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Abstract

This thesis presents a new methodology to quantify mechanical elastic constants of
polycrystalline thin films using X-ray diffraction under static conditions. The ap-
proach is based on the combination of X-ray diffraction substrate curvature and sin2 ψ
methods. It is shown how to extrapolate the mechanical elastic constants from X-ray
elastic constants considering crystal and macroscopic elastic anisotropy. A general
formula is presented which can be used to determine a reflection hkl and its corre-
sponding value of the X-ray anisotropic factor 3Γhkl for which the X-ray elastic strain
is equal to the mechanical strain. The method is applied to Cu/Si(100), CrN/Si(100)
and TiN/Si(100) thin films deposited onto monocrystalline Si(400) substrates at room
temperature. It is demonstrated that, for fiber textured thin films, the 3Γhkl value
depends strongly on the fiber texture sharpness and the amount of randomly oriented
crystallites. The advantage of the new technique remains in the fact that mechanical
moduli are determined non-destructively and represent volume-averaged quantities.
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Kurzfassung

Diese Arbeit beschreibt eine neue Methode um mechanische elastische Konstanten von
polykristallinen dünnen Schichten mittels Röntgendiffraktion unter statischen Bedin-
gungungen zu bestimmen. Die Methode basiert auf einer Kombination der
Röntgendiffraktion Substratbiegungs- und der sin2 ψ Methode. Es wird gezeigt, wie
man mechanische elastische Konstanten aus den röntgenographischen elastischen Kon-
stanten, unter Berücksichtung der kristallinen und makroskopischen Anisotropie, ex-
trapolieren kann. Es wird eine allgemeine Formel präsentiert, die es erlaubt einen
kristallographischen Reflex hkl, und seinen zugehörigen röntgenographischen
Anisotropiefaktor 3Γhkl, zu bestimmen, bei dem die mechanische Dehnung gleich der
röntgenographischen Dehnung ist. Die Methode wird auf die Schichtsysteme
Cu/Si(100), CrN/Si(100) und TiN/Si(100) bei Raumtemperatur angewandt. Es wird
gezeigt, dass für fasertexturierte Materialien der 3Γhkl Wert unterschiedlich zu dem
vorhergesagten 3Γhkl = 0.6 Wert für makroskopisch isotrope Materialien ist. Der Wert
3Γhkl hängt von der Textur, der Texturschärfe, sowie vom Mengenanteil der zufällig
orientierten Kristallite ab. Der Vorteil der neuen Methode liegt darin, dass mecha-
nische Moduli zerstörungsfrei bestimmt werden können und volumengemittelte Werte
darstellen.
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Scientia et potentia in idem coincidunt
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1
Introduction

In the last decades thin films became tremendously important in science and tech-
nology. They are either used as passive structural elements to improve physical and
chemical parameters of engineering components [1, 2] or as active devices in optics and
in microelectronics [3].

In engineering, bulk materials are often coated with thin films to protect them from
abrasion [4, 5]. The first choice to protect bulk materials are nitride, carbide and
boride thin films [6, 7]. They have useful properties because of their high hardnesses
and wear resistance and are commonly used as coatings for cutting and drilling tools.

Mechanical properties and residual stress state influence decisively the structural
integrity and the performance of thin films [8–10]. Great endeavor has been made
to characterize the residual stresses within thin films due to their crucial importance
regarding reliability [11–16]. There are manifold origins for residual stresses [17–21].
Residual stresses can be formed during the growth process when islands are formed
[22, 23] or coalesce. The lattice mismatch between the substrate and the thin film
causes misfit strains which result in stresses in the thin film [24]. The stresses also
can be a result of the mismatch between the thermal expansion coefficient of the film
and the substrate [20] or of ion implantation [21] during a PVD process. The residual
stresses directly influence the behaviour of the thin film either positively or nega-
tively. In protective nitride, boride and carbide thin films high compressive stresses
are demanded at the surface to improve the resistance against crack initiation whereas
moderate stresses at the thin film substrate interface can assure the adhesion.

Stresses and strains are described by field tensors, mathematical objects which can
uniquely identify the physical stress or strain state of the material [25]. The stress
and strain tensors are related by property tensors. The material’s properties described
through property tensors are fixed to the physical properties of the material for a given
temperature and pressure.

1
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1 Introduction

All tensor components describing physical properties are expressed in an orthogonal
coordinate system. This coordinate system is called physical coordinate system. The
tensor relating the strain tensor components to the stress tensor components is called
stiffness tensor. The stiffness tensor is a 3 dimensional rank 4 tensor [26, 27]. Its
tensor components can be transformed using tensor transformation rules. There is a
matrix notation first introduced by Voigt which can be used to calculate the inverse
of the stiffness tensor. The compliance and stiffness tensors are the mathematical de-
scriptions of the physical property of stiffness which is a result of the atom’s binding
structure. Although the stiffness of pure single crystals can easily be described [24, 25]
or even calculated with theoretical physics [28–30], the engineering aspect of stiffness
is much more complicate. Engineers rarely have to deal with single crystals unless they
work in semiconductor industry. The most common case are polycrystals. Polycrys-
tals, however, have got an averaged stiffness tensor and their elastic behaviour must
be described through grain interaction models [31–36].

It was the work of Voigt [31] which described the first grain interaction model of
polycrystals. Voigt assumed the strain tensor components to be equal for all grains.
This leads to discontinuities of the stress state between two grains when grain boundary
interactions are neglected. Nevertheless the Voigt model is of tremendous importance
for theoretical considerations. It is the only grain interaction model where mechanical
strain and diffraction strain are equal.

The second grain interaction model was introduced by Reuss [32]. Reuss assumed
the stress tensor components to be equal in all grains. This directly implicates that
the grain agglomerate can not meet strain boundary conditions between all grains.

In the year 1952, Hill proposed a grain interaction model which is a mean average of
the Reuss and Hill model [33]. Beside many other grain interaction models developed
in the past decades the Hill model is still of great importance for thin films and can
be calculated rather easily.

Eshelby [34] was the first who considered the morphology of particles inside an in-
definite matrix to calculate the averaged compliance tensor of a material. This concept
can also be used to calculate the averaged compliance tensor of a single phase poly-
crystalline material. In this model one grain is considered to be the particle and the
surrounding grains are the infinite matrix. Although the Eshelby model was a great
step in grain interaction modeling it is rarely applied to thin films. Thin films are
typically thinner than 5µm and the condition of an indefinite matrix does not hold
anymore for all directions.

Intensive research effort has been made in the field of grain interaction models [36–
38] in the last years. Nevertheless, the research of grain interaction models continues
due to the fact that the behaviour of multi phase materials, grain boundaries, inclu-
sions etc. is still not understood.

X-ray strain analysis is performed through X-rays or neutrons [26, 39–41]. Neutrons
are extremely useful for analysing bulk materials due to the fact that their penetration
depth is much larger than the X-ray’s penetration depth. However, neutron scattering
can only be performed at neutron sources which are not as accessible as X-ray sources.
The principles of X-ray strain measurement were defined in the first decades of the

2
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20th century [42] when X-rays were used to determine and analyse single crystalline
and polycrystalline structures. It is still common to use different coordinate systems to
express physical properties in terms of their tensor properties. Diffraction techniques
are sensitive only in the direction of the scattering vector. This disadvantage makes it
absolutely necessary to find a correlation between the information obtained by scat-
tering techniques and the volume-avegared physical properties of the material. The
averaged strain value in direction of the scattering vector is, in general, not equal to
the averaged mechanical strain of the material. The averaged stress state of a material
must correlate with the mechanical strain as well as with the diffraction strain. The
general description of the stress-strain relation is a tensor equation which can be sim-
plified if the stress state in the thin film is equibiaxial. Although there is great interest
in determining the X-Ray elastic constants of materials in the X-ray diffraction com-
munity, the mechanical elastic constants (MECs) are of common interest for engineers.
The MECs are the parameters which correlate the averaged mechanical strain with
the averaged mechanical stress. There are many techniques available to determine the
mechanical elastic constants. Elastic properties of thin films are usually determined
by nanoindentation [43], by surface acoustic wave technique [44], by straining or bend-
ing of thin film structures [45] or by resonance ultrasound [46]. However, many of
these techniques can only be applied to bulk materials or are time consuming. The
most crucial aspect of determining MECs of thin films is the anisotropy. Although
anisotropy is a common fact in nearly all materials, it is of tremendous importance in
thin films. In most cases the formation of thin films is preceded by island growth. The
islands grow from nuclei which are orientated in respect to the substrate they form
on. In the case of single crystal Si(100) substrate the texture can be assumed to be
very sharp. The macroscopic anisotropy of the averaged MECs is a direct result of the
crystal anisotropy and the anisotropic distribution of grains in the polycrystal mate-
rial. Therefore the macroscopic anisotropy can be influenced regarding to the crystal
anisotropy, the fraction of crystallites randomly oriented and the texture sharpness.
These three parameters can easily be used to characterize the whole single phase grain
agglomerate. However, in many cases the single crystal compliances are not accessible.
Either they have not been measured or they are not accurate enough. Singe crystal
compliances can be determined from the mechanical behaviour of polycrystalline ma-
terials. For this purpose, polycrystals are in-situ deformed whereby stress and strain
are usually monitored [47–50]. The techniques to determine the single crystal elastic
constants from polycrystals [51, 52] can be applied to isotropic bulks but rarely to
textured thin films.

This thesis will show up a new method to calculate the X-ray elastic constants and
mechanical elastic constants of thin films using only diffraction techniques. The ex-
periments were performed in laboratory as well as on synchrotron radiation facilities.

Thin films deposited on substrates at high temperatures and with a difference in
coefficient of thermal expansion (CTE) will experience a thermal stress when cooled
down to room temperature. This thermal stress is responsible for the bending of the
thin film - substrate composite. In 1909 Stoney [53] developed a mathematical formal-
ism which can be used to determine the curvature, and therefore the stress within the
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thin film, of the bended system. Many different techniques were developed to deter-
mine the curvature of such systems. This thesis will use a method which is well known
in industry for determining the waviness of single crystal substrates [54]. However,
the combination of this technique together with the theoretical methods developed to
determine the X-ray strain will show up a totally new, powerful and easy method to
determine the XECs and MECs for one phase materials with cubic crystal symmetry.

In Cha. 2, the simulation of the mechanical behaviour of thin films is explained. The
three grain interaction models of Reuss [32], Voigt [31] and Hill [33] will be summarized.
The mathematical background which has extensively been discussed in literature will
be explained to give an insight into the topic of grain interaction models. The λ-trail
at different ψ angles is displayed for the Reuss model which delivers the reader an
insight into possible errors which can come along when calculating the X-ray elastic
compliances. The generation of the ODF data, the analysis of the ODF’s symmetry,
its implementation into software and the mathematical definition of the ODF are pre-
sented in Sec. 2.4.

In Cha. 3 the experimental methods will be introduced which have been applied
to determine the data for the thesis. This chapter is focused on sample preparation,
diffraction techniques, the X-ray curvature technique and the texture analysis. The
X-ray curvature method will be explained. The method is used to determine the curva-
ture of a thin film - substrate composite. The determination of the curvature leads to
the calculation of the averaged macroscopical equibiaxial stress state in the thin film.
Although there are many techniques available to determine the curvature of a thin film
- substrate composite, the X-ray curvature method is introduced as an indispensable
part of the technique used to determine the MECs and XECs.

In Cha. 4 the empirical data will be shown for three different materials. The cal-
culated X-ray strains determined from the measured lattice parameters as a function
of sin2 ψ are plotted and the 3Γhkl-plots for different crystallographic reflections are
shown.

Finally, Cha. 5 gives a summary and an outlook for further possible experiments.
The appendix lists all first author papers concerning the topic of residual stresses

and determination of mechanical elastic constants which were published or submitted
within the time of the PhD thesis to peer-reviewed journals and as conference proceed-
ings.

The novel, scientific aspect of this thesis is to show up and prove a new method for
the determination of XECs and MECs. This work is dedicated to the determination of
mechanical elastic constants in polycrystalline, textured cubic materials using X-ray
diffraction.
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2
Simulations

2.1 General considerations

Within this chapter it will be shown that it is possible to determine the mechanical
out-of-plane Young’s modulus, a Poisson’s ratio and the mechanical in-plane biaxial
modulus of a thin film using diffraction techniques. Due to the fact that the measured
X-ray strain depends on the texture of the thin film, the anisotropy of the thin film
must be considered first. The influence of the anisotropy on the mechanical properties
of the thin films is studied with simulations performed with software Mathematica™

[55]. The three most important grain interaction models of Reuss [32], Voigt [31] and
Hill [33] were used to calculate the anisotropy of X-ray strain as a function of polar
angle ψ [56, 57] for an equibiaxial stress state of 100 MPa. Moreover, this chapter
will highlight the simulation of mechanical and X-ray elastic constants as a function
of texture, texture sharpness (ψFWHM) and fraction of randomly oriented crystallites
(ISO) of the grain agglomerate. Finally, the simulations will result in a new method
which can be used to determine the mechanical elastic constants of textured thin films.

2.2 Tensors

Mechanical elastic constants can be expressed using tensors. Briefly, a tensor is a
mathematical object which has got invariant properties under coordinate system trans-
formations. A tensor of rank 0 is called scalar and its invariant property is the scalar
value itself [58]. A tensor of rank 1 is called vector and its invariant property is
the euclidic norm, i.e. its length. The first degree invariant properties of rank 2
tensors are the trace and the determinant of the tensor. Beside first degree invari-
ant properties, a rank 2 tensor has got second degree invariant properties. These
are the squared trace and the sum of all squared tensor elements [59]. In euclidic
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space, the only mathematical transformations which obtain the invariant properties
mentioned are represented through orthogonal matrices, i.e. the column and row
space elements of the matrices are orthogonal to each other [25]. It can be shown
that the only allowed mathematical operations are rotation, inversion and mirroring
[25]. These operations can be identified by the determinant of the matrix. Rota-
tion matrices always have det = +1 whereas mirroring and inversion matrices have
det = −1. Each tensor is described through its tensor components. The tensor itself
is invariant regarding to coordinate system transformation but its components are, in
general, variant. However, there are exceptions such as the identity tensor [60], the
epsilon tensor [60] or all scalars which conserve their only tensor component regarding
to coordinate system transformation. Following convention is used for naming tensors.
All tensors are surrounded with {} brackets to apply different sub- and superscripts to
them. Tensors indexed with the letters S, L, C and Ω written as superscript index de-
fine the tensor properties in terms of the sample, laboratory, crystal and intermediate
coordinate system, e.g.

{
SLijkl

}
are the tensor components in respect to the labora-

tory system L. The rotation of the L system in respect to the S system is described
with a subscript ψ outside the {} brackets, e.g.

{
SLijkl

}
ψ

. If ψ is written as sub-

script outside the {} brackets, the L letter can (but need not) be omitted. The tensors
which have to be distinguished regarding the grain interaction models are marked with
R(Reuss),V(Voigt) or H(Hill) as additional superscript outside the brackets {}. For

example,
{
SLijkl

}H

ψ
are the tensor components according to the Hill model. The differ-

ence between tensors expressing X-ray and mechanical properties is denoted with hkl

(X-Ray) or M(mechanical) outside the {} brackets, e.g.
{
SLijkl

}H,hkl

ψ
or
{
SLijkl

}H,M

ψ
.

The tensor components of a rank n tensor are transformed according to Eq. 2.1.{
s′i′j′..n′

}
= ai′iaj′j ..an′n {Sij..n} (2.1)

where a is either a matrix of rotation, inversion or mirroring and aij are its matrix
components. Within this thesis only rotation matrices will be used. Second rank
tensors can be inverted if their determinant does not equal zero. Higher rank tensors
are inverted using the Voigt notation [26, 27]. The Voigt notation is the description
of a higher rank tensor in matrix form. It must be emphasized that the law of tensor
transformation does not hold for a matrix in Voigt notation. However, the Voigt
matrix can easily be inverted and its inverse is transformed back to the desired tensor.
Following rules must be applied to transform tensor components to matrix components
and vice versa [26]
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Table 2.1: Transformation between tensor indices and Voigt matrix indices [26].

tensor notation 11 22 33 23,32 31,13 12,21
matrix notation 1 2 3 4 5 6

Sijkl = Smn When m and n are 1,2 or 3

Sijkl =
1
2
Smn When either m and n are 4,5 or 6 (2.2)

Sijkl =
1
4
Smn When both m and n are 4,5 or 6

When transforming compliance tensor components to their corresponding Voigt ma-
trix components and vice versa, prefactors have to be used [26]. The prefactors are
listed in Eqs. 2.2. The transformation between tensor and Voigt notation for all stiff-
ness tensors can be performed without considering about prefactors. The indices of
the Voigt matrix or tensor are directly replaced according to Tab. 2.1.

2.3 Systems of reference

2.3.1 Transformation matrices

Physical properties are described through tensors. The tensor components depend, in
general, on the coordinate system. When tensors are used to qualify physical properties
it is indispensable to define coordinate systems. Within this thesis four coordinate
systems, commonly used in literature [26, 38, 57], will be applied.

• The sample system (S) with its ~S1 and ~S2 axis in-plane and the ~S3 normal to
the sample surface.

• The laboratory coordinate system (L) with its ~L3 axis parallel to the scattering
vector.

• The intermediate coordinate system (Ω) with its ~Ω3 axis parallel to the [hkl]
direction of a plane (hkl) 1.

• The crystal coordinate system (C) with its ~C1, ~C2 and ~C3 axis parallel to the
[100] directions of the crystal system.

The Euler angles can be used to describe the rotational position of a coordinate
system in respect to the sample coordinate system. Fig. 2.1 shows the three rotations
expressed through Eqs. 2.3, 2.4 and 2.5. Within this thesis Euler angles will be used

1In general, the normal vector on a (hkl) plane has got the covariant indices hkl [58]. However, in re-
spect to a cubic crystal system (orthonormal coordinate system), where covariant and contravariant
indices are equal, the normal to a (hkl) plane can directly be expressed as [hkl].
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Figure 2.1: The three consecutive rotations of a coordinate system according to Bunge notation.
First the coordinate system is rotated around the ~S3 axis which is parallel to ~L3 (a). The
new coordinate axes ~L′1, ~L′2 and ~L′3 are primed (b). Then the primed coordinate system
(b) is rotated around the ~L′1 axis. Finally, the double primed coordinate system (c) is
rotated around the ~L′′3 (c).

in Bunge notation. In Bunge notation the coordinate system is first rotated around
the ~S3 axis which is parallel to ~L3 (Fig. 2.1a). The new coordinate axes ~L′1,~L′2 and
~L′3 are primed (Fig. 2.1b). Then the primed coordinate system is rotated around the
~L′1 axis (Fig. 2.1b). Finally, the double primed coordinate system is rotated around
the ~L′′3 (Fig. 2.1c).

aΦ1
ij =

 cos Φ1 sin Φ1 0
− sin Φ1 cos Φ1 0

0 0 1

 (2.3)

aΦ
ij =

 1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ

 (2.4)

aΦ2
ij =

 cos Φ2 sin Φ2 0
− sin Φ2 cos Φ2 0

0 0 1

 (2.5)

Moreover, tensor components are transformed between the S, L, Ω and C coordinate
system using the matrices (Eqs. 2.6, 2.7, 2.8 and 2.9). The φ-matrix (Eq. 2.6) is
equivalent to the Φ1-matrix expressed in Eq. 2.3.

aφij =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (2.6)

The ψ-matrix performs a rotation around the ~L2 axis. The φ and ψ-matrices are
defined in [26].
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Figure 2.2: The figure shows the crystal coordinate system C, the intermediate coordinate system Ω
and a (111) crystallographic plane as an example for an arbitrary plane (hkl). The ~Ω3

axis of the Ω coordinate system is always normal to the plane (hkl). The ~Ω1 and ~Ω2 axis
are situated in-plane of the (hkl) plane.

aψij =

 cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 (2.7)

The scattering vector ~g is always parallel to the ~L3 axis of the L system. The crys-
tallographic planes normal to ~g have one degree of freedom left around ~g. This makes
it necessary to define a transformation matrix which rotates the tensor components
around ~g. The matrix used to transform tensor components around the scattering
vector ~g is the λ matrix [61] (Eq. 2.8)

aλij =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 (2.8)

The matrix which transforms tensor components from the C system to the inter-
mediate system Ω (Fig. 2.2) will be called Ω matrix (Eq. 2.9). This matrix can be
described purely through the miller indices hkl describing the (hkl) plane or the 〈hkl〉
direction which is normal to the (hkl) plane (in cubic crystal systems).

aΩ
ij =


hl√

h2+k2
√
h2+k2+l2

kl√
h2+k2

√
h2+k2+l2

−k2+h2
√
h2+k2

√
h2+k2+l2

−k√
h2+k2

h√
h2+k2

0
h√

h2+k2+l2
k√

h2+k2+l2
l√

h2+k2+l2

 (2.9)

The validity of Eq. 2.9 can be proofed considering following example. The tensor
components

(
1√
3
, 1√

3
, 1√

3

)
of a rank 1 tensor are transformed to (001) for a (111)

plane. Thinking in terms of crystallographic directions rather than in terms of tensor
components one can imagine that for a Ω matrix created for a (111) plane the 〈111〉
direction in the C system is a 〈001〉 direction in the Ω system.
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2.3.2 Tensor transformations

The connection between the transformation matrices can be found in [62]. In compar-
ison to [62], the transformation matrices in this thesis are defined to transform tensor
components directly, rather than the axes of the coordinate systems.

Figure 2.3: The picture shows the relation between the tensor components of a rank one tensor {Xi}
in respect to all used coordinate systems. The transformation of tensor components
between the S and L system is performed with the matrix aρij . The matrices aΩ

ij and aλij
transform the tensor components from C to Ω and from Ω to L, respectively. The tensor
transformation from S to C can directly be performed using the Euler angle matrix aεij .
The tensor equation aγika

ρ
kj = aεij can be used to find the corresponding Euler angles Φ1,

Φ and Φ2 for a definite parameter set (φ, ψ, λ, hkl). A similar picture can be found in
[62].

The transformation of tensor components from S → L is performed using Eqs. 2.6
and 2.7, i.e. {

XL
i

}
= aψija

φ
jk

{
XS
k

}
(2.10)

According to [62] the tensor components can be transformed from C → Ω using{
XΩ
i

}
= aΩ

ij

{
XC
j

}
(2.11)

The transformation rule between Ω → L can be written as{
XL
i

}
= aλij

{
XΩ
j

}
(2.12)

The direct tensor component transformation S → C is{
XC
i

}
= aij

{
XS
j

}
(2.13)

where aij can be expressed as

aij = (aΩ )−1
im(aλ)−1

mla
ψ
lka

φ
kj (2.14)

= (aΩ )−1
il (aλ)−1

lk a
ρ
kj (2.15)

= aγika
ρ
kj (2.16)
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The transformation from S → C can also be performed using Euler angles, i.e.

aεil = aΦ2
il a

Φ
lka

Φ1
kj (2.17)

Eqs. 2.11 and 2.12 can be joined to{
XL
i

}
= aλija

Ω
jk

{
XC
k

}
= (aγ)−1

ik

{
XC
k

}
(2.18)

2.3.3 The fundamental equations of stress analysis

X-ray analysis is a tool to determine the lattice spacing of crystal planes in direction
of the scattering vector ~g. In Sec. 2.3.1 the scattering vector ~g was assigned with
the ~L3 axis of the L system. The mathematical equation relating the strain tensor
components of the S coordinate system with the strain tensor components of the L
coordinate system [26], is therefore

{
εLij
}hkl
ψ

= aρima
ρ
jn

{
εSmn

}hkl
(2.19)

The X-ray strain
{
εLij

}hkl
ψ

can be expressed as a function of the strain tensor compo-

nents in respect to the sample coordinate system
{
εSmn

}hkl [26] applying Eq. 2.20 to
Eq. 2.19

aρij =

cosφ cosψ sinφ cosψ − sinψ
− sinφ cosφ 0

cosφ sinψ sinφ sinψ cosψ

 (2.20)

which leads to

{
εL33

}hkl
ψ

=
{
εS11

}hkl
cos2 φ sin2 ψ +

{
εS12

}hkl
sin 2φ sin2 ψ+

{
εS13

}hkl
cosφ sin 2ψ

+
{
εS22

}hkl
sin2 φ sin2 ψ+

{
εS23

}hkl
sinφ sin 2ψ

+
{
εS33

}hkl
cos2 ψ

(2.21)

The boundary condition of the strain state can simplify Eq. 2.21 even further. If all
shear strains are zero, i.e.

{
εS12

}hkl
=
{
εS21

}hkl
= 0{

εS13

}hkl
=
{
εS31

}hkl
= 0{

εS23

}hkl
=
{
εS32

}hkl
= 0

(2.22)

Eq. 2.21 is simplified to
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{
εL33

}hkl
ψ

=
{
εS11

}hkl
cos2 φ sin2 ψ +

{
εS22

}hkl
sin2 φ sin2 ψ+

{
εS33

}hkl
(1− sin2 ψ) (2.23)

If
{
εS11

}hkl =
{
εS22

}hkl Eq. 2.23 leads to{
εL33

}hkl
ψ

= (
{
εS11

}hkl − {εS33

}hkl
) sin2 ψ +

{
εS33

}hkl
(2.24)

Eq. 2.24 shows the linear correlation between
{
εL33

}hkl
ψ

and sin2 ψ. In [26] strain

distributions of
{
εL33

}hkl
ψ

for different boundary conditions are discussed. However,
within this thesis shear strains and shear stresses are always assumed to be zero and
ψ-splitting or oscillatory [26, 63] in

{
εL33

}hkl
ψ

due to complex stress-strain states or
plastic anisotropy will not be considered.

