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Introduction

In a first intention the term numeration systems is associated to representing numbers. Indeed,
it is already taught in school how to represent numbers in bases alternative to 10. In view of the
increasing importance of computers the focus is concentrated on base 2. The idea of numeration
systems gives rise to several generalisations. Rényi (see [45]) introduced the so called S-expansions
which describe a representation of real numbers by the use of a non-integer base (but still with
non-negative integers as digits). After their introduction in 1957 the S-expansions gained interest
of other mathematicians and have been investigated since then from many points of view.

Another way of generalisation of the concept of numeration systems was given by Knuth in 1969
(see [38]). He considered the complex plane and showed that —1 4+ ¢ acts as a base for representing
complex numbers using digits 0 and 1. This result seems to have started off a great number of
research concerning this topic. Katai and Szabd (see [36]), for example, gave a necessary and
sufficient condition for Gaussian integers to be a base for representing complex numbers. Kétai
and Kovacs (see [34, 35]) added analogous results for real and imaginary quadratic fields. These
types of numeration systems were known as canonical number systems. In 1991 Pethé (see [44])
gave a generalised definition by referring to a canonical number system as a numeration system
in a residue class ring of a polynomial ring.

Figure 1: Knuth’s Twin Dragon

Although B-expansions and canonical number systems seem to be completely different notions
of numeration systems Akiyama et al. (see [3]) succeeded in unifying them in 2005 by introducing
so-called shift radix systems. It was the initial paper of a series of research papers concerning shift
radix systems (¢f. [6, 7, 8]). But also other mathematicians were interested in shift radix systems
and dealt with them.

The present thesis is more or less fully devoted to shift radix systems. At first we give a survey
of what is known about them and we are going to improve several results. We will carefully
investigate their relation to (-expansions and canonical number systems.

We will also treat fractal tiles induced by B-expansions, canonical number systems and shift
radix systems and show some connections between them. As an example, in order to get a
rough idea of such fractal tiles, we go back to Knuth’s numeration system of complex numbers.
Consider the complex numbers that only have a “fractional part” (and therefore “integer part”
0). Represented in the complex plane these numbers give the fractal tile shown in Figure 1. It
is known as Twin Dragon and we will meet it again in an example concerning tiles induced by



canonical number systems. The two-dimensional real space can be completely covered by the
integer translates of the twin dragon such that two different translates do not overlap. Such types
of coverings are called tilings. Tiles induced by canonical number systems are known to have this
property. For the other two types of tiles this is only conjectured. We will give a lot of examples
of tiles that confirm this conjecture.

The notion of shift radix systems can be generalised in several ways. Akiyama and Scheicher
(see [12]), for example, defined symmetric shift radix systems. In their definition they differ from
shift radix systems only slightly but symmetric shift radix systems behave in some sense much
nicer than the original shift radix systems. In the last part of the thesis we will deal with this and
other generalisations of shift radix systems.

Lots of the results presented in this theses are contained in papers co-authored by the author
of the present thesis. Some of them have already been accepted for publication in international
journals (¢f. [30, 52, 53]). Others will be submitted later (¢f. [17, 46]).
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Chapter 1

Basic notations and results

In the first chapter we are going to define shift radix systems, canonical number systems and -
expansions. We will give a brief historical background and present results that are of interest for
us. Furthermore we are going to outline several problems and open questions and try to explain
what new results will be presented in Chapter 2 to Chapter 4 in this context.

1.1 Shift radix systems

1.1.1 Definition

The concept of shift radix systems is rather new, more precisely, it was introduced in 2005 by
Akiyama, Borbély, Brunotte, Peth§ and Thuswaldner [3] in the following way:

Definition 1.1.1. For an r € R let
T 28— 28 x = (x1,...,24) — (22,...,24, —|1X]).
7y 1s called a shift radix system, SRS for short, if
Vx € Z43k e N: 7F(x) = 0.

The basic idea of the mapping 7. is due to Hollander [29] without explicitly defining SRS.
He used it for analysing (-expansions. But it turned out that SRS can also be used to describe
canonical number systems. We will treat with both, -expansions and canonical number systems,
later.

Define the sets

Dy={reR*|vx € Z%In,l e N: 7} (x) = ¥ (x) Vk > n} and
DY :={r e R%|r, is an SRS }.
The set DY is the set that consists of those d-dimensional real vectors r such that 7 is a shift radix
system while for a vector r € Dy the sequence (772(x))nen ends up periodically for all x € Z<. Tt
is easy to see that DY C D, holds. Additionally we have
(7‘0, e ,7’d—1) €Dy & (0,7‘0, RN ,Td—l) € Dyy1,

o o (1.1.1)
(1“0, . /’"d—l) S Dd = (0,1“0, - /’"d—l) S Dd-‘,—l‘

In Section 3.1 we will show how the map 7 can be used to define a radix representation of
d-dimensional integer vectors. Furthermore, for r € int (Dy), we will associate each z € Z% to a
tile.

10



The interior of the set D, is quite easy to describe (problems occur only for the boundary),
while the set D} has a much more difficult shape even for d = 2. We will give a survey in the
following subsections.

Foranr = {rg,...,74_1} € R let
0 1 0 0
0
Rir) = ! 1 0
0 0 0 1
—To —T1 -+ —Td-2 —Td-1

The matrix R(r) plays a very important role for describing SRS. This can easily be understood
by observing that for all x € Z¢ the point R(r)x is located “near” 7:(x), more precisely, 7x(x) —
R(r)x = (0,...,0,v) with 0 < v < 1. Note that the characteristic polynomial of R(r) is X g(r)(2) =
¢+ rg_1z? T+ .

For r € Dy denote by C(r) the set of all points x € Z with 7}(x) = x for some [ > 0. Note
that C(r) = 7(C(r)) and define O(C(r)) the set C(r)/7 of orbits of 7. O(C(r)) is obviously a
partition of C(r). We will denote elements of O(C(r)) by small, greek letters. Furthermore define

Definition 1.1.2. Let r € D4. The points of C(r) are called purely periodic (with respect to 7).
An orbit 7 € O(C(r)) with |7| =1 is called a cycle of period | of 7v. We refer to an element of I1,;
more generally as a cycle of D;.

A cycle 7 € O(C(r)) of period [ is a subset of C(r) C Z¢ with | elements which is equipped

with a chronological order. We can enumerate its elements as xgp,...,X;—1 such that
Ty Tr, Tr, Tr,
X X1 e X1 o X

Note that the x; are pairwise disjoint. For j € {0,...,! — 1} let ; the first component of x;. By
the definition of 7. we have

X; = (T, %j41,- -+ Tjgd—1)

with the indices taken modulo [. Since 7 is completely determined by the finite integer sequence
(o, ..., x—1) we will identify 7 with this sequence and denote it by {zq,...,z;—1). Note that we
may rotate the x; cyclically without changing the orbit, i.e., for all j € {1,...,{} we have

(@0y vy BI—1) = (Lo oy TI—1, TOy - ooy Tj1) -

Orbits are marked by the brackets {-). Note that (0) is a cycle for any r € Dy. We will refer to
it as trivial cycle. By the above mentioned pairwise disjointness of the vectors xg,...,x;—1 we
immediately get

Lemma 1.1.3. Let r € Dy and (zo,...,71-1) € O(C(r)). Set Xp = (Thy Tht1,-- s Thtd—1)"
(indices are taken modulo l). Then x; # x; for i # jmod .

1.1.2 The set Dy,

In the following we summarise what is known about Dg. A full description of its interior was given
in [3]. Denote by p(A4) the spectral radius of a matrix A.

Theorem 1.1.4 (c¢f. [3]). Letd € N. Ifr € Dy then o(R(r)) < 1. On the other hand p(R(r)) <1
for some r € R® implies v € Dg. Moreover, for the boundary of Dy, we have

8Dy = {r € RY o(R(r)) = 1}.

11



It is now obvious to ask for the structure of the set of all r with o(R(r)) < 1, more precisely,
for a characterisation of the set

Eq = {r e RY o(R(r)) < 1}.

[3, Proposition 4.9] provides such a characterisation. It is based on results of Schur [50] and
Takagi [54]. For that reason &4 is often referred to as Schur-Takagi-region.

Lemma 1.1.5 (Schur-Takagi). Let d € N. For 0 < k < d define

1 0 e 0 zp -+ - T
Tag_1 - . S0 :
0
6k (20, 0y 2g1) = xi;k 0 xd_1 (1) (1] 2q1 0 xjﬁk c R2k+1)x2(k+1)
0
: 0 T T gy
T e+ e mg 0 - 0 1
Then

&= {(z0,...,va—1) € R¥|Vk € {0,...,d} : det (§x(2o, ..., ¥a—1)) > OVk € {0,...,d} }.

For r € R? denote by Aj,. .., Aq the d (not necessarily distinct) roots of x R(r)- It is easy to see
that r € & if and only if |A;| < 1for alli € {1,...,d} and r € 9(&y) if and only if |A;] <1 for all
i € {1,...,d} and equality holds for at least one index.

For small d we have

& ={z eR| |x| <1},
& ={(z,y) € R?| Jz| < L,[y| <2 +1}, (1.1.2)
& ={(x,y,2) € ]R3| 2] < 1,y —zz| < 1 — 2, |z + 2| <y +1}.

&1 equals the interval (—1,1) and &> is an open triangle. Figure 1.1 shows the shape of £3. Huszti,
Scheicher, Surer and Thuswaldner [30] observed that some problems occur with the closure of &;.
The first intention to obtain &; would be to change all the strict inequalities to not strict ones.
This obviously works for d = 1 and d = 2 but it is definitely wrong for d = 3. Denote by FE3 the
set that we get by exchanging all “<” by “<” in the definition of &. Then all points of the shape
(1,y,y) and (—1,y, —y) for y € R are elements of E3. E3 can therefore not be equal to &3 since
&3 is bounded. We only have £ C E3. The authors also provided an explicit parametrisation of
&5 which we will present in Section 4.3.
According to Theorem 1.1.4 we can “estimate” Dy with the help of &; in the following way:

EsC Dy C ?d (1.1.3)
Furthermore we have

Theorem 1.1.6 (cf. [3, Theorem 4.10]). Dy is Lebesgue measurable and pq(Dy) = pa(Eq) where
q denotes the d-dimensional Lebesgue measure.

Remark 1.1.7. One can show that for d =1,...,5 uq(&y) equals 2,4, %, %4, %, respectively. A
general formula is still outstanding.

We see that the above theory does not tell anything about the set Dy N 9&y4, i.e., we do not
know which points of the boundary of D4 belong to Dg. One easily checks that D; = [—1,1] but

12



Figure 1.1: The set &

for higher dimensions it turned out that this is a very hard problem and even D N 9O, is not fully
characterised yet. There exist only partial results. Define

Ll :{(:17,1 '|'SC)|5C € [03 1)},

Ly ={(—z,—-1+ )|z €[0,1)},

Ly ={(z,1+2)|z € [-1,0)}, (1.1.4)
Ly ={(L,y)|ly € (-2,2)}.

Ls ={(z,—1 - )|z € (0,1]}.

Note that |J?_, L; U {(1,2)} = 8. We then have
Theorem 1.1.8 (c¢f. [6, Theorem 2.1]).
LyUL,ULsU{(1,1),(1,0),(1,-1)} C Dy
(Ls U{(1,2)}) N D, = 0.

The second part of the theorem is quite easy to show (by giving a counterexample). In Sub-
section 2.1.1 we will give an alternative proof of Ly, Lo C Dy which seems to be more elegant than
the original one. For the line L4 it is very difficult to verify which points belong to Dy (except
for the integer points). It is conjectured that the whole line is a subset of D;. The problem was
thoroughly studied in [4, 5]. We state the main results from these papers.

Theorem 1.1.9 (¢f [4, 5]). (1,a) € Dy for o € {%ﬁ,iﬁ,i\/ﬁ}.
Summarising the above results gives
Theorem 1.1.10. Let A = {0,+1, 125 +./3 4./3}.
EULIULyULzU{(l,a)la€ A} C Dy C &\ (Ls U{(1,2)}).

Figure 1.2 shows the shape of D;. The grey parts of the right boundary are up to now only
conjectured to be part of Ds. Concerning higher dimensions the only result seems to be contained

in Kirschenhofer et al. [37]. There the point r := (1, 3445 %) € 9&; is analysed and it is
shown that r & Ds.

13
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Figure 1.2: The set Ds

1.1.3 The set DY

The characterisation of Dg is a quite difficult task, apart from d = 1 where it is easy to see that
D} = [0,1). We give an overview of the most important results on D9 in this subsection.

Lemma 1.1.11 (¢f. [3, Lemma 4.2]). Let r € int (Dy). Then C(r) is o finite set.

We obviously have r € D} & C(r) = {0}. In order to analyse DY we argue as follows: given

some potential orbit 7 := (xo,...,x—1), 7 # (0), we ask whether 7 is a cycle of Dy4. In particular,
we search for all r € Dy with # € O(C(r)). By the definition of 7 such an r = (79, ...,r¢—1) must
satisfy the system of [ double inequalities

0< zogro + a1 + -+ 4+ ZTg-1Td—1 + T4 <1,

0< xaro + x4+ - 4+ Tyyd—2Td-1 + Tigd— <1

(with the indices of x taken modulo ). Set
Py(rm) :={(r0,---,7d-1) € RY|rg,...,rq_1 satisfy (1.1.5)}.

In general P;(7) is a polyhedron. This polyhedron is not necessarily a d-dimensional solid. It may
degenerate to some lower dimension or even be equal to the empty set. On the other hand Py(7) is
not necessarily bounded. Obviously 7 is a cycle of Dy if and only if Py(w) "Dy # 0. According to
[3] we call m a non-degenerated cycle if 7 is a cycle and Py{7) is a non-degenerated d-dimensional
polyhedron. Observe that r € Py(n) N Dy if and only if # € O(C(r)). Hence we have the identity

Di=Da\ |J Pulm)
r€\{(0)}

14



which shows that Dg can be obtained by cutting out polyhedra from Dy. For this reason we
often refer to Py(w) for some cycle 7 as cutout polyhedron. The difficulty of the characterisation
of DY is now clear: the set of all cycles is a priori infinite. In [3] the authors found an infinite
family of cycles of Dy providing pairwise disjoint non-empty cutout polyhedra. In [52] a second
family of cycles with the same property was discovered. Together with (1.1.1) this shows that
the set II; definitely is infinite for d > 2. We will give a full analysis of both of these families
in Subsection 2.2.4. So the above representation is only a theoretical one. But it shows together
with Theorem 1.1.6 the Lebesgue measurability of DY. We also have a connection between Py()
and Pyyq(m).

Theorem 1.1.12 (Lifting Theorem, ¢f. [3, Theorem 6.2]). Let m a non-degenerated cycle of Dy.
Then 7 is a non-degenerated cycle of Dgy1.

One can see that it is much easier to prove that a point does not belong to DY than that it does.
A solution of this problem was presented in [3]. The authors stated an algorithm that returns a
finite set of cycles Ilg for a sufficiently small @ C Dy such that

QnDy=Q\ |J Pum).

nelly

It is based on an idea of Brunotte [22] and therefore often referred to as Brunotte Algorithm.
With the aid of the Brunotte Algorithm it was possible to show prove for several sets that they
are subsets of DY. Concretely we have

Theorem 1.1.13 (c¢f. [6, Theorem 3.3]). (ro,...,rq—1) € DY if r; >0 fori € {0,...,d — 1} and
Z?z_ol r; < 1.

Theorem 1.1.14 (cf. [6, Theorem 3.4]). (ro,...,74-1) € DY if Zfz_ol |ri| <1, there exists exactly
one k € {1,...,d} with rq_ <0 and ZElJ Td—ki > 0.

Theorem 1.1.15 (cf. [6, Theorem 3.5]). (ro,...,7q—1) €D if0<r <...,<rg <L

The Brunotte Algorithm was improved in [52]. We will state and discuss this whole theory in
Subsection 2.1.2. In Subsection 2.1.4 we are going to present ideas of a computational implemen-
tation of the Brunotte algorithm.

1.1.4 About DY
In order to get a first rough idea where DY is located inside Ds we first note that
P2(<17 0>) :[_17 0) X [07 ]-)7
P((1)) ={(z,9) eR*|z €R,~z — 1 <y < —a}.

This was already observed in [3]. Akiyama et al. [6] started to analyse DY explicitly. First they
showed that D has empty intersection with 9&s.

Theorem 1.1.16 (¢f. [6, Corollary 2.5]).
'Dg C &s.

It would be interesting if this holds for higher dimensions, too. Hereafter wide areas of Dy were
investigated in order to decide whether they belong to DY. The result is depicted in Figure 1.3.
The dark grey areas do not belong to D§ where the sets

Er ={(z,y) e R’|z <1,y < 22,2y + 3 < 3y},
By ={(z,9) e R*|z < 1,2+ 2 < 2y,y < 2,3y < 22 + 3}, (1.1.6)
B3 ={(z,y) € R?|x < 1,1 < y+ 22,2y + 2 < 0}.

15



Figure 1.3: Several subsets of DS

correspond to several cycles. In particular

El :P2(<17 _27 37 _37 37 _27 ]->) N D_Qv
Es =P5((3,-2,1,1,-2)) N Dy,
Es =P5((2,1,-2,-2,1)) N Ds.

The white areas do belong to DY. For the area labelled by @ in Figure 1.3 this is an immediate
consequence of Theorem 1.1.13 - Theorem 1.1.15. The other white areas, except for P; and R,
have been treated with the Brunotte Algorithm. As we will see this algorithm does not work
properly for sets near the boundary of D;. Thus the authors developed another algorithm for
analysing the set

R={(z,y) eR*|0<z<y?/4,0<y<z+1} (1.1.7)

which is located near the upper boundary of D;. Note that in [6] R was not fully characterised.
An area on the right, which is that small that it cannot be recognised properly in the figure, has
been left uninvestigated. Finally the set

P = {(x,y) € R?

2
£§x<1,—x§y<—2m+1}

was shown to be a subset of D by a direct observation of the behaviour of the orbits. The proof
is quite long and technical. Altogether the authors fully characterised DS for x < %.
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In [52] the strategies presented in [6] were improved and most of the up to this point uninvesti-
gated areas (depicted in light grey) have been treated. We will present these methods and results
in Section 2.2.

1.1.5 Topological properties of D
Akiyama et al. [3] gave the following definition:
Definition 1.1.17. Let r € Dy = &,.

o 1 is called a regqular point if there exists an open neighbourhood U of r such that U N Dy
intersects with only finitely many cutout polyhedra.

o 1 is called a weak critical point if for each open neighbourhood U of r the set U NDy intersects
with infinitely many cutout polyhedra.

e ris called a critical point if for each open neighbourhood U of r the set (U NDy)\ DY cannot
be covered by finitely many cutout polyhedra.

It is easy to see that each critical point is a weak critical point. With the aid of the previously
mentioned family of cycles and the Lifting Theorem 1.1.12 the authors of [3] were able to show

the point Kc(ll) :=(0,...,0,1,0) € 9Dy for d > 2 to be critical. The existence of critical points
immediately implies that DY cannot be obtained by cutting only finitely many polyhedra from

Dy. In Subsection 2.2.5 we will show the point K((f) :=(0,...,0,1,1) € 9Dy to be critical. Tt
is conjectured that these two points are the only critical points in the two dimensional case. A
general characterisation of the critical points is still outstanding. It is not even known whether
there exists only finitely many of them.

Up to now it is unknown whether D is connected for d > 2. In Subsection 2.2.5 we will show

that (42, 3%) is a cutpoint of DY.

1.1.6 Modifications of shift radix systems
Akiyama and Scheicher [12] presented a modification of SRS.
Definition 1.1.18 (c¢f. [12]). Let d > 1 be an integer, r € R? and define

1
F 28 > 74, a=(ay,...,aq) — (ag,...,ad,— {ra—l— iJ) (1.1.8)

Then 7, is called a symmetric shift radiz system (SSRS for short), if
VacZ® InecN:i(a)=0.

Observe that the only difference between 7, and 7, is just the additional summand “—1—%” inside
the floor function. Analogously the sets

Dy:={reR?VacZIn,l e N:7¥(a) = 7#¥(a) Yk > n} and
DY = {re RY |7 is an SSRS }

where defined. The authors found a lot of analogies between SSRS and SRS. Most of the definitions,
notations and results can be adapted without any difficulties. We also have

gdCT)dC?d.

Note that D N A&, is not expected to be equal to Dy N 9Ey. However, Dy N OE, has not been
analysed yet. It is very remarkable that it was possible to give a full characterisation of DJ. Let

<1 1< < —|—1 ==&
<o, —x— = xr+=-p==
27 2_y_ 2

D:{(g;,y)e]Ra2 < 5
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and

P PR | B

L R 2 2 ="=3[>
1 1

(= - 1%,

Theorem 1.1.19 (¢f. [12, Theorem 5.2]). D = D\ (J; U J).

Figure 1.4 shows the set DY.

-1 -05 0 05 1

05

Figure 1.4: The set DY

In [30] a full characterisation of D} was given. This set turned out to be the composition of
three convex polyhedra where some parts of the boundary are excluded. We will present it in
Section 4.3.

In [53] a further generalisation, so called £-Shift Radix Systems, was given which unifies both,
SRS and SSRS.

Definition 1.1.20. For an ¢ € [0,1) and an r € R? let
Tee: L8 =78 2= (20,...,24-1) — (21, .., 24-1,— vz +€]).

Tr.c is called an e-shift radiz system (e-SRS for short) if for each z € Z¢ there exists a k € N such
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that 77 (r) = 0. Further define

Dy = {r c R |T,-7€(Z) is ultimately periodic for all z € Zd} and
DY, ={reR*|r . isane-SRS}.

We immediately see that 0-SRS correspond to the usual SRS while %—SRS correspond to
symmetric shift radix systems. Note that defining modified ¢-shift radix systems 7,7, with a
ceiling function instead of the floor function does not yield a new dynamical system since for each
integer vector z € Z¢ we had Tpo(2) = —Tro(—2). Ane-SRS for € ¢ [0,1) would not be meaningful
any more since then 7y .(0) # 0 and problems occur in defining finiteness.

In the first part of Chapter 4 we investigate these ¢-SRS more closely and show that ’Dg’e can
be completely characterised for £ € (0,1). We give a full analysis of ’D% . for two exemplary values
of e.

1.2 Canonical Number Systems

1.2.1 Definition of canonical number systems

Consider the Gaussian integers Z[i]. Knuth [39] showed that, for ¢ = —1 + ¢ and N € {0,1}, each
a € Z[i] can be represented uniquely as

n
a= Zejqj, e; €N (1.2.1)

3=0
for some n € N. This observation gave rise to the first definition of canonical number system
by Kétai and Szabé (see [36]). For some ¢ € Zl[i] they referred to a pair (¢,N), with N =
{0,...,N(q) — 1}, N(-) denoting the algebraic norm, as number system when each a € Z[i]
admits a representation as in (1.2.1). The authors found out that all Gaussian integers inducing

a canonical number system are given by A &+ ¢ with negative A.

Later Katai and Kovécs [34, 35] extended the investigation to real and imaginary quadratic
fields. More precisely, given such a field, the authors asked for bases ¢ such that, analogously to
above, each element of the ring of integers can be represented uniquely as in (1.2.1) with digit set
N ={0,...,N(q) — 1}. The pair (p, N') was also called canonical number system.

Finally, in 1991, Pethé [44] gave a unifying generalisation.

Definition 1.2.1 (c¢f. [44]). For a polynomial P(z) = z% + ... + p1z + po € Z[z] with [po| > 2
let R := Z[z]/(P) be the residue ring. The pair (P,N) with A := {0,...,|po| — 1} is called a
canonical number system (CNS) if each element A € R can be uniquely represented as

A:Zerj, e; €N

=0

where X is the image of z under the canonical epimorphism. If (P, N) is a CNS we call P a CNS
polynomial.

Consider the maps

muy R — N, A— a with a € N such that Q = amod X,
A —my(4)
—

Note that the definition is meaningful since a is uniquely determined. Set

Xp:R =NV A (mar(TR(A)) nen- (1.2.2)

Tp R—R, A

We will call Xp(A) for an A € R the X-ary representation of A.
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Notation 1.2.2. Let Xp(A4) = (e, )nen be the X-ary representation of A € R. We call Xp(A)
periodic if there exists an index k and a positive integer [ such that a; = a;y; for all i > k.
This will be written as (ag,...,ak—1,(ak, ..., 0r1+1—1)). We will call Xp(A) finite if Xp(A) =
(€0, -, ek, (0)) for some k € N and denote this by (eo, ..., ex).

Now, if Xp(A) = (eg,...,ex), we have

k
A= Zerj.
7=0

With this notation (P,N) is a CNS if and only if for all A € R there exists a k € N such that
TE(A) =0 if and only if Xp(A) is finite for all A € R.
Concretely, if A € R is represented by

n
A:Z(Iij, ajGZ,
3=0

we have

n d
TP(A) = Z(Zij_l —quij_l
j=1 j=1

where ¢ = [g—zJ . Furthermore, if pg is positive, ma-(A) = ap — pog. The successive application of
Tp is, due to [3], often referred to as backward division algorithm.

Ezample 1.2.3. Let P(x) = 2 + 2z + 2 and N = {0,1}. This example obviously corresponds to
Knuth’s ¢ = —1 + ¢ number system cited above. We want to calculate the CNS representation
of A=3X?-2X +5. We have ¢ := || = 2 and thus Tp(4) =3X —2-2(X +2) = X — 6.
Continuing in the same way gives

T2(A)=3X+7, Ti(A)=-3X-3, TiA) =2X+1, T:(A) =2,
TP(A)=-X -2, THA) =X+1, T8(4) =1, T3(4) =0.

We have mp(A) =5 —2-2 = 1. Further

my (Tp(A)) =0, mu (T3(4)) =1, my ngS(A)i =1, my (TE(A)
my (TR(A)) =0, my (TE(A) =0, mun (Tp(4)) =1, my (TH(A))

Therefore Xp(A) = (1,0,1,1,1,0,0,1,1) is the X-ary representation of A and A =1+ X2+ X?+
X4+ X7+ X5

In Subsection 3.2.1 we will show how we can generalise CNS to non-monic polynomials P

(cf. [46)).

Brunotte [22] characterised all quadratic polynomials that give raise to a CNS.

L
1.

Theorem 1.2.4. Let P(z) = 2? + p1z + po, N = {0,...,|po| — 1}. (P,N) is a CNS if and only
if po = 2 and —1 < p; < po.

For polynomials of higher degree there exists only partial results. For instance, Kovécs [40)
showed

Theorem 1.2.5. Let P(x) = 2™ + pp_12™ 1+ -+ po. If
2<po>zp1 > >pn_1>0

then P is a CNS polynomial.
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For further results concerning the characterisation of CNS polynomials we want to refer to
(9, 10, 21, 22, 23, 48].

Very remarkable and of special interest for us is a result that was given in [3]. It was shown
that the problem of characterising CNS polynomials is closely related to verifying that 7, is a SRS
for special choices of r. In particular we have

Theorem 1.2.6. 2" +p,_12" 1+ .- +py is a CNS polynomial if and only if (plo, p‘;—;l, cees Z—;) €
0.

We already mentioned that we will generalise the concept of CNS to non-monic polynomials
and in this context we will state and prove a generalisation of the above theorem.
Analogously to the sets Dy and DY we can define

Ca:={(po,.--,Pi-1) € Zd|Xxd+pd71xd—l+,,,+pO(A) is periodic for all A € R},
C9:={(po,...,pa_1) € Zd| 2%+ pa_12% ' + - + po induces a CNS}.

By Theorem 1.2.6 we have the relation

1 _
(Pos---,Pi—1) € CY &= (—,M,...,&> € DY
Po Do Po

and analogously for Cy and Dy. pio is close to zero for large pg and by (1.1.1) we may conjecture
that the sets

Cd(M) ::{<pd_1 E)|(Z\4,pl,...,pd_1) GCd},

MM
CO(M) :{(%p—ﬁ) |(M,p1,...,pd_1)ecg}.

give good approximations of Dy—1 and DY_ |, respectively, for large M. Indeed, Akiyama et al. [7]
showed that
lim Cd(M) = Dd—l
M—o0

([7, Theorem 4.11]) and
o |ca(d)
i S =
where pig—1 denotes the d — 1 dimensional Lebesgue measure ([7, Theorem 7.1]). It is still an open

question whether limy;_o C3(M) = DY_,.

1.2.2 Tiles associated to expanding polynomials

Due to Katai and Kérnyei [33] (see also [47]) we can associate a CNS to a self-affine tile. Actually
this works for any expanding polynomial.

