. The decomposition was first attempted via the program from Michael Sztucki and 

subsequently by a self-written script in Mathematica following Eigenvalue decomposition [21] 

As the three parts of the solution, the non-resonant, cross and resonant term, essentially fulfil Schwartz’s 

inequality, one can also include a sort of light, but ultimately insufficient, “quality control” of sorts. [21]  

WÑÒ(D)" ≤ 4 S(D)Ô W (D)Õ 
(49) 
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with 

S(D)Ô = Δf"u�(D)" 
(50) 

 WÑÒ(D) = 2 Δf · P(� )¼ u�(D) ¾ (D) (51) 

 W (D)Õ = [(f(�k)¼)" + (f(�k) '')"] ¾(D)" 
(52) 

 

as being described in [21]. Hence, as a point fails the above criterion, it can be dismissed. Unfortunately, 

it was not possible to arrive at a reasonable solution of the resonant scattering term for our particles. 

Fitting of the particles 

 

The form factor plugged in to this equation follows exactly eq. 41 applied in the framework of eq. 25. 

If we now assume a core-shell configuration for both the counter ions and the resonating ions, a fit with 

7 variables is achieved for a simple system consisting of only one shell.  

Because it was extremely difficult to get a fit with physically meaningful parameters for the largest core 

series, non-spherical form factors have been used to allow for fits. 

Ellipsoid of revolution: 

 

An ellipsoid of revolution can be written as [16]: 

u�����Ö(D) = U u��~���(D, r(#, S, c))"  sin(S) dα
�"

  (53) 

with  

& = #(sin(S)" + c"  cos(S)").5 (54) 

 

This represents the definition of an ellipsoid of revolution with the factor c being defined as the 

eccentricity: 

c = Øm" − Ù"m"  (55) 

Values of c < 1 correspond to oblate, values >1 to prolate ellipsoids.  

Obviously one has to integrate to arrive at the azimuthally averaged form factor for the ellipsoid of 

revolution, which hast to be done numerically. This can be a very time consuming step in a fitting 
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routine, as this has to be done for every iteration with the integral itself not always being “well behaved” 

in the case of core-shell particles. 

For these systems additional restrictions have to be implemented to ensure a geometrically correct 

solution for the parameters, especially concerning the maximum and minimum values of the axis 

describing the core and the shell of the NC. 

To speed up the fitting process itself, the following formula was retrieved [35]: 

�(D) ∝ \  V
�� (−1)� 72 (2Ç + 2)(2Ç + 5)(2Ç + 6)! (2dm)"� \  �

Ü�
Ç! cÜ&! (Ç − &)! (2& + 1) (56) 

This allows for a faster calculation of the spectrum of an ellipsoid of revolution and thus speeds up the 

fitting process significantly if one chooses the right algorithm. But there still exists a problem with the 

break off criterion for the infinite sum. One way to work around this fact is using the estimation of the 

size and aspect ratio by eq. 32 and using these parameters as the basis for an ellipsoid. Then we fit the 

equation above to this fictive particle as a function of the number of terms in the sum n and used a 

slightly bigger estimate as value for the fitting routine itself. To ensure a reasonable number of terms, 

we used the decreasing change in the Æ" with increasing n as a stopping criterion. 

This however worked quite badly for our particles. The reason for this circumstance doesn’t lie within 

the approach itself, but in the program used to fit the data. The non-linear methods to solve the resulting 

equation has an analytical evaluation built in. In certain cases, such as the continuous form factor, this 

produces a considerable acceleration of the fitting process. In the case of sum within a sum the number 

of terms to evaluate needed to be stored in the memory and can exceed the RAM of the PC used and 

consequently crash the machine. Another small issue is the assumption taken with the approach above. 

The expansion in eq. 56 doesn’t consider polydispersity, therefore assumes a purely monodisperse 

solution. This leads to particles with an aspect ratio and size quite above the actual physical dimensions 

of the NC, which means that the smearing of the curve is achieved through the azimuthal averaging and 

not the actual polydispersity present in our systems. Additionally, as the minima shift slightly to the left 

when compared to a monodisperse system, due to the volume squared term in eq. 26, a bigger mean size 

of the particles is implicated. Still, use can be made of the result by choosing slightly different larger 

numbers of n and generous restrictions on the geometric parameters in our fit. 

A similar formula seems to be possible for tri-axial ellipsoids, as was calculated by Debye [35], but the 

mathematical complexity of such a derivation goes beyond the scope of this work and the mathematical 

back ground of an engineer. A simple idea to arrive at a similar formula would be to do a series-

expansion of the cardinal sinus and use the approximation of Glatter, via “binning” of the inner distances 

of equal lengths [11], consequently reduce the double to a singular sum in our Debye equation. If an 

analytical expression for the pair-correlation function for a tri-axial ellipsoid would exist, one could 
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easily arrive at a trivial integral and thus again arrive at a similar expression. This would also be possible 

for any other convex shape that would allow for such treatment. We hence used the conventional form 

factor for tri-axial ellipsoids [16]: 

u·�$���(D) = >2 U  �"
 U  �"

 u��~���(D, &(m, Ù, �, S, })) sin(S) dαdβ 

 

(57) 

With 

& (m, Ù, �, S, }) = ((S"sin (})" + Ù"cos (})")sin (S)" + �"cos (S)") (58) 

 

This form factor slows down the fitting process quite a bit, as two separate numerical integration have 

to be calculated every single iteration, which adds up considerably if core-shell form factors are being 

used. This also drives up the amount of fit parameters, if one wishes to extract the compositional 

information too and renders the result highly instable and heavily constrained, due to geometric reasons. 

Continuous	and	discontinuous	Interfaces:	

 

Because it was also predicted in Ref [36] that the strain in the CdSe/CdS core-shell particles is reduced 

through interdiffusion of Se with Sulfur (S), a form factor describing a diffuse interface and multiple 

step-like transition in electron density from core to shell was tested. 

The multiple step like form factor was realised following eq. 25 for the spherical core shell form factor, 

written as: 

u"��~���(D) = 3 Þνsi 4>#ik3 �sin (D#i) − D#icos (D#i)(D#i)k �
+ (νs" − νsi) 4>#"k3 sin (D#") − D#"cos (D#")(D#")k
+ (νsk − νs") 4>#kk3 sin (D#k) − D#kcos (D#k)(D#k)k à 

(59) 

for a particle with 2 shells, with the value of the indices decreasing outwards. With an increasing number 

of shells this model gets more and more accurate, but also more computationally expensive even for 

programs that handle analytical formulas quite well. In this work a 2 shell and 3 shell model, as well an 

analytical, continuous form factor were employed. 

The functional shape of the Fermi-Dirac statistic has a step like form at 0 K and starts to smear out with 

increasing temperature. This can be used as a function for the  �G(&). The feature that sets it apart from 

other possible expressions such as the error function is the analytically solvable integral for the 
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d 0nm

d 0.1 nm

d 0.3 nm

polydisperse case under some simplifications [37]. The electron density as a function of the particle 

radius thus can be written as 

G (&) = ¸1 + exp (& − #T ) 
(60) 

Where R represents the radius of the particle, m the numeric value of the electron density at r=0. In 

relation to the Fermi-Dirac statistic, d has the same effect as the temperature, thus controlling the 

smearing of the profile with increasing value. To allow for integration, eq. 60 needs to be represented 

through hyperbolic sines and cosines [37]: 

G(&) = ¸ sinh ¿#TÀcosh ¿&TÀ + cosh ¿#TÀ 

 

(61) 

This expression is only exact enough for application for values of d/R < 0.1 [38]. This doesn’t limit its 

use in the case of anorganic crystals, as this would roughly translate to an extension of the core to a 

factor of 1.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Several electron density distributions G(&) of particles with the same parameters for the core 

radius and shell thickness, but with varying shape parameter d, are plotted against the distance to center 

of the particle. The electron densities are purely fictious and are selected for the presentation of the 

principle.  
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With d = 0.3 nm being one tenth of the total particle size, it is becoming evident, that an easy distinction 

between core and shell is increasingly difficult (Fig. 7). Thus greater care has to be taken when 

evaluating the electron density, as the parameters describing the electron density only resemble the 

actual values in extremely simple cases. For instance, m represents the electron density of the core in 

the case of a compositionally singular particle. The addition of multiple shells has been treated in ref 

[37] and will not be expanded on any further in this work. Still, in the case of core-shell models, 

additional conditions regarding the electron density of the core have to be employed to arrive at 

physically meaningful solutions, which will be discussed in the next paragraph. Even more, there is no 

guarantee that the shape parameter d yields the same value for every interface present in our particle. 