2.3.4 The stress-strain relation

The correlation between stress and strain is described through Hook’s law. Generally
speaking, Hook’s law can be expressed in tensor notation

{σij} = {Cijkl} {εkl} (2.25)
{εij} = {Sijkl} {σkl} (2.26)

where {Cijkl} and {Sijkl} are the stiffness and compliance tensors, respectively.
Tensors are always defined in respect to a coordinate system. In X-ray diffraction it is
common to define the tensor components in respect to the laboratory system L (Eq.
2.27)

{
εLij
}hkl
ψ

=
{
SLijkl

}hkl
ψ

{
σLkl
}

(2.27)

Due to the fact that the boundary conditions for the stress state are defined in
respect to the sample coordinate system S,

{
σLkl
}

is expressed as a function of
{
σSmn

}
.

Applying the tensor transformation rule (Eq. 2.1) to Eq. 2.27 leads to

{
εLij
}hkl
ψ

=
{
SLijkl

}hkl
ψ

akmaln
{
σSmn

}
(2.28)

or if the scattering vector sensitivity in ~L3 direction is used

{
εL33

}hkl
ψ

=
{
SL33kl

}hkl
ψ

akmaln
{
σSmn

}
(2.29)

Eq. 2.29 is the general notation which correlates the X-ray strain
{
εL33

}hkl
ψ

in the lab-
oratory coordinate system L to the macroscopic stress

{
σSmn

}
in the sample coordinate

system S. The compliance tensor is always expressed in respect to the L system.
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2.4 Orientation distribution function

The mathematical description of textured materials demands the usage of an orienta-
tion distribution function (ODF) [64]. The ODF describes the probability to find a
grain at the orientation (Φ1,Φ,Φ2). The three Euler angles Φ1, Φ and Φ2 are the rota-
tion angles used to rotate the S system into the C system. There are many different
conventions used in literature how to rotate the S system to the C system. The Bunge
and Roe conventions are the most established ones. In this thesis only the Bunge
convention will be used. The Bunge notation performs a consecutive rotation around
the axes ~L3, ~L′1 and L′′3 in mathematical positive manner (see sec 2.3.1).

Figs. 2.4 and 2.5 show a Φ1 cross section of the ODF space for a (111) fiber tex-
tured material with ψFWHM = 10◦ and 10% ISO with cubic crystal symmetry. Fig. 2.4
shows the reduced ODF space of Fig. 2.5. In order to analyse experimental data and
simulate various fibre textures, a software Labotex [65] was used within this thesis.
Although LaboTex is not able to save the ODF in triclinic sample symmetry for non
triclinic crystal symmetries, it is possible to perform a work around. First, the ODF
for any crystal symmetry is produced and exported as SOR file. Then the SOR file is
opened in a text editor and the structure code value is changed to 1 (triclinic sample
symmetry). The manipulated SOR file is saved and can be imported into LabTex.
LaboTex performs all symmetry operations automatically and the ODF can be saved
in Bunge notation. This procedure has got the advantage that no symmetry operations
have to be programmed into the software. The disadvantage is the increasing effort of
building the correct ODF.
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Figure 2.4: The figure shows a representative Φ1 cross section of the reduced ODF space for a (111)
fiber textured materials with ψFWHM = 10◦ and 10% ISO with cubic crystal symmetry.
The ODF was rendered to improve image quality. The ODF was produced with software
LaboTEX [65].

Figure 2.5: The figure shows a representative Φ1 cross section of the full ODF space for a (111) fiber
textured materials with ψFWHM = 10◦ and 10% ISO with cubic crystal symmetry. The
ODF was rendered to improve image quality. In comparison to Fig. 2.4 it is evident
that there are two symmetry elements availaible. The first is a four fold symmetry along
the Φ2-axis. The second symmetry element is a mirror operation at Φ = 90◦. The
ODF should always be saved in triclinic sample symmetry. This is the most general
case and it is not necessary to program symmetry operations in the simulation software
used to calculate the compliance tensors according the Reuss grain interaction model.
The software is therefore more flexible and can be used in future versions to calculate
compliance tensors for any crystal and/or sample symmetry. The ODF was produced
with software LaboTEX [65].
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Figure 2.6: The figure shows a representative Φ1 cross section of the reduced ODF space for a (311)
fiber textured materials with ψFWHM = 10◦ and 10% ISO with cubic crystal symmetry.
The ODF was rendered to improve image quality. The ODF was produced with software
LaboTEX [65]. The number of fibers per reduced ODF space is equal to the number of
possible permutations of absolute values (hkl).

Figure 2.7: The figure shows a representative Φ1 cross section of the full ODF space for a (311) fiber
textured materials with ψFWHM = 10◦ and 10% ISO with cubic crystal symmetry. The
ODF was rendered to improve image quality. In comparison to Fig. 2.6 it is evident
that there are two symmetry elements availaible. The first is a four fold symmetry along
the Φ2-axis. The second symmetry element is a mirror operation at Φ = 90◦. The
ODF should always be saved in triclinic sample symmetry. This is the most general
case and it is not necessary to program symmetry operations in the simulation software
used to calculate the compliance tensors according the Reuss grain interaction model.
The software is therefore more flexible and can be used in future versions to calculate
compliance tensors for any crystal and/or sample symmetry. The ODF was produced
with software LaboTEX [65].
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2.5 X-ray grain interaction models

The single crystal elastic constants (SECs) and the unstressed lattice parameter a0

used within this thesis for simulations are listed in Tab. 2.2

Table 2.2: List of single crystal elastic constants and the unstressed lattice parameters used for the
simulations. The single crystal elastic constants are written in tensor compliance form.
The unstressed lattice parameters for Cu,CrN and TiN can be found in [8, 66, 67].

Material S1111 S1122 S1212 ZAR a0

(10−11Pa−1) (10−11Pa−1) (10−11Pa−1) (Å)
Cu 1.500 -0.630 0.332 [24] 3.203 3.6150[66]

CrN 0.185 -0.009 0.284 [68] 0.342 4.1650[67]
TiN 0.180 -0.038 0.154 [69] 0.710 4.2430[8]

2.5.1 The Reuss Model

With diffraction techniques strain can only be measured in the direction of the scat-
tering vector ~g. The measured strain

{
εL33

}hkl
ψ

represents an average strain of all
diffracting crystallites along the diffraction vector ~g. All diffracting crystallographic
lattice planes (hkl) which are situated normal to the scattering vector contribute to this
average strain component expressed through

{
εL33

}hkl
ψ

. The only degree of freedom for
these crystallographic lattice planes is the rotation around ~g. This degree of freedom
is characterized by the rotation angle λ. The mathematical expression for

{
εL33

}R,hkl

ψ

according to [61] is

{
εL33

}R,hkl

ψ
=

∫ 2π
0

{
εL33

}hkl
ψ

(gψφ(λ))f(gψφ(λ))dλ∫ 2π
0 f(gψφ(λ))dλ

(2.30)

where
{
εL33

}hkl
ψ

is the strain parallel to ~g in the grain with the crystallite orientation
gψφ (λ). The function f is the ODF. It is used as weight function in Eq. 2.30. Hook’s
law in the L system is {

εLij
}R,hkl

ψ
=
{
SLijkl

}R,hkl

ψ

{
σLkl
}
ψ

(2.31)

or applying the rules of the scattering vector sensitivity to Eq. 2.31{
εL33

}R,hkl

ψ
=
{
SL33kl

}R,hkl

ψ

{
σLkl
}
ψ

(2.32)

According to [61]
{
SL33ij

}R,hkl

ψ
can then be calculated using Eq. 2.33

{
SL33ij

}R,hkl

ψ
=

∫ 2π
0

{
SL33ij

}hkl
ψ

(λ)f(gψφ(λ))dλ∫ 2π
0 f(gψφ(λ))dλ

(2.33)
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The compliance components
{
SL33ij

}hkl
ψ

of the L system are related to the compliance

components
{
SCklmn

}
of the C coordinate system using the law of tensor transformation

(Eq. 2.1).

{
SL33ij

}R,hkl

ψ
=

∫ 2π
0 (aγ)−1

3k (aγ)−1
3l (aγ)−1

im(aγ)−1
jn

{
SCklmn

}
f(gψφ(λ))dλ∫ 2π

0 f(gψφ(λ))dλ
(2.34)

Eq. 2.34 can then be used to calculate the X-ray elastic compliance tensor compo-

nents
{
SL33ij

}R,hkl

ψ
for the L system. The integration of Eq. 2.34 can be performed

numerically. However, the determination of the ODF values as a function of the in-
tegration parameter λ is not that trivial. The procedure of determining the correct
ODF values can be found in [62].

Figure 2.8: The six figures show the λ-trails for a (111) reflex in the Reuss model at ψ = 0◦ (a),18◦

(b),36◦ (c),54◦ (d),72◦ (e) and 90◦ (f), respectively. At ψ = 0◦ (a) the λ-trail is a straight
line through the ODF space due to the laboratory system is not tilted in respect to the
sample coordinate system, ~L3 is parallel to ~S3 and λ is equal to the Euler angle Φ1.
The other two Euler angles are constant over the whole λ range. Although the sample
symmetry is axial for a fiber textured sample, the ODF is always saved with triclinic
sample symmetry (see Sec. 2.4). If the whole ODF space is saved, the appropriate ODF
values can directly be evaluated without concerning about the ODF symmetries in the
software. At approximately ψ = 36◦ (c) the λ-trail appears at Φ2 = 360◦ because the Φ2

angle is smaller than 0◦ and has to be taken modulo 360◦.
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2.5.2 The Voigt Model

In 1910 the physicist Voigt was the first scientist who developed a grain interaction
model for polycrystals [31]. He assumed the strain tensor to be equal in all grains.
According to [61] the averaged stiffness tensor components can be calculated using Eq.
2.35

{
CSijkl

}V
=

∫ {
CSijkl

}
f(g)dg∫

f(g)dg
(2.35)

where
{
CSijkl

}V
is the averaged compliance tensor in the S system. The

{
CSijkl

}
are

the stiffness SECs in respect to the sample coordinate system S [61] and f (g) is the
ODF value at position g in ODF space. The Voigt model is an average over the whole
grain agglomerate. In comparison to the calculation of the Reuss X-ray compliance
tensor (see Sec. 2.5.1), the Voigt X-ray compliance tensor is not scattering vector
sensitive. In fact, the calculated Voigt X-ray compliance tensor is equal to the Voigt
mechanical compliance tensor. The rule of tensor transformation (Eq. 2.1) can be used
to transform the Voigt X-ray compliance tensor components from the S system to the
L system. Only in the isotropic case, the Voigt X-ray compliance tensor components
would be equal towards all coordinate systems and tensor transformation would not
be necessary. The averaged X-ray stiffness tensor in Eq 2.35 can be transformed to
the corresponding compliance tensor, applying Voigt notation (see Sec. 2.2), i.e.{

SSijkl
}V

= (
{
CSijkl

}V
)−1 (2.36)

2.5.3 The Hill Model

In 1952, Hill [33] proposed an arithmetic mean of the Reuss and Voigt compliance ten-
sors to describe the elastic behaviour of materials. When the Reuss X-ray compliance
tensor is calculated according to [61] the tensor components are already expressed in
respect to the L system. However, the Voigt X-ray compliance tensor components are
calculated in respect to the S system and have to be transformed to the L system to
perform the Hill average{

SLijkl
}H,hkl

ψ
= x

{
SLijkl

}R,hkl

ψ
+ (1− x)

{
SLijkl

}V

ψ
(2.37)

where x is the Hill factor. It has to be emphasized that there is a whole set of Hill
compliance tensors, one tensor for each (φ, ψ) position. This is a result of the fact,
that a Reuss compliance tensor has to be calculated for each (φ, ψ) position. The Voigt
compliance tensor part in Eq. 2.37 is calculated in respect to the sample coordinate
system S (Eq. 2.35) but can easily be transformed to the L system at position (φ, ψ)
using law of tensor transformation (Eq. 2.1). Therefore, calculation of Hill X-ray
elastic strains can be simplified by calculating the Voigt compliance tensor once, and
perform the tensor transformation to L for each angular position ψ. Of course, the
X-ray Reuss compliance tensor still has to be calculated for each angular position ψ.
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2.6 Calculation of X-ray elastic constants

A compliance tensor fully describes the elastic behaviour of a grain agglomerate. How-
ever, X-ray compliance tensors normally depend on information parallel to the scat-
tering vector ~g. For most grain interaction models, this dependence on ~g results in
a full set of compliance tensors for each angle combination (φ, ψ). Moreover, a sim-
plified stress state, as well as high sample symmetry of the texture, can dramatically
reduce the amount of compliances in Eq. 2.29. In the case of thin films, an equibiaxial
stress state and axial sample symmetry can be assumed. According to these boundary
conditions Eq. 2.29 can be simplified to [57, 70]

{
εL33

}hkl
ψ

= σ((
{
SL3311

}hkl
ψ

+
{
SL3322

}hkl
ψ

) + (
{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

) sin2 ψ

+
{
SL3313

}hkl
ψ

sin 2ψ)
(2.38)

In comparison to [61]
{
εL33

}hkl
ψ

is not shortened to

{
εL33

}hkl
ψ

= σ(2 {s1}hkl +
1
2
{s2}hkl sin2 ψ) (2.39)

which only holds for isotropic materials. Eq. 2.38 is analysed at angular positions
ψ = 0◦ and ψ = 90◦.

• At ψ = 0◦,
{
SL3311

}hkl
ψ=0◦

=
{
SL3322

}hkl
ψ=0◦

and Eq. 2.38 can be written as

{
εL33

}hkl
ψ=0◦

= σ(
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

) = 2σ
{
SL3311

}hkl
ψ=0◦

= 2σ {s1}hklψ=0◦

(2.40)

If the intersection
{
εL33

}hkl
ψ=0◦

of the
{
εL33

}hkl
ψ
− sin2 ψ plot and the equibiaxial

stress σ (see Sec. 3.3) are known,
{
SL3311

}hkl
ψ=0◦

can be calculated.

Moreover, the slope of
{
εL33

}hkl
ψ
− sin2 ψ at ψ = 0◦ can be determined. The slope

is the derivative
{
εL33

}hkl
ψ

in respect to sin2 ψ, i.e.

∂
{
εL33

}hkl
ψ

∂ sin2 ψ


hkl

ψ=0◦

= σ(
{
SL3333

}hkl
ψ=0◦

−
{
SL3311

}hkl
ψ=0◦

) (2.41)

Eq. 2.41 can be calculated using following procedure. The substitution sin2 ψ →
u and sin 2ψ → 2

√
u
√

1− u is performed in Eq. 2.38. The derivative with respect
to u is
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{
∂
{
εL33

}hkl
u

∂u

}hkl
u=0

= σ(
{
SL3333

}hkl
u=0
−
{
SL3311

}hkl
u=0

+

{
SL3313

}hkl
u=0

(1− 2u)
√
u− u2

) (2.42)

The third term in Eq. 2.42 is an undefined expression 0/0 for u = 0 because of{
SL3313

}hkl
u=0

= 0 (The compliance tensor has got hexagonal symmetry in respect

to the S coordinate system [25], i.e.
{
SL3313

}hkl
u=0

=
{
SS3313

}hkl = 0). Using
l’Hôpital’s rule [71], it can be shown that the third term in Eq. 2.42 is zero for
u = 0.
Substitution of

{
SL3311

}hkl
ψ=0◦

from Eq. 2.40 in Eq. 2.41 allows the determination

of
{
SL3333

}hkl
ψ=0◦

if the equibiaxial stress σ (see Sec. 3.3) is known. The out-of-

plane X-ray elastic modulus and the Poisson’s ratio
{
νL3311

}hkl
ψ=0◦

are

{
EL3333

}hkl
ψ=0◦

=
1{

SL3333

}hkl
ψ=0◦

(2.43)

{
νL3311

}hkl
ψ=0◦

= −

{
SL3311

}hkl
ψ=0◦{

SL3333

}hkl
ψ=0◦

(2.44)

• At ψ = 90◦ Eq. 2.38 can be expressed as

{
εL33

}hkl
ψ=90◦

= σ(
{
SL3322

}hkl
ψ=90◦

+
{
SL3333

}hkl
ψ=90◦

) (2.45)

Eq. 2.45 has got two unknowns. Therefore it is not possible to determine the com-
pliance components separately, in comparison to Eqs. 2.40 and 2.41. However, the
sum of

{
SL3322

}hkl
ψ=90◦

and
{
SL3333

}hkl
ψ=90◦

in Eq. 2.45 can easily be determined. The

value
{
SL3322

}hkl
ψ=90◦

+
{
SL3333

}hkl
ψ=90◦

will be used to determine the mechanical in-plane
biaxial modulus (see Sec. 2.13).

Most X-ray grain interaction models significantly differ to mechanical grain interac-
tion models in case of tensor calculation. A mechanical compliance tensor is always
calculated once, in respect to any coordinate system2. Then its tensor components
can directly be transformed according to the law of tensor transformation (Eq. 2.1).
This also holds for the Voigt X-ray compliance tensor. However, according to many
other grain interaction models (e.g. Reuss, Hill etc.), there is a whole set of X-ray
compliance tensors, one for each (φ, ψ) position3. This means that

{
SL3322

}hkl
ψ=90◦

6=
{
SL1122

}hkl
ψ=0◦{

SL3333

}hkl
ψ=90◦

6=
{
SL1111

}hkl
ψ=0◦

(2.46)

2In most cases this is the sample coordinate system
3In the case of fiber textured materials, only for each ψ position
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for nearly all X-ray grain interaction models.

2.7 Mechanical grain interaction models

In comparison to the X-ray elastic compliance tensors the mechanical elastic compli-
ance tensors are always calculated applying the grain interaction model to the whole
grain agglomerate in respect to the sample coordinate system [72]. The physical consid-
erations for Reuss and Voigt still hold. The compliance tensor components in respect
to any other coordinate system can he calculated using law of tensor transformation
(Eq. 2.1).

2.7.1 The Reuss model

The mechanical Reuss compliance tensor is calculated applying the Reuss grain inter-
action model to all grains, i.e. the integration is performed over the whole ODF space.
In comparison to the X-ray Reuss compliance tensor it is not necessary to find the
λ-trail in ODF space. This dramatically simplifies the calculation of the mechanical
Reuss compliance tensor. The tensor can be calculated using Eq. 2.47

{
SSijkl

}R,M
=

∫ 2π
Φ1=0

∫ π
Φ=0

∫ 2π
Φ2=0 f(Φ1,Φ,Φ2)aεima

ε
jna

ε
koa

ε
lp

{
SCmnop

}
sin ΦdΦ1dΦdΦ2∫ 2π

Φ1=0

∫ π
Φ=0

∫ 2π
Φ2=0 f(Φ1,Φ,Φ2) sin ΦdΦ1dΦdΦ2

(2.47)
where f (Φ1,Φ,Φ2) is the ODF value at (Φ1,Φ,Φ2) and

{
SCmnop

}
is the single crystal

compliance tensor.

2.7.2 The Voigt model

The mechanical Voigt compliance tensor is equal to the X-ray Voigt compliance tensor
and can be calculated using Eq. 2.35

{
CSijkl

}V,M
=

∫ 2π
Φ1=0

∫ π
Φ=0

∫ 2π
Φ2=0 f(Φ1,Φ,Φ2)aεima

ε
jna

ε
koa

ε
lp

{
CCmnop

}
sin ΦdΦ1dΦdΦ2∫ 2π

Φ1=0

∫ π
Φ=0

∫ 2π
Φ2=0 f(Φ1,Φ,Φ2) sin ΦdΦ1dΦdΦ2

(2.48)
where f (Φ1,Φ,Φ2) is the ODF value at (Φ1,Φ,Φ2) and

{
CCmnop

}
is the single crystal

stiffness tensor. The Voigt compliance tensor is calculated according to the transfor-
mation rules in Sec. 2.2.

{
SSijkl

}V
= (
{
CSijkl

}V
)−1 (2.49)
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2.7.3 The Hill model

The mechanical Hill compliance tensor is the arithmetic mean of the mechanical Reuss
and Voigt compliance tensors (Eqs. 2.47, 2.48).

{
SSijkl

}H,M
= x

{
SSijkl

}R,M
+ (1− x)

{
SSijkl

}V
(2.50)

where x is the Hill factor.

2.8 Calculation of mechanical elastic constants

2.8.1 Using ODF

Sec. 2.7 explained how to calculate the mechanical elastic compliances. Although the
calculation of mechanical elastic compliances is easier than the calculation of X-ray
elastic compliances, an ODF is indispensable. The calculation is always performed
in respect to the S system. Whenever mechanical properties in respect to any other
coordinate system, e.g. the L system, are needed, it is necessary to transform the
tensor components from S → L. The procedure could be described in the following
way

• Calculate (simulation) / determine (experiment) the ODF of the sample.

• Choose the grain interaction model.

• Calculate the averaged mechanical elastic compliance tensor components
{
SSijkl

}M

according to the grain interaction model in respect to the sample coordinate sys-
tem S.

• Transform the averaged mechanical compliance tensor components to the lab-
oratory system L at position (φ,ψ) using tensor transformation rule (Eq. 2.1)

(
{
SSijkl

}M
→
{
SLmnop

}M

ψ
).

• Extract the desired mechanical elastic constant from the transformed averaged

mechanical compliance tensor
{
SLijkl

}M

ψ
, e.g. the Young’s modulus in ~L3 direction{

EL3333

}M

ψ
= 1/

{
SL3333

}M

ψ
.

This procedure can always be used to calculate the mechanical elastic constants
for any direction, as long as the SECs, the ODF and the grain interaction model are
known.
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2.8.2 Using analytical formulas

For simple, symmetric textures it is possible to derive an analytical formula which fully
and identically describes the mechanical behaviour of a thin film. The mechanical data
calculated using this formula will be compared with the data directly calculated using
commercial software products [65, 73].

The ODF can be simulated for different fiber textures using a software program like
BearTEX [73] or LaboTex [65]. A fiber textured sample with the fiber axis parallel to
~S3 can easily be described through an analytical formula. In the case of a fiber texture
with ψFWHM = 0◦, the mechanical elastic constants can be calculated according to [74]

{
SSijkl

}R,M
=

1
2π

∫ 2π

0

{
SSijkl

}
dφ1 (2.51)

{
CSijkl

}V
=

1
2π

∫ 2π

0

{
CSijkl

}
dφ1 (2.52)

where
{
SSijkl

}
and

{
CSijkl

}
are the single crystal compliance and stiffness tensors in

the S system. For a (hkl) fiber texture
{
SSijkl

}
and

{
CSijkl

}
in Eqs. 2.51 and 2.52 can

be obtained using {
SSijkl

}
= aφima

φ
jna

φ
koa

φ
lpa

Ω
mqa

Ω
nra

Ω
osa

Ω
pt

{
SCqrst

}
(2.53)

{
CSijkl

}
= aφima

φ
jna

φ
koa

φ
lpa

Ω
mqa

Ω
nra

Ω
osa

Ω
pt

{
CCqrst

}
(2.54)

The integration of Eqs. 2.51 and 2.52 can then be performed for all tensor compo-
nents as a function of φ for any (hkl) value. However, Eqs. 2.51 and 2.52 demand
an infinitely sharp fiber texture. Therefore grains can only be randomly distributed
around ~S3 but oriented with the (hkl) plane parallel to the sample surface. Eqs. 2.51
and 2.52 can be adapted to a Gaussian or Lorentzian distribution of grains in the out of
plane direction. The Gauss- or Lorentzian distributions are characterized through the
texture sharpness parameter ψFWHM. In the case of an infinitely sharp fiber texture,
ψFWHM would be zero. As an example an analytical formula for a Gaussian shaped
fiber texture is presented.

{
SSijkl

}R,M
=

1
2πN

∫ 2π

0

∫ π

0

∫ 2π

0
e
−5.545 1

2
( ψ
ψFWHM

)2 {
SSijkl

}
(φ, ψ) sinψdφdψdλ (2.55)

{
CSijkl

}V
=

1
2πN

∫ 2π

0

∫ π

0

∫ 2π

0
e
−5.545 1

2
( ψ
ψFWHM

)2 {
CSijkl

}
(φ, ψ) sinψdφdψdλ (2.56)

N =
∫ 2π

0

∫ π

0

∫ 2π

0
e
−5.545 1

2
( ψ
ψFWHM

)2 sinψdφdψdλ (2.57)
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Eqs. 2.55-2.57 can be used to calculate averaged mechanical compliance and stiffness
tensor components of a Gaussian fiber texture with ψFWHM, using Eqs. 2.53 and 2.54
for
{
SSijkl

}
and

{
CSijkl

}
. The factor -5.545 can be calculated as following

f(ψ) = Ae
−B 1

2
( ψ
ψFWHM

)2

f(ψ = 0) = 1→ A = 1

f(ψ =
ψFWHM

2
) = 0.5→ B = 5.545

(2.58)

Eqs. 2.55, 2.56 and 2.50 can be used to calculate the averaged Reuss, Voigt and
Hill compliance tensor components for any fiber textured material with cubic crystal
symmetry and a specific ψFWHM. Fig. 2.9 shows the calculated in-plane mechanical
Young’s modulus

{
ES1111

}M = 1/
{
SS1111

}M as a function of ψFWHM for a (111) fiber
textured Cu sample. The circled data were calculated with Mathematica™ [55] using
LaboTex [65] generated ODFs. The squared data were directly calculated from Bear-
TEX software [73]. Export of ODFs was not necessary due to BearTEX can calculate
the mechanical compliances directly. The triangle data were calculated using Eqs.
2.55,2.56 and 2.50. The data nearly show perfect correlation for all three calculations
which demonstrates the validity of Eq. 2.55.
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Figure 2.9: The plots represent calculated mechanical in-plane Young’s moduli for (111) fiber tex-
tured Cu versus ψFWHM of the fiber texture. The circled data were calculated with
Mathematica™ [55] using LaboTex [65] generated ODFs. The squared data were di-
rectly calculated from BearTEX software [73]. Export of ODFs was not necessary due
to BearTEX can calculate the mechanical compliances directly. The triangle data were
calculated using Eqs. 2.55, 2.56 and 2.50. The data nearly show perfect correlation for
all three calculations which demonstrates the validity of Eq. 2.55. (a) Reuss, (b) Voigt
(c) Hill model.

