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Abstract 

The development of new, high performance filter media for Automotive oil filtration is an 
important issue for car suppliers. However, as of now knowledge of decisive, micro scale 
filtration processes is still limited and the relative importance of many static and dynamic 
process parameters remains unclear. This work represents an extensive attempt to push the 
field of fluid filter fibre design forward, away from being a strongly experimental based, trial 
and error scheme. Thus a micro scale, deterministic filtration solver has been developed 
using the Open Source, C++ based, computational fluid dynamics tool box OpenFOAM®. The 
new simulation tool models fluid, fibre and dirt particle interactions as well as dirt particle 
deposition processes within the framework of realistically reconstructed, microscopic fibre 
geometries. By statistically averaging the micro scale calculations, the filtration solver can 
derive some of the most important, macroscopic filtration parameters, such as pressure drop, 
particle penetration depth and filter fibre efficiency. While other, related publications [1, 30] 
deal with the simulation of fibre deformation effects, this thesis presents the novel Eulerian – 
Lagrangian dirt particle and deposition model behind the filtration solver. The particle model is 
capable of handling, spherical and non-spherical, discrete dirt particles as well as their 
relevant, dynamic interactions with the fibres, the fluid and among each other. Single particle 
hydrodynamics are resolved by several fluid calculation cells.  
The software has already proven to be useful far beyond the field of filtration application and 
thus represents a completely new tool for Lagrangian, non-spherical particle simulation. In the 
course of this work the model is scientifically laid out and its physical as well as numerical 
background is explained.  
In order to qualitatively and quantitatively validate the results, an extensive experimental set 
up has been created and a semi-empirical validation scheme has been devised. In addition to 
that a novel macroscopy method to visualize and digitally evaluate three dimensional dirt 
particle distributions in filter fibre samples can be presented.  
To conclude, some revealing examples of solver functionality, plausibility and possible future 
application are given.  
New insights provided by this development can now lead to a much better understanding of 
the filtration process as a whole and might define the direction an efficient, future, material 
development procedure will have to take.  



Kurzfassung 

Die Entwicklung neuer Hochleistungsfiltermedien zur Ölfiltration ist im Bereich der 
automobilzuliefernden Industrie ein brisantes Thema. Trotzdem ist bisher das Wissen um 
entscheidende, mikroskopische Filtrationsprozesse eingeschränkt und die relative Wichtigkeit 
statischer und dynamischer Prozessparameter unklar. Diese Arbeit stellt den umfassenden 
Versuch dar, die Möglichkeiten der Filterfaserentwicklung bedeutend zu erhöhen. Rein 
experimentelle Versuchs- und Irrtumsverfahren, sollen dabei durch computergestützte, 
zielgerichtete Entwicklung abgelöst werden. Aus diesem Grunde wurde ein, auf 
mikroskopischer Ebene arbeitender, deterministischer Filtrationssolver auf Basis des frei 
verfügbaren, thermofluiddynamischen Simulationspaketes OpenFOAM® entwickelt und 
programmiert. 
Das neu entwickelte C++ Programm ist in der Lage Interaktionen von Fluid, Fasern und 
Schmutzpartikeln sowie deren Ablagerungsmechanismen innerhalb der Umgebung realistisch 
rekonstruierter, mikroskopischer Fasergeometrien hochdetailliert zu modellieren. Durch 
statistische Mittelung der mikroskopischen Rechenergebnisse kann dadurch auf einige der 
wichtigsten Prozessparameter der Filtration rückgeschlossen werden, zum Beispiel: 
Druckverlust, Partikeleindringtiefe und Filterfasereffizienz. 
Während sich andere, verwandte Publikationen [1, 30] mit der Simulation von 
Faserdeformationseffekten beschäftigen, präsentiert diese Arbeit das neue Euler–
Lagrangsche Partikelmodell hinter dem Filtrationssolver. Das Modell kann das Verhalten 
diskreter, sphärischer und nicht-sphärischer Schmutzpartikel, wie auch deren dynamische 
Interaktionen mit dem Fluid, den Fasern und untereinander berechnen. Die Hydrodynamik 
einzelner Partikel wird erstmals durch mehrere Fluidberechnungszellen aufgelöst. Die 
Software hat sich inzwischen auch schon in, über die Filtration hinausgehenden 
Anwendungsbereichen bewährt und stellt damit ein neues, Lagrangsches, nicht-sphärisches 
Partikelsimulationswerkzeug dar. Im Zuge dieser Arbeit wird das Modell wissenschaftlich 
aufbereitet und in seinen physikalischen wie numerischen Grundlagen Schritt für Schritt 
erläutert. 
Um Simulationsergebnisse qualitativ und quantitativ zu validieren wurde außerdem eine 
umfassende Versuchsanordnung entwickelt und ein semi-analytisches Validationsschema 
hergeleitet. Zusätzlich kann hiermit die Erfindung einer neuartigen Makroskopiemethode, um 
drei dimensionale Schmutzpartikelverteilungen erfassen, digitalisieren und auswerten zu 
können, präsentiert werden. 
Abschließend werden einige Anwendungsbeispiele des Simulators angeführt und mögliche, 
zusätzliche Anwendungsgebiete aufgezeigt. Die neuen Erkenntnisse, welche nun durch diese 
Entwicklung gewonnen werden können, werden zu einem besseren Verständnis von 
Filtrationsprozessen führen. Darüber hinaus könnte durch diese Arbeit die Richtung eines 
effizienten, zukünftigen Filtermaterialentwicklungsablaufes entscheidend geprägt werden. 
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 Introduction 

High pressure and shear forces as well as cavitation effects close to the 

engine crank case cause local material rapture and hence, the creation of 

metallic particles. To avoid an accumulation of these particles and eventually 

damaging of bearings or piston/liner assemblies in the engine lubrication 

circuits, filtration elements have to be installed. Due to increasing 

maintainance intervalls, the Automotive industry currently undertakes 

considerable development efforts to increase the performance of existing filter 

elements and to create new, improved filter fibre materials. However, as of 

now the knowledge about many aspects of fluid filtration is still limited and the 

dynamic dependence of decisive micro scale filtration effects remains unclear.  

Any fluid filtration system consists of three obvious components to be 

considered: The incoming, highly viscous oil, the complex, interwoven fibre 

structure, which deforms due to the oil flow and the dirt particles which get 

entangled in the fibre and which, over filter life time, accumulate there. The 

latter effect leads to gradual, but macroscopic changes of important process 

parameters. Some of those parameters are pressure drop pf over the filter 

element, filter permeability f, relative particle penetration depth P and filter 

fibre efficiency E. This basic situation unfolds remarkable complexity once the 

dynamic interaction between the individual components is considered:  

The fluid hits the fibres and according to fluid-continuum mechanics, exerts 

pressure- and shear forces on the material. As a consequence the fibre 

structure deforms, following the laws of structural mechanics. The deformation 

in turn affects the flow pattern. Then the particles come in. According to their 

individual ratio between inertia and viscous forces, the particle relaxation time, 

they are more or less readily dragged towards- and into the filter medium. The 

dirt particles either hit or pass the fibres and either stick there, get sieved out 

or get blown off again. As more and more particles get entangled in the 

structure, their effect on the fluid flow field becomes more and more 

pronounced, thus gradually causing the pressure drop to rise. In addition to 

that, more and more oncoming particles get filtered out because of the cake 

filtration effect, being based on particles blocking each others flow path.  
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Due to the complexity of the issue, a change in fibre morphology (i.e. pore 

size diameter) can not be linearly linked to i.e. filter fibre efficiency, because it 

influences the whole hydrodynamic situation. As a consequence the field of 

fluid filter fibre design still relies on inefficient trial and error methods to create 

new materials. Therefore each development task still requires time 

consuming, costly experimental runs. Consequentially the motivation arises to 

enlist the aid of computational fluid dynamics (CFD).  

This work represents an extensive attempt to create a tool which can increase 

the understanding of filter effects and dynamic parameter dependencies by 

means of computational engineering and simulation technology. A detailed, 

deterministic calculation model which simulates the most important filtration 

effects on a microscopic level has been created. The microscopic model 

results can be statistically averaged to yield the macroscopic parameters 

pressure drop, particle penetration depth, filter fibre efficiency and 

permeability. Figure 1 sketches out the basic concept behind this novel 

scheme.  

In a first step, computer tomographic (CT) scans are conducted on “real life” 

filter fibre samples. The CT output data is compiled in stacks of two 

dimensional (2D) gray scale images of the fibre. Then the data is read in, - 

digitalized, and processed to a full 3D reconstruction of the microscopic filter 

element. The 3D object is then automatically meshed by a structured grid 

generator, so that the geometry can be utilized as boundary framework for 

oncoming CFD calculations. This is where the result of the main development 

task comes in. A CFD tool, designed and programmed in order to resolve the 

dynamic filtration situation for a user definable set of process variables, within 

the reconstructed fibre element. Produced simulation results can then be used 

to estimate the performance and suitability of the tested medium. 
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Figure 1: Sketch of the principle simulation concept. CT scans yield stacks of 
2D grey scale images (left), which are transferred into 3D reconstructions of 
the fibre (middle). The 3D images are meshed and provide the geometry for 
the CFD filtration solver to be created (right). 

Constant checks for result plausibility and validation have to be integral parts 

of any serious CFD development effort. In order to qualitatively and 

quantitatively validate the results, an extensive experimental set up has been 

created and a semi-empirical validation scheme has been devised. Figure 2 

gives an overview of the underlying development scheme which links the 

experimental- and the simulation side. The application of this method leads to 

a continuous adjustment and improvement of the CFD model, according to 

the equivalent, experimental results. 

Figure 2: Experimental- and CFD development scheme.

From the beginning the development project was parted into four major 

working areas, as seen in Figure 3:  
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• Digital Fibre Reconstruction (DFR) from CT information, as well as the 

suitable meshing of the 3D data. 

• Creation of a Fluid Structure Interaction (FSI) tool in order to handle the 

fibre deformation effects under the influence of fluid flow. 

• Development of a detailed, dirt particle- and deposition model, capable of 

simulating spherical and non-spherical dirt particle behavior in and 

outside of the micro scale fibre vicinity. 

• Validation of simulation results. Devise of an appropriate, experimental 

set up to verify solver functionality and to provide additional insight into 

filter fibre behavior and characteristics. 

Figure 3: Overview of the four major areas of development behind the filtration 
solver project. The development of suitable dirt particle and deposition models 
as well as the experimental- and validation effort are at the focus of this 
thesis. 

While other, related publications [1, 11] extensively deal with the creation of 

the FSI tool and the DFR utility, this thesis will only briefly discuss those two 

subjects. For it is mainly focused on the two latter areas of development: 
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• The introduction of a novel, deterministic Eulerian–Lagrangian [25], 

large spherical and non-spherical dirt particle and deposition model. 

•  The experimental validation of the numeric calculations. 

The Open Source, finite volume based, CFD tool box OpenFOAM® (Open 

Field Operation And Manipulation) [36 - 39] was selected as environment for 

the development of the filtration solver. Two main reasons lead to this choice: 

• OpenFOAM® is based upon the programming language C++ and 

therefore features a completely modular programming structure. This 

corresponds perfectly with the modular set up of the entire research 

project. 

• The full source code is open to be altered as required by the developer. 

This provides a high degree of versatility and options, only limited by 

the imagination and capability of the user. 

In the following a short review on the individual chapters of this thesis is given: 

Chapter 2 presents some basic fundamentals behind the work. Initially the 

simulation tool boxes OpenFOAM® and MatLab® as well as the interfacing 

software LabVIEW® are briefly introduced. Then the prevailing physical 

conditions as well as resulting model simplifications are discussed. In a next 

step the FSI tool and the DFR utility are described in short.  

A main part of the entire development effort behind the project has gone into 

the creation of the novel, non-spherical dirt particle solver. Therefore chapter 

2 also presents three important reasons as to why the consideration of 

particle shape effects in filtration simulation is believed to be imperative: 

• The particle-inertia-to-fluid force ratio, represented by the particle 

relaxation time, is strongly shape dependent. 

• Particles with small, angular particle relaxation times experience the 

non-spherical particle slip effect.
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• Particles with large, angular particle relaxation times experience the 

non-spherical particle bulk effect.

Three fundamental concepts, which form the roots of the particle model, are 

discussed in chapter 3: the Lagrangian simulation approach, the force-to-

motion concept and the large particle model.  

Chapter 4 is the core part of this thesis and is about the intrinsics of the (non-) 

spherical dirt particle and deposition solvers. It is split in two. Chapter 4.1 

presents the first, original version of the Lagrangian dirt particle solver. This 

first program is merely capable of handling spherical particles, but already 

contains many essential features. The refined, non-spherical model is 

described and laid out in high detail in the course of chapter 4.2. Basic, newly 

developed, non-spherical modeling concepts, as well as force-interaction 

implementations and drag/lift force calculation schemes are discussed. 

Benchmark examples of solver functionality are constantly given. 

The decisive problem of numerical instability due to Explicit Euler, temporal 

particle movement discretization is addressed and amended in chapter 5. A 

possible solution, based on the development of a well founded, adaptive time 

stepping scheme is given.  

Solver extension modules, namely the bacteria module and the electro static 

module are at the focus of chapter 6. In this context, the easy expandability of 

the source code is pointed out. 

Chapter 7 provides an insight into the work-flow behind the code and into the 

C++ software design pattern of the relevant particle solver classes as well as 

into their embedding within the OpenFOAM® program structure. A complete 

description of all particle-solver specific, user-definable input parameters is 

given too. 

Chapter 8 deals with the entire issue of solver validation and experimental 

verification and points out several significant developments in the field of dirt 

particle distribution detection. A macroscopic method for 3D digitalization and 

visualization of test particle distributions in filter fibre samples is presented 

and a newly developed, MatLab® based, reconstruction algorithm is 

described and verified.  
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Chapter 9 brings concrete examples of solver application and demonstrates 

how filter fibre engineering might look like in the near future. 

The concluding chapter 10 sums up the main development achievements 

since 2005 and gives an outlook towards potential, future extensions of the 

solver.  
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 Fundamentals and Modelling Task 

Sub chapters 2.1 to 2.5 describe several aspects of the basic, physical and 

software-related fundament behind this thesis and the (non-)spherical dirt 

particle solver in particular. Thereby all general explanations are intentionally 

kept as brief as possible in order to focus on domestic development 

successes, described in oncoming chapters. In addition to that, sub chapter 

2.6 justifies the extensive effort which was invested into the creation of the 

non-spherical particle model. 

2.1 OpenFOAM® 

The entire CFD related software development behind this thesis was 

conducted within the framework of the Open Source CFD package 

OpenFOAM®. Since various other sources (see [36-39] and [44]) describe 

OpenFOAM® very thoroughly, only a minimal introduction will be given in this 

context. 

OpenFOAM® is an accumulation of flexible C++ modules that constitute a tool 

to solve any system of partial differential equations by applying finite volume 

numerics [87]. Fluid flow equations are thereby solved by a robust, implicit, 

pressure-velocity, iterative procedure [36]. Based on this framework, the CFD 

toolbox can simulate a wide variety of complex fluid flow problems in 

engineering mechanics.  It provides a selection of solvers, utilities and 

libraries.  

• Solvers are used for the actual simulation. They can be specifically 

selected according to the governing physics of the problem. 

• Utilities fulfill various pre- and post processing tasks from output 

data processing to mesh manipulation. 

• Libraries are repositories of function related software tools that can 

be accessed by solvers and utilities. 
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The source code of the program has been made Open Source and thus is 

publicly available to anyone. Every aspect of the software can be altered as 

required by the user. Constantly improved and updated versions of the 

OpenFOAM® package as well as additional utilities can be downloaded at 

Opencfd.co.uk [36], CFD-online.com [37] or at Openfoam-

extend.svn.sourceforge.net [44].  

Due to the Open Source character of the software framework any 

development created by using OpenFOAM® is subject to the General Public 

License (GNU) [45]. 

All numerical calculations within this work were conducted by OpenFOAM® 

version 1.4.1 which also served as programming framework that was 

extended as required. The meshing was conducted via the commercial 

FLUENT® mesh generator GAMBIT® [89] or via self written meshing utilities 

(see chapter 2.5). All results were post processed and visualized with the 

Open Source visualization tool ParaView version 3.2.0 [90] by Kitware®. 

2.2 MatLab® 

A large part of the experimental-result-evaluation related software 

development behind this thesis was conducted within the framework of the 

commercial, numerical computing environment MatLab® by The Math Works 

[88]. MatLab® is not just a mathematics tool but also a programming 

language. Some of the main capabilities of the software are matrix 

manipulation, data visualization and the possibility to create user interfaces. In 

addition to that MatLab® is equipped with a wide range of extension 

toolboxes. The graphics toolbox was essential for the programming of the 

optical evaluation algorithm (see chapter 8.3.3). 

2.3 LabVIEW® 

The software based interfacing between laboratory equipment and the control 

unit was realized with LabVIEW® (Laboratory Virtual Instrumentation 

Engineering Workbench) from National Instruments [89]. LabVIEW® is a 
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platform and development environment for the visual programming language 

G. In terms of data acquisition, instrument control and industrial automation 

LabVIEW® has become a standard piece of software.  

The control interface for correlating laser, drive set and digital camera of the 

particle distribution detection facility (see chapter 8.3.2) was created by using 

LabVIEW® version 7.5 whereas the data acquisition and control software for 

the oil-fibre test facility (see chapter 8.3.1) was set up under LabVIEW®  

version 8.1. 

2.4 Prevailing Physical Conditions in Fluid Filtration 

The prevailing physical situation in automotive oil filtration is characterized by 

the interaction of the three main components: fluid, filter fibre and dirt 

particles. It can be described as follows: 

An oil pump pushes the lubricant towards the filtration device. The motor oil 

usually consists of a base component and of up to 25% of additives. While 

paraffin mineral oils or hydrocrack oils were mostly used as base component 

in the past, fully synthetic base components like polyether, silicones or 

synthetic hydro carbons are becoming increasingly important today [70]. In 

this work, representative oil properties are chosen. Thus the highly viscous, 

Newtonian oil fluid stream is stated to feature a kinematic fluid viscosity of 

f~2*10-5m²/s and fluid density of f~850kg/m³.  

The fluid stream comes in at relatively slow flow velocities of uf<0.1m/s, hits 

the filter, exerts pressure and shear forces on the fibres and deforms them 

according to the laws of structural mechanics. Commonly used oil filter fibre 

materials are cellulose or glass fibre. In recent years polyester and 

polypropylene components have been inserted as well [70]. Single fibre 

diameters range from 5 m up to 50 m and usual pore size diameters range 

below 100 m. Because of the microscopic geometry range, the high viscosity 

and the low flow velocities, the local Reynolds numbers Re in the fibre vicinity 

are expected to be mostly below 1, but surely below 10. Accordingly the 

occurring particle Reynolds numbers Rep are also expected to be well below 

1, which means that calculations of particle hydrodynamics will have to be 

valid within the Stokes flow regime.  Furthermore Knudsen numbers Kn are 
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well below 0.015. Thus continuum equations are valid and the consideration 

of molecular fluid diffusion effects is unnecessary. The influence of diffusive 

motion on particle movement can be estimated via the Péclet number Pe. The 

Péclet number is a ratio of particle advection and diffusion effects. In the case 

of fluid filtration it has been found to be well above 5*107 [70].  As a 

consequence, particle diffusion behaviour is negligible and Newtonian 

mechanics suffice to describe particle movement. 

The bottom line at this point is that certain simplifications can be made in the 

modelling. A simple, incompressible, laminar and isothermal fluid solver can 

handle the situation. Thus the CFD fluid simulation relies on the standard 

solution of the temporarily and spatially discretized, incompressible 

Continuity- (Equ.1) [47] and Navier Stokes equation (Equ.2) for Newtonian 

fluids [46]. 

0=⋅∇ fu  (1) 

( ) ( ) ( ) Iff
f

fff Supuuu
t

+∇+∇−=∇⋅+
∂
∂ 21 μ

ρ  (2) 

Whereby t stands for time, p is the pressure field, f is the dynamic fluid 

viscosity and SI is the source term for volumetric forces such as gravity. SI can 

also work as the momentum source term for small, two-way coupled particles.  

Certainly the prevailing physical situation is dominated by the presence of dirt 

particles and their interactions with the surroundings. The oil flow is laden with 

sparse accumulations of steel ( p~7800kg/m³), quartz ( p~2650kg/m³), and 

soot ( p~1800kg/m³) particles, ranging from 5 m to 100 m in mass 

equivalent, spherical diameter [70]. They hit or pass the filter, some stick to 

the fibre due to adhesion, some get sieved out by the fibre itself or because of 

the cake filtration effect and some get blown off again. A slow particle 

accumulation takes place, which causes local plugging of the flow. Over filter 

life time the microscopic particle deposition effects give rise to macroscopic 

changes of filter characteristics, such as porosity, permeability, pressure drop, 

filter efficiency and particle penetration depth. In order to simulate the 

encountered phenomena, the implementation of a detailed particle model is 
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necessary and the calculation of particle force interactions is essential. The 

effects with dominating influence on the changes of filter characteristics are 

fluid–particle, particle-fibre and particle–particle interactions.  

2.5 Fibre Reconstruction and Fluid Structure Interaction  

The ability to realistically model micro scale filtration processes in filter fibre 

materials is in large part based upon the realistic reconstruction of micro scale 

filter fibre geometries. Within the context of the development effort behind this 

work, a sophisticated method to digitally recreate real geometries is applied. 

In a first step, computer tomographic scans (CT) are conducted on the fibre 

material to be investigated. The data yielded by the CT scans are stacks of 

2D grey scale images seen in Figure 4 (left). MatLab® based reconstruction 

algorithms have been programmed in order to process the CT data. The 

picture stacks can be uploaded and the individual slices are then analyzed. 

Local picture areas of higher grey scale intensities are recognized as fibre 

regions which can be clearly distinguished against the low-intensity 

background. Identified fibre slices are then quantified, their pixel area is 

calculated and their local centres and radii are determined. By applying a 

skeleton [48] algorithm the centres of consecutive fibre slices are 

interconnected to constitute the basic, local fibre framework. By applying the 

calculated radius information attached to each centre point, the actual fibre 

structure is recreated as 3D, digital data matrix. It can be visualized as seen in 

Figure 4 (right). 
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Figure 4: Fibre reconstruction and digitalization by MatLab® utilities. Stacks of 
grey scale images (left) out of CT scans are transferred to fully digitalized data 
matrices (right). 

In a next step the digital data is automatically discretized into a structured, 

hexahedral grid mesh with a user definable cell-spacing-to-pixel ratio. This 

means that, if the CT scan resolution can be kept constant, a uniform spatial 

discretization rate for any filter fibre simulation can be guaranteed. Thereby 

one of two modes of spatial resolution can be chosen: Either the finer mode 

which features a spatial resolution of 0.625Pixel/ m or the coarser mode 

which features a resolution of 0.313Pixel/ m. The reconstruction utility yields 

perfectly interfaced grids, of both the fluid and the solid region of the fibre 

sample. Figure 5 shows an exemplary, structured, micro scale fibre grid 

mesh. 
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Figure 5: Filter fibre sample discretized into a structured fluid- and solid 
hexahedral grid mesh. Dimensions: 200 m*200 m*300 m. Number of cells: 
~6.0*10^5. 

The prepared, structured grid meshes serve as geometry boundary conditions 

for the simulator to be developed. 

For quite some time, deformation effects have been suspected to have 

significant impact on the filter characteristics of a fibre. Therefore fluid 

structure interaction phenomena were included into the modelling. An 

extensive, detailed Fluid Structure Interaction utility was programmed. It 

features a stiff, explicit coupling between the fluid and the solid phase. A 

speciality of the code is that it uses only one, single finite volume solver to 

handle the governing fluid dynamics as well as the structural mechanics and 

deformation on the solid side. Figure 6 sketches out the basic scheme behind 

the FSI solver. Within every time loop the Navier Stokes equations along with 

the Continuity equation are solved in a PISO [91] loop to yield the fluid 

pressure- and velocity field. The pressure and the surface normal gradient of 

the fluid velocity field are then used to calculate pressure- and shear stresses 

respectively. The stress terms are explicitly passed as boundary conditions for 

the fibre. In a next step the Hook’s law structural mechanics equations [11] 

are solved on the solid side of the dual fluid/solid mesh. Then the local 

displacement values for the solid region are written out and the mesh is 
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moved accordingly. In order to reduce numerical instabilities, a semi-implicit 

implementation switch can be used. Thus the fluid solution is recalculated 

within the same time step and compensates for changed flow geometries. 

Figure 6: Basic solver scheme of the FSI tool for modelling deformation 
effects of the filter fibre structure under the influence of the oil stream. 

Figure 7 shows an exemplary calculation result where the FSI utility has been 

applied on a realistically reconstructed piece of filtration fibre geometry which 

is hit and deformed by oil flow. 

Figure 7: Filter fibre material, deformed by oil flow. Compact fibre regions 
show less deformation (blue), while thinner fibres are deformed more strongly 
(red). 

Detailed descriptions regarding the back ground and the development 

successes on the FSI side of the filtration simulation model are laid out in [1] 

and [11]. 
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2.6 Why Non-Spherical Particle Modeling? 

A crucial part of this work is about the creation of a Lagrangian, non-spherical 

dirt particle solver. Its ability to consider particle-shape effects in high detail is 

supposed to set a new standard in the field of filtration simulation. However, 

taking into account the additional development and computational effort, the 

question regarding benefits and costs of a non-spherical particle model is 

valid. The following three sub-chapters are supposed to point out reasons why 

the consideration of non-spherical effects in filtration simulation is imperative. 

2.6.1 Drag Forces and Particle Relaxation Times 

The first, obvious reason to go from a spherical dirt particle description to a 

more realistic, non-spherical approach lies within a significant deviation in 

drag-force-to-mass-ratio. A good way to demonstrate the difference is to take 

a look at spherical and non-spherical particle relaxation times p of mass 

equivalent particles. The parameter p can be thought of as the ratio between 

particle inertia and fluid viscous forces.  

Regardless of their shape, all particles of equal mass feature the same 

diameter of a mass equivalent sphere Dsph. With mp being the particle mass 

and p being the particle density, Dsph can be written as: 

3
6

p

p
sph

m
D

πρ
=     (3)

Since the particle Reynolds numbers under consideration range significantly 

below 1, Stokes drag conditions can be assumed. Thus the expression for the 

particle relaxation time for the translation of spherical particles p,sph in the flow 

domain is given by:  
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For non-spherical particles a drag force correlation, proposed by Hölzer & 

Sommerfeld [24], shall be chosen. It has been derived out of extensive Lattice 

Boltzmann (LB) simulations concerning the drag- and lift forces acting on non-

spherical particles (see also chapter 4.2.5.2). In this case the definition of the 

non-spherical particle relaxation time p,nonsph is more complex and reads: 

relrel
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321

0
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−=τ (5)

Here urel is the relative fluid–particle velocity and the constants C0, C1, C2 and 

C3 are: 
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Where Af,ell is the frontal area of an ellipsoid particle,  projected onto a plane, 

perpendicular to the relative fluid-particle velocity vector. 

Φ
+

Φ
= 2181

lengthsph

f

D
C

ν    (7) 

4/32
13

Φ
=

sph

f

D
C

ν
    (8) 

cross

2.0)log(4.0 1
4210.0

3 421.0 Φ
Φ−

=C    (9) 

In Equ.7 to Equ.9 f is the kinematic fluid viscosity, , cross and length are the 

shape dependent, overall sphericity, length-wise sphericity and cross-wise 

sphericity, respectively (for exact definitions see [24] or chapter 4.2.5.2). The 

comparison of Equ.4 and Equ.5 shows that the Hölzer-Sommerfeld drag 

correlation yields a surprising result. Even with the longest particle half axis 
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being aligned along the fluid stream lines, non-spherical particle relaxation 

times are generally lower than those of mass equivalent spheres. This can be 

explained by the low-Reynolds dominance of shear forces over pressure 

forces and by the fact that for increasing non-sphericity the particle surface 

area increases as well. In [5] the parameter ax is introduced to measure 

deviation from spherical shape. It represents the medium, relative half axis 

deviation from Dsph and is defined as: 

( ) ( ) ( )
sph

sphsphsph
ax D

DcDbDa

3

222 222 −+−+−
=α (10) 

Here a, b and c are the lengths of the three particle half axes, whereby a b c. 

Using ax as a parameter, it becomes apparent that, the further the particle 

shape deviates from being a sphere (higher ax), the smaller p,nonsph will be. A 

corresponding plot of the situation, as seen in Figure 8, reveals that non-

spherical particle relaxation times show a dependency on local fluid conditions 

e.g. relative velocity urel, while spherical particle relaxation times do not.  
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Figure 8: Spherical Stokes (blue) and non–spherical Hölzer-Sommerfeld (red, 
orange, yellow, turquoise) particle relaxation time behaviour against particle 
Reynolds number. Assumption: the longest half axis a is aligned along fluid 
stream lines.  
Increasing ax (0.0-1.0) leads to lower p,nonsph. All values are scaled by 

p,sph(Re=0). 

Furthermore the results in Figure 8 show that non-spherical particle relaxation 

times for highly non-spherical particles ( ax 1) amount to less than 1/5th of 

spherical relaxation times. The comparison of the results of the p,sph and the 

p,nonsph( ax=0) line does reveal a certain discrepancy between the analytical 

Stokes drag solution for spherical particles and the LB based, semi-empirical 

drag formulation by Hölzer & Sommerfeld. This points to the fact, that the 

latter is only valid for ax>0. However, the results clearly underline that a mere 

spherical particle model would significantly underestimate fluid skin friction

and form drag forces on supposedly arbitrarily shaped dirt particles. One 

obvious consequence of disregarding particle shape effects for filtration 

simulation would be an overestimation of filter fibre efficiencies. 
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2.6.2 The Non-Spherical Particle Slip Effect 

To characterize the rotational response of a non-spherical particle to torque 

effects, the rotational particle relaxation time p,  can be introduced as [49]: 

       
( )

( ) pfpd

pp
p Vc

I
⋅⋅

Φ
=

μ
τ

ω
ω Re,

,    (11) 

Here the particle  moment of inertia Ip depends on the particle orientation 

angle p towards the fluid stream. The rotational drag force coefficient cd,

depends on the local fluid conditions. Vp stands for particle volume.

Longish, non-spherical particles with small, rotational relaxation times show a 

tendency to easily align themselves along the streamlines of the surrounding 

fluid. If DP, Db, Dc denote the axis diameters of an ellipsoid, so that Dc Db DP, 

then the smallest possible, projected, frontal area of an ellipsoid is given by: 

π
4min,

cb
p

DD
A =     (12) 

Particle alignment increases the likelihood of slipping through a pore of 

diameter DF in a direction, perpendicular to Ap,min. Consequently the two 

smaller axes diameters define the minimal, equivalent, spherical pore size 

diameter DF,min that an aligning, non-spherical particle can theoretically slip 

through: 

cbF DDD ⋅=min,     (13) 

This means: 

PF DD <min,      (14) 

The diameter of mass equivalent, spherical particles Dsph can also be written 

as: 
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3 2
min,FPsph DDD ⋅=     (15) 

Which leads to the relation: 

sphF DD <min,      (16) 

Thus the hydrodynamic slip effect of non-spherical dirt particles increases 

particle penetration depth and decreases filter fibre efficiency as compared to 

the case of mass equivalent, spherical particles.  

For filtration simulation this means that a representation of non-spheres by 

mass equivalent spheres with diameter Dsph might lead to a considerable 

overestimation of the filter fibre efficiency. A representation by spheres of 

diameter Dp, on the other hand, will not only lead to an overestimation of 

filtration efficiencies, but will also result in wrong particle masses and 

consequently in wrong calculations of over all particle hydrodynamics. Figure 

9 presents a basic sketch of the situation. 

iU
ω

Dp

Dp > DF

DFDF
DP

iU

Dp > DF

Figure 9: Non-spherical particle slip effect. Representation by spherical 
particles of diameter Dp (left) means overestimation of filtration efficiencies 
and particle mass as compared to the more realistic, non-spherical 
representation (right). The use of spheres with Dsph still leads to 
overestimation of filtration efficiencies because of Equ.16. 

2.6.3 The Non-Spherical Particle Bulk Effect 

Longish, non-spherical particles with larger, angular relaxation times show a 

tendency to hardly align themselves along the streamlines of the surrounding 

fluid. As a consequence, the two larger half axes Dp and Db commonly define 
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the minimal, spherical equivalent pore size diameter DF,min that the particle 

can slip through: 

bPF DDD ⋅=min,   (17) 

Since DF,min>Dsph, a mass equivalent spherical particle might just slip through 

pores, that a bulky, non-spherical particle may not pass. Thus the 

hydrodynamic bulk effect of non-spherical dirt particles decreases particle 

penetration depth and increases filter fibre efficiency as compared to the case 

of mass equivalent, spherical particles.  

In terms of filtration simulation this means that a representation of large non-

spheres by mass equivalent spheres with diameter Dsph might lead to a 

considerable underestimation of the filter fibre efficiency. Figure 10 presents a 

basic sketch of the situation. 