Hence we decided to use different d’s in our evaluation for each interface present. This has the drawback 

that the range of possible values has to be limited, to hinder “bleeding” of the structures into each other, 

and the addition of another parameter to fit in our model, which in turn increases the total time needed 

for a solver to find a solution. 

Additionally, the definition of the core and shell is not quite as straight forward as in the classical stacked 

core-shell model from eq. 59. For the appropriate fit-intervals, one has to consider the following: The 

total particle radius still comes out as the sum of the nominal radius of the core rc and the nominal 

thickness t of the shell, but the real shell thickness comes out as twice the nominal core radius. This is 

illustrated in the following Fig. 8: 

 

 

 

 

 

 

 

 

 

 

Figure 8: For an arbitrary value of the shape parameter d=0.05, the geometric configuration via G(&) 

of the particle is depicted versus the distance from centre r. The thickness of the shell comes out as two 

times rc, the core size as t minus rc. 

Input value of t 

Input value of rc 
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So finally, the analytical integration and result of eq. 61 is quite extensive in length. We only write down 

result for the analytical case of the core, the general case can be read in ref [37]: 

C(D) = ¸h�º�� 4T >"D"  cosh(dπQ) · (dπQ · coth(dπQ)  sin (D#) − D# cos (D#)) (62) 

With 

h�º�� = 4πm3 · # · (T">" + #") 

 

          (63) 

  

This can now be plugged into equation 36 and again analytically integrated for a normal distribution 

with the integrational boundaries set from – ∞ to ∞, which translates into a negligible error for “small” 

polydispersities of <10%. Again, the result is very long and we will refer to ref [37] for further details 

such as the formula for core-shell particles. 

Because of its length, the implementation for anomalous analysis of the data the same way as in eq. 25 

is quite cumbersome and exhibits a high sensitivity to fit parameter values leading to long calculation 

times for the pc. But in cases where we are sensitive to the difference of the electron densities, it is still 

possible to evaluate the profiles of particles in a timely manner. To even further check if the solution 

found is of physical significance, one could also plug in the pair distribution of the particle, obtained 

from GIFT [33], into DECON [38] and compare the solutions to each other.  

SAXS	analysis:	Expansion	of	Debye’s	formula	

 

The data obtained from the preceding evaluation with a continuous electron density-profile did not 

produce useful result concerning the quality of the information retrieved or the time needed to get useful 

fits. Hence the necessity of the knowledge about the actual particle shape becomes obvious. To reduce 

the time needed to fit the data, even a rough estimation of the shape is also helpful, as the hyperplane on 

which we move via our non-linear solver seems to have non-favourable concave features. Therefore, we 

used the series expansion of the cardinal sinus, of which the second, fourth and sixth moments were 

used. In the case of a sphere, the terms resemble the p(r) as defined by Glatter [11]. To fit the first three 

moments one needs to consider, following [11], 

�(d) = �(0) (1 + 2 \  V
��i ä 12 &"� Þ3&"#k − 9&k4#® + 3&516#±à T& (−1)�(2Ç + 1)!

"Õ
 ) (64) 

to normalize I(0) to 1 and fit the first part of the curve [12]. The first term in eq. 64 yields the radius of 

gyration as the second moment, the second and third terms represent the fourth and sixth moments of a 

spheroid surrounding the particle investigated. This allows for a qualitatively sound estimate of the 
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shape of the particle. This can be seen if we plot the fourth and sixth momenta of several particles with 

identical volume and two identical axes against the aspect ratio of the particle. (Fig. 9) 

 

 

 

 

 

 

 

 

 

 

Figure 9: The moments of power 0 of spherical and cuboid particles versus different aspect ratios and 

two axes being equal. A clear distinction between prolate and oblate particles in term of the value of the 

moments is observable. 

The analytical values of the moments were calculated using a plugged in form factor in equations 34-

36, which could also be used to fit the approximate dimensions of a particle in the Guinier portion of a 

spectrum. If we compare these ratios of the moments, you can more or less definitively determine the 

shape, meaning the differentiation between prolate, spherical and oblate cases. 

The case of the perfect sphere can be calculated analytically. This results in values not depending on the 

size of the particle, but only on the spherical geometry. These integrals turn out to: 

Δr2 = 3#"5  (65) 

 

Δr4 = 36#®35  (66) 

 

Δr6 = 32#±15  (67) 

 

r
6 cuboid

r
4 cuboid

r
6 spheroid

r
4 spheroid

Prolate particles Oblate particles 



   

32 

 

r
4 spheroid

r
6 spheroid ,

normed 1.0

Now divided to achieve expressions of power 0: 

Δr4Δr2" = 2.85714 (68) 

 

Δr6Δr2k = 9.87654 (69) 

 

Hence, any particle exhibiting these vales for the values defined in eq. 68 and 69 is of spherical 

symmetry. Interestingly enough these values don’t seem to deviate much for other geometries such as 

cuboids, which means that this method is more sensitive for the ratios of the axis of the body of 

circumference, than the actual geometry itself. 

Concerning the actual evaluation process, a word of caution has to be ushered here. For analysis, the 

usable part of a recorded curve is being extended through the use of additional terms, but still largely 

coincides with the Guinier part of the data [11]. To demonstrate the effect of an ill-suited interval to fit 

data to, spheroidal particles were simulated. All of these particles have the same volume, yet differ in 

the aspect ratio of the axes, two of which have the same length. Now the simulated data was fit with a 

polynomial of third degree within the same interval, with the fit parameters representing the second, 

fourth and sixth moments. (Fig. 10)  

 

 

 

 

 

 

 

 

 

 

Figure 10: Fit of the moments of a simulated spheroidal particle with two axes being equal. The sixth 

moment is also normed to the fourth moments at an aspect ratio of 1. 
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A clear deviation of the moments from Fig. 10 is visible for particles with an aspect ratio > 1, as the 

sixth moment exhibits a clearly different behaviour. Thus with careful evaluation of the fit interval, we 

can clearly distinguish between prolate and oblate particles. At the very least we can determine if a 

particle is equi-axed or not, as we simply can determine the integral for a spherical particle with the 

radius R via equation 60 for the first three contribution of the sum.  

SAXS analysis: Dammin 

 

As shown in ref [32], the shape retrieval software DAMMIN by Svergun [31] can also be employed to 

determine the shape of semiconductor nanocrystals, with additional information on core-shell structure. 

In this work we return to this program, as the compositional information was very hard to fit via ASAXS 

for the largest core series, as the shape seems to deviate severely from the spherical case. We hence tried 

to determine not only the shape of the particles in our solution, but to maybe even extract some 

information on the distribution of the selenium atoms via the occupancy density [32]. The occupancy 

density represents the average possibility of any dummy atom being at a certain position within the 

particle. Therefore, as the data recorded is nothing else than a Fourier-transform squared of the electron 

densities in the particle, the occupancy density should coincide with the electron density in the particle 

because the dummy atoms all have the same scattering cross-section. Hence, the occupancy value should 

be sensitive to the relative decrease in electron density of ~17% from the CdSe core to the CdS shell, if 

the theoretical electron densities of CdSe and CdS in the Wurtzite phase are met. Burian showed via his 

“onion”-evaluation, that at least a decrease of roughly 33% is possible to be detected, although the higher 

density phase was located in the shell, which greatly improved the statistical significance of the shape 

regarding the particle/solvent interface.[32] A different possibility is the so-called linear evaluation, in 

which a cylinder of a few dummy atoms diameter is randomly stuck through the structure through its 

center for a few thousand times in random orientations and the size in that direction is evaluated.  