2.9 Anisotropy of X-ray strain

In polycrystalline materials, one can speak of three types of strain [61]. The strain
of the first type is a macroscopic strain which corresponds to an average strain across
many grains. The strain of the second type is an average strain in one grain. The
strain of the third kind represents a local strain within a grain and originates from lo-
cal lattice imperfections like inclusions, vacancies and dislocations. Any kind of strain
can be related to stress when corresponding compliance tensor is known on the appro-
priate dimensional level.
Using X-ray diffraction, it is possible to characterize X-ray elastic strain or X-ray
strain. In laboratory conditions when the beam size is much larger than the grain size,
the shift of Bragg peaks corresponds to the strain of first type, macroscopic strain.
The peak broadening is caused by the strain distribution in grains, i.e. by the strain
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of second and third order. The application of synchrotron beams with the diameter
below one micron opens a possibility to quantify strains of second and third order.
The X-ray strain can be determined from measured lattice spacing provided the un-
stressed lattice parameter is known. The lattice spacing measurement is performed by
scanning hkl reflections. Since cubic crystals exhibit elastic anisotropy, X-ray strains
obtained by the measurement of various (hkl) crystallographic planes are not equal.
One speaks therefore of the anisotropy of X-ray strain.
Within this thesis macroscopic stresses characterized using X-ray diffraction substrate
curvature method will be correlated with the macroscopic strain (strain of the first
type) obtained by the measurement of hkl reflections. Provided there is no elastic
anisotropy, X-ray strains obtained from various hkl reflections would be equal and
would also correspond to the mechanical macroscopic strain. This special case occurs
in tungsten. For the majority of other materials, the X-ray strains obtained by the
measurement of various hkl reflections differ.
The knowledge of X-ray strains gives a possibility to extrapolate mechanical strain.
According to the Hill grain interaction model, the X-ray strain measured on a hkl reflec-
tion with 3Γhkl=0.6 correspond to the mechanical strain [75]. For textured materials,
however, the 3Γhkl value can vary in the interval [0,1]. To demonstrate the anisotropic
nature of the X-ray strain, X-ray strains were calculated for the three grain interaction
models of Reuss, Voigt and Hill and for six materials KCl, CrN, W, Au, Cu. KCl and
Na have got a Zener anisotropy factor (ZAR) [76] between 0.36 and 9.95, respectively
[24] and can be considered as extreme examples for crystal elastic anisotropy. The
corresponding SECs and unstressed lattice parameter can be found in Tab. 2.2. For
the calculations, an equibiaxial stress of 100 MPa [57] was supposed and the X-ray
strains were calculated as a function of sin2 ψ.
The numerical data in Figs. 2.10-2.18 document that X-ray strains depend on the fibre
texture type and sharpness (macroscopic elastic anisotropy), crystal elastic anisotropy
and amount of randomly oriented crystallites. The

{
εL33

}hkl
ψ

dependencies from Figs.

2.10-2.18 were fitted in order to obtain intercepts on
{
εL33

}hkl
ψ

axis and slopes which
are summarized in Tabs. 2.3-2.6.

26



2
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Figure 2.10: The calculated X-ray strains of a 111 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (111) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 111
reflex for any texture is always linear.
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Figure 2.11: The calculated X-ray strains of a 110 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (111) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model.
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2.9 Anisotropy of X-ray strain

Figure 2.12: The calculated X-ray strains of a 100 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (111) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 100
reflex for any texture is always linear.
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Figure 2.13: The calculated X-ray strains of a 111 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (110) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 111
reflex for any texture is always linear.
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Figure 2.14: The calculated X-ray strains of a 110 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (110) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model.
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Figure 2.15: The calculated X-ray strains of a 100 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (110) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 100
reflex for any texture is always linear.
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2.9 Anisotropy of X-ray strain

Figure 2.16: The calculated X-ray strains of a 111 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (100) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 111
reflex for any texture is always linear.
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Figure 2.17: The calculated X-ray strains of a 110 crystallographic reflex for the 6 materials
CrN,KCl,W,Au,Cu and Na are plotted for the three grain interaction models of Reuss,
Voigt and Hill (Gaussian (100) fiber texture, ψFWHM = 10◦, 10% ISO). An equibiaxial
stress of 100 MPa [57] was used in the model.
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Figure 2.18: The calculated X-ray strains of a 100 crystallographic reflex for the 6 materials KCl (a),
CrN (b), W (c), Au (d), Cu (e) and Na (f) are plotted for the three grain interaction
models of Reuss, Voigt and Hill (Gaussian (100) fiber texture, ψFWHM = 10◦, 10% ISO).
An equibiaxial stress of 100 MPa [57] was used in the model. The X-ray strain of a 100
reflex for any texture is always linear.
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2.10 3Γhkl plot

According to [75] it is possible to express the X-ray elastic compliances of a cubic
material as a function of the parameter Γhkl which holds

Γhkl =
h2k2 + k2l2 + l2h2

(h2 + k2 + l2)2
(2.59)

Γhkl is a pure function of the crystallographic reflex hkl and is called the X-ray
anisotropy factor [62]. Commonly, X-ray elastic compliances are unequal for different
crystallographic planes. Therefore, the X-ray elastic compliances differ as a function
of Γhkl. All possible X-ray elastic compliances are constrained by the X-ray elastic
compliances at 3Γhkl = 0.0 and 3Γhkl = 1.0. Moreover, it will be necessary not just
to plot particular compliance components as a function of 3Γhkl but also algebraic
expressions of compliances. The phrase compliance term will be used in following sec-
tions either as synonym for a particular compliance tensor component (e.g.

{
SL3333

}
ψ

)
or an algebraic expression (e.g.

{
SL3333

}
ψ
−
{
SL3311

}
ψ

) of compliance components.
Experimentally the compliance terms

{
SL3311

}
ψ

+
{
SL3322

}
ψ

and
{
SL3333

}
ψ
−
{
SL3311

}
ψ

can be determined from the averaged slopes and intersections of the
{
εL33

}hkl
ψ
− sin2 ψ

plots (see Sec. 2.6). As an example, the averaged slopes and intersections of the cal-
culated

{
εL33

}hkl
ψ
− sin2 ψ plots for the six materials KCl, CrN, W, Au, Cu and Na

in Figs. 2.10-2.18 were determined and written to Tabs. 2.3-2.6. The intersection
of the

{
εL33

}hkl
ψ
− sin2 ψ plot at ψ = 0◦ was used to calculate the compliance term{

SL3311

}
ψ

+
{
SL3322

}
ψ

(Eq. 2.40) according to an equibiaxial stress state of 100 MPa.

Moreover, the averaged slope of the
{
εL33

}hkl
ψ
−sin2 ψ plot and the equibiaxial stress were

used to calculate the compliance term
{
SL3333

}
ψ
−
{
SL3311

}
ψ

(Eq. 2.41). The compli-

ance term
{
SL3322

}
ψ=90◦

+
{
SL3333

}
ψ=90◦

was not determined from the
{
εL33

}hkl
ψ
− sin2 ψ

plots. The value
{
εL33

}hkl
ψ=90◦

or the intersection of the linear fit at ψ = 90◦ can be
used to calculate

{
SL3322

}
ψ=90◦

+
{
SL3333

}
ψ=90◦

using Eq. 2.45. The compliance terms
were determined for four crystallographic reflexes hkl (with different values for 3Γhkl)
and plotted as a function of the corresponding 3Γhkl value (Figs. 2.19 and 2.20). The
procedure to calculate a 3Γhkl plot is summarized in the following list

• Choose n ≥ 2 crystallographic reflexes hkl with different 3Γhkl.

• Calculate (simulation) / determine (experiment) n
{
εL33

}hkl
ψ
− sin2 ψ plots.

• Determine the strain
{
εL33

}hkl
ψ=0◦

at ψ = 0◦ of all n
{
εL33

}hkl
ψ
− sin2 ψ plots to

calculate n
{
SL3311

}
ψ=0◦

+
{
SL3322

}
ψ=0◦

compliance terms (Eq. 2.40)

• Determine the averaged slopes of all n
{
εL33

}hkl
ψ
− sin2 ψ plots to calculate n{

SL3333

}
ψ=0◦

−
{
SL3322

}
ψ=0◦

compliance terms (Eq. 2.41).
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2.10 3Γhkl plot

• Determine the strain
{
εL33

}hkl
ψ=90◦

at ψ = 90◦ of all n
{
εL33

}hkl
ψ
− sin2 ψ plots to

calculate n
{
SL3322

}
ψ=90◦

+
{
SL3333

}
ψ=90◦

compliance terms (Eq. 2.45).

• Plot the n compliance terms as a function of the corresponding 3Γhkl.
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2 Simulations

Figure 2.19: 3Γhkl plots for KCl (a), CrN (b), W (c), Au (d), Cu (e) and Na (f). The plots show the

X-ray compliance term
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

as a function of the corresponding

X-ray anisotropy factor 3Γhkl. The compliance term
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

is

determined from the intersections
{
εL33

}hkl
ψ=0◦

of the
{
εL33

}hkl
ψ
− sin2 ψ plots (Figs. 2.10-

2.18) at ψ = 0◦ according to Eq. 2.40. The intersections and there standard deviations
are listed in tables 2.3 and 2.4. The standard deviations of the intersections are negligible
(Hill model, Gaussian (111) fiber texture, ψFWHM = 10◦, 10% ISO, 100 MPa equibiaxial
stress, 311 reflex is not listed in Tables 2.5-2.4).
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2.10 3Γhkl plot

Figure 2.20: 3Γhkl plots for KCl (a), CrN (b), W (c), Au (d), Cu (e) and Na (f). The plots show the

X-ray compliance term
{
SL3333

}hkl
ψ
−

{
SL3311

}hkl
ψ

as a function of the corresponding X-ray

anisotropy factor 3Γhkl. The compliance term
{
SL3333

}hkl
ψ
−

{
SL3311

}hkl
ψ

is determined

from the averaged slopes of the
{
εL33

}hkl
ψ
− sin2 ψ plots (Figs. 2.10-2.18) according to

Eq. 2.41. The averaged slopes and there standard deviations are listed in tables 2.5 and
2.6. The standard deviations of the averaged slopes are negligible (Hill model, Gaussian
(111) fiber texture, ψFWHM = 10◦, 10% ISO, 100 MPa equibiaxial stress, 311 reflex is
not listed in Tables 2.5-2.4).
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2 Simulations

2.11 Correlation between X-ray elastic and mechanical elastic
constants

This section shows that the calculated mechanical Young’s modulus {E}M always lies
between the X-ray Young’s moduli {E}100 and {E}111 even in the case of fiber textured
materials. If the ZAR [76] is smaller than one, the Young’s modulus in 〈100〉 direction
is stronger than the Young’s modulus in 〈111〉 direction. If the ZAR is greater than
one, it is upside down.
The ODF of a (111) fiber textured material with ψFWHM = 10◦ and an ISO of 10% was
calculated. The mechanical and X-ray elastic Young’s moduli

{
EL3333

}M

ψ
,
{
EL3333

}100

ψ
,{

EL3333

}110

ψ
,
{
EL3333

}311

ψ
and

{
EL3333

}111

ψ
are calculated according to Sec. 2.6 and 2.8

for the whole sin2 ψ range. The results cleary show that at ψ = 0◦ for a (111) fiber
textured material, the mechanical Young’s modulus approaches the X-ray elastic mod-
ulus of the 〈111〉 reflex. At ψ = 90◦ the mechanical Young’s modulus equates to the
X-ray elastic modulus of the (110) reflex. This result is evident due to the fact that all
(111) crystallographic planes are in-plane isotropic. The in-plane isotropy of the (111)
planes immidiately states that the Young’s modulus of the planes normal to (111) must
be independant of any anisotropy. Therefore the mechanical Young’s modulus must
approach the X-ray Young’s modulus of the (110) planes.

It is predictable that for hexagonal systems possessing a (0001) fiber texture the me-
chanical Young’s modulus at ψ = 90◦ must equates the X-ray elastic Young’s modulus
of the (1010) crystallographic reflex.
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2.11 Correlation between X-ray elastic and mechanical elastic constants

Figure 2.21: The figure shows the mechanical Young’s moduls
{
EL3333

}M

ψ
and the X-ray elastic moduli{

EL3333
}hkl
ψ

over the whole sin2 ψ range of the two materials CrN (a) and Cu (b) for a

(111) fiber texture with ψFWHM = 10◦ and 10% ISO. The results cleary show that at
ψ = 0◦ for a (111) fiber textured material, the mechanical Young’s modulus approaches
the X-ray elastic modulus of the (111) reflex. At ψ = 90◦ the mechanical Young’s
modulus equates to the X-ray elastic modulus of the (110) reflex. This result is evident
due to the fact that all (111) crystallographic planes are in-plane isotropic. The in-plane
isotropy of the (111) planes immidiately states that the mechanical Young’s modulus
of the planes normal to (111) must be independant of any anisotropy. Therefore the
mechanical Young’s modulus must approach the X-ray Young’s modulus of the (110)
planes.

45



2

2 Simulations

2.12 The 3Γ ∗hkl − 3Γuvw plot

In Sec. 2.10 it was shown that the X-ray elastic compliance terms can be plotted
as a function of the X-ray anisotropy factor 3Γhkl. Due to the fact that for a single
crystal the X-ray and mechanical compliance terms are equal within the 3Γhkl domain
[0, 1] (see Sec. 2.10) the averaged mechanical compliance term of a polycrystal must
also lie in between the 3Γhkl domain [0, 1]. On the one hand, the mechanical elastic
compliance term can be extracted from the ordinate of the 3Γhkl plot (see Sec. 2.10) if,
and only if, the correct value on the abscissa, which will further be denoted as 3Γ ∗hkl, is
known. According to the Reuss grain interaction model, 3Γ ∗hkl depends on the texture
parameter

Γuvw =
u2v2 + v2w2 + w2u2

(u2 + v2 + w2)2
(2.60)

on ψFWHM and on ISO. On the other hand it is possible to determine 3Γ ∗hkl if the
mechanical compliance term for a texture 3Γuvw with ψFWHM and ISO can be calcu-
lated. A parallel line to the abscissa of the corresponding 3Γhkl plot (see Sec. 2.10)
at the magnitude of the calculated mechanical compliance term is subtended with
the corresponding 3Γhkl plot. The 3Γhkl of the intersection point is then the correct
3Γ ∗hkl value. This procedure can be performed for multiple textures 3Γuvw of different
ψFWHM and ISOs. Figs. 2.22 and 2.23 show the calculated 3Γ ∗hkl − 3Γuvw plots for
the

{
SL3333

}
ψ=0◦

compliance term with varying ISO and ψFWHM, respectively. Inter-
estingly, the 3Γ ∗hkl−3Γuvw plots do not depend on the ZAR [76] or the material for the{
SL3333

}
ψ=0◦

compliance term. Therefore the plots in Figs. 2.22 and 2.23 represent a
kind of universal plot for cubic materials. The procedure to calculate any 3Γ ∗hkl−3Γuvw
plot is summarized in the following list

• Calculate (simulation) / determine (experiment) the ODF of the sample.

• Calculate 3Γuvw.

• Choose the grain interaction model.

• Choose a ψ angle.

• Choose any compliance term (see Sec. 2.10).

• Calculate the mechanical elastic compliance tensor components
{
SLmnop

}M

ψ
ac-

cording to the grain interaction model.

• Extract the compliance term from the transformed tensor components
{
SLmnop

}M

ψ

in the L coordinate system.

• Calculate the X-ray elastic compliance tensor components
{
SLmnop

}hkl
ψ

for at least
two reflexes (hkl) with different values of 3Γhkl according to the grain interaction
model in respect to the laboratory coordinate system L.
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2.12 The 3Γ ∗hkl − 3Γuvw plot

• Plot the 3Γhkl plot for the chosen compliance term.

• Fit the data in the 3Γhkl plot.

• Find the 3Γ ∗hkl value in the 3Γhkl plot which correlates with the compliance term
from the mechanical compliance tensor.

• Repeat the procedure for n ODFs with different fiber textures (uvw), ψFWHM

and ISOs and plot the corresponding 3Γ ∗uvw,i vs. 3Γhkl,i for i=1..n.

In order to express the dependence of 3Γ ∗hkl plot on the 3Γuvw, on ψFWHM and on ISO
generally and in a ”user-friendly way”, the following empirical equation was derived
[77]

3Γ ∗hkl = A+ 3Γuvw(1− A

0.6
) (2.61)

where A = (ψFWHM ∗ 8.8 + ISO ∗ 5.8− ψFWHM ∗ ISO ∗ 0.083)/1000.

Figure 2.22: The picture shows the 3Γ ∗hkl− 3Γuvw plot of the
{
SL3333

}M

ψ
tensor component. The plot

was calculated using the Hill model, ψFWHM = 10◦ and variational ISO. For ISO=100%,
i.e. an isotropic sample, the 3Γ ∗hkl is equal to 0.6 for all 3Γuvw values. The graph for
ISO=0% clearly shows that 3Γ ∗hkl = 3Γuvw for all fiber axes (uvw). This result states

that for a perfect (uvw) fiber texture the mechanical elastic constant
{
SL3333

}M

ψ
can

directly be calculated from the X-ray elastic constants of the (hkl) reflex. Moreover all
graphs intersect at a pivot point of 3Γ ∗hkl = 3Γuvw = 0.6. It was shown by [75] that
3Γ ∗hkl = 0.6 corresponds to the X-ray elastic constants of the crystallographic reflex (hkl)
which directly correlate with the mechanical elastic constants in the isotropic case. The
3Γ ∗hkl − 3Γuvw is not a function of the ZAR [76] or the material.
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2 Simulations

Figure 2.23: The picture shows the 3Γ ∗hkl− 3Γuvw plot of the
{
SL3333

}M

ψ
tensor component. The plot

was calculated using the Hill model, ISO 10% and variational ψFWHM. The graph for
ψFWHM = 0◦ clearly shows that 3Γ ∗hkl = 3Γuvw for all fiber axes (uvw). This result

states that for a perfect (uvw) fiber texture the mechanical elastic constant
{
SL3333

}M

ψ

can directly be calculated from the X-ray elastic constants of the (hkl) reflex. Moreover
all graphs intersect at a pivot point of 3Γ ∗hkl = 3Γuvw = 0.6. It was shown by [75] that
3Γ ∗hkl = 0.6 corresponds to the X-ray elastic constants of the crystallographic reflex (hkl)
which directly correlate with the mechanical elastic constants in the isotropic case. The
3Γ ∗hkl − 3Γuvw is not a function of the ZAR [76] or the material.

48



2

2.13 Determination of mechanical elastic constants

2.13 Determination of mechanical elastic constants

According to Sec. 2.10 and 2.12 it is possible to extract any mechanical compliance term
from the 3Γhkl plot if the correct 3Γ ∗hkl is known. The value 3Γ ∗hkl can be determined
from the 3Γ ∗hkl − 3Γuvw plot or from the analytical formula (Eq. 2.61). Although
the three X-ray compliance tensor components

{
SL3311

}hkl
ψ

,
{
SL3322

}hkl
ψ

and
{
SL3333

}hkl
ψ

are directly plotable as a function of 3Γhkl when performing simulations, not all of
them can be determined experimentally from a single measurement. The reason is
that the slope and intersection in Eq. 2.38 are compliance terms of these three X-
ray compliance tensor components. First, the correct 3Γ ∗hkl value has to be extracted
from the corresponding 3Γ ∗hkl − 3Γuvw plot or from Eq. 2.61. The calculation of the
mechanical elastic constants will be described in detail.

• The 3Γhkl plot for the compliance term
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

is calculated
using the intersection data from the sin2 ψ plots at ψ = 90◦ (Eq. 2.40) at ψ = 0◦.
Then the 3Γ ∗hkl value is used to extract

{
SL3311

}3Γ∗hkl
ψ=0◦

+
{
SL3322

}3Γ∗hkl
ψ=0◦

. Using Eq.

2.40
{
SL3311

}3Γ∗hkl
ψ=0◦

can be determined, which satisifies Eq. 2.62

{
SL3311

}3Γ∗hkl
ψ=0◦

=
{
SS3311

}M
(2.62)

• The 3Γhkl plot for the compliance term
{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

is calculated
using the averaged slope data from the sin2 ψ plots (Eq. 2.41). Then the 3Γ ∗hkl
value is used to obtain

{
SL3333

}3Γ∗hkl
ψ

−
{
SL3311

}3Γ∗hkl
ψ

=
{
SS3333

}M −
{
SS3311

}M
(2.63)

Substitution of Eq. 2.62 in Eq. 2.63 is used to determine

{
SL3333

}3Γ∗hkl
ψ=0◦

=
{
SS3333

}M
(2.64)

Then Eq. 2.64 can be used to calculate

{
ES3333

}M
=

1{
SS3333

}M
(2.65)

which is the mechanical out-of-plane Young’s modulus.

• The 3Γhkl plot for the compliance term
{
SL3322

}hkl
ψ=90◦

+
{
SL3333

}hkl
ψ=90◦

is calculated
using the intersection data from the sin2 ψ plots (Eq. 2.45) at ψ = 0◦. Then the
3Γ ∗hkl value is used to determine

{
SL3322

}3Γ∗hkl
ψ=90◦

+
{
SL3333

}3Γ∗hkl
ψ=90◦

=
{
SL1122

}M

ψ=0◦
+
{
SL1111

}M

ψ=0◦
(2.66)
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Eq. 2.66 can be used to calculate the mechanical in-plane biaxial modulus

{
MS
}M

=
1{

SL1111

}M

ψ=0◦
+
{
SL1122

}M

ψ=0◦

(2.67)

Figure 2.24: The figure shows the laboratory coordinate system L relative to the sample coordinate
system S at ψ = 0◦ (a) and ψ = 90◦ (b), respectively. If the L and S systems are
congruent,

{
SLmnop

}
=

{
SSmnop

}
(a). If the L and S systems are not congruent (b),

the tensor indices of the L system have to be substituted according to 1 → 3, 2 → 2
and 3 → 1 to get the compliance tensor notation in respect to S. The two coordinate
systems are plotted side by side to improve comprehension of the two possible rotational
positions. The mark at the centre of the two coordinate system defines the common
point of rotation. In mind, the two coordinate systems should be aligned together at
this point.
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3
Experimental methods

3.1 Sample preparation

As a substrate for specimen preparation, rectangular Si(100) wafers with the dimension
of 30x8 mm2 and different thicknesses were used. The wavers were cleaned in an
ultrasonic cleaner using isopropanol and acetone. All used materials were deposited
with balanced magnetron sputtering in argon atmosphere. Moreover, ion etching was
applied before the deposition to remove contaminates from the surface.

The CrN and TiN thin films were produced in Ar+N2 atmosphere with a total
pressure of 1 Pa and a partial pressure of 0.25 Pa for N2. The power of the magnetron
system was 6 kW for CrN and 0.4 kW for TiN. The BIAS voltage was -80 V and -50
V for CrN and TiN, respectively. The substrate temperature was 550 ◦C.

The Cu samples were deposited in Ar atmosphere at room temperature. After the
deposition process the samples were annealed in N2 atmosphere at 400 ◦C for 10 min
in order to increase the residual stress magnitude in the films [78]. Main deposition
parameters are listed in Tab. 3.1.

Table 3.1: List of materials used for determination of mechanical elastic constants. pt is the total
pressure. pN2

p is the N2 partial pressure for the nitride samples. VBIAS, Td, Ta and P are
the BIAS voltage, the deposition temperature, the annealing temperature and the power
of the magnetron system, respectively.

Material pt pN2
p VBIAS Td Ta P

(V) (Pa) (Pa) (◦C) (◦C) (kW)
Cu 1 - -80 RT 400 -

CrN 1 0.25 -80 350 - 6.0
TiN 1 0.25 -50 550 - 0.4
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3 Experimental methods

3.2 Elastic strain characterization using sin2 ψ technique

X-ray diffraction (XRD) is widely used to determine (X-ray) strains in crystalline
materials. For this purpose, the sin2 ψ method is applied. According to [26] the X-
ray elastic strain is direct proportional to the slope in the sin2 ψ dependence. The
lattice spacing dhklφ,ψ is determined at different polar angles ψ and azimuthal angles φ.
If the unstressed lattice spacing d0 is known it is possible to calculate the X-ray strain
according to Eq. 3.1

{
εL33

}hkl
φ,ψ

=
dhklφ,ψ − d0

d0
(3.1)

where
{
εL33

}hkl
φ,ψ

depends on the crystallographic reflex hkl [26]. The mathematical
correlation between the lattice spacing dhklφ,ψ and the lattice parameter a for cubic
materials is [26]

a = dhklφ,ψ

√
h2 + k2 + l2 (3.2)

Figure 3.1: A definition of two coordinate systems used for the characterization of mechanical in-
plane elastic strains using sin2 ψ method: sample system S, laboratory system L [26].
The X-ray elastic strain along the direction ~L3 (which is parallel to the diffraction vector
~g) is characterized by measuring the reflection hkl. The orientation of the vector ~g with
respect to ~Si is defined by the angles φ and ψ.