Dp<DF Dp>DF

Dp DpDp DFDF
iU

mSPH=mNonSPH

Dp
SPH<Dp

NonSPH
Dsph<DF

Dsph

Figure 10: Non-spherical particle bulk effect. Representation by mass 
equivalent, spherical particles of diameter Dsph (left) means underestimation of 
filtration efficiencies as compared to the more realistic, non-spherical 
representation (right). 

The bottom line at this point is that a non-spherical particle model, capable of 

including particle shape effects as well as rotational particle alignment, gives a 

much more realistic insight into detailed interaction behaviour in the particle-

fibre vicinity, than any spherical representation ever can. 
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 Basic Concepts of the Large, Lagrangian Dirt 
Particle and Deposition Model 

This chapter deals with three important, conceptual corner stones of the 

developed model: 

• The fact that a Lagrangian rather than an Eulerian particle simulation 

approach is chosen. 

• The introduction of a strict force-to-motion concept. 

• The solver’s ability to realistically calculate small and large particles. 

3.1 Lagrangian Particle Modelling Approach 

A Lagrangian [25] approach to simulate particle behaviour considers particles 

to be individual entities, interacting with the surrounding environment. In 

general, this modelling concept is used to consider quite limited numbers of 

particles or parcels in higher levels of detail. Deterministic concepts are 

commonly applied for the calculation of individual particle behaviour. The 

Eulerian [16] approach, on the other hand requires a second, continuous 

particle phase along with the solution of corresponding conservation 

equations. This concept is rather used for modelling dense clouds of not 

individually resolved particles. Stochastic modelling concepts are common 

here. 

The given task is to understand and simulate the dynamic interaction of 

individual micro scale effects that lead to dirt particle deposition in a filter fibre 

material. Therefore a high resolution of physically relevant details is required. 

As a consequence, a Lagrangian and not an Eulerian approach was chosen 

for the model. 

In the Lagrangian implementation, all particle movement is based on the 

simple, Lagrangian equations of motion. The values for e.g. particle position 

Xp, orientation p, velocity up, angular velocity p, acceleration ap and angular 
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acceleration p, depend on the sum of acting forces that come from 

interaction modelling and from the resulting velocity and pressure field out of 

the Eulerian fluid calculation. The Lagrangian equations of translatory motion 

are written out as Equ.18 and Equ.19. 

p
p u

dt
Xd

=  (18) 

p
p a

dt
ud

=  (19) 

The Lagrangian equations of rotational motion are: 

p
p

dt
d

ω=
Φ

 (20) 

p
p

dt
d

α
ω

=  (21) 

The coupling of particle behaviour to the particle surroundings is performed by 

the acceleration terms ap and p. They result from force- and torque vectors. 

Their formulation is the essential part of Lagrangian particle simulation. 

3.2 The Force-to-Motion Concept 

Translational and rotational force- and torque effects with influence on particle 

trajectory and deposition behaviour have to be accounted for. Those effects 

can be parted into three basic categories: particle-fluid (see chapter 4.1.2), 

particle-fibre (see chapter 4.1.4), and particle-particle (see chapter 4.1.5), 

interactions. 

It is inaccurate to traditionally model e.g. one individual particle-deposition 

effect, without taking into account the interaction with other particles, or a 

changing flow field [12], [13]. Averaging, semi-empirical equations are 

therefore hard to define and inaccurate. Thus the force-to-motion concept is 

introduced here. It states that neither particle translation nor rotation can 

occur without previously, explicitly calculated force- and/or torque vectors. In 
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this work all modelling is broken down to the level of individual force effects 

and their resulting torques. The following interaction forces are considered: 

• particle–wall impact force,     Fwall

• particle–fibre interaction force,    Ffibre

• particle–particle impact force,    Fcollision

• particle–fluid interaction (drag) force,   Ffluid

• force due to pressure gradient (form drag),  Fpressure

• force due to shear flow (shear drag),   Fshear

• gravity,       Fg

A simultaneous calculation of Ffluid, Fpressure and Fshear would yield an 

overestimation of fluid–particle interaction forces. An important aspect of this 

work is the ambition to numerically resolve flow conditions for individual 

particles. Thus it becomes possible to break down all relevant force 

contribution terms to Ffluid to their essential causes: pressure and shear 

effects. Depending on the specific mode of operation, either Ffluid or Fpressure & 

Fshear are calculated. Figure 11 illustrates an assembly of small, (non-) 

spherical particles and the corresponding system of acting forces and torques, 

which cause translation and rotation. 

fU

velF

gF

gF

velF

velF

wallF

collF

fibreF

gF

wall

fibre

g

Figure 11: Illustration of acting forces and torques on an assembly of (non-) 

spherical particles. 



26

3.3 The Large Particle Model 
A special feature of the presented Lagrangian particle solvers is their ability to 

handle both small and large particles as shown in Figure 12. With the mean 

cell diameter being Dc, the term large refers to the case of Dsph/Dc>1.  

Figure 12: Particle simulation with small (Dsph/Dc 1) particles (left) and large 
(Dsph/Dc>1) particles (right). 

The modelling of large particles essentially entails three important adaptations 

concerning the interaction force implementation and the concept of fluid-

particle interaction: 

• The fluid flow field is uniform within each calculation cell. This is why for 

small particles the fluid drag and lift forces are calculated by using the 

uniform, relative fluid-particle velocity urel. For large particles the fluid 

velocity field has to be considered as generally non-uniform over the 

surface of the particle. Consequentially the changes of urel across the 

particle surface have to be considered. Here this is achieved by the 

introduction of pressure-velocity help points (see chapter 4.2.2.4.1). 

• In the case of large particles, the calculation of pressure force effects can 

no longer rely on semi-analytical form drag formulations. In order to get a 

hold of pressure gradients forming across the surface of particles the 

pressure-velocity help point concept is useful as well. 
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• The two-way coupling of a small particle to the fluid field is, if at all, usually 

realized via a local momentum source term within the engulfing fluid cell.  

A large particle per definition causes more pronounced distortions to the 

fluid solution, since it affects not just one but multiple fluid calculation cells. 

Large particle-two-way coupling effects are hereby realized via the 

introduction of an elaborate plugging scheme (see chapter 4.1.2 and 

4.2.6). 
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 The (Non-) Spherical Dirt Particle Deposition 
Solvers 

During the course of the past four years, two OpenFOAM® dirt particle and 

deposition simulation solvers have been created. Both are based on the basic 

solver concepts described in chapter 3 (Lagrangian, large particle model, 

force-to-motion concept). They can be used alternatively as required by the 

user. 

• The spherical Lagrangian particle solver:  

This simulator is the original version. It has been created between 2005 

and 2006 and is the basis for all later developments. This original particle 

model is a spherical, Lagrangian, fully deterministic (non-stochastic) 

approach with the capability to interact with the surrounding, Eulerian 

fluid–fibre framework. Each particle can extend well beyond the borders of 

a single calculation cell and can sense and affect fluid conditions within a 

multiple cell region of the fluid mesh. 

However, the implementation of many physically relevant effects, such as 

particle-fluid force calculation is conducted on a rather qualitative basis 

and the level of detail and accuracy is generally lower than in the more 

advanced, (non-)spherical solver. Calculation times and memory 

requirements are lower than for the advanced version, which is why this 

software is still an important tool. During the course of this thesis one 

relevant article on this subject has been published: [2]. 

• The (non-)spherical Lagrangian particle solver:  

 This simulator is the advanced, final version. It has been created between 

2007 and 2009 and constitutes the core part of this thesis. As an extension 

of the spherical particle model, it is a more sophisticated and more 

accurate tool which can handle spherical as well as non-spherical dirt 

particle and deposition behaviour within and without the vicinity of 

realistically reconstructed fluid filter fibre geometries. The main advantage 

over the original version is its ability to realistically handle non-spherical 
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particle shape effects adding three rotational degrees of motional freedom. 

In addition to that it features much more detailed, quantitatively verified 

implementations of all physically relevant aspects of particle behaviour. 

Calculation times as well as memory requirements are higher but results 

are more accurate than those of the spherical solver. During the course of 

this thesis two relevant publications on this subject have appeared: [3, 4]. 

4.1 The Original, Spherical Particle Solver 

The following sub chapters describe in detail how the prevailing physics has 

been implemented into the original, spherical, large, Lagrangian particle 

solver. Initially the focus is laid on the modelling of particle-fluid interaction 

forces. Secondly impact events are treated. Forces with influence on particle 

motion, that occur due to individual impact events, are hereby called event 

forces. They represent particle-wall, particle–particle and particle-fibre 

interaction effects. Finally the large particle aspects of the spherical 

implementation are discussed. 

4.1.1 The Particle Momentum Equation behind the Spherical Solver 

For merely spherical particles, rotational effects are irrelevant as long as 

Magnus forces [14] are neglected. Therefore only the translational, 

Lagrangian equations of motion (Equ.18 and Equ.19) need to be considered. 

The particle acceleration term ap is given via the formulation of the particle 

momentum equation (PME). The PME behind the spherical solver considers 

fluid-particle drag Fdrag, buoyancy, and three major categories of impact 

forces, which are summarized in Equ.22 as Fpi. 

( ) pifppdragpp FgVFam +−+= ρρ    (22) 

While buoyancy effects can be implemented just as shown in Equ.22, all other 

factors of influence need specific elaboration in terms of modelling. 

As listed in Equ.23, the three components of the impact force term Fpi are: 
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• particle collision effects,   Fcoll  

• particle-wall interaction forces,  Fwall  

• particle-fibre interaction forces,  Ffibre  

fibrewallcollpi FFFF ++=     (23) 

The event forces summarized within Fpi, in general have a duration time ti 
which is much shorter than any reasonable, discrete particle time step tp. 

Consequentially they produce extremely high, time dependent impact forces 

Fi(t). To correctly simulate the overall particle momentum change due to all n 

impact events, which occur during tp, an adapted impact force Fi,adapted has to 

be used as shown in Equ.24. 
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The following chapters describe how the compositional terms of the spherical 

solver’s PME: Fdrag, Fcoll, Fwall and Ffibre are derived and computed. 

4.1.2 Particle – Fluid Interaction: Drag Forces on Small Particles 

In the case of sparsely distributed, small particles in a highly viscous fluid, the 

drag force is the dominant factor on particle movement. The commonly used 

expression to model fluid drag on spherical particles is shown in Equ.25, 

where, Af is the cross sectional particle area perpendicular to flow direction 

and cd is the dimensionless drag coefficient. 

( ) pfpffdfdrag uuuucAF −⋅−⋅⋅⋅⋅= ρ
2
1

 (25)

The order of both, particle diameter and kinematic fluid viscosity is 

approximately 10-4. As a consequence the order of the corresponding particle 

Reynolds number Rep depends directly on the order of relative fluid-particle 

velocity urel, which is well below 1, hence: 
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Therefore inertial flow field effects on drag can be neglected, simplifying the 

Navier-Stokes equations in tensorial notation to pressure and viscosity effects 

[15]: 
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In Equ.27 the indices i and j stand for the n vectorial components for n=3 

dimensional vector space. Under these conditions the Stokes law for drag on 

spherical particles is applicable. It is shown in Equ.28. In contrast to other 

relations for cd = f(Rep), it yields an entirely analytical solution for the drag 

coefficient, which considers both, form drag and the shear stress. 
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For the limit of Rep 0 the form drag coefficient cd,p and the shear stress 

contribution cd,shear relate to cd as: 
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Should small particles experience higher particle Reynolds numbers (Rep>4), 

the solver automatically switches to semi-empirical correlations like the 

Abraham equation [34] seen in Equ.30. It is valid up until Rep<6.000. For 

particle Reynolds numbers 6.0*103 <Rep < 2.0*105 the Turton–Levenspiel [34] 

equation is used. It is shown in Equ.31.
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Figure 13 shows the close accordance of the Abraham and the Turton–

Levenspiel equation with experimental results. 

Figure 13: Drag coefficient of solid spheres plotted against particle Reynolds 
number. Comparison of experimental data with results from Abraham and 
Turton-Levenspiel equation [34, 50]. 

This simple drag implementation into the Eulerian-Lagrangian, OpenFOAM® 

solver already leads to very plausible results in terms of particle sizing effects. 

Due to a higher drag-force-to-inertia ratio (smaller particle relaxation time), 

smaller particles accelerate much more readily than larger particles in an 

otherwise steady state flow field. An exemplary result is shown in Figure 14. 

t=0.2s smu f /7.0= t=0.6s smu f /7.0=

Figure 14: Particle sizing effect: smaller particles follow fluid motion more 
readily. 
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The qualitative impact and pass scenarios of two differently sized particles 

with a single fibre are depicted in Figure 15. The impact probability can be 

characterized by the Stokes number St (see chapter 8.1.2). Whilst the smaller 

particle, with St~0.15 follows the flow field in the neighbourhood of the fibre, 

the larger particle, with St~0.6 impacts on it and deviates accordingly. The 

influence of particle inertia effects is demonstrated in a physically plausible 

way. Stokes number values for typical dirt particles with relevance for fluid 

filtration that are considered within this work range from St~1.5*10-5 to 

St~1.5*10-3. According to [81] common Stokes number values for the entire 

field of fluid filtration range from St~10-9 to St~2*10-3. 

t=0s t=0.5s

Figure 15: Inertial Impact effect: particles of higher Stokes number show 
higher probability of impact. 

4.1.3 Spherical Particle Event Forces: Particle–Wall Interaction 
A second, decisive factor for particle movement is their interaction with 

obstacles, like geometry boundary patches, in the stream line path.  

There are two types of boundary patches: inlet/outlet patches, whereby the 

fluid enters/leaves the region and wall patches. The latter represent borders to 

neighbouring fibre regions that are not included into the calculation.  

Particles hitting an inlet or outlet vanish from the calculation. Particles hitting a 

wall patch would in reality leave for the neighbouring fibre vicinity. From the 

statistical point of view just as many particles would enter through the wall 

boundaries. This leads to a relative conservation of particle cloud density pc

perpendicular to the flow direction, as described by Equ.32.   
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Where r is the distance to the centre of the cross sectional flow area Af. As a 

consequence, a simple elastic reflection rule has been implemented at the 

wall boundary patches of the geometry. Following Equ.24 the computed wall 

impact force Fwall has to account for the resulting momentum change of the 

particle mass mp during the discrete force effect time tp (=particle sub time 

step). For elastic reflection, the resulting momentum change should reverse 

the direction of the particle velocity components parallel to the normal vector 

nw of the wall patch. The computed wall impact force is specifically calculated 

to have just that effect and is formulated as:  
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For semi-elastic impact scenarios a user-defined coefficient of elasticity Epw is 

introduced. It is 1 for totally elastic and 0 for totally inelastic particle-wall 

behaviour. To implement this option, the expression for the elastic impact 

force of Equ.33 has to be extended to describe the adaptable, semi-elastic 

wall force Fwall,iel. It can be written as:  
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This implementation, at the end of a wall impact time step tp, results in the 

computation of the updated particle velocity up(t+ tp) as shown in Equ.35. 

( ) ( ) ( ) ( )[ ] wwppwppp nntuEtuttu ⋅⋅⋅+−=Δ+ 1  (35)
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Figure 16: Sketch of spherical particle-wall impact event. 

4.1.4 Spherical Particle Event Forces: Particle–Fibre Interaction 
A formulation of particle-fibre interaction effects is essential for modelling the 

overall filter efficiency of the medium. Effective particle-fibre forces will vary 

depending on parameters such as surface roughness, particle-fibre adhesion 

or digital surface resolution. A model has been implemented in order to be 

valid for any kind of filter material. User-defined parameters can account for 

material specifics.  

The procedure of particle immobilization on the fibre is broken down and 

simplified as follows: 

1. Particle impact: When a particle hits the fibre, an impact of user-defined, 

material dependent elasticity occurs. It produces a particle-wall 

interaction force according to Equ.34. A completely inelastic impact 

scenario is chosen here. 

2. Since in an inelastic impact scenario only velocity components parallel to 

the fibre patch remain, the particle glides along the fibre surface for a 

short time and is exposed to a fibre friction force Ffibre. The value of Ffibre

is set in proportion to the sum of all other particle force components Fp,i

normal to the fibre surface. In addition to that a proportionality to material 

properties, expressed via fp[-] is implemented. Ffibre is always directed to 

point against the direction of the current particle velocity. Thus Ffibre is 

computed as seen in Equ.36, with n being the total number of discrete 

forces, affecting the particle during time step tp. 
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3. If the value of the particle force components parallel to the fibre surface 

is smaller than those of Ffibre, the particle slows down. Should the 

resulting negative particle acceleration during tp lead to reversing the 

glide direction, the particle velocity is set to zero and the fibre friction 

force is set according to Equ.37. 
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 Thus the particle gets immobilized on the fibre surface. 

4. A user-defined, material dependent sticking barrier Fstick is introduced. 

Only if surface parallel components of the external forces on the particle, 

e.g. induced by the fluid or by the hitting of other particles, get big 

enough again to overcome the sticking barrier, the particle can regain 

some motion.  

The essential part about this implementation is the fact that immobilized 

particles are not just taken out of the calculation framework, but can still 

interact with their surroundings. Thus the simulation is enabled to model 

complex particle agglomeration effects or blow off mechanisms near the fibre. 

A qualitative example can be seen in Figure 17. As will be seen in chapter 

4.2, the advanced (non-)spherical particle solver features a more refined 

version of the particle-fibre interaction model. 
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afterbefore

fibre

Figure 17: Two particles in fibre vicinity with velocity vectors. Blue particle 
gets immobilized on fibre (left) is hit by red particle and is blown off again 
(right). 

4.1.5 Impact Forces: Particle–Particle Interaction 
Particle agglomeration at the fibre, can lead from complex particle–particle 

interaction to plugging effects up to changes of overall permeability. Cake 

filtration effects stem from this very phenomenon. Thus a particle collision 

model is needed in the solver.  

The usual Lagrangian collision model for a particle cloud of N particles 

requires additional calculation time in the order of ~N2. Here a collision model 

was implemented which only considers those Nf particles, which either show 

fibre interaction, or interaction with other particles that are part of the collision 

list. Because Nf is k times smaller than N, the introduction of the collision list 

leads to k times faster calculations compared to a full collision model.  

Following the force-to-motion concept, any particle collision interaction is 

handled via the calculation of collision forces Fcoll.  

There are two different cases to be considered when modelling the collision 

force of a particle A of mass ma and velocity va with another particle B, of 

mass mb and velocity vb. The case of particle B being immobilized on a fibre 

can be handled just like particle–wall collision, given in Equ.33 and Equ.34. 

The difference is that the immobilized particle B does not just absorb the 

collision counter force like a wall boundary patch. If the collision force acting 

on particle B surpasses the fibre sticking barrier, B regains some motion. This 

constitutes the blow-off effect. 
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If particle B is still in motion when hit by particle A, the case to be dealt with is 

a collision of two mobile objects of user-defined elasticity. The adapted, elastic 

particle–particle collision force affecting particle A is described by:  
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⋅Δ
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=  (38)

where va,n and vb,n are the velocity components along the collision direction 

between particle centre A and particle centre B. Figure 18 shows a simple 

sketch of a particle-particle impact event. 

Figure 18: Simple sketch of particle-particle impact event. 

In reality any scenario of collision is combined with some degree of object 

deformation along a certain deformation path sdef. In the case of total 

elasticity the deformation is reversed and 100% of the kinetic impact energy is 

regained by the object. In the case of total inelasticity, no reversed 

deformation (expansion) takes place. The overall deformation path is only ½ 

of the elastic case. For both cases the modelled impact takes place during 

time tp with discrete, constant, relative particle-particle velocity vp,rel. Because 

of that, the virtual deformation path vp,rel* tp stays the same. This is why the 

occurring, modelled collision force Fcoll,iel has to account for differences in 

elasticity. Using the elasticity coefficient Epp it can be described by:  
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The particle collision model can realistically simulate the interaction of large 

particle numbers in a filter fibre assembly. Figure 19 shows a qualitative 

example. 

Figure 19: Particle cloud in digitally reconstructed fibre geometry. Large 
numbers of particle-particle impact events occur. 

4.1.6 Spherical, Large Particle Effects: Drag Force via Pressure 
Gradient 

Fluid-particle drag forces, calculated according to Stokes law, consider drag 

due to shear stress and form drag based upon particle surface normal 

gradients of the velocity field and pressure gradients over the particle volume, 

respectively. For small particles, uniform flow conditions can be assumed 

across the entire shape and the implementation of drag effects is simple (see 

Equ.25). In the case of large particles the situation becomes more complex 

because here the fluid-particle interaction force calculation has to account for 

non–uniform flow conditions over the particle surface.   

The spherical, large particle solver does not explicitly calculate shear drag 

effects but only form drag effects due to pressure field non-uniformities across 

the particle surface. To achieve that, the concept of pressure-velocity help 

points has been introduced. Pressure-velocity help points are in essence 

small satellites, located on equally distributed positions on the particle 

surface. Those help points statically hold their relative position to the particle 

centre. Their main purpose is to sense pressure pi and velocity ui conditions 

on the particle surface and in the specific calculation cell they are located in. 
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The number of satellites is user defined. Of course higher help point numbers 

lead to higher calculation times but also to higher accuracy. Figure 20 shows 

a particle surrounded by 48 help points. 

Figure 20: Particle surrounded by 48 enlarged pressure/velocity help points. 

An averaging of the velocity values ui at the help points results in the average, 

relative fluid-particle velocity used to calculate Stokes drag.  

The surface fraction Ahp, is assigned to each help point and can be easily 

calculated according to: 

π⋅⋅== 21
sph

p
hp D

MM
A

A (40)

Where ap is the total particle surface and M the number of help points. 

The resulting pressure force contribution Fp can be approximated by choosing 

an appropriately large number of help points. An infinite number of surface 

help points leads to a perfect representation of the pressure force. This fact 

can be illustrated by:  
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Where np,i is the particle surface normal vector at each help point. By applying 

Gauss’ theorem the pressure force can be written as a volumetric term.  
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 (42) 
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Considering the zero Reynolds limit Stokes relation between shear and form 

drag (see Equ.29) the entire drag force on large, spherical particles is 

calculated as: 

pdrag FF ⋅= 3 (43) 

Thus the PME for large, spherical particles, implemented within the original, 

spherical solver reads: 
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This drag formulation, based on the pressure detection method is not as 

refined as the one developed for the (non-)spherical solver (see chapter 

4.2.6). However, it is useful in combination with the implementation of the 

particle plugging effect which is described in the following chapter. 

4.1.7 Spherical, Large Particle Effects: Plugging Effect 
If the simulated particles are large in comparison to the dimensions of local 

filter fibres, accumulation effects occur much more readily. Figure 21 shows 

the accumulation of large particles in a simplified fibre geometry.  

Figure 21: Accumulation of large particles in simplified fibre geometry. 
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Because of these accumulations, the over all fibre permeability decreases and 

pressure drop over the filter material sample increases. As a consequence the 

consideration of the particle plugging effect becomes imperative for realistic 

filtration simulation. In order to simulate particle plugging with effect on the 

fluid field, a two-way particle-fluid coupling becomes necessary. To achieve 

this, the vicinity of the particles is seen as a porous medium. Flow calculation 

in porous media demands an addition of the Darcy term to the governing 

momentum equations [62]. Some cases of flow in porous media require the 

addition of the Forchheimer term as well. This extension can be neglected 

here due the low flow velocities prevailing. The Darcy pressure gradient can 

thus be expressed via: 

f
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f
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α
μ

=∇  (45) 

Where f[m2] is the permeability. Using this expression, the Navier-Stokes

equation for incompressible, Newtonian flow through porous media can be 

written as: 
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To implement the porous concept in the numerical solver, a Boolean depot 

volume field has been created. Wherever it is set to 0 the permeability goes to 

 and wherever it is set to 1 a total plugging occurs, changing the 

corresponding cell permeability to 0. Consequentially a high numeric constant 

is used in combination with the depot field to approximate the Darcy

behaviour:  

( ) fiiif
f

f
Darcy uzyxdepotup ⋅⋅==∇ ,,106

α
μ

 (47) 

  

As a starting condition the permeability is  and the depot field is 0 throughout 

the entire volume. This means unhindered flow. As soon as particles get stuck 
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in the fibre structure, the depot field in the fluid cells enclosed by those 

particles changes from 0 to 1. The plugging becomes effective.    

Figure 22 contains chronological snapshots of a simple, multi-fibre case with a 

bunch of large particles getting stuck. The plugging effect on the fluid flow, 

which is represented through velocity vectors, is clearly visible. 

Figure 22: Simple filter fibre case with large particles before (left) and while 
(right) plugging effect occurs. The vector field symbolizes the fluid velocity 
field (0.2-0.4m/s).

Figure 23 shows the development of the pressure difference between inlet 

and outlet against run time. It corresponds to the plugging case shown in 

Figure 22. At a fixed volume flow rate the inlet-outlet pressure gradient 

increases over time, just as expected. 

Figure 23: Pressure difference between inlet and outlet over run-time, 
corresponding to the qualitative, exemplary plugging case shown in Figure 22. 
Conditions: p=2000kg/m³, f=1000kg/m³, f=1*10-6m²/s. 
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4.1.8 Combined Spherical Filtration Solver 
The chapters 4.1.1 to 4.1.7 have given a short overview of the principles and 

cornerstones of the original, spherical large Lagrangian particle solver. Even 

though some aspects of its implementation (i.e. drag force calculation) are 

rather qualitative in nature, it stands as one, compact, completely operational 

simulation tool. Due to the modular nature of the C++ programming language 

it can easily be combined with other, OpenFOAM® based simulators. A 

combination of icoFOAM [39] (the low Reynolds, incompressible fluid solver), 

the FSI solver (see [1] and chapter 2.5) and this spherical, Lagrangian particle 

solver yields the icoLagrangianStructFOAM simulator. The 

icoLagrangianStructFOAM can herby be presented as the first version, of a 

combined filtration solver capable of modelling the complex hydrodynamics of 

microscopic particle deposition processes in realistically reconstructed, 

deformable fibre media. The various solver modules can be switched on or off 

as required by the user. This means that flow in deformable media can be 

calculated without any particle injection on the one hand and that the particle 

solver can be used without FSI on the other hand. 

Several combined solver runs on test benchmark cases and on actual 

technical applications have proven that the proposed, computational strategy 

is robust and stable. Moreover result plausibility has been very encouraging 

from the beginning. In the following some screenshots of successful runs on 

the icoLagrangianStructFOAM are presented. 

Figure 24 is a screen shot from a case with simple horizontal and vertical filter 

fibres that are visibly deformed by an oil stream. A rather dense cloud of 

particles is injected and the particles get entangled in the fibre structure, 

which leads to a plugging of the stream path. 
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Figure 24: Simplified horizontal and vertical fibre structure 
(200 m*200 m*1000 m, ~2.5*105 cells ) deformed by oil flow. Dense cloud of 
rather large particles ( p=2000kg/m³, 40 m Dsph 60 m) getting entangled in 
the structure and causing plugging effect, e.g. deviation of the flow (uf~0.4m/s, 

f=1000kg/m³, f=1*10-6m²/s). 

As seen in Figure 25, the solver could already be robustly applied to realistic 

geometries. In this example a dense cloud of smaller particles gets injected 

into the vicinity of a complex fibre structure. The filter fibre used here, has 

been digitally reconstructed from CT-scans as described in chapter 2.5. 

Figure 25: Realistic, microscopic (200 m*200 m*300 m, ~6.0*105 cells) fibre 
geometry reconstructed from CT-scan images. Dense cloud of rather small 
particles( p=2000kg/m³, 40 m Dsph 60 m), suspended in flowing oil 
(uf~0.4m/s, f=1000kg/m³, f=1*10-6m²/s), gets entangled in the deforming 
fibre. 
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4.2 The Advanced, Non-Spherical Particle Solver 

It has been stated in chapter 2.6.1 that drag-force-to-mass-ratios and 

consequentially also particle relaxation times of non-spherical particles can 

dramatically deviate from the corresponding values, encountered in mass 

equivalent spheres. In addition to drag and lift force issues, it is mainly the 

physical- and hydrodynamic interaction situation between fluid, particles and 

fibres, that influences filter fibre efficiency. Right here, particle shape effects are 

most relevant. Non-spherical particle slip- and bulk effects (see chapter 2.6.2 and 

2.6.3) can be observed in filtration. A direct comparison of spherical and non-

spherical particle filtration behaviour leads to significant deviations in filter fibre 

efficiency (see also chapter 9.2) and particle penetration depth.  

This is why, in extension of the previously presented, spherical particle model 

(chapter 4.1), a highly detailed, more sophisticated and more accurate, non-

spherical particle model had to be created. In chapter 4.2 of this thesis, a 

significant extension of the original, spherical dirt particle model is laid out. It 

describes the basic concepts, the essential drag and lift force implementation 

method as well as the particle-surroundings-interaction schemes, behind a novel, 

realistic, Lagrangian, non-spherical particle solver.

During the course of development, the following, chronologically listed, main 

tasks turned out to be essential: 

• Creation of an explicit, force and torque vector model, stating that any 

translational and/or rotational change in motion can only stem from a 

previously, explicitly calculated force and/or torque vector. 

• Design of particles with basic, non-spherical abilities: 

- Creation of ellipsoids with three geometrical degrees of freedom. 

- Consideration of:  

  position and orientation. 
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  mass and moment of inertia tensor. 

  force and torque vectors. 

• Device of help concepts: 

- Introduction of a co-rotational particle coordinate system 

- Particle surface help point method 

- Particle-panel model 

- Time step control to eliminate numerical instabilities  

• Realistic calculation of non-spherical drag and lift forces. 

• Event force handling of non-spherical particle interaction effects:  

- Particle-particle collisions 

- Particle-wall impacts 

- Particle-fibre interaction including deposition modelling 

• Conditioning of output data to yield essential process parameters like: 

- Filter fibre efficiency 

- Particle penetration depth 

- Permeability 

- Pressure drop 

• Validation of CFD results: Analytical and experimental verification. 

Resulting from these tasks and underlying this thesis, a series of development 

successes can hereby be proudly presented: 

• Design of the Force-to-Motion concept, that reduces the modelling to 

the mere formulation of single force effects ([2, 3] and chapter 3.2). 

• Implementation of a Six Degrees of Freedom (DOF) solver for the 

Lagrangian particle momentum equations (PME) in OpenFOAM® ([3] 

and chapter 4.2.2.3). 

• Introduction of an Adaptive Time Stepping Scheme for explicit Euler 

discretization of the PME ([5] and chapter 5). 
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• Device of a surface Help Point Scheme to account for large particle 

effects in terms of fluid–particle, particle–fibre and particle–particle 

interaction ([2, 3] and chapter 4.2.2.4.1). 

• Development of a non-coupled drag force implementation that uses a 

combination of non-spherical, semi-empirical drag force formulas [24] 

and a panel method to consider free flow swirling effects: The Free 

Flow Drag Module ([3] and chapter 4.2.5). 

• Creation and verification of an efficient particle–fluid, two-way coupling 

method: The Fibre Vicinity Drag Module which is a plugging method to 

consider inter-particle and particle–fibre hydrodynamics. It also 

includes a simple adoption of basic concepts known from the 

immersed boundary method [17]. ([3] and chapter 4.2.6). 

• Implementation of a detailed particle–fibre interaction- and deposition 

model ([4] and chapter 4.2.7.2). 

• Creation of a non-spherical particle collision model, including exact 

impact-point determination as well as the consideration of rotational 

collision effects ([4] and chapter 4.2.7.3). 

• Programming of Python [11] based evaluation utilities, to extract 

essential data on result parameters from OpenFOAM® text file output. 

• Device of a semi-analytical scheme to verify solver functionality and 

result quality, within the framework of simplified fibre geometries ([4] 

and chapter 8.1). 

• An extensive, experimental set up to verify results (chapter 8.3). 

Concerning these developments, three papers have been published. Article [3] 

focuses on the basic concepts as well as the essential drag force implementation 

method behind the particle model while article [4] mainly concerns itself with the 

handling of particle interaction with their surroundings. In addition to that [4] deals 

with the creation of a simplified, semi-analytical approach to verify solver 

functionality and result quality. The third article [5] presents an adaptive time 
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stepping scheme for explicit Euler, temporal discretization of (non-)spherical 

particle movement. 

4.2.1 Going from Spherical to Non-Spherical Particles  
A supposedly insignificant upgrade of a spherical particle model to a full non-

spherical approach soon turns out to be quite demanding. In direct comparison to 

the simpler, spherical model, the following aspects have to be considered: 

  

• Three translational DOF have to be extended by three additional, 

rotational DOFs. 

• Particle shape is not just characterized by one parameter, the 

diameter, but by three parameters, the half axes. 

• Particle position and orientation will have to be known. Therefore an 

additional, co-rotational coordinate system, being aligned along the 

particle’s main axes will have to be introduced. 

• To calculate inertial effects, not just the particle mass, but also particle 

moments of inertia have to be considered. 

• Not only forces, but also torques are relevant. 

• Drag force implementation can not use standard, semi-empirical 

correlations for spheres. 

• Qualitative particle impact modelling gets more complex since impact 

conditions can not be formulated that easily. 