Definition 1.2.7. Let P(2) = 2+ py_12%~1 +-- -+ p1z+po € Z[z] be an expanding polynomial.
We call

o0
F = {zeRd ZZZB_i(Ci,O,...,O)T,CiEN} (1.2.3)
=0
with N ={0,...,|po] — 1} and
0 0 —po
) .
B:=] ¢
E .0 :
0 0 1 —pg-
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L L L L
-3 -2 -1 0 1

Figure 1.5: Self affine tile associated to 22 + 2z + 2

the self-affine tile associated to P. For (P,N) being a CNS, F is called the (central) CNS tile
associated to (P,N). It is compact, self-affine and defines a tiling of the n-dimensional real vector
space.

P is the characteristic polynomial of B. Since B is expanding it is easy to see that the series
in (1.2.3) always converges. Note that F is a self-affine tile as it obeys the functional equation

BF = |J (F+(c,0...,0)). (1.2.4)
ceEN

Indeed, it is the unique nonempty compact set satisfying this equation (¢f. e.g. Hutchinson [31]).
Self-affine tiles have been studied extensively in a very general context in literature. We refer the
reader to the surveys by Vince [56] and Wang [57]. 0 is an inner point of F if and only if (P, N)
is a CNS.

Figure 1.5 shows the self-affine tile associated to 24 2z+2 (in black) and three of its translates.
It is Knuth’s Twin Dragon that we already heard about in the introduction.

In [17] the relation between tiles associated to expanding polynomials and SRS-tiles was anal-
ysed. We will discuss these results in Subsection 3.2.3.

1.2.3 Symmetric CNS and «-CNS

Akiyama and Scheicher [12] introduced an alternative version of canonical number systems. These
symmetric canonical number systems are defined similarly to CNS. Only the used digit set differs.
Definition 1.2.8 (cf [12]). For a P(z) = 2% + pg_12¢~ 1 + -« + po let R = Z[z]/(P), N =
[—J%Ol, J%OL) N Z and X the image of x under the canonical epimorohism. (P,A) is called a

symmetric canonical number system (SCNS) if each A € R can be represented as

n
A:ZGij, 6j€./v.
§=0
The authors fully characterised all polynomials of degree 1 and 2 that give rise to a SCNS:
x + a induces a SCNS if and only if a > 2 or a < 2 and x2 + az + b if and only if either |a| < 1+ %
and [b] > 2 or a =1+ £ and |b] > 2. The most interesting connection in this context is
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Theorem 1.2.9 (cf. [12, Theorem 2.1]). Let P(z) = 2¢ + pg_12% ' + -+ + po and N =
[—@, @) NZ. (P,N) is a SCNS if and only if 7+ is a SSRS for

r— (l Pd—1 P )
po’ po T po
Therefore SCNS are similarly related to SSRS as CNS to SRS. Later, in Chapter 4, we will
treat with another generalisation of CNS involving both, CNS and SCNS. It was presented in [53].

Definition 1.2.10. Let ¢ € [0,1), P(z) = 2% + pg_12%! + -+ + po € Z[z] with |po| > 2,
R := Z[z]/(P) the factor ring, X € R the image of x under the canonical epimorphism and the
set of digits N := [—¢ |po|, (1 — €) |po|) N Z. The pair (P,N) is called an e-Canonical Number
System (e-CNS) if each P € R allows a representation as

n
P:Z(BQXZ with e; cN.
=0

It is easy to see that the case ¢ = 0 corresponds to CNS while € = % corresponds to the SCNS.
It will turn out that these e-CNS are analogously related to e-SRS.

1.3 [(-expansion

1.3.1 Definition and basic properties

The second type of numeration system we are going to deal with is the so-called 5 expansion. It
was introduced in [43, 45].

Definition 1.3.1. Let § > 1 be a real number. For some v € RN [0,00) a representation of the
shape

Y= bBTI, bieN (1.3.1)
Jj=—m

with A" = [0, [3] — 1) is called the 3-expansion of v if the greedy condition
0< ) bpI < prtt
j=—n
holds for all n < m.

Define the maps
Tg:y— By—|By] (B transformation)

and
dy:ve (8757 0]) = (BT o) —130)
Then, for v € [0,1), the S-expansion of y equals
v =D e;f77 with dp(y) = (e5)jem-- (1.3.2)

Jjz1

For the sequence dg(7y) we can adopt the rules from Notation 1.2.2.
For some v > 1 the 3-expansion can easily be computed by multiplying v with 3% for a suitable
k € N such that 3%y € [0,1) (such a k exists since 3 > 1). Suppose dg(37%7) = (a1,a2,as,--).

Then 4
v=Y_ kB
j>—k+1
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is the S-expansion of y. Therefore we can restrict our investigations to the interval [0,1).
Define

Per(f) :={v € [0,1)] dg(v) is periodic}
Fin(f) :={v € [0,1)| da(7y) is finite}

We obviously have Fin(5) C Per(3). It is also easy to see that for an algebraic number 3 we have

Per(8) CQ(B) N [0,1) and
Fin(8) CZ [671] n [0, 1).

Definition 1.3.2 (cf. [28]). An algebraic number 3 > 1 is said to have property (F) if Fin(5) =
Z 7t nlo,1).

Frougny and Solomyak [28] proved that (F) implies 3 that f is a Pisot number (i.e., an algebraic
integer greater than 1 such that all its Galois conjugates have modulus less than 1). It was also
shown that (F) holds for all quadratic Pisot numbers. For Pisot numbers of higher degree the
authors presented the following result:

Theorem 1.3.3 (cf. [28]). Let 8 be a Pisot number with minimal polynomial z9! — pgz® — .- —
»z —po. If

1<py<---<pg
then B has property (F).

A more detailled characterisation of Pisot numbers satisfying (F), apart from quadratic ones,
exists for the cubic case. Akiyama [1] characterised all cubic Pisot units satisfying (F).

Theorem 1.3.4 (c¢f. [1]). Let B a cubic Pisot unit. [ satifies property (F) if and only if the
minimal polynomial of 5 is of the form

z® — paa? —prz— 1

with —1 <p; <pe + 1.

In this context we also want to mention the papers [11, 13, 29] here. Of special interest for us is
the relation between the -expansion and SRS. Let § a algebraic number of degree d + 1, which we
can assume to be a Pisot number, with minimal polynomial P(x) = 2! + pga®4---+prz+po €
Zlz]. Let

_ . Td = 1,
r=(ro,...,rg—1) with S O<j<d—1)° (1.3.3)
Note that ro = —%. One can easily verify that P(z) = (z — f) (rgz® —rg_12971 — o — 7).

Theorem 1.3.5 (¢f. [3, Theorem 2.1] (¢f. also [29])). For an algebraic number § > 1 and r
defined as in (1.3.3) we have r € DY if and only if 3 has property (F).

The relation between S-expansions and SRS was excessively studied in [17]. We will present
these results in Section 3.3 including the proof of the previous theorem.

Concerning Per(5) it was shown in [18, 49] that Per(8) = Q(8) N [0,1) if § is a Pisot number.
On the other hand, following [49], if Per(8) = Q(5) N [0,1) then § is a Pisot or Salem number,
where a Salem number is an algebraic integer such that all of its conjugates have modulus less or
equal to 1 and equality holds for at least one of them.

From the combinatorial point of view the sequence dg(1) is of special interest. A sequence
(e;)jen is called admissible if (e;) jen = dg(7y) for some vy € [0, 1). Of course, dg(1) is not admissible.

Definition 1.3.6. 3 is called a Parry number if dg(1) is periodic and it is called a simple Parry
number if dg(1) is finite.
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Note that in some papers Parry numbers are referred to as S-numbers. For Parry numbers
define

(1) = (1, tnm1,tn — 1)) if dg(1) = (t1, 82, . tn), b # 0
A dp(1) otherwise

With this definition a sequence a = (a;)ien« € N is admissible if and only if
(ai—l—k)iEN* <lex dz(ﬁ) for all k& > 0. (134)

This condition is often called the lexicographical order condition.
Set

Dg ={ds(v)|v € [0,1)}.
Note that Dg is invariant with respect to the left shift o, i.e.,
Dg = 0(Dg) = {(ai+1)iev | (ai)ien+ € Ds},

making (Dg,0) a subshift. Suppose dj(1) = (t1,...,tn, (tnt1,- - -+ tntp)*°) for a Parry number
B. For simple G-numbers we have n = 0. Then the finite factors of the sequences of Dg can be
recognised by a finite automaton with n + p states.

(1.3.5)

Hence, for § a Parry numbers, (Dg, o) is sofic. (Dg, o) is of finite type if § is a simple Parry
number.

The problem of generally characterising Parry numbers is far from being solved. Of course,
a Parry number is always algebraic and it is known that it is necessarily a Perron number (i.e.,
an algebraic integer that is the dominant root of its minimal polynomial) with no real conjugate
greater than 1. Conversely we obviously have that each Pisot number as a Parry number. Note
that the dominant root of the polynomal z* — 323 — 222 — 3 is an example of a simple Parry
number which is a Perron number and neither a Pisot nor a Salem number.

Concerning simple Parry-numbers of small degree we have the following characterisation re-
sults:

Theorem 1.3.7 ([28]). The simple Parry numbers of degree 2 are exactly the quadratic Pisot
numbers without a positive real conjugate, hence, the positive roots of the polynomials > —ax — b
with a > b > 1. Then we have dg(1) = (a,b,0,0,...).

Bassino [14] characterised all cubic Pisot numbers that are simple Parry numbers.

Theorem 1.3.8 ([14]). A Pisot number with minimal polynomial 3 — ax? — bx — ¢ is a simple
Parry number if and only if one of the following conditions holds:

e b>0andc>0,
e —a<b<0andb+c>0,

e b<—aandbk—1)+ck—2)<(k—2)—(k—1)a with k €{2,...,a — 2} such that

a—2 a—2
1-— — <} 1-— .
a—+ P +c< a+k_1
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We already noticed the close relation between the S-expansion and SRS. In Subsection 3.3.2 we
will treat Bassino’s result in the point of view of SRS. For more details concerning combinatorial
aspects of F-expansions we refer to [16, 19, 27, 28, 32]. We also want to mention that, for example
in [26], the problem of addition in base 3 was studied. We will not go into that here.

Let

By = {(b1,...,ba) € ZH X+ b1 X4 4+ 4 by
is the minimal polynomial of a Pisot or Salem number}
BY = {(b1,...,bg) € ZYX 4 by X4 4o 4 by

is the minimal polynomial of a Pisot number having property (F)}
and
a(M) = {(ba,...,bg) € Z97" : (M,bs,...,ba) € By}
9(M) = {(ba,...,ba) € 297" : (M,bs,...,ba) € B} .

In the fourth part of a series of papers concerning SRS Akiyama et al. [8] showed that for d > 2

|Ba(M))|
M1

— pa-1(Da-1)| = O (M)

and

_BY(M
i BID o),

where pig—1 denotes the d — 1 dimensional Lebesgue measure, holds. Note that we already stated
analogous results for CNS.
1.3.2 Tiles associated to Pisot numbers

In the following assume 3 to be a Pisot number of degree d + 1. Let 31,...,34 be the d = r + 2s
Galois conjugates of 3, such that f1,...,8, € R and 5r41,...,0r+2s € C with

ﬁr—i—l = ﬁr—i—s-{-la v aﬁr+s = B’r’+23'

For ay € Q(f) and i € {1,...,d} denote by v € Q(3;) the corresponding conjugate of . Define
the mapping

®: QB — R4
v (10 AL RGED), S, L RGO, %%’”*”))T
Following Akiyama [2] we give
Definition 1.3.9. For the Pisot number 5 and w € Z[5] N [0, 1) let
Spn(w):={yeZ|[s~ ] [0,1)|Tg(’y):w}.

Then the set

Sp(w) = lim B(3"Spn(w)) C R

(the limit is taken with respect to the Hausdorff metric) is called a 3-tile. The tile Sg(0) will be
called the central 3-tile.

We will give a short summary of what is known about j-tiles. Following [2] we have

U Sslw)=R%

w€Z[B]N[0,1)
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Figure 1.6: S-tiles corresponding to the smallest Pisot number

For non unit Pisot numbers the tiles can easily be seen to overlap and therefore they do not
provide a tiling. For Pisot units the previously mentioned covering is conjectured to be a tiling.
(-tiles are graph directed self-affine sets in the sense of Mauldin and Williams [42]. They are
strongly related to Rauzy fractals associated to unimodular Pisot substitutions (see for example
[16]). Especially we have

Theorem 1.3.10 (¢f. [2, Lemma 5]). The number of different 3-tiles up to translation induced by
a Pisot unit equals the number of states of the automaton 1.8.5 induced by (3, i.e.,

0  for simple Parry numbers
1 otherwise ’

HThW)| k> 1} + {

Note that this number is finite since 3 is a Pisot number.

Example 1.3.11. Consider 3 to be the dominant root of the polynomial P(z) = x* — x — 1.

B =1.32472 ... is the smallest Pisot number. It can easily be verified that dg(1) = (1,0,0,0,1).
Thus 3 is a Parry number and dj(1) = ((1, 0,0,0, 0)00). The corresponding automaton is

/T\
Yo SNoENGERERG)
Therefore 5 induces 5 different tiles up to translation. Figure 1.6 shows the central tile and some
of its neighbours. Each of them is labelled with the corresponding v € Z [3] N [0,1). The central

tile is called Hokkaido fractal its shape reminds of the Japanese island Hokkaido. 3 satisfies the
property (F) and the corresponding SRS vector is r := (3 — 1, 5).

In [17] an alternative definition of (-tiles was given:

Definition 1.3.12. For the Pisot number § and w € Z[3] N [0,1) let

Spm(w) == {y € Z[BIN[0,1) | TF(7) = w}.
Then the set

Sp(w) := lim @(5"Sp.q(w)),

(again with respect to the Hausdorff metric) is called a new 3-tile. The tile S3(0) will be called
central new S-tile.
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Note that _
Sp(w) 2 Sp(w)
where equality holds exactly if 3 is a unit. Contrary to S-tiles associated to non-unit Pisot numbers

new f-tiles are conjectured not to overlap and therefore provide a tiling of the Euclidean space.
We will deal with new (-tiles in Section 3.3.

1.3.3 Symmetric S-expansions and :-f-expansions

Analogously to symmetric canonical number systems Akiyama and Scheicher [12] also defined a
symmetric S-expansion.

Definition 1.3.13 (cf. [12]). For a real 8 > 1 a representation of some v € [—3, ) of the shape
; 1 1
E e, e eN = _BL’& NZ
‘ 2 2
Jjz21
is called the symmetric 8 expansion of ~ if
1 1
—_— < < —
-1 = } : 1
26n i>n 2ﬁn
holds for all n > 1.

The last inequality is analogous to the greedy condition. The symmetric S-expansion can be
obtained by applying the symmetric S-shift

~ 11 11 1
Ts:|—=,= 2= - =
B [ 2,2>—>{ 2,2),7Hﬁ7 {5’Y+2J
In a similar way as for the -expansion we define
do(y) = (BT (0) ~ T3 ()

and call a sequence (en)nen+ € N°° admissible if (e, )nens equals Jg('y) for some « € [—%, %)
Theorem 1.3.14 (cf. [12, Theorem 3.1]). A sequence (ep)nen+ € N is admissible if and only if

. 1 ~ 1
dg <—§> Slex (Entk)nens <lex —dg <—§>

neN*

holds for all k € N.

An algebraic number 3 is said to have the symmetric finiteness property (SF) if each v €
Z[B~ N [—%, %) has a finite symmetric 3-expansion. The property (SF) is shown to be connected
to SSRS.

Theorem 1.3.15 (cf. [12, Theorem 3.7)). Let 3 a Pisot number with minimal polynomial %+ +
pax? + -+ po and define v as in (1.3.3). B has property (SF) if and only if r € DY.

In the same spirit as for e-CNS in [53] a definition of ¢--expansions was given.
Definition 1.3.16. Let € € [0,1), 3 > 1 a real number and N = (—1+&(1—3),8+¢(1 - 3))NZ.
For a v € R a representation of the shape
v = Z eiB9, e N
jzm
is called the e-8-expansion of v when it satisfies
D e € [—e,1—g)pm (1.3.6)
jzn
Formula (1.3.6) is the generalisation of the 3-expansion’s greedy condition and its analogue for
the symmetric G-expansion. We will treat e-B-expansions in Section 4.1 and show their relation

to e-SRS.
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Chapter 2

Shift Radix Systems

This chapter is fully devoted to the analysis of Dy and DY. Concerning Dy we present in Theo-
rem 2.1.3 a new idea for obtaining characterisation results for Dy N 3&y. In the rest of Section 2.1
we thoroughly discuss the Brunotte Algorithm, present several improvements and state ideas for
a computational implementation. In Section 2.2 we are going to specialise to the two dimensional
case and use the previously mentioned implementation in order improve the characterisation of
DY. Since areas near the boundary of DS are not really applicable for an analysis by the Brunotte
Algorithm we will go alternative ways: in Subsection 2.2.1 we discuss an idea presented in [6]
for analysing the set R (see (1.1.7)) which is located near the upper boundary of Ds. In Sub-
section 2.2.3 we will investigate a small set near the point (1,1) € Dy by directly looking at the
orbits of 7. In Subsection 1.1.3 we noted the existence of an infinite family of cycles. We will
present a second family and give a full analysis of the cutout polyhedra that correspond to these
families in Section 2.2.4. Altogether this will yield a very good approximation of DS. Finally, in
Subsection 2.2.5, we will be able to prove the existence of a second critical point (Theorem 2.2.29)
and show that D3 has a cutpoint (Theorem 2.2.30).

2.1 Results concerning D; and DY

2.1.1 The set Dy,

In the following we will deal with the set D4 and present a new idea in order to analyse Dy N d&,.
Define for a A € R the mappings W), for vectors and Y), for infinite sequences by

Wy : R™ — R™" ! (ag,a1,a0,...,0n_1) — (Aag,Aa1 + ao, . .., Adpn_1 + Gr_2, A + apn_1), @.11)
Yy i R = R™ (ag, a1, a2,...) — (Aag + a1, Aay + as,...). o
Note that x g(w, (r)) (%) = (£ — A)Xg(r)(x). Therefore we have
o (R(Wx(r))) = max (¢ (R(r)),|A) (2.1.2)

and thus Wiy (r) € 08441 for r € &;. Our strategy now is to investigate how 7 and T, (r) are
related. The next theorem shows that for A € Z this connection can be described by the map Y.

Theorem 2.1.1. Let A€ Z, r := (rg,...,7d—1) € R, (2;)ien € Z° and (ys)ien = Ya((2:)ien) €
Z°°. Then the following point are equivalent:

1.
T%A(r)((wo, .. .,xd)) = (xn, PN ,ZZ]'TH_d) (Vn S N),

(o> - ¥a-1)) = Wns- -+ > Yntra—1) (Vn €N).
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Proof. 1. = 2.: Suppose
T{/I’L/A(r) ((an .. ’xd)) = (xna .. 7xn+d)

for all n € N. We go on by induction on n. For n = 0 the statement is trivially true. Now suppose
we already know that 77~} ((yo, cees yd_l)) = (yn_l, ... ,yn+d_2). Then we have

Tp((yo’ s yd—l)) = Tr((yn—l’ sy yn+d—2)) = (yna <oy Yntd—2, g)

with
d—1 d—1
y=- {Z Tz‘yn—1+z‘J =- {Z Ti(AZp—144 + xn+i)J
i=0 i=0
d—2
=- Proan + Z(Aml +7)ZTnti + (A +7d-1)Tntd-1 — Axn+d_1J
i=0
=— [Wa(rt)(@n-1,-- -, Tnyd—1)] + Ania—1
=Tnid + ATpgd—1 = Yntd—1-
and hence 7 ((yo, ceey yd_l)) = (Yns -« + s Yntd—2s Yntd—1). 2. = 1.: This can be shown analogously.

O

Observe that (1.1.1) is an immediate consequence of Theorem 2.1.1 with A = 0. Since we are
mainly interested in vectors r with R(r) having spectral radius 1 at most we can from now on
restrict ourselves to A € [-1,1].

Corollary 2.1.2. Let A € {—1,1} and r € R%. If Wy(r) € Dy41 thenr € Dy.

Proof. Just consider Theorem 2.1.1 and note that for an ultimately periodic sequence (zy,)nen the
sequence Wy ((z5)nen) ends up periodically, too. O

We already mentioned the analysis of Kirschenhofer et al. [37] concerning the point r :=
(1, #g’ %) € 0&3 which turned out not to belong to D3. Since r = W; ((1, 1+‘/§)> and

2
1, 1"'2‘/5) is known to be element of D3 (see Theorem 1.1.10) we immediately see that the inverse

of Corollary 2.1.2 does not hold in general.
We can now state a result that shows a connection between DY and Dyy1 N 9411

Theorem 2.1.3. Letr € DY and A € {1,—1}. Then Wx(r) € Dyt1 N IEq11.
Proof. By (2.1.2) we have

2 (R(Wi(r))) = max (¢ (R(r)),|A]) =1

and hence Wy (r) € d€441. Choose an arbitrary x = (zo,...,%q_1,74) € Z*! and let (2;)ien
such that T‘C‘L/A(r)((x'o, oy Z4—1,%d)) = (Tn,...,Tntq). We claim that (T‘C{Ll(r) (x))neN is even-
tually periodic. By Theorem 2.1.1 the sequence (y;)ien = Y,\((mi)ieN) has the property that
T[L((yo, . ,yd_l)) = (Yn,---,Yd+n—1). Now, asr € ’Dg, there exists an ng with y, = 0 for n > ng.
By the definition of Y we have y; = Azx; + 2;41. If A = —1 this implies 0 = yn, = —1%n, + Tny+1
and therefore zy,+1 = zpn,. With the same argument we find xp, = Tny+1 = Tny+2 = - -+ showing
the ultimate periodicity of (T{}V () (X)) . Since this works for any x € Z*! we easily see
- ne
W_1(r) € Dgq1. If A = 1 we use the same argumentation with the only difference that we have
an eventually alternating sequence Ty, 1; = (—1)zy, for all i > 1. O

Remember the lines Ly and La defined in (1.1.4). They are subsets of &> and proved in [6,
Theorem 2.1] to belong to Ds. Note that this result is a corollary to Theorem 2.1.3.
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Corollary 2.1.4.
Ll, Lo CDs.

Proof. The set DY equal the interval [0,1). Then Theorem 2.1.3 immediately yields the result
since Ly = W1([0,1)) and Ly = W_1([0, 1)). O

In Section 2.2 we will give an approximation of Dj. With this one easily obtain partly results
for D3 N 9&3 by using Theorem 2.1.3.
2.1.2 An algorithmic way to characterise D)

In the following we present an algorithmic way to analyse DJ. It is based on an idea of Brunotte
(see [22]). Its adaption for applying it within the SRS framework was presented in [3, Theorem
6.2]. We state these results using the formalism which was presented in [52].

We start with some basic definitions we will use. For Q C R%,V C Z% x € Z¢ let

T(x) ={n(x)|r € Q},
To(V)={n(v)|reQ,veV}.
Definition 2.1.5. Let r € Dg. A set V C Z¢ that satisfies
1. ¥x € Z43k €N, (by,...,b) € VF 1x =35 by,
2. x€V=1r(x),—m(—x) €V
is called a set of witnesses of r.

A set of witnesses has nice properties concerning 7. We will see this in the next theorem.

Theorem 2.1.6 (cf. [3, Theorem 5.1]). Lett € Dy and V a set of witnesses of r. v € DY if and
only if V does not contain purely periodic points with respect to 7, except 0.

Proof. “=": This can be directly seen by the definition of DY. “«<”: This direction is a little
more tricky. It is based on the observation that for a,b € R the floor function satisfies as

la+b] € {la] + [b],a] + [b] = [a] — [-b]}.
This implies that for any a,b € Z¢ we have
r(a+b) € {r(a) + 7(b), (a) + (—(—b))}.
Now suppose that b € V. Then there exists a ¢ € V such that
(a+b)=7(a)+c
by the definition of V. Thus, if there is an n € N such that 77*(a) = 0, we have that
(a+b)eV.

The fact that each element of Z¢ can be represented as a finite sum of elements of V shows the
desired result. O

It is also possible to define a set of witnesses for some Q C Dg.
Definition 2.1.7. Let Q C Dy. A set V C Z? that satisfies

1. ¥x € Z4Ik €N, (by,...,by) € VF:x =Y " by,

2. g(V)U —1o(=V) CV

is called a set of witnesses of Q.
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It is easy to see that if V is a set of witnesses of () then V is a set of witnesses of each r € Q.

Definition 2.1.8. For a finite set W C Z¢ and a set Q C Dy, we define GIW, Q) =V x E to be
the smallest directed graph with vertices V € Z¢ and edges E C Z% x Z® such that

L. WCV,
2. TQ(V) cV,
3. E={(x,n(x))lxeV,reQ}

We are interested in the (directed, simple) cycles of such a graph, i.e., the paths with coinciding
starting vertex and end vertex that visit each of the other vertices once at most. To avoid confusion
we will refer to cycles of graphs as graph-cycles. Although, we will see that the two types of cycles
are closely related in this context. A graph-cycle of length [ consists of [ d-dimensional integer
vectors. By the definition of the edges a graph-cycle has the shape

(Zoy. vy g—1) = (T1,. ..y 2q) = -+ = (Ti—1,. .., Z4—2) = (Toy ..., Ti—1)-

Similar to cycles, a graph-cycle is uniquely determined by the [ integers z¢,...,2;—1. Again the
elements are chronologically ordered but it is irrelevant which element is the initial one. By this
consideration let us make the convention that, when we speak of a graph-cycle of G(V, ) for some
sets V and (), we mean the integer sequence of corresponding length that determines it and denote
it also by (x0,...,2;—1). By the definition of the graph-cycles such an integer sequence also fulfils
the conditions of Lemma 1.1.3.

We now generalise Theorem 2.1.6 for an application on a @ C Dy.

Theorem 2.1.9 (Brunotte Algorithm, cf. [3, Theorem 5.2]). Let Q C Dy and suppose V is a
finite set of witnesses of Q. Furthermore denote by Ilg the set of graph-cycles of G(V, Q) without
the trivial one {0). Then

DgnQ=0\ |J Pu).

nelly

Proof. First note that G(V, Q) is finite since V is closed under an application of 7 and thus the
set of vertices V equals V which is supposed to be a finite set. Let r € (. Then V also includes
a set of witnesses V; of r. Let z € V,. Then, by the construction of G(V, @Q)), there exists an edge
(z,7+(z)) of G(V, Q). Hence, if r ¢ ’D37, there exists a graph-cycle = € Ilg which is a cycle of 7 by
Theorem 2.1.6 and therefore r € Py(w). This is true for all r € @ which proves the theorem. O

We do not know yet whether there exists a finite set of witnesses for a given Q) C D, anyway.
We show later that such a set always exists, provided that ) is small enough, and explicitly
construct a very small one.

Observe that not all of the graph-cycles obtained by the use of Theorem 2.1.9 are necessarily
cycles. This is only true if Q) is a single point.

Suppose 7 is a cycle such that Py(m) N @ # (. Note that it is possible that m does not
correspond to a graph-cycle of G(V, Q) for some set of witnesses V. This effect does not cause any
troubles in so far as in this case Theorem 2.1.9 provides a cycle ¢ such that Py(¢) D> P;(m). Hence
Theorem 2.1.9 provides enough cycles for characterising ) N DJ. A more exact analysis of this
phenomenon does not exist up to now. We can only mention that it depends on the chosen set of
witnesses V. We will later (in Theorem 2.1.13) deal with a set of witnesses that really induces all
cycles.

We now turn to the question how to obtain a set of witnesses. Of course, Z¢ itself is a set of
witnesses but in the view of Theorem 2.1.9 we are mainly interested in finite ones. At first note
that it is convenient to require @ to be simply connected. Then, by the linearity of the scalar
product, we have that a set of witnesses of some set () is also a set of witnesses of the convex
hull of (). We will present a way to construct a very small set of witnesses for a set ¢ and give a
sufficient condition for ) to prove its finiteness. We will call this set of witnesses V(Q). By the
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above considerations we can suppose @@ to be convex. Let Q C D4 and calculate the sequence
V(Q)o, V(Q)1, . .. inductively by

V(Q)o :={(0,...,0,1),(0,...,0,—1)},
V(Q)j+1 :==1(V(Q);) U —1o(=V(Q);) UV(Q); (j =1).
We obviously have V(@) 41 2 V(Q);. Now set V(Q) = lim,,_.oo V(Q)n.
Lemma 2.1.10. V(Q) is a set of witnesses of Q.