However, the linear dependence between the X-ray strain
{
εL33

}hkl
φ,ψ

and sin2 ψ strictly
holds only for materials with crystal isotropy, macroscopical quasi isotropy, materials
with Voigt grain-interaction [57] and simplified stress states. The X-ray strain

{
εL33

}hkl
φ,ψ

for a fiber textured thin film obeying Hill grain interaction model and an equibiaxial
stress state can be described using Eq. 2.38. This formula was first proposed by [70]
to describe the X-ray strain of bulk materials possessing a strong surface anisotropy.
There is an addition term sin 2ψ in Eq. 2.38. Therefore all methods which use Eq.
2.38 to characterize the X-ray strain are called modified sin2 ψ methods [70].
All measurements were performed in laboratory conditions using a Seifert 3000 PTS
four-circle diffractometer. The setup comprised Cu Kα radiation, polycapillary optics
on the primary side, Soller slits, a graphite monochromator and a scintillation detector
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3.3 X-ray curvature method

on the secondary side. The average beam diameter was about 3x3 mm2 for strain
measurements. The relatively large beam in the case of strain measurements enabled
to assess volume-averaged properties. The limited pole figure characterization was
performed using Schultz reflectivity technique with the beam of 3 mm in diameter
whereby the ψ range was set to 0-80 degrees.

3.3 X-ray curvature method

The bending of the substrate can be measured capacitively, inductively, electromechan-
ically, or optically by laser-beam deflection systems [79, 80]. In semiconductor industry
X-rays were widely used to revise the waviness of the substrates [54]. The idea behind
the X-ray curvature technique relies on the possibility to determine the curvature of
a thin film-single crystal substrate directly by X-rays. Rocking curve scans of Si(400)
reflexes are performed at different sample positions xi. The detector is moved and
fixed at the 2θ position of the Si(100) reflex. For each sample position xi the sample is
rotated around the ωxi axis to perform an ω-scan. The peak of the ωxi-scan is fitted
to determine the exact ωxi0 position. This procedure is repeated for different sample
positions xi. The relative changes ∆xi and ∆ωi are calculated. According to [78] the
curvature radius can be determined from the slope of ∆ωi vs. ∆xi

R = (
∆ωi
∆xi

)
−1

(3.3)

Fig. 3.2 shows the principle of this method.

Figure 3.2: This schematic description shows the diffraction setup used to determine the curvature.
~k
xj

0 and ~k
xj

1 are the primary and secondary beam at a definite position xj . The vector
~g
xj

400 is the scattering vector which is normal to the planes of diffraction.

The determined curvature radius R can then be used in the Stoney formula [24, 53]
to calculate the absolute macroscopic equibiaxial stress.

σ =
E

6(1− ν)
h2

s

hf

1
R

(3.4)
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3 Experimental methods

The failure of the calculated stress depends on the standard deviations of the sub-
strate thickness ∆h2

s , the film thickness ∆ 1
hf

and the curvature ∆ 1
R . The film thick-

nesses of the samples used in this thesis were measured with scanning electron micro-
scopes (SEM) and their standard deviations are assumed to be zero. Therefore the
standard deviation of the stress in Eq. 3.4 can be written as

∆σ =
E

6(1− ν)
h2

s

hf

1
R2

∆R (3.5)

3.4 Texture analysis

Texture analysis was performed in laboratory using a four circle Seifert PTS 3000
diffractometer. All measurements were performed with a parallel polycapillary on the
primary side. The secondary side was equipped with Soller slits of a 2◦ divergence
followed by a graphite monochromator. A scintillation detector was used to collect
the diffracted intensity at the fixed 2θ position of the measured pole figure. The
azimuthal φ angle and the polar ψ angle were named α and β, respectively. All
texture measurements were performed with the detector fixed at 2θ position of the
corresponding crystallographic reflex of the pole figure (Tab. 3.2). The step size of α
and β was 5◦. The measurements were performed in equal area mode.

Table 3.2: 2θ positions of Cu, CrN and TiN reflections calculated from the unstressed lattice param-
eters (Tab. 2.2) using CuKα wavelength. All three materials belong to the same space
group F4/m32/m with space group number 225. The 2θ values are calculated according
to the unstressed lattice parameters found in Tab. 2.2.

Material 111 200 220 311
Cu 43.32 50.45 74.13 89.94

CrN 37.37 43.42 63.08 75.67
TiN 36.65 42.58 61.78 74.04

Annealed, unstressed Au and Cu powders were used to acquire defocusation data for
Cu, CrN and TiN. The change in intensity for the first four crystallographic reflexes of
Cu and Au was measured as a function of polar angle ψ. The resolution of the ψ scan
was 5◦. The intensity values were prepared for and saved in the format of LaboTex [65]
defocusation file (file extension .COR). The defocusation file was used to correct the
intensities of the measured pole figures. Cu pole figures were corrected with the Cu
defocusation file. CrN and TiN pole figures were corrected with the Au defocusation
file.
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4
Results and discussion

4.1 Cu sample

The first sample is a 0.6 µm thick Cu thin film deposited onto a 140 µm thick Si(100)
substrate. The procedure to determine the substrate curvature is described in Sec.
3.3. The curvature was 3.572 m, the corresponding stress value was about 275.9 MPa.
A dominant (111) fiber texture was found (Fig. 4.2). The ISO and ψFWHM were 10%
and 14◦, respectively. Moreover, the X-ray strains

{
εL33

}hkl
ψ

as a function of sin2 ψ
for multiple reflexes were measured. Altogether six crystallographic reflexes could be
found in the 2θ range of the Cu sample. The X-ray strains of four representative
crystallographic refelexes are plotted in Fig. 4.3a-d. The

{
εL33

}hkl
ψ
− sin2 ψ relation

is nearly linear for all reflexes hkl. The Cu sample possesses a (111) fiber texture,
i.e. 3Γuvw = 1.0. The corresponding 3Γ ∗hkl value is therefore 0.89 (Eq. 2.61). The
3Γ ∗hkl value is used to determine the mechanical compliances from Figs. 4.4a-c. The
mechanical out-of-plane Young’s modulus

{
ES3333

}M, the Poisson’s ratio
{
νS3311

}M and
the mechanical in-plane biaxial modulus

{
MS

}M are 169.40 GPa, 0.23 and 223.3 GPa,
respectively. Calculated and experimental data are listed in Tab. 4.1.
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4 Results and discussion

Figure 4.1: The plot of ∆ω vs. ∆x (Sec. 3.3). The curvature is 3.572 m. The Cu thickness and
the Si(100) substrate thickness were 0.60 µm and 140 µm, respectively. The equibiaxial
stress is 275.9 MPa and was calculated according to Eq. 3.4.

Figure 4.2: This figure shows the pole figures of the Cu sample. The detector of the diffractometer
was fixed at the 2θ positions of the corresponding crystallographic reflexes listed in Tab.
3.2. The angular resolution in α and β space was 5◦. The pole figures were measured
in equal area mode with a counting time of 2 s. The background was automatically
subtracted by the measurement software. The pole figures were measured with a Seifert
PTS 3000.
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4.1 Cu sample

Figure 4.3: The figures (a)-(f) show the X-ray strain of six representative crystallographic reflexes of
a (111) fiber textured Cu sample as a function of sin2 ψ. The black circled data points
represent the experimental data. The X-ray strain was determined from the {d}hklψ values
according to Eq. 3.1 using a lattice free parameter a0 = 3.6149 [66]. The gray trian-
gled (white squared) points represent the calculated X-ray strain for the fiber textured
(isotropic) case. The experimental determined stress value of 275.9 MPa was used for
the calculation. The equibiaxial stress of the Cu sample was determined using X-ray
curvature method described in Cha. 3.3. A fiber textured (isotropic) ODF with an an-
gular resolution of 5◦ was used. It is evident, that for the four crystallographic reflexes
(200),(311),(220) and (111) the calculated fiber textured (isotropic) strain data does not
match the measured strain data exactly but the calculated slopes of all data are compara-
ble. Moreover, the intersections are comparable. It must be mentioned that an incorrect
value of a0 can shift the strain slopes to higher or lower strain values and can therefore
change the correct intersection values.
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4 Results and discussion

Figure 4.4: The figures (a)-(c) show calculated and measured compliance terms as a function of
3Γhkl. The compliance terms for Reuss, Voigt and Hill were calculated for a (111) fiber
textured Cu sample with ISO and ψFWHM of 10% and 14◦, respectively. The resolution
of the ODF was 5◦. The white squared data points were calculated from the slopes

and intersections of the
{
εL33

}hkl
ψ
− sin2 ψ plots in Fig. 4.3a-d. At ψ = 0◦, the X-ray

elastic constant 2{s1}hklψ=0◦ (Eq. 2.40) is equal to
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

(a). For

textured materials this relation only holds at ψ = 0◦. 2{s1}hklψ=0◦ can be calculated from

the intersection of the corresponding
{
εL33

}hkl
ψ
− sin2 ψ plot at ψ = 0◦. The compliance

term
{
SL3333

}hkl
ψ=0◦

−
{
SL3311

}hkl
ψ=0◦

can be determined from the slope of the corresponding{
εL33

}hkl
ψ
− sin2 ψ plot. Due to the fact that the averaged slope of

{
εL33

}hkl
ψ
− sin2 ψ plot

is considered, this equation holds for the whole sin2 ψ-range. At ψ = 90◦, the compliance

term
{
SL3322

}hkl
ψ=90◦

+
{
SL3333

}hkl
ψ=90◦

correlates to the intersection of the corresponding{
εL33

}hkl
ψ
−sin2 ψ plot at ψ = 90◦. The figures clearly show that the measured data points

are in good agreement with the calculated Hill data. It is unclear why the experimental
data equals the Reuss calculated data at ψ = 90◦, instead of the Hill calculated data.

The mechanical out-of-plane Young’s modulus
{
ES3333

}M
, the Poisson’s ratio

{
νS3311

}M

and the mechanical in-plane biaxial modulus
{
MS

}M
are 169.40 GPa, 0.23 and 223.3

GPa, respectively. Calculated and experimental data are listed in Tab. 4.1.
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4.2 CrN sample

The second sample is a 2.43 µm thick CrN thin film deposited onto a 500 µm thick
Si(100) substrate. The curvature was -2.193 m, the corresponding stress value was
about -1415 MPa. A dominant (311) fiber texture was found (Fig. 4.6). The ISO
and ψFWHM were 13% and 12◦, respectively. Moreover, the X-ray strains

{
εL33

}hkl
ψ

as a
function of sin2 ψ for multiple reflexes were measured. Altogether four crystallographic
reflexes could be found in the 2θ range of the CrN sample. The X-ray strains are
plotted in Fig. 4.7a-d. The

{
εL33

}hkl
ψ
− sin2 ψ relation is extremly non-linear for all

reflexes hkl. This can be a result of stress gradients [12], complex stress states [26]
or macroscopic elastic anisotropy (texture). The CrN sample possesses a (311) fiber
texture, i.e. 3Γuvw = 0.47. The corresponding 3Γ ∗hkl value is therefore 0.51 (Eq. 2.61).
The 3Γ ∗hkl value is used to determine the mechanical compliances from Figs. 4.8a,b
and c. The mechanical out-of-plane Young’s modulus

{
ES3333

}M, the Poisson’s ratio{
νS3311

}M and the mechanical in-plane biaxial modulus
{
MS

}M are 240.79 GPa, 0.16
and 344.8 GPa, respectively. Calculated and experimental data are listed in Tab. 4.2.
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4 Results and discussion

Figure 4.5: The plot of ∆ω vs. ∆x (Sec. 3.3). The curvature is -2.193 m. The CrN thickness and
the Si(100) substrate thickness were 2.43 µm and 500 µm, respectively. The equibiaxial
stress is -1415 MPa and was calculated according to Eq. 3.4.

Figure 4.6: This figure shows the pole figures of the CrN sample. The detector of the diffractometer
was fixed at the 2θ positions of the corresponding crystallographic reflexes listed in Tab.
3.2. The angular resolution in α and β space was 5◦. The pole figures were measured
in equal area mode with a counting time of 2 s. The background was automatically
subtracted by the measurement software. The pole figures were measured with a Seifert
PTS 3000. A (311) fiber was found and used for the calculation.
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4.2 CrN sample

Figure 4.7: The figures (a)-(d) show the X-ray strain of four crystallographic reflexes of a (311) fiber
textured CrN sample as a function of sin2 ψ. The black circled data points represent the
experimental data. The X-ray strain was determined from the {d}hklψ values according
to Eq. 3.1 using a lattice free parameter a0 = 4.1650 [67]. The gray triangled (white
squared) points represent the calculated X-ray strain for the fiber textured (isotropic)
case. The experimental determined stress value of -1415 MPa was used for the calculation.
The equibiaxial stress of the CrN sample was determined using X-ray curvature method
described in Cha. 3.3. A fiber textured (isotropic) ODF with an angular resolution of 5◦

was used.
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4 Results and discussion

Figure 4.8: The figures (a)-(c) show calculated and measured compliance terms as a function of
3Γhkl. The compliance terms for Reuss, Voigt and Hill were calculated for a (311) fiber
textured CrN sample with ISO and ψFWHM of 13% and 12◦, respectively. The resolution
of the ODF was 5◦. The white squared data points were calculated from the slopes

and intersections of the
{
εL33

}hkl
ψ
− sin2 ψ plots in Fig. 4.7a-d. At ψ = 0◦, the X-ray

elastic constant 2{s1}hklψ=0◦ (Eq. 2.40) is equal to
{
SL3311

}hkl
ψ=0◦

+
{
SL3322

}hkl
ψ=0◦

(a). For

textured materials this relation only holds at ψ = 0◦. 2{s1}hklψ=0◦ can be calculated from

the intersection of the corresponding
{
εL33

}hkl
ψ
− sin2 ψ plot at ψ = 0◦. The compliance

term
{
SL3333

}hkl
ψ=0◦

−
{
SL3311

}hkl
ψ=0◦

can be determined from the slope of the corresponding{
εL33

}hkl
ψ
− sin2 ψ plot. Due to the fact that the averaged slope of

{
εL33

}hkl
ψ
− sin2 ψ plot

is considered, this equation holds for the whole sin2 ψ-range. At ψ = 90◦, the compliance

term
{
SL3322

}hkl
ψ=90◦

+
{
SL3333

}hkl
ψ=90◦

correlates to the intersection of the corresponding{
εL33

}hkl
ψ
− sin2 ψ plot at ψ = 90◦. The data shows that there is a difference between the

measured and calculated compliance terms. It is assumed that this difference is the result
of inaccurate SECs and/or stress gradients in the CrN film. The mechanical out-of-plane

Young’s modulus
{
ES3333

}M
, the Poisson’s ratio

{
νS3311

}M
and the mechanical in-plane

biaxial modulus
{
MS

}M
are 240.79 GPa, 0.16 and 344.8 GPa, respectively. Calculated

and experimental data are listed in Tab. 4.2.
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4.3 TiN sample

The third sample is a 0.53 µm thick TiN thin film deposited onto a 315 µm thick
Si(100) substrate. The curvature was -4.796 m, the corresponding stress value was
about -1178 MPa. A dominant (200) fiber texture was found (Fig. 4.10). The ISO
and ψFWHM were 15% and 13◦, respectively. Moreover, the X-ray strains

{
εL33

}hkl
ψ

as a
function of sin2 ψ for multiple reflexes were measured. Altogether four crystallographic
reflexes could be found in the 2θ range of the TiN sample. The X-ray strains of four
representative crystallographic refelexes are plotted in Fig. 4.11a-d. The

{
εL33

}hkl
ψ
−

sin2 ψ relation is extremly non-linear for all reflexes hkl. This can be a result of stress
gradients [12], complex stress states [26] or macroscopic elastic anisotropy (texture).
The TiN sample possesses a (200) fiber texture, i.e. 3Γuvw = 0. The corresponding
3Γ ∗hkl value is therefore 0.18 (Eq. 2.61). The 3Γ ∗hkl value is used to determine the
mechanical compliances from Figs. 4.12a-c. The mechanical out-of-plane Young’s
modulus

{
ES3333

}M, the Poisson’s ratio
{
νS3311

}M and the mechanical in-plane biaxial
modulus

{
MS

}M are 412.5 GPa, 0.21 and 561.8 GPa, respectively. Calculated and
experimental data are listed in Tab. 4.3.
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4 Results and discussion

Figure 4.9: The plot of ∆ω vs. ∆x (Sec. 3.3). The curvature is -4.796 m. The TiN thickness and
the Si(100) substrate thickness were 0.53 µm and 315 µm, respectively. The equibiaxial
stress is -1178 MPa and was calculated according to Eq. 3.4.

Figure 4.10: This figure shows the pole figures of the TiN sample. The detector of the diffractometer
was fixed at the 2θ positions of the corresponding crystallographic reflexes listed in Tab.
3.2. The angular resolution in α and β space was 5◦. The pole figures were measured
in equal area mode with a counting time of 2 s. The background was automatically
subtracted by the measurement software. The pole figures were measured with a Seifert
PTS 3000. A (200) fiber was found and used for the calculation.
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4.3 TiN sample

Figure 4.11: The figures (a)-(d) show the X-ray strain of four crystallographic reflexes of a (200)
fiber textured TiN sample as a function of sin2 ψ. The black circled data points repre-
sent the experimental data. The X-ray strain was determined from the {d}hklψ values
according to Eq. 3.1 using a lattice free parameter a0 = 4.248 [81, 82]. The gray trian-
gled (white squared) points represent the calculated X-ray strain for the fiber textured
(isotropic) case. The experimental determined stress value of -1178 MPa was used for
the calculation. The equibiaxial stress of the TiN sample was determined using X-ray
curvature method described in Cha. 3.3. A fiber textured (isotropic) ODF with an
angular resolution of 5◦ was used.
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4 Results and discussion

Figure 4.12: The figures (a)-(c) show calculated and measured compliance terms as a function of
3Γhkl. The compliance terms for Reuss, Voigt and Hill were calculated for a (200)
fiber textured TiN sample with ψFWHM = 13◦ and ISO=15◦. The resolution of the
ODF was 5◦. The white squared data points were calculated from the slopes and

intersections of the
{
εL33

}hkl
ψ
− sin2 ψ-plots in Fig. 4.11a-d. At ψ = 0◦, the X-ray elastic

constant 2{s1}hklψ=0◦ (Eq. 2.40) is equal to {S3311}hklψ=0◦ + {S3322}hklψ=0◦ (a). For textured

materials this relation only holds at ψ = 0◦. 2{s1}hklψ=0◦ can be calculated from the

intersection of the corresponding
{
εL33

}hkl
ψ
− sin2 ψ-plot at ψ = 0◦. The compliance

term {S3333}hklψ=0◦−{S3311}hklψ=0◦ can be determined from the slope of the corresponding{
εL33

}hkl
ψ
−sin2 ψ-plot. Due to the fact that the averaged slope of

{
εL33

}hkl
ψ
−sin2 ψ-plot is

considered, this equation holds for the whole sin2 ψ-range. At ψ = 90◦, the compliance
term {S3322}hklψ=90◦ + {S3333}hklψ=90◦ correlates to the intersection of the corresponding{
εL33

}hkl
ψ
− sin2 ψ-plot at ψ = 90◦. The figures clearly show that the measured data

points are not in good agreement with the calculated Hill data. A possible reason
could be that the SECs of TiN and/or the lattice parameter a0 are not correct. The

mechanical out-of-plane Young’s modulus
{
ES3333

}M
, the Poisson’s ratio

{
νS3311

}M
and

the mechanical in-plane biaxial modulus
{
MS

}M
are 412.5 GPa, 0.21 and 561.8 GPa,

respectively. Calculated and experimental data are listed in Tab. 4.3.
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4.4 Experimental and simulated data

Tabs. 4.1-4.3 summarize the experimental and calculated data from Cha. 4. The Cu
data show similar results for the experimental and calculated mechanical out-of-plane
Young’s Modulus

{
ES3333

}M, Poisson’s ratio
{
νS3311

}M and mechanical in-plane biaxial
modulus

{
MS

}M (Tab. 4.1). Fig. 4.4 shows that the calculated data of the 3Γhkl
plots is comparable with the experimental data. However, the experimental data for
CrN (Fig. 4.8) and TiN (Fig. 4.12) significantly differ from the calculated data (Tabs.
4.2 and 4.3). The experimental data of the 3Γhkl plots (Figs. 4.8 and 4.12) is not
comparable in magnitude but in its 3Γhkl dependence with the experimental data.
Possible reasons for the difference in the experimental and calculated data are stress
gradients [12], change in chemical composition [83], change in morphology [84],texture
gradients [85], incorrect unstressed lattice parameter or incorrect SECs.

Table 4.1: Mechanical out-of-plane Young’s Modulus
{
ES3333

}M
, Poisson’s ratio

{
νS3311

}M
and me-

chanical in-plane biaxial modulus
{
MS

}M
of Cu.

3Γuvw ψFWHM ISO 3Γ ∗hkl
{
ES3333

}M {
νS3311

}M {
MS

}M

(◦) (%) (GPa) (GPa)
Calculation 1.0 14 10 0.89 174.1 0.29 245.5
Experiment 1.0 14 10 0.89 169.4 0.23 223.3

Table 4.2: Mechanical out-of-plane Young’s Modulus
{
ES3333

}M
, Poisson’s ratio

{
νS3311

}M
and me-

chanical in-plane biaxial modulus
{
MS

}M
of CrN.

3Γuvw ψFWHM ISO 3Γ ∗hkl
{
ES3333

}M {
νS3311

}M {
MS

}M

(◦) (%) (GPa) (GPa)
Calculation 0.47 12 13 0.51 357.7 0.20 447.0
Experiment 0.47 12 13 0.51 240.8 0.16 344.8

Table 4.3: Mechanical out-of-plane Young’s Modulus
{
ES3333

}M
, Poisson’s ratio

{
νS3311

}M
and me-

chanical in-plane biaxial modulus
{
MS

}M
of TiN.

3Γuvw ψFWHM ISO 3Γ ∗hkl
{
ES3333

}M {
νS3311

}M {
MS

}M

(◦) (%) (GPa) (GPa)
Calculation 0.0 13 15 0.18 533.0 0.22 685.9
Experiment 0.0 13 15 0.18 412.5 0.21 561.8
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5
Summary

Within this thesis a new method was introduced to determine mechanical out-of-plane
Young’s modulus, a Poisson’s ratio and mechanical in-plane biaxial modulus of thin
films deposited on single crystal substrates using static diffraction techniques. The
procedure consists of two static diffraction measurements, i.e. the curvature deter-
mination of the thin film - substrate composite and the X-ray strain measurement of
multiple crystallographic reflections. It was shown that the determination of the X-ray
curvature is a fast and simple method to obtain the homogeneous equibiaxial macro-
scopic stress within the thin film [54]. The anisotropy of X-ray strain was simulated
within Cha. 2. It was shown that X-ray strain anisotropies, due to texture, influence
the X-ray elastic stiffness of a thin film. The grain interaction models were briefly
described and used to calculate mechanical and X-ray compliance tensors for different
materials. It was shown how to calculate mechanical elastic constants for arbitrary
fiber textured materials with different ψFWHM and ISO. The formalism to extract rele-
vant data from the experimental

{
εL33

}hkl
ψ
−sin2 ψ graphs was discussed. The accessible

data obtained from X-ray strain measurements are the intersections of strain at ψ = 0◦

and ψ = 90◦ as well as the averaged slopes. The slopes can be averaged, if and only if,
the standard deviation of the slope is small enough. If the sin2 ψ plots are extremely
nonlinear only because of anisotropy, the slopes can be evaluated at the angles ψ = 0◦

and ψ = 90◦. If not, the averaged slope can be used instead of explicitly calculating the
slopes at ψ = 0◦ and ψ = 90◦. This procedure allows the determination of the values{
SL3311

}H,hkl

ψ=0◦
,
{
SL3333

}H,hkl

ψ=0◦
and

{
SL3333

}H,hkl

ψ=90◦
+
{
SL3322

}H,hkl

ψ=90◦
. At different polar angles

ψ it is possible to determine X-ray compliance tensor components for various hkl re-
flexes which can be plotted as a function of 3Γhkl. The corresponding 3Γ ∗hkl value for a
specific fiber textured material with 3Γuvw, ψFWHM and ISO is correlated with a crys-
tallographic reflex. Although this crystallographic reflex is commonly not accessible,
the corresponding X-ray compliance component can be found in the 3Γhkl plot along
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5 Summary

the regression line of all measured X-ray compliance components. This specific X-ray
compliance component must be equal to the mechanical compliance component and
thus reveals the correct value for 3Γ ∗hkl. The 3Γ ∗hkl values can be calculated for any fiber
texture material identified through 3Γuvw, ψFWHM and ISO. Consecutively this leads
to the connection between X-ray elastic and mechanical stiffness in the 3Γ ∗hkl − 3Γuvw
plots. It was demonstrated that this correlation is independent of the materials, i.e.
of the mechanical crystal anisotropy and that it is possible to extract a ”user-friendly”
function which can be used to directly calculate the correct 3Γ ∗hkl value.