• Quantitative particle impact modelling becomes more complex since 

exact impact spots will have to be known to calculate resulting torques. 

4.2.2 Crucial Concepts and Implementation Schemes 
This chapter lists some basic concepts and innovative implementation schemes 

that had to be chosen and/or developed in order to create a suitable framework 

for the non-spherical particle model. 
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4.2.2.1 Particle Geometry: Ellipsoid Shape 
The non-spherical particle shape representation is chosen to be an ellipsoid with 

three independent, geometrical degrees of freedom, - the three axis diameters: 

Da, Db, Dc or half axis diameters a, b, c. Note that, due to the three geometrical 

DOFs, there is no general rotational symmetry. The ellipsoid shape is selected in 

the awareness that there are still many arbitrarily shaped particle forms that can 

hardly be represented by a smooth ellipsoid. However, this choice constitutes a 

reasonable compromise between benefits and costs. It offers the versatility to 

approximate many shapes from sticks to plates (see Figure 26) on the one hand 

and can be mathematically described pretty easily, as seen in Equ.48, on the 

other hand  [68].  
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Here x’, y’ and z’ are coordinates of a Lagrangian, co-rotational coordinate 

system, with base vectors being aligned along the particle’s main axes (see 

chapter 4.2.2.2). 

Figure 26: The ellipsoid shape can approximate a wide variety of geometries, 
e.g. plates and sticks. 

The ellipsoid particle volume Vp is given by [9]: 

abcVp ⋅= π
3
4                         (49) 
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An essential quantity for calculating skin friction forces on the particle is the 

particle surface area Ap. In this work Ap for ellipsoids is approximated by a 

comparatively simple formula, proposed by Thomsen [5]: 

( ) ppppppp
p cbcabaA

1

3
14 ++⋅⋅≈ π   (50) 

With p  1.6075, this formula is reported to yield a maximum of +/- 

1.061 % deviation about the correct result. 

It should be noted that Rosdahl [8] proposed the super-elliptic shape (Equ.51) as 

very versatile, non-spherical particle representation to be used in numerical 

solvers. The super-ellipsoid is rotationally symmetrical around its main axis and 

can also be defined by three independent geometrical DOFs, a (or b),  and n. It 

is described by the following shape function: 
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The underlying programming structure of the particle solver, is strictly modular 

and such, that minor future adoptions could easily introduce e.g. the super-elliptic 

shape function instead of a standard ellipsoid. 

4.2.2.2 Euler and Lagrange Coordinate System 
The fluid and FSI calculations are based upon well known, Eulerian principles 

and require only one Cartesian coordinate system, with base vectors ex, ey and 

ez and coordinates, x, y and z. In the course of the FSI calculation however, the 

fluid mesh actually works as Lagrangian mesh that adjusts itself to displaced 

fibres. Whereas the fibre structure mesh itself retains its original topology [1].  
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For the particle calculation, the partly Lagrangian character of the fluid mesh is 

completely irrelevant. The particle solver does not require separate meshing nor 

mesh movement. To account for particle position Xp and orientation, an 

additional co-rotational coordinate system is introduced. The particle coordinate 

system, with base vectors epx, epy and epz being aligned along the main particle 

axes, as seen in Figure 27, originates from the particle mass centre. Its 

coordinates are written as x’, y’ and z’. 

Figure 27: Exemplary ellipsoid particle with co-rotational coordinate system. 

A similar multiple coordinate system approach is used by Rosdahl [8]. His solver 

uses a third, additional, co-moving coordinate system, which also originates from 

the mass centre of the particle and is aligned along the basis of the outer, inertial, 

Eulerian coordinate system. 

The relationship of any single point P within the Eulerian system, to the 

corresponding point P’ within the co-rotational, Lagrangian system, is given by 

the following formula: 

( )[ ] n
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'    (53) 

Here the index n denotes the axis directions x, y and z respectively and the base 

vectors of the particle coordinate system are given by: 

( )3,'2,'1,'', ,, nnnnp eeee =    (54) 
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According to Equ.53 the transformation operation T can be defined as: 

( ) ( )PP XAXT −•⋅=•,    (55) 

With A being the transformation matrix: 
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Accordingly the re-transformation from P’ to P is computed as: 
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The re-transformation operation T’ is formulated by using the transposed 

transformation matrix AT: 

( ) ( ) P
T

P XAXT +•⋅=•,'    (58) 

The co-rotational coordinate system helps to simplify the calculation of particle 

impact events, where the exact point of surface impact, as well as the particle 

moment of inertia is relevant. A change of angular velocity p due to a particle 

impact force FI, is always calculated by performing the following steps: 

• If point of impact XI and impact force FI are already known, transform them 

into particle coordinates, otherwise transform relevant data such as 

particle help-point position of impact-partner particle into particle 

coordinates, to get XI’, FI’:  
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 T(XI)=XI’ 
           (59) 
 T(FI)=FI’ 

• Calculate effect on particle (angular) velocity vector within particle inertial 

system, by using the simple, principal particle moment of inertia tensor IP‘ 

(see chapter 4.2.2.3.2) and the direction of impact force effect nI‘ : 
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• Re-transform new particle (angular) velocity vector into fluid coordinates:  

 T’( p’)= p   (61) 

Translation and rotation during time step tp change the particle centre position 

Xp
i and the particle base vector orientation ep,n

i, at time step i into their new 

arrangement at time step i+1. Applying a simple Euler discretization, the 

operations read: 
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Here up
i is the numerical particle velocity and p

i is the numerical, angular 

velocity vector at time step i. 



55

4.2.2.3 Six Degrees Of Freedom Solver 
Non–spherical particle motion in general consists of three degrees of 

translational as well as three degrees of rotational freedom. This is why the 

original, spherical particle solver had to be transformed into a more general, six 

DOF solver. 

4.2.2.3.1 The Lagrangian Equations of Motion for Ellipsoids 
Considering all N external forces Fj, that act on the particle, the three 

translational, Lagrangian equations of motion for ellipsoids, can be written in 

vectorial form as: 
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Thus Equ.63 is the specialization of Equ.19 for ellipsoids.  

The specialization of Equ.21 for ellipsoid objects is not that simple. A change of 

angular velocity can be expressed by the three rotational equations of motion, 

where Ip,j is the particle moment of inertia around the rotational axis nj of any 

acting torque vector: 
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The rotational axis of a single torque vector, is perpendicular to the acting force 

direction and to the direction of the lever, rj. Thus a separate calculation of each 

particle moment of inertia Ip,j for each torque effect rj x Fj is necessary. An 

introduction of the particle moment of inertia tensor p helps to simplify the 

problem. 

4.2.2.3.2 Moment of Inertia Tensor 
In its generalized form the moment of inertia tensor can be written as [63]: 
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Using a continuous, spatial density sp(x, y, z), with Vsp describing the local space 

that completely encompasses the object, with rk being the distance vector to the 

axis of rotation, E standing for the identity matrix and with ⊗  denoting the outer 

product, all tensor elements are defined by [65], [67]: 

( )( )dxdydzrrErzyxI
spV

kkkspp ⊗−= 2,,ρ     (66) 

The inertia tensor is symmetrical in nature, and it can be shown that it is always 

possible to find a Cartesian coordinate system where the off-diagonal elements 

vanish. The remaining, main diagonal elements Ix, Iy, Iz are then called the 

principle moments of inertia. Consequentially the principle moment of inertia 

tensor is: 

=Ι
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p
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I
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00
00
00

         (65) 

To reduce the more general tensor formulation to the more specialized, scalar 

moment of inertia Ip,j, which is needed to express each torque effect rj×Fj

according to Equ.64, the following form can be used: 

( ) jjpjp nnII ⋅⋅=,    (67) 

The expressions for standard, ellipsoid, principle moments of inertia read [64]: 

( )
5

22 p
x

m
cbI ⋅+=    (68) 
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( )
5

22 p
y

m
caI ⋅+=    (69) 

( )
5

22 p
z

m
baI ⋅+=    (70) 

 Inserting Equ.68 to Equ.70 into Equ.65 and Equ.66 this amounts to: 

( ) ( ) ( )[ ]2
,

2
,

2
,, ²²²²²²

5 zjyjxj
p

jp nbancancb
m

I +++++=  (71) 

4.2.2.4 Non-Spherical Particle Shape Concepts 
In order to consider rotational effects, collision–impact scenarios or other shape-

related phenomena, the moving object has to extend beyond a simple, point-like 

representation. Thus the surface help-point method (chapter 4.2.2.4.1), as well 

as a simple panel method (chapter 4.2.2.4.2) to discretize the particle surface are 

introduced. 

4.2.2.4.1 Non-Spherical Surface and Pressure/Velocity Help Points 
Within the advanced (non-)spherical solver a cloud of up to M= 68 help points per 

particle is used (see Figure 28). 18 surface help points are positioned directly at 

the surface of the particle to serve as collision detectors and pressure/velocity 

probes. An additional 48 pressure/velocity help points are located at crucial 

positions of the particle–panel model and detect local fluid field conditions. The 

help points surround the ellipsoid at constant positions HPm‘ within the framework 

of the Lagrangian, co-rotational particle coordinate system. Thus each help point 

conserves its relative position to the particle centre, while the particle moves 

arbitrarily within the Eulerian fluid domain, “dragging along” the Eulerian help 

point positions HPm. 
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X‘
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Figure 28: Non-spherical particle with 18 surface help points and 48 pressure-
/velocity help points. 

The help points essentially serve two purposes: 

• In their function as pressure/velocity help points they detect local fluid 

conditions. 

• They predefine the current particle movement by tracking the individual, 

projected trajectory, given by Equ.72 and by detecting any collision that 

might occur along this course. 

Using a simple, temporal Euler discretization [5], the help point position HPm
i at 

time i can be projected to its new position HPm
i+1, at time i+1, after particle time 

step tp . The new position is then: 

( ) pphpp
i
m

i
m turHPHP Δ⋅+×+=
+

ω
1

         (72) 

Here rhp is the help point distance vector to the particle mass centre. This particle 

progression scheme is only used if collision events are to be expected. The linear 

trajectory i
m

i
m HPHP 1+  is probed for obstacles. If a collision occurs at position Xcoll

before HPm
i+1 is reached, the help-point-specific fraction fm is set to: 
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Then the new particle time step tf* is calculated using the minimum fraction of all 

help points: 

( ) fmf tft Δ⋅=Δ min*  (74) 

Now the actual particle movement is conducted. 

If no collision events are to be expected, the solver uses an alternative particle 

progression scheme.  The alternative scheme works by conducting translational 

and rotational operations merely on the particle mass centre Xp and on the 

particle base vectors ep,n as seen in Equ.62. To find the new help point positions 

at time i+1, a simple coordinate transformation suffices: 

( ) 11
,

,,

'1 ++

=

+
+⋅⋅= i

p
i
np

zyxn
nm

i
m XeeHPHP   (75) 

Note the fact that the co-rotational help point positions HPm‘ remain unchanged 

at all times. 

4.2.2.4.2 Panel Method 
While the surface help point scheme has been designed to aid in the modelling of 

collisions and in the detection of local flow field conditions, a simple panel 

method is introduced to get a hold of hydrodynamic drag and lift forces. Within 

the co-rotational coordinate system, the fixed help point positions are used as a 

framework to encase the ellipsoid with a system of edges and panels (see Figure 

29). 
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Figure 29: Non-spherical particle surrounded by help points and panels. 

18 surface help points HPs,m are used. At their position each panel touches the 

ellipsoid and is positioned within a tangential plane, perpendicular to the local, 

ellipsoid surface-normal-vector ns,m . Surface help points 1 to 6 (HPs,1-6) are 

assigned to each one of the ellipsoid poles. Surface help points 7 to 18 (HPs,7-18) 

are positioned within the principal planes of the ellipsoid, such that only two non-

zero coordinate components, either Xell, Yell or Zell exist. In addition to that arc 

tan[(HPs,7-18
’ ep,j)/(HPs,7-18

’ ep,i)] with i j always yields either /4 or zero

permutated for i=x’, y’ and z’. Thus the coordinates of the 18 surface help points 

can be calculated as seen in Eqn.76 to Eqn.79: 

( )0,0,061, ∧∧∧= −
+

−
+

−
+

− cbaHPs    (76) 

( )ellells ZZHP −
+

−
+

− = ,,0107,    (77) 

( )0,,1411, ellells YYHP −
+

−
+

− =    (78) 

( )ellells XXHP −
+

−
+

− = ,0,1815,    (79) 

Hereby Xell, Yell and Zell are given as: 

²² ca
caXell +
⋅=     (80) 
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²² ba
baYell +
⋅=     (81) 

²² cb
cbZell +
⋅=     (82) 

Figure 30 shows the distribution of all HPs, 1-18 and the corresponding coordinate 

components. Note that all help point positioning is primarily conducted within the 

co-rotational particle coordinate system, only once within the entire simulation 

run. 

Figure 30: Positions of the 18 surface help points (red numbering) within the co-
rotational particle coordinate system. 
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The exact calculation of many particle interaction events (e.g. collisions) requires 

knowledge of the local help point particle surface normal vectors np,m with m=1-

18. Exact np,m coordinates are given by: 

( )01,01,0161, ∧∧∧= −
+

−
+

−
+

−pn   (83) 

( )nnp ZZn −
+

−
+

− = ,,0107,    (84) 

( )0,,1411, nnp YYn −
+

−
+

− =    (85) 

( )nnp XXn −
+

−
+

− = ,0,1815,    (86) 

Where Xn, Yn and Zn are: 
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−
⋅=

∂
∂=    (89) 

Figure 31 shows the exemplary position, orientation and relation to z’/ x’, of the 

surface normal vector np,16. 
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Figure 31: Position and orientation of surface normal vector np,16. 

24 additional help points, hereby denoted as Pm, are used to mark panel corners 

at the principal axes of the ellipsoid or surrounding the 6 poles. Their coordinates 

are calculated as: 

( )( )+−−+= −
+

−
+

−
+

− cZcZZ
X
cXXP ellelln

n

ell
ell ,,81  (90) 

( )( ) −
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−
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ZbYbYYP ,,169  (91) 

( )( )+−−+= −
+

−
+

−
+

− ellelln
n

ell
ell XaXX

Y
aYYaP ,,2417  (92) 

In addition to that, 8 meeting points Mm of panel edges have to be determined. 

They are given by: 

( )mmm ZYXM −
+

−
+

−
+

− = ,,81   (93) 

Where Xm, Ym and Zm are: 

( ) ( ) ( )
1

111
+

+−+++=
nnn

nnellnellnnnell
m ZYX

ZYZYYXZYXX  (94) 
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12 exemplary P-points and 4 exemplary M-points are shown in Figure 32. 

Neither P-points nor M–points serve as actual surface or pressure/velocity help 

points, but have only geometrical and visualization purposes. While surface help 

points are located within panel surfaces, the pressure/velocity help points are 

positioned at the centre of each defining edge of the structure. 

Figure 32: Side view of particle with panels, M/P-points and HP-points (red 
numbering). A total of 24 P-points and 8 M-points per particle serve as 
geometrical framework to define panel edges as seen in Figure 29. 

The importance of the panels lies within their application to grasp free flow 

hydrodynamic as well as viscous drag and lift forces. Therefore the panel 

orientation ns,m and the panel surface area Am, with m=1-18, are relevant. The 

panel normal vectors correspond with the HP-point normal vectors so that: 

mpms nn ,, =  (97) 

Following the defining M/P-points, the panel surface area is given by either 

Equ.98 or Equ.99. 
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abacdbdam
edcba
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≤≤ 8,;24,,

 (99) 

Inserting the corresponding expressions used to calculate M/P-point coordinates 

the panel surface areas amount to: 

6 polar panels, 

( )( )ellelln
n

ell
ell XaXX

Y
aYYA +−⋅−+⋅=− 421   (100) 

( )( )ellelln
n

ell
ell YbYY

Z
bZZA +−⋅−+⋅=− 443   (101) 

( )( )ellelln
n

ell
ell ZcZZ

X
cX

XA +−⋅
−

+⋅=− 465  (102) 

and 12 lateral panels. 

2221832317107 MPMPPPPPA −×−+−×−=−   (103) 

31033310341511 MPMPPPPPA −×−+−×−=−  (104) 

310317101110171815 MPMPPPPPA −×−+−×−=−  (105) 

The panel method as a hole seems quite costly, considering that it has to be 

applied for each individual particle. However, since all help point positioning is 

conducted within the co-rotational particle coordinate system, each Lagrangian, 

geometrical particle attribute: HPm‘, np,m’, Pm, Mm and Am has to be calculated 

only once, within the particle constructor. HPm‘ and np,m’ have to be constantly 

transformed to their Eulerian coordinates, which change due to translational and 
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angular motion. Figure 33 shows an exemplary screenshot of a bunch of sinking, 

spherical particles, highlighting their surrounding help point and panel structure. 

Figure 33: Sinking, spherical particles with velocity vectors as well as highlighted 

help point and panel structure. 

4.2.3 The Particle Momentum Equation behind the Non-Spherical Solver 
Applying Newton’s second law, the translational PME for arbitrarily shaped 

particles and arbitrary flow conditions, is given. The full, generalized PME 

according to [14], presents the framework for all particle-motion modelling behind 

the non-spherical particle solver. Its implementation is much more refined than 

the one for the spherical solver (chapter 4.1.1) and can be written as: 

=
+++++++++=

N

i
ieBassetVMbgFaxenSaffmanMagnushd

p
p FFFFFFFFFF
dt
ud

m
1

,   (106) 

Steady State Forces Unsteady Forces Event Forces
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The individual force contributions, summarized in Equ.106 can be divided into 

three main categories and are denoted as follows [7], [15],and [16]:  

Steady state forces:

• Drag force Fd: is the sum of the components of total form drag Fp due to 

pressure gradients and total shear drag F  due to viscous forces parallel to 

the main, relative flow direction. Calculated for uniform flow conditions and 

non-rotating, non-accelerating objects. 

• Hydrodynamic lift force Fh: based upon unsymmetrical fluid deviation 

around arbitrarily shaped objects (e.g.: air foil) immersed in uniform flow 

field. It is zero for objects with symmetry plane parallel to relative particle–

fluid velocity (e.g.: sphere). It is the sum of the components of total form 

drag due to pressure gradients and total shear drag due to viscous forces 

vertical to the main, relative flow direction. Calculated for uniform flow 

conditions and non-rotating, non-accelerating objects. 

• Magnus force FMagnus: additional hydrodynamic lift force based upon 

particle rotation within the fluid. 

• Saffman force FSaffman: additional hydrodynamic lift force based upon shear 

stress gradients across particle surface due to rotating, non-uniform flow 

field. 

• Faxen force FFaxen: corrects drag force for non-uniform flow field effects. 

• Gravity force Fg: volumetric force proportional to particle mass. 

• Buoyancy force Fb: based upon hydro-static pressure gradient across 

particle surface. 

Unsteady forces:

• Added (virtual) mass effect FVM: correction of particle inertia because of 

fluid mass that is accelerated / decelerated with particle. Relevant for high 

acceleration and non-coupled particle-fluid systems. 

• Basset (history) force FBasset: relevant for relatively 

accelerating/decelerating particles. Accounts for non-spontaneous 
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boundary layer adjustments due to viscosity. Relevant for highly un-

stationary flow conditions. 

Event (Impact) forces: 

• Particle–wall interaction FWall: models particle–wall impact of user 

definable elasticity. 

• Particle–fibre interaction FFibre: models particle–fibre impact, adhesion 

forces and deposition with user definable probability variables. 

• Particle-particle interaction FParticle: models particle-particle collision 

scenarios of user-definable elasticity. 

The specialization of Equ.106 for small, spherical particles, that are immerged 

into a uniformly flowing fluid, gives the Basset Bousinesque Oseen (BBO) 

equation [14], [26],  without Faxen terms nor interaction with solids nor other 

particles. In this case the individual force contributions can be formulated as seen 

in Table 1. 
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Steady forces  Formulation 

Drag force ( ) ( )pfpf
f

sphpdd uuuuDcF −−=
24

Re 2 ρπ

Hydrodynamic 
lift force 

0=hF
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8
3

Saffman force ( ) ( )( )pfpf
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×∇

−
= ω

νρ
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Gravity force gDF psphg ρπ 3

6
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Buoyancy 
force gDF fsphb ρπ 3

6
−=

Unsteady forces

Added mass ( )pffsphVm uuDF −= ρπ 3
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Basset force 
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3 νπρ
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0

1
, =

=

N

i
ieF

Table 1: Formulation of force contributions as they would look like in order to turn 
the PME according to Equ.106 into the classic BBO equation for small, spherical, 
non-coupled particles. 

Usually a PME formulation like the one in Equ.106 is used for small particles and 

the classical Euler-Lagrange approach [25]. This work however, treats large 

particles that span multiple fluid cells, and still retains the typical Euler-Lagrange 

methodology. Thus a specifically adjusted, numerical scheme to model particle-

fluid interaction becomes necessary.  

Comparable programs, like that of Schütz [9], are using particle-related re-

meshing of the fluid grid, which is duly avoided here. 
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4.2.4 Non-Spherical Particle–Fluid Interaction 
To maximize calculation efficiency, a detailed drag implementation, specifically 

adapted to the case of non-spherical dirt particle filtration in lubricants has been 

created. The particle–fluid interaction model consists of two alternative modules: 

• The Free flow particle–fluid module 

• The Fibre vicinity particle–fluid module 

Dirt particles are injected into the free flow regime upstream of the filter fibre 

geometry, where they occur in very low volume fractions. Particle-particle 

interaction and hydrodynamic particle impact on the fluid can be neglected here. 

As soon as the particles reach the fibre vicinity, the two-way coupling takes effect 

and inter-particle as well as full particle-fluid interaction becomes relevant. Those 

fundamentally different situations require separate drag modelling schemes in 

order to guarantee a good balance between accuracy and efficiency. 

4.2.5 Free Flow Particle-Fluid Interaction Module 
Within the free flow regime, all particle interactions with their surroundings are 

handled by the free flow module. In this zone, the most important aspects of the 

prevailing hydrodynamic situation are: 

• The ratio between particle diameter Dsph and minimal distance to the 

nearest fibre (wall) boundary patch hw can be considered as small. Thus 

wall proximity has no effect on particle drag. 

• Due to very low particle volume fractions, the ratio between Dsph and the 

minimal distance between neighbouring particles hp can be considered as 

small. No neither physical, nor hydrodynamic particle interaction takes 

place. 
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• Due to very low particle Reynolds number and very low particle volume 

fractions, the hydrodynamic particle effect on the fluid can be neglected. 

No two-way-coupling is necessary. 

In the free flow regime it is primarily important to grasp torques, acting on the 

particle. Rotational effects due to non-uniform flow fields can lead to a pre-

alignment of the particles, so that average penetration depth and filter fibre 

efficiencies are being influenced (see chapter 2.6). In this context the panel 

description (see chapter 4.2.2.4.2) of the ellipsoid shape is of special importance. 

The particle is enclosed by M panels and each panel j is subject to drag forces 

Fd,j (which consist of pressure and shear flow contribution, F*
p,j and F*

,j

respectively) and hydrodynamic lift forces Fh,j. Note that Fh,j can also be traced 

back to pressure F**
p,j and shear stress contributions F**

,j. Therefore the total 

form drag is Fp,j=F*
p,j+F**

p,j and the total shear effect is F ,j=F*
,j+F**

,j. However, for 

the sake of simplicity Fh,j is hereby written out and calculated as one single force 

contribution term. 

Forces which are better calculated by considering the entire particle are: gravity 

Fg, buoyancy Fb and N event forces Fe,i. Thus the adapted PME within the free

flow regime looks like Equ.107. 
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In analogy, torque effects on non-spherical rotation are described by: 
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Here rj stands for the distance vector of each surface panel centre HPj to the 

particle mass centre Xp and ri denotes the distance vector from Xp to any particle 

help point HPi that senses an impact event. 
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The Basset history force and the added, virtual mass are being neglected 

because of the lack of strongly un-stationary, relative particle-fluid flow. 

Comparing Equ.107 with Equ.106, the following parallels can be drawn: 
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hSaffman

pd

FFFF
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FFF

FFF
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+=
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*

**

τ

τ

τ

τ

     (109)

Figure 34 shows a sketch of how the individual force contributions act on each 

panel and affect the particle. 

Figure 34: Sketch of local force balance and force effect on panel centre. 

In Figure 34, Fin stands for the force contribution of the incoming stream, while 

Fout is the force contribution of the outgoing stream as it would look like if it were 

deviated by the panel surface (which it is not because of the non-coupled free

flow momentum scheme). The total force acting on each panel Fpanel is given by: 
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hdpanel FFF +=     (110) 

The following sub chapters describe the procedural calculation of free flow drag 

and lift force as well as torque effects within the module. 

4.2.5.1 Free Flow Module Force Calculation 
First the drag force contribution Fd,j on each panel j has to be calculated. The 

drag force term consists of a form drag and a shear drag contribution, F*
p,j and 

F*
,j. The overall sum of drag force contribution and hydrodynamic lift contribution 

consists of Fp,j and F ,j. While F ,j and F*
,j act perpendicular to the panel surface 

normal np,j, Fp,j and F*
p,j act parallel to np,j (see figure 35). Since Fd,j is defined to 

act in the direction of urel,j, the following ratio has to hold: 

jureljp

jureljp

jp

j

en

en

F

F

,,

,,

*
,

*
,

⋅

×
=τ    (111) 

Here eurel,j is the base vector of the relative fluid-particle-panel velocity 

encountered at the panel centre. The total panel drag coefficient cd,panel depends 

on the form drag coefficient cd,p and on the shear drag coefficient cd,shear and is 

given by: 

sheardpdpaneld ccc ,,, +=    (112) 

In Equ.113 to Equ.117, form drag and shear drag vectors are listed, as well as 

the total panel drag vector and its dependence on form and shear contribution, 

Fp,j* and F ,j* respectively and the auxiliary expressions Fp,j*’ and F ,j*’. Figure 35 

shows a sketch of the situation.  

( ) ( ) jpjureljpjrelfjsheardpdjp nenuAccF ,,,
2

,,,
*
, 2

1 ⋅⋅⋅⋅⋅⋅+= ρ  (113) 

( ) ( )[ ]jpjureljpjureljrelfjsheardpdj neneuAccF ,,,,

2

,,,
*
, 2

1 ⋅⋅−⋅⋅⋅⋅+= ρτ
  (114) 
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*'
, 2

1 ⋅⋅⋅⋅= ρ      (115) 

jreljrelfjsheardj uuAcF ,,,
*'
, 2

1 ⋅⋅⋅⋅= ρτ
    (116) 

jreljrelfjpaneldjjpjd uuAcFFF ,,,
*'
,

*'
,, 2

1 ⋅⋅⋅⋅=+= ρτ    (117) 

In Equ.113 through Equ.117, Aj is the panel surface area and urel,j is the relative 

fluid-particle-panel velocity uf-up,j. The particle-panel velocity is given by the 

velocity of the particle mass centre up and the rotational velocity contribution: 

pjpjp ruu ω×+=,    (118) 

The panel Reynolds number is written as Rej and is defined by using the 

hydraulic diameter dh,j of the panel and the kinematic fluid viscosity: 

f

jhjrel
j

du
ν

,,Re
⋅

=    (119) 

Figure 35: Sketch of complete form and shear force contribution situation to 
panel drag force. 
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Secondly the hydrodynamic lift force Fh,j, which stems from the deviation of the 

fluid at the panel, is calculated. The hydrodynamic lift is connected to Fin,j , Fout,j

and Fd,j via a simple, local force balance (see Figure 34):

'
,

'
,

'
,

'
, joutjhjdjin FFFF =−−     (120) 

Note that from here on the superscript ’ denotes the fact that force values are 

scaled by the acting surface area Aj and represent the forces acting within and/or 

onto the fluid. In addition to Equ.120, Fh,j is defined to act perpendicular to Fd,i , 

so that: 

0'
,

'
, =⋅ jdjh FF     (121) 

The drag Fd,j
’ is given by Equ.117, while Fin

’ can be easily derived out of the local 

fluid field information, obtained by the pressure/velocity help points.   

jreljrel
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'
, 2

⋅=
ρ

    (122) 

While the value of Fout’ is not known in advance, its base vector eout,j is given 

because of panel orientation np,j and relative panel-fluid velocity urel,j. 
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The expressions in Equ.120 and Equ.121 constitute a system of 4 equations and 

4 unknowns: The three components of hydrodynamic lift Fh,j,x , Fh,j,y, Fh,j,z and the 

absolute value of deviated flow momentum |Fout,j|. The solution yields the 

following expressions for the local, hydrodynamic lift force vector Fh,j‘ and the 

vector of deviated fluid momentum Fout,j’: 
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Due to non-coupling, the wake of the particle is not simulated in the free flow 

module. Therefore a panel has to face the stream in order to yield acceptable Fd,j

and Fh,j results. The condition for calculating the individual force balance and for 

considering the panel is: 

0
!

,, ≤jpjrel nu      (126) 

Consequentially the overall, unscaled drag force Fd
unsc and hydrodynamic lift 

force Fh
unsc are given by the contributions of all N considered panels: 
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4.2.5.2 Weighing Method and Torque Effect Calculation 
The procedure of calculating each force effect on each panel that fulfils condition: 

Equ.126 is inaccurate because of two reasons: 

• A surface description of 24 panels yields a limited, numerical 

approximation to a smooth particle surface. 

• Panels facing the wake of the particle are not considered. 

Yet the Fd,j and Fh,j calculation serves a useful purpose: to get an idea of the 

force distribution over the particle surface. This is necessary to grasp rotational 

fluid field effects on the aligning particle. 
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In order to improve the quantitative estimate on individual drag and lift force 

contributions, the results are being scaled to fit a newly found, empirical drag law 

for non-spherical particles: Recently Hölzer & Sommerfeld, [24] presented a new, 

simple relation for drag on non-spherical particles, which has been derived from 

extensive LB simulations on non-spherical particle shapes of varying sphericity 

and particle-fluid alignment (length wise and cross wise sphericity, length and 

cross, respectively). The authors have compared their formula for the drag 

coefficient, shown in Equ.129, to a wide range of experimental results for 

spheres, isometric particles, cuboids, cylinders, disks and plates and report 

mean, relative deviations of 14.1%. This number compares to values of 

significantly more than 100% for several other non-spherical drag force 

formulations in use. 
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The three particle shape parameters , length and cross are defined by Equ.130, 

Equ.131 and Equ.132 respectively. 
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sph

A
A
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Asph signifies the surface area of the volume equivalent sphere and Aell stands for 

the surface area of the ellipsoid particle. 

ellf

sphf
cross A

A

,

,=Φ     (131) 

Here Af,sph is the cross sectional area of the volume equivalent sphere and Af,ell is 

the projected frontal area of the ellipsoid particle. 
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In Equ.132, Alen,ell stands for the mean longitudinal (e.g. parallel to the direction of 

relative flow), projected cross sectional area of the particle [24]. 

Using the Hölzer-Sommerfeld approach, the over all scaled drag force Fd
sc on the 

particle can be calculated as:         

medrelmedrelff
somm
d

sc
d uuAcF ,,2

1 ⋅= ρ    (133)  

Hereby the average, acting, relative fluid-particle velocity urel,med is calculated 

from the individual panel contributions: 
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In order to get a hold of realistic, rotational torque effects, the originally 

calculated, unscaled force contributions are scaled by the ratio Fd
sc/ Fd

unsc, so 

that each panel contribution Fd,j and Fh,j (as defined by Equ.117 and Equ.124) is 

transformed to: 
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Then the more accurate, scaled, rotational torque effects are computed using 

Equ.108: 
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Figure 36 shows a test case, where a longish, non-spherical particle approaches 

a small orifice of higher flow velocities and lower pressure. As physically 

plausible and expected, the given drag implementation models the occurring 

shear flow and pressure gradients over the particle surface in such a way that the 

particle aligns itself along the fluid stream lines. The translational and angular 

velocity vectors adapt to the local fluid field conditions which leads to a particle-

slip effect. 
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Figure 36: Ellipsoid particle accelerating towards valve. Alignment along the 
stream lines. Particle takes up its most stable position of least drag and lift 
forces. This behaviour causes the non-spherical slip effect with relevance for 
filtration efficiency and particle penetration depth (see chapter 2.6.2).  

4.2.6 The Fibre Vicinity Particle-Fluid Interaction Module 
As soon as a particle enters into the vicinity of the fibre geometry, the 

hydrodynamic situation changes completely and the fibre vicinity drag module

takes over. The situation features the following characteristics:  

• Particle–wall flow effects can no longer be neglected since the ratio 

between particle diameter and minimal particle-wall (fibre) distance hp is 

per definition no longer small. 

• Particles accumulate at the fibre in considerable volume fractions and the 

ratio between particle diameter and medium, minimal particle-particle 

distance hpp is no longer small either. Particles interact hydro-dynamically 

and physically by plugging each others flow path. 

• The high particle volume fractions lead to a plugging of the fluid flow path, 

diverting the flow and causing increased pressure drop over the filter. 
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Hydrodynamic particle impact on the fluid (two-way coupling) becomes 

essential. 