However, the particles analysed here are not of spherical, but of rather elliptical shape, which made the 

evaluation of the occupancy values and the shape quite challenging. To generate meaningful data, we 

ran DAMMIN in expert mode and averaged 5 structures of each particle, with the dummy atom size 

being in the range of one monolayer of CdS in Wurtzite structure (~ 0.3 nm), to see if any extrusions 

from the particle surface or smearing effects would be lost via the averaging procedure. Additionally, 

the number of splines to fit the curve was increased up to 50 and the number of harmonics set to a value 

of 25. Burian showed that a higher number of spherical harmonics doesn’t significantly improve 

convergence after a threshold of about 20. [32] 

To our disadvantage, the number of Shannon-Channels wasn’t always at the lower limit of 10, which 

probably doesn’t only limit the information gained on the core in core-shell particles, but also could lead 

to ambiguity concerning the shape! Shannon channels essentially determine the interval of the sampling, 
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in our case the interval of q at which data is measured, and consequently are a measure for the 

information content. [11] As DAMMIN operates under assumption of monodisperse solutions, smearing 

of a polydisperse curve is achieved via larger aspect ratio, particle size and/or faceting of the structure. 

All of these effects have to be taken into account, when performing simulations using DAMMIN. 

	

SAXS	analysis:	DAMMIF	

 

Because the average time to fit our particles with DAMMIN was in the range of 24-30 hours per sample, 

we decided to try out the optimized and accelerated successor, DAMMIF [40]. The average time to 

simulate a sample decreased to ca. 1-2 hours, but possibly because of the now increased and effectively 

“infinite” search-volume, the solutions found exhibited strange shapes and exceptionally rough surfaces, 

way off any physically possible structures. Thus we decided to continue using the slow, albeit reliable 

DAMMIN.  

WAXS data analysis: 

 

The analysis of WAXS data was done by a self-written routine that allowed for individual subtraction 

of backgrounds, aided by further subtraction by spline interpolation, robust multi-peak fitting routines 

for several peak shapes, ranging from Gaussian to Voigtian functions, and automated strain and size 

determination by peak-shift analysis and Williamson-Hall plot.  

As the background estimation measurement for the series with the biggest core didn’t yield useful data, 

we had to resort to different means. To first estimate a background, the spectrum was Fourier-

transformed and then “cleaned” from any frequencies that changed the total shape only on a minute 

scale, similar to a singular-value decomposition. The criterion for the total change needs to be set by the 

user via a parameter. To arrive at a usable spectrum, one needs to “play” around a little with the 

parameter until a satisfactory result is achieved. Hence, all sharp features of our curve were filtered out 

which left us only with the rough shape of the spectrum. Against the principle of other methods, a simple 

low-pass filter was not sufficient, as also higher frequencies seem to determine the general structure of 

the curve. Upon back transformation, the second derivative was taken and any zero of the resulting curve 

was used as a sort of “fulcrum” for the following interpolation via b-splines of an odd order. This “quick 

and dirty” method is demonstrated for the ID02 standard PBBA, which was shortly described in the 

theoretical section of this work on page 11, in Fig 11. 
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Figure 11: The red spectrum is the recorded data of the PBBA standard from ID02. The green line was 

calculated by the procedure described above and subsequently subtracted to arrive at the background 

corrected blue line. The sharp peak of the PBBA was successfully reduced, but broader features, such 

as the shoulder right of the peak at 15 nm-1, don’t get approximated well. 

For sharp features, such as the PBBA reference sample, this worked quite fine. But peaks of 

nanocrystalline solutions usually do not exhibit the needed sharpness due to for instance size effects. 

Hence, this method was not able to restore a sufficient background, which could lead to distorted, virtual 

effects in the spectra. Thus we simply modified a later measured background to fit the recorded curve 

in areas with no peaks via a similar method, which yielded much more satisfactory results.  

Because of the limited range of the WAXS – detector, the number of peaks available is limited and no 

higher orders other than for the reflections {100} and {101} are present. (Fig. 12)  
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Figure 12: a) A sample spectrum, from the particle sa, with the hkl-planes indicating the peaks. b) For 

better visualisation, the planes of interest are shown. The red and green planes represent the elastically 

similar planes which could be used for Warren-Averbach analysis. The blue plane is the basal plane, 

which can show broadening of certain peaks due to planar faulting. 

Even for those, only two orders are existent and therefore not suited for a detailed and bias free analysis 

such as Warren-Averbach. A workaround is still possible, under the assumption that crystal planes, that 

behave very similar elastically, could also be used for such an analysis. [41, 42] This still leaves us with 

the planes (100), (110) and (200), which are shown in Fig. 12 b). Because the (200) plane was quite hard 

to evaluate as it essentially sits atop the (112) plane, the evaluation was never conducted. Furthermore, 
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the (100) and (200) plane would not exhibit planar faulting due to growth, this analysis would have been 

futile, as the breadth of the peaks also scales with the l value of the planes observed. As these planes 

normal is perpendicular to the <001> direction, no broadening should occur for them. [12] In the case 

of the fcc crystal structure, an essentially equal criterion can be met, by calculation of the so called 

orientation factor. [41] This can be done here in a very simple fashion via  

æ = ℎ"�" + ℎ"�" + �"�"ℎ" + �" + �"  (70) 

with the h, k and l representing the indices of the plane. Thus, for similar gamma, the Warren-Averbach 

analysis can be used [43], but unfortunately no such planes of the possible zinc-blende structure of CdS 

and CdSe fall in the range of our measurement and consequently fail this criterion.  

Thus we had to simply use all of the peaks available for the Williamson-Hall plot analysis, which does 

actually work quite well for small values of the (hkl), but diverges for large angles. Another small pitfall 

was the absence of a full range of a reference spectrum, which made the deconvolution after Stokes an 

unusable method. The breadth of the sole peak of our reference material, PBBA, yielded a width of 

0.1 nm-1. With the minimal peak width recorded at around 0.7 nm-1, this yields a deviation of 1 % in 

the worst case following eq. 17 and is practically of negligible influence for our samples. For the 

evaluation it was assumed, that the instrumental broadening at higher q-values in our spectra does not 

grow too much. Ideally, one would have to fit the instrumental broadening and subtract it from the data, 

as it is a function of the scattering angle. [43]. 

Because the peak shape could be approximated very well with a Gaussian, we did not deem it necessary 

to employ more sophisticated integral breadth models, such as in ref [43] or in [44]. 

For further evaluation the PCG SWAXS software [4] was used to simulate the theoretical patterns for the 

NCs investigated in this thesis. This is a very useful tool to gain further understanding of the crystalline 

structure of the particles, as shapes and compositions of the users choosing can be simulated and 

compared to the actual experimental results. The software essentially calculated eq. 29 as described 

above and gives possibilities for refinement, such as rotation of core and shell relative to each other. 
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Results and Discussion 
 

In the following chapter we take a closer look at the analysis of the data measured at ID02 in the ASAXS 

and WAXS regime and the relation between the results of both methods. 

ASAXS 

The results of the experimental work at ID02 at the ESRF are presented here in Fig. 13. For the smallest 

core series, the curves exhibit many minima except for the the core sample. This would imply, that the 

shape of the core is unfortunately not definitively retrievable, but a spherical estimate is still possible.  

Figure 13: The recorded intensity I versus the scattering vector q is displayed in an overview plot of all 

the different sizes of the sc series, measured at an energy of 12580 eV. The symbols represent the 

measured points; the coloured lines serve as guides to the eyes. 

From the position of the first few minima, a rough estimation of the size of the NCs is possible. This is 

because the minima must coincide with the zeros of the spherical Bessel function, if the geometry of 

the particle is indeed spherical. As the core particle of the sc series does not exhibit more than one 

minimum, this estimate loses its accuracy because at least 2 minimums are needed to derive spherical 

geometry via this method. Hence, a deviation of the positions of the subsequent minima also hints at a 

deviation from this shape.  