In Cha. 4 the experimental data for three materials were used to determine the me-
chanical elastic constants. The experimental data of Cu are in good agreement with
calculated data. The mechanical out-of-plane Young’s modulus

{
ES3333

}M, Poisson’s
ratio

{
νS3311

}M and mechanical in-plane biaxial modulus
{
MS

}M of Cu are 169.40
GPa, 0.23 and 223.3 GPa, respectively. The experimental data for CrN and TiN differ
from the calculated values significantly. Possible reasons are the existence of stress gra-
dients, inaccurate unstressed lattice parameters and SECs and/or elastic anisotropy.
The mechanical out-of-plane Young’s modulus

{
ES3333

}M, Poisson’s ratio
{
νS3311

}M and
mechanical in-plane biaxial modulus

{
MS

}M of CrN are 240.79 GPa, 0.16 and 344.8
GPa, respectively. For TiN they are 412.5 GPa, 0.21 and 561.8 GPa.

In the future it will be an important task to improve this method for high tem-
perature measurements. The lattice parameter a0 is the most critical parameter in
all calculations presented within this thesis. Due to the fact that a0 is temperature
dependent it will be a necessity to know the exact temperature behaviour of this pa-
rameter. If so, it should be possible to determine mechanical out-of-plane Young’s
modulus, Poisson’s ratio and mechanical in-plane biaxial modulus at elevated temper-
atures which is extremely important for thin film design. Due to the fact that nearly all
tools coated with nitrides exhibit high temperatures when used the described method
can be a useful technique to determine the temperature dependent mechanical elastic
constants. In comparison to other techniques used to determine the mechanical elastic
constants [43, 44, 47, 50], the X-ray beams can be used as a probe which is not influ-
enced by high temperatures. The development of X-ray tools proceeds and will deliver
new, faster and more accurate possibilities to characterize X-ray strains in special and
information provided by X-rays in common.

As part of the PhD-thesis, three main author peer reviewed papers were published
in international scientific journals and two main author papers were submitted. The
papers summarize the evolution of the work described in this thesis. Scientific research
has also been done in the field of high-temperature residual stress analysis of thin films
and in the field of high-temperature residual stress gradient analysis.
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Rapid determination of stress factors and

absolute residual stresses in thin films
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G. Fontalvob, C. Mittererb,c and J. Keckesa
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Leoben, Austria

bDepartment of Physical Metallurgy and Materials Testing, Universiy of Leoben,
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cChristian-Doppler Laboratory for Advanced Coatings, University of Leoben,
Leoben, Austria

Abstract A methodology is presented that allows the determination of experimen-
tal stress factors in thin films on the basis of static diffraction measurements. The
approach relies on the characterization of thin films deposited on a monocrystalline
substrate serving as a mechanical sensor. Rocking-curve measurements of the sym-
metrical reflections of the substrate are used to determine the substrate curvature
and subsequently the macroscopic stress imposed on the film. The elastic strain in
the film is determined by lattice-spacing measurement at different sample tilt angles.
The calculated experimental stress factors are applied to thin films deposited on other
types of substrates and are used to determine the absolute magnitude of the residual
stress. The approach is applied to nanocrystalline TiN and CrN thin films deposited
on Si(100) and steel substrates, characterized using a laboratory-type θ/θ goniometer.
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A.1 Introduction

A.1 Introduction

The determination of residual stresses in anisotropic polycrystalline thin films by
diffraction methods is a challenging task [1]. Such films often exhibit strong textures
that limit the possibilities to determine the lattice spacing of the film at specific sam-
ple tilt angles. Moreover, the presence of texture requires the use of dedicated stress
factors Fij in order to calculate residual stresses from the measured elastic strain [2].
Stress factors of textured thin films can be determined experimentally or by modelling.
The experimental determination of stress factors usually requires the use of techniques
that enable the controlled loading of the film in the diffraction system to determine
the corresponding elastic response of the crystal lattice [3–5]. The mechanical loading
is usually carried out by four-point bending or by tensile straining. The main problem
with such techniques is the precise determination of macroscopic strain and stability
over the period when the elastic strain is determined. Alternatively, stress factors of
thin films can be calculated on the basis of single-crystal elastic constants, the ori-
entation distribution function and the assumed elastic interaction between the grains
[1, 6–9]. Significant effort has been devoted to formulate and apply various elastic
interaction models in order to evaluate, in particular, oscillatory sin2 ψ dependences.
The calculation of theoretical stress factors is usually a laborious task since the orien-
tation distribution function of the crystallites must be determined experimentally and
the application of the specific elastic interaction model is not trivial. Another problem
lies in the fact that the theoretical stress factors are calculated on the basis of bulk
elastic constants of known materials. For new or non-stoichiometric materials with
unknown compliances, the application of the method is complicated. The purpose
of this work is to introduce a new simple diffraction technique for the determination
of experimental stress factors and the absolute magnitude of residual stresses in thin
films. In the first step, the technique is used to determine stress factors of thin films de-
posited on Si(100) substrates by combination of substrate curvature and elastic strain
characterization. Secondly, the experimental stress factors are used to determine the
residual stress in chemically and structurally identical thin films deposited on bulk
steel substrates. This approach is demonstrated for nanocrystalline CrN and TiN thin
films.

A.2 Assumptions and methodology

The majority of thin films deposited on solid substrates possess a certain amount of
residual stress originating usually from the deposition procedure and the films thermal
history. Following the general condition of mechanical equilibrium, the integration of
the stress over the whole thin-filmsubstrate composite yields [2]

∫
V

σijdV = 0 (A.1)
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When the thin film is deposited on a relatively thin substrate, the residual stress and
the balanced mechanical moments between film and substrate cause a bending of the
composite. When the thin film is deposited on a substrate with known mechanical
properties and the film thickness is at least 100 times smaller than that of the sub-
strate, the radius of the substrate curvature R can be used to determine the stress
imposed on the films using the Stoney formula [10],

σSC =
E

6 (1− ν)
h2

s

hf

1
R

(A.2)

where hs and hf represent the substrate and film thickness, respectively, and the
term E/(1− ν) is the biaxial modulus of the substrate. In this work, monocrystalline
Si(100) wafers with the modulus of 181 GPa [11] were chosen to limit the possible ex-
perimental errors. The modulus of Si(100) is well defined, therefore the only possible
source of error is in the measurement of the curvature R and the thickness parameters
hs and hf.
σSC in Eq. A.2 represents the macroscopic residual stress in the film calculated using

the curvature method (denoted by letter C) and expressed in the sample coordinate
system S (Fig. A.1). Using a powder diffractometer equipped with two axes (θ/θ
goniometer), the substrate curvature R can be determined by the measurement of
rocking curves on substrate symmetrical reflections (e.g. Si 400) at different sample
positions xi as demonstrated in Fig. A.2(a). The radius of substrate curvature can be
calculated according to [12]

R =
∆x

2 sin(∆ω/2)
(A.3)

For a homogeneous thin film that is unpassivated, the stress state in the plane of
the film can be considered isotropic and biaxial according to

σS11 = σS22 = σSC, σ
S
12
∼= 0 and σSi3 ∼= 0. (A.4)

The residual stress state in the thin film corresponds to spatially uniform deformation
of the stress-free plane in the substrate (Fig. A.1). If the substrate is under the film,
concave
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Figure A.1: Definition of the coordinate systems used in this work. S and L refer to the sample and
laboratory coordinate systems, respectively. The diffraction characterization of a sample
at different tilt angles ψi allows the determination of the elastic strain in the film.

Figure A.2: Schematic description of the diffraction procedures used in this work. (a) The charac-
terization of the radius of substrate curvature R was performed by measuring rocking
curves of Si 400 reflections, locking the angle between the primary ~k0 and secondary
~k1 diffraction vectors to 69.13◦. The measurements were performed at different sample
positions xi , differing 2 mm laterally. From the angular positions ωi, the corresponding
angle ∆ω between the scattering vectors ~Hxi

400 was determined. (b) Applying a detector
scan mode and a constant incident angle of 5◦, the lattice spacings of various TiN and
CrN (hkl)i crystallographic planes with specific diffraction vectors ~Hψi

hkl forming differ-
ent angles ψi with the sample normal S3 were determined. (c) Elastic strains in TiN
and CrN were determined by the characterization of 422 reflections at different sample
tilt angles ψi.
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and convex bending of the composite corresponds to tensile and compressive stresses
in the film, respectively. Due to the in-plane symmetry and the spherical deformation
of the stressfree plane in the substrate, the magnitude of the residual stress can be
determined from the substrate curvature measurement performed along an arbitrary
in-plane direction. Similarly, the magnitude of elastic deformation in the film can be
determined by the diffraction measurement of crystallographic planes oriented parallel
to any in-plane film direction. For this reason, the characterization of residual stress
in the film can be performed by tilting the sample around one goniometer axis lying
in the film surface: the so-called ω geometry.

Consequently, the diffraction scan of an hkl reflection with the scattering vector ~Hψ
hkl,

carried out at an orientation specified by angle ψ (Figs. A.1, A.2b and A.2c), can be
used to determine the average interplanar spacing of the family of crystallographic
planes (hkl). Applying the unstressed lattice spacing dhkl0 , the experimental elastic
strain εhklψ along the direction L3 (Figs. A.1 and A.2c) is consistent with the component{
εL33

}hkl
ψ

(of the strain tensor
{
εLij

}hkl
defined in the L system) and can be expressed

as

εhklψ =
dhklψ − dhkl0

dhkl0

=
{
εL33

}hkl
ψ

= a3ia3j

{
εSij
}hkl

(A.5)

where
{
εSij

}hkl
is the elastic strain in the sample coordinate system S and aij is a

rotation matrix characterizing the transformation between laboratory L and sample S
coordinate systems (Fig. A.1). The measured elastic strain calculated for the reflection
hkl and for the sample orientation defined by angle ψ can be related to the macroscopic
stress as follows: {

εL33

}hkl
ψ

= Fij(hkl, ψ)σSij . (A.6)

The stress factors Fij(hkl, ψ) represent a tensor function [13]. Considering the con-
ditions in Eq. A.4 and the in-plane isotropic biaxial stress state,{

εL33

}hkl
ψ

= [F11(hkl, ψ) + F22(hkl, ψ)]σSD, (A.7)

where σSD represents the macroscopic in-plane residual stress determined by a diffrac-
tion measurement (denoted by letter D). The term σSD represents a quantity depending
significantly on the size of the irradiated volume, and on the sample position from which
the scattering signal originates, and is associated only with one crystalline phase of the
film. The term σSC (Eq. A.2) expresses the macroscopic deformation imposed on the
film as a geometrical and a mechanical element whereby the composition, the structure
of the film, the number of phases, as well as the physical inhomogeneity within the
film, are not considered [14]. If the lattice-spacing characterization is performed on
the representative film volume consisting of only one phase and the mechanical state
of that volume can be assessed by the Stoney formula, the measured elastic strain{
εSij

}hkl
(Eq. A.7) then be related to the macroscopic stress σSC (Eq. A.2). Inserting
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the macroscopic in-plane residual stress σSC (Eq. A.2) calculated using the curvature
method into Eq. A.7 (σSD = σSC), the stress factor F11(hkl, ψ) +F22(hkl, ψ) component
can be readily determined for the specific thin film. This provides an opportunity to
determine experimental stress factors Fij(hkl, ψ) on the basis of the static diffraction
measurement, which allows linking of the macroscopic stress imposed on the film and
the elastic response of the crystal lattice of the specific phase. It should be emphasized
that the experimental stress factors Fij(hkl, ψ) (Eq. A.6) express the mechanical prop-
erties of the specific thin film deposited under specific deposition conditions and being
distinguished by distinct morphology, nanostructure, porosity, etc. Consequently, the
experimental stress factors can be applied to calculate residual stresses in thin films
which possess identical or at least very similar structural and mechanical properties as
that one on which the experimental stress factors Fij(hkl, ψ) were determined.

Subsequently, when characterizing another thin film which is structurally, chemi-
cally and mechanically identical to that used for the determination of stress factors,
the unknown inplane residual stress σSU in the film (distinguished by the letter U) can
be calculated according to

σSU =

{
εL33

}hkl
ψ

[F11(hkl, ψ) + F22(hkl, ψ)]
, (A.8)

whereby
{
εL33

}hkl
ψ

represents the diffraction data obtained from the film with un-
known stresses. It must be emphasized here that the characterization of the new thin
film with the unknown stress σSU should be performed under identical experimental
conditions (same hkl reflection choice and sample tilt angles ψi) as were used to char-
acterize stress factors.

When strain characterization is performed at N distinct sample orientations speci-
fied by the angles ψi, the unknown stress σSU is

σSU =
1
N

N∑
i=1

{
εL33

}hkli
ψi

{F11[(hkl)i, ψi] + [F22(hkl)i, ψi]}
. (A.9)

Eq. A.9 can be simplified and the unknown residual stress σSU can be expressed as

σSU = σSC

∑N
i=1

∣∣∣{dhklψi

}
U
− dhkl0

∣∣∣∑N
i=1

∣∣∣{dhklψi

}
C
− dhkl0

∣∣∣ (A.10)

where
{
dhklψi

}
U

and
{
dhklψi

}
C

represent lattice-spacing measurements performed on

the sample with unknown stress (U) and on the sample (C) where the macroscopic
stress σSC was determined using the curvature method, respectively. In this section, the
methodology was formulated to allow the information from the residual stress char-
acterization performed using the curvature method and the elastic strains determined
using diffraction at different sample tilt angles ψ to be combined. Generally, thin films
possessing a residual stress are in a state of recovery and, with time, the stress can
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relax. This effect is observed especially in the case of metallic films. For this reason,
when determining the experimental stress factors, the characterization of the macro-
scopic stress and the elastic strain should be performed within a relatively short time
interval.

A.3 Experiment

TiN and CrN thin films were deposited using reactive magnetron sputtering in
laboratory-scale (TiN, [15], [16]) and industrial-scale (CrN, Balzers RCS) deposition
systems. Monocrystalline Si(100) wafers with thicknesses of 124 and 325 µm and di-
mensions 30 x 7 mm were used. The wafers were covered with SixO1-x and SixN1-x

layers, each with thickness 50 nm. Additionally, steel substrates with the lateral di-
mensions 10 x 10 mm and thickness 1 mm were prepared by mechanical and subsequent
electrolytic polishing. The substrates were ultrasonically cleaned in acetone and alco-
hol prior to deposition. A TiN thin film with thickness of 0.5 mm was deposited on
steel and on 124 mm thick Si(100) substrates during one deposition run in which the
substrate temperature was 753 K. Similarly, a 3 µm thick CrN thin film was deposited
on steel and on 325 µm thick Si(100) substrates at a temperature of 623 K.

The structural characterization of the films was performed under laboratory condi-
tions using a powder diffractometer equipped with two circles (θ/θ goniometer) en-
abling movement of the X-ray source (tube) and the detector independently, whereby
the sample is fixed and the film surface is oriented horizontally. The main reason for
the use of this type of goniometer was to verify the approach of applying a relatively
simple laboratory device. The setup comprised Cu Kα radiation, a parallel beam pro-
duced by an X-ray mirror, line focus and an energy dispersive point detector. The
samples were characterized using the following approaches.

(a) The radius of curvature of two Si(100) substrates was determined by the mea-
surement of rocking curves of Si 400 reflections by locking the X-ray source and the
detector to the 2θ value of 69.13◦. The measurements were performed at different
sample positions xi, differing 2 mm laterally. From the angular positions ωi, the corre-
sponding angle ∆ω between the scattering vectors ~Hxi

400 was determined (Fig. A.2a).
(b) After setting the incident angle to 5◦, the diffraction scans were measured us-

ing the detector scan mode applying the 2θ range of 33-155◦. In this way, the lattice
spacings of various (hkl) crystallographic planes with specific diffraction vector ~Hψi

hkli
forming different angles ψi with the sample normal S3 were determined (Fig. A.2b).

(c) The lattice spacing dhklψ of TiN and CrN 422 reflections was determined at differ-
ent sample tilt angles ψi. The angles between the sample normal S3 and the diffraction
vector ~Hψi

422 were 0, 18, 26, 33, 39, 45, 51 and 57◦, resulting in a ∆ sin2 ψ step of 0.1
(Fig. A.2c).
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Figure A.3: sin2 ψ plots for the 0.5 µm TiN thin film deposited on 124 µm thick Si(100) and on
1 mm thick steel substrates are represented by filled and empty symbols, respectively.
The lattice parameters were obtained by the measurement of (a) 422 and (b) various hkl
reflections, applying the procedures described in Figs. A.2(c) and A.2(b), respectively.
The maximal standard error is 0.0003 Å.

Figure A.4: sin2 ψ plots for the 3 µm CrN thin film deposited on 325 µm thick Si(100) and on 1 mm
thick steel substrates are represented by filled and empty symbols, respectively. The
lattice parameters were obtained by the measurement of (a) 422 and (b) various hkl
reflections applying the procedures described in Figs. A.2(c) and A.2(b), respectively.
The maximal standard error is 0.0003 Å.

A.4 Results and discussion

In Figs. A.3(a) and A.4(a), the lattice parameters of TiN and CrN thin films deter-
mined by the diffraction measurement of 422 reflections [cf. (c) in §3] are presented as
a function of sin2 ψ. In Figs. A.3(b) and A.4(b), lattice parameters of TiN and CrN
thin films determined by the measurement of various hkl reflections [cf. (b) in §3] are
presented. The data in Figs. A.3 and A.4 show that the dependencies are not linear
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and cannot therefore be evaluated by applying isotropic X-ray elastic constants (XEC)
s1 and 1

2s2 [2].

Figure A.5: Intensity as a function of ψ collected at 2θ positions corresponding to 422 reflections. The
results indicate that the films deposited on different substrates possessed very similar
preferred orientations.

Samples from Figs. A.3 and A.4 were additionally analysed by pole-figure measure-
ments. The results indicated that TiN and CrN films possessed fibre textures with
more fibre components. In Fig. A.5, intensity distributions as a function of angle
show that the films possess a similar preferred orientation. It should be noted that the
four samples analysed in this work were selected from a larger set of samples, where
the similarities in texture between samples deposited on Si(100) and steel were the
main criteria. Further, it was assumed that the TiN and CrN deposited on different
substrates possess very similar mechanical and structural properties and therefore the
conditions specified in §2 apply.

The dependencies in Figs. A.3(a) and A.4(a) were fitted using cubic polynomial
functions and the unstressed parameters a0 of TiN and CrN were determined from the
interception of sin2 ψ plots (Tab. A.1). Considering the measurement errors and the
scattering of the data in Figs. A.3(a) and A.4(a), the error associated with the a0

determination was estimated to be 0.001 Å[17]. For comparison, a similar procedure
was applied to the plots in Figs. A.3(b) and A.4(b). It is assumed that the values
extracted from Figs. A.3(a) and A.4(a) correspond to the real unstressed lattice pa-
rameters, whereas the values in Figs. A.3(b) and A.4(b) are only estimates, presented
here for comparison.

The results from rocking-curve measurements performed on Si 400 reflections, namely
the relative ωi positions of the peaks as a function of xi, are presented in Fig. A.6.
The results indicate that, in the case of TiN/Si(100) structure, the thinner substrate
serves as a more sensitive ”sensor” to determine the curvature. The stress magnitude
was calculated from the curvature data using Eq. A.2 and indicates relatively high
compression in TiN and CrN films on Si(100) (Tab. A.1).

Experimental results of the elastic strain characterization (Figs. A.3 and A.4) and
the macroscopic residual stresses (Tab. A.1) were used to calculate stress factors of
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the films deposited on Si(100) using Eq. A.7. The stress factors for TiN and CrN films
are presented in Fig. A.7.

Figure A.6: Plots of ∆ω dependence on ∆x for TiN/Si(100) and CrN/(100) samples (Tab. A.1)
obtained by the procedure of Fig. A.2(a). The results show different radii of substrate
curvature R, which were used to calculate the macroscopic stress (Eqs. A.2 and A.2).
The maximal standard error is 0.01◦

Figure A.7: Experimental stress factors for (a) TiN and (b) CrN thin films. The factors were cal-
culated from the data in Figs. A.3 and A.4, applying Eq. A.10 and unstressed lattice
parameters (Tab. A.1).
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After determining the stress factors for the films deposited on Si(100), residual
stresses were evaluated for the films deposited on steel. Applying the experimental
stress factors (Eq. A.7) and the unstressed lattice parameter (Tab. A.1), the unknown
stresses in TiN and CrN on steel were determined using Eqs. A.9 and A.10 (Figs.
A.3(a) and A.4(a), and A.3(b) and A.4(b), and methods (c) and (b) in §3, respec-
tively). The calculated stress values are presented in Tab. A.1 and show that the
application of unstressed lattice parameters obtained using two procedures [namely
from the intercepts in Figs. A.3(a) and A.4(a), and Figs. A.3(b) and A.4(b)] yields
similar values. The maximum error associated with the determination of the stress
values was estimated to be about 25%.

The results in Tab. A.1 show that the stresses in films on steel are about 2.4 times
higher than those for films on Si(100). This can be explained by the specific mismatch
of thermal expansion coefficients (TECs) of TiN, CrN, Si and steel [15, 18, 19]. Ad-
ditionally, the stress values determined from the measurements performed using the
procedures (b) and (c) in §3 are comparable and show that the method presented in
this work is not sensitive to the reflection choice.

For practical purposes, the determination of the experimental stress factors can be
F11 [(hkl)i, ψi] + F22 [(hkl)i, ψi] performed only for one reflection hkli at the specific
tilt angle ψi. The evaluation of the unknown residual stresses in other samples can
then be carried out also on the basis of one reflection measurement and by applying
the known stress factors. The critical point in this case is the determination of the
unstressed lattice spacing dhkl0 when calculating F11 [(hkl)i, ψi] +F22 [(hkl)i, ψi] for the
sample with known macroscopic stress σSC (Eq. A.2). In this case, satisfactory data
were obtained by the measurement of two diffraction peaks with relative large ∆ψ
angular difference when determining F11 [(hkl)i, ψi] + F22 [(hkl)i, ψi].

It should be noted that extensive experiments were performed also for other sub-
strate thicknesses when testing the method presented in this work. It was found that
the application of relatively thin substrates (about 100 µm or thinner) can result in the
sample cracking. Conversely, the application of thick substrates often caused film rup-
ture or resulted in very weak substrate bending which was not possible to characterize.
Another problem occurred when films exhibited very low stress after deposition and
therefore resulted in negligible substrate bending. For the above reasons, the selection
of a substrate material with suitable thickness and TEC is an important prerequisite
in order to apply the method presented in this work.

The TiN and CrN structures analysed in this work were selected from a larger set
of samples in which the films were deposited on various substrates (e.g. Al2O3, SiO2 ,
NaCl). It was observed that the films grow on some substrates with various preferred
orientations or even heteroepitaxially. Therefore, the method presented in this work
cannot be applied generally, but only in special cases. In the future, a general method-
ology should be formulated allowing the recalculation of the experimental stress factors
for thin films possessing different textures.

The application of the Stoney formula (Eq. A.2) is not naturally limited only to
monocrystalline substrates. Polycrystalline substrates with known mechanical prop-
erties can also be used as a mechanical sensor. In that case, the curvature of the
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A.5 Conclusions

film/substrate composite can be determined by X-ray diffraction characterization of
the orientation of the film fibre axis using ω scans at different sample positions.

It is believed that in the future this technique will be an effective method to study
elastic interactions in nanoscale materials deposited on monocrystalline substrates, es-
pecially at high temperatures.

A.5 Conclusions

A new method for the determination of experimental stress factors in thin films on the
basis of static diffraction measurements is introduced. The approach is based on the
diffraction characterization of substrate curvature and lattice spacing at different sam-
ple tilt angles for the film/substrate structure, with the known mechanical properties
of the substrate serving as a mechanical sensor and for calibration.

The new method is demonstrated for nanocrystalline TiN and CrN thin films de-
posited on Si(100) and steel substrates and characterized using a θ/θ goniometer. The
characterization of the experimental stress factors and absolute residual stresses is
straightforward and provides an opportunity to determine stresses in films exhibiting
non-linear sin2 ψ in a rapid way.

This work was supported by the country of Styria within the project Multimeth-
odenanalytik Nanoteilchen und Nanoteilchenverbunden, and by the Austrian NANO
Initiative via a grant from the Austrian Science Fund FWF within the project Stress-
Design Development of Fundamentals for Residual Stress Design in Coated Surfaces.
A part of this work on thin-film deposition was also financially supported by the Chris-
tian Doppler Society and the companies Plansee AG (Reutte, Austria) and Balzers AG
(Balzers, Liechtenstein).
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B
Stress factors and absolute residual

stresses in thin films determined by the
combination of curvature and sin2ψ

methods

K.J. Martinschitza, E. Eipera, J. Keckesa

aErich Schmid Institute of Materials Science, Austrian Academy of Sciences,
A–8700 Leoben, Austria

Abstract A new method is presented which allows the determination of experimen-
tal stress factors in anisotropic thin films on the basis of static diffraction measurement.
The method is based on the simultaneous characterization of macroscopic stress and
elastic strain in thin film using substrate curvature and sin2 ψ methods, respectively.
The curvature of monocrystalline substrate with known mechanical properties is de-
termined using rocking curve measurements on substrate symmetrical reflections. The
experimental stress and strain values are used to calculate stress factors for the specific
film as a function sample tilt angle and reflection measured. The approach represents a
relatively simple recipe to determine residual stress magnitude in thin films on the ab-
solute scale. The procedure is demonstrated on polycrystalline Cu thin film deposited
on Si(100).
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B.1 Introduction

B.1 Introduction

The determination of residual stresses in thin films requires an application of stress
factors Fij expressing the elastic properties of the material and linking experimen-
tal elastic strain and unknown residual stress [1]. The application of stress factors
is necessary especially in the case of anisotropic thin films where the elastic prop-
erties depend on sample orientation. One possibility to determine the stress factors
experimentally is the in-situ determination of elastic strains as a function of external
mechanical load applied to the film [2, 3]. The mechanical loading is usually performed
by four-point bending or by tensile straining while the in-situ technique requires the
use of dedicated diffractometer attachments. Alternatively, theoretical stress factors
of thin films can be calculated on the basis of single crystal elastic constants, the ori-
entation distribution function and the supposed elastic interaction between the grains
[4–6]. The calculation of stress factors is usually a laborious task since the orientation
distribution function of the crystallites must be determined experimentally and the
application of the specific elastic interaction model is not trivial. Another problem
lies in the fact that the theoretical stress factors are calculated on the basis of bulk
elastic constants of known materials. For new or non-stoichiometric materials with
unknown compliances, the application of the method is complicated. The main aim
of this contribution is to introduce a simple experimental procedure which allows the
determination of experimental stress factors in thin films with arbitrary texture on the
basis of static diffraction measurement. The approach is based on the combination of
substrate curvature and sin2 ψ method and is demonstrated on Cu thin film deposited
on monocrystalline Si(100) substrate.