Empirical expressions, describing every one of these effects individually, can be 

found in literature [14], [26]. Still, the dynamic combination of the phenomena to a 

highly complex, multi-parameter interaction situation can hardly be grabbed by 

any empirical, non-stochastic formula. Because of that, an approach was 

developed, that does not require the formulation of individual force contributions, 

but unites all relevant force terms cited in Equ.106 within expressions of pressure 

force and shear stress. This is realized by plugging local fluid cells, which are 

encompassed by the particle (see Fig.36b). The plugging method perceives the 

fluid mesh as a porous medium, where local permeability is introduced as 

relevant factor in the Navier-Stokes equations. By adding an additional, local 

pressure gradient via the Darcy term, a connection is made to a numeric 

deposition field which can be directly influenced by particle presence. In principle 

the procedure is analogous to the one presented in chapter 4.1.2 but has been 

extended to non-spherical particle shapes, refined and quantified as shall be 

seen in the following. 

4.2.6.1 Fibre Vicinity Module Implementation 
The plugging causes the fluid to be diverted around the fluid cell which leads to a 

local pressure build up pi, that can be sensed by any of the N pressure help 

points HPi at the particle surface (see Figure 37). Since each pressure help point 

represents 1/Nth of the entire particle surface area Ap and since pressure always 

acts perpendicular to the local particle surface normal np,i, the total pressure force 

Fp on the particle can be written as: 
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1
,    (138) 
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For infinitesimally fine grid spacing and an infinitely large number of pressure 

help points this expression amounts to: 

∇−=⋅−=
pVAp

pp dVpdAnpF   (139) 

The second, decisive force contribution results from viscosity effects (see Figure 

38). Because of a lack of wall boundary conditions at the border between 

plugged and unplugged cells, no “zero velocity” condition can be introduced at 

the particle surface. What happens is that an effective “zero velocity” condition is 

imposed along a virtual surface including all cell centres just within the particle 

borders. Therefore local shear forces F i at the help point positions can be 

approximated by using the velocity value of the nearest, unplugged fluid cell uf,i, 

at distance hu,i perpendicular to the particle surface. This corresponds to a 

gradient approximation of 1st order accuracy. The overall shear force F on the 

particle can thus be calculated as: 
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For infinitesimally fine grid spacing and an infinitely large number of pressure 

help points this expression amounts to: 

⋅∇⋅=
Ap

pff dAnuF μτ    (141) 

Where fu∇ is the Jacobian of uf. This expression can be expanded and 

generalized. With  being the viscous shear stress tensor, this amounts to 

Equ.142a (vectorial formulation with E being the identity matrix) or Equ.142b 

(tensorial formulation with m being an additional index and i,j being the 

Kronecker delta): 



83

( ) ( )•∇⋅−∇+∇=∇=⋅=
pp V

f
T

fff
VAp

p dVEuuudVdAnF
3
2μτττ  (142a) 

⋅
∂
∂
⋅−

∂
∂

+
∂
∂

=
pV

jji
m

mf

j

if

i

jf
fi dx

x
u

x
u

x
u

F ,
,,,

, 3
2 δμτ   (142b) 

The local hydrodynamic situation resulting from an exemplary, plugging ellipsoid 

is shown in Figure 36 b.  

HPi
F ,i

Fp,i

Figure 36 b: Ellipsoid with activated fibre vicinity module. Full two-way coupling is 
engaged. Flow field deviation around particle. Fluid imposes pressure and shear 
forces on particle surface. 

Pressure and shear stress contributions to the overall drag force on an ellipsoid 

particle are represented by Figures 37 and 38. 
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p∇

HPi
F ,i

Fp,i

Region of higher pressure

Region of lower pressure
Ellipsoid

Figure 37: Pressure force contribution to over all fluid-particle force. Exemplary, 
two-way coupled ellipsoid. Pressure build up in frontal particle area. Formation of 
pressure gradient across particle surface. 

HPi

F ,i

Fp,i

urel

Boundary Layer Wake Formation

Ellipsoid

Figure 38: Shear stress contribution to over all fluid-particle force. Exemplary, 
two-way coupled ellipsoid. Plugging equals a zero flow velocity boundary 
condition at engulfed cell centres. Boundary layer is approximated by 1st order 
accurate gradient calculation. Shear stresses can be derived.  

Figure 39 presents a full screen shot of another, exemplary, large, two-way 

coupled particle. Here the individual force contributions, resulting from pressure 

and shear effects are sketched out in more detail. 
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Figure 39: Flow field formation around large, two-way coupled particle. 
Background coloration gives pressure field. Fluid comes in from the left, pressure 
gradient forms from forward stagnation point to wake zone. Pressure and shear 
force contributions at help point positions are sketched out in their qualitative 
relation to one-another.  

As a consequence of Equ.139 and Equ.142 the entire PME for the fibre vicinity 

module can be written as: 
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For a limited number of discretizing surface elements N this expression yields: 
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It has to be stated that this drag and lift force implementation is grid dependent 

and yields edgy objects with coarse surfaces. The applied meshes however, are 

structured grids with never changing resolution. An exact knowledge about 
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particle shape and surface structure of actual dirt particles is not given. Yet 

plausibility commands the following statements to hold: 

• Arbitrarily shaped dirt particles rather behave non-spherically than 

spherically. 

• Dirt particles rather have rough surface structures than smooth 

surfaces. 

Therefore the hereby presented simulation approach is considered to be valid. 

4.2.6.2 Results and Verification 
Figure 40 shows qualitatively how some two-way coupled, non-spherical particles 

can affect the surrounding fluid flow. 

Figure 40: Flow field deviation by ellipsoid particles getting stuck in simplified 
fibre structure. Flow field before injection of multiple non-spherical particles (left). 
Deviated flow field after particle injection and impact on fibres (right). 

To verify the results, an extensive fluid-particle force (pressure and shear force) 

evaluation within the fibre vicinity module has been conducted. Results have 

been compared to the corresponding values yielded by the free flow module, 

which is based on semi-empirical correlations (Hölzer & Sommerfeld, [24]), and 

to analytical formulations (Stokes drag). Here the outcome shall be discussed for 

the special case of equi-axed (=spherical) ellipsoids, as well as for ellipsoids of 

axe-ratio a:b:c=1.5:1:1.  
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4.2.6.2.1 Drag on Coarse Particles and Smooth Surface Correction 
As symbolically depicted in Figure 36b, the fibre vicinity drag module gives a 

binary, coarse, grid spacing s dependent representation of the particle surface. 

Consequently the module yields higher fluid-particle forces than a comparable 

representation of smoothly surfaced objects. However, as will be shown in the 

oncoming chapters, the qualitative drag and lift force behaviour against Rep is 

more than acceptable.  

Figure 44 summarizes the drag force behaviour of simple Stokes-flow-spheres 

and fibre-vicinity-module- spheres. The ratio S= s/Dsph is used as a parameter. 

For supposedly, arbitrarily surfaced particles the CFD results can be expected to 

be more appropriate than any smooth surface representation. Still, correction 

functions have been introduced to compensate for surface roughness and 

numerical resolution effects on a user defined basis. Because of the good 

qualitative behaviour of the solution, the finding of a suitable correction function is 

comparatively simple. Possible parameters of dependence are the particle 

Reynolds number Rep and the grid spacing ratio S. Exemplary cases within the 

parameter ranges 0.05 Rep 2.0 and 0.05 S 0.5 have been evaluated. Note that 

the particle model is, as of now, declared valid only for creeping flow conditions: 

Rep<0.5. The correction function  is defined via the cd values of the analytical 

Stokes results cd,Stokes and the model results cd,model: 
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An evaluation of the Rep-influence shows, that for Rep<0.5 the correction  does 

hardly vary with Rep, if compared to the local average , as seen in Equ.146 and 

in Figure 41. 
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Figure 41: Plot of  against Rep. For Rep<0.5 there is no relevant result 
dependence on Rep. 

An evaluation of the S-dependence shows, that the formulation of a simple 

correction equation is possible, as seen in Figure 42.  
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[-]

S [-]
Figure 42: Plot of  against S. Results (red) are fitted linearly (blue) and with a 3rd

order polynomial (green). 

A linear fit to the (S)-results gives: 

( ) 1432.1'378.0'5.0Re +−=< SS
p

ζ   (147) 

A 3rd order polynomial fit gives:  
       

( ) 2155.1'7860.1'480.6'0.8' 23
5.0Re +−+−=< SSSS

p
ζ  (148) 

Here S’ stands for S-S0, with S0=0.05. The smoothness correction (S) is valid for 

Rep<0.5 and 0.05 S 0.5. Within that region, the corrected cd-values show an 

overall, relative, medium deviation from analytical results of ~8.1% (linear fit) and 

~5.2% (polynomial fit). Similar results can be obtained for arbitrarily shaped 

ellipsoids. In the latter case the particle orientation is to be considered as well. 

Again the fibre vicinity model yields formidable outcomes (see Figure 46 and 

Figure 47). 
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A consideration of Figure 42, Equ.147 and Equ.148 yields the surprising result 

that  will have to be smaller for larger S-values than for fine grid spacing, even 

though the shape representation gets worse. The explanation for this can be 

seen in Figure 43 and is given by the fact that, with larger S, the closed fluid cell 

volume Vblock decreases as compared to the analytic volume of the object Va, 

until S~0.5. For S-values larger than 0.5, the “large” particle model forfeits its 

validity anyway.  

V b
lo

ck
/V

a
[-]

S [-]
Figure 43: Plot of Vblock/Va against S . The closed fluid cell volume decreases with 
increased grid spacing. This effect outmatches increasing surface roughness and 
the overall drag force is reduced with increasing S. 

Figure 44 shows analytical, un-corrected and smoothness-corrected model 

results in terms of cd-values. 
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Figure 44: Plot of log(cd) against log(Rep). Averaged (over S range), original 
model results (purple) are fitted by polynomial smoothness correction using 
Equ.148 (blue) to analytical Stokes drag results (yellow). Model is valid within the 
Stokes drag regime, log(Rep) -0.30. 

4.2.6.2.2 Non-Spherical Drag and Lift Characteristic within the Fibre Vicinity 
Module 

To provide a fully quantifiable basis for the essential fibre vicinity drag module, 

the drag and lift force characteristic for two way coupled, non-spherical particles 

has been worked out. In contrast to the spherical case, considered in the 

previous chapter, two main aspects of fluid-particle interaction will have to be 

accounted for in the non-spherical case: 

• No general symmetry across planes through the object’s mass centre is 

given. Therefore drag and lift forces will occur. 

• Particle main axis orientation  to the main flow direction is no longer 

irrelevant. 
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Extensive simulation runs have been carried out to describe the full drag and lift 

behaviour of non-spherical particles within the fibre vicinity module. Ellipsoids 

with axis ratio a:b:c=1.5:1:1 and varying orientation have been systematically 

positioned within an otherwise uniform, unbounded flow field. It has been found 

that the modelled force results vary with varying particle positions within the fluid 

grid. To compensate, particle centre positions have been varied within the centre 

cell and results have been averaged. 

Figure 45 shows some exemplary screenshots of the fluid being diverted around 

the ellipsoid at varying orientations. 

Figure 45: Ellipsoid with axis ratio a:b:c=1.5:1:1 with orientations =0°, 25°, 45° 
and 90° to the relative flow velocity field with u rel=0.4m/s. Rep=0.3 (at =0°). The 
background coloration represents the pressure field. Pressure build up at frontal 
stagnation points is clearly visible. 

Resulting drag and lift forces have been used to calculate the corresponding drag 

and lift coefficients cd and cl respectively. The two characteristic interaction 

values are defined as [69]: 
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In Equ.149 and Equ.150, ADsph is the orientation independent, frontal area of a 

mass equivalent sphere. Since Fd and Fl are calculated via the orientation 

dependent frontal area Af( ), the use of ADsph means that cd and cl contain not 

only hydrodynamic, but geometric orientation effects as well. In order to eliminate 

the geometric effects Af( ) instead of ADsph can be used.  

All in all the entire procedure of obtaining the drag/lift characteristic corresponds 

to the one used by Hölzer & Sommerfeld [69] who have derived the values from 

highly resolved LB simulations in terms of cd and cl according to Equ.149 and 

Equ.150. Comparability between the two methods is given, provided that the 

difference in particle surface roughness is taken into account. Figure 46 shows 

the results of the drag force/orientation analysis, as well as a simple sketch of the 

basic Fd and Fl situation. The results have been derived for Rep=0.3 (at =0°) 

and are directly compared to LB simulation results for smooth cuboids, cylinders 

and spheroids as well as to theoretical results for a smooth sphere and to fibre 

vicinity model results for a rough surfaced sphere. 
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Figure 46: Drag force characteristic for Rep=0.3 (at =0°) for fibre-vicinity-model-
coupled ellipsoid (blue). Results are directly compared to LB results [69] for 
smooth cuboid (purple), cylinder (pink) and spheroid (yellow) as well as to 
theoretical results for drag on smooth sphere (dashed, dark red) and to a fibre-
vicinity-model-coupled, rough sphere (dashed, light red). All non-spherical 
objects feature: a:b:c=1.5:1:1. 

The results in Figure 46 reveal the following facts: 

• The fibre-vicinity-model-coupled ellipsoid results behave qualitatively very 

similar to comparable LB results. 

• As expected and as commanded by plausibility cd values for the coarse 

representation are generally larger than those of the smoothly surfaced 

objects. 

• The coarse representation leads to larger differences between =0° and 

=90° as compared to the LB results. 
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• A comparison between a fibre-vicinity-model-coupled sphere and an 

ellipsoid yields plausible and consistent results throughout the entire 

orientation spectrum. At =0° the sphere yields higher c d values than the 

ellipsoid. With increasing  however, ellipsoid values quickly begin to 

outmatch those of the sphere. 

The results shown in Figure 46 are based upon a first order surface normal 

gradient implementation of the shear force: 
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Here xCentreHP,i is the fluid cell centre position of the cell containing help-point i 

and xCellout,i is the fluid cell centre position of the neighbouring cell, which is first 

entered by moving outwards from HP,i along the local particle surface normal 

vector np,i. 

In the course of development a second, less grid mesh dependent, more 

accurate shear force implementation has been devised, so that: 

( ) ( )
iHPi

iHPfif
f xx

xuxu
F

,%,5

,%,5

−
−

= μτ   (152) 

Here xHP,i is the actual help-point position and x5%,i is a position reached by 

moving outwards from HP,i along the local particle surface normal vector np,i until 

|x5%,i - xHP,i|=Dsph*0.05. The local fluid velocity vectors uf(x5%,i) and uf(xHP,i) are 

obtained by interpolation between neighbouring fluid cell centre values. The 

obtained, overall cd value characteristic is shown in Figure 47a. As compared to 

the previous results, the new shear force implementation yields: 

• Generally smaller cd values. 
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• Better agreement with comparable LB calculations. 

• Smaller difference between =0° and =90°. 

• For 60°< <90°, a qualitative correspondence with LB results for a smooth 

cuboid, which actually features higher cd values for  slightly below 

90°than for =90°. 

Figure 47a: Drag force characteristic for Rep=0.3 (at =0°) and fibre-vicinity-
model-coupled ellipsoid using Equ.152 (green). Results are directly compared to 
LB calculations [69] for smooth cuboid (purple), cylinder (pink) and spheroid 
(yellow) as well as to theoretical results for drag on smooth sphere (dashed, dark 
red). All non-spherical objects feature: a:b:c=1.5:1:1. 

Using Af( ) instead of ADsph to calculate the specific resistence, Figure 47b can 

be produced. It shows that cd, which contains only hydrodynamic information, 

actually decreases with increasing . This is due to the positive correlation 

between Rep and  for 0°< <90° and for constant u rel. 
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Figure 47b: Drag force characteristic for Rep=0.3 (at =0°). Comparison between 
cd results for smooth sphere (dashed red), fibre-vicinity-model-coupled ellipsoid 
using Equ.152 and ADsph to calculate cd (green) and fibre-vicinity-model-coupled 
ellipsoid using Equ.152 and Af( )  to calculate cd (blue) and. All non-spherical 
objects feature: a:b:c=1.5:1:1. 

Figure 48 shows the results of the lift force/orientation analysis. The results have 

been derived for Rep=0.3 (at =0°) and are directly compared to LB simulations 

for smooth cuboids and spheroids. Note that most of the cl values are negative. 

This means that Fl, which points upwards in the basic situation sketch bottom-

right, for the given situation (0°< <90°) actually points downwards. Simulations 

for 90°< <180°, which correspond to 0°> >-90°, yield symmetrically equivalent 

results with cl  0.  
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Figure 48: Lift force characteristic for Rep=0.3 (at =0°) for fibre-vicinity-model-
coupled ellipsoid using Equ.151 (blue) and using Equ.152. Results are directly 
compared to LB calculations [69] for smooth cuboid (green) and spheroid (pink). 
All non-spherical objects feature:  a:b:c=1.5:1:1. 

The results in Figure 48 reveal the following facts: 

• Both fibre-vicinity-model-coupled ellipsoid results behave qualitatively 

similar than comparable LB results. 

• The absolute cl values for the coarse representation are generally larger 

than those of the smoothly surfaced objects. Where the shear force 

implementation according to Equ.152 yields better correspondence. 

• In contrast to the “LB objects”, both coarse ellipsoid characteristics show 

steep slopes at small deviations from either =0° or =90°, whereas c l

does not change significantly for 25°< <65°. 
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Proposal for descriptive formulation of drag and lift force characteristics

Even though drag and lift forces stem from fluid pressure and shear effects, they 

are usually treated as separate phenomena. It is hereby proposed to introduce 

one, single compact expression for a fluid-particle interaction force Ffp which shall 

be proportional to the hydrodynamic interaction coefficient cfp. 

The referred situation is sketched out in Figure 49. Hereby a semi-axisymmetric, 

non-spherical particle, with a:b:c=x:1:1, whose main axes orientation deviates by 

an angle  around the relative particle-fluid velocity vector urel is considered.  

Figure 49: Non-spherical particle immersed in relative fluid flow, with acting drag 
and lift forces. 

As described in the previous chapters, a drag force Fd and a lift force Fl will start 

to act on the particle. They depend on the characteristic drag force coefficient cd

and on the lift force coefficient cl respectively. Thus Ffp is given by: 

( ) ( ) ( )llddfpfp cFcFcF +=   (153) 

Whereby cfp is defined as: 
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Which is equivalent to the definition of cd and cl (Equ.149 and Equ.150). Because 
of the vectorial nature of Equ.153, the cfp relation to cd and cl is: 

( ) ( ) ( )222 φφφ ldpf ccc +=    (155) 
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Considering Figure 49 and Equ.155, the orientation angle  of Ffp to urel can be 

calculated as: 

( ) ( )
( )=
φ
φφα

d

l

c
c

arctan   (156) 

Equ.155 and Equ.156 already indicate that cd and cl are functions of , which 

can be directly derived from Figure 46 to Figure 48. 

Since drag and lift force characteristics usually consider a 2D force-effect 

situation, it is the opinion of the author that an “ansatz”, based upon complex 

number methodology is suitable to elegantly describe vectorial, hydrodynamic 

force effects. Thus Ffp can be expressed in complex number notation as: 

ldfp FiFF +=    (157) 

Or as: 
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Where K’ is the orientation independent constant: 

2

2
1' fDsphf uAK ⋅⋅⋅= ρ   (159) 

In order to mathematically characterize Ffp, based upon numerical results from 

i.e. Figure 47 and Figure 48, the cd( ) and cl( ) functions need to be 

approximated.  

Adopting the example of the smooth LB spheroid, a valid characterization could 

look like this: 
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Approximation of the Spheroid’s cd( ) function as seen in Figure 50: 

( ) ( )φφ ⋅⋅−= 2cos5.35.85dc    (160) 

Approximation of the Spheroid’s cl( ) function as seen in Figure 51: 

( ) ( )φφ ⋅⋅= 2sin7.4lc    (161) 

As a consequence of Equ.160 and Equ.161, the Spheroid’s, characteristic  

|Ffp|( )  function is given as: 

( ) ( ) ( ) ( )( ) 3
2

21
22 2cos kkkccF ldfp +−⋅⋅−=+= φφφφ   (162) 

With k1=3.1368, k2=95.3998 and k3=16433.50. 

The Spheroid’s, characteristic  ( ) function is given as: 
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with k1’=18.1915 and k2’=0.7447. 

The procedure to characterize Ffp for the coarse, fibre-vicinity-coupled ellipsoid 

works accordingly, even though the result is more complex, considering the cd( ) 

and cl( ) approximation functions as seen in Figure 50 and Figure 51 

respectively: 

( ) ( ) ( )⋅−⋅−+⋅−⋅⋅= φφφφ 2sin
2

19sin2sin57.1lc  (164) 

( ) ( )φφ sin4.2314.73 ⋅+=dc     (165) 
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Figure 50: cd values of ellipsoid according to CFD model (purple) and Spheroid 
according to smooth body LB simulations (pink) against . Both objects feature 
a:b:c=1.5:1:1. Results are compared to approximation functions (blue and yellow, 
respectively). 
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Figure 51: cl values of ellipsoid according to CFD model (turquoise) and Spheroid 
according to smooth body LB simulations (blue) against . Both objects feature 
a:b:c=1.5:1:1. Results are compared to approximation functions (red and pink, 
respectively). 

4.2.6.2.3 Verification of the (Non-)Spherical Fibre Vicinity Drag Model: 
Terminal Settling Velocity 

The classic approach to quantitatively verifying fluid-particle interaction models is 

to take a look at the single particle settling behavior in an otherwise quiescent 

fluid, [27]. Hereby the flow field formation, the development of the settling velocity 

up and the terminal, settling velocity us of exemplary, spherical and non-spherical 

particles has been qualitatively and quantitatively studied. Results have been 

compared to theoretical predictions. 

Spherical Settling:
Initially the case of  a simple, two-way coupled sphere of diameter Dsph, settling 

due to gravity in a cylindric, fluid filled structure of diameter Dcyl, where 

Dsph<<Dcyl, has been investigated. 
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Qualitative plausibility checks, concerning the flow field formation due to the 

settling particle, were conducted. An exemplary result can be seen in Figure 52. 

It shows the developing counter swirl velocity vector field as well as the expected 

pressure build-up at the forward stagnation point. All in all the qualitative flow 

field formation corresponds perfectly with real conditions and with results 

reported by Megahed [27]. 

Figure 52: Fibre-vicinity-model-coupled particle, settling under the influence of 
gravity. Formation of a counter swirl fluid velocity vector field and the 
corresponding pressure field (background coloration) due to the settling particle. 

Quantitative investigations, focussing on the development of up, have been 

conducted as well. The results have been compared to theoretical formulations 

for the terminal settling velocity and for settling velocity development. For 

spherical particles, which settle under Stokes conditions, the terminal settling 

velocity us can be calculated as: 
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⋅
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   (166) 

Therefore, and by inserting for the particle relaxation time p, the analytical 

development of the settling velocity can be written like this: 
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In its formulation for numerical calculation, using discrete particle time steps tp
this expression reads: 
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Here i is the index for the current, numerical time step. 

Figure 53 summarizes the results. It compares relative sinking velocities for 

rough surfaced spheres, which result from the developed CFD model, to: 

• Analytically calculated values for the terminal settling velocity of mass 

equivalent, smooth spheres (cd=24/Rep). 

• Rough spheres (cd=27/Rep), where the cd value relation has been taken out 

of the previously simulated drag characteristic (see chapter 4.2.6.2.1). 

• To the corresponding velocity developments calculated according to 

Equ.167 and Equ.168. 
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Figure 53: Relative settling velocity against relative settling time for spheres, 
settling in an otherwise quiescent, unbounded flow domain. Comparison of model 
results (green) with theoretical velocity development of smooth sphere (blue), 
rough sphere (red) as well as the terminal settling velocity for smooth (purple) 
and rough (orange) spheres. 

The results presented in Figure 53 show very good agreements with theoretical 

predictions. As expected, the coarsely represented particles reach a slightly 

smaller, terminal settling velocity than theoretical, smooth spheres. The settling 

characteristic however, corresponds almost exactly with theoretical predictions 

for spheres that feature a previously (Figure 44) derived cd correlation. One 

striking difference between the results is that the CFD modelled sphere’s velocity 

development profile is not quite as smooth. The reason for that lies within slight, 

numerical fluctuations in the surrounding pressure field and within 3D flow and 

movement effects. In other words: the particle slowly starts to rotate due to 

slightly unsymmetrical drag force distributions. The latter effect is based upon the 

coarse surface representation. It is, however rather considered an asset than a 

problem, since real-life dirt particles will show very similar, rotational sinking 

behavior.  
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Non-Spherical Settling

The case of a theoretical and even more so a real-life, non-spherical dirt particle, 

settling under gravity is more complex. Non-spherical objects tend to turn 

towards an orientation angle of maximum drag resistance. The reason for this is 

based upon stagnation pressure effects. Whenever the object starts rotating 

towards a more streamlined position, the forward stagnation point shifts away 

from the particle mass centre and creates a new torque effect into the opposite 

direction of the rotation (see Figure 55), [69].   

Therefore the first analysis of a settling ellipsoid has been conducted under the 

idealized assumption of rotation-less sinking in its most stable position ( =90°). 

An analytical reconstruction of the numerical velocity development looks like 

Equ.169 which can be brought to accordance with Equ.168 by inserting for a 

generalized particle relaxation time as seen in Equ.215: 
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Hereby the roughness-corrected (additional 12.5% drag force) cd relation from 

Equ.5, [24] has been inserted and compared to a fibre-vicinity-coupled ellipsoid 

as well as to a smooth, falling, mass equivalent sphere. The results of the 

velocity development have been put into relation to the terminal, spherical 

settling velocity and are shown in Figure 54. 
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Figure 54: Relative settling velocity against relative settling time for ellipsoids with 
a:b:c=1,5:1:1, and a mass equivalent sphere settling in an otherwise quiescent, 
unbounded flow domain. The Archimedes number is Ar~8*105. Comparison of 
model results (blue) with theoretical velocity development of smooth sphere 
(yellow), and a rough ellipsoid (pink) calculated according to Equ.169 and Equ.5 
with additional 12.5% drag force to compensate for rough surface. 

Again the model results match comparable semi-analytical calculations. As 

expected, the terminal velocity difference between a smooth, settling sphere and 

a rough ellipsoid is even more significant, than in the purely spherical case. Since 

rotation has been suppressed in this example, the slightly unsteady behavior of 

the model particle, which has been observed before is almost gone here. With an 

Archimedes number of Ar~8*105 the ratio of the terminal particle settling velocity 

of smooth, longish non-spheres and the terminal particle settling velocity of a 

mass equivalent sphere is supposed to be ~0.53 [92]. Here the ratio is ~0.46, 

which is perfectly plausible since in our case rough, longish ellipsoids are 

compared to smooth spheres. 

Secondly the model’s qualitative ability to realistically simulate real-life, non-

spherical dirt particle settling effects has been investigated. To do that the case 

of an ellipsoid, with a:b:c=1.5:1:1, initially oriented with =45° towards the gravity 
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vector has been chosen. The expected settling behavior is symbolically sketched 

out in Figure 55. At the beginning the particle will experience relatively small drag 

forces and, due to its orientation, relatively large lift forces, perpendicular to the 

direction of gravity. In addition to that, the off-centre formation of the forward 

stagnation point and the corresponding build-up of a relatively high (compared to 

the averaged particle surface pressure pmed) stagnation pressure pstag will exert 

torque on the particle. As the ellipsoid accelerates it will rotate towards the stable 

=90° position. Consequentially the F d/Fl ratio will increase and the pstag/pmed

ratio will decrease. The higher the angular particle relaxation time  (ratio 

between angular inertia and fluid viscous forces), the more pronounced the 

particle’s rotation past the stable position will be. A symmetrical, but dampened 

counter movement will follow. 

Figure 55: Sketch of the basic hydrodynamic situation of an ellipsoid settling 
under the effect of gravity. 

The newly developed drag/lift model has been applied within a CFD simulation 

run for the situation, described above. A visualization (Figure 56) of the results 

shows staggering correspondence with the real-life phenomenon. Fluid field 

formation, pressure build-up, force and torque effects as well as the particle 

translational and rotational characteristic, behave just as anticipated. Up until 

now there is no other CFD simulation tool, known to the author that is just as 

capable of grapping the full complexity of the non-spherical, settling 

phenomenon, as the hereby presented simulator is. 
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Figure 56: Ellipsoid ( p=2000kg/m³) with initial orientation =45° settling under 
the influence of gravity in otherwise quiescent fluid domain ( f=1000kg/m³, 

f=1*10-6m²/s). Chronological screenshots of simulation results, using the newly 
developed large, Lagrangian dirt particle model. 

4.2.7 Non-Spherical Particle Interaction Effects: Event Forces 

Forces with influence on particle motion that occur due to individual impact 

events are also essential aspects of Lagrangian modelling. They are hereby 

called event forces and represent particle-wall, particle–particle and particle-fibre 

interaction effects. 
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As soon as a particle enters into the fibre vicinity domain, not only does the drag 

module change, but also the relevance of event forces. Impact events are not to 

be neglected anymore. 

All N relevant impact forces on particle motion occur within infinitesimal time 

scales that are smaller than numerical fluid time steps tf or particle time steps 

tp. Via force effect modelling (see 4.1.1) their amount is averaged over the 

entire particle time step, in order to achieve equivalent outcome without infinitely 

high “instant forces”. 

4.2.7.1 Non-Spherical Event Forces: Particle-Wall Interaction 
Boundary patches that are neither defined as “Inlet”, “Outlet” nor “Fibre”, are 

defined as “Walls”. In case of the treatment of real fibre geometries, those 

patches constitute the open borders to neighbouring fibre-fluid regions. In 

general however, the wall boundary condition can be set to any solid object 

immersed in the fluid. The fluid boundary conditions for wall patches with normal 

nw, are set to “slip”. Let u and v denote velocity components parallel to the wall 

boundary patch and w denote velocity components perpendicular to the wall, 

then a “slip” boundary condition means: 
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   (170)  

Particles of mass mp that hit a wall boundary patch with translational velocity up

and angular velocity p are reflected with user-definable elasticity Ew. The 

reflection is performed by the use of a wall event force Fwall. Wall impact forces 

have already been introduced in chapter 4.1.3 where they handle spherical 

particle-wall interaction. Now the concept has to be extended in order to consider 

rotational effects, particle orientation, the moment of inertia Ip and the exact (or at 

least approximated) point of impact at the particle surface. In Figure 57 the basic 

difference in spherical and non-spherical particle-wall impact is sketched out. 
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Figure 57: Sketch of spherical (left) and non-spherical (right) particle-wall impact. 
Non-spheres experience rotational as well as translational acceleration at impact. 

To sense the impact location, the help points, with distance vector ri to the 

particle centre are used and Fwall is modelled as: 
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Note that Fwall always acts perpendicular to the wall boundary patch, whereas 

fibre forces Ffibre (see chapter 4.2.7.2) also have components parallel to the 

boundary patch. Impact elasticity Ew has decisive influence on the translational 

and rotational impact behaviour of the particle. In Figure 58 the situation before 

and after impact is sketched out. The difference between completely elastic 

(Ew=1) and completely plastic (Ew=0) impact scenario is shown. 
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Figure 58: Qualitative sketch of the influence of non-spherical impact elasticity on 
particle-wall impact situation. 

Screenshots of a qualitative benchmark case are shown in Figure 59. Here a 

simplified, fibre-like object in the particle flow path has been prescribed the wall 
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boundary condition and thus serves as obstacle. An oval shaped ellipsoid hits the 

obstacle and is affected by the wall impact force. Consequently its translation 

and rotation is altered. 

Figure 59: Screen shot of benchmark case. Ellipsoid particle just before (left) and 
after (right) hitting a wall boundary patch. Particle experiences positive, rotational 
and negative, translational acceleration. 

4.2.7.2 Particle-Fibre Interaction and Particle Deposition Model 
The modelling of particle interaction with filter fibres and deposition mechanisms 

is essential. Due to the non-stochastic nature of the particle solver, no simplifying 

deposition model as in [12] or [13] is applied. Each particle is treated as 

dynamically interacting individual, according to its momentum. Hydrodynamic or 

event forces as well as fibre forces, which restrain its movement are taken into 

account. Thus every increase of hydrodynamic or event forces can lead to a 

particle blow-off. 

The amount of restraining fibre forces Ffibre on the particle naturally has a 

decisive impact on particle-fibre affinity and eventually filter fibre efficiency. 

Particle-fibre affinity is a quantity which can hardly be described analytically. As a 

consequence, one has to rely on experiments in order to obtain a better 

understanding of deposition mechanisms. Usually those experimental results 

come in the form of filter efficiency curves. These curves have to be studied at 

the particle diameter ranges, where intrinsic particle-fibre adhesion is the
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dominating filtration mechanism. Supposedly a fibre material which shows 

particle adhesion, can restrain any infinitesimally small particle (Dsph<<) hitting 

the fibre.  