Annealed

Thickest Shell

Medium Shell

Thin Shell

Core



   

39 

 

12580 eV

12000 eV

12644 eV

12657 eV

12732 eV

The anomalous effect is depicted for this series’ thickest shell particle in greater detail in Fig. 14, 

where the crossing of the energies is visible. The “crossing” of the data is due to the variation in 

scattering contrast of the Selenium atoms in the core, therefore changing the form factor of the core 

shell particle. The core itself shouldn’t show this effect, which means that in this case all the energies 

lie strictly parallel, because the change in energy simply results in a change in total scattered intensity. 

 

 

 

 

 

 

 

 

 

 

Figure 14: An overview plot of the sl particle at different x-ray energies. The scattered intensity is 

plotted in absolute units [cm-1] versus the scattering vector q.  In the red box, the crossing of the 

energies can be seen, which illustrates the anomalous effect to be evaluated. Again, the symbols 

represent the measured data points, whereas the line serves solely as a guide to the eyes. 

The sample of the medium core Fig. 15 and largest core series Fig. 16 are shown below. Both series also 

exhibit the crossing with energies, thus implying a difference in concentration for the Selenium atoms 

for the core and the shell of the samples. 
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Figure 15: Depiction of the recorded intensity versus q for the samples of the medium core series at 

12580 eV. Again, only one minimum is unfortunately useable for the core sample. 

 

 

 

 

  

 

 

 

 

 

 

Figure 16: Depiction of the recorded intensity against q for the largest core series at 12580 eV. Even 

though the background could not be subtracted correctly, the deviation from the Porod Law [11] is not 

big. 
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Evaluation with spherical models: 

 

As described above, we were able to fit the smallest and medium core series with the spherical core shell 

model as introduced on page 13 in eq. 25. But to arrive at meaningful results and to reduce the bias 

through the highly limiting model selection, we allowed first for 2 and later for 3 possible shells and 

assumed that no selenium ions were lost in growth and subsequent annealing of the samples. This means 

that we put an upper and lower limit of the total Se atoms in our particles, with the ideal number of 

selenium obtained from the fit of the core. Interestingly, both, the constraint on the total number of Se 

atoms and the extra number of accessible shells, didn’t result in any graded like solution with several 

shells with decreasing amount of the resonant element, nor did the iterations get stuck on one of the 

boundaries set by the constraints. A representative result is depicted in Fig. 17.  

 

 

 

 

 

 

 

 

 

 

Figure 17: Fitted (lines) of the recorded intensity I versus the scattering vector q of the thickest shell 

particle of the smallest core series. The corresponding data to the fit of a certain energy is painted in 

blue dots. The data at different energies are shifted relative to each other by a constant factor except 

the 12000 eV line. The smearing of the third minimum is highlighted by the red box. 

The fits for the sc series were of good quality, approximating several minima until the breakdown of the 

form factor, as shown in Fig. 17 for the sc sample. In this figure it becomes evident that even though the 

spherical core shell form factor is an excellent initial approximation, the third minimum gets smeared 

out due to the overestimated polydispersity.  

Deviation due to  

non-spherical shape 
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Figure 17: Fitted (lines) of the recorded spectra of the ml particle. The blue dots represent the 

experimental data and corresponds to the fit at the respective energies. The different scattering curves 

are shifted relatively to the red line by a constant factor. Smearing is already present on the second 

minimum, which highlighted by the red box. The deviation from the spherical form factor is highlighted 

by the green box. 

For the mc series, the form factor does not seem to approximate the actual geometry as well as it was 

the case for the sc series. For instance, as depicted in Fig. 18 for the ml sample, the breakdown of the 

form factor happens more severely for lower q values, which unfortunately is true for any sample within 

this series. The first shoulder does not get approximated well either, which is highlighted by the green 

box in Fig. 18.  In contrast to Fig. 17 the third minimum gets approximated worse, with the excessive 

smearing of the fit due to its high polydispersity. This indicates additional smearing, which could be, 

from a purely mathematical point of view, caused by the azimuthal averaging of a non-spherical particle. 

This is a quite general statement and includes many possibilities. In our case, the approximation is still 

quite good, which leads us to believe that the actual geometry does not deviate too far from the 

assumption of a sphere. This statement is further solidified by TEM images of the particles by our 

partners from the ETH Zurich, which will not be shown in this work. Therefore, it is justified to assume 

smearing due to faceting of the surface of our particles and/or a slight deviation from a spherical to an 

ellipsoidal shape. This seems to be also present to a lesser degree in the sc series, as the fit starts to 

deviate for the third minimum, although to a smaller degree (Fig. 17).

Nevertheless, for both, the sc and mc series, the resulting electron and Selenium density profiles are of 

similar quality and show the same features. A representative density profile is shown in Fig, 19 which 

Smearing on the second minimum. 

Deviation due to  

non-spherical shape. 
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exhibits sharp interfaces of both densities at any of the interfaces present. Furthermore, it seems as if all 

the Selenium atoms remain in the core, with no interdiffusion between core and shell. The higher 

electron density in the core coincides with the density of Selenium atoms in the core, which corresponds 

to the theoretical values for CdSe. These results are in agreement with the high resolution TEM-studies 

performed in ref [45], in which no graded transition between core and shell has been reported. To test 

whether a smeared interface profile would describe the data better, the continuous form factors, 

described on page 26 and onwards, were employed. A representative result of these trials will be 

discussed later in this chapter of this thesis in Fig. 23 on page 48.  

 

Figure 19: The resulting values for the atomic densities of Selenium and the electron densities of the 

CdSe core and CdS shell versus the distance to centre of the sl particle. The theoretical values of the 

Selenium and electron density in the core and shell for a perfect step-like profile are also displayed. 

The evaluation of the lc series with a spherical core-shell form factor was unsuccessful. As already stated 

in the paragraphs above, the solutions of the preceding series’ fits lie very well within the constraints on 

the fit parameters. This isn’t the case for the lc series, for which even the sole usable minimum (Fig. 16) 

of the core could not be approximated without unreasonable large constraints in the range 20% on the 

polydispersity. If we regard the representative fits of the sc and mc series in Fig. 17 and 18, a slight 

trend in the shape regarding the size of the core is implicated. The larger the core, the more the shape 

seems to deviate from the simple spherical case. It is therefore plausible, that the shape of the lc series 

simply isn’t approximable with a spherical form factor under the assumption of a monomodal 

distribution of the core radii. But one also shouldn’t dismiss the less then optimal subtraction of the 

background due to the effects on the sample discussed in the experimental section. There still exists the 

experiment

experiment

theo : core 1176 e nm3 , shell 980 e nm3

theo : core 17.89 Se nm3 , shell 0 Se nm3
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possibility, that more than one minimum would have been evaluable and therefore more information 

would have been extracted. The resulting fit is shown in Fig. 20. 

 

Figure 20: The fit of the recorded intensity of the sole usable minimum for the lc particle is shown, 

where the significant deviation from the spectrum is observable for q-values > 1.7 nm-1. 

If we now continue this analysis for all the particles of the smallest and medium core series, while 

keeping in mind that the largest core series did not give correct results, we didn’t find any interdiffusion 

of notable degree. Hence, we can conclude that even at relatively elevated temperatures of ca. 310 °C 

no interdiffusion occurs. The resulting profiles for the Selenium concentration and the electron density 

are shown in Fig. 21 and Fig. 22. The theoretical values of the CdSe core and the CdS shell are retained 

quite well for the whole synthesis process respectively, even though the electron density seems to very 

for the thinnest and medium shell samples of both sereis. It was not possible to fit the annealed sample 

of the smallest core series, as it was presumably mixed with an unknown sample of any of the three 

series’. Still, there was an attempt made at separating the two different particles in the mixture via a 

simple spherical core-shell fit with two different particle species with the result indicating that the 

annealed particles of the smallest and medium core series have been mixed. This could also coincide 

with the synthesis process and actually seems like a reasonable result, but further evaluation, also 

concerning the chemical structure of the samples, was not unambiguously possible.  
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Figure 21: The atomic density of Selenium ¾ is plotted for both core and shell of the mc and sc series 

versus the synthesis step in hours. The theoretical densities are also shown. 