Proof. Choose some r € Q. Since (0,...,0,1) and (0,...,0,—1) are in V(Q)o we also have that
{78((0,...,0,a))|a=£1,0 < i< d} C V;if j > d— 1. The elements of this set have the shape

(2.1.3)

78(0,...,0,1)) = (0,...,0,1,%,...,%),
d—1—1 1
72((0,...,0,—1)) = (0,...,0, =1, %,...,%),
d—1—1 i

where % denotes some integers. These 2d integer vectors are elements of V(Q) and therefore V(Q)
fulfils item 1. of Definition 2.1.7. Item 2. of Definition 2.1.7 can be easily seen to be satisfied by
the construction of V(Q). O

For this special type of set of witnesses we are now able to give a finiteness condition. For a
matrix A with o(4) < 1and a § € R with 1 >4 > g(A4), denote by || - || 4,5 & vector norm with

Vx € RY : || A%l 4,5 < 6]|X]A.s- (2.1.4)

One example of such a norm can be found in [41, Formula (3.2)]. It is given by
S . .
Ixllas =D & A ],
=0

but also [12, Formula 4.1] provides a norm with the desired property. Denote also by || - ||4a.s &
compatible matrix norm, i.e.,

vx € RIYB € R¥?; ||BX||Ay5 < ||B||Ay5||X||A75.

Theorem 2.1.11. Let Q C &4 convex. V(Q) is finite if there existr € Q, 5,8’ € R with 1 > § >
p(R(r)) and 0 < 0" <1—46 such that |R(r) — R(S)| r(r),s < 9’ holds for all s € Q.
Proof. Since V(Q); C V(Q);+1 for all j € N it suffices to show the existence of a finite set V(Q)’
such that V(Q)r C V(Q) for all k > 0. Let

K :=||(0, ey 0, 1)||R(r),57

K
V(@) = {X € Z|1xll rry,s < m} .

We will prove the claim by induction on k. For k = 0 we obviously have V(Q)o C V(Q)’, since
0 <1-6—4¢ <1 and therefore K < —2—. Now suppose we already know that V(Q)r € V(Q)'".
Then we have

V(@)r+1 = 1@V(Q)r) U —1o(—V(Q)r) UV(Q)k C T@(V(Q)) U —7o(—V(Q)) UV(Q)". (2.1.5)
For x € V'(Q), s € Q the functions 75(x) and —75(—x) can be written as R(s)x+ (0, ...,0,v) with
|v| < 1. Thus

[B(s)x 4 (0,...,0,0)| re),s <II(R(s) = R(r) + R(r)) X||rir),5 + [0+, 0, V)| Rer).6
<|[|R(s) = R(r)|| rx) 51Xl Rr),5 + | R(O)X]| R(r),6 + K

14
K@ +0) o

<%l rey,s + OlI%l rery,s + K < T =1-5-5
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shows that 75(x), —7s(—x) € V'(Q)). Note that this observation makes V(Q)’ itself a set of wit-
nesses. Hence (2.1.5) reduces to

V(Q)r+1 C o(V(Q)) U —7o(—V(Q)) UV(Q) =V(Q)
proving the theorem. O

This theorem shows that V(@) is finite for sufficiently small Q C £;. We cannot expect V(Q)
to be finite if Q@ N 9Dy # 0. On the other hand we see that V(Q) for Q = {r} a single point is
finite whenever r € £;. When we successively calculate V(Q)o, V(Q)1, . .. in order to obtain V(Q)
then, for a sufficiently small Q C &g, there will exist an n such that V(Q),, = V(Q)n+1 =: V(Q).
For some V(Q); the calculation of V(Q);4+1 as it is described in (2.1.3) is only a theoretical one.
In practice we proceed in the following way:

Definition 2.1.12. For a closed @ and an x € Z% let Qx C Q the set of those r € @, where rx is
extreme.

Because rx is linear and Q) is closed, we have Qx C 0@ for each x. The easiest case is when Q)
is a polygon. Then (Jx consists of its vertices, independently of x. But also for non-polygonial Q
with differentiable curves as boundaries it should be no problem to calculate Qx. With the usage
of Qx, the rule of calculating V(Q),41 from V(Q); changes to

V(@)j41:= U {(xg, cesZdy ) ‘j = rrélgi {|-rx]},... ’Pe%i {— |_I‘XJ}} uv(@Q);, (2.1.6)

where x = (z1,...,24).

2.1.3 Critical points

We already introduced the concept of critical points and will now go deeper into it. At first we
note that critical points can only occur on the boundary of Dy.

Theorem 2.1.13 (¢f. [3, Theorem 7.2]). Ifr € &; then r is a regular point.

Proof. Since p(R(r)) < 1 we can find 4,8’ > 0 with o(R(r)) < § < 1 and § < 1—4. Let
Q = {s € &| | R(r) — R(s)||r(r),s < 0'}. In the proof of Theorem 2.1.11 the set

K
VQY = {x € Z7|Ix| rery 6 < m}

with K :=[/(0,...,0,1)||gr),s Was recognised to be a set of witnesses of Q. Thus Q N DY can be
characterised using only finitely many cutout polyhedra by Theorem 2.1.9 (G(V(Q)’, Q) is a finite
graph and thus can have only a finite number of cycles). As already mentioned Theorem 2.1.9
does not necessarily provide all cycles. This depends on the chosen set of witnesses. We now have
to prove that the usage of V(Q)’ yields all cycles. We obtain for sure the cycles lying within V(Q).
It is now enough to prove that for any s € Q and x € Z¢ with x ¢ V(Q)’ there exists an n € N
such that 77(x) € V(Q)’. Note that

m(x) = R(r)"x + Z R(r)" v,
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with v; = (0,...,0,v;)7 and —1 < v; < 0. Similar calculations as in Theorem 2.1.11 now show

n—1

72 ) Rewy.s <IRES)™ | ey, sl¥l rw)s + K D IRES) | aee).s
i=0

<%l rey,s (1R(S) = R rw),s + IRE) rey,5) "

n—1 .
+ K Y (IR(s) = RO kw5 + |IR@) | ree) )
=0

1—(8+6)"

<[Ixl| r(r),s (8" + )" + K R

Since x can only obtain integer values and ¢’ + § < 1 we can find an n € N such that

K
75" ®) | R(r),6 < 1-5_4

and thus 72 (x) € V(Q)’. Therefore V(Q)’ really yields all cycles and only finitely many cutout
polyhedra intersect with ). The same is true for any open neighbourhood U of r with U C Q
making r a regular point. O

For characterising DY we usually prefer the use of small sets of witnesses. We may loose some
unimportant cycles but small sets are easier to handle. We now see that V(Q)’, as we defined it
in the proof of Theorem 2.1.11, is a maximal set of witnesses of () in the sense that it induces all
cycles.

Corollary 2.1.14. Ifr is a weak critical point then r € dDy.

Corollary 2.1.15 (cf. (3, Corollary 5.4]). Let D be a closed subset of Eq. Then DN D intersects
with only finitely many cutout polyhedra.

Proof. From Theorem 2.1.13 we know that each point of D is a regular point. We can therefore
find an open neighbourhood U, for each point r € D that intersects with only finitely many
cutout polyhedra. Since D is compact there must exist a finite number of points rq,...,r, with
D =J7_, Ur,. This proves the claim. O

We already noticed that there exist critical points for d = 2. In dimension one we only have a
weak critical point.

Proposition 2.1.16. The point —1 € 9D is a weak critical point.

Proof. Counsider P;({a}) for the cycles {a) with ¢ € N*. The points of P;({a)) are characterised
by the inequality 0 < ra +a < 1. Hence P;({a)) = [—1,1=%). Any open neighbourhood U of the
point —1 intersects with infinitely many of such intervals and therefore —1 is a weak critical point.
—1 is no critical point since for any sufficiently small neighbourhood U the set (U N'Dy) \ DY can
be fully characterised by P;(({1}). O

Similar calculations show that for d = 2 each point on the line Lo U Ly (see (1.1.4)) is a weak
critical point. Generally, by the Lifting Theorem 1.1.12, it is easy to see that if (ro,...,rq—1) € 9Dy
is a (weak) critical point then

(0,...,0,70,...,7qg—1) € D4y
v
J

is also a (weak) critical point for any j > 0.
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2.1.4 Computational implementation

In Subsection 2.1.2 we introduced the Brunotte Algorithm and discussed how it can be used to
characterise DY. It is obvious that the corresponding graphs and sets are growing very fast. This
suggests the use of computers. We will now present some ideas how to implement the algorithm
(in pseudocode). They are taken from [52]. An implementation in Mathematica® for the two
dimensional case can be downloaded from the author’s homepage [51].

We start with an algorithm that calculates the set of witnesses V(Q) for some given set Q.
According to the discussion in Subsection 2.1.2 we may restrict ourselves to closed and convex
sets. Lemma 2.1.11 shows that V(@) is finite for sufficiently small ¢). For our further discussions
it is sufficient to know this. Algorithm 1 shows how the calculation of the set of witnesses could
look like. We will refer to an application of this algorithm with parameters @ and p as SOW(Q, p)

Algorithm 1 SOW(Q, p), calculation of V(Q).

Input: @, p
Output: The set of witnesses V(Q)
1 V(Q) «— {(0,...,0,1),(0,...,0,-1)}
2 M« 0
3: while (V #£ M) A (#V(Q) < p) do
N - V(Q\ M
M - V(Q)
for all x = (z1,...,24) € N do
calculate Qx

. . d
b= I(py ) EQa { [_ Zk:l Jjk"ﬂkJ }

J< MaX(ry,...,re)€Qx {_ [Zzzl Jjk"ﬂkJ

10 V@) = V@ UL, za Kk =1, j}
11:  end for

12: end while

13: if V(@) # M then

14:  Return(overflow)

15: else

16:  Return(V(Q))

17: end if

©

(set of witnesses). The algorithm starts with
V= {(07"‘707 1)7(07707_]—)} (217)

and successively applies (2.1.6). Hence, for a finite set V(Q), the process will stabilise yielding
V(Q). To avoid problems with the possible infiniteness of the set, we use an additional input
parameter p € Rt U {oo}. If the size of the set of witnesses reaches p, the process stops and
the algorithm returns “overflow”. Concrete choices of p depend on the particular setting. At the
moment it is just important to assure that the algorithm terminates. We also allow p = oo if we
know that V(Q) is finite, for example, if Q) is a single point.

The construction of the graph G(W, Q) = V x E for an initial set W C Z¢ and a set Q C &
runs analogously, at least the calculation of the set of vertices V. By the same argument as above
we will concentrate on closed, convex sets (). For this purpose we have to modify Algorithm 1 a
little bit in order to obtain Algorithm 2.

Again the algorithm builds up the set of vertices V inductively by starting with

Vo=W (2.1.8)
and applying the rule
VtH-l = U {(x27' "’xdaj) ‘j = JIGI(IQI}(_LI.XJ’ ,’Q%E—LI‘XJ } uv; (219)

XEV;
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Algorithm 2 Gr(W, Q, p), calculation of GOW, Q).

Input: W, Q, p
Output: The graph GOV, Q) as V x E

1. VW

2 B« @

32 M <—®

4: while (V # M) A (#V < p) do

5. Ne—V\M

6: M~V

7. for all x = (z1,...,24) € N do

8: calculate Qx

9: e MiNG L ra)eQx {— [Zizl wkrkJ}
10: J e MaX(p,,  r)c0x {— [ZZ=1 xkrkJ }
11: V<—VU{(xQ,...,xd,k)|kzi,...,j}
12: E—FBu{((z1,...,2d, ), T2y...,xa, k)| k=1,...,7}

13:  end for

14: end while

15: if V # M then

16:  Return(overflow)
17: else

18&:  Return(V x E)
19: end if

with x denoting the vector (x1,...,24). As soon as Vii1 = V; we set V = V. Simultaneously we
calculate the edges in an obvious way. It is easy to see that the graph returned by Algorithm 2 is
G(W, Q) (see Definition 2.1.8), of course, provided that the algorithm terminates without returning
“overflow”. In Definition 2.1.12 we defined the set Qx and showed how to calculate V(Q) with
its aid afterwards. We can use the same strategy for the calculation of G(W, Q). But how
can the set Qy be obtained algorithmically? Mathematica®, for example, provides implemented
procedures for maximising and minimising given functions. They make use of the cylindrical
algebraic decomposition algorithm (see [25]). A detailed overview concerning this topic can be
found in [24].

Let us make a few remarks on the finiteness of G(W, Q). It is easy to prove this finiteness
in an analogous way as in Lemma 2.1.11 for a sufficiently small closed convex set @ C &; and a
finite set W. As item 2. of in Definition 2.1.7 obviously is a stronger condition thanitem 2. of
Definition 2.1.8, we can expect that there are weaker requirements for G(OW, @) to be finite. In
Section 2.2 we are going to calculate this graph with Q C Dy and Q N IDy # () and it is finite
there. It is an up to now unanswered question what the exact conditions are for its finiteness.

We now can state Algorithm 3 that returns a list of all cycles that describes a given closed
convex set ) C £; when we assume that |V(Q)| < p for some p € RYU{oo}. We call this algorithm
Br{(Q, p) since it is a first implementation of the Brunotte Algorithm. Remember that in general
we will not obtain all cycles inducing polyhedra intersecting with 7. We only get enough for
characterising PN Q. Graph-cycles that do not correspond to cycles are removed. However, note
that we may get cycles whose corresponding polyhedra do not intersect with @ (the polyhedra
then will be located very close to Q). They can be removed if it is required by the particular
setting. Since we are mainly interested in an as detailed as possible characterisation of Dg it does
not seem to be useful to remove these cycles.

We have to make a few remarks on finding cycles in a directed graph. In general our graph
will have only few edges compared to the number of vertices. Cycles can only occur within the
strongly connected components. They can be found with the aid of an algorithm of Tarjan [55].
Its requirements in time and space is linear to the size of V and E. Once the strongly connected
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Algorithm 3 Br(Q, p), search for a set of cycles describing @ N DY.

Input: Q, p
Output: Iy list of cycles

1 V(Q) — SOW(Q, p)
2: if —(overflow) then

3 GONQ),Q) — Gr{(V(Q),Q,00))

4. IIg + all graph-cycles of G(V(Q), Q)

5 g — o\ {{0)}

6: HQHHQ\{TFEHQ|Pd(7T)=®}

7. Return(Ilp)

8: else

9. Return(|V(Q)| > p for the chosen Q. Enlarge p or shrink Q.)
10: end if

components are found, we can extract the cycles from each such component.

We now present an improvement of Algorithm 3. It makes use of Corollary 2.1.15. Suppose
V(Q) to be infinite for some given closed, convex @ C £4. Then we can divide @ into sufficiently
small (;, i € I with finite I, such that Q = |J;c; Q: and V(Q;) is finite for each i € I. Afterwards
we apply Algorithm 3 on each Q); separately.

Algorithmically this can be realised in the following way (¢f. [52]). Given some closed, convex,
set Q C &; which is not equal to a single point and some bound p; € Rt we apply SOW(Q, p1).
If the algorithm terminates correctly we get a finite set of witnesses V(Q)) on which we can apply
Theorem 2.1.9 and we are done. If an overflow is returned then |V(Q)| > po (and is possibly
infinite). Now we subdivide @ into two closed, convex, non punctual sets Q1 and @2 each of which
contains more than one point and apply SOW(Q;,p2) for each i € {1,2}. If this yields finite sets
of witnesses V(Q1), V(Q2) we are done. Otherwise we proceed as above with each of the sets Q1
and ()2 separately, i.e., splitting each of them into two parts and applying Algorithm 1 on each
part with some bound p3 € R*. This idea can be realised in a recursive algorithm. In order to

Algorithm 4 Bry(Q), search for a set of cycles describing @ N DY (recursively).
Input: @
Output: list of cycles Il
p «— p(@) suitable bound
V(Q) — SOW(Q, p)
if —(overflow) then
GV(Q),Q) — Gr(V(Q),Q, )
IIg « all cycles of GV(Q), Q)
o — I \ {(0)}
g « o \ {r € Hg|Pu(r) = 0}
else
Split @ into sets @1, Q2
10:  IIg « Bra(Q1) UBr2(Q2)
11: end if
12: Return(Ilp)

o

prove its termination we use the following

Lemma 2.1.17. For any sequences (pn)nen+ of increasing non negative reals with no upper bound
and (Qn)nen+ of closed, convex sets contained in 5 with Qn C Qn-1 and (),~q&@n =1 for some
r € & there exists an ng such that SOW(Qn,,Dn,) terminates without returning an overflow.

Proof. Let 6 > o(R(r)) and U = {s € &;|||R(s) — R(r)||rux),s < 1 —9}. By the conditions
made on the sequence (Qy)nen+ there exists an ny such that @, C U for all n > ny. Due to
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Theorem 2.1.11 the set V(Q,,,) is finite and obviously |V(Qn+1)| < |V(Qr)| for n > n1. Now, by
the unboundedness of (pr )nen+, there must exist an ng > ny such that |[V(Qr,)| < pn, and thus
SOW(Qng,Pny) terminates without returning an overflow. O

How can we split @@ and find a suitable value of p in order to ensure the termination of
Algorithm 4?7 We will assume that p depends on Q. Thus p = p(Q). We give a concrete example
afterwards. For a given @ the splitting rule induces a binary tree where each vertex corresponds
to a subset of Q. The root of this tree corresponds to @ itself. If a vertex corresponds to some set
Q then the two children correspond to the sets Q1 and Q- gained by applying the splitting rule
on Q and therefore Q1 UQ- = Q. Each set Q induces a bound p(Q) and, additionally, each vertex
induces a level in a canonical way: the root has level 1 and if a vertex has level | each of its two
children has level [ + 1. We label each vertex with the corresponding pair (Q, 1) and call the tree
T(Q). Note that T(Q) is infinite.

Theorem 2.1.18. Let Q@ C &g be closed and conver and T(Q) the tree from above. Each simple in-
finite path of T'(Q) starting at the root induces a sequence ((Qn,n)), cn+- Br2(Q) terminates when
for all simple paths the corresponding sequences (Q;)ien+ and (p(Q;))ien+ satisfy the conditions of
Lemma 2.1.17.

Proof. This is an immediate consequence of Lemma 2.1.17. O

What are concrete examples of splitting rules and bounds p(Q) to assure the determination of
Algorithm 47 The only way of splitting a general convex set into two convex sets is by a line. We
will concentrate on the following simple and easily calculated splitting rule. For a given closed,
convex set Q@ C &y, #Q > 1, let

m; =  min r; 1<j5<d),
I ] md)eQ{ b 1<j<d)
M, = max rs 1<4i<d
J (n,m,rd)eQ{ ]} (1<j<d)

and k € {1,...,d} the minimal index such that My —my = max;c(1... g3{M; — m;}. The fact
that #Q > 1 ensures that My — my > 0. Now @ is split into @1(Q) and Q2(Q) with

my + M,
Ql(Q) = {(ﬁ,-..,rd) e Q T < %}7
my + M,
QQ(Q) = {(ﬁ,-..,rd) e Q TR > %}
For the suitable bound we set p(Q) = Mkimk with constant ¢ > 0. Tt is easy to see that

any sequence (Qn)neN of sets gained by successive application of that splitting rule, i.e., O, €
{Q1(Qn-1),Q2(Qn_1)} for each n > 1, converges to a point and the sequence (p(Qn))nen is
increasing and unbounded. Hence, with this splitting rule and this choice of p(@), Algorithm 4
will terminate for each convex, closed @ C &y, #@Q > 1. This setting will be used throughout the
whole thesis. We will not (and cannot) give optimal values for the constant c. It strongly depends
on the position of @ relative to the boundary of D;. We restricted ourselves to bounds p that do
only depend on Q. In this context in seems to be useful, since we have to determine my and M

for the splitting anyway. One may also consider p to be dependent on the level of recursion.

2.2 About the set D)

2.2.1 An algorithm for analysing areas near the upper boundary of D,

From Theorem 2.1.11 we know that the size of sets of witnesses “grows” when we move towards
the boundary of Dg. Therefore it is difficult to use algorithms based on Theorem 2.1.9 for such
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areas. Akiyama et al. presented in [6, Section 4] an algorithmic way to find subsets of DY near
the upper boundary of Ds. Here we will present these ideas. Let

2
R:{(x,y)eR2 0<m<%,0<y<x+1}.

Note that R is clearly a subset of the interior of D5 and that the the eigenvalues of R(r) for r € R are
real and negative. Denote them by a(r) and 3(r) and assume w.l.o.g. that —1 < a(r) < A(r) <0.

Lemma 2.2.1 (¢f [6]). Let r = (z,y) € R and {ag,...,a—1) € O(C(r)). Then for all i €
{0,...,1—1} we have
B 1

5 < air1 —a(r)a; < T

1—p(r) B(r)?

with the indices taken modulo 1.

Proof. Take the indices of @ modulo ! for the rest of the proof. By (1.1.5) we have for all j € Z
0<za; +yajr1+aj2 <1
Since x = a(r)B(r) and —y = a(r) + S(r) this is equivalent to

0 < (aj4+2 — afr)aj41) — B(r)(aj41 — ofr)a;) < 1.

Denote this double inequality by I;. Of course, I; = I;3; for all j € N. Now choose some
1 €{0,...,0— 1} and note that I, + 5(r)I;_, gives

B(r) < (az4e — a(r)as1) — B(r)%(a; — afr)a;_1) < 1.

Thus Y°7_, a(r) I;—; gives

|25 ] 5]
Z Br)71 < (a1 — r)(0)airr) = B)" Haint1 — a(t)ai—n) < D Br)*.
=1

j=0

Since @;—n4+1 — B(r)a;—y is bounded for all n (in fact this difference can obtain only ! different
values) we can take the limit n — co which shows the inequality. O

Now consider the polynomial P,(t) = qt> + qt> — qt — ¢+ 1 for ¢ € Ny. Denote by 7, the
greatest (real) root of P.

Lemma 2.2.2 (¢f. [6]). % < ng <1 for all ¢ € Nyg. The other roots of P, are real and not positive.
Additionally the sequence (ng)qen, s strictly increasing with limg oo g = 1.

Proof. An easy calculation shows that F, has a local minimum at % and a local maximum at —1,
independently of ¢, with Pq(%) = —q% +1 < 0and P,(—1) = 1. Thus, since the leading coefficient
of P, is ¢ > 0 we have g > % and another root is negative. Since the constant term of F, equals
—g+1 <0 the third root is smaller or equal to 0 (and, of course, greater than —1) where equality
holds exactly for ¢ = 1. Since F,(1) =1 for all ¢ we also have 7, < 1.

Now consider the polynomial P’(t) = t®+t?>—t—1. It has a root at 1 and also a local maximum
at —1 and a local minimum at % with P/(3) < 1. Thus we must have P'(t) < 0 for t € [1/3,1).
Therefore Py(ng—1) = P'(ng—1) < 0 which induces n4—1 < 1y showing that (1q)qen, is strictly
increasing. Finally note that %Pq (ng) = P'(ng) + é =0 holds for all ¢ > 1. Consider the limit for
q — 00. Since polynomial functions are continuous we have

1
lim (P’ =) =Pl =0
im ( (g) + q) ( Jim 7g)

q—oo

which shows that lim,_. 74 is a root of P’ and by the above considerations the only questionable
root is 1. 0
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For x € (0,1) define
R.={(z,y) € Rlz < sy — &*}.

Lemma 2.2.3 (cf. [6]). Let ¢ € Ng and & € (0,14]. Then

1
(1 —a(r))(1 - B(r)?)

ar) < —k < B(r) and <q

holds for allr = (z,y) € Ry.

Proof. Since r € R, we have x < ky — k2 and therefore (a(r) + x)(B(r) + k) < 0. Since —1 < a <
B8 < 0 this immediately implies a(r) + x < 0 and S(r) + x > 0 and thus a(r) < —k < §(r).
In Lemma 2.2.2 we investigated the locations of the roots of P, and found that the only positive

root is 7, while the other roots are real and not positive. We had a minimum at % where the

polynomial function obtains a negative value. Thus Fy(x) < 0 for all x € (0,7n,]. Hence
1< 1 Py(r) = g1+ R)(1 — K2).
Using the inequality a(r) < —k < 3(r) we see that

1< q(l+K)(1— k) <q(l —afr))(1 - B(r)?).
Division by the positive term (1 — a(r))(1 — 3(r)?) proves the lemma. O

Lemma 2.2.4 (c¢f. [6]). Let ¢ € No, & € (0,7,] and r = (x,y) € R.. For each {ag,...,ai_1) €
O(C(r)) there exists a j € {0,...,1 — 1} with |a;] < q.

Proof. We will show that there is one index j with

1 1
TA—am)@ -0 =Y S T—am)d - 50

Then the theorem follows directly by Lemma 2.2.3. Suppose that this is not the case and for all
1 €{0,...,1—1} we have

1
1 —a(r)(1 - B(r)?)°

Take the inequality of Lemma 2.2.1 and sum up over all indices ¢ € {0,...,1 — 1}. This yields

|a¢| >

B !
T-pe = (et Z‘”*‘ - 57

Division by (1—a(r)) > 0 and [ shows that neither a; < — T a(r))( AT 1O G > o (r))(l EIGE)

for all ¢ € {0,...,1 —1}. For the rest of the proof consider the indices of ¢ modulo . Sup-

pose that there is an index ¢ € {0,...,] — 1} with a;,a0;11 < —W. Then a; —
alr)ai < — (1—a(1')_)?1(r—)ﬁ(r)2) = —1— ﬁl(r)z contradicting Lemma 2.2.1. Similarly it can be shown

that a;, a;41 > W cannot hold for two consecutive indices. This induces [ to be even
and, w.l.o.g.,
ap,a2,0q,...,a;1_2 >0, ai,as,as,...,a;_1 <0.

Note that
0<ax+ a1y +aq2 <1

holds for all ¢ € {0,...,1 —1}. Summing up yields 0 < Zé:o a;. Hence, w.l.o.g., we may suppose
ag > —aj. Then, by observing that y — z < 1 we have

ar < —apr—a1y+ 1< —amly—z)+1<—ar+1
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and since a1 and as can only obtain integer values this induces —a; > a2. Now a similar estimation
for az gives
—a3 < a1+ a2y < as(y — ) < ag

and therefore ag > —as. Continuing in this way gives the sequence
ap > —Q1 > a2 > —Qa3 > Q4 > a5 = -+ .

Because of periodicity this is only possible for [ = 2 and ap = —a1 = ¢ > 0. However, since
y—x —1 <0 we have —cx + ¢y — ¢ < 0 which contradicts 0 < zay + yag + a1. O

Define the set

—qg<a<gqg,—

Ag g = {(a, b) € Z? T

K K
—_— — 1<b< —— —15:.
2t -2 T }

Theorem 2.2.5 (c¢f. [6]). Let ¢ € Ny and k € (0,14] and g, the set of graph-cycles induced by
G(Asq, Rs). If (ao,...,a1 — 1) € C(r) for somer € R, then (ag,...,a;—1) € lg, .

Proof. By Lemma 2.2.4 we can suppose that, w.l.o.g., —¢ < a¢p < q. Due to Lemma 2.2.1 we have

L + afr)ag <ap < ! + a(r)a
1— f(r)2 C=M =T ”
The usage of of Lemma 2.2.3 immediately yields (ao,a1) € Ak 4. Now, by Definition 2.1.8, (a;, @i+1)
is a vertex of G(Ax,q, Rx) and additionally there exists an edge from (a;, ai+1) t0 (@it1,a:42) for
all i €{0,...,1 — 1} (indices modulo 1). Therefore (ao,...,a;1—1) € g, .

Corollary 2.2.6. Let x € (0,v4] for some g € No, Q C D2 and Il the set of all nontrivial cycles
induced by G(Ay,q,Q). Then

Qn U R |\ | Rr) cDs.

0<i<K m€llg

Proof. Observe that A, ; C A4 for 0 < ¢ < k. Then the corollary follows immediately from
Theorem 2.2.5. g

The following is due to [52]. For closed @ we can use the results of Subsection 2.1.4 to state
an algorithm for determining which areas of R are contained in D§. Whenever parts of the line
y = x + 1 are included in @, G(A,,q, @) will contain a lot of cycles of the form {(a, —a). These
cycles correspond exactly to the line y = z + 1 which we already know not to be part of DY (see
Theorem 1.1.16). Based on these considerations we can adopt Algorithm 5. Since the Algorithin
is based on results presented by Akiyama, Brunotte, Pethé and Thuswaldner [6] its application
with parameters ), ¢ and p is denoted by ABPT(Q), q,p). In Subsection 2.1.4 we mentioned the
advantage of using convex sets (). Note that R is not convex and thus it may happen that Q) is
not fully contained in R. Note that from Lemma 2.2.2 we see that for growing ¢ the sets R,,
become smaller and move towards the point (2,1). The closer we come to this point the bigger
Ay, ¢ is. This means that for big ¢ it is difficult to obtain characterisation results for R, ND§.