It is plausible to assume that there is a maximum, possible amount of fibre force 

on the particle and that it is directly proportional to the contact area, which is 

again proportional to Dsph². Fibre forces eliminate particle momentum, which is 

proportional to Dsph³ and act against hydrodynamic drag which under Stokes flow 

conditions is roughly proportional to Dsph. As a consequence, particles will be 

harder to stop, as Dsph gets larger. Above a certain “sticking diameter” Dstick, 

particles will deposit according to a probability density distribution function 

(PDDF) that can be derived from experiments. The task within solver design is to 

integrate any, user definable PDDF of the form seen in Equ.178 into the concept 

of deterministic particle-fibre interaction-force-deposition.  

To tackle this problem a special particle-fibre interaction module has been 

created. It distinguishes between three modes of interaction: the impact, the 

gliding and the full stop or deposition phase. 

Impact phase

When a particle–fibre impact occurs, Ffibre,impact acts just like Fwall for completely 

plastic (Ew=0) impact and can be written as: 
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Ffibre,impact is designed to momentarily remove the particle help point velocity 

component perpendicular to the wall up,i . For the particle mass centre this 

means that the velocity component perpendicular to the wall up   is reduced and 

that a particle moment of impact Mfibre,impact causes the particle to rotate around 

the impact point (see Figure 60).  

Gliding phase
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As long as the particle detects fibre contact and still retains a velocity component 

parallel to the wall |up,|||>0, it glides along the fibre surface. The decelerating fibre 

counter force Ffiber,gliding now acts in opposite direction of up,|| and is proportional to 

Dsph², the amount |up,||| and a user definable material, fibre force constant 

Dff[kg/m²s], so that: 

||,
2

, psphffglidingfibre uDDF ⋅⋅−=    (173) 

The pre- and post impact situation is sketched out in Fig.60. 
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Figure 60: Sketch of a non-spherical particle-fibre impact/interaction situation. 
Ellipsoid just before (left) and after (middle, right) fibre impact. At impact particle 
is affected by Ffibre,impact, rotation around impact point, towards fibre sets in 
(middle). Particle then decelerates (glides) along surface, being restrained by 
Ffibre,gliding. 

Full stop/deposition phase

Particle acceleration into the opposite direction, due to Ffiber,gliding would be 

unphysical. Therefore the reversal of velocity direction, or the deceleration below 

a user defined, very low, stop velocity  ustop make a valid criterion for complete 

particle deposition. The reversal condition states that the ratio of numerical 

particle velocity-change | up,||| due to fibre force during tp, and |up,||| equals 1, 

which means: 
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A stop number Nstop is introduced, which contains both, the reversal condition 

and a stop velocity condition so that: 
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Here the stop velocity condition ustop/|up,||| merely serves as break up condition for 

the convergence of particle velocity to zero. Therefore ustop should be set <<uf. 

The final deposition condition is: 

1
!
≥stopN      (176) 

Disregarding the stop velocity condition, this leads to the definition of the particle 

stop diameter Dstop: 
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A particle with Dsph Dstop will be stopped and deposited with deposition 

probability d(Dsph)=1, as soon as a fibre is touched. A particle with 

Dstop Dsph Dsiev yields higher momentum and stronger hydrodynamic forces and 

therefore is deposited with a probability 0 d 1. Dsiev marks a particle diameter 

below which sieving effects are still irrelevant for particle deposition. The PDDF 

d(Dsph), given by Equ.178 is supposed to be user definable and is based upon a 

simple, Gaussian-Normal distribution [30], defined by the two parameters: 

average Dstop and standard deviation d. 
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The standard deviation d is given via a third, user definable deposition constant 

slope. The solver basically features three optional deposition modules: 

1.) No adhesion-based deposition for Dsph Dstop: 

0→dσ     (179) 

2.) d depends directly on the user defined slope: 

2
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d

σ
σ =    (180) 

3.) d depends not only on the user defined slope but also on fluid/particle 

properties and Dff: 
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In order to decide whether the individual particle with Dsph Dstop, featuring a 

deterministic deposition probability d(Dsph), is actually deposited at fibre contact, 

the stop parameter Pstop is defined by comparing d to a randomized, 

rectangularily distributed variable 01. 
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The deposition condition is then: 

0
!
≥stopP    (183) 
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The bottom line at this point is: 

1) Any particle that touches a fibre experiences Ffibre,impact and looses its 

velocity component perpendicular to the fibre surface. 

2) Any particle that touches a fibre experiences Ffibre,gliding which reduces its 

velocity parallel to the fibre surface. 

3) There are three ways for a particle to get deposited due to adhesion at 

fibre contact: 

a) The diameter of a volume equivalent sphere is below the stop diameter: 

( ) 1,, ≥→Δ≤ stopppffstopsph NtDDD ρ   (184) 

b) Due to the effect of Ffibre,gliding the particle velocity falls below the stop 

velocity: 

     1||, ≥→≤ stopstopp Nuu    (185) 

c) The stop number is smaller than 1 but the particle fulfils the stop 

parameter condition: 

  01 ≥∧< stopstop PN     (186) 

Any particle which fulfils either condition 3a, 3b or 3c will be deposited and is 

subject to a fibre constraining force Ffibre,constrain which brings the remaining 

movement of the particle-fibre contact point to a halt: 
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Here eup,i,|| is the base vector for the velocity of contact point i, up,i,|| and ri is the 

distance vector of contact point i to the particle mass centre. 

The occurrence of additional particle forces Fi can still speed up the particle, so 

that condition 3b is void and Ffibre,constrain=0 or so that Ffibre,constrain still is >0, but is 

outmatched by the N-1 other acting forces. A blow-off would be the 

consequence. It is up to the user to decide whether the consideration of blow-off

effects is relevant, or whether adhesional deposition probability should work 

strictly governed by d. The latter choice requires a more rigid fibre constraining 

force Ffibre,constrain,rigid: 
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Numerical evaluations of adhesion-based filter fibre efficiency curves, on 

simplified, single fibre geometries have been conducted as seen in Figure 61. 

The test cases already include all the important dynamic interactions between 

particles, fluid, walls and fibres. Results clearly show that the task of embedding 

externally imposed PDDFs d, to include experimentally studied particle-fibre 

interaction properties, into an otherwise discrete, deterministic system of force 

interactions, has been accomplished. Up to 100 mono-disperse, non-spherical 

particles have been injected, just upstream of a simplified fibre geometry, seen in 

Figure 61. The injection position is adjusted to the Stokes number of each 

particle such that the hitting of a fibre is assured. Otherwise injection is arbitrary. 

A deposition probability curve has been pre-defined as seen in Figure 62. 

Repeating the run with particles, featuring varying, relevant diameters Dsph, 
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deposition efficiencies E for each particle class have been evaluated. As shown 

in Figure 62, the results match quite well. 

uf

deposited
ellipsoids

Figure 61: Benchmark case to test particle-fibre interaction module. Simple fibre 
geometry with ellipsoids being deposited due to particle-fibre adhesion. 
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Figure 62: Adhesion-based, filter fibre efficiency for the simplified fibre structure 
case seen in Figure 61. Pre-defined PDDF for adhesion based deposition (blue) 
compared to numerical results (purple). 

4.2.7.3 Particle–Particle Interaction 
Within the fibre vicinity, high particle cloud densities occur. As more and more 

particles get entangled in the fibre, their volume fraction increases and particle-

particle interactions become relevant. While hydrodynamic interaction is handled 
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by the fibre vicinity drag module (local plugging, chapter 4.2.6), physical 

interactions (i.e. collisions) have to be considered as well. 

As soon as a particle enters the fibre vicinity, its data (particle mass centre Xp, 

orientation of particle x- and y axes, ex, ey, particle mass mp, and particle half axis 

diameters a, b, c) is stored in a dynamic collision list. The collision list is a data 

field with dynamic length M. Every one of the J help points of every one of the M 

particles within the fibre vicinity checks the entire collision list in M-1 steps and 

calculates whether or not its projected trajectory ends up within the volume of 

another particle. This amounts to a considerable calculation effort of the order 

O1: 
( )[ ]11 −⋅⋅ MMJO     (189) 

A recently developed, more efficient approach towards the collision problem 

creates a volume scalar list field with one list entry for all N fluid cells. Here each 

particle is labelled and every help point stores the particle label in the local fluid 

cell entry. Thus a maximum of J*M scalar list field entries contain particle label-

data and only J entries with L different particle labels will have to be checked per 

particle. The overall effort of this new method amounts to the order O2: 

[ ]LMJO ⋅⋅2     (190) 

Since L is the number of other particles that could potentially collide with the 

checked particle per time step, L is usually considerably smaller than M, which 

means: 

12 OO <     (191) 

If any help point HPA of particle A detects an impact with particle B, the following 

procedure is initiated: 

1.) Calculation of impact point IPB on particle B (not necessarily a particle help 

point HPB). IPB is determined as the intersection point of ellipsoid B and a 
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straight line through HPA and Xp
B. The problem is transformed into the co-

rotational coordinate system of particle B where Xp
B=0, so that IPB’ is: 
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Note that the superscript ‘ stands for coordinates within the co-rotational 

particle coordinate system. The concept of the co-rotational particle 

coordinate system is thoroughly described in chapter 4.2.2.2. 

2.) Determination of collision vector ncoll. Due to the help point discretization of 

the ellipsoid particle surface, a calculation of  surface normal vectors at 

impact points of particle A and B, would not yield two vectors of the same 

direction. An exact determination of ellipsoid surface normal nB of particle B at 

IPB is necessary to give the impact an appropriate direction. The calculation is 

performed within the co-rotational coordinate system of particle B and looks 

like: 
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     Here fBxz and fByz are: 
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3.) Modeling of the collision force Fcollision. The collision force is designed to either 

reverse (100% elastic impact) or eliminate (100% plastic impact) the relative 

velocity up,rel, between HPA and IPB according to user-defined impact elasticity 



123

Ecoll. The direction of Fcoll is given by ncoll. It obviously has to be reversed for 

collision force calculation for either one of the two collision partners. Fcoll for 

particle A then reads: 
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Here rHP,A stands for the distance vector of HPA to XP,A and rIP,B stands for the 

distance vector of IPB to XP,B. All terms of Equ.196 have to be inserted with their 

last known values just before the impact. A similar collision force implementation 

is used by Shah & Megahed, [27]. A sketch of the non-spherical impact situation 

is shown in Figure 63. 

Figure 63: Sketch of impact situation with non-spherical particles A and B, before 
(left), during (middle) and after (right) collision. Post impact situation: The 
translational velocity of the smaller particle A is more strongly impaired and is 
smaller than that of particle B. The angular velocity of particle A is higher than 
that of particle B.  

Figure 64 depicts screenshots from various stages of a simple collision 

benchmark case. Two differently sized ellipsoids are set on a slightly displaced 

collision course and interact just as predicted by the situation-sketch in Figure 63. 

Points of impact are correctly calculated, impact-forces are transferred and 

translational as well as rotational deceleration and acceleration can be observed 

just as expected. 



124

Figure 64: Six consequential screenshots of collision benchmark case. Two 
ellipsoids on displaced collision course collide and interact accordingly. 

If larger accumulations of particles have to be dealt with, as is the case with cake 

filtration simulation, the situation gets more complex: More and more force 

vectors are exchanged, hardly any particle sub-time step passes without 

collisions and particles start colliding with more than one partner at a time. This is 

why, in those situations, not only the velocities, up and p, are relevant for 

collision calculation, but also the entire spectrum of fluid and/or event forces 

momentarily acting on the individual particle. Consequently the scheme of mere 

collision detection and impact force calculation has to be extended by a suitable 

framework for transferring and accepting all occurring forces between the 

collision partners. Thus the transfer force term Ftrans is introduced as: 

−

=

=
1

1

N

i
itrans FF    (197) 

At initiation, the variable Ftrans,0 comprises all N force terms acting on particle A 

during tp, except for collision force terms where A serves as collision-initiator. 

This means that Ftrans,0 does contain collision force terms that other particles 

have previously transferred to A (where A was the non-initiating collision partner). 
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Under the condition that the jth collision event during tp features a collision 

vector ncoll,j so that Ftrans,j-1*ncoll,j<0, the according collision force Fcoll,A,j is then 

calculated as an extension of the motion-based jth collision force according to 

Equ.196, Fcoll 
A,j. (See Figure 65). It reads: 

( ) jcolljcolljtrans
jA

ColljAColl nnFFF ,,1,
,

,, ⋅⋅−= −   (198) 

And Ftrans,j is consequentially set to: 

jAcolljtransjtrans FFF ,,1,, += −    (199) 

With rp,j
B being the distance vector from the impact point to the mass-centre of 

the collision-partner-particle B, force and torque are then passed to B so that: 

jACollBColl FF ,,0,, −=     (200) 

( )jAColl
B
jpBColl FrM ,,,0,, −×=    (201) 

Figure 65 shows a sketch of an exemplary collision force transfer situation. The 

example assumes that a gravitational force Fg acts downwards and that collision 

event j=1 of centre particle A with particle C has already occurred. For this first 

collision two scenarios are possible: 

• Particle C has already been calculated as collision centre before. Then 

Ftrans,0*ncoll,1<0 and Fcoll,C,1= Fcoll,
C,1+ f(Ftrans,0(Fg,C)).  

• Particle C will be calculated as collision centre after particle A (as is 

assumed in the sketch). Then Ftrans,0= Fg , Ftrans,0*ncoll,1>0 and therefore 

Fcoll,C,1= Fcoll,
C,1. This means that Equ.198 and Equ.199 are not required, 

hence Ftrans,0 = Ftrans,1.  
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The collision event j=2 of particle A with particle B is interesting, since 

Ftrans,1*ncoll,2<0. Here Fcoll,
B,2 is significantly enhanced by the reversed Ftrans,1 

component acting along ncoll,2. 

Figure 65: Sketch of exemplary collision force transfer situation.  

This interaction implementation scheme constitutes the basis for getting a grip on 

any dense accumulation of (non-)spherical, arbitrarily sized particles. Two key 

problems within larger systems of dynamic particle interaction have turned out to 

be crucial in this context: 

• Overall conservation of kinetic and potential energy: Local outbursts of 

rapid particle movement due to unphysically high force terms can occur. 

• Lack of volumetric integrity: At times particles are pressed into each other 

and melt together. 

Both problems can be addressed and amended by the herby described 

implementation scheme. By applying the given solution, a semi-dynamic 

equilibrium within any large particle collective can be achieved. If no external 

source of energy excites the dense particle accumulation, kinetic energy will 

slowly dissipate from the system, due to fluid drag forces. A final, settled, 
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structurally integer state, governed by gravitation will emerge. Figures 66 and 67 

show examples of densely packed, spherical and non-spherical particle 

collectives. Both cases converge to stable, physically plausible solutions. 

Figure 66: Four consequential screenshots of densely packed, arbitrarily sized, 
spherical particles driven downward by gravity. Velocity vectors, the particles’ 
panel framework and their help points are also visible. 

Figure 67: Screenshots of densely packed, arbitrarily sized, non-spherical 
particles. Gravity acts downward. Velocity vectors are visible. The collective has 
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already settled to a relatively dampened state. Remaining interaction forces are 
mainly based upon gravity and not upon particle movement anymore. 

4.2.8 Qualitative Examples of Non-Spherical Dirt Particle Standard 
Filtration Solver Application 

The features presented in chapters 4.2.2 through 4.2.7 constitute the physical 

framework for the most advanced and up-until now final version of the non-

spherical dirt particle and deposition solver. In combination with the FSI-solver 

the particle simulator forms the unified filtration solver, 

icoLagrangianNonSphericalStructFOAM. In combination with the Digital Fibre 

Reconstruction utility, this new tool is capable of tracking (non-)spherical, four 

way coupled, Lagrangian dirt-particle clouds through a realistic reconstruction of 

a microscopic, deformable fibre geometry. It can be used to study process 

parameters like pressure drop, penetration depth and fibre efficiency. 

In the following, some qualitative examples of application are shown. More 

intrinsic, quantitative, engineering applications are presented in chapter 9. 

Figure 68 depicts an exemplary screenshot of the first benchmark case, which is 

a classic filtration application. It includes a dense cloud of non-spherical dirt 

particles, ranging from 30 m to 50 m in diameter. As they interact with fibre, fluid 

and amongst each other, the particles get entangled in a realistically 

reconstructed, deforming filter fibre geometry, measuring 180 m*180 m *200 m 

and with about 2.5*105 fluid mesh cells. The screenshot gives a qualitative 

impression of the wide variety of effects which can be handled by the solver. 
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Figure 68: Screen shot of benchmark case one. Dense cloud of non-spherical 
particles ( p=2000kg/m³, 20 m Dsph 50 m) in viscous oil stream (uf~0.1m/s, 

f=1000kg/m³, f=1*10-6m²/s) and realistic, deforming filter fibre geometry A, 
200 m*200 m*200 m, ~6.0*105 cells. Fibre vicinity drag module is active, four-
way coupling is engaged, deposition mechanisms are initiated and FSI utility is 
switched on.  

The second benchmark case, shown in Figure 69, features a much larger, 

reconstructed, microscopic filter fibre sample, measuring 250 m * 250 m * 

1000 m. The number of fluid mesh cells in this case is about 5*106. Again the 

sample is penetrated by an oil stream which is laden with spherical dirt particles. 

This geometry already represents an outtake of the entire real-life filter thickness. 

Results obtained by particle deposition calculation within a reconstructed fibre 

region of this size, have shown to be almost representative for some, 

homogeneous filter fibre media. 
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Figure 69: Screen shot of benchmark case two. Some spherical dirt particles 
( p=2000kg/m³, Dsph~25 m) are carried by oil stream (uf~0.1m/s, f=1000kg/m³, 

f=1*10-6m²/s) through large, realistic filter fibre geometry B, 
250 m*250 m*1000 m, ~5.0*106 cells. Fibre vicinity drag module is active, four-
way coupling is engaged and deposition mechanisms are initiated.  

Simulation runs on the behaviour of specialized, shape-shifting, bacteria have 

been the focus of research behind benchmark case three. Initially spherical 

bacteria are hereby carried into a simplified fibre geometry. As soon as an entity 

hits one of the fibres, it deforms to the shape of a small plate as it attaches itself. 

Due to deposition and sub sequential reproduction, rather dense colonies start to 

form on the fibre surface. This case is supposed to show the versatility of the 

simulation tool. 
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Figure 70: Screen shot of benchmark case three. Spherical and plate-like 
bacteria (Dsph~50 m, p=1100kg/m³)  deposit in dense clusters within simplified 
fibre structure.  

During the course of development of both particle solvers the matter of numerical 

instabilities in particle movement turned out to be an ever increasing problem. 

This is why an elaborate, adaptive time stepping scheme, suitable for spherical 

and non-spherical particles has been devised. The following chapter of this thesis 

intrinsically describes the problem, looks into particle shape-dependant 

influences on temporal discretization and finally presents a possible, quantifiable 

solution. 
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 Adaptive Time Stepping for Explicit Euler Temporal 
Discretization of Spherical and Non-Spherical Particle 
Speed-Up  

Numerical implementation schemes of drag force effects on Lagrangian particles 

can lead to instabilities or inefficiencies if static particle time stepping is used. 

Despite well known disadvantages, the programming structure of the particle 

solver led to the choice of an explicit Euler, temporal discretization scheme. To 

optimize the functionality of the Euler scheme, a method of adaptive time 

stepping, which adjusts the particle sub time step to the need of the individual 

particle is proposed here. A user-definable adjustment between numerical 

stability and calculation efficiency is sought and a simple time stepping rule is 

presented. Furthermore a method to quantify numerical instability is devised and 

the importance of the characteristic particle relaxation time as numerical 

parameter is underlined. All derivations are being conducted for (non-)spherical 

particles and finally for a generalized drag force implementation. Important 

differences in spherical and non-spherical particle behaviour are pointed out. 

5.1 Introduction 

Within the course of programming, all particle modelling was based on the 

calculation of individual, explicitly formulated force effects (see chapter 4.2.2). 

The application of commonly used, implicit discretization schemes such as the 

Runga Kutta Scheme [20], or semi-analytical approaches as described by Göz, 

Lain & Sommerfeld, [21], was found to be disadvantageous. Reasons for that are 

the wide variety of N individual forces Fi,j acting during time step j, and the 

specific set-up of the code. Therefore an explicit Euler implementation of force 

effects on particle movement was selected. At constant time step t the Euler

scheme constitutes an approximation of the semi-analytical approach of order 

O( t), [20]. A well known problem of the simple, explicit Euler implementation is 

the occurrence of numerical instabilities. It has to be addressed.  
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So far the OpenFOAM® based, Lagrangian particle solvers have used a constant 

number of user-defined Subcycles J, to account for particle time scales, which 

are commonly smaller than fluid time scales. The simple relationship between 

fluid time step tf, particle time step tp and the number of particle Subcycles J 

then reads: 

const
t
t

J
p

f =
Δ
Δ

=     (202) 

With J∈Z, tp tf, J 1 and J=const. The ceiling function  is of course preferred 

here to a floor function , in order to be on the safe side. Per definition, particle 

time steps can not become greater than fluid time steps. Once the number of 

Subcycles is selected, it remains statically linked to the fluid time step, regardless 

of particle dimensions, material properties, or flow conditions. As a consequence, 

static time stepping can lead to inefficiencies and numerical instabilities. 

Here a simple method of adaptive particle time stepping is proposed. It takes into 

account the properties of each individual particle, such as particle mass mp, 

particle density p or particle velocity up, as well as local fluid and flow field 

properties, such as dynamic viscosity f and fluid velocity uf, so that: 
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Furthermore this chapter presents a way to quantify the degree of numerical 

particle stability, which goes along with each chosen particle sub time step. 

Based on these results, an adaptive time stepping method is worked out, which 

allows the user to select accuracy and efficiency of the explicit, Euler temporal 

discretization. 
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5.2 Explicit Euler Temporal Discretization of Drag Force Effect 
on (Non-) Spherical Particles 

The simple, explicit Euler, temporal discretization of particle movement under the 

influence of external forces for the jth time step can be written as: 

( ) ( ) jp

N

i
ji

p
jpjpjjp tF

m
tutttu ,

0
,1,1

1 Δ⋅⋅+=Δ+=
=

−−  (204) 

Issues concerning numerical instability, stemming from this implementation 

method, are frequently observed. Those instabilities turn out to be worst in 

connection with particle–fluid interaction force effects and are not as critical 

concerning momentary forces caused by events such as particle–particle, 

particle-wall or particle-fibre impacts (see chapter 4.2.7). Therefore particle-fluid 

forces have to be inspected primarily. Chapter 5.5 treats the consideration of 

other particle event forces as well. 

5.2.1 Particle–Fluid Interaction: Drag Forces  
The Basset Bousinesque Oseen (BBO) equation offers a complete, mathematical 

quantification of all possible interaction forces acting on objects being immersed 

in a fluid, [15, 21]. Going on from this generalized description, the problem needs 

to be simplified. Therefore the simple case of a particle, slowly speeding up in a 

uniform flow field shall be considered. The governing PME is then mainly 

dominated by fluid drag and lift forces, Fd and Fh respectively, so that: 

hd
p

p FF
dt
ud

m +=        (205) 

and for the jth time step: 
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Lift is usually smaller than drag and is only relevant for arbitrarily positioned, non-

spherical particles. It shall be disregarded here. As mentioned before, the 

general, well known formulation of the fluid drag force, for 1D, uniform flow 

conditions reads: 

( ) 2Re
2
1

relffpdd uAcF ⋅= ρ   (207) 

For spherical particles and low Reynolds numbers, Stokes’ law is applicable to 

calculate the drag coefficient as seen in Equ.28. According to Haider & 

Levenspiel [23], there are in total well over 30 equations in literature, relating the 

drag coefficient of spherical particles to the Reynolds number. 

The amount of equations in literature, describing the drag coefficient of non–

spherical, e.g. ellipsoid, particles is significantly lower. Reviews on this subject 

have been conducted e.g. by Haider & Levenspiel [23] and Hölzer & Sommerfeld 

[24]. 

Hölzer & Sommerfeld have furthermore presented a cd correlation formula for 

ellipsoids, which is reportedly valid over the entire range of Reynolds numbers. It 

has already been shown in Equ.129 and thoroughly presented in chapter 4.2.5.2. 

It is considered the most recent and so far the best, semi-analytical cd correlation 

formula for arbitrarily positioned, non-spherical objects. Consequentially this work 

has adopted it for the discussion of non–spherical drag force implementation for 

small particles and the related time stepping problems. 

However, the reader is instructed to keep in mind that the particle solver 

produces its own cd and cl characteristic, which is presented and compared to the 

Hölzer & Sommerfeld results in chapter 4.2.6.2.2. 

5.2.2 Particle Speed Up 
Previous works of e.g. Lain, Göz & Sommerfeld, [18]-[22], have considered the 

case of gravitational particle settling and specifically the value of the terminal 
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particle settling velocity to study numerical instabilities. Since gravitational effects 

play a negligible role in the context of automotive oil filtration [70], a different 

method to numerically and analytically study time stepping and instability effects 

was chosen.  

Hereby the case of a particle which speeds up in a uniform flow field shall be 

analyzed. The ratio between particle–wall distance and particle diameter shall be 

considered as large and any additional effects on the Lagrangian PME shall be 

disregarded as described above. Therefore, in extension of Equ.205, the 

simplified particle momentum equation reads: 
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5.2.2.1 Speed-Up of Spherical Particles 

The characteristics of the speed up curve of any particle being inserted at 

velocity up=0 m/s, into a fluid flow of uniform velocity uf, depend mainly on the 

implementation of the drag coefficient. For spherical particles and low Reynolds 

numbers the analytical solution for the development of particle velocity from zero, 

infinitely close to uf, against time, can be found easily [16]. It is: 
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Here urel,0 is the relative particle-fluid velocity at t=0s. Figure 71 shows the plot of 

an exemplary, spherical particle speed up curve and the usual, graphical 

interpretation of the characteristic, spherical particle relaxation time p,sph (see 

chapter 5.3.1). 
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5.2.2.2 Speed-Up of Non–Spherical Particles 

In the case of non–spherical particle speed up, an analytical solution for the 

speed up curve can not be found that easily. By inserting the cd correlation of 

Equ.129 into the simplified PME of Equ.208 and by consequential integration 

over time and relative particle–fluid velocity, the following expression is reached: 
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The constants C0, C1, C2 and C3 are declared in Equ.6 through Equ.9. Equ.210 

however, is transient in nature, therefore a solution for up=f(t) can only be 

obtained numerically. The Newton-Raphson procedure [31] is used to get a plot 

of the results of the explicit solution for up out of Equ.210 (see Figure 71).  

One focus of chapter 5 is to point out the significant difference in speed up 

behaviour between spherical and non-spherical particles, which share the same 

volume equivalent spherical diameter Dsph. Figure 71 shows a direct comparison 

of the speed up behaviour of an exemplary spherical particle and a non-spherical 

particle of equal mass and volume, with arbitrarily chosen sphericity and under 

matching flow conditions. Assuming the qualitative, physical correctness of the 

non-spherical drag implementation of Equ.129, the decreased sphericity leads to 

decreased particle relaxation time, increased drag forces and thus to faster 

particle speed up. 
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Figure 71: Plot of particle velocity up[m/s] against speed up time t[s]. Comparison 
of spherical and non-spherical particles with the same mass and Dsph=0.01m, 
speeding up under matching, uniform 1D flow conditions, f=0.1Pas, uf=0.4m/s. 
Graphical interpretation of spherical particle relaxation time p,sph and non-
spherical particle relaxation time, p,nonsph. 

5.2.3 Numerical Instability of Explicit Euler Drag-Force-Effect- 
Implementation 

For a given, exemplary fluid time step, fluid properties, spherical particle 

dimensions, particle density and flow conditions, a variation of particle Subcycles 

easily reveals the weakness of static particle time stepping. Figure 72 shows a 

plot of three numerically calculated, spherical particle speed up velocity curves, 

with the number of Subcycles J being the parameter. The results are compared 

to the correct, analytical solution of Equ.209. 
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Figure 72: Plot of particle speed up curves for exemplary fluid time step 
tf=1.333s, particle dimension Dsph=0.01m, dynamic fluid viscosity f=0.1Pas, 

particle density p=2000 kg/m³, and uniform flow velocity uf=0.2m/s. Three 
numerical speed up curves for static Subcycles J= 40 (blue), J=20 (turquoise) 
and J=10 (purple) are compared to the analytical solution (yellow). 

At decreasing numbers of Subcycles, e.g. increasing particle time steps, the 

speed up curves show increasing deviation from the analytical solution (Figure 

72, J=40, J=20). If a certain particle time step limit is exceeded, the particle starts 

experiencing unsteady acceleration (Figure 72, J=10),  and for even larger time 

steps the numerical solution collapses altogether. 

A similar behaviour of the results can be observed if the number of Subcycles is 

held constant, but the particle diameter is in turn decreased, or fluid viscosity is 

increased. When drag forces on non–spherical particles are considered, an 

additional parameter to be taken into account is the local, relative fluid–particle 

velocity urel. Here an increase of relative velocity has analogous effect to a 

decrease of Subcycles. 
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5.3 Particle Relaxation Time and Study of Non-Spherical Speed-
Up Behaviour  

In this chapter the well known definition of the particle relaxation time for 

spherical particles will be compared to an expression for the non–spherical 

particle relaxation time. Moreover the dependence of p,nonsph on local fluid 

conditions and on the degree of non–sphericity will be investigated. Therefore a 

new quantification method to describe sphericity will be introduced. 

5.3.1 Spherical Particle Relaxation Time 

Out of Equ.209, a well known, essential parameter for the particle speed up 

characteristic can be derived. It defines the time scale for any individual, 

spherical particle under Stokes drag conditions, is called the spherical particle 

relaxation time and has already been shown in Equ.4. For the sake of 

consistency and to underline its importance it shall be written out again: 

f
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18
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, =   (211) 

The graphical interpretation of the parameter p,sph is given by the intersection 

point of the speed up curve tangent at t=0s with the u=uf line and is depicted in 

Figure 71. 

It is worth noting that, by using Stokes' law, p,sph depends only on material 

properties, regardless of local flow conditions. By inserting Equ.211 into Equ.209, 

it can be rewritten as: 
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5.3.2 Non-Spherical Particle Relaxation Time and Speed-Up Behaviour 
As previously discussed, Equ.210 yields an expression for a non–spherical 

particle speed up curve, implicitly containing up (within urel). Equ.210 does not 

necessarily have to be evaluated numerically for up=f(t), to obtain essential 

parameters of the speed up curve. Figure 73 shows an exemplary plot of 

Equ.210 and reveals that the characteristic non–spherical particle relaxation time 

can be extracted from this implicit expression for up as well. 
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Figure 73: Exemplary plot of non-spherical particle speed up, for Dsph=0.001m, 
uf=0.1m/s, f=0.1Pas with tangent at t=0s and non–spherical particle relaxation 
time p,nonsph =8*10-4 s.  

Analogous to the spherical speed up case, the parameter p,nonsph is given by the 

intersection point of the speed up curve tangent at t=0 s with the urel=0 m/s line. 

Therefore p,nonsph is defined by: 
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Uniting Equ.213 with the expression for t(urel) out of Equ.210 and with the 

definitions of C0, C1, C2 and C3, found in Equ.6 through Equ.9, the non-spherical 

particle relaxation time for Hölzer-Sommerfeld drag implementation can be 

found. It has already been shown in Equ.5. For the sake of consistency and to 

underline its importance it shall be written out again: 
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The non–spherical particle relaxation time, based on Equ.214, depends not only 

on material properties and particle dimensions, but also on the local, relative 

fluid–particle velocity. As a consequence p,nonsph depends on the local particle 

Reynolds number while p,sph does not. 

Even an actual particle sphericity of =1 does not eliminate the velocity 

dependence in Equ.214. The plot in Figure 74, which holds true for any set of 

particle properties, shows that, the larger the particle Reynolds number becomes, 

the worse the accordance of the two p implementations for two identical, 

spherical particles will be. This reflects the fact that the Stokes version for 

spherical particle drag is only valid in the zero Reynolds limit. 
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Figure 74: Ratio of spherical particle relaxation time according to Hölzer-
Sommerfeld drag p,H/S and spherical particle relaxation time according to Stokes’ 
drag implementation p,St plotted against particle Reynolds number. The higher 
the Reynolds number, the smaller p,H/S compared to p,St. The Stokes’ approach 
loses its validity. 

Further evaluation of Equ.214 helps to get an idea of the relationship between 

particle shape and particle relaxation time. Figure 8 contains a plot of p against 

Rep for particles of varying sphericity, but constant Dsph. Furthermore Figure 8 

demonstrates the basic difference between velocity dependence of “Stokes’ drag 

spheres” and “Hölzer-Sommerfeld ellipsoids”. In addition to that, the plots in 

Figure 8 qualitatively show that, the further the particle shape is from being a 

sphere, the smaller p becomes.  

The sphericity can not fully describe the measure of similarity to spherical shape, 

- crosswise and lengthwise sphericity are needed as well. Therefore an 

alternative parameter to measure similarity to a sphere is introduced in this work. 

It is the ratio between the standard deviation of the half axes a, b and c around 

Dsph. This parameter is denoted as ax and has been shown in Equ.10. 