B.2 Methodology

Strain characterization by diffraction (Fig. B.1) provides information on the local
mechanical properties of thin film. When performed with a relatively large X-ray
beam (few mm2 in cross section), a sufficiently large volume is irradiated and the
diffraction data can be considered to express statistically representative information
on the structural properties and mechanical state of the film on the macroscopic level.
Furthermore, it can be supposed that the thin film is homogeneous, in-plane isotropic
and the equilibrium conditions for a free surface are valid. Consequently, the residual
stresses σij in thin film can be considered as biaxial and in-plane isotropic whereby
following conditions can be applied [7]

σ11 = σ22, σ12
∼= 0 and σi3 ∼= 0. (B.1)

The diffraction scan of hkl reflection with the scattering vector ~Hψ
hkl carried out at a

sample orientation specified by angle ψ (Fig. B.1b) can be used to determine an average
interplanar spacing dhklψ of the family of crystallographic planes (hkl). Applying the
unstressed lattice spacing dhkl0 , the experimental elastic strain εhklψ along the diffraction

vector ~Hψ
hkl (Fig. B.1b) can be expressed as
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εhklψ =
dhklψ − dhkl0

dhkl0

= Fij(hkl, ψ)σij . (B.2)

Figure B.1: A schematic description of the diffraction procedures. (a) The radius of substrate cur-
vature R was determined by measuring rocking curves of Si 400 reflections locking the
angle between the primary ~k0 and secondary ~k1 diffraction vectors to 69.13 degrees. The
measurements were performed at different sample positions xi differing 1 mm laterally
and, from the angular positions ωi , the corresponding angle ∆ω between the scatter-
ing vectors ~Hxi

400 was determined (b) Elastic strains in Cu film were determined by the
characterization of hkl reflections at different sample tilt angles ψi where ψi represent
the angle between sample normal ~n and the diffraction vector ~Hψi

hkl.

The stress factors Fij(hkl, ψ) depend on the specific reflection measured, sample
orientation, orientation distribution function and elastic interaction between the grains.
Considering the condition Eq. B.1 and in-plane isotropic biaxial stress state

εhklψ = (F11(hkl, ψ) + F22(hkl, ψ)σD
11, (B.3)

where σD
11 represents the in-plane residual stress determined by a diffraction mea-

surement (specified by letter D).
When the thin film is deposited on a substrate with known mechanical properties,

like monocrystalline Si(100), and the film thickness is at least 100 times smaller than
that of the film, the radius of the substrate curvature R can be used to determine the
stress imposed on the films using the Stoney formula [8].

σC =
E

6 (1− ν)
h2

s

hf

1
R
, (B.4)

where hs and hf represent the substrate and film thickness, respectively, and the
term E/(1− ν) is the biaxial modulus of the substrate. σC represents the macroscopic
residual stress in the film calculated using the curvature method (specified by letter
C). The substrate curvature R can be determined by the measurement of rocking
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B.3 Experiment

curves on substrate symmetrical reflections (e.g. Si 400) at different sample positions
xi as demonstrated in Fig. B.1b. The radius of substrate curvature can be calculated
according [9]

R =
∆x

2 sin(∆ω
2 )

. (B.5)

Supposing the lattice spacing characterization is performed on the representative
film volume consisting only of one phase and the mechanical state of that volume can
be assessed by the Stoney formula, the measured elastic strain εhklψ (Eq. B.2) can
be related to the macroscopic stress σC (Fig. B.4). By inserting the macroscopic
in-plane residual stress σC (Eq. B.4) calculated using the curvature method into Eq.
B.3 (σD

11=σC), the stress factor component F11(hkl, ψ) + F22(hkl, ψ) can be easily
determined for the specific thin film.

(F11(hkl, ψ) + F22(hkl, ψ)) =
εhklψ

σC
. (B.6)

It should be emphasized that the experimental stress factors F11(hkl, ψ)+F22(hkl, ψ)
(Eq. B.6) express the mechanical properties of the specific thin film deposited under
specific deposition conditions and being distinguished by distinct morphology, nanos-
tructure, porosity, etc. Subsequently, when characterizing another thin film which is
structurally, chemically and mechanically identical with that used for the determina-
tion of stress factors, the stress factors F11(hkl, ψ) +F22(hkl, ψ) can be used to deter-
mine the residual stress in the film. In case the strain characterization is performed at
N distinct sample orientations specified by the angles ψi, the unknown stress σU

11 can
be calculated according

σU
11 = σC

∑N
i=1

∣∣∣{dhklψi

}
U
− dhkl0

∣∣∣∑N
i=1

∣∣∣{dhklψi

}
C
− dhkl0

∣∣∣ (B.7)

where
{
dhklψi

}
U

and
{
dhklψi

}
C

represent lattice spacing of the sample with unknown

stress (U) and of the sample (C) where the macroscopic stress σC was determined
using the curvature method, respectively.

B.3 Experiment

A 140 µm thick rectangular Si(100) wafer with the dimensions of 5 x 35 mm2 was
used as a substrate. The wafer was cleaned using isopropanol and acetone and, more-
over, ion etching was applied before the Cu deposition to remove contaminants from
the surface. Cu thin film with different thickness 2.7 µm was deposited by balanced
magnetron sputtering using a copper target, in argon atmosphere at room tempera-
ture. The sample was annealed in N2 atmosphere at 400 ◦Cfor 10 minutes in order to
increase the residual stress magnitude in the film. The structural characterization of

B–5



B

B Stress factors and absolute residual stresses in thin films...

the Cu/Si(100) structure was performed under laboratory conditions using a powder
diffractometer equipped with two circles (θ/θ goniometer) enabling to move the X-ray
source (tube) and the detector independently whereby the sample is fixed and the film
surface is oriented horizontally. The setup included CuKα radiation, a parallel beam
produced by an X-ray mirror, line focus and an energy dispersive point detector. The
sample was characterized using two following approaches:

(a) the radius of curvature of Si(100) substrate was determined by the measurement
of rocking curves of Si 400 reflections by locking the X-ray source and the detector to
the 2θ value of 69.13 degrees. The measurements were performed at different sample
positions xi differing 1 mm laterally and, from the angular positions ωi, the corre-
sponding angle ∆ω between the scattering vectors ~Hxi

400 were determined (Fig. B.1a).
(b) the lattice spacing dhklψ of Cu 420, 400 and 222 reflections were determined at

different sample tilt angles ψi (Fig. B.1b).

B.4 Results and Discussion

Results from rocking curve measurements on symmetrical Si 400 reflections, namely
the relative ωi position of the peak as a function of xi, are presented in Fig. B.2. The
ratio ∆ω/∆x was used to calculate the radius of substrate curvature R=1.84 m and
the macroscopic stress imposed on the film σC =118 MPa applying E/(1 − ν)=181
GPa (Eqs. B.4, B.5).

Figure B.2: A plot of ∆ω dependence on ∆x (Fig. B.1a). The result documents a specific radius of
substrate curvature R=1.84 m which was used to calculate the macroscopic stress σC in
the Cu film (Figs. B.4, B.5).

In Fig. B.3, sin2 ψ plot for Cu 420,400 and 222 reflections are shown. The differ-
ent slopes of the linear dependencies document anisotropy of the Cu thin film. The
intercept of the curves yields the unstressed lattice parameter a0 = 3.6147 ± 0.0005
Å. Following the usual data evaluation procedure, the results in Fig. B.2 can be used
to determine the residual stress in the Cu thin film using appropriate X-ray elastic
constants shkl1 and 1

2s
hkl
2 . In this work, a different approach is applied. The experi-

mental data from Fig. B.2 and the known macroscopic stress σC =118 MPa are used
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Figure B.3: sin2 ψ plots for 2.7 µm Cu thin film deposited on 140 µm thick Si(100) substrate. The
lattice parameters were obtained by the measurement of Cu hkl reflections with the
precision ±0.0003 Å at different sample tilt angles ψi applying the procedures described
in Fig. B.1b.

to calculate experimental stress factors F11(hkl, ψ) + F22(hkl, ψ) using Eq. B.6 and
applying the condition σD

11 = σC.

Figure B.4: Experimental stress factors F11(hkl, ψ) + F22(hkl, ψ) calculated using Eq. B.6 on the
basis of the diffraction measurements in Fig. B.2 and the macroscopic stress σC=118
MPa determined using Eq. B.4.

The stress factors in Fig. B.4 characterize the mechanical response of the Cu thin
film which is in the state of creep. The factors are dependent on the sample tilt angle
ψ and also on the specific reflection hkl. Consequently, the factors can by applied
to determine the absolute magnitude of residual stress in structurally identical or
comparable thin film deposited on any type of substrate using Eq. B.7. Since the
stress factors were calculated for distinct ψi orientations this procedure can be easily
applied also in the case of thin films exhibiting non-linear sin2 ψ plots. In the future,
it is planed to use the relatively simple method to determine the stress factors at high
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temperatures.

B.5 Summary

A methodology to determine experimental stress factors in anisotropic thin films by
combing substrate curvature and sin2 ψ methods is formulated. The approach allows
to determine absolute residual stresses in thin films. The approach is applied to poly-
crystalline Cu thin film deposited on Si(100) serving as a mechanical calibration.
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Abstract CrN, Cr and CrN/Cr coatings were deposited at 350 ◦C on monocrys-
talline Si(100) and polycrystalline austenitic stainless steel substrates by magnetron
sputtering using Cr targets in Ar + N2 atmosphere. The stress evolution in the coat-
ing systems were characterized using X–ray diffraction and wafer curvature technique
in the temperature range of 25-550 ◦C. Both techniques revealed larger stresses in
coatings deposited on the steel substrates. The heat treatment reduces the deposition
point defect concentration, which is reflected in a decrease of intrinsic stresses in Cr
and CrN coatings. Additionally, roughness of the Cr films decreases. The stresses in
the individual sublayers of the CrN/Cr bilayer coatings indicate that the constraint
imparted by the CrN layer on the buried Cr layer prevents a stress relaxation in Cr
since no stress hysteresis is observed during heating and cooling. The intrinsic stresses
of CrN are −3.4 ∗ 109 Pa on the steel substrate and −1.7 ∗ 109 Pa on the Si(100) sub-
strate. For Cr intrinsic stresses of −1.35 ∗ 109 Pa are obtained on steel and −0.7 ∗ 109

Pa on Si(100). The intrinsic stresses of CrN in the CrN/Cr bilayer system remains
at −3.4 ∗ 109 Pa on the steel but increases to −2.8 ∗ 109 Pa on the Si(100) substrate.
As a result of the annealing cycle, a stress relaxation of approximately 1.3 ∗ 109 Pa is
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obtained for CrN on steel but 3.4 ∗ 109 Pa are relaxed for CrN in the CrN/Cr/steel
system.
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Table C.1: A list of samples characterized using XRD and WCT

Substrat Si(100) or austenitic stainless steel
Cr thickness (µm) 0 2 3
CrN thickness (µm) 3 1 0

C.1 Introduction

Hard coatings based on CrN or TiN are routinely used to protect bulk materials from
abrasion and corrosion [1, 2]. The application of those coatings demands an optimiza-
tion of deposition processes [3–5] in order to design coating/substrate systems with
improved thermal and mechanical performance. The optimization resides primarily
in the engineering of coating nano–structure, residual stress state, interface properties
and thermo–mechanical behaviour [6–9].

Residual stresses play a decisive role in coating thermomechanical behaviour. In or-
der to design coatings with improved thermal fatigue resistance, it is of great interest
to assess temperature–induced changes in the residual stresses. A common way to look
at the changes in the residual stress occurring during thermal cycling is to perform
in–situ stress characterization using X–ray diffraction (XRD) and/or wafer curvature
technique (WCT). The stress-temperature evolution usually indicates changes caused
by defect annihilation, diffusion, changes in nano–structure and recrystallisation.

In the case of multilayered coatings based on the CrN system deposited on steel,
temperature–dependent studies of stresses using XRD are relatively rare. The main
reason is that those coatings usually exhibit residual stress gradients and gradients
of texture with more than one texture component. Moreover, CrN shows relatively
strong mechanical anisotropy and therefore the stress characterization using XRD is a
complex task since exact X–ray elastic constants (XECs) are usually unknown.

The main aim of this work is to perform a temperature–dependent characterization
of stresses in CrN/Cr multilayer systems using XRD and to compare stress values
obtained using XRD and WCT at temperatures up to 550 ◦C. Moreover, the resid-
ual stresses of CrN/Cr systems deposited on Si(100) and austenite stainless steel are
compared.

C.2 Experimental details

C.2.1 Deposition of the CrN/Cr coating systems

As substrate for specimen preparation, 300 µm thick one side polished Si(100) wafers
without oxide or nitride layer, cleaned using isopropanol and acetone were used. More-
over, austenitic stainless steel sheets with a thickness of about 500 µm were mechani-
cally and electrolytically polished. Both types of substrates were coated with CrN and
Cr using magnetron sputtering with a Cr target in an Ar + N2 atmosphere at 350 ◦C,
1 Pa with a partial pressure of 0.25 Pa for N2 and 0.75 Pa for Ar, respectively. The
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Table C.2: Room–temperature SECs of Cr [12] and CrN [13]. The anisotropy factor was calculated
using the formula A = 2C44/(C11 − C12) and the room-temperature XECs using the
software ElastiX [14].

Coating C11 C44 C12 A sRT,111
1

1
2s
RT,111
2

(1011 Pa) (1011 Pa) (1011 Pa) (10−11 Pa) (10−11 Pa)
CrN 5.42 0.88 0.27 0.34 −0.0923 0.4446
Cr 3.50 1.01 0.68 0.72 −0.0854 0.4613

bias voltage was −80 V for CrN and −40 V for Cr. Tab. C.1 summarizes the samples
investigated in this study. In bilayer systems CrN was always the top layer.

C.2.2 AFM characterization

The surface topography of the coatings was analysed before and after the thermal
treatment using a DI Dimension 3100 Atomic Force Microscope (AFM). An area of
10*10 µm was imaged using contact mode.

C.2.3 X–ray diffraction characterization

The structural characterization of the coatings was performed using a four circle diffrac-
tometer. Parallel beam geometry with a polycapillary optics on the primary side and
Soller slits, a graphite monochromator and a scintillation detector on the secondary
side was used. The measurements were performed with Cu Kα radiation. Basic struc-
tural properties of the coatings before and after thermal cycling were determined using
θ/2θ scans in order to analyse possible changes in texture and microstructure. The
scans were taken in the 2θ range 35-140 ◦C with a step size of 0.02 ◦ and counting time
of 1 s.

Residual stresses in the coatings were characterized in the temperature range of 25-
550 ◦C in N2 atmosphere using the sin2 ψ method with ∆ sin2 ψ = 0.1. The heating
was performed at a constant heating rate of 18 ◦C/min using an Anton Paar heating
chamber DHS 900 [10, 11]. The lattice spacing dT,hklψ measured at the temperature T ,
reflection hkl and the sample tilt angle ψ was used to calculate the in–plane isotropic
biaxial residual stress σT according to

dT,hklψ = dhkl0

(
1 + σT

[
2sT,hkl1 +

1
2
sT,hkl2 sin2 ψ

])
(C.1)

where sT,hkl1 and 1
2s
T,hkl
2 are the XECs of the individual coating materials. It was

supposed that the stresses are in–plane isotropic, i.e. σT = σT11 = σT22. XECs for
CrN and Cr layers were calculated from the single–crystal elastic constants (SECs)
assuming the Hill model and using the software ElastiX [14]. For simplicity, it was
supposed that the coatings are mechanically isotropic. Temperature–dependent SECs
of Cr are referenced in [12] but there are no temperature dependent data of SECs for
CrN available. For this reason, room–temperature XECs of CrN were applied in the
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whole temperature range. The room–temperature SECs of CrN and Cr are repeated in
Tab. C.2. The stress values calculated according to Eq.(C.1) remain accurate within
an error interval of ±5 % using standard deviation of sin2 ψ slopes in Gaussian error
propagation formula of Eq.(C.1).

C.2.4 Wafer curvature technique

The macroscopic stress σT in the coatings deposited on Si (100) substrates was char-
acterized using WCT. The coatings were thermally cycled between 25 and 550 ◦C in
vacuum (pressure ≤ 10−3 Pa) at a heating/cooling rate of 5 ◦C/min. The radius R of
the bending of the Si(100) substrate was determined as a function of temperature by
an optical method based on two parallel laser beams. The macroscopic stress σ was
then calculated by the modified Stoney’s formula [15]:

σ =
E

6 (1− ν)
h2

s

hf

1
R

(C.2)

Here, E/(1 − ν) = 181 ∗ 109 Pa [15] is the biaxial Young’s modulus of the Si(100)
substrate. hf and hs are the thicknesses of the film and substrate, respectively. The film
and substrate thickness of the single layer were determined by analysing cross–sections
of scanning electron microscopy images. The stress values calculated according to
Eq.(C.2) remain within an error interval of ±5 % using standard deviation of rocking
curve slopes in Gaussian error propagation formula of Eq.(C.2).

C.3 Results and discussion

C.3.1 Surface topography

The surface topography of the coatings was analysed before and after the thermal
treatment using Atomic Force Microscopy. The AFM images of the CrN, CrN/Cr and
Cr coating on steel recorded before and after annealing at 550 ◦C are compared in Fig.
C.1. For CrN, the surface morphology remains unchanged by annealing. This holds
also true for the CrN top layer in Cr/CrN coatings. The Cr coating exhibits a small
reduction in averaged surface roughness from 5.13 nm to 4.34 nm and a reduction in
root mean square roughness from 6.46 nm to 5.71 nm (Fig. C.1). The reduction in
root mean square roughness of Cr indicates that surface inclusions or hillocks can be
neglected at those temperatures as mechanisms for stress relaxation.

C.3.2 Residual stresses in the coatings

On the basis of XRD θ/2θ scans, CrN (111) and Cr (111) reflections were selected
in order to determine the elastic strain in the coatings using the sin2 ψ method. In
Fig. C.2 representative sin2 ψ data of 3 µm thick CrN coatings are presented. Since
both coatings exhibit a nearly linear behaviour of the lattice parameter a as function
of sin2 ψ, the stresses were calculated using the isotropic XECs listed in Tab. C.2.
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Figure C.1: AFM images of CrN, CrN/Cr and Cr on steel before and after annealing. Cr shows a
smaller surface roughness after annealing whereas CrN roughness is the same before and
after annealing. The first number is the averaged roughness and the second number is
the root mean square roughness. a) 3 µm CrN on steel before annealing, b) 3 µm Cr
on steel before annealing, c) 1 µm CrN on 2 µm CrN/steel before annealing, d) 3 µm
CrN on steel after annealing, e) 3 µm Cr on steel after annealing, f) 1 µm CrN on 2 µm
CrN/steel after annealing.

Figure C.2: sin2 ψ plots of CrN on Si(100) and steel substrate to check stress state. It would be
much harder to deal with non–linearities as with linear behaviour. This plot shows the
linear behaviour of both CrN coatings except at low polar angles ψ.
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Figure C.3: Stress in 3 µm CrN on Si(100) measured with X–rays and waver curvature method and
3 µm CrN on steel measured with X–rays. TD is the deposition temperature of 350
◦C. The intrinsic stresses in CrN on Si and steel are −1.7 ∗ 109 Pa and −3.4 ∗ 109 Pa,
respectively.

Each coating/substrate system was characterized two times to demonstrate repro-
ducibility. For each thermocycle virginal samples were used. The results of absolute
stresses were equal within a tolerance of 5 %. A third series of samples was thermally
cycled two times to prove thermo–elastic behaviour in the same temperature range of
25-550 ◦C in the second run.

Residual stresses as a function of temperature in 3 µm thick CrN coatings deposited
on Si(100) and steel are presented in Fig. C.3. Stress values for CrN on Si(100) from
using XRD and WCT document that both experimental techniques provide compara-
ble data. This justifies the use of isotropic XECs Tab. C.2 in the case of CrN when
evaluating stresses from XRD data.

Upon heating, the compressive stresses in CrN on Si(100) linearly increase following
the thermo–elastic line. The thermal stress in CrN originates from the specific mis-
match of coefficients of thermal expansion (CTEs) between the Si substrate and the
CrN layer Tab. C.3. The total stress can be written as

σT = σi + σth (C.3)

where σT, σi and σth are the total, intrinsic and thermal stress, respectively.
Heating to the deposition temperature of 350 ◦C, a stress of −1.7 ∗ 109 Pa is ob-

tained for CrN on Si(100)(Fig. C.3). It is believed that this value corresponds to the
intrinsic stress generated by the non–equilibrium growth conditions. Above ≈ 400 ◦C,
the annealing of defects results in a noticeable decrease of the stresses. The stress de-
velopment during cooling to room temperature is linear and follows the thermo–elastic
slope given by the mismatch of CTEs and the biaxial modulus of the coating.

In the case of CrN deposited on steel (Fig. C.3), the stresses were characterized
using XRD only. Since the CTE of steel is larger than that of CrN, heating results in a
decrease of the compressive stress level in CrN. Above ≈ 450 ◦C, a slight relaxation of
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Table C.3: Thermal expansion coefficients for CrN [16], Cr [17], Si(100) and steel [15]

CrN Cr Si(100) Steel
(10−6 K-1) (10−6 K-1) (10−6 K-1) (10−6 K-1)

6 8 3 11

the stresses in the coating caused by the annihilation of point defects takes place. The
stress dependence during cooling is linear and corresponds to the mismatch of CTEs.
Interestingly, the intrinsic stress σi in CrN on steel of about −3.4 ∗ 109 Pa is larger
as for CrN on Si(100). An explanation could be a fact that the atoms peening the
growing coating on steel possess a higher energy since the conductive substrate causes
an increase of the electric field in the deposition chamber. Furthermore, the different
adatom mobility in the early film growth stage, interdiffusion and the reactions with
the substrate may change the stress value. A comparison of the stress relaxation ∆σ,
which is the difference in stress before and after annealing at room temperature (RT),
in CrN coatings on Si (100) and steel shows that the stress relaxation in CrN on steel
with more than 1.3 ∗ 109 Pa is larger than in CrN on Si(100) with 1 ∗ 109 Pa. This
indicates that the CrN coatings on steel possess a higher concentration of defects.

Figure C.4: Stress in 3 µm Cr on Si(100) measured with X–rays and wafer curvature method and 3
µm Cr on steel measured with X–rays. TD is the deposition temperature of 350 ◦C. The
intrinsic stresses in Cr on Si and steel are −0.70∗109 Pa and −1.35∗109 Pa, respectively.

In Fig. C.4, results from 3 µm thick Cr coatings on Si(100) and steel are presented.
The 3 µm thick Cr layer on Si(100) exhibits a slight relaxation of stresses when annealed
above a deposition temperature of 350 ◦C. The cooling branch is nearly linear and
parallel to the heating one in the thermo–elastic region. The linear increase/decrease
of the branches can be again explained by the specific mismatch of CTEs. The intrinsic
stress σi in Cr deposited on Si(100) (−0.7 ∗ 109 Pa) is approximately half of that in Cr
on steel (−1.35 ∗ 109 Pa), similarly as in the case of CrN coatings (Fig. C.3).

In Fig. C.5, temperature–dependent stress changes in sublayers of CrN/Cr coating
systems deposited on Si(100) and steel are presented. The aim was to understand how
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the Cr layer influences the stress in CrN during annealing. It is evident that in both
types of coating systems, the stresses in the as–deposited Cr layers are approximately
equal to the stresses in the corresponding Cr coatings (Fig. C.4). The thermal an-
nealing of the coating systems causes no stress-temperature hysteresis in Cr and at
room–temperature stress values are obtained as prior to heating. This indicates that
the CrN top layer prevents the relaxation of the stresses above deposition temperature.
This can be explained by a suppression of diffusion–driven processes at the Cr surface
by the CrN top layers. In other words, the presence of the CrN top layer forces the Cr
layer into a thermoelastic response.

Figure C.5: Stress of a 1 µm CrN and 2 µm Cr double layer on Si(100) and steel substrate measured
with X–rays. CrN is top layer, Cr interface layer is between CrN and substrate. TD

is the deposition temperature of 350 ◦C. The intrinsic stresses in CrN and Cr on Si
are −2.8 ∗ 109 Pa and −0.7 ∗ 109 Pa. The intrinsic stresses in CrN and Cr on steel are
−3.4 ∗ 109 Pa and −1.4 ∗ 109 Pa.