2.2.2 Computational results

In this subsection we present characterisation results concerning DY obtained by the application
of Algorithm 4 and Algorithm 5. It is a summary of several lemmas and theorems taken from
[52]. Figure 2.1 shows a sketch of the subsets of D, treated in this and the next subsection. The
black areas are known not to belong to D3. The light grey sets are depicted in a magnified way in
Figure 2.2. In [6, section 4.1] the set R was analysed for z < 5/6 without having found any cycle.
Additionally the sets Ry, for ¢ = 3,...,6 have also been shown to belong to D ([6, Theorem
4.8]). It is possible to continue this series.
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Algorithm 5 ABPT(Q, q, p), search for all cycles within an area Q N |J,., <nq B

Input: Q,q,p
Output: list of cycles Il

L: calculate A, 4

2 G(Ay, ¢ Q) — Gr(4y,,. Q. p)

3: if —(overflow) then

4:  Ilg « all cycles of G(4,, .4,Q)

5 o —Tg \ ({{0)} U{(a, ~a) |a € No})

6: HQ <—HQ\{7T€HQ|P2(7T):®}

7. Return(Ilp)

8: else

9:  Return(The corresponding graph is bigger than the given bound)
10: end if

0 0.5 1

Figure 2.1: Overview of the location of several subsets of D»
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Theorem 2.2.7. R, C Dj forallg e {7,...,11}.

Proof. The usage of ABPT(R,,,,q,00) returns no cycles for ¢ € {7,...,11}. O

Note that R,, UR,, ,, CU Ry. Let

Ne<K<ngt1
Eg={(z,y) €ER|z 2 ng—ry—m_1,x =gy — 1 } .

We have
Es= |J Be\(By,URy,.).
NgSKSMg+1
Therefore, For 4 < ¢ < 11, E, remained uninvestigated. We will analyse these sets in the next
theorem.

Theorem 2.2.8. E, C DY for all g € {4,...,11}.

Proof. Application of ABPT(E,, q,00) returns no cycles for ¢ € {4,...,11}. O

In Figure 2.1 we denoted union of the sets treated in Theorem 2.2.7 and Theorem 2.2.8 by R'.
We cannot recognise them since they are very small but we get an idea of their location. Summing
up all the results concerning R gives

Theorem 2.2.9. Uy <., Bx D {(z,y) € R|z < 33} is contained in DS.

Theorem 2.2.10.

5 19 4
—Sxﬁ—,ZxSy,xZ%}CDg.

Qa ::{(x,y)E]R2 5 50

Proof. The application of Algorithm 4 with ¢ = 200 (see the considerations after Theorem 2.1.18)
returns no cycles. O

Up to now the analysis of D seems to be easy and the number of characterising cycles acces-
sible. This will change now. The next results are based on Algorithm 4 with ¢ = 20.

Theorem 2.2.11.

QB := {(x,y)e]R2 < 100

g§x<2/\—x+2§y§1+g}ﬁl)g

can be described by 787 cycles.
Theorem 2.2.12.

o= {wnew

5 99 0
<< —A—- <y <
6_95_100/\ m+1_y_x}ﬂD2

can be described by 1010 cycles.
Theorem 2.2.13.

Qp = {(x,y) € R?

5 99 =z
Scp<< A <y<a—1 Do
6%\ TgsYsT }m 2

can be described by 402 cycles.

For computational processing a list of all these cycles is available as a Mathematica® notebook
file in the internet [51]. The maximal length of these cycles is 130, the entries have modulus 74
at most. Note that it is not verified whether all of them are really necessary to characterise DY in
the particular region and which ones are possibly totally covered by others. In view of the number
of the cycles of several hundreds this seems to be a difficult job. Figure 2.2 shows the three sets
@B, Q¢ and Qp in more detail. The grey parts do not belong to the sets and mark the missing
gap to the right boundary of Ds. In Subsection 2.2.4 we will present cycles that lie within these
parts but with the currently available methods it seems to be impossible to analyse them more
closely. The cutout polygons that are induced to the computed cycles are depicted in black. The
white areas are definitely subsets of D3.
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0.85 0.9 0.95 1

0.85 0.9 0.95 1

1
0.85 0.9 0.95 1

0.85 0.9 0.95 1 ot

Figure 2.2: The position of the cutout polyhedra within the sets Q g, Q¢ and @ p (from left to
right)

2.2.3 An area near the right boundary of D,

For areas near the right boundary of D> an application of the presented algorithms fails. The
only possible way to prove a set @Q to be a subset of DJ seems to be a direct observation of the
behaviour of the orbits of the mapping 7. for r € Q. The following results are taken from [52].
Note that this result is similar to [6, Theorem 4.27].

Theorem 2.2.14.
1
Py = {(1—T,1+5T)‘0<T< %,03531} c DY.

Proof. Fix T € (0, 35) and 6 € [0,1]. Let r = (1 — T, 1+ 6T) € P,. Furthermore define

A={(z,y) €Z?|z <0,y <0},
B:={(z,y) €Z*|z >0,y >0}.

These sets represent the third quadrant together with the negative y-axis and the first quadrant
together with the positive y-axis, respectively. We will prove the statement by showing that 72
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sends each point of Z? to 0 for some p € N. The idea is not very complicated, but several technical

lemmas are needed. These lemmas are proven afterwards. Everything is based on the fact that the

application of 73 changes a point only little. Figure 2.3 shows the orbit of the point (—200,200)
1

for T'= z5 and 6 = 1. It is divided into three branches. After three applications of 7. we return

to one branch. We now look at the sequence {77(z)}nen of a point z € Z2. We will show the

200}

~200 £100 LRl S 100 200

-100f

Figure 2.3: The orbit of the point (—200,200)

existence of a finite subsequence {zo,...,24 } that ends up in 0. This proves the theorem. We
first assert that each point in Z? has an orbit that intersects with A U B U {0}. This is shown in
Lemma 2.2.25. Hence, without loss of generality, we can start our subsequence with zo € A (for
B the proof runs analogously). For a z, € A, ¢ > 0, construct z,41 in the following way: Let
(10,v0) := Z4. For ani > 0 set (w41, vi4+1) := 7o (us, ;). Then for (u;,v;) € A the following points
(which are shown in the mentioned lemmas) are true:

w41 <0 (Lemma 2.2.15), (2.2.1)
Wig1 + Vi1 = — ||(’U/z, ”i)||1 (Lemma 2.2.17), (222)
Vi1 —v; > 1 (Lemma 2.2.19). (2.2.3)

Formula (2.2.3) ensures that there is no repetition possible and hence there cannot exist a cycle
within the set A. By (2.2.1) and (2.2.3) can further be seen that either (w;41,v:41) € A or v;41 > 0.
Thus there exists a j € N with (u;,v;) € A for ¢ < j and (uj41,v;41) € A where (u;41,v;41) lieson
or above the z-axis. Additionally the length of (w;,v;) is not growing with respect to the 1-norm.
Now apply 7 once. Then Lemma 2.2.21 says that either 7(1j41,vj41) = 0 or 7w (uj41,vj+1) € B.
Moreover we always have ||7¢(uj11,v511)||; < [[(u5,v;5)|]; which is shown in Lemma 2.2.23. Now,
if (zo,y0) = 0, set zg41 := 0. Otherwise we proceed in an analogous manner as before for the
set B. Start with (zo,y0) := 7e(u;+1,v;41) and define (41, Yr+1) := 73(xk, yk), k > 0. Then for
each (zy,yx) € B we have

ZTr+1 >0 (Lemma 2.2.16), (2.2.4)
Tht1 + Yrt1 < [(@k,yx)ll; (Lemma 2.2.18), (2.2.5)
Y1 — Y < —1  (Lemma 2.2.20). (2.2.6)

Thus, again, there exists an [ € N with (z,yx) € B for k <1 and (2141, y1+1) € B. (2.2.5) ensures
that ||(zr+1, Ye+1) |7 < @k, yi)||; for & < 1. We set zg41 := 7o (@141, Y1+1) and see that zg41 € A
or Zg11 = 0 (Lemma 2.2.22) and this time ||z441]|; < |[(2,%1)|/; (Lemma 2.2.24). Hence we have

IZ4ll; = [I(%0,v0)ll; < [[(ua,v1)ll; <.

< [l (wsy v)ll,
< |I(zo,»0)ll; < Iz, yD)lly < ... <

@ y)lly < llzqall; -
It is easy to see that any z, is a member of our sequence (777z),, . and there exists an go > 0 with

1Zoll; < l|lZ1ll; < ... <||Zgll; = 0. Hence {zo, ...,z } really ends up in 0. O

46



We need some preparatory definitions. Let (u,v) € Z2. Using the abbreviations

t(u,v) := 06T —uT,

k(u,v) = —udT — v(T + 6T) — [¢(u,v)]dT,

A, v) = w(T + 0T) + T + [t(u,v)| (T + 6T) — | k{u,v)|0T
yields

To(u,v) = (v, —u — v — |{u,v)]),

7 (u,0) = (—u—v = [(u,0)],u+ [e(u, v)] = |5(u, v)]),

7 (u,v) = (u+ [(u, )] = [K(u,v) ], 0 + [6(u,0)] = [Mu,v)])-

For some proofs it is better to choose another representation. By direct calculation we gain

72 ((u,0)) = (u+ a1u+ agv + az, v+ fru + fov + B3)
with
oy :=T(-1+§) —T?,
ag == T(1+26) + T25%,
B1i=T(=1—28) + T%(1 + 20 — §2) + T352,
Bo =T (=2 —68) + T?(—26 — 362) — T383,
az = (=1 = 0T){u(u,v)} + {x(u,v)},
By = (T + 26T + 8*TH){u(u,v)} + (=1 — 6T {k(u, v)} + {\u,v)}.

(2.2.7)

where {a} denotes the fractional part of a. These expressions satisfy the following inequalities:

=T < [a75] <0,

T< an <AT,
3T< B <0,
—4T < B < —2T,

—-T< az+03: <0.

(2.2.8
(2.2.9
(2.2.10
(2.2.11
(2.2.12)

)
)
)
)

The estimations are partly very crude, but easy to verify and sufficient for our aims. Because of
monotonicity the extreme values of ag and 33 can only occur, if {t(u, v)}, {s(u,v)} and {A(u,v)}
take extreme values. We have 0 < {c(u,v)}, {k(u,v)}, { (u,v)} < 1. For our estimations of as
and 3 we use 1 as an upper bound of {¢(w,v)}, {k(u,v)} and {A(u,v)}. This gives the following

table:
A(w,v)}  {s(y,0)}  {e(u,v)} Qs B3
0 0 0 0 0
0 0 1 —1-46T T+ 26T + 6272
0 1 0 1 —1-46T
0 1 1 —6T —14+T + 6T + 6272
1 0 0 0 1
1 0 1 —1—6T 14+T+26T +6°T2
1 1 0 1 —6T
1 1 1 —6T +T + 6T + 6272
This table shows that
—1-6T < Q3 <1,
-1-6T  <fBs  <1+4T+26T+5T7,

“14T+8T? <as+p8; <1
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Note that {¢(u,v)}, {x(u,v)} and {¢(u,v)} cannot be equal to 1 hence all inequalities are strict.
While proving the lemmas, we always have to keep track of the signs of the «; and 3; as well as
the possible values § and T can obtain.

Lemma 2.2.15. Let (u;,v;) € A and (wit1,viv1) = 75 (us,v;). Then uipq < 0.

Proof.
Uit1 = Ui + o + v + az = ui(l +a1) +viaz +as

By the definition of A we have u; < 0 and v; < 0. Because v; is an integer this implies v; < —1.
(1+ 1) > 0and as > 0 by (2.2.8) and (2.2.9). Since by (2.2.13) we have a3 < 1 we obtain

Uip1 < —o+1=—T(1+28) —T%% +1< 1.
The fact that u;41 is an integer allows the final conclusion u; 1 <0. O

Lemma 2.2.16. Let (x4, yx) € B and (141, yk11) = 70 (2k, yx). Then xpy1 > 0.
Proof. Analogously to Lemma 2.2.15, by using (2.2.8), (2.2.9) and (2.2.13), we get
Tht1 =Tk + T + Yoo + 03
=211 + 1) + yraz + 03
> — 1 — 6T
=14+ TA+86)+T2%* > -1
and therefore z;11 > 0. O
Lemma 2.2.17. Let (w41, vit1) = 72 (us,v;). Then (us,v;) € A and ||(us,v;)||1 = m implies that
Uj1 + Vip1 = —m.
Proof. Since (u;,v;) € A we have ||(u;,v;)||1 = —w; —v;. Thus
Uig1 + Vi1 =Ui + s +viae +az + v+ uf + 082 + O3
>U¢(Oél + ,81) + Ui(OZQ —+ 52) -m—1+T+ 5272
where (2.2.15) gives the lower bound for a3 + f3. Considering (2.2.8), (2.2.9) and (2.2.12) yields
Uit1 + Vg1 > —m — 1 and for integer values u; 1, vip1, m we get wiy1 + Vip1 > —m. O
Lemma 2.2.18. Let (Tpe1,Uk+1) = To(@k,yx)- If (zi,yr) € B and |[(zg,yk)|li = m. then
Tht1 + Y1 <M.

Proof. Since (zy,yi) € B we have ||(zr,yx)ll1 = @r + ye. Again (2.2.8), (2.2.9), (2.2.12) and
(2.2.15) are used for the following estimation.

Ti41 + Y1 =Tk + Teon + ypo2 + a3 + Yk + TeP1 + ypbe + O3
<z(on + B1) +yr(oa + B2) +m +1
<m+1
and thus zx41 + Y1 < m. O
Lemma 2.2.19. Let (41, vi41) = Tp(wi,v;). Then (u;,v;) € A implies that vip1 —v; > 1.
Proof. Since (u;,v;) € A we have u; <0 and v; < 0. Thus
K(ug,v;) = — ;6T — v, (T + 8T) — | e(ug, v;) | 6T
> —w; 0T — v (T + 0T) — t(us, v5)0T
i (=0T + 6T%) + v (=T — 6T — 6*T?) > 0 = |k(usyv;)| >0
Mug, v;) =ui(T + 6T) + v, T + |elwg, v) (T + 6T) — | k{ws, v;)] 6T
<u (T + 6T) + 0T + (g, v)(T + 6T)
=ui(T + 6T — T? — 6T?) + v, (T + 61% + §°T?)
<—T 0T - 8°T% < 0= (Mug,v)| < —1.
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Finally the simple computation
Vig1 — U = [K(ws, v5)] — [AMus, vi)] 21
shows the statement. O

Lemma 2.2.20. Let (zx,yx) € B and (Tpt1, Yrr1) = 7o(2k, Uk). Then ypp1 — yp < —1.
Proof.

KTk, yk) = — k0T — yr(T + 6T) — [e(zr, yx)] 6T
< — 20T — yp (T + 6T) — (g, yr) — 1)6T
=24(—6T + 6T%) + yp(—T — 6T — 6°T7) + 6T
<—T—68T? <0= |rlrg, )| < -1

Nk, yi) =zi(T + 6T) + yiT + [(@k, ye) | (T + 6T) — |6k, yi) | 6T
> (T + 8T) + yi T + (Uxk, yi) — V(T + 6T) + 6T
=2x(T + 6T — T? — 6T%) + yp(T + 6T + *°T*) - T
>0T? + 6°T% > 0= | Mzk,ur)] > 0.

Hence,
Yrt1 — Yk = [A(@r, yx)] — (Mo, yr)] < -1
O
Lemma 2.2.21. If (uj,v;) € A and (ujt1,vj41) = To(uj,vj) € A then 1(ujq1,vj41) € B or
Te(uj41,vj41) = 0.
Proof. Let (u',v") := 7(tj41,vj41). We will show that v’ > 0 and v' > 0. We have u;41 <0

(according to Lemma 2.2.15) and v;41 > v; (according to Lemma 2.2.19). Since (wjy1,vj41) € A
we can conclude that v;y1 > 0 and therefore v’ = v;41 > 0. The proof of the other statement

requires some more estimations. Set m := —u; — v;. Suppose first that m < 2. This is only true
for u;+v; = —1 and therefore u; = 0 and v; = —1. Then |¢(u;,v;)| € {—1,0}, [x(u;,v;)] =0 and
[ A(uj,v;)] = —1. Hence either (u;41,v541) = 0, which means that (v/,v") = 0, or (uj41,vj41) =

(1,0), which implies that v/ = —|—-1+T| =1 > 0. If m > 2 then

ujr1 =ui(14+ 1) + vjae + as
>(—v; —m)(1+oq) +vjas — 1 =T
=v;(—1 -1 + ) —m(l+a1)—1—6T.

Note that (u;,v;) € A and so v; < —1 < 0. Thus

Ujrr 2l + a1 —as —m —may — 1 =467
=—m+a(l —m)— o — T
> —m—aoao — 0T

Since u;+1 and m are integers, the conclusion
Ujp1 = —m (2.2.16)
holds. Furthermore by (2.2.7) and (2.2.15)

Ujp1 + V41 =u;(1+ o+ 51) +vj(1+as + F2) + as + 3
<(—m—-v;))(1+a1+61)+v;(l+as+52)+1
=—m+1—ma; —mp +vj(az + F2 —ar — B1).
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Inserting v; < —1 and using (2.2.8)-(2.2.11) yields

Ujr1 + V41 <—m+1—mog —mPy — (a2 + fo — a1 — B1)
=(-m+ 1)1+ +051)—az2— P
<(-m+1)(1—-4T)+ 3T
—m(—1+4T)+1-T.

Together with (2.2.16) this implies

ujp1(l = T) + vjp1 (1 + 67
<wujip1(1=T)+(m(-14+4T)+1 - T — uj41)(1 + 67)
=m(—1+4T)1 +6T) + (1 — T)(1 + 6T) — ujy1(T + 6T)
<m(—1+4T)(1+6T) + (1 — T)(1 + 6T) + m(T + 6T)
=m(—1+ 5T +46T*) + 1 T + 6T — §T°
<—24+ 10T +8T* +1—T + 6T — 6T

— 1497 40T + 7672 <0

and therefore v' = —|uj11(1 = T) + vj41(1 4+ 67)] > 1 > 0. Hence 7(ujt1,v41) = (v/,0') is
really inside B, when it is not 0. O

Lemma 2.2.22. (x1,y) € B and (2151, yi+1) = 72(x1, y1) & B implies that 7o (2141, Y141) € A or
Te(Zi41, Y141) = 0.

Proof. Let (2',y") := 7e(%i+1,¥1+1). Analogously to Lemma 2.2.21 we have to show that ' < 0
and y’' < 0. The claim (z;41,%1+1) € B together with Lemma 2.2.16 and Lemma 2.2.20 implies

that ;41 < 0 and therefore ' = y;11 < 0. The second estimation comes from the following
computations: Let m := z; + y; and suppose that m < 3. There are three possibilities:

(z1,31) = (0,1)

[£(0,1)] =[6T] =0
15(0,1)] =|-T — 6T | = -1
IA0,1)] =|T + 6T =0

and therefore (ziy1,y141) = (0+0+ 1,1 — 1+ 0) = (1,0) and further (z/,y') = 7(1,0) =
0,-[(1-T7)]) = 0.

(xy) = (1,1)
[t(1,1)] =|6T —T] € {0,-1}
|£(1,1)| =|-T — 26T — |(1,1)]6T| = -1
[A(1,1)| =[2T + 26T + [«(1, 1) |(T + 6T)] = 0.
So either (2141, 414+1) = (1,0), which goes to 0 by the calculation above, or (z;1,41+1) =
(2,0)and y =—[2—-2T| =-1<0.
(zi, ) = (0,2)
[£(0,2)] =|26T| =0
1k(0,2)] =|—2T — 26T | = —1
|A(0,2)| =[2T +6T] =0.

This yields (x141,yi+1) = (1,1). This case does not fulfill the condition (z;11,y141) & B.
Thus it is irrelevant for the present lemma.
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Now let m > 3. Note that always y; > 1.

41 =z (1 + 1) + yioz + as
<=y +m)(1+a1)+yos+1
=y(~1—ar+a2) +m(l+a)+1
<-l-art+a+m+ma+1
=m+a(m—1)+ as
<m —+ as.
Again z;41 and m are integers and from there follows
41 < m. (2.2.17)

Analogously to Lemma 2.2.21, we need a lower bound for a1 + yi41:

T+ Y =v(14+ a1+ B1) (1l + a2+ B2) +as + B3
>m—y)(1+o1+61) +y(l+ s+ B2) — 1+ T+ 6°17
>m —1+mar +mpr +yaz + B —ar — B1) +T
>m—1+mor+mpi+(az+po—on —p)+T
=m-1)(14+a+5)+ar+G+T
>(m—1)(1 —4T) — 2T
=m(l —4T) —1+2T

where (2.2.8)-(2.2.11) yielded the last inequality. With the help of these two results we show the
estimation

zi41(1 = T) + yiy1(1 + 67)
(1 =T) 4+ (m(l —4T) — 1+ 2T — 2141 )(1 + 67)
=m(l —4T)(1 + 0T) + (=1 4+ 2T)(1 4 6T) — 2141(T + 0T)
>m(l —4T)(1 +6T) + (=14 2T)(1 + 6T) — m(T + 6T)
=m(1 — 5T — 46T?) — 1 + 2T — 6T + 26717
>3 — 15T — 126T% — 1 4 2T — 6T + 26T
=2 — 13T — 6T — 10677 > 1.
Therefore y' = — |21 (1 —T) + yip1 (1 4+ 07T)| < -1 <0. O
Lemma 2.2.23. If (u;,v;) € A and (wip1,vig1) = 7o (ws,v;) € A then we have ||7p(uir1, vig1)||; <
[[(ws, v3) [l = m.
Proof. Let (v/,v") := 7w (tsg1,vi41). Lemma 2.2.21 says that 74 (u;41,v;41) is an element of B and
therefore ||7x(wit1, vig1)|l; = v’ + v/, while the inside A lying point (u;,v;) induces the condition
u; + v; = —m. According to Lemma 2.2.17, ;41 + v;41 > —m is valid, although the point is not
an element of A.
v+ v =vip1 — w1 — vip1 — | —uia1 T + 4167 ]
=— [wiy1(1 = 1) + vi416T]
< = [uipa (T =T) + (—viy1 —m)éT]
=— |ui+1(1 = T —8T) — méT .
Using (2.2.16) yields

W +v <—|-m(l—T—6T) —mdT|
<m—|mT] <m

and shows that «' + v/ < m holds. O
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Lemma 2.2.24. If (z;,y) € B and (Ti41, yir1) = 73(x1,y1) € B then we have |7 (ziy1, yig1)||; <
(@, y0)lly = m.
Proof. Let (z',y') = o(@i4+1, Yi+1). Referring to Lemma 2.2.22 we have (2, y’) € A and therefore

(2", y")|l; = —2’ —y'. On the other hand ||(z1, %1)|; = 21 + yi =: m. According to Lemma 2.2.18,
Zi+1 + yi+1 < m holds, although the point is not an element of B.

' +y =y — i1 — Y1 — |2 T+ Y107
== [z41(1 = T) + y14107 |
> — |21 (1 = T) + (—2i41 + m)oT ]
= — |2141(1 = T — 6T) + méT .

Now we use (2.2.17) to get

24y >—|m(l—T-0T)+méT|
> —|-mT]>-m+1.
This shows the validity of ||(z/,y')||; <m —1 <m. O

Lemma 2.2.25. Let (u,v) € Z% Then there is an i € N with either 7i(u,v) € AU B or
Ti{u,v) = 0.

Proof. Consider the line = + y + ¢(z,y) = 0. It runs through the origin and splits the second
quadrant into two pieces for each possible T and §. It allows the partition of Z? into 0 and the
sets

={(z,y) €Z° |z >0,y >0},

={(z,y) € 2’| <0,y <0},

={(z,y) €Z? |z <0,y >0,z +y+1(z,y) <0},
={(z,y)

={(z,y)

9

Uy :
Us:={(z,y) € 2’|z <0,y > 0,2+ y + 1(z,y) > 0},
Us : Y) EZ¥ |z >0,y<0}.

There are the following cases:

(u,v) € Uy Wehavev > 0and —|u+v+i(w,v)] > 1> 0. Thus 7(u,v) = (v, —[ut+v+e(u,v)]) €
B.

(u,v) € Uz (u,v) cannot be an element of the z-axis. Suppose v =1 and u < —2. Then u+ v +
(w,v) < —242T4146T = —1—-2T— 6T < 0 shows that (u,v) does not lie in Us. If u = —1
then (u,v) = (—1,1). This point is an element of Us. 7(-1,1)=(1,-14+1— |T 4+ 46T]) =
(1,0) and 7(1,0) = (0,—1 — | =T']) = 0 shows that this point goes to O after 2 applications
of 7. For the rest of Us we can assume v < —1 and v > 2.

v+ ub+vBe+ B3 22+ 20— B — 10T
=1-T+T%*(-1-45-28*) +T3(=6* - 6% >0
and therefore v + uf; + vf32 + B3 > 1. Further we have

(w,v) =0T —uT > 26T+ T > 0= |({u,v)] >0,
k{u,v) = — wdT — v(T + 6T) — | (u,v) | 0T

=—oT — |u+v+ (u,v)|6T

<—vT'<0

which shows that |sx(u,v)| < —1. Furthermore |ct(u,v)| — |#(u,v)] > 1. Thus we can
conclude that the point

7 (u, ) = (u+ o(u, )] = [K(u, v)], v+ Bru+ Fav + F3)
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is above the z-axis and right of (u,v). This induces that 77" (u, v) is either 0, an element of
Uj or an element of B for an m € N.

(w,v) € Us This implies that v < 0. Thus 7 (u,v) = (v, —u — v — |(u,v)]) & Us.
Hence Ji € N with 7¢(u,v) € AU B U {0} for each (u,v) € Z>. O

2.2.4 Two infinite families of cycles

We already noticed the existence of infinite families of pairwise disjoint cycles. The first one was
presented in [3, Section 6] without an explicit analysis. In [52] a second one was found and both
of these families have been investigated. For each n € N, n > 1, consider the cycle

n n—1
Wp, 1= <2n +1,-2n,| J2i-1,2n—2i+1,-2n), | |(2n+1,-2i,-2n+ 2i)>

i=1 i=1

where || denotes the sequence gained by concatenation, e.g. | |\, a; = a1,...,an. For an empty
set of indices the corresponding sequence is empty. Hence for each n > 1 we have a sequence of
length 6n — 1.

w1 = <37 _27 ]-7 17 _2> ]
= <5’ _4’ ]-a 3’ _4’ 33 1’ _4’ 5’ _27 _2>’
= <7’ _6’ ]-a 5’ _6’ 33 3’ _6’ 5’ ]-’ _67 7’ _27 _4’ 7’ _47 _2>’

Our aim is to show that Py(w,) N D2 # 0 for n € Ny, which induces w, to be a cycle, and
Py(wp, )N Py(wy,) = 0 for positive integers ny, ny with ny # na. We already know that wq induces
a non-degenerated cutout polyhedra: the set Es defined in (1.1.6) equals Py(wq) N D In the
following we will see that the case n = 1 behaves a little different than the other ones. For some
n > 0 the set Py(w,, ) consists of the points (z, y) € R satistying the following system of inequalities,
deduced from (1.1.5):

0< r—2ny+2n+1 <1, (2.2.18)
0< —ong+ (2n+ 1)y — 2 <1, (2.2.19)
0< —22 + (2n+ 1)y — 2n <1, (2.2.20)
0< (2n+ 1)z — 2ny + 1 <1, (2.2.21)
0< —2nz+(2j+1y+2n—2i—1 <1 (0<j<n), (2.2.22)
0< (2j+Dz+@n—2j—1ly—2n <1 (0<j<n), (2.2.23)
0<  (@n+Dz—2y—2n+2j <1 (0<j<n), (2.2.24)
0< —2jz+(—2n+2j)y+2n+1 <1 (0<j<n) (2.2.25)

For n =1, (2.2.19) and (2.2.20) are equal and (2.2.24) as well as (2.2.25) do not exist. For a point
r € Ps(wy,), the function 7. maps as follows:

(1,-2n) — (—2n,2n+1),
(=2n,2n+1) — (2n+1,-2),
(=2,2n+1) — (2n+1,-2n),
(2n+1,-2n) — (—2n,1),
(—2n,25+1) — (2j+1,2n—-25—-1) (0<j<n),
(2j+1,2n—-2j—-1) — (2n—27—-1,-2n) (0<j<n),
2n+1,-25) — (=2j4,—2n+2j) (0<j<n),
(—2j,—2n+2j) — (—2n+2j52n+1) (0<j<mn)
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Figure 2.4: The points of the cycle wr

Figure 2.4 shows these points for n = 7. For showing that the set Py(w,) of points satisfying the
inequalities (2.2.18)-(2.2.25) equals a nonempty polygon for each n > 1, let

e (1,20)
) 2n )

X%Q) — ( 2n(2n+1) (2n +1)? ) ’

An2+2n—1"4n2 +2n—1
<@ . 2n(2n —1) 4n?
T \4dn2—2n4+14n2 —2n+1)/"°

§’§ n=1
aofD,

(1, 23f1> (otherwise) -

Denote by O(ay,...,a;) the convex hull of the points aj, ..., a.