Considering Figure 8 it becomes obvious that higher values of ax signify higher 

deviation from spherical shape and clearly lead to smaller p,nonsph values. The 
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p,nonsph values decrease further for higher particle Reynolds numbers. As has 

been stated in the introduction to this thesis, the plot in Figure 8 strongly makes 

the case for the consideration of particle shape effects in particle calculations. It 

shows that for values of ax 1, the non–spherical particle relaxation time 

becomes less than 1/5th of the relaxation time of a volume equivalent sphere. 

Figure 75 is a plot of p,nonsph/ p,sph against ax. With the particle Reynolds number 

being used as parameter, this plot is valid, regardless of material properties or 

particle diameter Dsph. The plot shows that increasing deviation from spherical 

shape leads to a strong reduction of p,nonsph values. The trend starts levelling of 

for ax 1.5. Higher particle Reynolds numbers lead to a p,nonsph reduction as well. 

This effect is more pronounced for nearly spherical particles ( ax 0) and mainly 

within the creeping flow regime (Re<<1). 
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Figure 75: Spherical (blue) and non–spherical (red, orange, yellow, turquoise) 
particle relaxation time behaviour against relative half axes deviation around Dsph. 
Assumption: The longest particle half-axe a is aligned along fluid stream lines. 
Increasing Rep (0-10) and increasing ax lead to smaller p,nonsph. All values are 
scaled by p,sph(Rep=0). 
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The analysis of Figure 75 shows that the non–spherical particle implementation 

leads to generally lower relaxation time values than that of the spherical case. 

Even if the ellipsoid half axes are of equal length ( ax =0), the non–spherical 

results deviate from the spherical implementation. Only if the particle Reynolds 

number reaches the limit Rep 0 and ax =0, a match is achieved. 

In essence all those insights lead to the conclusion that non–spherical particles 

have smaller characteristic time scales than volume equivalent spheres. As a 

consequence, they require higher time step resolution. The stronger the non–

sphericity, the smaller the time step will have to be to achieve numerical stability. 

If maximum efficiency is desired, non–spherical time steps can be increased as a 

particle accelerates, and relative velocities, as well as particle Reynolds numbers 

decline. However if, on the other hand, the chosen time step criterion is adjusted 

to the situation of highest possible particle Reynolds numbers, e.g. to the instant 

of particle injection, it will surely hold for the entire calculation. 

5.3.3 Generalized Particle Relaxation Time 

The expressions for spherical (Equ.211) and non–spherical (Equ.214) particle 

relaxation times can easily be extended to a generalized version. It holds for 

arbitrarily shaped particles and can be written as (Lain, Bröder, Sommerfeld, 

1999, [18]): 
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ff

sphp
p ⋅⋅⋅

⋅
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μ
τ                      (215) 

5.4 Adaptive Time Stepping 

After pin-pointing the problem, formulating expressions for particle relaxation 

times and after examining spherical as well as non-spherical speed up 
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behaviour, a scheme of adaptive time stepping can be sought. First the multi-

parameter character of the problem has to be reduced. 

5.4.1 One Parameter to Define Numerical Stability 

By inserting the generalized particle relaxation time p (Equ.215) into the 

simplified PME (Equ.208) and by consequential, temporal discretization and 

substitution for urel=uf-up one obtains: 
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Δ
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Here tp, is the numerical particle sub time step and up,t is the particle velocity 

after tp. With Equ.216 a simple formula is given, which relates the ratio of the 

chosen particle time step and particle relaxation time to the ratio of relative 

particle–fluid velocity change, urel and relative particle–fluid velocity, urel,0 before 

tp. 

It is quite clear that if the ratio on the right hand side of Equ.216 gets larger than 

1, the particle at its new velocity will in any case travel faster than the 

surrounding flow field. A result like this is not only wrong, but will cause the 

particle to accelerate in the opposite direction in the following time step. As will 

be shown, a tp/ p ratio of 2 will collapse the particle calculation as a whole. The 

numerical stability of the calculation can only be guaranteed by substantially 

reducing the tp/ p ratio. It turns out that the terms in Equ.216 are the single most 

important quantities to measure the extent of numerical (in-)stability of the 

calculation.   
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Equ.216 takes the subject away from being a multi parameter problem, which 

depends on particle dimension, fluid viscosity, fluid velocity and particle density, 

towards being a single parameter issue, which depends only on the ratio of 

particle sub time step to particle relaxation time tp/ p. 

The first obvious conclusion is to start scaling the time axis by p and to start 

expressing the degree of numerical stability by tp/ p.  

5.4.2 Describing the Instabilities 

To get a hold of the encountered instabilities, it is first necessary to thoroughly 

understand and describe them. The key to do that is to consider the iterational 

effects of the Euler scheme on velocity evolution. Using i as index for the specific 

iteration at runtime t= tp*i, Equ.216 can be rewritten to: 

p
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u
uu Δ+= −

− τ
1,

1     (217) 

With particle velocity at iteration i=0 being up,0=0.0 m/s and with the relative fluid–

particle velocity at that time consequentially being urel,0=uf, the implicit statement 

of Equ.217 can be transferred into the following explicit expression for ui: 

( ) +−
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⋅−= + 111 1
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p

pi
fi

t
uu

τ
  (218) 

The evaluation of Equ.218 for various ratios of tp/ p is depicted in Figure 76. 

Obtained results immediately show that Equ.218 accurately explains the 

encountered instabilities which are partly shown in Figure 72.  
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Figure 76: Evaluation of Equ.218 for varying tp/ p, with uf=0.2 m/s. For tp/ p 1 
particle velocity evolution starts showing unsteady behaviour. For tp/ p 2 the 
particle calculation collapses. The results accurately match the instability 
behaviour encountered in the OpenFOAM® solver (Figure 72). 

By taking a look at Equ.218, the initial assumption, that tp/ p is the decisive 

numerical parameter can be confirmed. The following facts can be stated: 

1.) For tp/ p 1 and for all i∈Z: 
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The calculation will remain stable and the particle velocity will steadily 

converge to uf. Overall numerical error will increase as tp/ p increases. 

2.) For 1< tp/ p<2 and for all i∈Z: 
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For all i∈Zeven: 
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For all i∈Zuneven: 
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In the 1< tp/ p<2 regime the particle velocity will eventually converge to uf,

just as before, but it will show completely unsteady velocity jumps, 

oscillating around uf. 

3.) For tp/ p= 2 and for all i∈Z the particle velocity oscillates unsteadily 

between ui= 0 and uf until the geometry boundaries are reached. 
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4.) For tp/ p>2 and for all i∈Z: 
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If tp/ p>2 the particle velocity will explode and the calculation will 

collapse. The consequence of this analysis is simple: tp/ p must stay well 

below 1 to ensure steady evolution of particle velocity. What remains to be 

done is to quantify the extent of numerical error within the “regime of 

steady velocity evolution”. 

5.4.3 Quantification of Numerical Error 
Numerical error is best quantified by considering its effects. Here the resulting 

speed up curve for any specific tp/ p shall be compared to the correct, analytical 

solution. An explicit, analytical solution is only known for spherical particles, 

accelerating under Stokes’ drag conditions (see Equ.209). For non–spherical 

particles, the tp/ p speed up curve shall be compared to a numerically calculated 

reference curve, of small, yet basically variable tp,0/ p. As quantitative measure 

of the overall amount of deviation between numerical and reference results, the 

medium standard deviation  shall be chosen. The medium standard deviation is 

calculated according to Equ.228. 
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Here the index i indicates the individual, numerical time step, the index n

indicates a result from the numerical solution for tp/ p and index a, indicates a 

result from the reference (analytical) solution. Let the parameter M denote the 

last compared velocity point at runtime tend, so that: 

p

endtM
τ

=     (229) 

Then the total number of compared, discrete time steps imax is: 

     Ζ∈
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The exemplary plot of two compared speed up curves in Figure 77 illustrates the 

numerical error quantification scheme. 
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M=tend/ p=8.2

imax=27

t/ p [-]

tend/ p [-]
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Figure 77: Comparison of analytical (red) and numerical (blue) speed up curve 
with tp/ p=0.3 and uf=0.2m/s. The points of numerical evaluation are shown 
according to the chosen particle sub time step. To calculate , velocity points 
from t/ p =0.3 to M=tend/ p =8.2 are chosen. In this case the number of compared 
velocity points is imax=27. 

5.4.3.1 Quantification of Spherical, Numerical Error 
By using Equ.209 and by representing the particle runtime as t= tp*i, the 

analytical solution for iterational particle velocity for spherical particles becomes: 

−=
Δ

−
sphp

pit

fi euu ,1 τ    (231) 

Therefore, the resulting ( tp/ p) value for spherical particles can be calculated in 

accordance with Equ.228 which yields: 
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The index n-a represents the comparison between the numerical and the 

analytical solution. To get an idea of the relative deviation, compared to the 

uniform fluid velocity uf, the relative medium standard deviation can be written as: 
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5.4.3.2 Quantification of Non–Spherical, Numerical Error 
For non–spherical particles the reference curve shall be created by selecting 

another speed up curve, based on Equ.24. Therefore a very small tp/ p  ratio that 

serves as the reference value tp,0/ p has to be chosen. Hence, the resulting 

( tp/ p) value for non-spherical particles is calculated like this: 
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Here the index n-n represents the comparison between the inspected numerical 

speed up curve and the numerical reference solution. The new variable n stands 

for: 
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Of course the reference-value-based, ( tp/ p) calculation, shown in Equ.234, 

can also be applied for spherical particles, where an explicit, analytical reference 
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solution is available. In this case the n-n value converges to n-a as the reference 

value tp,0/ p converges to zero: 
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5.4.3.3 Evaluation of Quantified, Numerical Error 

Based on the quantification procedure described above and in particular based 

on Equ.233 and Equ.234, extensive parameter studies have been carried out. 

OpenFOAM® - CFD test runs, featuring spherical and non-spherical particles 

have been conducted. The particles were set to speed up in a large flow channel 

with zero wall friction and thus uniform flow conditions. Hereby the parameter 

tp/ p was varied, speed up curves were monitored and the rel( tp/ p) values 

were written out. In parallel, equivalent evaluations, directly based on Equ.233 

and Equ.234 were conducted. The results for spherical particles are shown in 

Figure 78, where the two rel( tp/ p) curves are plotted against tp/ p. Especially 

for rel 0.2 the two curves match almost exactly.  



155

Figure 78: Plot of rel against tp/ p for a spherical particle of arbitrary size and 
composition which speeds up in an arbitrary fluid. Each data point is calculated 
by comparing the corresponding numerical speed up curve to the analytical 
speed up solution for spherical particles. Comparison of OpenFOAM® 
implementation (blue) and evaluation of Equ.233 (pink). Chosen M-value is 8.2. 
The equivalent procedure for an arbitrary, non-spherical particle yields the exact 
same result. 

The very same figure can be produced for spherical and non–spherical particles, 

even though the non–spherical CFD calculation uses Hölzer-Sommerfeld drag 

instead of Stokes’ drag, and the non–spherical, reference curve stems from 

Equ.234 instead of Equ.233. 

A variation of the parameters: fluid velocity, dynamic fluid viscosity, volume 

equivalent, spherical particle diameter and particle density, confirms the 

derivations of chapter 5.4.3. The rel( tp/ p) results show absolutely no 

dependence on those factors and thus can be considered as universally suitable 

in terms of particle properties as well as fluid properties and conditions.
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Considering Equ.233 and Equ.234, only three further sources of possible 

influence on the final result remain: the reference parameter tp,0/ p (relevant for 

non–spherical particles), the parameter M that affects imax over Equ.230 and the 

chosen tp/ p range. For a discussion of those sources of influence see chapter 

5.4.4.1 to 5.4.4.3. 

The rel( tp/ p) curve shown in Figure 78 however, enables the user to choose a 

certain tp/ p value and immediately get an estimate of the relative standard 

deviations of evolving, numerical particle velocities, compared to the correct 

result. 

5.4.4 Simple, Linear Correlation for Deviation 
Any serious simulation will use values of tp/ p<0.8 so that, according to Figure 

78, the relative standard deviation to the correct speed up result, will be well 

below 0.1 (10% uf). In that region the exponential character of the rel( tp/ p) 

curve is not yet fully developed and a linear correlation with a coefficient of 

determination, R² >0.99 can be found. This means that a very simple, linear rule 

for rel - tp/ p dependence can be obtained. Since for tp/ p=0, also rel=0, the 

linear correlation bears only one degree of freedom, the slope krel. Hence for rel 

<0.07 (7% uf) we find: 
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τ
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Δ
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Figure 79 can be plotted by evaluating the situation shown in Figure 78 for tp/ p 

values that range from 0 to tp,end/ p=0.55. It shows the comparison of results 

yielded by OpenFOAM® and the evaluation of Equ.233. Hereby an almost exact 

match can be achieved. In this tp/ p range a linear correlation with R²=0.9935 

can be drawn and the resulting slope value krel can be found to be: 

krel= 0.1118    (238) 
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Figure 79: Plot of rel against tp/ p with tp/ p ranging from 0.0 to tp,end/ p=0.55. 
Situation is equivalent to Figure 78. Linear correlation with coefficient of 
determination R²=0.9935. Numerical speed up implemented in OpenFOAM® 
yields a slope of krel,OF=0.1113 and evaluation of Equ.39 yields slope 
krel,Equ.50=0.1124. Results are valid for spherical and non-spherical particles. 

As a consequence the rel - tp/ p correlation for rel <0.07 (7%uf), M= 8.2 and 

tp/ p values, ranging from 0.0 to tp,end/ p=0.55, can be written as: 

p
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rel

t
τ

σ
Δ
⋅= 1118.0   (239) 

This holds true for any set of particle properties, for spherical and non–spherical 

particles and for any set of fluid properties and conditions. By inserting into 

Equ.239, the user can chose an appropriate tp/ p value and immediately 

estimate its impact on overall numerical deviation to the analytical and/or 

reference solution, in relation to the given fluid velocity. On the other hand it is 
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possible to choose a desired, maximum deviation rel,max, and then to 

immediately estimate the maximum, allowed time step tp,max for any particle with 

particle relaxation time p. 

To finally decide on the universality of Equ.239, the dependence on parameters 

like M, the tp/ p range and (for non-spherical particles) the reference parameter 

tp,0/ p will have to be checked. 

5.4.4.1 Slope Dependence on Reference Value, tp,0/ p 

For non-spherical particles the rel - tp,0/ p curve can be calculated by using 

Equ.234 and by choosing an appropriate reference parameter tp,0/ p. Thus an 

additional parameter of possible result dependence is introduced. An inspection 

of magnitude of dependence is necessary. 

By applying Equ.234 on spherical particles and by letting tp,0/ p converge to 0.0, 

the result converges to that of Equ.233. Consequentially it can be concluded that, 

the lower the value for tp,0/ p is chosen, the higher the quality of the result will 

be. To quantify this qualitative statement, a parameter study for non-spherical 

particles has been conducted. Therefore the parameter tp,0/ p has been varied 

and for each value a full rel - tp/ p correlation, yielding krel values according to 

Figure 79, has been established. Using tp,0/ p=0.001 as starting point, krel values 

have been calculated for tp,0/ p 0.02.  
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Figure 80: Ratio of krel( tp,0/ p)/krel( tp,0/ p =0.001) plotted against tp,0/ p.  

The plot in Figure 80 shows that, for tp,0/ p<0.013, the krel result deviates by only 

+/- 5‰ around the starting point result, which means that in this range krel can be 

considered to be completely independent of tp,0/ p . 

5.4.4.2 Slope dependence on M=tend/ p  

As seen in Figure 77, a variation of the parameter M will almost certainly lead to 

a change in the calculated, medium deviation between the compared curves. Not 

to mention the fact that the parameter imax(M) has a profound impact on Equ.233 

and Equ.234. Qualitatively it can be stated that: 
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Furthermore it is clear that rel will show a maximum somewhere within the range 

0 M . However, it must be noted, that the obvious rel – M dependence does 

not change the numerical situation (e.g. stability) at all. It only brings about a 

different view point of one and the same numerical speed up curve and its 

analytical or reference solution.  

To quantify the rel – M dependence, and in particular the krel – M dependence, a 

parameter study has been conducted. Therefore the parameter M was varied 

and for each value a full rel - tp/ p correlation, yielding krel values according to 

Figure 79, was established. For each calculation of krel the tp/ p value was 

varied between 0.0 and tp,end/ p=0.15. Figure 81 shows the resulting plot of krel

against M. As expected: krel =0.0 for M=0 and also converges to 0.0 for M . A 

maximum krel value krel,max can be found for M=1.60. It is krel,max=0.170. 

Figure 81: Plot of krel against M. Maximum krel value at Mmax=1.60. Definition of 
M99,9 value and krel;99,9 value. 

Considering the facts stated above, a reasonable course of action in dealing with 

the krel – M dependence is to simply define a constant M value throughout the 
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quantification procedure. Thus a constant, never changing frame of reference is 

established. A reasonably appropriate point to evaluate the behaviour of the 

entire speed up curve is the M-time M99,9, when the accelerating particle has 

reached 99,9% of the fluid velocity uf. In this case the ratio between relative fluid–

particle velocity and fluid velocity is: 

p
f

pf

u
uu

10
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−
   (242) 

With, p=3. 

Using the analytical speed up solution for spherical particles (Equ.209), M99,9 can 

consequentially be defined as: 

91.610ln9,99 ≈⋅== p
t
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p

end

τ
   (243) 

From Figure 12 the corresponding krel;99,9 value can be derived as: 

100.09,99, =relk     (244) 

5.4.4.3 Slope Dependence on tend/ p

A third and final parameter with potential influence on the ultimate krel result is the 

tp/ p range of possible relative time stepping width, or rather the upper time 

stepping limit tp,end/ p. While the tp/ p values for the linear rel - tp/ p correlation 

in Figure 79 range from 0.0 to tp,end/ p=0.55, the krel – M curve in Figure 81 was 

calculated for tp,end/ p=0.15. A qualitative analysis of the rel - tp/ p curve in 

Figure 79 shows that the higher tp,end/ p, the steeper the “linear” slope krel will 

be. For values tp,end/ p>0.8 a linear correlation is neither appropriate nor 

necessary.  
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The basic situation is the same as for the parameters tp,0/ p and M: a variation 

does not affect the numerical situation, but only the evaluation of one and the 

same status. Parameter studies, establishing krel – M curves (analogous to 

chapter 5.4.4.2) for two basic cases of tp,end/ p have been conducted. The first 

case, where tp,end/ p=0.15, holds for rel 0.012 (=1,2% uf) and the second case, 

where tp,end/ p=0.40 holds for rel 0.04 (=4,0% uf). Figure 82 shows a direct 

comparison of the two krel – M curves. 

Alpha=6.9

Krel(Uf-Up/Uf)=0.11

M=tend/ p [-]

k r
el

[-]

Mmax=1.60

Figure 82: Plot of krel against M. Chosen parameter is tp,end/ p=0.15 (red) and 
tp,end/ p=0.4 (orange). Maximum of both curves lies at Mmax=1.60. Difference 

between curves converges to 0.0 for M . 

As expected krel increases for increasing tp,end/ p, but the basic properties of the 

curve (convergence and maximum krel,max at Mmax=1.60) remain the same. For 

further applications of the quantification scheme, the tp,end/ p=0.15 curve and the 

tp,end/ p=0.40 curve will be chosen as alternative reference. 
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5.4.5 Adaptive Time Stepping of User-Defined Accuracy 

Finally a simple, adaptive time stepping rule, for spherical and non-spherical 

particles, for any set of fluid and particle properties and for any given local flow 

field, can be presented. 

For M99,9=6.91 and with tp,end/ p=0.15 [ rel<0.012 (<1,2%uf)] the krel value can be 

determined out of Figure 82 as: 

100.015.0
9,99; =Mrelk     (245) 

So the linear rel relation, using Equ.237 reads: 
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For M99,9=6.91 and with tp,end/ p =0.40 [ rel<0.040 (<4%uf)] the krel value can be 

determined out of Figure 82 as: 

112.040.0
9,99; =Mrelk    (247) 

So the linear rel relation, according to Equ.237 reads: 
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The user can select a desired, medium standard deviation rel,UD<0.040 (<4%uf). 

Then the appropriate number of particle sub time steps J, which is specifically 

adapted to the particle as well as the local fluid properties and conditions, can be 

calculated by use of Equ.203. 
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For rel,UD  1.2%uf: 
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For 1.2%uf < rel,UD  4.0%uf: 
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5.5 Adaptive Time Stepping and Event Forces 

Up until this point, the discussion regarding necessary time step adaptation has 

only considered single, suspended particles in an unbounded flow domain. So 

far, event forces due to particle interactions have been neglected. Those 

additional forces create a more complex situation: relatively high, momentary 

particle acceleration in combination with static, or particle fluid adaptive time 

stepping (see 5.4) lead to an underestimation of fluid damping effects on the 

motion.  Once again particles tend to unrealistically shoot out of the calculation 

domain. 

In order to get a hold of these phenomena, a time stepping scheme, introducing 

the newly defined particle event force relaxation time, was developed.  

5.5.1 The Particle-Event-Force Relaxation Time 
For better distinction, the traditional, steady-state particle relaxation time shall 

hereby be denoted as p,0. As noted before, p,0 represents the ratio between 

particle inertia and viscous fluid forces, postulating quasi-steady state, particle-

fluid drag. The effect of local event forces however, causes strongly unsteady 

particle behaviour. Therefore a new, particle event force oriented, non-steady 

relaxation time, the particle event force relaxation time p,EF has been defined. 
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With the introduction of p,EF, the particle velocity change during tp, under the 

influence of fluid drag and any acting event force Fi can be written as: 
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Here the index j denotes the coordinate components x, y, z. Thus p,EF,j varies 

with varying force effects in the three spatial dimensions. To be on the safe side 

the smallest p,EF,j component is chosen to introduce the particle event force 

relaxation time as follows: 
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Equ.251 represents the extension of Equ.216. Whereas the previous formulation 

merely considers fluid-particle drag, the new form contains all possible acting 

forces.  

The quantifiable, adaptive time stepping scheme of user-defined accuracy, 

presented in chapter 5.4, loses its general validity as soon as Fi,j>Fd. However, 

all in all, event forces turn out not to be as dangerous for the numerical integrity 

of the entire calculation as underestimated drag forces can be. The reason for 

this is that drag forces act continuously, whereas event forces, even though at 

times considerably higher, only occur momentarily. 

Using the expression in Equ.252, two event-force-adapted time stepping 

schemes are proposed here: 

• The spatially bounded scheme 

• The temporally bounded scheme 
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5.5.1.1 The Spatially Bounded, Event-Force-Adapted Time Stepping 
Scheme 

The spatially bounded, event-force-adapted time stepping scheme ensures that, 

during tp, the event-force-accelerated particle proceeds only over a fixed 

fraction K of the local grid spacing xs, so that: 
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Here the velocity development during tp shall be approximated with 1st order 

accuracy (linear development). Therefore the mean particle velocity pu  is: 
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In combination with Equ.251 and Equ.254, Equ.253 then yields: 
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Hence the spatially bounded, event-force adapted time step can be calculated 

as: 
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Via a reduction of p,EF, the force effect leads to shorter time steps. The shorter 

the given particle path during each iteration, the smaller tp will be. Note that 

varying time steps must not reduce the overall change of momentum due to the 

acting forces. This means that the shorter the time steps become, the more 

iterations will have to pass with Fi fully acting on the particle. This fact has to be 

taken into account for the spatially and the temporally bounded time stepping 

scheme alike. 

5.5.1.2 The Temporally Bounded, Event-Force-Adapted Time Stepping 
Scheme 

Compared to the spatially bounded scheme, the temporally bounded scheme is 

comparatively simple, once p,EF is calculated via Equ.252. The spatially bounded 

scheme causes the particle to progress for equal amounts of distance during 

each time step. In contrast to that, the temporally bounded scheme calculates 

each time step as a fraction K of p,EF: 

K
t EFp
p

,τ
=Δ       (257) 

This means that, the higher Fi is, the smaller tp will be. In direct comparison to 

the spatial scheme this method turned out to be faster, simpler and just as 

accurate. Therefore it has been used for further work and will be referred to as 

the event-force-adapted time stepping scheme. 

5.5.1.3 Event-Force-Adapted Time Stepping Scheme versus static time 
stepping 

A thorough analysis concerning the impacts of the utilization of the event force 

adapted time stepping as compared to ordinary, static time stepping has been 

conducted. Thereby it has been assumed that a large, spherical particle with 

Dsph=0.001m, p=2800 kg/m³ speeds up under the influence of a viscous fluid 

stream with varying f and uf=0.4m/s. Local fluid grid spacing is s=10-4m. Right 

at take-off the particle gets hit by the event force Fe, which acts during static 
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particle sub-time step tp,static=7,78*10-3s and causes a momentum input of 

I=Fe* tp,static. The speed-up and fluid-dampening effects have been investigated 

for both time stepping schemes. Figure 83 shows a comparison of the two 

resulting velocity curves. A definite difference in resulting, maximum velocity 

up,max (which occurs directly after momentum input) can be observed. The 

adaptive time stepping scheme gives a much higher resolution of the interval 

during which Fe acts. Consequentially the fluid-damping effect is calculated more 

accurately. 

Figure 83: Comparison of exemplary, spherical particle velocity curves calculated 
for same physical conditions with static and event-force-adapted time stepping 
scheme. Conditions: p,0=0.0078s, f=0.002Pas, I=6*10-6.kgm/s. 

If the case shown in Figure 83 is altered by varying, the fluid viscosity then the 

static, spherical relaxation time p,0, changes along with it. In addition to that

up,max does not remain constant either, so that Figure 84a and Figure 84b can 

be produced. The two Figures present plots of up,max and up,max /up,max,static 

respectively. They clearly show that, the smaller p,0 becomes the more 

necessary the adaptive time scheme will be. The reason for that is obvious: 
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Small p,0 means a smaller inertia-to-viscous-force ratio. Static time stepping 

means neglecting the fluid viscous force influence. Neglecting the viscous 

damping effect where viscous forces dominate, proves fatal. On the other hand 

the results make clear that for p,0  the two curves converge to 1.0 and the 

relative deviation tends to zero.

Figure 84a: Plot of up,max  against log( p,0) for the case of I=6*10-6 kgm/s. 
Comparison of static time stepping scheme (blue) and adapted time stepping 
scheme (pink). At smaller p,0 the static scheme overestimates particle velocity 
development more dramatically. 
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Figure 84b: Plot of up,max/up,max,static (being the relative difference between the 
two up,max curves shown in Figure 84a) against log( p,0) for the case of I=6*10-6 

kgm/s. At smaller p,0 the deviation between the two results explodes, whereas 
for p,0  the difference tends to zero. 

Let us now consider the same case, but for fixed f and p,0=7.78*10-2 s 

( tp,static/ p,0 = 1/10). This time the momentum input shall be varied so that: 

2.0*10-6 kgm/s I 2.0*10-5kgm/s. If no fluid effects were present at all, this would 

amount to maximal, unhindered particle velocities between: 

1.36m/s up,max,unhindered 13.64m/s. The results of up,max and up,max/up,max,adaptive 

against up,max,unhindered are shown in Figure 85 and Figure 86 respectively. Even 

though the absolute result deviation increases for higher I, the relative 

difference declines until it reaches a steady, asymptotic value. This is due to the 

following facts: 

• The fluid has a decelerating impact on the particle as soon as 

up>uf=0.4m/s. 

• The viscous fluid damping effect is proportional to: (uf-up)/ p,0. 
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• During Fe impact (0 t< tp,static), up increases linearly with each adaptive 

time step tp,adaptive. Thus the mean, fluid damping effect during each time 

step of force impact phase in the adaptive scheme is proportional to (uf-

1/2*up,max)/ p,0.  

• The chosen amount of Fe, which acts per time step e.g. during tp,static

relates to the maximum, unhindered outcome velocity as: 
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•  up,max,static is in essence equal to up,max,unhindered with the difference that 

during tp,static the fluid still has an accelerating effect on the particle 

because up is calculated as zero as long as tp,static lasts. So up,max,static is 

actually a bit larger than up,max,unhindered (see also Figure 85). 

• The relative difference between static and adaptive solution can be 

described as: 
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• For up,max,unhindered  this expression converges to a constant: 
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This result states that, the larger the chosen static time step compared to 

the particle relaxation time, the larger the relative difference between static 

and adaptive time stepping scheme will be, as I increases. 

• For the given example tp,static/ p,0 = 1/10, thus up,max/up,max,adaptive 

converges to: 0.05 just as seen in Figure 86. 

Figure 85: Plot of up,max against up,max,unhindered for the case of p,0=7.78*10-2 s.  
Comparison of static time stepping scheme (blue) and adaptive time stepping 
scheme (purple). The behaviour of both solutions is strictly linear and the 
absolute difference increases for higher up,max,unhindered (higher momentum input). 
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Figure 86: Plot of up,max/up,max,adaptive (being the relative difference between the 
two up,max curves shown in Figure 85) against up,max,unhindered for the case of 

p,0=7.78*10-2s and tp,static=7.78*10-3s. The relative deviation converges against 
tp,static/2* p,0 =0.05 according to Equ.261. 

Due to the specific programming structure of the code, both particle solvers use 

an explicit Euler discretization scheme to handle the particle momentum 

equation. The major draw back of this choice is that numerical instabilities occur 

more readily than with other discretization schemes such as the Runga Kutta 

method. In this chapter of the thesis the case of a (non-) spherical particle 

speeding up in an otherwise uniform, laminar flow field was chosen to describe, 

study and finally eliminate the encountered numerical instabilities. 

The speed up behaviour of spherical and especially non–spherical particles was 

inspected in detail, and the necessity to consider particle shape deviations from 

spherical shape was pointed out again.  
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By identifying the parameter tp/ p as single most decisive factor for the 

occurrence of instabilities, the complexity of the problem was dramatically 

reduced. Particle and fluid properties, as well as fluid conditions can be 

expressed by p.  

In addition to that a descriptive formulation for the instabilities was found, which 

accurately describes the problem. 

A method to quantify the numerical stability of each speed up run was set up by 

comparing numerically calculated speed up curves to analytically obtained ones. 

By producing plots of relative, medium standard velocity deviations, against tp/ p, 

a simple, linear dependence for low tp/ p values was encountered. Thus, by 

carefully eliminating any possible parameters of influence on the final result, a 

simple, linear rel - tp/ p relation could be defined which holds for any set of fluid 

and particle properties, as well as fluid conditions. This relation enables the user 

to choose a measure of accuracy (in terms of rel) for the simulation run. Out of 

this choice, the appropriate particle sub time step (the number of particle 

Subcycles per fluid time step) for each, individual particle, immersed in any local 

fluid field can be calculated. An adaptive particle time stepping scheme to 

eliminate instabilities due to explicit Euler implementation could thus be 

presented. In extension of this original, drag force based time stepping scheme 

an event-force based scheme was introduced as well. It considers not only drag 

but all instantaneous forces on the particle and ensures either spatially or 

temporally bounded proceeding of the particle.  
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One major advantage of the particle code is that it can easily be extended by 

sub-modules, in order to extend its overall ability. Any sub-module can be 

switched on or off on a user-defined basis. Up until now, two larger, additional 

modules have been created for practical application. They shall hereby be 

introduced in brief: 

• The Bacteria Module 

• The Electro Static (E-Static) Module 

6.1 The Bacteria Module 

The bacteria module has been designed to get a qualitative impression of the 

settling, deposition and distribution behaviour of Epiterial bacteria [74] in porous 

media. The real-life bacteria are reported to be about spherical as long as they 

are immersed in the carrier fluid. As soon as they touch the surface of solid 

objects however, they change their shape by deforming perpendicular to the fibre 

surface normal nw. The spheroid bacteria are thus transformed to small plates 

which stick to the surface. The deposition situation is sketched out in Figure 87. 

To achieve a plausible simulation of the hydrodynamically governed bacteria 

deposition, settling and deformation process, the (non-)spherical particle solver 

had to be slightly extended:  

At particle-fibre impact, the particle coordinate system is rotated such that ey=nw. 

Then the length of half-axe b0 is altered by the user-defined factor kt so that b1= 

kt*b0 with 0< kt 1.0. The new half axes length a1 and c1 are set to be a1=c1 and 

are calculated via mass conservation as: 

tk
ca

ca 00
11 ==    (262) 
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Figure 87: Sketch of the deposition and deformation situation of Epiterial bacteria 
on solid fibre surface. 

Figure 88 shows a simplified fibre geometry with a bacteria-laden fluid passing 

by. As the spherical bacteria impact on the fibre, they change from being balls 

towards being small plates, which are usually immobilized at the position of 

impact. This simple benchmark case already gives an impression of the solver’s 

capability to provide an idea about the deposition and distribution behaviour of 

bacteria in any geometry of fibrous or porous media. Accordingly Figure 89 

shows a screenshot of a more realistic benchmark case where the bacterial 

deposition has been simulated within a realistically reconstructed micro-fibre 

geometry. 



177

Figure 88: Screenshot of simulation run in simplified fibre geometry. Spherical 
bacteria, immersed in a watery fluid come in (1.), hit the fibres, deform and settle 
there (2.). 