 

 

 

 

 

 

 

 

 

 

Figure 22: The calculated electron densities ρ of the core and shell for the sc and mc series versus the 

step in the synthesis process in hours. The theoretical electron densities of the bulk materials are also 

depicted.  
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Interestingly enough there is more variance in the fitted electron densities and a certain trend seems to 

be visible. The electron densities for the core are right on point with the theoretical values, whereas with 

increasing time in the synthesis the difference between core and shell seem to shrink, until the very 

largest shell right before annealing. At this step, the theoretical values are again within margin of the 

error bars. This would actually point to some kind of diffusion between both core and shell, which we 

previously have ruled out. From a mathematical point of view, these results could also be interpreted 

such that the Selenium concentration is not very sensitive to the initial values of the fit parameters, 

whereas the electron density can vary to a bigger degree. If we think back to the data analysis chapter 

where we stated that the total variance of the scattered intensity due to anomalous scattering was in the 

low percent range, this makes perfect sense. Still, to gain further understanding, we should also take the 

resulting sizes from the fits into account. (Fig. 23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: The total size and the core size versus the process step in the synthesis. The core sizes are 

highlighted by the blue box. 

From Fig. 23 we learn that the smallest core particles seem to grow faster than anticipated by our 

chemist, yet still both series reach almost exactly the same final size. The fitted core size also seems to 

be largely consistent over all of the steps in synthesis, although a very minute increase in size seems to 

Core size over process step in the 

synthesis represented by an 

arbitrary time value. 
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be present after annealing. When we assume the same amount of precursors present for any core size, 

smaller interfaces grow faster than larger ones if the process is only limited by the speed by which new 

precursors are reaching the surface, but not the total amount present in the solution, or the diffusion 

process on the surface of the particle. To study whether or not any interdiffusion between core and shell 

is present, we show a representative evaluation of the annealed particle of the smallest core series. (Fig. 

24) The continuous form factor used has been described on pages 28 to 31.  

 

 

 

 

 

 

 

 

Figure 24: Here the resulting electron density versus the distance to centre from the fit with the 

continuous form factor from the data analysis chapter is depicted. The indicated values for core and 

shell hold following the colour code, meaning that until the step like transition, the green line represents 

the electron density within the core. 

Fig. 24 shows a clear step-like transition between core and shell, with slightly lowered electron densities. 

The core radius comes out a bit smaller at 1.65 nm, whereas the total particle diameter still reaches 10.4 

nm. The same step-like behaviour can be shown for any particle of the smallest and medium core series. 

Because of the non-spherical shape of the largest core series no fit can be achieved. Even if one would 

assume that the continuous nature of the electron density could smear out the fit just enough to fit a 

select spectrum, spherical symmetry is still implicated in eq. 61. Hence, even though it might be possible 

to fit the first minimum further minima won’t show good agreement because the weight of these still 

does not comply with the spherical case. Therefore, this would lead to enhanced smearing via high 

polydispersity or nonsensically big values of the shape parameter d north of the limit discussed on page 

28.  

The final results of the analysis of the sc and mc via the spherical core-shell form factor are summarised 

in table [3]. 

shell, c 920 e nm3

core, s 1170 e nm3
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measured data

fitted curve

Table [3]: The final sizes and respective selenium and electron densities are listed for the sc and mc 

series.: 

 Medium Core Series Smallest Core Series 
Series 1865 1887-1 1887-2 1887-3 1887-f 1895 1897-1 1897-2 1897-3 

r core [nm] 2.09 2.174 2.16 2.169 2.25 1.79 1.77 1.77 1.769 
t shell [nm] - 1.56 2.18 2.94 3.12 - 1.82 2.73 3.43 

Se core 
[at/nm^3] 

18.10 17.00 17.80 17.82 16.24 18.99 17.99 16.57 17.52 

ρcore [e/nm^3] 1167.71 1085.44 1219.73 1164.55 1155.73 1163.53 1111.49 1149.48 1119.12 
ρshell [e/nm^3] - 1033.95 1056.43 943.48 981.202 - 1049.15 1070.63 939.93 

 

Non-spherical and semi-analytical evaluation: 

 

For the non-spherical analysis several approaches were applied, as the fit via a simple EXCEL-program 

employing the spherical core-shell form factor didn’t deliver useful results, as discussed in the previous 

section on pages 43 and 44. Therefore a different form factor was applied to try and fit the spectrum of 

the largest core series, namely an ellipsoid of revolution. Because no extreme aspect ratios were 

expected and the first trial run only fitted the core, the polydispersity was assumed to be the same for 

both the long and short axes of the particle. Furthermore, the possibility for both prolate and oblate cases 

were covered by the constraints put on the variables of the fit. The result was more or less satisfying, 

but still didn’t deliver a good enough approximation as shown in Fig. 25. Even though the data was 

better approximated when compared to the fit shown in Fig. 20, the deviation on the second minimum 

is significant.  

 

 

 

 

 

 

 

 

 

Figure 25: The resulting fit of the recorded intensity versus q of the lc particle is displayed.  
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Trial runs with a tri-axial ellipsoid simply took too long to be computed for core shell system, which 

can be related to the large number of parameters that had to be fitted. For instance, if we consider a core 

shell particle we need  

• six parameters for the axes  

• one for the density of the sample in solution  

• four parameters for the electron densities and the number densities of the Selenium atoms  

• one for the polydispersity under the assumption that all the axes, regardless if situated in the 

core or the shell, show the same behaviour 

which comes out at 12 parameters for a single, simple core-shell particle. Furthermore, the repeated 

integration for the polar and azimuthal averaging as shown in reference [16] renders this approach hard 

to execute in a timely fashion. Hence, we decided to follow the route taken by Burian [32] and use ab-

initio shape retrieval to determine the shape of our samples of the largest core series. 

Shape retrieval by DAMMIN: 

 

The shape retrieval of the largest core series was then subsequently carried through just as described in 

the data analysis section, the analysis of the data was carried through with self-written scripts in 

Mathematica based on the evaluation methods developed by Burian [32]. An example of the shape 

retrieved for the core is shown in Fig. 26. For better evaluation of the facets obtained from the fit we 

chose a convex hull mesh. 

 

 

 

 

 

 

 

 

Figure 26: Various views of the convex hull mesh of the DAMMIN fit of the largest core. Even after 

averaging 5 distinct fits, facets are still well formed. The long and the two short axis are also highlighted. 

Short axis ~ 5.6 nm 

Long axis ~ 6nm 
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As is clearly evident from the picture above, the particles exhibit a non-spherical shape with strong 

faceting and can only be approximated by an ellipsoid of revolution. As a testament to the added 

smearing of the curve due to the facets present, the fit with the ellpitical form factor didn’t result in a 

dramatically decreased polydispersity below 10%, whereas DAMMIN works under the assumption of a 

monodisperse solution and usually cannot reproduce the crystal shape well for polydispersities above 

single digit values [32]. On the upside, the facets of the crystals are well defined, which in turn means 

that the smearing is very possibly due to the faceting and not to high polydispersity. Still, a description 

of such heavily facetted particles is not always easy, especially if we look at the results obtained from 

the linear evaluation method by Burian for the lc particle. (Fig. 27) 

 

Figure 27: The value plotted on the x-axis is the distance between two dummy atoms on the particle 

surface, with the measure taking through the centre of the particle, versus the probability of this value 

occurring for two dummy atoms on the particle surface. As can easily be seen, a simple distinction of 

the half-axis is not easy and not as simple as is the case in Ref [32]. The green bar marks the shorter 

axis, the blue bar the longer axis. 

The shape of the curve in Fig. 27 is roughly divided into two plateaus with many small minima within 

them, which may represent single facets for which the probability to measure the distance dead centre 

is smaller than for area elements outside. This highly simplified picture is not fully applicable, as the 

facets’ normal vector at its centre doesn’t necessarily run through the middle of the particle, but the 

general idea seems reasonable enough to be expanded on. 