The temperature–dependencies of stresses in the CrN top layer of the CrN/Cr coat-
ing systems on Si(100) and steel (Fig. C.5) show that the presence of Cr sublayers
increase the stress levels in the as–deposited CrN. There are two possible explanations
for this effect namely (i) the density of point defects in CrN growing on Cr is signif-
icantly large and/or (ii) there is a strong gradient of point defect density in CrN as
recently reported for TiN coatings [18]. The intrinsic stress in CrN on Cr/Si(100) is
−2.8 ∗ 109 Pa and −3.4 ∗ 109 Pa in CrN on Cr/steel. This result documents that the
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Cr sublayer on Si(100) causes a significant increase of the intrinsic stresses in compar-
ison with CrN on Si(100) deposited without Cr (Fig. C.3). The annealing of CrN/Cr
coating systems above deposition temperature results in a strong stress relaxation in
CrN. Remarkably, a comparison of the stress-temperature results in CrN sublayers on
Cr shows that the stress relaxation after cooling down is comparable (about −3.7∗109

Pa in CrN on Cr/Si(100) and −3.4 ∗ 109 Pa in CrN on Cr/steel) which documents an
important role of the Cr sublayer in the formation of point defects. On Si(100) and
steel substrates the relaxation in CrN was significantly smaller (Fig. C.3). No sample
exhibited any kind of delamination or flaking after any thermocycle.

C.4 Conclusions

A comparison of the experimental data obtained using XRD and WCT technique in-
dicates that both techniques provide comparable data which differ only within the
experimental errors and are therefore complementary (Figs. C.3, C.4). The main
advantage of XRD is the possibility to obtain the stresses of different phases in mul-
tilayered systems as a function of the temperature. This was demonstrated for a
multilayered hard coating on steel to temperatures up to 550 ◦C. The results indicate
significant differences in stresses in CrN/Cr deposited on Si(100) and steel and allow to
analyse phenomena like intrinsic and extrinsic stresses and the influence of substrate
material.

The difference in stress relaxation at room temperature for CrN on steel and CrN
on Si originates from the different concentration of defects in CrN. It is believed that
the conductivity of the steel substrate increases the impact of the impinging atoms
in sputter process and therefore generates higher point density than in nonconductive
Si substrates. It was shown that no Cr hysteresis in thermocycle can be observed
in CrN/Cr/steel and CrN/Cr/Si systems, i.e. CrN influences the thermo–mechanical
behaviour of Cr significantly in comparison to single Cr/steel or Cr/Si systems. The
presence of Cr in the CrN top layer of the CrN/Cr coating systems on Si(100) and
steel increase the stress levels in the as deposited CrN. Two explanations are (i) the
density of point defects in CrN growing on Cr is significantly large and/or (ii) there
is a strong gradient of point defect density in. In the future, it will be necessary to
understand not only the temperature–dependencies of volume–averaged stresses in the
coatings but also the depth gradients as a function of temperature.
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Abstract A new methodology is presented that allows a rapid determination of elastic
constants of polycrystalline thin films by X-ray diffraction under static conditions. In
the present paper, a theoretical concept is developed and tested on calculated exam-
ples of Cu and CrN films. The mechanical elastic constants are extrapolated from
X-ray elastic constants considering crystal and macroscopic elastic anisotropy. The
derived algorithm enables to find a reflection and the corresponding value of the X-ray
anisotropic factor Γ for which the X-ray elastic constants correspond to their mechan-
ical counterparts in the case of fiber textured cubic polycrystalline aggregates. The
approach is independent of the crystal elastic anisotropy and depends on the fiber tex-
ture type, texture sharpness and the amount of randomly oriented crystallites in the
film. In the next paper of this series, an experimental application of the approach based
on the simultaneous use of sin2 ψ and X-ray diffraction substrate curvature techniques
is demonstrated.
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D.1 Synopsis

D.1 Synopsis

Supposing the Hill grain interaction model, it is demonstrated that X-ray elastic con-
stants can be used to determine mechanical elastic constants of cubic fiber textured
thin films. The algorithm to determine the mechanical elastic constants strongly de-
pends on the fiber texture type, texture sharpness and the amount of randomly oriented
crystallites in the polycrystalline aggregate.

D.2 Introduction

X-ray elastic constants and diffraction stress factors are usually used to calculate resid-
ual stresses from experimental X-ray elastic strains [1, 2]. In the case of specimen
with crystal elastic anisotropy, X ray elastic constants differ for various hkl reflections
and are moreover dependent on the macroscopic elastic anisotropy (texture), grain-
interaction mechanism and single-crystal elastic constants [3–6].
Recently, a new rapid experimental approach based on a simultaneous application
of sin2 ψ and X-ray diffraction substrate curvature techniques was proposed [7–10].
The new approach provides an opportunity to quantify experimental X-ray elastic
strains and macroscopic stresses in thin films using a static diffraction experiment.
The stresses applied on the film are determined from the geometrical changes of the
elastically deformed substrate which is attached to the film [11, 12]. The experimental
stress and strain can then be used to evaluate experimental X-ray elastic constants,
stress factors and grain-interaction phenomena [7, 8, 10].
Mechanical elastic constants can be extrapolated from X-ray elastic constants consid-
ering crystal and macroscopic elastic anisotropy. In the case of cubic polycrystalline
aggregates with macroscopic elastic isotropy (quasi-isotropic materials) which obey
the Hill grain interaction model, it was demonstrated that X-ray elastic constants cor-
respond to their mechanical counterparts for Γhkl = 0.2 whereby Γhkl is the X-ray
anisotropic factor according to the Reuss grain-interaction model with

Γhkl =
h2k2 + k2l2 + l2h2

(h2 + k2 + l2)2
(D.1)

where (hkl) are Miller indices of a crystallographic plane [13]. According to the
Reuss model, X ray elastic anisotropy is often expressed as a function of 3Γhkl and this
formalism will be applied hereafter [14].
It is the aim of this paper to analyze under which conditions the knowledge of X-ray
elastic constants can be used to determine or estimate mechanical elastic constants of
cubic fiber textured thin films. At first, selected mechanical elastic constants of Cu and
CrN will be calculated using the Hill model that represents a reasonable simplification
of the problem [15–17]. As a next step, the mechanical values will be compared with
the X-ray elastic constants. As a result a certain type of 3Γhkl dependent selection
rule will be derived whereby hkl in 3Γhkl denotes a reflection for which mechanical and
X-ray elastic constants are equal. In the next paper of this series, the approach will
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be demonstrated on experimental characterization of fiber textured thin films [18]. It
should be noted that the methodology derived in this paper can be generally applied
to any equibiaxially loaded or stressed polycrystalline aggregate with the fiber texture
oriented perpendicular to the stress direction.

D.3 Mechanical elastic constants of thin films

D.3.1 Hill grain interaction model

Elastic behavior of a thin film deposited on a solid substrate (Fig. D.1) can be repre-
sented by the Hook’s law: {

εSij
}M

=
{
SSijkl

}M {
σSkl
}

(D.2)

where
{
εSij

}M
is the mechanical (M) elastic strain,

{
SSijkl

}M
expresses the mechan-

ical elastic constants of the film and
{
σSkl
}

represents the residual stress [19, 20]. The
stress, strain and compliance tensors in Eq. D.2 are expressed in the sample coordi-

nate system (S) (Fig. D.1). In general,
{
SSijkl

}M
of a polycrystalline film depends on

texture, single crystal elastic constants and grain interaction mechanism [4]. For prac-

tical cases, the Hill grain-interaction model can be used to evaluate
{
SSijkl

}M
of the

film [15] using an arithmetic mean of the compliance tensors
{
SSijkl

}R
and

{
SSijkl

}V

obtained from the Reuss and Voigt grain-interaction models:

{
SSijkl

}M
=

1
2

(
{
SSijkl

}R
+
{
SSijkl

}V
) (D.3)

Elastic constants according to the Reuss average
{
SSijkl

}R
can be calculated as follows

{
SSijkl

}R
=
∫
SSijkl(g)f(g)dg (D.4)

In the case of Voigt average,
{
SSijkl

}V
can be determined according

{
SSijkl

}V
= [
∫
CSijkl(g)f(g)dg]−1 (D.5)

whereby f(g) represents the orientation distribution function (ODF) of the crys-
tallites in the film [17, 21]. SSijkl and CSijkl in Eqs. D.4,D.5 are single crystal elastic
constants expressed in S whereas f(g) indicates the volume fraction of the crystallites
with the orientation g. The integration in Eqs. D.4,D.5 is carried out over the whole
ODF space [4].

The tensor
{
SSijkl

}M
(Eq. D.2) represents the elastic behavior of the material in the

sample coordinate system S (Fig. D.1) [19] and can be expressed in the L system using

D–4



D

D.4 Calculation of mechanical elastic constants

{
SLijkl

}M

φ,ψ
= aimajnakoalp

{
SSmnop

}M
(D.6)

where aij represents a direction cosines between L and S systems (Fig. D.1) [2].

Figure D.1: A definition of two coordinate systems used for the characterization of in-plane elastic
strains using sin2 ψ method: sample system S, laboratory system L [2]. The X-ray
elastic strain along the direction ~L3 (which is parallel to the diffraction vector ~Qhkl) is
characterized by measuring the reflection hkl. The orientation of the vector ~Qhkl with
respect to ~Si is defined by the angles φ and ψ. The direction cosines aij (Eq. D.6)
represent a transformation from S to L coordinate systems.

In practical cases, Young’s modulus E is usually used to express elastic behavior of

materials. The E magnitude in the direction ~L3 can be obtained from
{
SLijkl

}M

φ,ψ
tensor:

1

{E}Mφ,ψ
=
{
SL3333

}M

φ,ψ
. (D.7)

The out-of-plane Young’s modulus {E}Mφ,ψ=0 can be obtained from Eq. D.7 using{
SL3333

}M

φ,ψ=0
.

D.4 Calculation of mechanical elastic constants

Using the procedure from the previous section, Young’s moduli of Cu and CrN thin
films with various fiber textures were calculated numerically applying single crystal
elastic constants from Tab. D.1 and various types of ODFs.

In Fig. D.2, an exemplary 111 pole figure, a distribution of the intensity across the
pole figure and a corresponding ODF demonstrate a strong 111 fiber texture with 10%
fraction of randomly oriented crystallites.

As a parameter for the ODF calculation, the full width at half maximum in the centre
of pole figure (as usually experimentally measured using a ψ scan [17]) and hereafter
denoted as ψFWHM was used (Fig. D.2). Since the aim is to develop a simple laboratory
method to determine elastic constants of thin films, ψFWHM was used as a measure of
the texture sharpness [instead of using variables expressed in terms of φ1, Φ and φ2

angles (Fig. D.2) which are usually needed to define ODF properties according to the
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Table D.1: Single crystal elastic constants of Cu and CrN at room temperature and the Zener’s
anisotropy ratio [22] (ZAR) defined by Eq. D.8 [20, 23].

Material
S1111 S1122 S1212 ZAR

in GPa-1 10-3

Cu 15.00 -6.28 3.32 3.21
CrN 1.860 -0.09 2.84 0.34

Bunge’s notation [17]]. Numerous ODFs with ψFWHM in the range 0-180 with the step

of 5 degrees were generated in order to calculate
{
SSijkl

}M
(Eq. D.2) and subsequently

out-of-plane Young’s modulus {E}Mφ,ψ=0 (Eq. D.7). This calculation was performed
for various uvw fiber textures whereas uvw represents indices of (uvw) crystallographic
planes oriented preferably parallel to the sample surface. Additionally, it was supposed
that the films possess also crystallites with a random orientation (further denoted as
ISO) in the range of 0-100 %. In practical cases, the ISO can be determined (i)
accurately using ODF analysis of the experimental pole figure data or (ii) estimated
by analyzing the background in the uvw pole figure data.
As an example of the procedure, calculated out-of-plane Young’s moduli

{
E111

}M

φ=0,ψ=0

and
{
E100

}M

φ=0,ψ=0
of Cu and CrN thin films with 111 and 100 fiber textures are

presented in Figs. D.3 and D.4. As a parameter for the calculation, the texture
sharpness ψFWHM and the amount of the randomly oriented crystallites ISO were
applied. The three dimensional plots document that the moduli of the film exhibit
relatively strong maxima or minima for small ψFWHM and ISO but converge to the
moduli of isotropic Cu and CrN when one of the parameters increases.
Cu and CrN possess different types of crystal elastic anisotropy (Tab. D.1) with the
Zener’s anisotropy ratio ZAR [22] defined as

ZAR =
8(S1111 − S1122)

S1212
(D.8)

The ZAR>1 indicates that in Cu the 〈hhh〉 the direction is harder than the 〈00l〉
one. Therefore the modulus

{
E111

}M

φ=0,ψ=0
of a Cu film with a strong 111 fiber texture

is significantly larger than the modulus
{
E100

}M

φ=0,ψ=0
of a Cu film with a strong 100

fiber texture (Fig. D.3). In the case of CrN, an opposite situation must be considered
(Fig. D.4). The three-dimensional dependencies similar to those in Figs. D.3,D.4 were
generated for various types of uvw fiber textures.
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Figure D.2: A calculated 111 pole figure of a cubic thin film with a strong 111 fiber texture and
10% fraction of randomly oriented crystallites (a). In (b), a distribution of the intensity
across the pole figure whereas the variable ψFWHM = 10 degrees represents the sharpness
of the texture. A representative φ1 = 0 degrees section of the ODF (c) which is identical
for all φ1 values documents a 111 fiber character of the texture [17].
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Figure D.3: Calculated out-of-plane Young’s moduli of 111 (a) and 100 (b) fiber textured Cu thin
films as a function the texture sharpness ψFWHM (Fig. D.2) and ISO.
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Figure D.4: Calculated out-of-plane Young’s moduli E of 111 (a) and 100 (b) fiber textured CrN
thin films as a function the texture sharpness ψFWHM (Fig. D.2) and ISO.
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The results in Figs. D.3,D.4 represent out-of-plane Young’s moduli calculated from

the tensor
{
SSijkl

}M
. In the case of fiber-textured thin films, however, the elastic

behavior is in-plane isotropic (i.e. independent on the angle φ) but dependent on
the tilt angle ψ (Fig. D.1) In order to demonstrate this situation, Young’s moduli
of CrN and Cu fiber-textured thin films (Fig. D.2) were calculated as a function of
angles φ and ψ (Fig. D.5) using Eqs. D.3-D.7 and are presented in polar coordinates
in Fig. D.5. The differences in crystal elastic anisotropy causes that CrN modulus
possess a minimum at ψ = 0 degrees in contrast to the Cu dependence which exhibits
a maximum in the centre of the polar plot (Fig. D.5).

Figure D.5: Calculated Young’s moduli of Cu (a) and CrN (b) expressed in polar coordinates φ and
ψ (Fig. D.1). The moduli were calculated using the ODF from Fig. D.2.
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D.5 X-ray elastic constants of thin films

D.5.1 X-ray elastic moduli

X-ray diffraction Hook’s law relates X-ray elastic strain
{
εL33

}hkl
φ,ψ

measured in the

direction ~L3 by scanning the reflection hkl, X ray elastic compliances
{
SL33ij

}hkl
φ,ψ

and

the macroscopic stress
{
σLij

}
expressed in L coordinate system (Fig. D.1) as follows{
εL33

}hkl
φ,ψ

=
{
SL33ij

}hkl
φ,ψ

{
σLij
}

(D.9)

whereas
{
SL33ij

}hkl
φ,ψ

depend generally on texture, grain-interaction mechanism, re-

flection hkl, single crystal elastic constants and on φ and ψ angles [1, 4].
{
SL33ij

}hkl
φ,ψ

can be calculated according to the Hill grain-interaction model as follows [4, 24]

{
SL33ij

}hkl
φ,ψ

=
1
2

(
{
SL33ij

}R,hkl

φ,ψ
+
{
SL33ij

}V

φ,ψ
) (D.10)

X ray elastic compliances
{
SL33ij

}V

φ,ψ
represent an elastic behavior of the film according

to the Voigt grain-interaction model (V) and can be calculated as{
SL33ij

}V

φ,ψ
= a3ka3laimajn

{
SSklmn

}V
(D.11)

where
{
SSijkl

}V
tensor was obtained using Eq. D.5 [4].

X ray elastic compliances according to the Reuss grain interaction model (R) can be
obtained by the integration over the crystal orientations g for which the diffraction
vector ~Qhkl is parallel to the direction ~L3 [4]:

{
SL33ij

}R,hkl

φ,ψ
=
∫ {

SL33ij

}
[g( ~Qhkl‖~L3)]f [g( ~Qhkl‖~L3)]dg (D.12)

Considering fiber-textured cubic thin films with the fiber axis oriented perpendicular
to the sample surface, it will be in the next supposed that:

(i) the mechanical state of the films is biaxial and in-plane isotropic with
σS11 = σS22 = σS and εS11 = εS22 = εS . Moreover, shear stresses σS12 and σS21 ,
shear strains εS12, εS13 and εS23 as well as out of plane stresses σSi3 can be neglected
on the macroscopic scale.

(ii) the thin films are in-plane elastic isotropic and not only the distribution of crys-
tallites but also grain-interaction mechanism possess a rotational symmetry. The
elastic properties of the films are therefore not dependent on the azimuth angle

φ with
{
SLijkl

}M

φ,ψ
=
{
SLijkl

}M

ψ
.
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The above implicates that the Eqs. D.9 can be expressed as follows [25]

{
εL33

}hkl
ψ

= σSb(
{
SL3311

}hkl
ψ

+
{
SL3322

}hkl
ψ

) + (
{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

) sin2

+
{
SL3313

}hkl
ψ

sin 2ψc
(D.13)

In the case of experimental dependence of
{
εL33

}hkl
ψ

on sin2 ψ, the term
{
SL3311

}hkl
ψ

+{
SL3322

}
corresponds to the intercept on the

{
εL33

}hkl
ψ

axis and the term
{
SL3333

}hkl
ψ
−{

SL3311

}hkl
ψ

is responsible for the curvature in sin2 ψ plots. Especially in the case of

approximately linear
{
εL33

}hkl
ψ
− sin2 ψ dependencies, the term

{
SL3313

}hkl
ψ

sin 2ψ (pro-
posed by [25]) is usually neglected [4].

Since the tensor components
{
SL33ij

}hkl
ψ

change as a function of the orientation of the

diffraction vector ~Qhkl, their knowledge can be used to determine diffraction elastic
constants as a function of (hkl) and ψ. For example, the diffraction modulus {E}hklψ

along the direction ~L3 reads

1

{E}hklψ

=
{
SL3333

}hkl
ψ

(D.14)

On condition that the
{
SL3333

}hkl
ψ

components are independent of the angle ψ and φ
and the material is quasi isotropic , the Eq. D.13 can be written as{

εL33

}hkl
ψ

= σS(2 {s1}hkl +
1
2
{s2}hkl sin2 ψ) (D.15)

in which the symbols {s1}hkl and 1
2 {s2}hkl represent isotropic X-ray elastic constants

[1, 2]. The constants are sometimes substituted as [2]

{s1}hkl = − {ν}
hkl

{E}hkl
,
1
2
{s2}hkl =

1 + {ν}hkl

{E}hkl
(D.16)

The symbol {ν}hkl represents the diffraction Poisson’s number. In the case of macro-
scopic elastic isotropic aggregates, {E}hkl and {ν}hkl can be calculated using Eqs. 15
and 16 provided

{
εL33

}hkl
ψ

and σS are known.

D.6 Calculation of diffraction elastic moduli

X ray elastic compliances
{
SL33ij

}hkl
ψ

express elastic behavior of the aggregate along

the diffraction vector ~Qhkl. In Fig. D.6, Young’s moduli of 111 fiber-textured Cu and
CrN thin films are presented as a function of the tilt angle ψ.
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D.6 Calculation of diffraction elastic moduli

Figure D.6: Exemplary diffraction
{
E111

}hkl
ψ

and mechanical
{
E111

}M

ψ
Young’s moduli of Cu and

CrN films with 111 fiber texture as a function of the sample tilt angle ψ. The moduli
were calculated using the ODF from Fig. D.2 supposing the Hill grain interaction model
[15].
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The data in Fig. D.6 document that the mechanical moduli
{
E111

}M

ψ
always lies

between
{
E111

}111

ψ
and

{
E111

}100

ψ
diffraction moduli for materials with different crys-

tal elastic anisotropy even in the case of very sharp 111 fiber texture (Fig. D.2). For
ψ = 0 the out-of-plane mechanical modulus

{
E111

}M

ψ=0
approaches the

{
E111

}111

ψ=0

values because of the specific texture type. Since, in cubic crystals, (111) crystallo-
graphic plane possesses an in-plane elastic isotropy the in plane mechanical modulus{
E111

}M

ψ=90
approaches the diffraction modulus

{
E111

}mnp
ψ=90

of (mnp) crystallographic

plane (with m+n+p=0) which is perpendicular to the (111) plane (e.g. (1~10)). It
should be mentioned that this relatively simplified behavior can be observed only in
the case of 111 fiber textures. In the case of thin film with other type of uvw fiber
texture, the magnitude of the in-plane modulus {Euvw}Mψ=90 is influenced by the elastic
anisotropy of the uvw plane.

D.7 A comparison of mechanical and X-ray elastic constants

D.7.1 General considerations

The results in Fig. D.6 demonstrate that the mechanical elastic constants
{
SL33ij

}M

ψ

are constrained by the X-ray elastic constants
{
SL33ij

}hkl
ψ

. A comparison of the Eqs.

D.3 and D.10 moreover indicates that the behavior of the Reuss grain interaction model

predefines under which conditions
{
SL33ij

}hkl
ψ

=
{
SL33ij

}M

ψ
. It is therefore obvious that,

by considering a specific ODF, tilt angle ψ and single crystal elastic constants, it is al-
ways possible to determine a reflection hkl and a corresponding X-ray anisotropy factor
3Γ ∗hkl for which the X-ray elastic constants are equal to their mechanical counterparts
(Fig. D.6). Further in the text, 3Γ ∗hkl will therefore denote conditions according to the

Hill model under which
{
SL33ij

}hkl
ψ

=
{
SL33ij

}M

ψ
.

D.7.2 Isotropic case

In the case of polycrystalline materials with crystal elastic isotropy or with negligible
macroscopic elastic anisotropy, {E}hkl and {ν}hkl as well as {s1}hkl and 1

2 {s2}hkl are
independent of the angle ψ and the Eq. D.15 supposes moreover a linear dependence
of
{
εL33

}hkl
ψ

on sin2 ψ [2]. Provided that the elastic strain
{
εL33

}hkl
ψ

and the macroscopic
stress σS can be determined by an experiment, the isotropic X-ray elastic constants
{s1}hkl and 1

2 {s2}hkl and subsequently also {E}hkl and {ν}hkl can be obtained by
solving a system of linear equations of Eq. D.15 type when

{
εL33

}hkl
ψ

is known for
different ψ [26, 27]. An example of this procedure is presented in Fig. D.7. Considering
the single crystal elastic constants from Tab. D.1 and an in plane isotropic stress
σS = 100 MPa, calculated diffraction strains

{
εL33

}hkl
ψ

for a quasi-isotropic Cu thin
film are presented in Fig. D.7a.
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D.7 A comparison of mechanical and X-ray elastic constants

Figure D.7: Calculated X-ray elastic strains in a quasi-isotropic Cu thin film (a). In (b) X-ray elastic
constants {s1}hkl and 1

2
{s2}hkl refined from (a) are plotted as a function of 3Γhkl. In

(c) reciprocal diffraction Young’s moduli 1/ {E}hkl obtained from (b) are shown. The
mechanical modulus {E}M can be extrapolated for 3Γ ∗hkl = 0.6 resulting in 123.45 GPa.
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According to Eq. D.15, the slopes in Fig. D.7a correspond to 1
2 {s2}hkl and the

intercepts on
{
εL33

}hkl
ψ

axis can be correlated with {s1}hkl magnitude. In practical
cases, the X-ray elastic constants are obtained by fitting the experimental data from
Fig. D.7a using Eq. D.15. Reciprocal diffraction elastic moduli 1/ {E}hkl in Fig. D.7c
can be then determined from {s1}hkl and 1

2 {s2}hkl (Fig. D.7b) as follows

1

{E}hkl
= {s1}hkl +

1
2
{s2}hkl (D.17)

The reciprocal mechanical modulus 1/ {E}Mψ = 0.81 ∗ 10−11 Pa-1 was extrapolated
from the reciprocal diffraction moduli 1/ {E}hklψ supposing 1/ {E}M = 1/ {E}hkl for
3Γ ∗hkl = 0.6, as predicted by the Hill grain interaction model for quasi-isotropic mate-
rials [13]. The mechanical modulus {E}M is therefore 123.45 GPa. This procedure is
however valid only in the case of elastic isotropic aggregates.

D.8 Fiber-textured thin films

The procedure described in Fig. D.7 represents an often used simplification. Polycrys-
talline thin films are however usually macroscopic elastic anisotropic and therefore the
extrapolation of the mechanical modulus from X-ray elastic constants for 3Γ ∗hkl = 0.6
would work only for elastic isotropic materials like tungsten.
In majority of cases, polycrystalline thin films possess a certain uvw fiber texture with
the fiber axis oriented perpendicular to the substrate surface. Moreover there is al-
ways a non zero ISO present in the film. In that case, the mechanical and X ray elastic
compliances are dependent on the angle ψ (Fig. D.5,D.6). In order to determine ex-

perimental
{
SL33ij

}M

ψ
from

{
SL33ij

}hkl
ψ

it is necessary to apply exact 3Γ ∗hkl which is also

dependent on ψ, as demonstrated in Fig. D.6. In the next, the possibilities to deter-

mine
{
SL33ij

}M

ψ
and {E}Mψ from experimental

{
SL33ij

}hkl
ψ

applying the X-ray diffraction

Hook’s law (Eq. D.13) are discussed.