Theorem 2.2.26. For any n > 1 the polygon Pa{w,) equals the non-empty open set S :=
int (D(XS), . x,(f))) .

Proof. We chose from our list (2.2.18)-(2.2.25) the four right hand (strict) inequalities (2.2.18),
(2.2.21), (2.2.22) with j = n — 1 and (2.2.23) with j = 0. For n = 1 take (2.2.19) instead of the
last one. They form a subsystem of the system (2.2.18)-(2.2.25). Each of these four inequalities
describes an open half plane:
Hlz,y)|lz—2ny+2n+1<1},

U {(z,y)|2n+ Dz —2ny+1 <1},

U {(2,y) |-2nz + (2n — )y + 1 <1},
U@ . {(@y)|-2z+3y—-2<1} (n=1)

{{z,y)|z+ (2n—1)y —2n <1} (otherwise)

Obviously we have Pa(wy,) C ﬂ?zl UY. The lines

g,(ll): T —2ny+2n =0,

g2 (2n + 1)z — 2ny =0,

g3 —2nz+ (2n—1)y =0,

oD { —2x+3y—3=0 (nzl)
4+ (2n—1)y—2n—1=0 (otherwise)
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are the boundary lines of these half planes: g,(f) bound U,(f) for i = 1,...,4. Now it is easy to
verify that

D) = g0 A g 2 € U U@,

o) = g2 Agf?, o) € U nU,

2 = g1 7 g, 2 € UP NUW,

2® =g ng®, 2 c UV NUP.

This shows that S = ﬂ?zl U and thus S O P (wp). On the other hand simple calculations show

that for each i = 1,...,4, xﬁf ) satisfies all the other inequalities but the four chosen ones of the
system (2.2.18)-(2.2.25). Hence we also have S C Py(wp). O

1 1.05 11 115 1.2 125 13
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—-1.025

1.025 -

=0.975

0975

0.95-

0925 - -0.925
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Figure 2.5: The sets Pa(wy)

(2)

From the first coordinates of x,;’ and X%‘?)

2n(2n+1) g 1
4n? 4+2n—1 4n?2 +2n -1’
2n(2n—1) 1
4n2 —2n+1 = 4n2—-2n+1

we see that only a part of Ily(w,) lies in Ds. Figure 2.5 shows the cutout polygons for n > 1.
(The axes are reversed to save space.) Pa(wy) N Do is shown in Figure 1.3 as E3. We see the
following: each of the polygons P(wy,) corresponds to a quadrangle. But only Ps(wy) N Dy is of
real interest. And here only Ps(w1) N D2 really gives a quadrangle. For n > 2 we see Pa(wy,) N D2
to be a triangle. These (interesting) triangles are depicted in black while the parts not intersecting
with Dy are grey.

The second family was discovered earlier by Akiyama et al. [3]. A more detailed investigation
of it was given in [52]. Consider the family of sequences

i=1

n
Cn = <n+1,|_|(i,—n—1—|—i,—i,n+1—i)>.
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We have
Cl = <27 17 _17 _17 ]-> y
CQ = <33 1’ _2’ _1’ 23 2’ _1’ _2’ ]->’
<3 = <4a 1’ _3’ _1’ 33 2’ _2’ _2’ 2’ 33 _1’ _37 1> 9

These sequences also will turn out to be cycles corresponding to nonempty polygons. Contrary to
the polygons Ps(wy, ), which are located in the upper half plane, we will show y < 0 for P5(¢,). We
will abbreviate the analysis of this family since it runs more or less analogously to above. P((,)

—04 -0.2 0
T T T

09 —09

X

Figure 2.6: The sets P2(¢p)

is characterised by the pairs of inequalities

0< x+n+1y+1 <1, (2.2.26)
0< jz+(G-n—-1ly—j <1 (0<j<n), (2.2.27)
0< (G-n—-Dz—gy+tn+l1—3 <1 (0<j<n), (2.2.28)
0< —jJr+Mn+1—-5y+{(G+1) <1 (0<j<n), (2.2.29)
0< (m+1—-Hz+G+y+ji—n <1 (0<ji<n) (2.2.30)

Note that the length of ¢, is 4n + 1 and that we have exactly one inequality of each type for the
case n = 1 which we will see to behave a little different again. We direct our attention to five lines,
for n = 1 to three lines, respectively. They are deduced from the strict sides of the inequalities
(2.2.26) and (2.2.27) with j = 1, and the not strict side of inequality (2.2.30) with j =n — 1 and
additionally, for n > 1, the strict sides of (2.2.29) with j = n and (2.2.30) with j = n — 1. These
inequalities induce the lines

h(ll) w4+ 2y =0,
h(12) -y =2,
h(lg) 2r+y=1
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and for n > 1
MY :n+ Dz +y=n+1,
W2 i —ny =2,
A 224+ ny =1,
h5L4) mr—y=n,

A x4+ (n+1)y=0.

Furthermore define the points

n4+n+2 n+1 )

n(n+1) n
n2+n+1’_n2—|—n+1>’
(n+1)2 n+1
n(n—|—2)’_n(n+2)>'

The points ygl) and y§5) as well as y§3) and y§4) are identical, such that there are only the three

different points ygi),i =1,2,3 for the case n = 1.

Theorem 2.2.27. O @ W @
Py(C1) =0(y;y s yy 5y )\ (b  UR),

Po(¢) = O,y P URP UR uRP), n> 1

Proof. (sketch) For n > 1 we have hgf) A hgf"'l) = yff) for i = 1,...,5 (upper indices are taken
modulo 5) and hgz) A hgﬂ'l) = ygl) for i = 1,2,3 (upper indices are taken modulo 3), respectively.
Therefore the five (three, resp.) lines bound the stated area. Only hf) is deduced from a not

strict inequality, all other lines come from strict ones. Hence these lines have to be removed.
Additionally all points satisfy the remaining inequalities. O

(1 describes a triangle, the others form pentagons. In Figure 2.6 this is shown graphically,
starting with P»(¢y) on the left (reversed axes). As can be verified easily, ¢, induces the cut of a
quadrangle out of Dy for n > 1 while P»({1) N D2 equals a triangle (black parts). Observe that we
already met this triangle as E3 (see (1.1.6)).

Summarising the results of this subsection we see that there definitely exist infinitely many
cycles of Dy (and because of the Lifting Theorem 1.1.12 the same is true for Dy for any d >
2) corresponding to pairwise disjoint polyhedra. Several questions arise immediately from this
observation.

Open question 1. Are there more families of cycles (there definitely exists cycles that do not belong
to one of the analysed ones)?

Open question 2. Can one give a set of infinite families of cycles of Dy such that the set of cycles
that do not belong to one of these families is finite?

Figure 2.7 shows an approximation of D§ that involves all the results we found up to now. Of
course, we cannot depict all cutout polyhedra that correspond to cycles. But P (wy,), P ((y,) for
large n are that small that they cannot be recognised any more. Only for the light grey areas we
do not known whether they belong to DJ or not.
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Figure 2.7: An approximation of D

2.2.5 Topological observations

We already noted that the point K((il) :=(0,...,0,1,0) is a critical point for d > 2 due to [3]. By

using the results of the previous subsection we will be able prove that K((f) :=(0,...,0,1,1) € Dy
is also a critical point for d > 2 (cf [52]). Afterwards we will show the existence of a cutpoint of
DY. the last subsection. We start with a simple lemma.

Lemma 2.2.28. Let 7 be any cycle. Then int Py(m) NZ¢ = 0.

Proof. Py(7) is described be several inequalities of the form
0<air +...+agrqg+ag41 <1

with integers a1, ...,aq. To ensure that a point is an inner point of Py(7), also the left hand side
of the inequality have to be strict. For a point of Z¢ this is impossible to fulfil. O

Theorem 2.2.29. The point KC(lQ) is critical.

Proof. Because of the lifting Theorem 1.1.12 it suffices to show the assertion only for K. f) =(1,1).
From Theorem 2.2.26 we know that we can construct a sequence of points (zx, Y )ren converging

to K;Q) with 2 < 1, yr > 1 and (zg,yx) € DY for all k € N. Suppose K;Q) were not a critical
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point. Then there must exist a cycle 7 = {ag, a1, a2,...,a;—1) such that Px(rn) includes all but
finitely many elements of the sequence. For this cycle we can deduce the following properties (for
the rest of the proof, take the indices of & modulo 1):

1. Pa(m) D Q:=(1-0,1)x(1,1+¢) for some §,c > 0. The set P5() is described by inequalities
0<ai1z+ay+a41<l1
with ¢ € {0,...,0 —1}. The points of @ have to suffice each of these inequalities. Together
with Lemma 2.2.28 we obtain
a; <0 = ai—1+a;+a4 =1,
a; >0 = ai-1+a;+ai41=0,
a;=0,0;1 <0 = ai_1+a;+a41 =0,
a;=0,a;_1>1 = ai1+a;+a1=1
Especially we have

a; 0,841 <0 = agyo=1—a;—a;+1 >0 = a3=0a,—1<0,

= Qs = Qi1 + 1, » (223D)

a; 20,041 >0 = a2=—-a¢;—041<0 = ag3=a;+1>0,

= Qi44 = Qj41 — L. (2.2.32)

2. 7 has to include zeros. To see this, we first note that = consists of positive and negative
numbers. Summing up over all triples a;—1 + a; + a;41 and observing the rules from (1)
yields

-1
3 ai={ila;<0Vai=0,ai1 >1}|>0.
=0

For any i € {0,...,l — 1} we have

a; +aiv1 taip2 €{0,1}
—Gi41 —Qig2 —aips € {0,—1}
a; —@i+3 € {0, 1, —1}.

Therefore the element a;3 differs from the element a; by one at most. If I # 0(3), the
elements of w can be rearranged as

a07a37"'aa3j+3(modl)""’ (0 S] Sl_ 1)

Observing that this list includes positive numbers as well as negative ones and that neigh-
boured elements differ by one at most shows that necessarily it has to include at least one
zero. In the case n = 0(mod3) we can make such a rearrangement for each of the sets
A = {a]i = k(mod3)}, k € {0,1,2} separately. Suppose all of these sets consist of
equal signed integers only. Then there must be at least one such set including only positive
numbers, say A;. The calculation

n—1 ’VL/3—1
0< Y a;= Y (as; +asjr1 + asjr2) =0,
i=0 =0

where as;j11 € A for all j, shows the impossibility of this. Hence A; has to contained both
positive and negative numbers and therefore zeros too.

We are now in the position to prove that there cannot exist a cycle 7w having the desired properties.
We do this by constructing a sequence (b;);>¢ of integers sufficing items 1. and 2. and showing
that this sequence ends up in a series of zeros. Without loss of generality we may start with by = 0.
Suppose b1 = k > 0. Successive application of (2.2.32) shows bs;, = k > 0 and bsx41 = 0. Hence
bsi+2 = —k + 1. Now we apply (2.2.31) sufficiently often to see that bgr—2 = —k + 1,bgx—1 = 0.
This implies b, = £ — 1. Repeating this procedure yields b2, 9,1 = 0 and bsg240, = 0. Similar
calculations for the case k < 0 shows the same result finishing the proof. O

59



When we look in Figure 2.2 more closely at Q¢ we see that there obviously exists cycles that lie
not within some neighbourhood of the boundary of D,. We enlarge the interesting area, i.e., the
quadrangle [0.95,1] x [0.725,0.755] (see Figure 2.8 left). There seems to exist a point on which it

0.95 0.96 097 0.98 0.99 1 095 096 097 098
0.755 T T 0.755 0158 ; ; ’
0.75F 0.75 075 Ag ‘ As
0.745 1 0.745  oms| Py(m) Ay
0741 0.74 ok
07351 0.735 .l A3
0731 0.73
073 Ay
0.725 0.725 A
0.95 0.96

0.725 L L L
095 0.96 097 0.98

Figure 2.8: Magnification of a small subset of Q¢ (left) and the position of three interesting cutout
polygons (right).

depends whether DY is possibly disconnected. To become more concrete consider the three cycles

m :=(-8,1,8,—-6,-3,9,-3,-6,8,1,-8,5,5),
me :=(-—10,1,10,-8,-3,11,-5,-7,11,—-1,-9,8,3,-10,5,7),
75 :=(—12,3,10,-10,-2,12,-7,—-6,12,-3,-9,10,2,-11,7,6,-11,3,9,—9, - 2,11, —6,
-6,11,-2,-9,9,3,-11,6,7,—11,2,10, -9, 3,12, —6, 7,12, -2, 10, 10,3, —12,7, 7).
The corresponding polygons are depicted on the right hand side of Figure 2.8 and suffice to
investigate the situation more closely. Obviously there are more cycles necessary in order to

characterise D§ N ([0.95,1] x [0.725,0.755]) as can be seen easily by comparing the two images in
Figure 2.8. Define the points

Ao:i= (L2), A= (£.3), 4= (23D, 4s:= (3,13), A= (8,2),
P (i (I g & ()

) A= L),
) an

One can show that Px(m;) N &2 C int (O(Ag, A1, Ag)), Pa(ma) NEy C int (O(Ay, Az, As, Ag)
Py(m3) N &y C int (O(Ag, A7, As, Ag)). We will not give a full characterisation of these sets. Just
note that some of the bounding lines are included in the corresponding polygon and some are not.
It is easy to see that the previously mentioned point is As. Thus we will restrict to the 3 involved
lines. We have

A1 Ag {(z,y) €R? —3z+4y+1=1},
AsAs €{(z,y) € R?| —8x — 3y +11 =1},
AsAs €{(z,y) e R*|1lz —y—9=1}.

Note that A; € A;Ag. The first line is induced by the strict inequality which corresponds to
the subsequence (—3,4,1) of 71, the second one by the strict inequality which corresponds to the
subsequence (—8, —3,11) of m2 and the last one is induced by the strict inequality corresponding to
the subsequence (11, —1, —9) of 75. Hence, A is not included in any of these cutout polygons and
an application of Algorithm 3 of A, confirms that A € DS. Summing up the previous discussion
gives

Theorem 2.2.30. (%, %) is a cutpoint of DY.

We could not verify DJ to be disconnected. When we look carefully at Q¢ in Figure 2.2 we
can see that the topmost cutouts could possibly separate a subset of DY from the rest of DJ. For
verifying this we would need better characterisation results for this questionable area since it lies
inside the grey area that is not completely analysed yet.
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Chapter 3

Numeration systems and tilings

In the present Chapter we start in Section 3.1 with the observation that the mapping 7. itself
can be used to define a representation of integer vectors. We will also define a new type of tiles
using the SRS notations and call these tiles SRS-tiles. In Section 3.2 we will deal with canonical
number systems. We start with a generalisation of CNS to non-monic polynomials and call them
generalise canonical number systems (GCNS for short). It will turn out that these GCNS can be
analysed in an analogue way as the classical CNS. In Theorem 3.2.12 we will show that GCNS and
SRS are strongly related. In Subsection 3.2.3 we will also see that tiles associated to expanding
polynomials are also closely related to SRS-tiles. In Section 3.3 we will do a similar investigation
for the S-expansion. We already mentioned in Theorem 1.3.5 the connection between the finiteness
property (F) and SRS. We will investigate this relation more closely. In Subsection 3.3.3 we are
going to investigate how new [-tiles and SRS-tiles are connected. In Theorem 3.3.22 we will show
that they are connected by a linear map.

3.1 SRS representation and SRS tiles

The definitions and results of this section are taken from [17].

3.1.1 SRS representation

We can define a representation for d-dimensional integer vectors that is based on the mapping 7
for r € R4

Definition 3.1.1. For r € R? and z € Z¢ the sequence
Xi(2) := (v1,v2,0s,...),
with v; being the last coordinate of the vector
7x(2) — R(r)(r;" ' (2)),

is called the SRS representation of z with respect to r (no matter whether 7, is an SRS or not).
For notating SRS representations we can adapt Notation 1.2.2.

For the SRS representation we have the following easy properties.

Lemma 3.1.2. Letr € R? and
X (z) = (vi)ien-

the SRS representation of z € Z¢ with respect to r. Then for the reals vi,va,vs, ... the following
assertions hold.

1. -1 <v; <0,
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2. 7E(z) has the SRS representation X, (7)(2)) = (vitk)ien- for all k € N,

3.
k

z=R(r)*rF(z) + Z R(r)79(0,...,0,v;)"
j=1
for all k € N.

Proof. Observe that for each x € Z? the first d — 1 components of 7(x) — R(r)7i~1(x) are 0 and
the last entry equals
— [rx] +rx € (-1,0].

The rest can easily be proven by using the definition. O

The SRS representation is unique in the following sense.

Theorem 3.1.3. Let r € R, zg € Z¢, X.(z) = (w;)ien~ the SRS representation of x and
V1,02, ..,y € (=1,0] such that for oll k with 0 < k < n the vector

k
zj, = R(r)Fzg + > R(x)7(0,...,0,v;)"
j=1

8 an integer vector. Then Tf" (zk) = zo and (Vg,...,v1, w1, We, Ws,...) is the SRS representation
Oka.

Proof. The assertion is obviously true for k¥ = 0. Now continue by induction on k. Suppose we
already knew that z; has the SRS representation (vg,...,v1, w1, wa,...). By definition we have

k+1
zrt1 = R(r) " lzo + ZR(r)‘j(O, .., 0,0;,)T e 74
j=1

By the assumption on the induction this gives
Zi = R(r)zk-i-l - (03 .50, vk-l—l)T € Zd'

By the definition of R(r) this induces that the first d — 1 entries of z;1 equal the last d — 1 entries
of zj;,. Let o be the the last entry of z;. Then, by the conditions made on vy41, we see

O§a+rzk+1<1.

Since a is an integer, we conclude that @ = — |rzy1] and therefore z; = 7 (2 1). Thus zp41
has the SRS representation (vgy1, vk, ..., v1,, w1, Wa, Ws,...) by item 2. of Lemma 3.1.2. O

Lemma 3.1.4. Ifr € Dy then for each z € Z¢ the SRS representation is periodic. Ifr € ’Dg then,
for each z € 72, the SRS representation is finite.

Proof. This follows directly by the definitions of Dy and DY. O

3.1.2 SRS-Tiles

We now define a new type of tiles based on the mapping 7. Denote by (-, )a s the Hausdorft
metric induced by || - || 4,5

Definition 3.1.5. Let r € int(D,) and set
Ten(x) = {z € 24| 77(2) = x}

for x € Z¢. The set

T(x) = nlggo R(x)"T; n(x)

is called an SRS tile associated to r. The limit is taken with respect to (-, ) r(r),s for some § with
o(R(r)) < § < 1. The tile T1(0) is called the central SRS tile.
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Proposition 3.1.6.

U 7e(x) =R%

x€Z4

Proof. This can easily be seen by observing that the set lim,, ., R(r)"Z¢ is dense in R<. O

Proposition 3.1.7. T, .(x) consists exactly of those points z € Z% that have an SRS represen-
tation of the shape (v1,...,Un, w1, wa, ws,...) where (w1, wa,ws,...) is the SRS representation of
X.

Proposition 3.1.8.

T(y)= |J R@OT(x)

x€Ty 1(y)

Proof. It is easy to see that we have

Tr,n(y) = U Trm—l(x)-

x€Tr,1(y)

Multiplying R(r)™ and taking the limit on both sides yields

T(y) = lim R(r)"Trn(y) = lim R(r)" | ) Trn-a(x)

n—oo n—oo xeTrYl(y)
= |J RO lm RO 'pa(x) = |J REO)I(x)
x€Ty 1(y) xX€Tr1(y)

O

Ezample 3.1.9. For r = (3,1) the tiles T;(x) with ||x||oc < 2 are shown in Figure 3.1.

Let us study how many different tiles can share one point. This investigation immediately
implies the boundedness of SRS tiles.

Lemma 3.1.10. Letr € int Dyg. For any s € R? the set
{xGZd|s€Tr(x)}
is finite.
Proof. Since r € int (Dy) we can find a 6 € R with o(R(r)) < é < 1. From Proposition 3.1.7 we
know that each z € T} ,(x) can be represented as

z = Z R(r)7*v; + R(r) "x
i=1

with ||[vill geey,s < 10, ..., 0,1)7 || gr),s using the SRS representation. Hence

n—1
IR()"2 — x| rry.s < Y IRE) Vil Reey.s-
i=0
T
Set M = ”(0’“‘701’1_)5 lrw.s hep

Y(R(r)"z, {x}) r(r),s < M.
Thus y(R(r)Te n(X), {X}) r(r),s < M and therefore
Y(Tr(x), {x}) < M. (3.1.1)
Since M is independent of the choice of x we have
{xe 7% s ¢ Ty(x)} C{xe i [lls — x| rry,s <M}
where the set on the right hand side is obviously finite. O
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Figure 3.1: SRS tiles associated to r = (3, 1)

Proposition 3.1.11. Forr € int Dy and x € Z¢, the tile Ty(x) is compact.
Proof. By definition SRS tiles are closed and (3.1.1) shows that T3(x) is bounded. O

Next we will answer the question which tiles contain the origin. Obviously 0 is always an
element of the central tile. But it can be shared by finitely many other tiles.

Theorem 3.1.12. Letr € int Dy. 0 € Ty(x) if and only if x € Z% is purely periodic with respect
to Tp.

Proof. We first show that 0 € T,(x) if x is purely periodic with a period of length . We have

7l(x) = x. Therefore, for all k € N, x € T} 4;(x) and since R(r) is contractive we have

0= ]lin% R(r)¥x € Tp(x).

On the other hand suppose there is some non-purely periodic xo € Z¢ with 0 € Ty(xg). We
will derive a contradiction by showing that this implies the existence of a sequence (X;);eny with
the following properties for all ¢ € N:

1. x; is not purely periodic,
2. 0 € Ty (%),

3. H(x;) = xo,
4

. Xy £ x5 for j < i
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We do this by induction on i. xg satisfies items 1.-4. by definition. Now suppose that we already

have points xg, ..., x; with the desired properties. By Proposition 3.1.8 we have
T(xi)= |J ROI(2).
z€Ty 1(x4)

Since 0 € Ty (x;) we can find a z € Ty 1(x;) with 0 € R(r)T,(z) and therefore 0 € T,(z). Set
X;+1 := z. Then x;4; satisfies item 2. Since 7p(Xi+1) = x; and 7%(x;) = Xo we also have
71 (x,41) = X0, proving item 3. To show item 1. assume that x;; were purely periodic. Then
Tr(Xi11) = x; would be purely periodic, too, which is not the case by the assumption on the
induction. Finally x;11 = x; = 707179 (x;41) for a j < ¢ would contradict the the fact that x;41
is not purely periodic, proving item 4. Thus we have shown the existence of our sequence. But
the existence of such a sequence contradicts Lemma 3.1.10. O

Corollary 3.1.13. Forr € int Dy we have v € DY if and only if 0 is an exclusive inner point of
T:(0), i.e., O is an inner point of T(0) and 0 &€ Ty(x) for x # 0.

It immediately follows that for r € DIN &, the central tile T,,(0) has a nonempty interior. One
may ask if T,(x) has non-empty interior for each r € int (D;), x € Z%. The answer is no, as the
following example shows.

Example 3.1.14. Set r = (%, —;—(1]). Consider the points
z1 = (-1,-1),z0 = (—1,1),23 = (1,2),24 = (2,1),2z5 = (1,—1).
It can easily be verified that

Ty 121 V= Zo V> Z3 > Zy > Z5 — Z1.

Thus, each of these points is purely periodic. In fact, we have (—1,-1,1,2,1) € O(C(r)). Now
calculate Ty 1(z1) = 7, (z1):

xEZ,%§x<%}z{(l,—l)T}:{z5}.

Similarly it can be shown that Ty 1(z;) = {zi—1} for i € {2,3,4,5}. Hence T:(z;) = 0 for
i €{L,2,3,4,5}. Figure 3.2 shows the tiles T;(x) for all x with ||x[/sc < 5.

We have seen that for r € int (Dy) the union of all tiles T,(x) with x € Z¢ cover the d-
dimensional Euclidean space. We now ask whether the tiles provide a tiling, i.e., int (T3(x)) N

int (Tx(y)) =0 for x #y.
Conjecture 3.1.15. The family (T3(x))yecze tiles the d-dimensional Euclidean space for all r €
int (Dd)

In the general case this question is up to now unsolved. Various computer experiments confirm
the conjecture. We will give a necessary and sufficient condition for the tiles to provide a tiling.

Lemma 3.1.16. Letr € int (Dy), ¢ € Z¢ and s € int (Tx(x)). For each open ball K(s,¢) around
s with radius ¢ > 0 such that K(s,&) C Ty(x) there exist n € N, z € Ty n(x) such that T,(z) has
nonempty interior and R(r)"Ty(z) C K(s,¢).

Proof. This is easy to see by the boundedness of SRS tiles (Formula (3.1.1)) and the set equation
in Proposition 3.1.8. O

Theorem 3.1.17. Let r € int (Dy). The SRS-tiles (T1(X))xeza tile the d-dimensional real space
if and only if each tile Tp(x) with nonempty interior has at least one exclusive inner point.
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Figure 3.2: SRS tiles associated to (

9 11
167 25)

Proof. Since for a tiling each interior point is exclusive this direction is trivial. To show the opposite
direction suppose that there are two points y,y’ such that the corresponding tiles have an inner
point s in common. We will show that under this circumstances not all tiles with nonempty
interior can have an exclusive inner point.

We can find an ¢ > 0 with T,.(y) N Ty(y’) O K := K(s,2). Then, by Lemma 3.1.16, there
exists n € N, z € Ty »(y), such that R(r)"T,(z) C K and int (7y(z)) # 0. Thus, since T(y’) =
Uz’eTm ) R(r)"T,(z"), we have

Ro)"Ti(z) CKCT(y)= |J RE)"T(z)
2/ €ETr n(y')

and therefore

T(zyc |J T@).

2/ €Tr n(y')
But this is a contradiction to the existence of an exclusive inner point of T;.(z). O
3.2 Canonical number systems

3.2.1 Generalised Canonical number systems

After our survey concerning canonical number systems (CNS) in Section 1.2 we now show how we
can generalise CNS. In a recent paper Scheicher, Surer, Thuswaldner and van de Woestijne [46]

66



treat the non-monic case and call it generalised canonical number system. In fact, the authors
present results in a much more general way.
Fix a commutative ring £ with identity.

Definition 3.2.1. Let P = pgz® + - -- 4+ p1& + po such that py is no zero divisor, pg is not zero
divisors and no unit and E/(po) is finite. Set R = &[z]/(P) and denote by X is the image of z
under the canonical epimorphism &[x] — &[x]/(P). Denote by N’ C £ a system of representatives
of R/(X). We call the triple (R, X,N) a digit system in R. Define maps

mp R — N :mpu(4) = e, the unique e € A with A=e (mod X),
_A-mp(4)

Tp R —>R:T(A) e

For an A € R we call Xp(A4) = (mN(T}.?(A)))nGN the X-ary representation of A. If there exists

an h € N such that .

A= ma(Th(4) X
=0
this sum is called a finite X-ary expansion of A. The sum is a minimal expansion of A if A is
minimal. We say that (R, X, N) has the periodic representation property (PRP) if the represen-
tations Xp(A) are eventually periodic for all A € R and that it has the finite expansion property
(FEP) if every A € R has a finite X-ary expansion with digits in .

One notes that R/(X) = £/(po), so that [N| = |€/(po)|. The X-ary representation of A € R
clearly exists and is unique, because A is a system of representatives of R modulo X. If N were
larger, we would have non-uniqueness and redundance in the X-ary expansion of A.