Short axis 

Long axis 
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Following Burian, the half axis of an ellipsoid of revolution can be determined by taking the largest and 

smallest distances found. The particles here represent an extension to the tri-axial case, away from the 

ellipsoid of revolution, which complicates the picture. Additionally, the results obtained should be 

checked by visual evaluation, which was also implemented and allows a first look at the structure. The 

maximum half-axis came out at around 6 nm, which is far off the maximum values present in the 

histogram. This is a testament to the strong faceting and deviation from the ideal elliptic shape with the 

three main axis perpendicular to each other. But this results in the possibility to coincide the 

measurements with the facets via the visual evaluation and reconstruct the crystal in that way. 

While fitting the data, we ran into an additional problem concerning the shapes, as the results obtained 

from DAMMIN weren’t fully consistent especially for the medium shell sample of the largest core 

series. In this case two shapes were retrieved that didn’t even yield similar aspect ratios, as one could 

be approximated by a prolate ellipsoid, while the other covered the oblate case. This could be related to 

the small amount of Shannon channels of ca. 7.2, which is far below the value recommended by Burian, 

of at least 10, and by Svergun (see [32] and the reference therein) for core-shell systems. This could 

potentially not only influence the shape retrieved, but also the occupancy values in regard to the 

differentiation between core and shell, as this parameter should essentially represent the electron density 

[32]. The resulting two competing shapes are depicted in Fig. 28. 

 

 

 

 

 

 

 

Figure 28: On the left the prolate case of the results is pictured, on the right the other solution. Both 

particles result in the same SAXS spectrum. 

Although both solutions in Fig. 28 represent a prolate particle, the resulting size and aspect ratio renders 

the left solution unphysical with a long axis of about 16 nm. The resulting sizes, obtained from the fit, 

were calculated to represent the radius of a sphere with equivalent volume. Table [4] shows the sizes, 

the resulting aspect ratio and the radius of the sphere with equivalent volume obtained from the 

DAMMIN fits. 
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Table [4]: Size and aspect ratio of the largest core series’ DAMMIN fits. 

Particle short axis [nm] long axis [nm] aspect ratio equ. radius [nm] 

lc 5.6 6 1.07 5.54 

ls 6.9 8.5 1.23 7.39 

lm 9.5 11.2 1.2 10.05 

lt 7.7 13.4 1.74 9.31 

la  9.12 14.3 1.56 10.54 

 

The lt particle exhibits a very large aspect ratio and a rather small equivalent radius. This is most 

probably due to the fit not delivering the correct result. This reasoning is undermined by the fact, that 

the volume of the particle seems to get smaller with increasing growing time when compared to the lm 

particle. Additional reasons, why this result cannot represent the actual physical mean particle of this 

sample will be discussed in the WAXS part of this chapter. The sizes are now all depicted with the sizes 

of the smallest and medium core series in Fig. 29. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: The sizes of all three series are plotted against the time of extraction from the synthesis. 
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Interestingly enough, even though the three series start from a different core size they all ultimately 

reach the same final size, with the thickest shell of the largest core particle looking to be an outlier. 

Generally, the overall quality of the fits and the unambiguity of the structures obtained increases with 

the amount of Shannon channel. 
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WAXS:	 

 

After subtraction of the recorded backgrounds, the resulting curves used for analysis are shown in the 

following Fig. 30-32:  

 

 

 

 

 

 

 

 

 

 

Figure 30: The diffracted intensity I is plotted versus the scattering vector. The WAXS spectra of the sc 

series shifted relative to each other by a constant factor. The Wurtzite Bragg positions for bulk CdSe 

and CdS are also shown. 

From the st sample on it is clearly visible that the Bragg peak positions coincide with the CdS-

Wurtzite positions even for the thinnest shell particle. The scattering of the core is therefore probably 

negligible for the sc series. The Bragg position of the NCs with a thick shell shift to larger q-values 

with increasing shell thickness. This implicates uniform compressive strain in the particles, with 

details concerning shifts of singular peaks left to more detailed analysis beyond the scope of this work. 

But also the mc series exhibits CdS Wurtzite structure from the thinnest shell sample on (Fig. 31), 

whereas the lc series’ Bragg positions only align with the CdS Wurtzite positions from the medium shell 

sample and onwards (Fig. 32). 
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Figure 31: The recorded intensity of the mc series is plotted versus the angular value in q. The 

Wurtzite Bragg positions for bulk CdSe and CdS are also shown. The data was again shifted relative to 

each other. 

 

 

 

 

 

 

 

 

 

 

Figure 32: The recorded intensity of the lc series is plotted versus q an shifted relatively to each other 

by a constant value. The Wurtzite Bragg positions both for bulk CdSe and CdS are also shown. 
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CdSe Wurtzite

CdSWurtzite

The resulting curves implicate some very interesting features and some obvious variance in the crystal 

structure of the 3 different series. The change in peak heights in the larger core series implicates a change 

on the crystalline level. To shed some light on the changes being observed here, we simulated the 

particles of the three series, using PCG SWAXS, with the structural data obtained from the ASAXS data. 

For the smallest core series, everything seems quite well behaved as depicted in Fig. 33.  

 

 

 

 

 

 

 

 

 

  

Figure 33: The actual WAXS pattern of the st particle is depicted with two simulated patterns. The 

recorded pattern is drawn red, green and blue depict simulated data by PCG SWAXS. To guide the eye, 

also the Bragg positions of both, CdSe and CdS in Wurtzite structure, are plotted.  

From Fig. 33 we can learn several important facts about the particles, as these effects seem to be visible 

for every single sample from our experiments. First, the NCs seem to be homogeneously compressively 

strained, as the peaks are all shifted to the right regardless of the Bragg peak observed. Second, as the 

simulated patterns, which represent epitactic and topotactic realisations of the same core shell system, 

in fig. 33 show, it is not possible to differentiate both. The green curve, which shows qualitatively similar 

peaks, is obtained via the simulation of a particle with a, in respect to the core, relatively tilted shell. 

The blue curve was calculated with an epitactic relationship between core and shell. There is no simple 

indication of a strict epitaxial or topotactical relationship between core and shell, which further 

necessitates the application of HRTEM techniques to determine structural features as such mentioned 

before. Interestingly enough, it does not seem to matter which way the shell is being turned in relation 

to the core, as the difference between configurations are very minor. Third, as being seen by the position 

of the simulated peaks with respect to the depicted positions of the ideal bulk CdSe and CdS Wurtzite 

structure, the total size of the simulated system doesn’t cause any shift in the peak and falls directly on 

Thickest Shell

Rotated Shell

Epitactic
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CdSe wurtzite

CdSe zincblende

CdSe zb wz

the CdS bulk positions. Additionally, it can be seen that the scattering of the core seems to be negligible, 

which is explained later in this work via the phase percentage of the core and shell. Unfortunately, if we 

take a closer look, the heights of the peaks relative to each other still don’t quite match the simulation, 

a fact that might implicate a partial phase change from Wurtzite to Zincblende in the crystals. To explain 

this further, we take a look at simulated data from Zincblende and Wurtzite crystals in Fig. 34:  

  

 

 

 

 

 

 

 

 

 

Figure 34: The intensity I is plotted against the scattering vector q, with the curves shifted relative to 

each other by a constant factor. The particles simulated are purely CdSe, the sizes used for these 

simulations are corresponding to the mc series, except for the pure Wurtzite phase, to exaggerate the 

effects of phase-mixture. The general trends match the data shown here. 

Fig. 34 shows some important evidence when evaluating the peaks from all three series. The {111} peak 

of the Zincblende structure coincides with the {002} peak from the Wurtzite structure, which make 

sense if we remember that these are the most densely packed layers in these materials. The same 

argument holds for all the other coinciding peaks and delivers important input for the following analysis, 

regardless of the chemical structure in our case. 