(i) In the case of in-plane elastic isotropic films
{
SL3311

}hkl
ψ=0

is equal to
{
SL3322

}hkl
ψ=0

for ψ = 0 and Eq. D.13 reduces to
{
εL33

}hkl
ψ=0

= 2
{
SL3311

}hkl
ψ=0

.
{
SL3311

}hkl
ψ=0

can be
determined experimentally by evaluating the intercept of the sin2 ψ dependence
on the

{
εL33

}hkl axis when σS is known. The dependence of
{
SL3311

}hkl
ψ=0

on 3Γhkl
could then be used to determine the thin film mechanical compliance

{
SS3311

}M
(D.18)

(ii) By comparing the intercepts 2
{
SL3311

}hkl
ψ=0

and the slopes
{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

of the sin2 ψ curves for ψ → 0 (and by simultaneous neglecting the term
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D.9 Elastic modulus of 111 fiber-textured Cu

{
SL3313

}hkl
ψ

sin 2ψ, since
{
SS3313

}hkl =
{
SL3313

}hkl
ψ=0

for hexagonal macroscopic sym-

metry of the sample [28], the Eq. D.13 can be used to extract
{
SL3333

}hkl
ψ

and the

diffraction out-of-plane modulus {E}hklψ=0 similar as in Sec. D.7.1. By consider-
ing the macroscopic elastic anisotropy, the knowledge of {E}hklψ=0 can be used to
determine mechanical Young’s modulus {E}Mψ=0 or the term

{
SS3333

}M
(D.19)

(iii) Since for ψ 6= 0
{
SL3311

}hkl
ψ
6=
{
SL3322

}hkl
ψ

in the case of fiber textured thin films

with the fiber axis oriented parallel to ~S3, the diffraction Hook’s law from Eq.
D.13 can not be used to extract

{
SL3333

}hkl
ψ

[and subsequently {E}hklψ ] for arbitrary
ψ angle. From the slopes of sin2 ψ dependencies, however, one can determine the
term

{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

which dependence on 3Γhkl can be used to evaluate
the expression

{
SL3333

}M

ψ
−
{
SL3311

}M

ψ
(D.20)

For ψ → 90◦, the Eq. D.20 is equivalent to

{
SS1111

}M

ψ
−
{
SS1133

}M

ψ
(D.21)

(iv) By evaluating the intercepts on the
{
εL33

}hkl axis for ψ = 90◦, the Eq. D.13 can
be used to determine the term

{
SL3333

}hkl
ψ=90

+
{
SL3322

}hkl
ψ=90

which, in this special
case, can be used to quantify in-plane biaxial modulus of the thin film

{
SS1111

}M
+
{
SS1122

}M
(D.22)

In order to quantify the parameters defined in Eqs. D.18-D.22, the macroscopic
elastic anisotropy of the film must be considered. Further, the determination
of out-of-plane moduli {E}Mψ=0 = 1/

{
SS3333

}M from the X-ray elastic constants{
SL3333

}hkl
ψ=0

will be only discussed (Eq. D.19).

D.9 Elastic modulus of 111 fiber-textured Cu

In Fig. D.8, calculated sin2 ψ dependencies for a Cu thin film with a strong 111 fiber
texture from Fig. D.2 are presented in Fig. D.8. The plots were calculated supposing
an in plane isotropic stress of σS = 100 MPa and using the single crystal elastic
constants from Tab. D.1.

The data in Fig. D.8a were evaluated according to the procedure described in Sec.
D.8-ii and

{
SL3333

}hkl
ψ=0

values were determined (Fig. D.8b). Using the ODF from
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Figure D.8: Calculated X-ray elastic strains in a Cu thin film with a strong 111 fiber texture (a). In

(b) X-ray compliances
{
SL3333

}hkl
ψ=0

refined from (a) are plotted as a function of 3Γhkl.

Since, for this special type of texture, the mechanical compliance
{
SL3333

}hkl
ψ=0

= 0.575 ∗

10−11 Pa-1, 3Γ ∗hkl = 0.937 was extrapolated from
{
SL3333

}hkl
ψ=0

dependence on 3Γhkl.

Fig. D.2, out-of-plane mechanical compliance
{
SL3333

}M

ψ=0
was additionally calculated

with
{
E111

}M

ψ=0
= 174 GPa. The comparison of out-of-plane X-ray and mechanical

compliances showed that
{
SS3333

}M

ψ=0
=
{
SL3333

}hkl
ψ=0

for 3Γ ∗hkl = 0.937. This result

demonstrate that, in order to determine
{
SL3333

}M

ψ=0
from

{
SL3333

}hkl
ψ=0

(i.e. to apply
an opposite algorithms flow as that from Fig. D.8b), it is necessary to know a specific
3Γ ∗hkl value (Fig. D.8b) which is strongly texture dependent.

D.10 Γ ∗hkl − Γuvw plot

In the case of cubic uvw fiber textured films with the fiber axis oriented perpendicularly
to the substrate surface, the texture type will be further described using the parameters
Γuvw defined as [13, 21]
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D.10 Γ ∗hkl − Γuvw plot

Γuvw =
u2v2 + v2w2 + w2u2

(u2 + v2 + w2)2
(D.23)

Supposing various uvw fiber textures (i) with the texture sharpness ψFWHM from the
range 0-60 degrees (Fig. D.2), (ii) with the 3Γuvw from the range 0-1 and (iii) with the
ISO from the range 0-100%, numerous ODFs were generated. Following the algorithm
from Sec. D.8-ii,

{
SL3333

}hkl
ψ=0

and
{
SL3333

}M

ψ=0
values were calculated numerically for

materials with Zener’s anisotropy ratio from the range 0.36-9.95 (corresponding to KCl
and Na). Then the mechanical and X-ray elastic constants were compared with an aim
to find out for which 3Γ ∗hkl value

{
SS3333

}M

ψ=0
=
{
SL3333

}hkl
ψ=0

. As a results 3Γ ∗hkl−3Γuvw
plots were constructed indicating how the 3Γ ∗hkl depend on the uvw fiber texture type,
on ψFWHM (Fig. D.9a) and on ISO (Fig. D.9b).
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Figure D.9: Γ ∗hkl−Γuvw plots indicate for which hkl reflection (and the corresponding 3Γ ∗hkl value) the

X-ray elastic constants
{
SL3333

}hkl
ψ=0

are equal to the mechanical constants
{
SL3333

}M

ψ=0
.

3Γ ∗hkl values are plotted as a function of the fiber texture type expressed through Γuvw.
In (a) the dependence of 3Γ ∗hkl on the fraction of randomly oriented crystallites from
the range 0-100 % is plotted for various uvw textures with ψFWHM = 10 degrees. In (b)
the dependence of 3Γ ∗hkl on ψFWHM is plotted for various uvw textures supposing 10 %
fraction of randomly oriented crystallites.
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D.10 Γ ∗hkl − Γuvw plot

The Γ ∗hkl−Γuvw plots from Fig. D.9 do not depend on the crystal elastic anisotropy
of the thin film material and represent therefore a certain type of a universal plot valid
for all materials (except those (like tungsten) where ZAR ∼= 1 and therefore Γ ∗hkl is
arbitrary).
In Fig. D.9a, one can notice that for very sharp uvw fiber textures with ψFWHM = 10
degrees and small or no fraction of randomly oriented crystallites the X-ray elastic
constants corresponds approximately to the mechanical constants for 3Γ ∗hkl−3Γuvw. In
other words, in order to determine out-of-plane modulus of a thin film with a very sharp
uvw texture one has to characterize X-ray elastic constants of uvw reflections. In any
case, the 3Γ ∗hkl value must be selected from the intervals [3Γuvw,0.6] or [0.6,3Γuvw] for
thin films with uvw fibre texture. When the fraction of randomly oriented crystallites
ISO however increases, X-ray elastic constants of hkl reflections for which 3Γ ∗hkl → 0.6
should be quantified. Similarly in Fig. D.9b, the decrease of the texture sharpness
results in the behavior which is typical for elastic isotropic materials and 3Γ ∗hkl → 0.6.
In case of a sharp uuu or u00 fiber textures the search for exact 3Γ ∗hkl value is extremely
important because the application of the procedure from Sec. D.7.2 (valid for elastic
isotropic materials) could result in a large error when determining the out-of-plane
moduli. For the films with uvw fibre textures with 3Γ ∗hkl → 0.6 even the procedure
from Sec. D.7.1 could provide relevant results.
The results in Figs. D.9a,b represents a example of the Γ ∗hkl − Γuvw selection rule. In
order to express the dependence of 3Γ ∗hkl plot on the 3Γuvw , on ψFWHM and on ISO
generally and in an ”user-friendly way”, the following empirical equation was derived:

3Γ ∗hkl = A+ 3Γuvw(1− A

0.6
) (D.24)

where A = (ψFWHM ∗ 8.8 + ISO ∗ 5.8− ψFWHM ∗ ISO ∗ 0.083)/1000.
The Eq. D.24 provides an easy way how to determine 3Γ ∗hkl values considering macro-
scopic elastic anisotropy. The parameters in Eq. D.24 can be obtained from pole figure
data (Fig. D.2) or they can be extracted from an ODF analysis of experimental pole
figures. The ODF analysis is recommended especially in the case of sharp mixed tex-
tures or texture gradients. It is important to note that in the quantification of 3Γ ∗hkl
value using Eq. D.24 the crystal elastic anisotropy does not play a role.
The Eq. D.24 represents a simple practical tool which can be used to decide for which
hkl reflection the sin2 ψ measurements should be performed in order to determine (or
extrapolate) the X-ray elastic strain. That strain and the stress can be used to quantify
out-of plane Young’s moduli. It is obvious that the considerations from Secs. 4.1-4.5
can be extended to determine also other mechanical elastic constants of thin films (e.g.
in plane biaxial moduli [Eq. D.22]). Therefore, there is a need for a general approach

to compare
{
SL33ij

}M

ψ
and

{
SL33ij

}hkl
ψ

for various fiber texture types.

In the next paper of this series, an application of the formalism derived above will be
demonstrated on polycrystalline Cu and CrN thin films.
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D.11 Conclusion

Supposing the Hill grain interaction model, it was demonstrated that X-ray elastic
constants can be used to determine mechanical elastic constants of cubic thin films with
strong fiber textures. For this purpose, numerically calculated X-ray elastic constants
of polycrystalline films were compared with their mechanical counterparts. The results
document that the algorithm to determine the mechanical elastic constants strongly
depends on the fiber texture type, texture sharpness and the amount of randomly
oriented crystallites in the polycrystalline aggregate. For this purpose a certain type
of universal plot (and equation) was derived. An important fact is that the derived
algorithm is independent of crystal elastic anisotropy.
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Abstract An experimental application of a new simple self-consistent X-ray diffrac-
tion technique introduced in our previous work is demonstrated. The technique is
applied to determine out-of-plane Young’s moduli of 111 and 311 fiber textured thin
films deposited on monocrystalline Si(100) substrates. The moduli are calculated from
macroscopic stresses and elastic strains quantified using a static diffraction experiment
and considering the thin film texture. The advantage of the new technique remains in
the fact that moduli are determined non-destructively and represent volume-averaged
quantities.
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E.1 Synopsis

E.1 Synopsis

A new simple self-consistent X-ray diffraction technique was used to quantify out-of-
plane Young’s moduli of fiber textured thin films. The advantage of the new technique
remains in the fact that moduli are determined non-destructively and using a static
diffraction experiment.

E.2 Introduction

The reliability and the performance of thin films used e.g. in microelectronics or as
protective coatings on working tools is closely related to their mechanical properties
[1, 2]. Advanced characterization techniques operating on very small scale have been
used to assess phenomena like residual stress, yield stress, hardness etc. [1]. Elas-
tic properties of thin films are usually determined by nanoindentation [3], by surface
acoustic wave technique [4], by straining or bending of thin film structures [5] or by
resonance ultrasound spectroscopy [6].
Recently, it has been demonstrated that X-ray elastic strain and macroscopic stress
in polycrystalline thin films can be rapidly determined by a simultaneous application
of sin2 ψ and X ray diffraction substrate curvature techniques [7–9]. The experimental
strain and stress can be used to quantify X-ray elastic constants and stress factors.
In the previous paper of this series, it was demonstrated under which conditions the
knowledge of the X-ray elastic constants can be used to assess mechanical elastic con-
stants of fiber-textured polycrystalline aggregates supposing the Hill grain interaction
model [10]. It was shown that the macroscopic elastic anisotropy plays a decisive role
and, in order to determine out-of-plane Young’s modulus, the fiber texture type, the
texture sharpness and the amount of randomly oriented crystallites in the aggregate
must be considered.
The aim of this work is to demonstrate a practical application of the new self-consistent
X-ray diffraction technique described in the previous paper. Out-of-plane Young’s
moduli of fiber-textured Cu and CrN thin films are determined using X-ray diffraction
under static conditions. The main reason to select Cu and CrN was that these materi-
als exhibit a different type of crystal elastic anisotropy and both are extensively used
in engineering applications. For a better understanding, it is recommended to read at
first the previous paper of this series.

E.3 Experiment

Cu and CrN thin films were deposited on Si(100) using the Balzers RCS coating sys-
tem. In order to induce a measurable substrate curvature and to avoid a substrate
plastic deformation, monocrystalline Si(100) wafers with the thickness of 140 and 400
µm and lateral dimensions of 30 x 8 mm2 were chosen for the deposition of Cu and CrN
films, respectively. The substrates were ultrasonically cleaned in acetone and alcohol
and Ar etched prior to the deposition. The Cu was deposited in argon atmosphere at
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room temperature and then annealed at 400 ◦C for 10 minutes in order to increase the
residual stress (and substrate curvature) magnitude. The 3 µm thick CrN thin film
was deposited at a temperature of 350 ◦C. The thickness of Cu and CrN thin films was
determined from a film cross-section using a scanning electron microscope and yields
0.6 and 3 µm, respectively.
The substrate curvature, elastic strain and texture of Cu and CrN on Si(100) were char-
acterized in laboratory conditions using a Seifert 3000 PTS four-circle diffractometer.
The setup comprised Cu Kα radiation, polycapillary optics on the primary side, Soller
slits, a graphite monochromator and a scintillation detector on the secondary side. For
the elastic strain and curvature characterization, the beam size of 3.0 and 0.5 mm in
diameter were chosen. The relatively large beam in the case of strain measurements
enabled to assess volume-averaged properties. The limited pole figure characterization
was performed using Schultz reflectivity technique with the beam of 2 mm in diameter
whereby the ψ range was set to 0-80 degrees. The rectangular samples were glued just
with one of their narrower side on sample holders to allow for the free bending when
the strain and the curvature were characterized in the diffractometer.

E.4 Method and Results

E.4.1 Macroscopic elastic anisotropy

Texture in Cu and CrN thin films was characterized using pole figure measurements
(Figs. E.1,E.2). The orientation distribution function was then calculated from the
experimental data in order to assess the amount of randomly oriented crystallites (fur-
ther denoted as ISO). In the case of Cu, one can easily identify a sharp 111 fiber
texture (Fig. E.1) with the width at half maximum ψFWHM in the centre of 111 pole
figure of 14 degrees and 10 % of ISO. For CrN, a 311 texture is visible in Fig. E.2 with
ψFWHM = 12 degrees and ISO of 13 %.
The experimental parameters ψFWHM and ISO were used to determine 3Γ ∗hkl, a pa-
rameter denoting conditions according to the Hill grain-interaction model [11] under
which X-ray and mechanical elastic constants are equal whereby

3Γ ∗hkl = A+ 3Γuvw(1− A

0.6
) (E.1)

where A = (ψFWHM ∗8.8+ISO∗5.8−ψFWHM ∗ ISO∗0.083)/1000 [10]. Γuvw in Eq. E.1
can be expressed as Γuvw = (u2v2 + v2w2 + w2u2)/(u2 + v2 + w2)2 where uvw denote
the type of the fiber texture. For Cu and CrN thin films from Figs. E.2,E.3, it was
found that 3Γ ∗hkl are equal to 0.89 and 0.51, respectively.

E–4



E

E.4 Method and Results

Figure E.1: Experimental Cu 111, 200, 220 and 311 pole figures document a 111 fiber texture in Cu
thin film.

Figure E.2: Experimental CrN 111, 200, 220 and 311 pole figures document a 311 fiber texture.
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E.5 Macroscopic stress characterized by X-ray diffraction
substrate curvature technique

The pole figure measurements documented that the thin films are in-plane elastic
isotropic. Since the films were unpassivated, the residual stress 〈σ〉 in the plane of the
film was considered as in-plane isotropic and biaxial and the out of plane components
σ3i were neglected:

〈σ〉 = σ11 = σ22, σ12
∼= 0 and σi3 ∼= 0. (E.2)

The volume-averaged macroscopic stress in Cu and CrN polycrystalline thin films
was determined using X-ray diffraction substrate curvature method which will be
briefly described [12–15]. The quantification of the curvature was performed by the
measurement of rocking curves of Si 400 reflections at different sample positions xi
(Fig. E.2).

Figure E.3: A schematic description of the X-ray diffraction substrate curvature setup used for the
characterization of the sample curvature radius R. The angle between the primary
and the secondary diffraction vectors ~kxi

0 and ~kxi
1 , respectively, was set to the position

corresponding to the Si 400 2θ angle of 69.13 degrees. Then, for each xi position, the
sample was rotated around the ω axis and the intensity was collected as a function of the
ω angle with the peak maximum at ωi. The dependence of ∆ω = ω0−ωi on ∆x = x0−xi
was used to quantify R (Eqs. E.1,E.2).
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For each xi position, the sample was rotated around the ω axis (Fig. E.3) and the
intensity was collected as a function of the ω angle yielding a peak at the angle of
ωi. In Fig. E.4, the plots of ∆ω dependence on ∆x are presented for Cu/Si(100) and
CrN/Si(100) samples.

Figure E.4: The plots of ∆ω dependence on ∆x for Cu/Si(100) and CrN/Si(100) samples. The
results document different radii of the curvature R (Eq. E.1) with 2.193 and 3.572 m for
Cu and CrN. The convex and the concave bending (c.f. Fig. E.2) correspond to tensile
and compressive stresses of 275.9 and -1415.9 MPa in Cu and CrN, respectively.

The data in Fig. E.4 were used to calculate the radius of the curvature R according to

R ∼= (
∂∆ω
∂∆x

)−1, (E.3)

where ∂∆ω/∂∆x represents the slope of the linear dependency. Applying R, it was
possible to determine the macroscopic in-plane isotropic residual stress 〈σ〉 in the films
using the Stoney formula [12]

〈σ〉 =
E

6(1− ν)
h2

s

hf

1
R
, (E.4)

where hs and hf stands for substrate and film thickness, respectively, and the term
E/(1 − ν) = 181 GPa is the biaxial modulus of the silicon substrate [1]. The macro-
scopic stress 〈σ〉 in Cu and CrN films (Tab. E.1) was determined with the precision of
about ±10 %.

E.6 Elastic strain in thin films

In Figs. E.5a,b X-ray elastic strains
{
εL33

}hkl
ψ

in Cu and CrN films for different hkl
reflections are presented as a function of the sample tilt angle ψ. In the case of Cu the
dependencies are approximately linear whereby for CrN films one can identify relatively
strong nonlinearities which can be attributed to the macroscopic elastic anisotropy
(texture). The different crystal elastic anisotropy causes that
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Figure E.5: Measured X-ray elastic strains
{
εL33

}hkl
ψ

in Cu (a) and CrN (b) thin films as a function

of the sample tilt angle ψ. Positive (a) and negative (b) slopes indicate tensile and
compressive stresses in Cu and CrN, respectively.

∂
{
εL33

}200

ψ=0
/∂ sin2 ψ > ∂

{
εL33

}hkl
ψ=0

/∂ sin2 ψ

for Cu and

∂
{
εL33

}111

ψ=0
/∂ sin2 ψ > ∂

{
εL33

}hkl
ψ=0

/∂ sin2 ψ

for CrN in Fig. E.5.

E.7 X-ray and macroscopic elastic constants

According to the X-ray diffraction Hook’s law, the elastic strain
{
εL33

}hkl
ψ

of a fiber
textured film can be described as follows ([10, 16])
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E.7 X-ray and macroscopic elastic constants

{
εL33

}hkl
ψ

= σSb(
{
SL3311

}hkl
ψ

+
{
SL3322

}hkl
ψ

) + (
{
SL3333

}hkl
ψ
−
{
SL3311

}hkl
ψ

) sin2

+
{
SL3313

}hkl
ψ

sin 2ψc
(E.5)

where
{
SL33ij

}hkl
ψ

represent X-ray elastic constants for a reflection hkl measured at

a tilt angle ψ. The X-ray elastic constants
{
SL33ij

}hkl
ψ

from Eq. E.2 can be obtained

by a numerical fitting of the experimental X-ray elastic strains
{
εL33

}hkl
ψ

from Fig. E.5
applying the macroscopic stress values 〈σ〉 from Tab. E.1. This type of analysis was
performed in order to evaluate (i)

{
SL3311

}hkl
ψ=0

+
{
SL3322

}hkl
ψ=0

from the intercepts on

the
{
εL33

}hkl
ψ

axis and (ii)
{
SL3333

}hkl
ψ→=0

−
{
SL3311

}hkl
ψ→0

from the slopes in Fig. E.5.

In Figs. E.6a,b, the fitted parameters
{
SL3311

}hkl
ψ=0

+
{
SL3322

}hkl
ψ=0

and
{
SL3333

}hkl
ψ→0

−{
SL3311

}hkl
ψ→0

from Fig. E.5 are presented as a function of the X-ray anisotropic factor
3Γhkl = (h2k2 + k2l2 + l2h2)/(h2 + k2 + l2)2 [17] for Cu and CrN thin films. Those
parameters differ for various hkl reflections what is a consequence of crystal elastic
anisotropy.
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Figure E.6: Fitted X-ray elastic constants
{
SL3311

}hkl
ψ=0

+
{
SL3322

}hkl
ψ=0

and
{
SL3333

}hkl
ψ=0
−

{
SL3311

}hkl
ψ=0

obtained from the data in Fig. E.2 applying the macroscopic stress (Fig. E.4).
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{
SL3311

}hkl
ψ=0

+
{
SL3322

}hkl
ψ=0

and
{
SL3333

}hkl
ψ→0
−
{
SL3311

}hkl
ψ→0

dependencies on 3Γhkl from
Fig. E.6 were approximated by linear dependencies and the results are presented in
Tab. E.1. By easy calculus it was possible to derive also a dependence of

{
SL3333

}hkl
ψ=0

on 3Γhkl (Tab. E.1). Considering the macroscopic elastic anisotropy and by applying
the 3Γ ∗hkl from Sec. E.4.1 one could determine an inverse out-of-plane X-ray elastic
modulus

{
SL3333

}3Γ∗

ψ=0
which is equal to the mechanical compliance

{
SL3333

}M

ψ=0
. The

out-of plane Young’s modulus can then be easily determined as follows

1

{E}Mψ=0

=
{
SL3333

}M

ψ=0
(E.6)

The experimental out-of-plane Young’s moduli of Cu and CrN thin films were easily
found to be 169.40 and 240.79 GPa.
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E.8 Error discussion

The accuracy with which the out-of-plane Young’s moduli were determined using the
new algorithm is influenced by numerous factors. The approach is based on the com-
bined application of well-established techniques, sin2 ψ and X-ray diffraction substrate
curvature, which experimental accuracy was discussed in numerous papers [14, 18].
The combination of the both techniques can in the worst case results in the accumu-
lation of the experimental errors. The exactness of the elastic strain characterization
using the sin2 ψ method can be improved by increasing the number of measured re-
flections (Fig E.5).
Another source of the errors can originate from the not-accurate 3Γ ∗hkl parameter which
was (due to practical reasons) determined using an empirical equation. The param-
eter can be determined exactly using a numerical ODF analysis of the texture data
or estimated from the pole figure plots. The higher the crystal elastic anisotropy of
the materials the more significantly the 3Γ ∗hkl inaccuracy will contribute to the errors
when determining the moduli. Relatively large experimental errors can occur when the
monocrystalline substrate under the film is plastically deformed during the structural
characterization. In that case the Stoney’s formula does not hold. For this reason, it is
important to pay a significant attention when preparing samples. It is supposed that
in the present case the moduli in Tab. E.1 were determined with a precision of about
±15 %.

E.9 Conclusion

A new simple self-consistent X-ray diffraction technique was used to quantify out-of-
plane Young’s moduli of fiber textured thin films. The advantage of the new technique
remains in the fact that moduli are determined non-destructively and using a static
diffraction experiment. The experimental moduli represent volume-averaged data and
can be used e.g. as an input for finite element modeling.
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G., Mitterer, C., and Keckes, J. J. Appl. Cryst. 39, 777–783 (2006).

[10] Martinschitz, K. J. and Keckes, J. J. Appl. Cryst. , First paper in series (2008).

[11] Hill, R. Proc. R. Soc. London, Ser. A 65(389), 349–355 (1952).

[12] Stoney, G. G. Proc. Phys. Soc. London, Sect. A 82, 172 (1909).

[13] Segmüller, A., Noyan, I. C., and Speriosu, V. S. Prog. Cryst. Growth Charact.
Mater. 18, 21–66 (1989).

[14] Zhao, Z. B., Hershberger, J., Yalisove, S. M., and Bilello, J. C. Thin Solid Films
415(1-2), 21–31 (2002).

[15] Keckes, J., Eiper, E., Martinschitz, K. J., Köstenbauer, H., Daniel, R., and Mit-
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