Lemma 3.2.2. A € R has a finite X -ary expansion if and only if TE(A) = 0 for some n € N.

Proof. Let A = Z:;_ol e; X with e; € N. We obviously have mpr(4) = ey and Tp(A)
€11 ’. us = 0. ow suppose there exists an n € such that =
P Zei1 Xt Thus TH(A) = 0. N h N such that T5(A
Let (a,)nen the X-ary representation of A. Then it is easy to see that A = Z;‘;Ol a; X°.

O <

Lemma 3.2.3. The finite expansion property implies the periodic representation property.

Proof. Assume we had a digit system (R, X, N) that has the finite expansion property but not
the periodic representation property. Then we can find an A € R having finite X-ary expansion
and no periodic X-ary representation. By Lemma 3.2.2 there exists an n € N with T%(4) = 0.
Since A is not periodic we have TE(A) # 0 for all k > n. This means that Tpt!(A) = Tp(0) # 0
cannot have a finite expansion by Lemma 3.2.2. That is a contradiction to our assumption. O

Denote by C(R,X,N) the set of all elements A of R with T#(A) = A for some n > 1 and
write C(R, X, N)/Tp for the set of orbits.

Lemma 3.2.4. Let (R, X, N) have the periodic representation property. (R, X,N) has the finite
expansion property if and only if 0 € C(R, X, N) and |C(R,X,N)/Tp| = 1.

Proof. Since (R, X, N) has the periodic representation property we have that the X-ary represen-
tation of each element of R ends up periodically. C(R, X, N)/Tp is the set of all possible periods.
Thus |C(R,X,N)/Tp| =1 and 0 € C(R, X, N) implies that for each A € R there exists ann € N
with T7(A) = 0. Then Lemma 3.2.2 shows the necessity of our statement.

We now show the opposite. Since (R, X, A") has the periodic representation property, for each
A € R there must exist an n € N and a B € C(R, X, N)/Tp such that TE(A) = B. Moreover,
as |C(R,X,N)/Tp| =1 and 0 € C(R, X, ), there must exist an k € N with T&(B) = 0. This
immediately implies Tl’.}+k(A) = ( and therefore each A € R has a finite X-ary representation by
Lemma 3.2.2. |
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As R is a quotient of the polynomial ring £[z], the usual generating set taken for R is
1,X, X2 .... For CNS (see for example [22, 48]) a special type of generating set of R has proved
to be very useful in order to simplify the backward division algorithm. This so-called Brunotte
basis can be used in our more general case as well.

Wo = Pd,
wy = woX + pa—1,

3.2.1
Wy = Wi—1X + Dd—k, ( )

wa—1 = wa—2X +p1 =pa X +pg1 X+ 1
Note that modulo P we have Xwg—1 4+ pyp = 0.

Definition 3.2.5. The £-submodule of R generated by the w; will be called the P-lattice of R
and written Ap(R).

Up to now in the literature this construction was used in the monic case, because then R is
an £-module with wy, ..., wq_1 acting as basis and each element of R has a unique representation
of the shape Zf:_ol a;w; with a; € £. For non-monic P this is obviously not the case; in fact,
Ap(R) is a sublattice of index pg of the lattice generated by 1, X, ..., X% 1. However, we have
the following modified representation.

Lemma 3.2.6. Let M C £ a set of representatives of £/pq including 0. For each A € R there
exists unique A’ € Ap(R) and (ro,...,r—1) € M¥ for some k € N such that

A=A +r
with r = Zi:ol r: Xt and rq_1 # 0.

Proof. Let A € R be represented by f = Zé:o b;X* € £[X]. There is an r; € M such that
by = 11+ qpg. If 1 > d replace f by f — ¢ PX'""?, then we may assume b; € M. Then, for
i=1—-1,1—2,...,dlet r; € M such that b; = r; + g;pq and replace f by f — ¢ PX*~%. Thus we
may assume that f = Zé:d r X+ Zfz_ol b; X with r; € M and b; € £ and f still represents A.
Ap(R) is a sublattice of the lattice {Zfz_ol c; X% ¢; € £} with index p¢ and thus there must exist
unique ro,...rq—1 € M, a1,...,aq_1 € € such that

d—1 d—1 d—1
Z bQXZ = Zaiwi + Z’T‘Z‘XZ.
i=0 =0 =0
d—1

The assertion follows immediately by setting k = max;c(o,... ;3 {r: # 0} and A" =} ;"5 a;w;. O

Definition 3.2.7. Let M C £ be a set of representatives of £/pq. For an element A € R the
representation

A=A +r
from the above Lemma is called the standard representation of A with respect to M. We say that

r is the residue polynomial of A.

Note that in the monic case Ap(R) = R. The P-lattice itself does not depend on the choice
of M and has the nice property that the behaviour of the X-ary representation is completely
characterised by it.

Theorem 3.2.8. Suppose N C £. (R, X,N) has the finite expansion property (periodic repre-
sentation property) if and only if each element of Ap(R) has a finite X -ary expansion (periodic
X -ary representation).
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Proof. We will prove the theorem for the finite expansion property. The condition is obviously
necessary for (R, X, N) to have the finite expansion property since Ap(R) C R. Now suppose
each element of Ap(R) has a finite X-ary expansion. Let M C £ a set of representatives of £/pg,
0e M,and A= A© e R with standard representation

d—1
A= Z a;w; + 71
i=0

withr =@ = r, X 4o 4 X 47, r; € M. We will investigate the action of Tp on A in terms
i (0) d=1_ . _

of the standard representation. The constant term of A"®) equals > . ") a;pq—i + ro = gpo + e for

some q € &, eg = my(4) € N. Thus

d—1
A© = e+ gpp + Z a;(w; — pa—s) + Xr™" in E[X]
=0

with 7@ = X% 1 4 ... 4 79X + r1. Observe that wy — pa = 0, w; — pg—; = Xw;— for
i € {l,...,d —1}. Now switch to R and note that gpg = —¢Xwg—1. Set aq := —¢q. Then
A = ¢5 + X AW with A = Tp(A®) having standard representation

d—1
AD = Zaiﬂwi + P,
=0

In other words: after one application of T» the degree of the residue polynomial r decreases by
one and the first k coefficients do not change. Hence, after k£ + 1 applications, we have

TEF (4) = A% € Ap(R).

Since each element of Ap(R) has a finite X-ary expansion by assumption, A%**1) and therefore A
has a finite expansion. The proof for the periodic representation property runs analogously. [

Theorem 3.2.9. Let N' C € and € Fuclidean with value function g : € — RT U {0, —oo} where
g(0) = —co. Further suppose g(e) < g(po) for all e € N. If g(pa) = g(po) no element of Ap(R)
but 0 has a finite X -ary expansion.

Proof. First note that the assumption on N implies 0 € A. Let 7 : £[zr] — R the canonical
epimorphism and A € £[z]. Because the leading coefficient of wy is pq for each k € {0,...,d — 1}
it is easy to see that w(A) € Ap(R) implies that the leading coefficient of A is a multiple of pgy.
Now suppose that there is a B € Ap(R), B # 0 with finite X-ary expansion

h
B = ZeiXi, e; €N ep #0.
i=0

Thus B = W(ZLO e;x') € Ap(R). By assumption we have that g(e) < g(po) for e € N and
therefore g(en) < g(po) < g(pa). As observed above we also must have that e, = gpg for some
nonzero ¢ € £. But & is Euclidean and ¢,pg # 0 implies g(en) = g(gpd) > g(pg) which is a
contradiction. O

Corollary 3.2.10. With the above assumptions on € and N, g(pq) < g(po) is necessary for
(R, X,N) to have the finite expansion property.

Now assume the ring & = Z and |e| < |po| for all e € N'. Here Corollary 3.2.10 gives us a first
characterisation. (R, X, N) can only be a digit system if |[po| > |ps|. Let N ={0,...,|po| —1}. If
P is monic and (R, X, ') has the finite expansion property the pair (P, /) is a canonical number
systems. We will generalise this in the following
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Definition 3.2.11. Let P(z) = pgz¢+---+p1x+po € Z[z], R = Z[z]/(P) and N = {0, ..., |po| —
1}. If (R, X, ) has the finite expansion property we call (P, N) a Generalised Canonical Number
System (GCNS).

We now can reformulate Theorem 1.2.6 with respect to GCNS.
Theorem 3.2.12. Let P(z) = pgz® +pg_12~  + -+ p1z+po € Z[z] and N = {0,...,|po| — 1}

(P,N) is a GCNS if and only if v = (g—g, p‘;;l ey ﬁ—;) € DY. Each element of R has an ultimately

periodic X -ary expansion if and only if r = (g—g, p;’)—gl, ciey ﬁ—;) € Dy.

Proof. For k € {0,...,d — 1} define wy, as in (3.2.1), thus

k

wy, = Zpd—iXk_i'
=0

By Theorem 3.2.8 (P, V) is a GCNS if and only if each elements A of the shape
d—1

A= A(O) = Zwiai, a; € 7
=0

has a finite X-ary expansion. In the proof of Theorem 3.2.8 we showed that an application of Tp
yields A©) = eq + X AL where eg = mpa(A®) € A and

d—1
AWM =Tp(AY) = Zai—i—lwi
=0

with aqg = —W € Z. Thus, by the choice of A, we have 0 < Zfz_ol ai%—kad = ;—g <1
which shows that

ag = — |r(ag,-.-,a4-1)] -
Thus A = (wo, .- -, Wg—1)Te (@0, - - - ,ag—1). (P,N) is a GONS exactly if successive application of
Tp on each A € Ap(R) ends up in 0 and we see that this is equivalent for 7 to be an SRS. The
second part can be shown analogously. O

3.2.2 X-ary representation and the SRS-representation

We are going to analyse the connection between the X-ary representation and the SRS represen-
tation more closely. Let P(x) = pga? + ...+ p1z + po € Z[z], R = Z[x]/(P), X the image of x
under this canonical epimorphism and ' = {0,...,|po| — 1}. Additionally, since (P) = (—P) we

> 2. = (Bd Bt B
can assume pg > 2. Set r b0 pott p

First suppose that pg € {—1,1}. Then each element of A € R can be represented uniquely as

d—1 }
A= Z ain.
i=0
Consider the embedding

bo: R — Z°
A - (ao,...,ad_l).

By the definition of T» the mapping

Tp: Zd - Zd,
ag

(QOw-wad—l)T = (a1 —qP1,-..,d—1 — qu—l»_qu) <q = - L):J)
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has the property Tpo®o=baoTp (cf. [3]) and as

(wo, ..., ws—1) = (1, X,... X4 Hy,

with wg,...,wg—1 as in (3.2.1) and
Pd Pd— -+ D1
0 .
V = 9
: - Pd-1
0 -+ . 0 Dd

we further have Vr.(z) = Tp(Vz) for all z € Z* by Theorem 1.2.6.
We redefine the matrix B from Subsection 1.2.2 as

0 -« ... 0 =D

Pa
1 .
B:= 0
: . .0 .
Pd—
0 -« 0 1 -—b=

It is easy to see that for an element P(X) € R the multiplication with X commutes with the

embedding @+ as
Dy (X A) = BO,(A).

Finally observe the following lemma taken from [20]:

Lemma 3.2.13. The companion matric

0 1 0 0
= . . . RTLXTL
C : . . 0 €
0 0 1
—Cp —C€ -+ —Cd—2 —Cp_1

is regular if and only if co # 0. Then

_Swo1 _Cn—2 ., _a _ 1
o co Co co
1 0 0
c1= 0 : € R™*™,
0 0 1 0

Hence, as R(r) is such a regular matrix, its inverse given by

_Pa—1 _Pa-2  _p1 _Po
Pd Pd Pd Pd
1 0 cee
R(r)™! = 0 ,
0 0 1 0
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which is an integer matrix since pg € {—1,1}. Then easy matrix multiplication shows BV =
VR(r)~1.
Summing up all these things yields the diagram

R g4V (3.2.2)

J»X jB lR(r)_l
4 1%

R—>7¢<—17¢

lTP j:ﬁp lfr
R L Zd .L Zd

In the present form the diagram does not hold in general for non-monic P. ®¢ is only defined
for R/, the submodule of R generated by 1,X,...,X% ', The upper left part is only true for
A € R/ such that XA € R’. Note that XA € R’ if and only if B®-(A) is an integer vector. The
upper right part of the diagram is just a matrix identity and holds for all rational (and even real)
vectors. Lets consider the restriction of Diagram 3.2.2 to Ap(R). Note that then ®¢ as well as
V are not surjective any more. Actually ®c(Ap(R)) = VZ? C Z%, where the inclusion is proper,
and V=1 o &¢ maps Ap(R) onto Z¢ hijectively. Since Ap(R) is closed under application of T
the lower part of the diagram holds for all A € Ap(R).

We are now in the position to make some assertions. At first it is easy to see that T'p, Tp and
Ty are conjugate mappings. We also have a simple formula to obtain the X-ary representation of
some A € R using 7.

Theorem 3.2.14. Let P(x) = pgr®+. . . +p1x+po € Z[z], R = Z[z]/(P), N = {0,...,|po|—1} and
r = (p—d Paz1 ' Z—;). For an A € Ap(R) denote by Xp(A) = (a;)ien the X-ary representation

po’ po

of A. Then we have
Xp(A) = —po(vi)ien-
where (v;)ien+ is the SRS representation of z :== V" ®c(A) with respect to r.
Proof. From the definition of Tp and ®¢ we know that
B¢ (ma(Th(A))) = ®c (ThH(A) — XTH(A)) = (a1,0,...,0). (3.2.3)

Note that Th(A) € Ap(R) C R'. We claim that XT5'(A) € R for i > 0. By the discussion
from above this is equivalent to B®¢ (T5M1(A)) € Z4. But ®c (T (A4)) = T5(Dc(A)), as
the lower part of Diagram 3.2.2 holds for the elements of Ap(R), and by the definition of Tp
we see that the last entry of T5"' (®c(A)) is a multiple of pq. Hence B®¢ (T5'(A)) € Z¢ and
XTH (A) eR.

Now Diagram 3.2.2 shows that (3.2.3) can be written as

(4;,0,...,0) =V (Tﬁ(z) — R(r)"17it! (z)) .
As

we easily get

As a; is the first entry of

we see a; = —pov; as it was claimed. O
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3.2.3 The relation between tiles associated to expanding polynomials
and SRS tiles

In Subsection 1.2.2 we defined tiles associated to (monic) expanding polynomials. By the previ-
ously shown relations between X-ary representation and the SRS representation one expects that
the corresponding tiles also are connected. In the following suppose P(x) = 2%+ ... +pix +po €
Z[x], po > 2, an expanding monic polynomial, R = Z[z]/(P) and N' = {0,...,|po| — 1}. Set

h
A:ZCQ‘Xi,Ci GN}

Ey = {A eER
=0

Then it is easy to see that

F=|J B 1®c(En).

R>1
Theorem 3.2.15. Let F be the fundamental domain associated to P. Moreover, let
1 1 al
r=(—,—,...,—)
Po Po Po
be the associated element of int(Dy). Then
F = VT,(0).

Proof. The element r is easily seen to be contained in int(D,;) because P is an expanding polyno-
mial. Indeed, the reciprocal polynomial of P is the minimal polynomial of R(r).
Since Ej, C Epyq and B~*"'E;, ¢ B=""2E};, 1 we have

F = lim B~ 1®4(E),
h—o0
the limit with respect to v(-, ) r(x),s-
By our Diagram (3.2.2) we immediately see that
E,={AeR | T (A4) =0}

and ®¢ (&) = VT p4+1(0). Furthermore, since B="~1 = VR(r)"*!1V~! we have B-""1®(E}) =
VR(r)"' Ty 441(0). Thus

F = lim B 1®q(E) = Jim VR()MT, 111(0) = VT(0).

h—o0

Corollary 3.2.16. With the definitions of Theorem 3.2.15 we have
T(z) =V 'F +a

Proof. Since

{AeR |TE(A) =25 (Va) } = By, + X"H10 (V)
we see that B~""1®q(E), + X&' (Vz)) = VR(r)" ! (Ty 1+1(0)) + z. The rest can be proven
in the same way as Theorem 3.2.15. O

Ezxample 3.2.17. Consider the expanding polynomial P(z) = 2% — x + 2. Since r = (%, —%) € DY
(as it can easily be seen from Figure 1.3) we have that (P,N) with A/ = {0,1} is a CNS. The
central SRS tile T(0) associated to r is shown in Figure 3.3 left. In order to obtain the CNS tile
F associated to (P,N) we have to multiply T;(0) with the Matrix

V:(é —11>.
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-0.75 -0.5 -0.25 0 0.25
T T T T -0.75 =05 -0.25 0 0.25 05 0.75
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-0.75 -0.5 -0.25 0 0.25 -0.75 -0.5 -0.25 0 0.25 05 0.75

Figure 3.3: The central SRS tile 73(0) for r = (1,—1) (left) and the CNS tile F associated to
(P,N) (right).

Consider a non-monic expanding polynomial P(z) = pgz® + --- 4+ p1z + po and set r :=

(g—g, %, e, g—;). We have r € int (Dy). In Theorem 3.2.12 we showed the relation between T'p
and the mapping 7. Thus we may ask for the generalisation of CNS-tiles to our non-monic P such
that these tiles are related to the SRS-tiles associated to r in a similar way as in Theorem 3.2.15.
For A € Ap define

Ey(A)={BeAp |Ti(B)=A}

and
F(A) = lim B~ 1®c(Ep(A)).

h—oo

In the same way as in Theorem 3.2.15 one easily proves the identity
F(A) = VI (V™ 00(4))

for any A € Ap by observing Diagram (3.2.2) and the remarks afterwards. This shows the tiles
F(A) to cover the d-dimensional Euclidean space. Since obviously neither (1.2.4) nor Corol-
lary 3.2.16 hold we cannot expect two different tiles to differ only by translation. This expectation
is confirmed by the next example.

Ezample 3.2.18. Let P(x) = 22° + x + 8. P is an expanding polynomial and the corresponding
r:= (4, %) induces an SRS (as it can easily seen in Figure 1.3). Thus (P,A) with N' = {0,...,7}
is a CNS. The left picture of Figure 3.4 shows the SRS-tiles T (x) associated to r for ||x|e < 1.
On the right the corresponding tiles F(A) are depicted. One can see that the tiles partly look
very similar but they all have different shapes.

Up to now these generalised CNS-tiles have not been investigated. But it seems to be difficult to
analyse them. Note that the SRS-tiles presented in Example 3.1.14 corresponds to tiles associated
to the non-monic polynomial 2022 — 11z + 18. Thus not even all of these tiles have a nonempty
interior in general.

3.3 (-expansions

3.3.1 The relation between SRS representation and j-expansion

In this subsection let 3 > 1 be an algebraic integer with minimal polynomial P(z) = 2¢+! 4 pyz?+
oo+ prx+po. We will carefully analyse how SRS and -expansions are related. A first connection
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Figure 3.4: SRS-tiles for (%, %) (left) and the corresponding tiles associated to the non-monic
polynomial P (right).

was already given in Theorem 1.3.5. For a better understanding we will state this theorem again
here and give the proof of it. Set

_ : ra =1,
r = (ro,...,r4—1) with e a1t B (0<j<d—1). (3.3.1)

Theorem 3.3.1 (¢f. [3, Theorem 2.1] (¢f. also [29])). For an algebraic number § > 1 and r
defined as in (3.3.1) we have v € DY if and only if 3 has property (F).

Proof. Let v € Z[37"] N[0,1). By the definition of Tz we have T5(v) = 8%y + S @, with
integers a;. We can choose k € N such that 8%y € Z[3]. Then Tg(v) = BFy + Zi:ol a;fft €
Z[B) N [0,1). Therefore we can restrict to v € Z[3] N [0,1) and it suffices to show that r € D if
and only if dg(v) is finite for each v € Z[F] N [0, 1).

Now let v € Z[#] N [0,1). Consider the reals 7g, ..., rq defined in (3.3.1). We see that v can be

written as .

¥ = sz with z; € Z
=0
(Z[f] is a Z-module and ro, ..., 74 is a basis of it). An application of T to v yields

d d
Ts(y) =By — 1Bv] = ﬁz ZiTi — {BZ Zﬂ“iJ
i=0 =0
d—1 d d—1 d
= Zzz‘+17“z‘ - Zai - {Z Zip1Ts — Z%J
=0 i=0 i=0 i=0
d
= Z Zit1Ti
=0

by observing (3.3.1) and setting zg41 := — {Zf;ol zi+1riJ . We immediately see that (23, ..., 2441) =

Te(#1,- .., 24). The assertion now follows directly from the fact that dg(vy) is finite if and only if
TF(v) = 0 for some n € N. O

Let Z[5]/1 be the factorisation modulo 1 of Z[g] with 7 : Z[3] — Z[3]/1 the projection. Note
that the projection restricted to Z[3] N[0, 1) is bijective. Define ¥ : Z[3]/1 — Z¢ to be the unique

75



representation of an element 4’ € Z[3]/1 in the basis {ro,...,r¢—1} such that v/ = r¥(y’). Due
to Theorem 3.3.1 the following diagram commutes.

Z[5) N [0,1) — Z[B)/1 —> 7

lTﬁ j

Z[8) 1 [0,1) > Z[5)/1 —> 7

Thus the dynamical systems T3 and 7, are conjugate. Let

f:zt — z[pnlo,1),

X — rx-—|rx].
Proposition 3.3.2. f is bijective.

Proof. surjectivity Choose an arbitrary v € Z[5] N [0,1). 7 can be represented in the basis
{ro,...,rq—1,1} as
Y =Zoro+ -+ Trg-1%q-1 + Td

with xg,...,24-1,2q € Z. Since v € [0,1) we have

xq=—|xoTo+ -+ rq—1%4-1]

and therefore

Y= f ((an O 7xd—1)) .
injectivity Suppose that f(x) = f(y), i.e.,
f(x) =zoro + -+ + xg-17a-1 — |rX] = yoro + -+ + ya—17a-1 — [ry] = £(¥).

The fact that {ro,...,rq—1,1} forms a basis of Z[F] implies zo = yo,.-.,Tdg—1 = Yd—1-
O

This shows that f is the inverse of ¥ o 7 and we obtain the following commutative diagram.

Z[8] N [0,1) —2> Z[3] N [0, 1) (3.3.2)

Wl ls

Zd %Zd

Hence, in the following lemma we are able to present a method to calculate the B-expansion of
some element of Z[3] N [0,1) by using 7.

Lemma 3.3.3. Let 3 > 1 be an algebraic integer with minimal polynomial A(x) = z™ + pyzt +
s+ prx+po and let v € Z[F] N[0, 1) having

v = Z biB"
i=1
as B-expansion. Then, for z .= ¥ o w(y) and r defined as in (3.3.1), we have
bi = Blrry” (2) — [ri7H(2)]) — rri(a) + [r7e(2)| = Bf (7 (2) — f(7i(2)).

Proof. We have b; = | 8T%Y(v)| by (1.3.2). Thus the diagram in (3.3.2) immediately yields the
B
desired result. O
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If 8 is a unit (which implies that Z[3] = Z [37']) then, starting from the SRS, we get the
f-expansion of each v € Z[F] = Z [37'].
Now we compare the SRS-representation of some z with the S-expansion of f(z).

Theorem 3.3.4. Let 3 > 0 be an algebraic integer with minimal polynomial A(x) = x4 +agx?+
-+ a1x + ap and r defined as in (3.3.1). Furthermore, let

(Un, Untis.-.)

the SRS representation of z' € 72,

(V1,025 oy, Uy Uty .- )

the SRS representation of z € Z¢ and

y=) bf
i=1

the B expansion of v := f(z). Then
1. vy=—u
2. by = —pv; + vir1 for 1 <i < n with vy = f(2')

5. f(2) =32, bt
Proof. By Definition 3.1.1 we see that (0,...,0,v;) = R(r)7i"!(z) — 7i(z) and therefore v; =

r

f(ri1(z)). Together with Lemma 3.3.3 this immediately shows items 1. and 2. To show item 3.
observe that by item 2. of Lemma 3.1.2 we have z' = 77°(z). Then, by the diagram in (3.3.2), we

have £(2') = To(y) = S0, bif =", O
Item 2. of this theorem shows that (by)nen = Y_g ((Up)nen) with ¥ defined as in (2.1.1). Thus
the identity Y3(X,(x)) = dg(f(x)) holds. Item 3. induces the greedy condition since 0 < f(z') < 1.

Corollary 3.3.5. Let 8 and v as in Theorem 3.3.4 and (v1,v2,vs,...) the SRS representation of
0,...,0,1). Then dg(1) =V_g((—1,v1,v2,vs3,...)).

Proof. We have T3(1) = 8 — | 5] and by the definition of r4_1 we get f((0,...,1)) = aqg+ 8 —

laq + 8] = 8 — | B]. Thus, by Theorem 3.3.4, (t2,t3,...) := dg{(8 — |5]) = Y_p ((v1,v2,v3,...)).
We obviously have dg(1) = (|8],t2,ts,...). Since v1 = —F3 + |5] by Theorem 3.3.4 we obtain
—pB(=1)+ vl = | 3] and thus dg(1) = Y_z ((—1,v1,v2,v3,...)). O

3.3.2 Parry numbers

Motivated by the close relation between the (-expansions and SRS and by the observation that
the finiteness of dg(1) for an algebraic number 3 is equivalent to the finiteness of X;((0,...,0,1))
for r as in (3.3.1) we will try to give an analogue to Theorem 1.3.8 (¢f. [14]) for shift radix systems.
For d > 0 define the set

By ;:{rGDd|E|k)EN:Tf((Oa""Oal)):0}‘

Of course, Dy C Bg C Dy. It is easy to see that By = [0,1). The characterisation of By is
less obvious. We partition & into several subsets and treat them separately. An overview of the
locations of these subsets is depicted on the left hand side of Figure 3.6.

Lemma 3.3.6.
A ={(z,y) eR*|0<2<1,0<y<1}C Bs.

Proof. For anr € A, it is easy to see that 7((0,1)) = (1,0) and 7((1,0)) = (0,0). O
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Lemma 3.3.7.
Ay ={(zy) eR*|0<z<1,1<y<z+1}CBs.

Proof. Let r = (z,y) € As. Since y < z+1 < 2 we have 7({(0,1)) = (1,—-1). From -1 <z—y <0
and 0 < —x 4y < 1 we obtain 7((1, —1)) = (=1, — |z — y]) = (=1,1), 7e((~1,1)) = (1, = |-z +
y|) = (1,0) and 7(1,0) = (0,0). :

Lemma 3.3.8.
As={(z,y) eR*|0<z<1,—-2<y<0}C B,

Proof. For anr € Az we have 7((0,1)) = (1,1), ((1,1)) = (1,0) and 7((1,0)) = (0,0). O

Lemma 3.3.9. Let
Ay={(z,y) eR*|0<z<1l,-1<y<-z}.

Then Ay N By = 0.
Proof. Let r € Ay. Then 7,((0,1)) = (1,1), 7((1,1)) = (1, 1) and thus we end up periodically. O
Lemma 3.3.10. Let
As = {(z,y) 6R2|—1§x<0,—x—1§y<0}.
Then As N By = 0.
Proof. For anr € A; we have 7((0,1)) = (1,1) and =((1,1)) = (1,1). O
Lemma 3.3.11. Let
Ag = {(z,y) eR?*|-1<2<0,0<y<z+1}.
Then A¢ N By = 0.
Proof. 7((0,1)) = (1,0) and 7({1,0)) = (0,1) for all r € Ag. O

Before we turn to the last big subset we investigate the reminding parts of the boundary, ¢.e.,
the lines Ly, Ly and Ls (see (1.1.4)).

Lemma 3.3.12. (L1 UL4ULs)N By =0.
{mz+1)eR?’|0<z<1}U{(L,y)|-2<z<2}HNB;=0

Proof. For an r = (x,y) € L1 we have 1(0,1) = (1,-1),7(1,-1) = (-1,1) and ~(1,-1) =
(1,—1). Let r = (1,y) € L4. Suppose that there exists a y € (—2,2) such that (1,y) € Bs. There
must exist an n € N such that 777 ,((0,1)) = (0,0). Assume that n is minimal in that sense that
7'("@1)((0, 1)) # (0,0). By the definition of the function 7. we must have 7'("1;1)((0, 1)) = (a,0) for
some integer a # 0. But it is easy to see that the relation 7(; 4((a,0)) = (0,0) can impossibly

hold. For r € Ls it can easily be shown that (7*((0,1))), , is not even periodic. O

The last subset
Ui={(z,y) eR*|0<z<l,—-z-1<y< -1} (3.3.3)

is a little more difficult to analyse. For k > 1 define

U, ={(x,y) eR¥x(k — 1) +yk < —k,ak+yk+1)> -k —-1,0<z < 1}.