As the peaks growing relative to their neighbours are the {002}, {110} and the {112} Wurtzite planes, 

who coincide positionally with the {111}, {220} and {311} Zincblende planes respectively, it seems as 

if a growing amount of Zincblende is present in the particles with growing core size. Concerning this 

transformation, it has been reported that uncapped CdS nanocrystals switch from the Wurtzite to the 

Zincblende structure without external influence [46], albeit faster under pressures conditions far away 

from the standard conditions defined by the International Union of Pure and Applied Chemistry 

CdSe Wurtzite

CdSe Zincblende
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(IUPAC) [47]. A somewhat different and speculative way for this transformation to occur could also be 

due to the presence of stacking faults. If two intrinsic faults are next to each other within the distance of 

a plane, this essentially forms an extrinsic stacking fault, which in turn corresponds to a {111} plane of 

a Zincblende structure. The presence of a small fraction of Zincblende could potentially lower the energy 

barrier that needs to be overcome for the transition between these two structures to occur in the whole 

particle via martensitic transition [9]. This model seems also probable from a materials science point of 

view, as the stacking fault energy of CdSe and CdS in their Wurtzite configuration is very low (~10 

mJ/m² [48]), lower than silver with ca. 20 mJ/m² [59], which already is stated as a low-stacking fault 

energy material. As with lower stacking fault energy the ease of generation of such growth fault 

increases, one can easily imagine that the energy expenditure for two faults could be “repaid”, even if 

the difference in energy between Zincblende and Wurtzite is only 0.3 meV per atom [46]. 

The evaluation of the predicted phase fractions concerning the core and the shell are shown in Fig. 35, 

of which essentially only the large core series shows any interesting contribution to the total scattering 

of the particles.  

 

 

 

 

 

 

 

 

 

 

Figure 35: The relative scattering contributions for the lc series are shown versus the step in the 

synthesis process. The volume fraction of the CdS and CdSe phase calculated by the radii and shell 

thicknesses is obtained by the fits from the SAXS data.  

Because the scattering contribution of the core is quite high for the lc series, the peaks are relatively 

shifted to the CdSe Wurtzite positions as observed earlier in Fig. 32. In turn, this means that the WAXS 

spectra of the sc and mc series are dominated by the CdS Wurtzite shell. This explains the position of 

particle: core thinnest shell medium shell largest shell annealed particle 
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the thinnest shell on the largest core particles, as the predicted phase fraction of CdSe, under the naïve 

assumption of spherical symmetry, lies somewhere between the bulk positions of the pure material. But 

again, the Zincblende peak seems to dominate, thus a higher phase fraction of said structure is expected. 

The evaluation of the full widths at half maximum (FWHM) was done via fitting of a Gaussian and 

under an assumed instrumental profile of the same shape. Following the integral breadth methods 

discussed on page 9 and 10, this allows for an easy decomposition of the peak into an instrumental 

contribution and the pure scattering of the crystal plane. This was achieved by applying equation 17, 

although the influence was, as described in data analysis section, negligibly small. If we now plot the 

FWHMs over the actual peak position, we can gain the following “map” and conduct a Williamson-Hall 

analysis. The following Fig. 36 show the analysis done for the thickest shell particle of the smallest core 

series. The FWHMs of the Bragg peaks were used to calculate the size for the corresponding set of {hkl} 

planes via eq. 15 with the value of K set at 0.94. This leads to a systematic error, which’s extent should 

be small enough for such a “quick and dirty” analysis with the limited set of peaks available. 
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d~9.34 nm; ε~0.64% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: In the plot above, a fit of the Bragg peaks of the thickest shell sample of the sc series with 

Gaussians is shown. The fitted FWHM’s are then used to determine the strain and mean size of the 

sample in the lower plot by the Williamson-Hall method via plotting the FWHMs versus the q-values of 

the Bragg reflections. 

As can be seen above, the resulting widths don’t lie on a straight line. Because especially the planes 

{101} and {102} seem to be substantially broader than the neighbouring peaks {002} and {110}, the 

fitted regression line yields a steeper slope. This results in a decreased estimated size of the particle at 

9.34 nm, which is about one nm smaller when compared to the SAXS size of ca. 10.4 nm. Generally, 
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one can assume that this relates to a smaller crystalline size, with amorphous areas that reduce the 

measured scattered length. If we conduct this kind of evaluation for every sample and compare these 

sizes to the SAXS diameters, we obtain Fig. 37: 

Figure 37: The sizes obtained from the SAXS and WAXS data are shown, versus the synthesis step 

reduced in an arbitrary point in time in hours. These correspond to the samples in the series, as outlined 

in table on page.  

Obviously the sizes in Fig. 37 from both scattering regimes seem to follow the same trend, with the 

sizes of WAXS being considerably but consistently smaller. It is also evident, that the DAMMIN fit 

for the ll sample is of low quality, with the domain size for WAXS being bigger than the radius of 

equivalent volume (as discussed on page 53). Aside this exception, the only true difference can be 

observed for the annealed particles of all three series. If we compare the size from the WAXS data to 

the diameter obtained from the SAXS data of the lc and sc series, for which the diameter increases 
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slightly upon annealing, the crystallites seem to shrink. This can be interpreted as a roughening or 

restructuring of the particles surface, hence a decrease in the crystaline scattering volume in the 

particle. The mc series WAXS data doesn’t seem to follow this trend as explicitly, but the increase in 

size from the ml to the ma sample is evidently not as pronounced as for the diameter from the SAXS 

data. For a more complete picture, we look at the FWHMs of all the series respectively plotted 

together. (Fig. 38 - 40)  

 

 

 

 

 

 

 

 

Figure 38: The FWHMs of all the samples Bragg peaks of the lc series are plotted against their position 

in q-space. The red and blue lines indicate the mean width of the boxed values, which can be used to 

calculate the aspect ratio from the values in the respectively coloured boxes. 

At this point, we should shortly discuss the effect of the volume fraction on the positions of the peaks 

observed. Fig. 38 shows some apparently strange behaviour of the peak positions for the Bragg reflexes 

especially of the {103} peak. But if we think back to the results in Fig. 32, it is obvious that the Wurtzite 

peaks coinciding with the Zincblende structure on {002} and {110}, as earlier discussed on page 57, are 

clearly more pronounced. The “pure” Wurtzite structure peaks {102} and {103} are very small, which 

can be explained by a dominant phase fraction of Zincblende structure in the cores. But upon formation 

and subsequent growth of the CdS shell, these positions increase in recorded intensity, implying a 

growing amount of Wurtzite phase in our particles. Still, in the end, the {102} and {103} peaks exhibit 

significantly higher values for the FWHMs, meaning a smaller scattering domain size, which aligns 

nicely with the lower recorded intensity of these peaks when compared to their direct neighbours.  
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Figure 39: This figure shows a map of the FWHMs of all Bragg peaks versus their position in q-space 

of the mc series. As in the lc series, the medium core series also shows small anisotropy in shape, hence 

indicated by the blue and red dashed lines. The core is not shown, because the signal to noise ratio was 

unfavourable. 

 

 

 

 

 

 

 

 

Figure 40: The FWHMs of the Bragg positions from the sc series are plotted against their positions in 

Q-space. The red box highlights very similar FWHM values. 
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From these maps several things can be extracted, aside the discussion on Fig. 38 above. It can be clearly 

seen especially from the {110} and {103} positions of the peaks that, according with the predicted 

scattering contribution of the core, the peaks shift from the CdSe Wurtzite to the CdS Wurtzite position.  

Therefore, in contrast to the medium and smallest core series, the dots of the largest core series seem to 

be jumbled, but a general trend in the FWHMs is still visible. The growing difference in peak widths 

with increasing time between “angled” planes with a non-zero value for the l-value in the Miller indices, 

and “perpendicular” planes with the l-value being zero. Namely, the angled planes are the {101}, {102} 

and the {103} planes, the perpendicular planes are denoted by {100}, {002} and {110}. These are 

grouped by a blue and red box respectively to further exaggerate the difference. Now we use the mean 

FWHM values of the perpendicular and the angled planes, indicated by the red and blue line 

respectively, to calculate at an aspect ratio between these two with eq. 15. This comes out as  

1.50.95 ~1.6 

This value corresponds very well with the value obtained for the la particle by SAXS. If we do the same 

for the medium core series, we have 

1.050.8 ~ 1.3  
For the sc series, no such analysis is necessary, as the particles are of high spherical symmetry. This fact 

can be again seen in the total breadth of interval of the FWHMs in Fig. 40. For the respective step in 

synthesis, the values are very close to each other, hence again implying a spherical shape. 