Figure 89: Screenshot of simulation run in realistic, microscopic fibre geometry. 
Spherical bacteria, immersed in a watery fluid come in (before) hit the fibres, 
deform and settle there (after). 
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6.2 The E-Static Module 

The E-Static module has been designed to consider the influence of electro-static 

effects on particle motion and on filter fibre deposition behaviour. This model 

extension is supposed to move the filtration solver away from being a mere fluid-

filtration-tool towards being applicable for air-filtration (where electrical effects are 

reported to be significant) simulation as well.  

The E-Static module is essentially a simplified version of a full Maxwell equation 

[75] solver. Its physical framework has been derived by reducing the Maxwell 

equations to their stationary form [76]. In this case electro-magnetism can be 

neglected, thus Ampere’s law and Gauss’s law for magnetic fields become 

irrelevant. The remaining, governing equations are simplified formulations of 

Faraday’s law of induction and Gauss’s law for electric fields. 

The generalized form of Faraday’s law of induction gives the connection between 

electric field strength E and temporal flux of a local magnetic field B and reads 

[77]: 

⋅⋅−=⋅
C A

A dAnB
dt
dsdE  (263) 

Here s denotes the path along a closed curve C which encloses the area A with 

local normal vector nA. The integral form of the corresponding static version of 

Faraday’s law is: 

=⋅
C

sdE 0    (264) 

Its differential form can be obtained by applying Stokes’ theorem [78] so that: 

0=×∇ E    (265) 
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Due to Equ.265 the electrical field can be expressed via a scalar potential field 

. 

Ψ−∇=E    (266) 

Furthermore Gauss’s law concerning electric fields states that the electric flux 

through any closed surface A enclosing the volume V, is directly proportional to 

the total amount of enclosed, electric charge Qenclosed [75]. The law can be written 

as: 

=⋅=⋅⋅
A V

enclosedQ
dVdAnE

εε
ρ

  (267) 

Where  is the specific, spatial charge and  is the electric permittivity-constant of 

the medium. The corresponding, differential form can be obtained by applying 

Gauss' theorem [80] so that: 

ε
ρ=∇E    (268) 

Inserting Equ.266 into Equ.268, a Poisson equation, is reached. It describes the 

distribution of the potential field within the vicinity of the solution domain: 

( )
ε
ρ−=ΔΨ=Ψ⋅∇∇    (269) 

The E-Static module allows the user to position positive or negative, specific 

charges  on arbitrary positions within the domain (e.g. static charges on fibres 

and moving charges on particles) and calculates the corresponding potential field 

according to the numerically implemented version of Equ.269 for each time step. 
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Then the vectorial, electric field is calculated via Equ.266 and the specific, 

electric force Felectric, which acts on each particle, can be obtained [79]: 

EQF pelectric ⋅=   (270) 

Here Qp is the total, electrical charge of the particle. 

Figure 90 shows a qualitative example of solver functionality. It is a screenshot of 

a benchmark case, where two oppositely charged particles have been inserted 

with zero initial velocity into an otherwise unbounded fluid domain. The Figure 

shows the distribution of the -field, its iso-lines, the vector plot of the resulting 

E-field and the initiated movement due to electrical attraction of the two particles. 

A second example is shown in Figure 91, where two positively charged particles 

are placed within the vicinity of a simple, negatively charged fibre. The particles 

are clearly attracted by the fibre and stick to it. Development of the -field and of 

the E-field is shown too. 
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Figure 90: Four consequential screenshots from qualitative benchmark case, 
including two oppositely charged particles in an otherwise unbounded fluid 
domain. View from above (left) shows the vectorial E-field as well as the iso-lines 
from the -field. View from the side (right) shows the 3D, -field, dominated by 
particle charges. 
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Figure 91: Three consequential screenshots from qualitative benchmark case 
including two positively charged particles and one negatively charged fibre. 
Background coloration insinuates -field and the vector field gives the resulting, 
E-field. 
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 Workflow, C++ Program Structure and How to Use the 
Solver  

This chapter gives an overview of the entire workflow from computer-

tomographically scanning fibre samples to examining the final results of the CFD 

calculation. In addition to that, the workflow process behind the particle 

simulation is resolved in more detail. Thereafter the underlying C++ program 

structure is depicted as an inheritance diagram and the functionalities of 

essential program entities are listed. Finally all particle-code specific input 

dictionary parameters, which are crucial for the user to apply the solver, are laid 

out. 

7.1 Overall Workflow 

Figure 92 gives an overview of the entire workflow behind the filter fibre 

reconstruction and simulation project. The whole procedure comprises three 

main phases: 

• Meshing and Pre-processing: CT-scan data is gathered from real-life fibre 

samples. A Digital Fibre Reconstruction utility digitalizes the CT-scan data, 

reconstructs a 3D image of the fibre structure and yields a structured grid 

mesh, suitable for OpenFOAM®. Then the user defines the physical 

starting and boundary conditions within the OpenFOAM® dictionaries. 

• Processing: The flow field is calculated either in combination with the fibre-

deformation phenomena (based on the FSI solver) and/or in combination 

with depositing dirt particles (based on the hereby presented particle 

solver). At the end of each time step the results are streamed out as text 

files. 

• Post-processing: If necessary, the text file based data is processed by 

self-programmed Python® utilities [28] in order to extract information, such 
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as filter fibre efficiency, particle penetration depth or kinetic particle 

energy. Compact, numerical results can thus be obtained. A conversion to 

the VTK file format [71] enables the full, 3D visualization of the simulation 

run using ParaView [72]. A Python® based visual filter has been 

programmed to enable the non-standard visualization of non-spherical 

particles. 
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Figure 92: Activity diagram of total workflow, parted into pre-processing, 
processing and post-processing. Entities, colored in grey have been created 
through intense development effort in the course of the development project but 
are not discussed in detail in this work. Entities colored in orange are at the 
centre of attention of this thesis and are resolved in more detail in Figure 93. 
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7.2 Workflow for the Dirt Particle and Deposition Solvers 

The workflow of the fluid calculation, in combination with the spherical or non-

spherical solver shall hereby be depicted in more detail. Figure 93 contains the 

corresponding activity diagram. The following procedure is basically carried out 

during each time step: 

• Decision whether or not two way coupling is to be initiated: If negative, the 

Free Flow Drag module becomes active, no deposition field is considered 

and the Navier Stokes equations are solved without the addition of a 

Darcy term. If positive, the Fibre Vicinity Drag module becomes active, the 

deposition field is considered and the Navier Stokes equations are solved 

with the addition of a Darcy term.  

• Decision whether or not the E-Static module (see chapter 6.2) is to be 

initiated: Only if the Fibre Vicinity Drag module is active, the solver can 

switch to the E-Static module. If it is active then the distribution of a 

electric potential field is calculated within the spatial domain. 

• Decision whether or not particles are to be injected at the current time 

step. 

• Decision whether the spherical or the non-spherical solver is to be chosen: 

If particles are injected, the decision whether they are supposed to be 

spherical or non-spherical is made. Both particle solvers use the same 

basic structure: 

- Particle construction. 

- Particle movement during the particle time sub-cycles. 

- Decision whether or not the depot field is to be populated at  

particle positions. 
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• Output of particle-related data: 

- Position 

- Velocity vector 

- Rotation vector 

- Axe-Orientation vectors 

- Half axis diameters 

- Mass 

- Help point positions 

- Particle ID 

- Electric, particle load 

- Variable for current particle state 

• Output of fluid/continuum-related data: 

- Fluid velocity field 

- Fluid pressure field 

- Particle momentum source field 

- Deposition field 

- Electro-static potential field 

- Electrical force field 



188

Figure 93: Activity diagram showing workflow of the fluid-particle simulation. 
Entities colored in orange are resolved in more detail in Figure 94. 

7.3 Workflow for Particle Movement Calculation 

By far the most intense development effort has been invested into the accurate 

particle movement and interaction calculation. A detailed workflow structure of 
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the particle-movement method (non)sphericalHardballParticle::move() is depicted 

in Figure 94. It comprises essential steps like: 

• Calculation of Help Point positions. 

• Probing of the Help Points’ projected path in order to detect obstacles. 

• Detection of boundary patch impacts. If an impact occurs the decision 

between wall- or fibre- boundary patch is made and corresponding forces 

and/or moments are calculated. 

• Conduction of actual particle movement. 

• Calculation of gravity force. 

• Calculation of fluid-particle interaction forces and/or moments. 

• Detection of particle-particle collisions and calculation of corresponding 

force/moment effects. 

• Calculation of total force/moment effects. 

• Calculation of new translational and rotational velocity. 

• Population of particle collision list for particle-particle collision model. 

• Population of deposition field for fibre-vicinity drag model and/or E-static 

model. 
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Figure 94: Activity diagram showing workflow of the particle movement algorithm. 
Entities colored in grey are individual force/moment contributions. 
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7.4 Inheritance Structure and Basic Functionality of Solver-
Relevant C++ Classes 

The software development included the creation and/or modification of several 

C++ classes [42], embedded within the OpenFOAM® programming framework.  

In the following those entities are cited and their basic functionality is described in 

brief. 

• icoLagrangianFOAM.C:  

Location of main solver, fluid calculation, including finite volume matrix  

set-up, as well as PISO loop [73] and the main time loop. 

• IncompressibleCloud.C, IncompressibleCloudI.C, IncompressibleCloudIO.C:  

Embodiment of the entire particle cloud. Injects and removes particles  

and stores data concerning the particle collective, such as the particle 

collision list. 

• nonSphericalHardballParticle.C, nonSphericalHardballParticleI.C, non-

SphericalHardballParticleIO.C: 

Store data, calculate interaction forces and handle movement of individual 

(non-)spherical particles. Core classes of advanced solver. 

• sphericalHardballParticle.C, sphericalHardballParticleI.C, spherical-

HardballParticleIO.C: 

Store data, calculate interaction forces and handle movement of individual 

spherical particles. Core classes of original solver. 

• cloudDelegate.C, newCloudDelegate.C, sphericalCloudDelegate.C, non-

sphericalCloudDelegate.C: 

Distinguish between the original spherical- and the more highly developed 

(non-)spherical particle solver. 
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• Cloud.C, CloudI.C, CloudIO.C: Template class for IncompressibleCloud.C. 

Includes several, important methods which help to track the particles through 

the fibre domain. 

• Particle.C, ParticleI.C, ParticleIO.C: Template class for spherical-

HardballParticle.C and nonSphericalHardballParticle.C. 

The complex relation and the sharing of abilities between those classes, as well 

as their embeddement within the superior OpenFOAM® programming framework 

is best shown via an inheritance diagram which is depicted in Figure 95. 
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Figure 95: Inheritance diagram of C++ based, (non-)spherical particle solver. The 
dashed red lines separate the self-designed or modified solver classes from the 
standard OpenFOAM® program framework. 
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7.5 User Options and Dictionary  

All decisive parameters for defining particle behaviour within their surroundings 

and amongst each other are specified within the cloudProperties dictionary, 

which is a sub-dictionary of the case-specific constant dictionary. Figures 96 

through 100 show outtakes of the cloudProperties dictionary with some arbitrary 

input parameters. The input file is parted into several sub-sections which define 

categories of particle behaviour. 

• Sub-section injection, shown in Figure 96. It defines location, distribution and 

time-span of particle injection. The following parameters can be specified here: 

- SingleParticles: type Boolean, values 0/1; States whether a single, 

accurately positioned test particle is injected (0) or whether a particle 

cloud with defined distribution is injected over a period of time (1). 

- Thres, G0: type scalar; Defines frequency and order of magnitude of 

particle number to inject. 

- tStart, tEnd: type scalar, values “0.0 - maximum runtime”; Define the 

period of injection time. 

- Centre: type vector, values “within domain”; Defines centre of particle 

injection. 

- Xmax, Ymax, Zmax: type scalar; Define absolute, maximum deviation 

of injection coordinates around injection centre. 

- particleEx, particleEy, particleEz: type vector; Define basic orientation 

of particle main axes a, b, c at injection. 

- Alpha: type scalar; Defines maximal orientation deviation around basic 

injection orientation. 

- vel1, rot1: type vector; Define velocity and rotation at injection. 

- d0: type scalar; Defines basic particle diameter; 

- d1: type scalar; Defines maximum axis deviation around basic particle 

diameter; 
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- RatioAB, RatioAC: type scalar; If not zero they define fixed, half axis 

ratios, overruling d1. 

- HelpPointD: type scalar; Defines diameter of help points. Only relevant 

for visualization. 

Figure 96: Outtake of cloudProperties dictionary. Sub-section injection. 

• Sub-section wall, shown in Figure 97. It defines particle-wall and particle-fibre 

interaction. The following parameters can be specified here: 

- reflect: type int, values 0, 1, 2; States whether a particle disappears 

(0), is reflected semi-elastically (1) or is reflected 100% elastically (2) 

at wall boundary patch impact.  

- elasticity: type scalar, values 0.0-1.0; Defines wall impact elasticity if 

reflect=1. 
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- ActivateFibre: type Boolean, values 0/1; States whether the fibre 

shows adhesion to the particles (1) or not (0). 

- StickDiameter: type scalar. Defines particle diameter below which 

particles that hit a sticking fibre (ActivateFibre=1) stop at the surface. 

- Stickvelocity: type scalar; Defines magnitude of velocity below which 

particles in contact with a fibre immediately stop at the surface. 

- StickSlope: type scalar; Defines the shape of a Gaussian probability 

distribution deciding whether particles with larger diameter than 

StickDiameter stop at the fibre surface. 

- FullStop: type Boolean, values 1/0; States whether a full stop due to 

adhesional sticking is allowed (1) or not (0). 

- FibreVicinityModule: type Boolean, values 1/0; States whether the 

Fibre Vicinity module (see chapter 4.2.6) is active at all times  (1)  or 

whether the Free Flow module (see chapter 4.2.5)  is active to start 

with and the Fibre Vicinity module becomes active if a particle 

decelerates below PluggingVelocity within fibre vicinity (0). 

- PluggingVelocity: type scalar; Defines the switching velocity between 

Fibre Vicinity module and Free Flow module if FibreVicinityModule=0;

• Sub-section interpolationSchemes, shown in Figure 97. It defines the 

interpolation methods for interpolating field cell values to arbitrary coordinate-

based values. The following parameters can be specified here: 

- U: Interpolation scheme for velocity field. For options see [39]. 

- p: Interpolation scheme for pressure field. For options see [39]. 

- Eforce: Interpolation scheme for electrical force field. For options see 

[39]. 

• Sub-section general, shown in Figure 97. It defines special physical and 

numerical properties of the solution which overrule those in other solver 

directories. The following parameters can be specified here: 
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- g: type vector; Defines gravity vector. 

- eta: type scalar; Defines kinematic fluid viscosity. 

- rhop: type scalar; Defines ratio of particle density to the density of 

water. 

- rhof: type scalar; Defines ratio of fluid density to the density of water. 

- SubCycles: type scalar; Defines number of particle sub-time steps per 

fluid time step. If set to zero, the adaptive time stepping scheme (see 

chapter 5) is activated. 

Figure 97: Outtake of cloudProperties dictionary. Sub-sections 
interpolationSchemes, general and wall. 

• Sub-section particle, shown in Figure 98. It governs the activation of sub 
models. Particle-fluid interaction characteristics and particle-particle 
interaction. The following parameters can be specified here: 

- BakteriaModel: type Boolean, values 0/1; States whether the particles 
behave as Epiterial bacteria (1) or as solid objects (0) at fibre impact. 
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- EStaticModel: type Boolean, values 0/1; Activates (1) or deactivates 
(0) the E-Static module (see chapter 6.2). 

- EStaticParticleLoad: type scalar; Defines the volume specific particle 
charge if EstaticModule=1. 

- PreDepositionModel: type Boolean, values 0/1; Activates (1) or 
deactivates (0) the Pre-Deposition model which assumes a certain, 
immobilized particle distribution to be already present at the beginning 
of the simulation run. 

- PreDepositionDiameter: type scalar; Defines the diameter of the pre-
deposited particles if PreDepositionModel=1.

- ForceTestModel: type Boolean, values 0/1; Activates (1) or deactivates 
(0) the Force Test Model which injects one particle,  permanently sets 
its velocity to zero and plots the fluid-particle drag- and lift forces that 
start to act on the particle in a stream. 

- ShearDistance: type scalar; Defines the distance between particle 
surface and fluid velocity sample positions to calculate fluid-particle 
forces. Parameter is given in percentile fraction of half axis a. Valid 
only for activated Fibre Vicinity module. 

- DragAreaCorrection: type Boolean, values 1/0; Activates (1) or 
deactivates (0) the surface area correction from actual, numerical 
particle surface to smooth, ellipsoid surface area. For fluid-particle 
force calculation. 

- DragStokesSpherical: type Boolean, values 1/0; Activates (1) or 
deactivates (0) the simple Stokes drag law for fluid-particle force 
calculation. 

- DragSommerfeldNoNSpherical: type Boolean, values 1/0; Activates (1) 
or deactivates (0) the Hölzer-Sommerfeld [24] drag law for fluid-particle 
force calculation. 

- CollisionModel: type int, values 0, 1, 2; States whether particles shall 
not recognize each other at all (0), shall only recognize each other 
within the fibre vicinity (1) or shall recognize each other at all times (2). 

- ECollision: type scalar, values 0.0-1.0; Defines the elasticity of particle-
particle impact, where Ecollision=0.0 means 100% plastic impact and 
Ecollision=1.0 means 100% elastic impact.  

- EFriction: type scalar, values 0.0-1.0;  Defines the extent of particle-
particle friction forces, where EFriction=0.0 means no friction at all and 
EFriction=1.0 means total stop of relative, horizontal particle movement 
at impact point. 

- MeltingBlockFactor: type scalar; Defines the strength of an auxiliary 
force which prevents particles from melting into each other. Activation 
advisable in the case of dense particle accumulations. 

- VelocityBlocker: type scalar, values 0.0-1.0; Defines the strength of an 
additional particle-particle, translational impact velocity blocker to 
reduce translational, kinetic energy of a particle collective. Activation 
advisable in the case of dense particle accumulations. 
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- RotationBlocker: type scalar, values 0.0-1.0; Defines the strength of an 
additional particle-particle, rotational impact velocity blocker to reduce 
rotational, kinetic energy of a particle collective. Activation advisable in 
the case of dense particle accumulations. 

- ECollisionTransfer: type scalar, values 0.0-1.0; Defines the extent of 
force transfer within a particle collective. If  EcollisionTransfer>0 the 
particle-particle impact force is calculated not only on the basis of 
relative movement but also in dependence of other, external forces 
acting on the collision partners (see chapter 4.2.7.3). Activation 
advisable in the case of dense particle accumulations. 

Figure 98: Outtake of cloudProperties dictionary. Sub-sections particle. 

7.6 The Graphical User Interface 

The final version of the unified filtration solver will be equipped with an easy-to-
use, graphical interface. This surface feature is supposed to direct the user 
through the entire process of fibre reconstruction, OpenFOAM® based FSI 
and/or dirt particle and deposition calculation as well as result evaluation. 
Furthermore it will enable the data transfer to an interlinked data-base where 
static and dynamic material properties can be stored. Figure 99 presents an 
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overview of the main program modules e.g. the working steps and their relation 
within the workflow. 

Figure 99: Sketch of the basic structure of the graphical user interface as it 
interlinks program modules according to the user workflow. Blue tags symbolize 
data in or output. Dashed blue arrows symbolize data flow. Red tags symbolize 
program modules e.g. working steps and red arrows symbolize the user 
workflow. 
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In order to assure the validity of any simulation, qualitative and quantitative 

verification is imperative. This chapter is dedicated to prove qualitative solver 

functionality and to present quantitative evidence of result correctness. The 

simulation is hereby compared to a thoroughly constructed, semi-analytical 

verification scheme, to data from literature and to extensive experimental runs. In 

the given case, verification can only be based on comparison of statistically 

averaged results. Crucial process parameters such as pressure drop, filter fibre 

efficiency and particle penetration depth are the key to comparing calculations 

and experiment. 

8.1 Semi-Analytical Verification Scheme for Simplified 
Geometries 

A first, important step in validating qualitative aspects of solver functionality can 

be taken by comparing CFD calculations and semi-analytical results for artificially 

created, simplified fibre geometries. The process parameter to be chosen for 

benchmarking is filter fibre efficiency E. It is defined by: 

Ei= ns,i/ni     (271) 

Here Ei is the fractional filter fibre efficiency of size class i, ni is the total number 

of dirt particles per size class i and ns,i is the number of dirt particles retained by 

the filter. Note that throughout this work the filter fibre efficiency is defined by 

filter impact on monodisperse particle fractions. All conducted numerical 

calculations, experiments and evaluations take this definition into account. 

8.1.1 Simplified Geometry 
In order to be able to establish a well defined, semi-analytically derived filter fibre 

efficiency curve over the entire, relevant regime of particle sizes (2 m-100 m), a 

simplified fibre geometry has to be created. The main reasons for that are: 
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• Reduction of complexity to allow focus on main qualitative aspects of the  

solution. 

• Lower computational cost for various test runs.  

• Simpler determination of basic geometric parameters than with realistic 

geometries. Geometric parameters with relevance for the calculation are: 

-  Frontal, free flow area due to pores, Apores  

 - Number of frontal, free flow channels, in other words: number of  

projected pores, npores

- Pore size distribution: medium pore diameter (MPD) Dpores of 

projected, free flow area per pore, standard deviation around MPD, 

pores  

 - Medium fibre diameter Dfibre 

Figure 100 shows an exemplary, simplified, 30.000 cell, fibre geometry, where all 

relevant geometric parameters are easily determinable. 



203

Figure 100: Exemplary image of simplified fibre geometry. Easy determination of 
geometric parameters Apores, npores, Dpores, pores, Dfibre. 

8.1.2 Semi-Analytical Approach 
Obviously the set up of a semi-analytical model for filter fibre efficiency 

calculation requires the consideration of all physically relevant filtration effects. 

Since Knudsen numbers are well below 0.015, fluid continuum conditions are 

predominant and Navier Stokes equations are valid. 

The influence of diffusive motion on particle movement can be neglected as well, 

since Péclet numbers are relatively high (Pe>5*107). Therefore the main filtration 

effects to be considered over a dirt particle size-range of 2 m-100 m and 

particle Reynolds numbers Rep<1 are: 

• Inertial impact 

• Particle–fibre adhesion 

• Blow-off due to particle momentum or interactions 
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• Sieving  

It should be noted that Banzhaf [70] concludes that inertial impact is negligible for 

fluid filtration because the prevailing Stokes numbers (1*10-9 St 2*10-3, ) are too 

low. The presented simulation model might very well yield the same result, it is 

however, set up in order not to exclude the possibility of inertial impact apriori. 

Based on the consideration of the filtration effects, cited above, the total particle 

deposition probability PDep of any particle (which is equivalent to E) can be 

calculated as a function of various “single effect” deposition contributions (see 

Equ.272). Hereby the inertial impact contribution is described by the hitting 

channel probability PHCh and by the inertial impact probability PStokes which is 

quantified via St (see Equ.274). The particle–fibre adhesion as well as blow-off

effects can be considered via the particle sticking probability PStick. Sieving 

contributions to overall filter fibre efficiency are finally quantified over the pore 

size dependent, flow path blocking probability PBlock. 

( ) BlockStickStokesHChStickStokesHChDep PPPPPPPP −+= 1   (272) 

Inertial Impact Effects

In order for any particle to impact on a fibre surface, two conditions will have to 

be satisfied. The first condition states that the trajectory of the particle must 

define a particle-fibre collision course. The second condition is about the particle-

fibre Stokes number. It states that inertial contributions must outweigh viscous 

force contributions within the PME, so that the particle will not follow the 

streamlines around the fibre, but will break out and collide with the obstacle. 

In the context of this work a particle is defined to be on collision course with a 

fibre as long as at least the fraction n of Dsph overlaps with a part of the projected, 

cross-sectional, fibre-covered area AFibre of the entire flow channel AFCh. With 

knowledge of the projected, cross-sectional, free flow area due to pores APores
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and the number of pores nPores, the hitting channel probability can be calculated 

as: 

FCh

poresporessphfibre
HCh A

nAnDA
P

π⋅⋅⋅−⋅+
=

)2/1(
     (273) 

Even if a particle is on collision course, impact is still not assured due to fluid 

deviation around the fibre. Larger particle inertia increases the likelihood of 

impacting anyway. The inertial impact probability PStokes can be characterized via 

the Stokes number, which gives a dimension-less relation between inertial and 

viscous forces on the particle: 

kf

relsphp

D
uD
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μ

ρ
⋅

=
18

2

    (274) 

Here Dk stands for the diameter of the collector, which in our case is the average 

fibre diameter Dfibre. 

The minimal, critical particle-fibre Stokes number Stmin is defined as the level 

below which any particle, even though on collision course, is deviated around the 

fibre (see Figure 101). The maximum, critical Stokes number Stmax, on the other 

hand, is hereby defined as the level above which any particle, whose course 

overlaps with at least the fraction n of Dsph with a fibre-covered area, impacts on 

the fibre structure (see Figure 100). 

FIBRE

uf

Streamline

Dfibre

Stmin

Dsph,min
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Figure 101: Definition of Stmin. The largest particle on direct collision course that 
just passes by the fibre without hitting, defines Stmin. 

FIBREuf

Streamline

Dfibre

Stmax

Dsph,max

n*Dsph,max

Impact

Figure 102: Definition of Stmax. The smallest particle that just collides with the 
fibre, even though its collision course is just such that the nth fraction of Dsph
overlaps with a fibre, defines Stmax. 

Using those definitions, the inertial impact probability is in this work calculated as: 

minmax

min)(
StSt
StDSt

P sph
Stokes −

−
=     (275) 

In order to obtain values for Stmin and Stmax a simple, numerical simulation, where 

particles are set on a collision course with fibres of diameter Dfibre is used 

(equivalent to sketches in Figure 99 and Figure 100). The parameter n is set to 

1.0%. The overall hitting probability Phit can now be semi-analytically determined 

and is: 

StokesHChHit PPP =     (276) 

For “small” particles with Dsph < Dstop, the hitting probability is equivalent to the 

deposition probability. For “larger” particles with Dsph > Dstop, other effects have to 

be taken into account as well. 

Particle–Fibre Adhesion and Blow-Off due to Particle Momentum or Interactions
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The user-definable, adhesional deposition probability for “medium sized“ particles 

with Dstop  Dsph  Dsiev is deeply incorporated into the force interaction scheme of 

the CFD solver (see chapter 4.2.7.2). For the sake of semi-analytical verification 

of solver functionality, the underlying PDDF for the particle-adhesional sticking 

probability Pstick is chosen. The same parameters (Dstop, d) that are used in the 

CFD run are inserted, thus Pstick is calculated as: 

( )
2

2

2

2
1

d

stopsph DD

d
stick eP σ

πσ

−
−

=   (277) 

Sieving due to Pore Sizes

For “large” particles with Dsph>Dsiev the sieving effect is the most relevant reason 

for deposition. It is simply based upon the relation of particle diameter to pore 

size distribution pores. Underlying a Gauss-Normal distribution [30] of pore sizes, 

and using the geometric parameters medium pore size pores and standard 

deviation pores, the distribution function pores is given by: 
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The cumulative pore size distribution function is equivalent to the flow path 

blocking probability PBlock that can be calculated by use of the error-function erf:  
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 (279) 

Comparing CFD and Analytical Results
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By using Equ.272 through Equ.279, the whole semi-analytical approach to 

describe the particle deposition probability within a simplified fibre geometry can 

be summarized by: 

( )( )
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By inserting corresponding material, and geometric parameters into Equ.280, 

and into the input dictionaries of the CFD model, two comparable filter fibre 

efficiency curves are obtained. The results of the comparison are shown in 

Figure 103. Semi-analytical results and CFD results match qualitatively and 

quantitatively. A verification of qualitative solver functionality is hereby 

considered to be achieved. 

Figure 103: Comparison of filter fibre efficiency results for semi-analytical 
calculation (red) according to Equ.280 and for CFD results (blue) using the non-
spherical particle solver. The underlying, simplified geometry is depicted in 
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Figure 100. Conditions: f=800kg/m³, f=0.002Pas, p=1500kg/m³, uf=0.02m/s, 
5 m Dsph 150 m. 

A second method to verify simulation results is to retrieve comparable data from 

literature. Here results, published by Banzhaf [70], are used to achieve that. In 

his PhD thesis Banzhaf derives a semi-analytical model to predict fluid-fibre 

deposition efficiencies in relation to mean filter fibre diameter Df and porosity f. 

He evaluates the functions for the two parameters and compares the results to a 

“typical” filter fibre medium. 

In order to produce comparable data, the digital reconstruction of a filter fibre 

medium with call sign “A43” has been used to conduct simulation runs. Even 

though the known, physical filter fibre properties (see below) match pretty well 

between the compared cases, total equivalence is not given. However, the 

results in Figure 104 clearly show that the output, yielded by the CFD model, 

ranges well within the bounds of the published, comparable data. The set-up 

behind the five E-curves shown in Figure 104 is as follows: 

Blue curve: Efficiency data derived by the CFD model. Underlying fibre material 

is A43 with Df~25 m, f~86% and filter thickness sf=1000 m.   

Red curve: Efficiency data derived from measurements according to [70]. 

Underlying fibre material is described as “typical” fluid filter with Df=30 m, f=88% 

and sf=800 m.   

Dark-orange/orange/light-orange curves: Efficiency data derived from semi-

analytical model according to [70]. Underlying, theoretical fibre materials feature  

Df=20 m/30 m/20 m, f=90%/85%/85% and sf=800 m.   
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Figure 104: Comparison of filter fibre efficiency curves. CFD model results from 
A43 featuring Df~25 m, f~86% and sf=1000 m (blue). Results from literature, 
based on experiments with “typical” filter fibre medium featuring Df=30 m, 

f=88% and sf=800 m (red). Results from literature, based on semi-empirical 
model for theoretical filter fibre media featuring Df=20 m/30 m/20 m, 

f=90%/85%/85% and sf=800 m (dark-orange/orange/light-orange).    
  

The CFD model results in Figure 104 lie well within published data on materials 

with very similar properties. Throughout the entire, relevant particle-diameter 

spectrum the measured curve (red) shows lower efficiency values than the 

calculated curve (blue). This fact does correspond with the difference in physical 

properties between the two media underlying the plots: The A43 features lower 

porosity with f~2%, smaller medium fibre diameter with Df~5 m, leading to 

smaller pore diameters and is thicker with sf=200 m, than the presented 

reference medium.
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8.3 Experimental Filter Fibre Analysis and Verification 

In parallel to the development of the CFD solver a comprehensive, experimental 

rig was devised and built. The experimental part of the work was initially intended 

to merely serve as means of verification but turned out to yield a new method for 

characterizing dirt particle distribution behaviour in any standard, fluid filter fibre 

medium. Two main devices constitute the corner stone of the experimental effort 

behind this work: 

• The oil-fibre test facility. 

• The particle distribution detection facility. 

8.3.1 The Oil-Fibre Test Facility 
The oil-fibre test facility is a fibre sample testing device designed to investigate 

the material’s reaction to an oil stream. While exposing any circular fibre sample 

of diameter Ds=2.5cm to controlled flow conditions of test-particle laden oil, the 

development of decisive process parameters can be closely monitored, stored 

and electronically processed. The parameters are: pressure drop ps, volumetric 

flow rate vs and cumulative oil volume Vs over the sample. 

The facility has been planned and constructed according to proposals within ISO 

4548-12 [82] concerning the set-up of fluid filter fibre multi-pass tests. Figure 105 

shows a comparison of the underlying test-rig process plan, proposed by ISO 

4548 and the derived, simplified version which corresponds to the oil-fibre test 

facility. 
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Figure 105: Process plan of multi-pass test rig proposed by ISO 4548-12 (left) 
opposed by process plan of simplified version (right) underlying the oil-fibre test 
facility. 

Figure 106 presents an image of the actual testing facility, opposed by the 

previously introduced construction plan, highlighting its main components 

namely: 

• Pressure Tube: 

Effective Flow Diameter: 1.5cm, max. Pressure: 6.0bar.  

• Compressor:  

Mr.Tool TurboAir®, 25/180 with pressure control valve, safety valve and two 

separated pressure chambers. Maximum operating pressure: 8.0bar. Maximum 

test pressure: 12.0bar. 

• Pressure vessel:  

Krautzberger® MDC 10l with pressure control valve, safety valve, air-pressure 

mixing facility and electro-magnetic mixing facility. Maximum operating pressure: 

6.0bar. Maximum test pressure: 8.6bar. 
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• Flow measurement device:  

Bürkert® 8071, oval wheel flow sensor. Measurement range: 0.5l/h-500l/h. 

Measurement error: 1.0% of measured value.  

• Magnetic back-pressure valve:  

Bürkert® 2833, 2/2 ways. Range of functionality: 0.0-16.0bar. 

• Pressure sensors:  

JUMO MIDAS® 401001 capacitive sensor. Measurement range: 0.0-6.0bar. 

Measurement error: 0.5% of maximal, measured value.  