Lemma 3.3.13. For the sets Uy, the following properties hold:
1 UiﬁUj :wa’I”L#j
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Figure 3.5: The partition of the set U

2. Us Ui =U.
3. Let k > 1. For all points (2,y) € U;s, Us we have x(k — 1) + yk < —k.
Proof. The proof is trivial by observing the left hand side of Figure 3.5. O
Lemma 3.3.14. 7(;,) ((k — 1,k)) = (k,k + 1) for (z,y) € U;5; Us-
Proof. Estimating the expression (k — 1)z + ky yields
(k—Dz+ky>—-k—xz>-k—-1

for all (x,y) € U by (3.3.3) and
(k—1Lz+ky < —k

by item 3. of Lemma 3.3.13 for all (z,y) € U,»,Ui. Thus [(k—1)z+ky] = —k — 1 and
Ty (k= 1,k)) = (k,k + 1) for all (z,y) € U, Us- O

Now divide each Uy, into two disjoint sets U,il) and U,i2) with

U ={(@,y) € Ul (k + Do+ (k+ 1)y < ~k},

U ={(z,y) € Us| (k+ D)z + (k+ 1)y > —k)}.
The situation is depicted in Figure 3.5 right.
Lemma 3.3.15. (z,y) € U,iQ) satisfy 2z +y > 0 for all k > 1.
Proof. A point (x,y) € U,iQ) satisfies (k+ )z + (k 4+ 1)y > —k as well as z(k — 1) + yk < —k.
Multiplying the second inequality with —1 and adding the result to the first inequality gives
2z +y > 0. O
Lemma 3.3.16. 7(,,) ((k+ 1,k)) = (k,k — 1) for (z,y) € Uy, Ui(Q).

Proof. Similar as in Lemma 3.3.14 we have

k+Dz+ky>k -+ (k—Dy>—k+1.
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for all (z,y) € U;>, U¢(2) by Lemma 3.3.15 and (3.3.3). An upper estimation can be obtained by
using (3) of Lemma 3.3.13 and (3.3.3):

(k+Dz+ky<—k+2z<-k+2 Yy e|JU.
ik

Hence [(k+ 1)z + ky| = =k +1 and 7(z 4 ((k + 1,k)) = (k,k — 1) for all (z,y) € U, U¢(2)' O

Lemma 3.3.17. For all k > 0 we have U,E,l) NBy =0 and U,iQ) C B».

Proof. Let (z,y) € Ug. By Lemma 3.3.14 we have T(kx’y)((O, 1)) = (k,k+1). Another application of
T(z,y) yields T(k%y)((o, 1)) = (k+1,k+1) by the estimate —k—1 < kz+(k+ 1y < —k+z+y < —k
obtained by the definition of Uy. If (x,y) € U, ,E,l) we have

—k—-1<—-k—-14z>xk+1)+yk+1)<—k

by the definitions of Uy, U,gl) and U and thus T(]“;;)((O, 1)) = T(k;—;)((o, 1)) =(k+1,k+ 1) shows

the periodicity. If (x,y) € U,gz) we have
—k<zk+1)4+yk+1)< —k+2z+y<—-k+1

by the Definitions of Uy, U,iQ) and U and hence 7'("“:;)((0, 1)) = (k+ 1,k). An application of

Lemma 3.3.16 shows T(Qj;f((o, 1)) = (1,0) and since 0 < z < 1 we have 7(2;“'5)3((0, 1)) =(0,0). O

Hence Lemmas 3.3.6 to 3.3.12 together with Lemma 3.3.17 provide a full characterisation of
By. We summarise this in a Theorem.

Theorem 3.3.18.
By=A1UAUAsU UL,
j=1

Bs is depicted as grey area in Figure 3.6 right (the full lines of its boundary belong to the set,
the dotted lines do not).
Let r € R? and set
N(r) = [{7((0,...,0,1))[n € N}|.

Proposition 3.3.19. For a Parry number 3 and v as in 3.3.1 the Automaton 1.3.5 has N(r)
stages if 3 is simple, otherwise it has N(r) + 1 stages.

Proof. This is an immediate consequence of Corollary 3.3.5. O

Corollary 3.3.20. Let 8 a Pisot number of degree 3. Then the Automaton 1.3.5 has 3,5 or 2k,
k € Ny stages if 8 is a simple Parry number. Otherwise it has k stages for some k > 3. All cases
really occur.

Proof. Let r € Do as in 3.3.1. From Lemma 3.3.6 - Lemma 3.3.11 and Lemma 3.3.17 we easily
obtain the length of the orbit N(r). Then the first statement is a consequence of Proposition 3.3.19.
Since the Pisot numbers are dense in Dy, i.e., for any open subset of D there exists a Pisot number
3 such that the corresponding r as in (3.3.1) lies in it, all the cases really occur. O
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Figure 3.6: A partition of Ds (left) and the position of By inside Ds (right)

3.3.3 The relation between new 3-Tiles and SRS-Tiles

In the following assume 3 to be a Pisot number of degree d + 1. We are going to investigate the
relation between SRS tiles (see Definition 3.1.5) and new [-tiles (see Definition 1.3.12) generated
by Pisot numbers. For convenience we state the notations again here.

Let r € int(Dg). For an x € Z¢ the set

Tr(x) = lim R(r)*Ty n(x),

n—oo

where
Trn(x):={z ¢ 74 | i (z) = x},

is the SRS tile associated to r. The limit is taken with respect to (-, -)r(),s for some ¢ with
o(R(r)) < § < 1. The tile T,,(0) is called the central SRS tile.
For the Pisot number 8 and w € Z[F] N [0,1) let

Spn(w) = {y € ZIBI N[0, 1) | T§(7) = w}

Then the set

Sp(w) := lim ®("Sp.n(w)),

(again with respect to the Hausdorff metric) is called a new (-tile. The tile S3(0) will be called
central new S-tile.

For preparation we use a lemma concerning companion matrices, which is a special case of a
result which was presented in [15].
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Lemma 3.3.21. For a companion matric

0 1 0 0
C — . . . E RTLXTL
: " " 0
0 -0 .- 0 1
—Cp —C1 *+ —Cd—2 —Cp—1
with distinct eigenvalues A1, ..., Ay, the left eigenvector 1; associated to the eigenvalue A; equals

L= (1L, A H

with
(5] Co o Cpn—1 1
Cco - - 0
H =
Cn—1 - :
1 0 -+ - 0
Proof. See [15, Lemma 1] and observe that the transposed companion matrix is considered there.
Moreover, we only need the special case where all eigenvalues have multiplicity 1. O
Set
d
z=1,1;éj
and
(1) (1) (1)
2) ® ROX
( g a2y 1
(7’) (7’) . ‘L(ir_)z 1
U — §R( (’l"‘rl)) §R( (’I"‘rl)) .. %(q;r_-;l) 1 c Rdxd'
e ) @) o Seh) o
Rlgy ™) R@™) - Rigrh) 1
3y ™) MG ™) - S 0

Theorem 3.3.22. Let 3 be a Pisot number with minimal polynomial 2% + pgz® + - -+ pr + po
and v := (ro,...,74_1) € int(Dy) defined as in (3.3.1). Thenr € int(Dy) and for each x € Z¢ and

w =xr — |xr| we have )
Sp(w) = U(R(r) — Bla)Te(x)
where I is the d-dimensional identity matriz.

Proof. For convenience set rq := 1. First note that all Galois conjugates of 3 are less than 1, i.e.,
the characteristic polynomial (¢ +74-12971 +---+79) of R(r) has all roots inside the unit circle.
Thus r € int(Dy).
Consider the function f and Diagram 3.3.2 from Subsection 3.3.1. From there it is easy to see
that _
Sﬁ,n(w) = f(Tr,n(X))‘
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Set
g: 7¢ - ]Rd,
z +— —fz+ 1(2).

and

, R(Br+1)  (Brs1) > ( R(Brts)  (Brts) ))
Ap=d yeees By yeees ,
s =g (e (5050 R (e R(5as
We will now prove the validity of the following diagram:

7[5 2> pd <L — Rd (3.3.4)

]g TA‘* TRM

Z[B] —>Rd7Rd

(i) We start with the upper left square: observe that Vy € Z[F] : ®(8v) = AgP(y).

(ii) Next we will prove the commutativity of the lower triangle, i.e. that Vz € Z¢: ® o f(z) =
Ug(z). Suppose z = (z0,...,24-1)7 € Z%. Then, by denoting z4 = — |zr|, we have f(z) =
¢ 77 and thus

d
= B(ri)z. (3.3.5)

=0
Set &(r;) = (7"1(1), cey rgd)). By the definition of the r; we have
ra2? +rg_13 g = (2= Bi)(@ — Ba) - (z — Ba)-
Therefore, taking conjugates yields
rd et 4zt ) = Q)@ —8) 1<i<7)
and

rg T BT T = RQr (@)@ - )
ri{“”m +r§“ff">xd-1+w+ré”2” = SQuu@E-8)  (1<j<s).

From this we easily obtain for 1 < j < r the formulas

T(()j) _ ﬁq(j)
r? =¢? -84, 1<i<a), (3.3.6)
Tflj) = q(J_)1 (_ 1)
while for 1 < j < s we have
rTH2D R, rg V= B“(q(()j ),
r§r+2]—1) _ %(qu_) ) — ﬁ%(qij)), r£r+2]) g( 1) cx(qZ(J))’ (1<i<d),
r((ir+2j—1) _ §R(qég_)l) (=1), r((ir+2j) g(q(]) ) (=0).

(3.3.7)
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Now let (v, ...,aq)T := Ug(z). Then we have for 1 < j <r

d—1

a; =3 ¢ (~Bz + zi41)

=0

d—
_ _ﬂq(()J)ZO _1_2(%(1)1 ﬁqZ(J))Z +q(J)
i=1

d .
D
=0

where we used (3.3.6) to obtain the last line. Analogously from (3.3.7) we get

d
Qri2j—1 = Z %(TEHJ))Z@‘,

i=0
< )
r+3i
trgaj = 3 Sz
i=0

for 1 < j < s. Hence, together with (3.3.5) this yields
d
Ug(Z):(al,...,Oéd Z(Drz Z’L_(I) f()
=0

(iii) Finally we turn to the upper right square and show that AglU = UR(r). Observe that due to

Lemma 3.3.21 the left eigenvectors of R(r) are exactly the row vectors (q(()] ). ,qflj )2, qflj )1)

and thus U~1AgU = R(r) is the real Jordan decomposition of R(r).

The diagram in (3.3.4) now easily yields the identities
(6" Spn(w)) = UR(E)"g(Te,n(x))

and

Sa(w) = lim ®(A"Ss,(w)) =U lim R(r)"g(Tpn(x)).

n—oo n—oo

Finally we define the linear function
§:2% - RY:z— (—BI; + R(r))=.

For g and § we have the relation §(z) = g(z) + (0,...,0,e(z))” where e(z) € (—1,0] holds for all
z € Z%. Then Y(§(Tr,n(x)), 9(Tr.n(X))) R(r),s i bounded for each n € N and, hence, as R(r) is
contractive, v(R(r)"§(Tr,n(X)), R(r)"g(T (%)) r@r),s tends to zero as n — oo. Thus

lim UR(r)"§(Tn(x)) = lim UR(r)"g(Tr,n(x)) = lim $(8"Sp,n(w)) = Ip(w).

n—0o0 n—00 n—0o0

Now observe that R(z)" commutates with §. Therefore R(z)"§(Ty »(x)) = §(R(r)" Ty n(x)) and

Sp(w) = lim UR(r)"§(Ten(x)) = U(R(r) = Bla) im R(x)"(Ten(%)) = U(R(r) = B1a) Tz (%)-
O
Corollary 3.3.23. For a Pisot number 3 and w € Z[5] we have
Ssw)=J AsSs(y).

’765'5,1("-’)

84



Proof. The equation can be derived from Proposition 3.1.8, Theorem 3.3.22 and the bijectivity of
f (Proposition 3.3.2). O

Corollary 3.3.24. The new (-tiles induced by a Pisot unit of degree d+1 cover the d-dimensional
real space.

Proof. This is an immediate consequence of Proposition 3.1.6 and Theorem 3.3.22. O

Corollary 3.3.25. Let 3 a Pisot unit and r as in (3.3.1). The number of different SRS-tiles up
to translation associated to r is N(r) if B is a simple Parry number, otherwise it equals N(r)+ 1.

Proof. This can easily be seen by Corollary 3.3.20 and Theorem 3.3.22. O

Example 3.3.26. Consider the Polynomial 2® — 322 + 1. Its greatest root in modulus is 3 =
2.87938524157 . . ., a Pisot unit. Set r = (rg,r1) with

1 , 1
——7 1 = ——75-
g I

The 25 SRS-tiles Tp(x) C R? with ||x| < 2 are shown on the left hand side of Figure 3.7.
Let By, 32 be the Galois conjugates of 3. 1 and > are real and thus the corresponding S-tiles

To =

-5 0 5 10

7

. /////

G

-3 -2 -1 ° 1

Figure 3.7: SRS tiles associated to r = (—B_l, —6_2) (left) and the corresponding new (-tiles
generated by £ (right).

generated by /3 are obtained by multiplying 7,(x) by the matrix

onmo=( (7 45)+ (% 4)

They are shown on the right hand side of Figure 3.7.
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Chapter 4

Variations of Shift Radix Systems

In the last chapter we will deal with e-shift radix systems. In the fist part we analyse notations
and results concerning SRS for a possible generalisation to e-SRS. We also show the relation of
e-SRS and ¢-CNS to e-F-expansions. Afterwards we concentrate on the two-dimensional case and
show in Theorem 4.2.2 and Theorem 4.2.11 that ’D%E can be completely described for ¢ # 0. We
will explicitly characterise this set for two exemplary values of £. Finally, in Section 4.3, we turn
to the three-dimensional symmetric case and present a complete characterisation of Dg’% = 253.

4.1 e-shift radix systems

The results of this section are, if not other cited, due to [53].

4.1.1 Basic properties

We already defined £-SRS and the sets Dy and D?l, . in Definition 1.1.20. Lots of basic properties
and notations concerning 'D&E and Dy . can be directly adopted from the case ¢ = 0. Since
Dgya C Dy, we first study the structure of Dg..

Theorem 4.1.1. Let d € N. Then we have
€1 C Dye C &,
9Da.e = {r € R o(R(r)) = 1}.

Proof. For 0-SRS this has been proven in [3] (see also Theorem 1.1.4) and for 3-SRS in [12]. The
proofs can be transferred to other values of ¢ without difficulties. O

We can easily see that the interior of Dy, equals £ and does not depend on . We do not
expect Dy .\ &y to be independent of ¢, however, these boundaries seem to be very hard to describe
(see Subsection 1.1.2).

We already defined e-CNS. Let P(x) = x%4-pg_12% 4 4pp and N = [—¢ |po| , (1—¢) |po|)NZ.
In the same way as for CNS we can define our backward division algorithm. Let A = Ay €
R = Z[z]/(P). Ao has a unique representation of the shape Ay = Zfz_ol aEO)X . For k > 0 we
inductively calculate Agiq := Z?;Ol agkﬂ)X by Apy1 = Z?z_ol (‘%@1 + qipit1)X* with g such
that a(()k) =er + qipo and e, € N. For each | € N we then have

-1
A=) "eX + AX
=0
Thus, (P,N) is an ¢&-CNS if and only if the backward division algorithm ends up in 0 for each
AeR.
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Theorem 4.1.2. (P,N) is an e-CNS if and only if (o5, P>, ..., Bt) € DY ..

Proof. The proof runs analogously to the proof of [3, Theorem 3.1] (¢f. also Theorem 1.2.6 and
Theorem 3.2.12). O

Remark 4.1.3. Actually the above theorem can easily be generalised to non-monic polynomials.
Suppose P(z) = pgx? +pg_12%' +-- -+ po, R = Z[z]/(P), X the image of z under the canonical
epimorphism and N = [—¢ |po|, (1 — €) |po|) N Z. Analogously to Theorem 3.2.12 it can be shown
that the digit system (R, X, ) (see Definition 3.2.1) has the periodic representation property if
and only if (2¢ 2=t Py ¢ D, and that (R, X,N) has the finite expansion property if and

ppo’ po ’ po 0
if (B4 Pd-1 p1
onlylf(po, ™ ""’po) €Dy.-

We now turn briefly to e-3-expansions. For v € [—¢,1 — ¢) the e-F-expansion can be obtained
by applying the e-3-shift
Tpe:l[-e1—e) = [, 1—e),y— By — [By+e].
Each v € R has exactly one e-3-expansion except for the case ¢ = 0 where we have to restrict
toy € RN[0,00). If v & [e,1 — ¢) there exists a & € N with 37%y € [¢,1 — &). Then the ¢-3-
shift can be applied to obtain the e-3-expansion of 5~*~. Multiplication with 3* then yields the

g-3-expansion of v. For £ = 0 the £-3-shift corresponds to the S-shift and for £ = % the analogue
mapping for the symmetric case (see Subsection 1.3.3).

Definition 4.1.4. Let £ € [0,1). An algebraic integer 5 > 1 is said to have property (e-F) if each
v € Z|B~Y) N [—¢,1 — €) has a finite ¢-3-expansion.

Property (0-F) is obviously equal to the well known property (F) while (3-F) corresponds to
(SF). For algebraic integers 3 the -3-expansion is closely related to £-SRS.

Theorem 4.1.5. Lete € [0,1) and § a positive algebraic integer with minimal polynomial P(x) =
3 4 pgxt + -+ prxz +po and r defined as in (3.3.1). Then 3 has property (e-F) if and only if
re D37 e

Proof. For € = 0 this has already been shown in [3, Theorem 2.1] (¢f. Theorem 3.3.1). One can

easily generalise this proof to all values of ¢ by showing that the dynamical systems 7. and 7 .
are conjugated. O

This immediately shows that (¢-F) is only possible for Pisot numbers.

4.1.2  About Dy,

In order to analyse the structure of Dg’e we proceed similarly as we have done in Section 1.2.
The following definitions and lemmas are directly adopted from there and do not require further
comments or proofs.

Definition 4.1.6. Let r € Dy .. A point x € Z¢ is called purely periodic (with respect to 7 ) if

7t (%) = x for some [ € N. We denote by C.(r) the set of all purely periodic points with respect

r,e
to Tre.

Lemma 4.1.7. Letr € int (Dg,.). Then C.(r) is a finite set.

Set O(C.(r)) := Cu(r)/m . Again each element of O(C.(r)) is completely determined by a
finite sequence of integers.

Definition 4.1.8. Let r € Dy .. We call an orbit 7 € O(C.(r)) with |7| = a cycle of period | of
Tr,e. By the same discussion as after Definition 1.1.2 a cycle of period [ is uniquely determined by

[ integers xg, ..., x;—1 and will be denoted by {(xg,...,2;_1). We refer to an element of
Iy, = U O(C.(r))
rGDd,s

more generally as a cycle of Dy,..
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Lemma 1.1.3 also holds for the elements of O(C,(r)).
Again we ask: For which r = (rg,...,7r¢—1) is a given (2q,...,21-1), L € N, z; € Z, a cycle of
Tr,e? Again these points are described by a system of inequalities analogously to (1.1.5)

0<rpzi + -+ +7rg—12i4d—1+ 2ixd + £ <1, Vi€ (0,...,l—1) (4.1.1)

(indices of z modulo {). Hence, (zq,...,21—1) is a cycle of 1y . for those r that satisfy the system
of inequalities (4.1.1). Define

Py ({20, . 21-1)) = {(ro, ceeyTd—1) € R¢ | (ro,...,rq—1) satisfies (4.1.1)} .

Py ((z0,...,21-1)) is a d-dimensional polyhedron which can degenerate to a lower dimension or
even to the empty set. (zo,...,z-1) isa cycle of some 7, . if and only if Py . ({20,...,21-1))NDg,c #
0. As in Section 1.2 we call the cycle (zo,...,2_1) degenerated, if dimP;. ({zo,...,21-1)) < d.
{(20,.-.,21-1) is no cycle if Py. ({z0,...,21-1)) = 0. Note that, if 7 is a non-degenerated cycle of
Da,e, analogously to the Lifting Theorem 1.1.12, 7 is also a non-degenerated cycle of Dy . for all
d’ > d. Again we have the identity

D§.=Dac\ |J  Puclm).
n€T4,\{(0)}

Before we turn to the problem of characterising DY, we observe a nice symmetry concerning
Dd,a and 'Dd71_€.

Lemma 4.1.9. For all € € (0,1) we have
int (Pye({z0y...,21-1))) = int (Pg1—({—20,..., —21-1)))
Proof. v = (ro,...,rq—1) is in int (Pg({20,...,2-1))) if and only if
0<rozi+- - 4+7rg—1%zitd—1+ 2zira+e <1l Vie(0,...,1—-1)
(indices of z modulo !). Thus
—1<rozi+---+rq-12itdi-1+ zita— 1+ <0 Vie(0,...,1-1).
Multiplication with —1 yields
0<ro(—z)+ - +rq—1(—2itda—1) —zipa+1—e<1 Vie(0,...,1-1)
which is equivalent to r € int (Pg1-.({—20,..., —21-1))). O
Corollary 4.1.10. Let € € (0,1) and denote the d-dimensional Lebesque measure by pq. Then
oD}, ADY,_) =0
holds.

In Definition 2.1.5 we defined the set of witnesses for some point r € Dy. It is remarkable that
we can give an analogue to Theorem 2.1.6 for e-SRS without changing the definition of the set of
witnesses.

Theorem 4.1.11. Let e € [0,1) and r € Dg.. v € DY, if and only if a set of witnesses V does
not contain purely periodic points with respect to Ty ..

Proof. If V has a periodic element then r ¢ Df _ by the definition of DJ _. For showing the other
direction we observe that the behaviour of the floor function (see proof of Theorem 2.1.6) implies
that for any a, b € Z¢ we have

Tr,e (a + b) € {Tr,e(a) + Tr,O(b)a Tr,s(a) + (_Tr,O(_b))} .

The rest of the proof runs analogously to that of Theorem 2.1.6. O
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We therefore can use Definition 2.1.7 and the set V(Q) and all the assertions concerning the
finiteness in this context as well.

Lemma 4.1.12. A set of witnesses V of @ is closed under the application of v . for eachr € Q
and € € [0,1).

Proof. We first claim that for a € R and € € [0,1) we have
[a] > |la+¢]. (4.1.2)

Indeed, if a € Z then [a] = |a| = |a + ¢]. Otherwise [a] = [a] +1=|a+1] > |a+¢].
Now let z = (z9,...,24—1) € V. By definition (z1,...,2¢-1,7) € V for all

i€ I:= {min|—sz|,...,—mi .
j {min | sz min sz}
Then, using (4.1.2), we have
n|— = min (— < min (— < - < — < — = —mi .
mig | —sz] rsrél(g( [sz]) < rsrélg( sz+¢]) < —[rz+¢] < —|rz| < rsneag{( [sz]) mig |sz]
Therefore — |rz +¢| € I and 7 .(z) € V. O

Next we adapt Definition 2.1.8 for our purposes.

Definition 4.1.13. Let V be a finite set of witnesses for some Q) C Dy .. Let G(V,e) =V X E be
the smallest directed graph with vertices V =V and edges E C V' x V such that

E={xm(x)xecV,recQ}

The definition is meaningful because of Lemma 4.1.12. The finiteness condition on V assures
the finiteness of the graph G(V,s). Again we are interested in the (directed) graph-cycles of
G(V,¢). After Definition 2.1.8 we have agreed upon a notation of graph cycles of G(W, Q). We
can immediately adapt this notation for graph cycles of G(V,¢). This immediately yields the
analogue to the Brunotte Algorithm (¢f. Theorem 2.1.9).

Theorem 4.1.14. Let € [0,1), @ C Dy, and V a finite set of witnesses of Q). Furthermore let
I the set of graph-cycles of G(V,€) without the trivial one (0). Then
D.NQ=Q\ |J Puc(m).

m€llg

It is straightforward that the algorithms presented in Subsection 2.1.2 can be modified in order
to use them for analysing ’D37 . for all e € [0,1). Since this is a real trivial modification we will not
explicitly accomplish it here. We just denote for an £ € [0,1) by Bri1(Q,p,¢) and Bry(Q,¢) the
particular modification of Algorithm 3 and Algorithm 4, respectively.

4.2 Characterisation results concerning DJ_

4.2.1 Thecase 0< |c—1| <1

In the following we will concentrate on the two dimensional case and show that D3, for € € (0,1)
can be fully characterised by cutting out finitely many polyhedra from &;. The result is based on
the following lemma.

Lemma 4.2.1. If there exists o closed set D C £q with DY, C D then DY, can be obtained from
D by cutting out finitely many polyhedra.
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Proof. This can be directly seen from Corollary 2.1.15 (the adaption for arbitrary values ¢ € [0,1)
is a triviality). O

In order to prove the possibility of representing ’Dg’ . with only finitely many cutout polyhedra
we will show the existence of a closed set D with ’D%E C D C &; that does the job in the above

lemma. We first show this for ¢ € (0, %) and then use the symmetry described in Lemma 4.1.9 to

obtain a similar result for ¢ € (%, 1). For ¢ = % a full characterisation was already given in [12]
(see Subsection 1.1.6).

Theorem 4.2.2. Fore € (0, %) the set Dgya can be completely characterised by cutting out finitely
many polyhedra.

Proof. For showing the theorem we will prove for each ¢ € (0, %) the existence of a set D which
satisfies the conditions made in Lemma 4.2.1.

Fix an £ € (0,%). From Theorem 4.1.1 and (1.1.2) we know that D . equals the triangle
{(z,y) € R?||z| < 1,|y| <z + 1}. Denote by (Q1, ..., Q%) the closed convex body of the points
@1,...,Qr and define the following sets:

Ty :=0(Q1, Q2, @3, Q4) with

Ql = (_170)’622 = (g -1, _§)7Q3 = (1’2 - 5)’Q4 = (172)’
T2 ::D(le Q27 Q37 Q4) \ Q1Q4 with

Ql = (_170)’622 = (]-7 _2)7Q3 = (]-7 -1- 5)’Q4 = (
T3 ::D(Ql’QQ’QE’n Q4) with

Ql = (1_5’_1'1'6)7@2 = (1_5’_1)’623: (13_1_6)7624: (13_1+5)’
Ty :=0(Q1,Q2,Q3,Q4) \ (Q2Q3 U Q1Q4) with

Ql = (1 — &, _6)7Q2 = (]— —&, -1 +€)7 Q3 = (]-7 -1 +€)7 Q4 = (17 _6)7
T5 ::D(Ql’QQ’QE’n Q4) with

Ql = (1 - 5’5)’622 = (1 - & _6)7Q3 = (]-7 _5)’Q4 = (1’5)’
{(,y) ER}l—e<z<l,e<y<z—el
={(z,y) eR’l—e<z<le<y<l+erz—ec<y<z+1l—c},
Ts ={(z,y) ER}l—e<ax <1 l+e<y<l+az—c}

——1 —e+1
2 72

)s

Figure 4.1 shows the position and shape of these sets for two different values of . In Lemma 4.2.3
to Lemma 4.2.10 we show that for all i € {1,...,8} the set T; is not contained in DJ _. Now set

8
D::Dgya\UTi:{(a@,y)€R2|—x—5§y§x+1—€,x§1—6}CD276

i=1

and observe that DY _ C D C &. Thus D satisfies the conditions of Lemma, 4.2.1 which proves
the theorem. O

Lemma 4.2.3. 7:=(1,—1) is a cycle of 7. forr €Ty and € (0, 1).

Proof. The set T is a closed polygon. Since P».(7) is a polygon, too, it is enough to show that
Qi € Py () for i € {1,2,3,4}. P> () is defined by the inequalities

—< z—-—y+1 <1l-—g,
< —x4+y—1 <1l—e.

It is easily checked that each of the four points @1, ..., Q4 really satisfy this system of inequalities
which proves the lemma. O
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-1 -0.5 [ 0.5 1 -1 -05 3 03 1

Figure 4.1: The sets T; for ¢ = 2 (left) and ¢ = 2 (right)

Lemma 4.2.4. 7 := (1) is a cycle of 7v.c forr € T» and ¢ € (0, 3).