As stated in the SAXS part of the analysis, we assumed that with increasing core size the shape will 

deteriorate from the spherical case, as the largest core series seems to exhibit a more elliptical shape. An 

aspect ratio of 1.3125 seems too big of a contrast between the smallest core series and the medium core 

series with only 2-3 monolayers size difference between the cores, which will be discussed further on. 

If we remember eq. 20 from the introduction, the broadening seems to target angled planes which 

incidentally seem to fit the formula more or less well. As can be seen in Fig. 40, the FWHMs, in this 

case belonging to the sl sample, are split into the aforementioned angled and perpendicular planes. These 

two sets of values are now being fit separately under the light of the traditional Williamson-Hall method 

to calculate the particle size. The results are depicted in the following Fig. 41. 
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Figure 41: The Williamson-Hall plot of the sl sample, hence the FWHMs versus the q-values of the 

Bragg reflections are shown. The perpendicular and angled planes are being evaluated separately, with 

the red dots belonging to the perpendicular and the green dots to the angled planes respectively.  

Fig. 41 clearly shows that some kind of peak broadening seems to be present, which, as discussed above 

on page 66, might be related to intrinsic stacking faults. The calculated diameter of 10.37 nm is very 

close to the SAXS value of ca. 10.4 nm for the sl sample if we disregard the angled planes. The result 

from angled planes deviates severely. This evaluation has been conducted on the sl, sm and st samples, 

dismissing the mixed sa sample. The results are summed up in table [5].  

Table [5]: WAXS vs SAXS sizes, without the annealed particle and the core with no “angles” planes 

considered for analysis. 

 WAXS size [nm] SAXS size [nm] WAXS/SAXS [%] 

Thickest Shell 10.37 10.4 99.7 

Medium Shell 8.45 9.013 93.8 

Thinnest Shell 6.71 7.19 93.3 

 

But as plane {103} doesn’t seem to exhibit big broadening, also different mechanisms such as twin 

faulting should be investigated as this doesn’t fully fit the prediction by eq. 20. Twinning is unfortunately 
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quite difficult to determine and usually needs high quality data of at least three orders of one broadened 

plane to separate strain, size and faulting broadening of the crystals under investigation without using 

too many assumptions [49]. The used work-around in the analysis so far only applies to broadening due 

to faulting. Additionally, the medium and largest core series don’t allow for such an analysis due to the 

non-spherical shape and the resulting splitting of the widths into angled and perpendicular planes. A 

legitimate objection to the proposed analysis poses the possibility that the other series might too exhibit 

more extensive broadening due to twinning and stacking faults and therefor might not exhibit an elliptic 

shape at all. At least for the largest core series, the shapes obtained from the shape retrieval clearly show 

severely non-spherical and facetted particles, such as in Fig. 26 & 28. Hence, even though the aspect 

ratio of the medium core series in the WAXS regime is quite high at 1.3 and might be overestimated, 

not all of it should be related to broadening due to faulting. In the case of the largest core particles, it is 

quite unrealistic to have the big difference in peak widths solely due to broadening. The biggest 

difference between two widths in the sc series is roughly 0.2 nm-1 between the {002} and {102} plane 

for the annealed particle (Fig. 40). In contrast, the difference between the same planes for the la sample 

comes out at ca. 1.2 nm (Fig. 38). As these particles have around the same diameter, which can be readily 

seen in Fig. 37 the faulting should be similar. It is therefore highly unlikely that the broadening of the 

angled planes of the lc series is purely due to stacking faults. 
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Summary and Outlook  
 

This work has revealed multiple interesting features of the CdSe/CdS core-shell nanocrystals produced 

via the hot injection method as described in [5]. These results include: 

1. existence of a sharp interface between core and shell with no Selenium present in the Shell 

2. increasing aspect ratio and faceting with increasing diameter 

3. stacking faults and/or twinning within the particles 

4. mixture of Wurtzite and Zincblende for particles with a core radius of at least 2.0 nm 

5. a roughening of the surface and subsequent decrease of the crystalline domain through annealing 

of the particles 

Interestingly, the core size seems to largely determine the phase fractions between CdS in Wurtzite and 

Zincblende configuration of the shell. Whether this is due to a larger amount of stacking faults in the 

core, hence a larger phase fraction of CdSe Zincblende present, or to the increasing elliptical symmetry 

of larger cores is not yet determined. It isn’t even clear if the partial phase change of a particle is directly 

related to the shape of the particle, as the dynamics of growth of nanocrystals is yet not understood well 

enough to clearly distinguish between phase change while or after growth. Aside from the effects of the 

shape of the NCs, it is evident from the combined knowledge from the ASAXS and the WAXS data to 

conclude a pronounced roughening of the particle surface upon annealing. As this roughening is 

probably the cause of many trap states, it is highly questionable whether the quantum yield improves, 

through heat treatment. 

To gain this information, several techniques were adapted to  

• fit diffuse interfaces  

• estimate the background of wide angle scattering data  

• estimate the aspect ratio of particles without any needed previous information 

• perform fits by a modified form factor for ellipsoids of revolution, based on an approximation 

via series expansion 

There is not a lot work done on evaluating dislocation densities, stacking faults and their influence on 

performance and other qualities such as phase fractions. But these parameters might be key to design 

nanocrystals in the future with a broader range of tailored properties. For instance, by choosing or 

optimising synthesis parameters of materials to arrive at higher stacking fault energies, it could be 

possible to limit the amount of stacking faults and dislocations and therefore minimize trap states which 

decrease performance. Also, with the phase change mechanism proposed above, the chance of 

synthesising particles with fractions of two phases, one unwanted, could be limited to small and therefor 

negligible amounts from the perspective of performance. But it is still not really easy to gain information 
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on these parameters, which necessitates the development of faster and more reliable methods. This is 

why one could expand on the evaluation by Burian [32] and bridge the difference in parameters obtained 

from SAXS to WAXS. For example, as stated in the DAMMIN-analysis section of this work, the valleys 

of the graph from the linear evaluation could be related to the facets of a convex particle, which can be 

done if one also tracks the direction of the cylinder stuck through the centre of the crystal and relate it 

to the size measured from it. (Fig. 42) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: The probability of a distance between two diametrical atoms measured versus the measured 

dimension. Here we highlighted the corresponding possibilities of finding certain distances and 

correlated them with the directions the cylinder was stuck through by the red dots in the small boxes.  

By tracking the positions at which the measuring bar was stuck through, additional information can be 

gained. For instance, the information gained allows to differentiate singular facets (of which 2 are shown 

in Fig. 42) and build a convex set out of this data, which then could be used to calculate and even fit the 

WAXS pattern [50]. Now, it should be possible to separate the broadening present in the peaks into size 

Face 2 

Face 1 
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effects and other parameters, such as strain, stacking faults, interstitials etc, thus using the information 

from ASAXS to evaluate the WAXS portion of the scattering. If the scattering contrast is big enough, 

one can even try to differentiate between core and shell by a cut-off criterion for the occupancy value 

for the linear evaluation. First promising hints that this is possible with our system, which exhibits a 

difference of contrast of 17% between core and shell for theoretical values, are still being worked on. 

Therefore, both techniques would be needed to gain a clear and full understanding of the crystalline and 

chemical structure of the sample und further the development of colloidal nanocrystals in the future. 

An important side note to the whole analysis presents the possibility to decompose the three parts of the 

anomalous scattering in eq. 41. Obtaining data through increased measurement time that can be split 

this way, could make the data analysis a lot easier regarding the chemical profile of the NCs. Hence we 

highly advocate to estimate the needed time of measurement, at a given flux, necessary to perform such 

a decomposition successfully, if the samples allow it. [22] 
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