Proof. The proof runs analogously to the proof of Lemma 4.2.61. O
Lemma 4.2.5. 7:=(1,1,0,—-1,—1,0) is a cycle of v forr € T3 and ¢ € (0, %)

Proof. The proof runs analogously to the proof of Lemma 4.2.3. O
Lemma 4.2.6. 7:=(1,1,0,-1,0) is a cycle of 7v - forr € Ty and € € (0, %)

Proof. The set T} is a rectangle where the lines Q2Q3 C {(z,y) € R?ly = —1 + ¢} and Q1Q4 C
{(z,y) € R?|y = —¢} are not included. Note that ((Q1, Q2, @3, Q4) is a polygon, thus

Ty =0(Q1,Q2,Q3,Q4) \ ({(z,9) e R?ly = -1+ e} U {(z,y) € R*|y = —¢}). (4.2.1)

P, () is defined by the inequalities

- < zT4+y < 1l—g,
—= < z-1 < 1l-—¢g,
— < —y <* 1-—g¢,
- < —z+4+1 < 1-—g¢g,
— < y+1 < l1-e

1In Lemma 4.2.4 the cycle has period 1 and we only have one double inequality. Thus the situation is easier
than in Lemma 4.2.6.
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Two strict “<” are tagged with *. Exchange them by non-strict “<” and leave the other inequalities
unchanged. This modified system of inequalities defines another polygon, let us call it P5 (7).
Obviously

Poo(m) = P\ ({(5,) € Ry = 1+ <} U{(zy) € R2y = —c}).  (42.2)

Now O(Q1, Q2, Q3,Q4) C P35 (m) since all four points satisfy all inequalities of Py (7). Observing
(4.2.1) and (4.2.2) then immediately yields Ty C P5 .(74), which proves the lemma. O

Lemma 4.2.7. 7:= (1,0,—1,0) is a cycle of 7v.c forr € Ts and ¢ € (0, 3).
Proof. The proof runs analogously to the proof of Lemma 4.2.3. O
Lemma 4.2.8. 7:=(1,0,—1,1,1,-1,0) is a cycle of v forr € Tg and ¢ € (0, %)

Proof. For ¢ € (0,%) we have Tg = O(Q1, @2, Q3,Q4) \ (Q2Q3 U Q1Q4) with vertices Q1 =
(1—2,1—-2¢), Q2 = (1 —g,¢), Q3 = (1,¢) and Q4 = (1,1 —¢). For ¢ € [%,%) we have
T6(6) = D(Qla Q27 Q3)\(Q1Q2UQ1Q3) with Ql = (25’5)’ QQ = (1’5) and Q3 = (1’ 1_6) However,

one can easily prove that Tg C P> () in an analogue way as it was done in Lemma 4.2.6. O

Lemma 4.2.9. 7:=(1,0,—1) is a cycle of 7. forr € T and £ € (0, 1).

Proof. For e € (0, ) we have T7 = 0(Q1,Q2,Q3,Q4) with Q1 = (1—¢,14¢), Q2 = (1—¢,1—2¢),
Qs =(1,1—¢)and Qs = (1,14 ¢). T7(e) C Py () can be shown analogously to Lemma 4.2.3.
For ¢ € [%, %) we have T7(€) = D(Ql, @2, Q3,Q4, Q5,Q6) \ (Qng U Q3Q4) with ¢, = (26, 1+ 5),
Q2= (1 _632_26)7 Q3 = (1_676)7 Qs = (25’5)’ Qs = (171_5) and Q¢ = (171+5)' For ¢ = %
the points Q1 and Q)2 as well as the points Q3 and Q4 coincide giving a quadrangle with the points
Q1=Q2=(3%) and Q3 = Q4 = (3, }) missing. Analogously to Lemma 4.2.6 it can be proved
that Tg C P275(7T). O

o /' Tél)

Q6
TéS)
Qs 107
2 Y
23 Q2 4
[ [A [223

Figure 4.2: Partition of the set Ty for ¢ = %, €=

O

,E= %, €= % (from left to right)
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Lemma 4.2.10. T3ND3, =0 fore € (0,3).

Proof. First suppose that ¢ € [,3). Then Ty = O(Q1,Q2,Q3) \ (Q1Q2 U Q1Q3) with Q1 =
(2e,14¢), Q2= (1,1+¢) and Q3 = (1,2 —¢). Let Q4 := (2,1 +¢) € Q1Q3 and subdivide Tk
into the triangles

7§V = 0(Q1,Q3,Qa) \ (Q1Q1 U Q1Q3),
T = 0(Q2, Qs Q1) \ (Q2Q4 U Q3Qa).

See the rightmost example ¢ = % in Figure 4.2. Consider the cycles m; := (1,0,—1,2,—2) and
m = (1,0,-1,2,-2,1,1,-2,2,-1,0,1,—1). Analogously to Lemma 4.2.6 it can be shown that
T € Py o(m) and TP C Py ().

Now suppose ¢ € (O,%). Let @1 =(1—-6,2—-2),Q2a=(1—¢,1+¢), Qs = (1,1 +¢) and
Q4= (1,2 —¢). Then T5 = D(Ql,QQ,Qg,Q4) \ (Q2Q3 U Q1Q4). Again we have to do some
subdivision. Define Q5 = (1 — ¢, 35 5=) and Qs = (1, 3’55). Note that Q5 € @1Q2 and Qg € Q3Q4.
Let

:( -2,2,-1,0,1,-1),

(, ~1,0,1,-1),

:( ~2,1,1,-2,2,-1,0,1,—1),
71'4.—(1,0,—, ,—2).

In the same manner as in the proof of Lemma 4.2.6 one can show that

T = 0(Q1, @5, @6, Qu) \ (Q5Q6 U Q1Q0)

is contained in P (7). Set

T =T\ 73" = 0(Q2, Q3, Q7, Qs) \ Q2Qs.
We have to distinguish several cases.
e € (4, 1) Define Q7 = (1+226,1 +¢), Qs = (35,1 +¢), Qo = (1, 352) and Q1o = (4,1 + 22).
We have Q7, Qs € Q2Q3, Qo € Q3Q6 and Q10 € Q5Q¢. Thus the sets
T :=0(Qs, @3, Qo) \ (@5Qs U Qs Q).
7Y =0(Qr, Qs, Qs, @5, Q10) \ (Q7Qs U Q7Quo),

T =0(Q2, Q7, Qr0, Qs) \ R2@7

form a partition of T3 (see third sketch in Figure 4.2). In the style of Lemma 4.2.6 we can
now show that 73" C Py (m;) for i € {2,3,4}.

£= i Runs similar to the previous case with the only difference that here the points Q)7 and Qs

coincide with (2. Thus TEES) is a quadrangle and T£§4) is a triangle (closed, just with the
point Q2 missing).

= (5, 1) Define Q7 = (1—¢,2—3¢), Qs = (1 —¢, 2352), Qo = (1, 235%) and Q10 = (153,14 2¢).
We have Q7, Qs € Q2Q5, Qo € Q3Q6 and Q10 € Q5Q¢. Again the sets
TéQ) =0(Q2,Q3, Qo, Qs) \ (Q2Q3 U QsQ9),
Ts§3) =0(Q7, @s, Qo, Qs, Q10) \ @7Q10,
Ts§4) =0(Qs, Q7, Q10)

form a partition of Tg (see second sketch in Figure 4.2) and as before we have Téi) C Py o(m;)
for i € {2,3,4}.
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€= % The situation is comparable to the previous case with the difference that Q7 = Q10 = Q5 =
(%, %) Thus TEES) is a closed quadrangle with the only exception that @5 is missing and T£§4)
consists only of the point @Qs.

e € (0, %) Let Q7 = (1, 32;5) and Qs = (1 — ¢, %) Q7 € Q3Q6 and Qg € Q2Q5. The sets

TéQ) =0(Q2, Q3,Q7,Qs) \ (Q2Q3 U Q7Qs),
Tég) =0(Qs, Qs, Q7,Qe)

partition Ty (see leftmost sketch in Figure 4.2). Further Téi) C Py (m;) for i € {2,3}.

We now turn to the case ¢ € ( %, 1) and prove

Theorem 4.2.11. For ¢ € (0, %) the set ’Dg (1—e) CON be completely characterised by cutting out
finitely many polyhedra.

Proof. We will show this very analogous to Theorem 4.2.2. Since by Lemma 4.1.9 for some cycle ©
we have int (P (7)) = int (Ps,1-.(—)) for € € (0,1) we can expect that we can use the negative
cycles and quasi the same sets. Only the boundaries will change a little. In particular, we define

Ty :=0(Q1, Q2,Q3,Q4) \ Q2Q3 with
Q1= (-1,0,Q2 = (5 - 1,—2),Qs = (1,2-¢),Qa = (1,2),
T :=0(Q1, Q2,Q3, Q1) with
Ql = (_170)7 Q2 = (]-7 _2)7Q3 = (]-7 -1~ 5)7 Q4 = (_52_ 17 _€2+ 1)7
T3 :=0(Q1,Q2,Q3,Q4) \ (Q1Q2U Q203U Q1Q4) with
Qi=(1-5-1+4¢),Q2=(1-¢,-1),Q3=(1,-1-¢),Qs=(1,-1+¢),
T4 ::D(Ql’QQ’QE’n Q4) \ QlQQ with
Ql = (1 — &, _6)7Q2 = (]— —&, -1 +€)7 Q3 = (]-7 -1 +€)7 Q4 = (17 _6)7
15 :=0(Q1,Q2,Q3,Q4) \ (Q1Q2U Q203U Q1Q4) with
Ql = (1 - 575)7 Q2 = (1 —&, _E)7Q3 = (17 _5)7 Q4 = (175)7
Ts ={(z,y) ER*)[l—e<z<le<y<z—e¢}
Ty ={(x,y) 6R2|1—5<x§1,6§y< l+e,z—e<y<z+1—c},
Ts ={(z,y) ER})l —e <z <1,1+e<y<1l+4+z—e}

In the same style as in Lemma 4.2.3 to Lemma 4.2.10 we can now show that

Ty CPa- ((1,-1)),

Ty CPyy—c ((—1)),

T3 CPpy_c((1,1,0,—1,-1,0)),

Ty CPy1_.((1,0 —-1,0)),

Ts ch_a((l,o -1 0>)

Te CP21_c((1,0,—-1,0,1,—1,—1)),

Ty CPyq_e ((1,—1 0)),

Ts CPy1—.((1,0,-1,2,-2,2,-1,0,1, 1) U Po ;. ({1,0,-1,2,-1,0,1, 1))

UPyi_e({(1,0,—-1,2,-2,1,1,-2,2,-1,0,1, =1)) U Py _ ({1,0,—1,2, —2)).
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Thus we have

)
D:=D271_5\Uﬁ={(1¢,y)€R2|—x’—6§y§x—|—1—6,x§1—6}C'D2’1_5.
i=1

This set D is exactly the same as in Theorem 4.2.2 and we again have that D§ ; _ € D. Thus D
satisfies the conditions of Lemma 4.2.1 which proves the theorem. O
If there are analogues of this result for d > 2 is up to now unknown.

Open question 3. Can Dg. for d > 2 and ¢ € (0,1) be characterised by finitely many cutout
polyhedra?

We can answer this question only for d = 3 and £ = 1 and give a full characterisation of Dj 1
is section 4.3. For ¢ = 0 the question must by definitely answered negatively as we have already
seen.

4.2.2 DY, for concrete values of ¢

At the end of this section we will use the results of Subsection 4.2.1 and the modified Algo-
rithm 4 to give explicit characterisations of D, for ¢ = § and ¢ = j5. From Theorem 4.2.2 and
Theorem 4.2.11 we know that

1
D), CD*(e):={(z,y) eER*|—z—e<y<az+l-gaw<l—c}force <0,5>,

1
D%ECD*(s) ={(z,y) R}~z —e<y<z+l-ga<l—c}forec (5,1>

and that we can characterise DS _ completely for € € (0,1). Thus we have to apply Bra(D* (), ¢).
The sets DO 1 and ’D0 4 are shown as grey areas in Figure 4.3 and Figure 4.4. The dashed lines

do not belong to them We will state these two characterisations results as theorems:

Theorem 4.2.12. The set Dy 1 equals the set D* (3) where the polyhedra Py 1 (mi), i €{1,2,3},
with
™ = <0, ].> y T2 = <—].,0, ].> y T3 = <—]., —]., 1,2, 1>,

are cut out.

Theorem 4.2.13. The set Dy 1 equals the set D* (1) where the polyhedra Py 1 (G), i €
{1,...,10}, with

G =(0,1), (2 =(-3,1,3,-2,-2,3,1)

<3 = <_472’ ]-a _374’ _2’ _1’4>a C4 = <_170, ]->7

¢ =1(-5,5,-4,3,-1,-1,3,-4,5), (¢=1(-2,1,1,-2,3),

¢ =(-1,-1,1,2,1}, s =1(-3,3,-2,1,1,-2,3),
$=1(-3,2,1,-3,3,-1,-1,3), Co=1(-2,-1,2,2,-1,-2,1,3,1),

are cut out.

Note that the algorithm returns more cycles but the above characterisations have been min-
imised. There is no polygon which is covered by others. When we compare these results with the
approximation of D2 o = DY and ’D2 1= Dg we can conjecture that for € approaching 0 more and
more peaks “grow”.

From Corollary 4.1.10 we know that DO 1 and DO s and D2 i and ’D2 2

differ by a set of measure 0. Indeed, ’D2 4 and ’D0 o have apart from the boundary, the same
5 7 10

respectively, only

shape as ’D0 L and DO . and we have

10
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Figure 4.3: The set ’Dg 1
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Theorem 4.2.14. Let w1, me and w3 as in Theorem 4.2.12 and Cq,...,C10 as in Theorem 4.2.13.

Then

1.5
y
y
.
.
.
p
1 &
y
y
o
0.5
0
-0.

-1
-1.5

‘u._.._.-._\._.N-zx

.
}
]

Ciiiisiciesiaiiiiidd

-0.75 -0.5 -0.25 Q 0.25

Figure 4.4: The set ’Dg

3 10
D), =D (g) \ U Prs(—m), D), =D (E) \U P22 (=G
i=1 i=1

We omit a detailed illustration of DQ% and DQ’% here since they equal the sets DQ’% and DQ’%,

only the boundaries are reversed.
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Figure 4.5: Two views of Dj ,
3

4.3 Three dimensional symmetric Shift Radix Systems

4.3.1 Definitions and main result

The last section of the present thesis is dedicated to a result given by Huszti, Scheicher, Surer and
Thuswaldner [30]. It provides a complete description of Dg 1. For this reason we define the sets
)

S1={(z,y,2) | 20 —22>1A20+2y+22> -1A2x+2y <1
N2z <1A2x—2y+2z <1},

Soi={(z,y,2) | r—2<-1A20 -2y +22<1A-2x+2y<1
A2z > —1},

Ss:={(z,y,2) | t—2>—-1N20—2y+22<1A-2x+2y<1,2z>-1
AN2x —2z < —1A2x+2y+ 2z > —1},

Sy i={(z,y,2) | 22 =2y +22<1A-2x+2y<1A2x —2z=-1
A2x 42y 42z > -1},

Ss:={(z,y,2)| —1<20<1A-1<20—-22<1A2x+2y+2z>-1
N2z —2y+22<1A2zx+4+4y—22<3,2y<1}

and denote their union by

i€{1,...,5}

Note that S1,S52, 53,55 are polyhedra while Sy is a polygon. The following theorem states the
main result of the present section.

Theorem 4.3.1. D%, = 8.

, =
3,5

Two views of the set Dg , are depicted in Figure 4.5. For rotating 3D-pictures of ’Dg , we refer
i 3

2
the reader to the author’s home pages [51].
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The proof of the theorem is split into two parts that occupy the next subsections. Here we
want to give an outline of the proof. In a first step we will use Brs (Si, %) for each ¢ € {1,...,5}
in order to show that

ScC Dgy%. (4.3.1)

For showing the opposite inclusion we define the set of cycles
I:={r ..., 73},

where the concrete values of 7; for j € {1,...,43} can be gathered from Table 4.1, and show that

Period Cycles
1 7T1=<—1>
2 7T2=<0,—].> 7T3—<1,—1>
3 ma={(—1,—1,0) m5=(—1,0,1) m6={0,—1,0) m7=(0,-1,1)
4 ms=(0,—1,0,1)
7T9:<_2,1a—1a 1,1> 7710:<_271’03_132> 7T11:<_1’_1’]"1’0>
: T12=(0,-2,—1,1,2) m13=(0,—1,1,-1,0) 714=(0,1,—-1,1,0)
7'('15:(0,].,0, 1, 1> 7T16:<0,].,0,—1,0> 7T17=<0,2,].,—].,—2
T18= <1, 1,]., 1,0) 7T19:<1,].,—].,—].,0> 7T20—<2,—].,0,].,—2>
6 T21=(0,—1,0,0,1,0) T22=(1,1,0,—1,—1,0)
7 T23=(0,1,—1,—1,1,0, —1) T2a=(1,1,0,—1,—1,—1,0)
Tos=(—1,—1,1,1,2,0,0, —2) Ta6=(—1,0,0,1,0,0, —1, —1)
8 Tor=(—1,1,0,—1,1,—1,0,1) T28=(0,0,2,1,1,—1,—1,—2)
T9=(1,1,1,0,—1,—1,—1,0) T0=(2,1,—1,-2,—2,—1,1,2)
9 731=(—1,0,0,1,1,1,0,—1, —1) T32=(0,1,1,1,0,—1,—2,—2,—1)
Ta3=(—1,—1,1,0,—1,1,1,—1,0,1) T34=(0,—2,1,1,-2,0,2,—1,—1,2)
10 m35=(0,—1,—1,—1,0,0,1,1,1,0) ma6=(1,2,1,1,-1,-1,-2,—1,—1,1)
T37=(1,2,2,1,0, -1, -2, -2, —1,0)
1 Tas=(—2,0,1,-2,1,0,—2,2, —1,—1,2)
T30=(0,1,2,2,1,0, -1, -2, -2, -2, —1)
12 7r40:<—2,2,—1,0,1, 22, 210 —1,2)
m41=(0,1,2,2,2,1,0, — —2,-2, 1)
13 T12=(0,1,-2,2, -1, — 1,2, 2,1,0, 1,1,-1)
22 713=(0,2,2,1,—1,-2,-2,0,1,2,1,0, -2, —2,—1,1,2,2,0, —1, -2, —1)

Table 4.1: The list of the 43 cycles

for P := U en Ps,1 () we have
S U P 2 D37%.

From (4.3.1) we can deduce SN P = . Thus,
S2D;3\P2 Dg’%

Since Dg’% C &3 we are done if we can cover & with P U S, i.e., if we can show that

PUS D Es.

In other words, the 43 cycles 71, ..., w43 fully characterise Dg 1
)
We will need the following notation and definition.

Notation 4.3.2. For a logical system J of inequalities, which are combined by A and V, denote
by X (J) the set of all points that satisfy 7. Let P a set of inequalities. Then A P and \/ P
denote the systems A;.p I and \/;p I, respectively.
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For the rest of the section denote by 7; the set of inequalities that define the set S; for
i € {1,...,5}. These sets are assembled only of single inequalities. We have

Ty :={2x—2:>1,2x+2y+2z>-1,2x+2y < 1,22 <1,
2z — 2y + 22 < 1},
Ty={r—2<-1,2x—2y+2:<1,-2x+2y <1,20 > —1},
Ts={r—2z>-1,20—2y+22<1,-2x+2y < 1,2z > —1,
2 — 2z < —1,20 4 2y + 2z > —1},
Ty:={2z—-2y+22<1,-2x4+2y<1,2x — 2 < —-1,20— 2z > —1,
2z + 2y + 2z > —1},
Ts={—-1<22,2x<1,-1<2xr—2z2r—22<1,20+2y+2z> —1,
20— 2y+ 22 < 1,2z +4y — 22 < 3,2y < 1},
hence, the equality of Sy and the two double inequalities of S5 are split into inequalities. Thus,
S; = X(AT;) fori=1,...,5. Denote by T; the set T; with all the strict inequalities changed to not
strict ones. Since all occurring inequalities are linear it can easily be checked that S; = X (A T;).

Further, for each ¢ € {1,...,43}, define Q; as the reduced set of single inequalities such that
Py 1 (mi) = X( AQ:). “Reduced” means that all the redundant inequalities are removed.

Remark 4.3.3. Tt is not really necessary to work with the reduced systems but the main algorithm
works much faster and the reduction is not too difficult to realise.

Algorithm 6 RL(P), reduces a list of inequalities.
Input: P set of inequalities
Output: P reduced set of inequalities

1: for all inequalities I € P do

9. P« P\I

3 if X(APA-I)+#0then
4: P—PUI

5.  end if

6: end for

7. return(P)

The algorithm simply uses the fact that an inequality [ is redundant for a system S A T if
X(SAI) = X(S) or, equivalently, X(S A =I) = 0. Denote the application of Algorithm 6 with
parameter P by RL(P) (RL=reduce list of inequalities). For instance, the set ()19 can be defined
by

—_

1 1
ngzz{x+y—z—1<§,x—y—z<5,—§§—x—y+1,

1 1
—x+z—|—1<§,—§§y+z—1}.

4.3.2 SC Dg 1
2

We start with by showing & C Dg 1. This is the easier direction since we can use previously
2

defined algorithms.

Lemma 4.3.4. Bry(S;, 3) terminates for each i € {1,...,5}.

Proof. The algorithms was implemented in Mathematica® with ¢ = 20 (see the notations after
Theorem 2.1.18. The program is available on the author’s homepage [51]. O

For i € {1,...,5} denote by II; the set of cycles computed by Bra(S;, %)
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Theorem 4.3.5. S; C DY, holds for all i € {1,...,5}.
3

Proof. For eachi € {1,...,5} we have that X (A T;) is a convex hull of finitely many points. More-
over, X(A\T;) = S;. II; includes all cycles associated to polyhedra having non-empty intersection
with X (A T;). Now, according to (4.1.1), each of these cycles 7 € II; induces a set of inequalities
P(r). It turns out that for each 7 € II; we have

X(P(m) A /\ﬂ) = ) holds for each 7 € {1,...,5}

(an easy way for checking this is to apply the cylindrical algebraic decomposition algorithm). Thus
there is no cycle that yields a nonempty cutout intersecting with S; and therefore .S; C Dg .. O
’2

433 D), CS
'2

As already noticed Lemma. 1.1.5 does not provide a parametrisation of 3. Since we will need this
set now we first try to obtain a set of inequalities that fully characterise this set £3. Let

& ={(z,y,2) €ER?| g <1AJy—awz| <1-3°

(4.3.2)
A|m—|—z|§|y—|—1|/\|y—1|§2/\|z|§3}

and consider the intersection of £ with the hyperplane
A= {(z,y,2) ER’ |z —c=0}
for constant c.

Lemma 4.3.6. For any |c| < 1 the intersection of £4 with the plane A, yields the closed triangle
A(Aﬁl),A?),Aé‘g)) with ALY = (c,—1, —c),A£2) =(¢,1 —2¢,c— 2),A£3) =(c,2c+1,¢+2).

Proof. We have

ENnAc={(cy,2) eR¥ ly—cz|<1—-FAle+z < |y+1]
Aly—1] <22 < 3}.

As all inequalities are linear, this is a convex set. It is quickly verified that Agl) , Ag) , A£3) € E4NA..
Thus A(Agl), A?), Aé‘g)) C &4 N Ac. On the other hand consider the closed convex set

Be:={(c,y,2)|[y—cz<1-FAc+z<y+1A-y—1<c+z}.

Observe that for its definition we used only inequalities that occurred in the definition of £5 N A,
and hence we have £, N A, C B,.. Pairwise intersection of the three boundary lines of B, yields

exactly the three points Aél), Ag), AE?’) and therefore A(Aél), Ag), Aég)) = B. D &N A.. O
Theorem 4.3.7. & = &}.

Proof. Obviously &} is a closed set while & is open. We state that int £ = €. From Lemma 4.3.6
we know
ENnA.={(cy,2)|y—cz<1—cActz<y+1A—y—1<c+z}

and as each point of &3 is inside &5 N A, for some |¢| < 1 we have

&= |JEnA)DE

le]<1

and therefore
int 8:; Dint &3 = &3.
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On the other hand denote by int 4_(£4 N A.) the interior of the set £ N A, (subspace topology)
for |¢| < 1, i.e., the open triangle defined in Lemma 4.3.6, and observe that

int &5 = | J inta.(£50 Ac)

le|<1

as we can find a neighbourhood around each point of int 4,(E5 N A.), |¢| < 1 which is contained in
&4. Further each point of int 4_(£4 N A,) satisfies the conditions of £5 whenever |¢| < 1. Hence

int&5 = | J int (&5 N A.) C &s.

le|<1

Thus we have shown that int &5 = &3.

To prove the theorem we show £ = int £5. We already have that int &5 = |, Int 4. (€3 N Ac).
Hence we look at the convergent sequences of points contained in U| o<1 int (E5MA:). Such a
sequence converges either to some point within U| el<1 (E5N A.) or to some point within one of the
sets lim.—.11(£4 N A;). From Lemma 4.3.6 we already have

EsNA.=A(e,—1,—c)(e,1 —2¢c,¢—2),(c,2c+ 1,c+ 2))
and we see that
213}(85; NA) ={1 AN ]| -1<A<3),
lim (E5NA) ={(-1,\, =) | -1<A<3}

c——1

which exactly correspond to the sets (£ N A1q). Thus
G=mt& = ] (EnA)=¢

[e]<1
and we are done. O

We can state (4.3.2) as list of 12 inequalities without using absolutes and apply Algorithm 6
for reduction. This yields that & = X (A D) for

Di={zx+z2<1+y,-1-y<z+zy—2z<1-2%2<32>-3}L

Let P be a list of sets of inequalities and G a set of inequalities. We want to verify if
Upep X(A P) covers X(AG). This is equivalent to

X(/\GAﬁ V /\P) = 0. (4.3.3)

PecP

In principle we could do this verification directly. For computational reasons we are a little more
restricted. (In fact the direct verification of (4.3.3) overcharges Mathematica®). A verification
of a claim of the shape (4.3.3) can be done in a reasonable amount of time if #P < 3. We give
an algorithm that solves this problem for general P and G by a subdivision process. The idea is
to split the set X (A G) into suitable subsets and hope that each of these subsets is covered by a
smaller number of sets. First we state Algorithm 7 which removes those sets from P that do not
affect G, hence a set P is removed when X(A G) N X (A P) = 0. Denote the application of this
algorithm by RS(G,P) (RS=remove inequalities with respect to a set).

The main algorithm (Algorithm 8) is recursive. As an input we have again P and G of the
usual shape, where P is reduced by Algorithm 7. Whenever the algorithm recognises that a
subset of X (A G) is not fully covered by the sets described in P, it returns this subset. Denote
the application by VC(G, P) (VC=verify covering). At first Algorithm 8 checks whether #P < 3.
If this is the case we can verify whether (4.3.3) holds, otherwise we choose an arbitrary inequality
I € Upep P such that X(AG AT) # X(A\G). There are two possibilities:
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Algorithm 7 RS(G, P), removes those lists of inequalities from P that do not affect a given set
G.
Input: G, P
Output: P reduced list of inequalities
1: for all sets P € P do
2. if X(NGAAP)=0then
3: P —P\{P}
4:  end if
5: end for
6: return(P)

e There is such an inequality I. Then X (A G) is split by adding I and -1, respectively, to G
and Algorithm 8 is applied (recursively) on both of these subsets. Algorithm 7 is used to
possibly reduce P for each of the subsets. These reduced sets form the second parameter.

o There is no such I. But this would mean that all the points of X (A G) suffice all inequalities
of Upep P- This is equivalent to X(A\G) C X(P) for any P € P and this implies that G
and P suffice the condition (4.3.3).

Now, whenever (4.3.3) is not fulfilled, the set X (A G) is not covered by X(\/pcp A P) and the
algorithm returns the set X (A G). The application of Algorithm & terminates without returning
an output if X (\/ pcp A P) covers X(AG).

Algorithm 8 VC(G, P), checks if a set is covered by the union of others (recursively).
Input: G, P
Output: subsets of X (/A G) that are not fully covered by X (\V pcp A P)

1. if #P < 3 then

2 if X(GA-Vpep AP) #0 then

3: return(X (/A G) is not fully covered)
4:  end if

5: else

6: if 3T € Upep P: X(AGAI) #0 then
7 VCRL(GN{I}),RS(GNA{I},P)

8: VCRL(G N {-I}),RS(GN{-I},P)

9:  end if

10: end if

We can now state the main theorem of this subsection.

Theorem 4.3.8. The algorithm VC(D,P) terminates without yielding any output for

p:{le"‘vQ437T17”'7T5}'

Proof. The algorithms was implemented in Mathematica®. The program is available on the au-
thor’s homepage [51]. O
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