• Sample holding device: 

SANTORIUS® with flow diameter 2.5cm (=diameter of filter fibre sample). 

Maximum operating pressure: 5.0bar. 

• Bus system and control software: 

PCI/USB based bus system with analog-digital converter from National 

Instruments® and LabVIEW® based control software. 
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Figure 106: Image of actual oil-fibre test facility (left), opposed by process plan 
(right). Main components are highlighted. 

Figure 107: Images of main components of test facility: 1.) compressor, 2.) 
pressure vessel, 3.) flow measurement device, 4.) magnetic valve, 5.) magnetic 
valve display, 6.) pressure sensor and 7.) sample holding device.  

Experimental Procedure:

1. The pressure vessel is charged with silicone or paraffin oil and test particles. 

Test particles are Rhodamine-B (Rh-B) marked, polymethylmethacrylate
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(PMMA) particles (see Figure 108) which show Laser Induced Fluorescence 

(LIV) under the influence of 532nm (green) light. 

Figure 108: Rh-B marked PMMA particles in oil dispersion (left) and on filter fibre 
sample (right). 

2. Pressurized air is provided by the compressor. Initially it is used to supply 

the air-pressure mixing facility at the pressure vessel. The vigorous mixing 

provides a homogenized oil-particle dispersion. After disabling the air-

pressure mixing facility, the magnetic mixing device is activated. It ensures 

smooth, continuous mixing conditions throughout the entire experiment. 

3. Pressurization of the pressure vessel up to pv=6.0bar. 

4. By-pass valve is switched and main flow valve is opened. Particle laden oil 

flows via flow measurement and flow regulation device into sample by-

pass until steady flow conditions are reached. The process is monitored 

on-line from the beginning. Results are plotted and processed via the 

LabVIEW® [83] based, graphical-user interface (see Figure 109). 
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Figure 109: Screenshot of LabVIEW® based graphical user interface of 
measurement and control software.  

5. Sample by-pass valve is switched and oil flows past sample, passing up-

stream and down-stream pressure detectors. 

6. Experiment is monitored and stopped when prescribed, cumulative oil 

amount has passed the fibre sample. 

7. Particle laden fibre sample is transferred to particle distribution detection 

facility. 

8.3.2 The Particle Distribution Detection Facility 
The Particle Distribution detection facility has been designed to determine the 

three dimensional test particle distribution in filter fibre samples coming out of the 

oil-fibre test facility. In combination with the optical evaluation algorithm (see 

chapter 8.3.3) a fully digitalized, 3D image of a 2.0mm*2.0mm*0.3mm region 

within a particle laden filter fibre sample can be obtained. The facility consists of 

three main components: 
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• Particle Image Velocimetry (PIV) camera with bellows (see Figure 110): 

LaVision ®, Image Intense. Maximal optical enhancement: 1:4.33. Resolution: 

0.77Pixel/ m. Software: DaVis 7.0®. 

                     

Figure 110: LaVision®, Image Intense, Particle Image Velocimetry camera with 
optical bellows. 

• Drive Set: Systec®, SD Standard (see Figure 111). Three degrees of 

motional freedom.  Minimal step width: 10 m. Software: Motion Basic®. 

T
Figure 111: Systec ® DriveSet SD Standard with three degrees of motional 
freedom and PIV camera placed on it. 

• Laser: New Wave Research®, Solo PIV (see Figure 112). Light frequency: 

532nm; Pulse rate: 15Hz; Pulse length 3 – 5ns. Beam width: 3mm. 
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Figure 112: New Wave Research® laser with dispersive lens. 

Measurement principle:

The experimental evaluation procedure is based upon the principle of laser 

fluorescence macroscopy [84]. An oil drenched, PMMA particle laden filter fibre 

sample is positioned in front of the camera. The camera uses minimal light 

exposition duration and the smallest f-number provided by the zoom lens. Thus 

the depth of focus is reduced to a minimum. The resulting picture will clearly 

distinguish between objects hit by the focal plane and the rest. As a 

consequence, the sharpness of the depicted objects will provide a quantifiable 

measure of distance to the focal plane.  To obtain 3D information on the particle 

distribution within a fibre, the camera’s focal plane is moved step by step through 

the relevant regions of the fibre as the camera takes series of depth images. As 

shown in Figure 113, along with a sketch of the basic measurement principle, the 

task also involves achieving a distinct, optical differentiation between particles 

and the surrounding fibre structure. Here the choice of test fluid in the oil-fibre 

test facility is decisive. The fluid is to be chosen such that an optimal match of 

indices of refraction between the oil and the fibre samples is achieved. The flow 

conditions are then adapted accordingly. A good, refractive index match leads to 

a semi-transparency of the filter fibre. Light penetration is thus enhanced. A 

second, decisive factor in highlighting the particles lies within the choice of test 

particles, in combination with the laser. When pictures are taken, the 

synchronized, 532nm laser shoots at the sample and the Rh-B marked particles 
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start fluorescing. Resulting grayscale images show hardly any sign of the fibre 

structure, but only more or less sharply depicted, glowing particles. Figure 114 

presents an exemplary picture.  

At least four arbitrary x-y test positions are chosen for each sample (see Figure 

115). At any one of the positions a series of up to 50 pictures is taken with the 

camera being moved by steps of 10 m-30 m within the z direction. 

Figure 113: Measurement principle behind the laser fluorescence macroscopy
method to determine 3D particle distribution. Focal plane (red) is moved through 
the fibre structure (blue) and particles (gray) are highlighted. 
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Figure 114: Exemplary picture of particle distribution within 2mm*2mm image 
region of filter fibre sample. Particles glow under influence of laser light. The 
closer to focal plane, the sharper the individual particle image becomes. 

Figure 115: Fibre sample, Ds=2.5cm laden with test particles. Example of 
distribution of 4 measurement positions. 

Experimental Procedure:

1. After being exposed to the PMMA particle laden flow in the oil-fibre test 

facility, the filter fibre sample is inserted into a sample holding device (see 

Figure 116) and placed in front of the PIV camera. 
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Figure 116: Sample holding device with fibre sample, positioned in front of 
camera which shifts position in z direction. 

2. The PIV camera, the Drive Set and the laser are activated and programmed 

via a LabVIEW® based, graphical user interface. Thus the following 

parameters are set: laser intensity, laser beam frequency, light exposition 

time, initial camera position and Drive Set motion parameters to conduct 

scanning routine. 

3. The automated evaluation run is being conducted: a) The Drive Set moves 

into starting position. b) The PIV camera initiates light exposition of the image. 

c) Laser shoots synchronously. d) Camera finishes light exposition of the 

image. e) The Drive Set sets the camera to its new position by shifting into z 

direction. 

4. With each z-shift a picture is taken with the laser shooting synchronously. Up 

to 50 pictures are taken at any fixed x-y position. The pictures are digitally 

stored and written out as JPEG files at the end of the evaluation run. 

5. The JPEG file series are passed on to the optical evaluation algorithm which 

determines the full, local 3D particle distribution. 

8.3.3 The Optical Evaluation Algorithm 
An optical evaluation algorithm to automatically recognize 2D dirt particle shapes 

and to reconstruct them as 3D objects has been created using MatLab®. The 
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code is suitable to fully resolve and determine the dirt particle distribution from 

any given series of gray scale images yielded by the dirt particle distribution 

detection facility. It basically consists of three phases: 

• 2D shape recognition:         

A standard application within the additional MatLab® image processing 

toolbox. The application has been extended by the ability to automatically 

remove non-isotropic, back ground light effects (with courtesy to Prof. Paul 

O’Leary, Institute of Automation, University of Leoben). Figure 117 shows an 

exemplary result of the mere 2D shape recognition function. Thereby five nuts 

are recognized as individual objects, counted and processed in terms of pixel-

area. 

Figure 117: Exemplary result of 2D shape recognition function. Five nuts are 
recognized as individual objects, counted and their pixel area is evaluated. 

• Evaluation of object specific sharpness value:      

Several focus measures, frequently used in Multi Focus Image Fusion

procedures [85] have been implemented to assign specific sharpness values 

to the 2D objects. The focus measures, Energy of Image Gradient (EOG) 

(Equ.281) and Sum Modified Laplacian (SML) (Equ.282), [86] proved to be 

well suited for the given task. 

( ) ( )22, yx ffyxEOG +=    (281) 
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Here fx and fy are the local, spatial gray scale derivatives. 
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Whereby the Sum Modified Laplacian operator is used according to [86]. 

Figure 118 shows a demonstration of how the EOG highlights sharply 

depicted objects and how it simultaneously forfeits blurred ones. 

Figure 118: Example of the basic functionality of the EOG focus measure. It 
highlights regions of high grey-scale gradient (sharply depicted regions) and 
forfeits regions of smaller grey-scale gradient (blurred regions). 

• Construction of digital 3D objects in vector space:      

In a third step, the recognized, focus measured 2D objects within the 

individual depth images are compared. Shapes belonging to one and the 

same, real life particle will feature a centre-to-centre distance which is notably 

smaller than the mean shape radius. Thus 2D shapes within different planes 

are recognized to belong to each other. Then the centre point of the shape 
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with the highest focus measure is stated to be the 3D object’s centre position. 

Accordingly the object’s diameter is stated to be the centre-shape’s medium 

diameter. The spherical dirt particle can then be positioned in 3D vector 

space. Figure 119 presents a sketch of the principle construction procedure. 

Figure 119: Methodology behind the construction of 3D objects, positioned in 
vector space (right) from 2D shapes (left) belonging together. Coloration of the 
2D shapes corresponds to the intensity of the previously assigned focus 
measure. 

Figure 120 shows a full, exemplary 3D particle distribution reconstruction of a 

probed 2.0mm*2.0mm*0.5mm region belonging to a fibre sample. 
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Figure 120: Final result of reconstructed picture series. 3D image of local test 
particle distribution. 

The algorithm is capable of providing visualized results as well as numerical 

results like: a count of objects per depth plane, relative covered picture area per 

depth plane or medium object diameter of objects in depth plane. Figure 121 

shows an exemplary, numerical evaluation. 

Figure 121: Exemplary, numerical evaluation of 3D test particle distribution. 
Output parameters are: relative covered picture area, object count and medium 
object diameter per depth plane (picture). 
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8.3.4 Qualitative Verification of the 3D Reconstruction Method 
The functionality of the entire 3D reconstruction method has been qualitatively 

verified. To do this a simple experiment was set up. Five macroscopic spheres 

with diameters between 3cm and 8cm were hung on black thread and placed into 

an otherwise empty, black box (see Figure 122). Then the microscopic imaging 

procedure was duplicated as well as possible on the macroscopic level. An 

ordinary, digital camera was used and its depth of focus was switched to a 

minumum. As pictures were taken, the camera was moved in steps of 1cm, such 

that the focal plane was drawn through the spheres. The resulting gray scale 

images were then processed by the evaluation algorithm. A 3D reconstruction of 

the scene, created out of a series of 2D pictures was created. 

Figure 123 presents a direct comparison of an ordinary 2D picture of the spheres 

and the three-dimensionalized, digital reconstruction. Due to the good agreement 

of results, a verification of qualitative measurement procedure functionality is 

considered to be achieved. 

Figure 122: Set up of a simple scene to verify the functionality of the 3D particle 
reconstruction method. Five white spheres are hung on black thread against the 
black background of a simple box. An ordinary, digital camera is placed in front. 



227

Figure 123: Direct comparison of an ordinar 2D picture taken from the five 
spheres (left) and a screen shot taken from the optical, three-dimensionalized 
reconstruction result yielded by the Matlab® algorithm. 

8.3.5 Two Modes of Measurement 
Based on the three experimental/evaluation tools: the oil-fibre test facility, the 

particle distribution detection facility and the evaluation algorithm, two optional 

measurement modes can now be performed: 

• The particle distribution detection mode 

• The filter fibre efficiency mode 

Particle distribution detection mode

The particle distribution detection mode is what the equipment has been 

originally designed for. It constitutes a new procedure to obtain extensive 

information on 3D particle distributions in filter fibre samples. Its principles and 

the experimental approach have already been presented in chapter 8.3.3 and 

8.3.6. It is important to note however, that for the particle distribution mode, poly 

disperse particle fractions are used in the oil-fibre test facility. Figure 124 shows 

an over view of the procedure. 
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Figure 124: Overview of the particle distribution measurement mode. 

Filter fibre efficiency mode

By slightly adjusting the measurement procedure used for the particle distribution 

mode, the filter fibre efficiency mode was designed. It basically serves as a tool 

for obtaining experimental verification of simulation runs concerning filter fibre 

efficiency curves. Experimental verification, concerning pressure drop, can be 

obtained via simply using the oil-fibre test facility, which is part of both 

measurement modes. 

In the case of the filter fibre efficiency mode, mono-disperse fractions of test-

particles are used for the oil-fibre test facility runs. The optical evaluation method 

is simpler here than for the distribution mode. The 3D distribution is no longer 

relevant and only the amount of particles, entangled in the fibre nf, as compared 

to the total amount of particles in the fluid nt, is of concern. Thus the depth of 

focus is switched to a maximum by increasing the f-number of the lens and only 

one picture per fibre sample is necessary. No request for reconstructing the 

entire 3D particle distribution has to be sent to the evaluation algorithm, since it 

merely has to automatically count the individual particle objects, detected in the 

fibre. Since the tests are conducted for fibre test samples and for samples of 

absolute filter material in parallel, the two results have to be compared in order to 

obtain the value E. Experiments and evaluations have to be conducted for all 
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available particle fractions (10 m, 25 m,...100 m) in order to retrieve information 

on the efficiency curve. Figure 125 shows an overview of the entire measurement 

procedure. 

Figure 125: Overview of the filter fibre efficiency measurement mode. 

8.3.6 Experimental Verification of Simulation Results 
Using the presented laboratory equipment along the guidelines, developed for 
the oil-fibre test facility, the particle distribution detection mode and the fibre 
efficiency measurement mode, the following simulation parameters can be 
experimentally verified: 

• Pressure drop over filter fibre: Verification by use of the oil-fibre test 
facility. 

• Filter fibre efficiency curve: Verification by use of the fibre efficiency 
measurement mode. 

• Particle penetration depth: Verification by use of the particle distribution 
detection mode. 

During the course of this thesis, only the first two parameters have been 
thoroughly investigated in terms of verification while the particle penetration 
depth results have passed several plausibility checks. The particle distribution 
detection mode is hereby rather proposed as a stand-alone method to 
characterize particle-fibre interaction, than to merely serve as a verification tool. 
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8.3.6.1 Pressure Drop 
Pressure drop over the filter fibre against flow rate variations can be monitored 

via the oil-fibre test facility. The test results can then be directly compared to CFD 

runs, conducted on digitally reconstructed geometries of the same filter fibre 

material. So far, an accordance of +/-10% between lab tests and CFD runs has 

been achieved. Whereby the CFD calculations tend to slightly underestimate the 

measured pressure drop. This is attributed to the fact that, even though the fibre 

geometry is reconstructed with a high degree of detail, surface structures below 

1 m can still hardly be resolved. After all the fibre is depicted with a slightly 

decreased surface roughness causing smaller pressure drop. In terms of particle-

fibre interaction this effect can be compensated: particle-fibre adhesion is simply 

increased. Figure 126 shows the comparison of two materials’ (A43 and A55) 

pressure curves against volumetric flow rate. The curves are directly compared 

to the corresponding simulation outcome. The simulation results were obtained 

by calculating the averaged pressure drop over four arbitrarily chosen, 

reconstructed fibre sections, of the kind shown in Figure 127. Those samples 

represent a 140 m*140 m*(800 m-1000 m) portion of the real life sample and 

encompass the entire fibre thickness. Simulations and experiments were 

conducted under the following conditions: uf=0.0067m/s-0.0204m/s, f =1.93*10-

3Pas, f=800kg/m³. 
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Figure 126: Pressure drop over filter fibre thickness against volumetric fluid flow 
rate. Absolute flow area of filter element: Af=4.91*10-4m². The values of A43 (red) 
and A55 (green) were compared to the corresponding simulations. Deviations 
amount to 10% and are explained by incomplete resolution of the surface 
roughness. 

Figure 127: Screen shot of flow simulation to obtain pressure drop over filter fibre 
medium. 140 m*140 m*(800 m -1000 m) portions of the fibre structure (blue) 
were reconstructed. Four regions within the real life sample were tested and the 
results have been averaged.  

8.3.6.2 Filter Fibre Efficiency Curve 
Filter fibre efficiency curves can be experimentally obtained by applying the fibre 

efficiency measurement mode. The procedure is quite time consuming since the 

following steps have to be conducted for each particle size class of interest:  
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• Loading of the fibre sample with test particles in the oil-fibre test facility. 

• Loading of a reference absolute filter in the oil-fibre test facility.  

• Result evaluation by applying the optical particle detection facility plus the 

algorithm at 6 to 8 positions on both filter samples. 

The procedure to obtain corresponding simulation results is quite similar, yet 

much more time efficient. For each particle size class i, a fixed amount of 

particles nt,i is injected during transient flow simulation within the fibre geometry. 

When kinetic particle energy in the system has dropped to a steady state, the 

final result is evaluated by comparing the remaining particles nr,i to nt,i so that: 

it

ir
i n
n

E
,

,=    (283) 

An extensive experimental and computational analysis of the filter fibre efficiency 

characteristic of the A43 filter material was conducted. Simulations and 

experiments were set up with the following conditions: uf=0.0136m/s,   

f=1.93*10-3Pas, f=800kg/m³, p=1500kg/m³, no adhesional effects. The 

simulations were conducted on 200 m*200 m*300 m portions of the fibre 

structure, which represent only about 1/3rd of the total filter thickness. In order to 

compensate, the following procedure was used:  

• The filter region to be modelled was selected such that it represents the 

average porosity and filter diameter throughout the filter depth as well as 

possible.  

• It was supposed that the entire sample is composed of j=3 consecutive 

layers of representative material, each featuring a single fibre efficiency of 

Ei,s. The total, particle class specific fibre efficiency could then be 

calculated as: 

( )3,11 sii EE −−=   (284) 
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• Since the total fibre efficiency was obtained experimentally, the single fibre 

efficiency of the shorter fibre piece, which is comparable to the simulated 

piece, was obtained as: 

( )3
, 11 isi EE −−=   (285) 

A direct comparison of the simulated results and of the reduced, experimental 

results is shown in Figure 128. 

Figure 128: Comparison of simulated (red) and experimentally derived (blue) 
filter fibre efficiency curve for material A43. An exemplary screenshot of the 
reconstructed piece of fibre material is shown on the right. 

The experimental results, shown in Figure 128, show very good agreement with 

calculations. Thereby the agreement is better for smaller particle diameters than 

for larger ones. This effect is attributed to the following facts:  

The amount of pores, smaller than the actual particle diameter is decisive for 

deposition efficiency, especially if adhesional effects are negligible. The 
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simulated portions of the fibre, feature a cross-section of 200 m*200 m. Hence 

a maximum of 100 pores with diameter Dpore~20 m can be theoretically 

considered per cross section slice. This constitutes a good base for averaging 

results over the entire filter medium. As a consequence, the deposition efficiency 

for particle diameters Dsph 20 m is predicted very well. For larger particles the 

prediction is slightly worse. For pores with diameter Dpore~60 m a maximum of 

only 10 theoretical pores can be considered per cross section slice. 

Consequentially the statistical base of the results, as well as the agreement with 

experiments is worse.  

Still the entire verification procedure is hereby considered to be successful and 

the high quality of solver results is highlighted. For further result improvement, 

larger fibre portions are to be examined in the future. 
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 Application and Results: Filter Fibre Engineering 

In practice the new CFD solver will rather be applied on realistically 

reconstructed, digitalized fibre geometries than on simplified models. The means 

of result evaluation are manifold. Important insight into qualitative and 

quantitative aspects of process parameter behaviour, over filter life time can be 

gained. Two of the most interesting results are filter fibre efficiency and particle 

penetration depth curves.  

A typical example of solver application would be very similar to the procedure 

used in chapter 8.3.6.2. It would involve taking several, microscopic, digitally 

reconstructed portions out of a filter fibre sample in order to conduct deposition 

and penetration analysis for the entire range of relevant particle sizes. The 

results would then be averaged in order to obtain an idea of the basic particle 

deposition characteristic of the fibre.  

All relevant solver output data (such as pressure/velocity field information, 

particle positions and orientation) is given in text files. Using Python® [28] 

scripting, several evaluation modules have been created. Those modules use the 

text-based output data to extract result parameters such as filter fibre efficiency, 

particle penetration depth, plugged flow channel volume or kinetic particle 

energy. 

To give an impression of what the solver can do as of now, several application 

examples are presented in the following. 

9.1 Comparison of Material with/without Adhesional Effects 

The first example is supposed to point out the potential of the solver in terms of 

material design. A digitally reconstructed fibre geometry (see Figure 128) was 

tested in interaction with clouds of arbitrarily shaped, non-spherical particles with 

a half-axe standard deviation of ax= 5/9. Filter fibre efficiency curves were 

evaluated for two cases of fibre quality. Case a) features fibres that do not show 

any particle-fibre interaction, while case b) has the very same fibre topology, but 

includes strong particle-fibre adhesion. The results, seen in Figure 129, show a 
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dramatic increase in filter efficiency (at equivalent pressure drop) if adhesional 

effects (and not just pore size distributions) are considered in material selection. 

While real-life adhesional effects might not be quite as strong as those in the 

simulation, the potential of such effects is pointed out pretty well. 

Figure 129: Comparison of filter fibre efficiency curves for one and the same fibre 
geometry. Case a) (brown) is calculated without adhesional effects and case b) is 
calculated by initiating strong adhesion. Test case parameters: geometry 
dimensions:200 m*200 m*300 m; fluid: uf=0.01m/s, f=800kg/m³, f=4*10-4m²/s; 
particles: p=3000kg/m³, ax= 5/9. 

9.2 Comparison of (Non-)Spherical Particle Filter Fibre 
Efficiency 

The second example shows the importance of considering non-spherical particle 

shape effects. Filter fibre efficiency curves, using spherical and non-spherical 

particles on one and the same, non-adhesional filter fibre medium (see Figure 

128), have been evaluated. The ellipsoids feature a half-axe standard deviation 

of ax= 5/9 and are always compared to their mass equivalent, spherical 

counterparts. The results, seen in Figure 130, point out the importance of 
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considering particle shape effects. Relevant deviations in fibre efficiency are 

apparent. 
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Figure 130: Comparison of filter fibre efficiency curves for one and the same fibre 
geometry without adhesional effects (equivalent to chapter 9.1, case a) ) . Case 
a) (green) is calculated with spherical particles and case b) (red) is calculated 
with non-spherical particles of mass equivalent spheres. Test case parameters 
match those, given for Figure 129. 

Fibre efficiency results, shown in Figure 130, reveal that smaller ellipsoids 

(Dsph<17.5 m) are deposited less easily than mass-equivalent spheres, whereas 

larger (Dsph>17.5 m), non-spherical particles rather get stuck. This behaviour is 

both plausible and to be expected. Ellipsoids with smaller, angular relaxation 

times experience the slip effect. They align easily along stream lines, which 

enables them to slip through pores, that mass-equivalent spheres get stuck in 

(see Figure 9 , chapter 2.6.2). Larger ellipsoids with larger, angular relaxation 

times do not align as readily and experience the bulk effect. They get stuck in 

pores that their spherical counterparts just fit through (see Figure 10 and chapter 

2.6.3). Between 30 m and 37 m spherical filter fibre efficiency decreases. This 

phenomenon can be attributed to increasing particle-particle interactions due to 

higher particle-particle hitting probability. Momentum transfer leads to blow-off 

effects. 
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9.3 Comparison of (Non-)Spherical Particle Penetration Depth 

The third example, shown in Figure 131, gives an evaluation of particle 

penetration depth for the spherical and non-spherical case shown in chapter 9.2 

(both without adhesional effects) and for the non-spherical case, featuring 

adhesional effects, which is presented in chapter 9.1. 

Hereby the particle penetration depth is represented via the relative penetration 

measure P which attributes the value 1 to particles slipping through the fibre 

mesh, and 0 to particles caught right at entry into the fibre domain. 

Figure 131: Comparison of particle penetration depth curves for one and the 
same fibre geometry (see Figure 128). Case a) (purple) is calculated with 
spherical particles and no adhesion, case b) (yellow) is calculated with non-
spherical particles and no adhesion and case c) (orange) is calculated with non-
spherical particles and with adhesion. Test case parameters match those, given 
for Figure 129. 

As expected, the adhesional case (orange) shows remarkably lower P-values 

over the entire, relevant particle size regime, than the non-adhesional cases 

(yellow and purple). The relationship between particle penetration depth and filter 

fibre efficiency is demonstrated by comparing spherical and non-spherical, non-

adhesional cases in Figures 130 and 131. For Dsph>20 m, non-spherical 
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particles yield smaller penetration values than mass equivalent spheres. This 

corresponds with the fact, that filter fibre efficiencies for larger ellipsoids are 

higher than those for larger spheres. 

9.4 

The fourth example, shown in Figure 132, is particularly interesting for filter fibre 

design applications. It gives the direct comparison of fibre efficiency 

characteristics of two similar but clearly distinguishable fibre materials: A55 and 

A43. A55 has slightly finer fibre structure and features a mean flow pore size 

MFP=22 +/-3 m while A43 has coarser fibres with MFP=31 +/- 3 m. Simulation 

runs were conducted under the conditions stated beneath Figure 129. 

Figure 132: Comparison of filter fibre efficiency curves for different but similar 
materials: Ahlstrom A55 (red) with MFP=22 m and Fulda A43 (green) with 
MFP=31 m. Test case parameters match those, given for Figure 129. 
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The two efficiency curves, depicted in Figure 132, show very plausible results. 

Both curves are generally similar but efficiencies of the finer A55 material are 

larger than those of the coarser A43 throughout the entire, relevant particle size-

spectrum. An evaluation of the corresponding particle penetration depth diagram, 

shown in Figure 133, underlines those results. Over the entire, relevant 

spectrum, particles penetrate slightly deeper into the coarser A43 material than 

into A55. 

Figure 133: Comparison of particle penetration depth curves for Ahlstrom A55 
(red) with MFP=22 m and Fulda A43 with MFP=31 m. Test case parameters 
match those, given for Figure 129. 

Having obtained the efficiency curve data for the materials to be compared, 

further information on filter behavior can be retrieved relatively simple. Figures 

134 and 135 show what A43 and A55 would probably do to a theoretical Gauss 

distributed, polydisperse particle collective with medium particle diameter 

=30 m and standard deviation =10 m. An estimation concerning the 

distribution of the deposited and the penetrating particle cloud is possible and 

values for depositing and penetrating fractions can be given. The results show 

that the overall deposited particle fraction fdep for the given case will amount to 
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fdep=50.85% for A55 and fdep=38.28% for A43. Due to the demonstrational 

character of the calculations, the fact that the efficiency curves have been 

derived for monodisperse particle fractions is neglected here. 

Figure 134: Filter fibre efficiency curve of A55 with superposed, Gauss 
distribution of theoretical dirt particle cloud with =30 m and =10 m. Particle 
distribution curves for penetrating and deposited fractions as well as fractional 
values can be calculated. 
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Figure 135: Filter fibre efficiency curve of A43 with superposed, Gauss 
distribution of theoretical dirt particle cloud with =30 m and =10 m. Particle 
distribution curves for penetrating and deposited fractions as well as fractional 
values can be calculated. 

The final application example is concerned with demonstrating the solver’s 

capability of estimating the effect of increasing dirt deposition on the filter fibre 

efficiency. This ability stems from the particle-particle interaction feature which 

enables the simulation of cake filtration effects. In order to derive the results 

shown in Figure 136, previously conducted simulation runs on empty (clean) A43 

fibres have been compared to pre-deposition runs that were set up as follows: An 

initial simulation on the empty fibre has been run and stopped when the desired 

amount of particles had settled in the fibre. A second run was started, using the 

particle laden geometry of the first run as initial condition. In addition to that, the 

pre-deposition utility was activated. It ensures that pre-deposited particles from 

the first run are not moved under any circumstances during the second run. 

Figure 136 has been produced by selecting the initial run such that a degree of 

10% of the total porous fraction of the material was occupied with particles. Then 
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consecutive runs were conducted with various particle size classes coming in 

after the initially deposited particles. The results in Figure 136 show that the pre-

deposition primarily influences the deposition rate of larger particle classes. 

Smaller particles get deviated around the newly closed pores due to their lower 

Stokes numbers. 

Figure 136: Filter fibre efficiency curves of A43. Comparison between results for 
empty (clean) material (green) and fibre with a volume fraction of 10% being 
occupied (purple). 
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  Conclusion and Vision 

A Lagrangian, (non-)spherical dirt particle model for filtration applications has 

been programmed using the Open Source CFD tool box OpenFOAM®. The new 

solver is capable of simulating the most relevant deposition effects that lead to 

the filtering of dirt particles out of the automotive oil circuit, on a microscopic 

level. It contains detailed sub-models concerning particle-fluid one and two way 

coupling, particle-fibre and particle-particle interaction. Based on those 

implementations and upon the application of digitally reconstructed, structured 

grid meshes, a realistic simulation of fluid filtration due to adhesion, inertial 

impact, cake and sieving effects is realized. A special feature of the code, setting 

it apart from comparable pieces of software is its ability to consider not only 

simplified, smooth, spherical dirt particles but also more realistically shaped, non-

spherical particles. An important part of this thesis has involved the presentation 

of newly developed methods to cope with the generalized, ellipsoid shape of the 

dirt particles. Another focus has been laid on working out an adaptive time 

stepping concept in order to cope with numerical instability problems based on 

the implementation of an explicit Euler temporal particle movement discretization 

scheme. After a detailed presentation of the physical and mathematical 

background of the new model, the basic work flow and the code’s programming 

structure have been explained. User input parameters have been shown and 

described as well. 

Solver verification has been successfully conducted. The verification procedure 

was concentrated on the following process parameters: pressure drop over the 

filter fibre medium, filter fibre efficiency curves and particle penetration depth 

curves. Validation has been carried out on several levels: 

• Plausibility checks 

• Comparison with (semi-) analytical results 
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• Comparison with results found in literature 

• Comparison with experimental data 

Extensive measures have been taken to achieve this level of verification:  

• A semi-analytical calculation scheme was devised to calculate the fibre 

efficiency of simple, artificially created fibre meshes. Thereby the results 

have been found to be in good agreement with corresponding, numerical 

calculations. 

• Several realistic simulation runs have been set up in order to obtain 

results, comparable to data found in literature. 

• An extensive, experimental set up was created, which enables the 

determination of parameters like pressure drop, fibre efficiency and 

particle penetration characteristic. The experimental set up consists of the 

oil-fibre and the particle detection facility and is concluded by the 

development of a 3D particle reconstruction algorithm. 

Using the experimental equipment, solver results in terms of pressure drop and 

filter fibre efficiency could be verified. Results were found to be in very good 

agreement and deviations could be plausibly explained. Furthermore the 

application of the experimental facilities in particle distribution detection mode 

constitutes a new, innovative stand-alone method to characterize test particle 

distributions in filter fibre media on a full 3D basis. 

Having concluded the model and program presentation and having succeeded in 

verifying many results, some realistic examples for practical solver application 

were given. In connection with those examples the following engineering tasks 

can probably be solved in the near future: 
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• Purely CFD based estimation of the influence of filter fibre quality 

(adhesion) and morphology (sieving) on filter characteristics. 

• First time consideration of particle shape effects in a filter simulation 

application. 

• Non-experimental comparison of filter materials. 

• Estimation of the influence of dirt pre-deposition on filter performance 

(cake filtration effect). 

• The virtual design of filter fibre media, leading to a dramatic cost and time 

reduction in the R&D process of filter producers by reducing time 

consuming, costly experimental runs. 

One further benefit of the model lies within the C++ based, well structured code, 

which allows simple, modular extension by sub-models. Two sub-models, the 

bacteria model and the E-static model, have already been presented here. In the 

future several new models might be added to the code. Likely candidates are: 

• A Brownian motion model. 

• A turbulence model, probably based on the Langevin [18] approach. 

• A particle agglomeration model. 

• An extension of the E-static model to a full Maxwell equation solver. 

• A chemical reaction model. 
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All in all the new development behind this thesis is seen as a significant 

advancement in the field of CFD based filtration simulation and concerning non-

spherical, Lagrangian particle modelling. It is a new tool, based on a solid, 

physical, mathematical and numerical framework which constitutes a small 

puzzle piece on the road to promote computational engineering as the leading 

discipline among mankind’s technical achievements of the 21st century. 
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Figure 1: Sketch of the principle simulation concept.  

Figure 2: Experimental and CFD development scheme. 

Figure 3: Overview of the four major areas of development behind the filtration 

solver project. 

Figure 4: Fibre reconstruction and digitalization by Matlab® utilities.  

Figure 5: Filter fibre sample discretized into a structured fluid and solid 

hexaherdal grid mesh. 

Figure 6: Basic solver scheme of the FSI tool for modelling deformation effects 

of the filter fibre structure under the influence of the oil current. 

Figure 7: Filter fibre material, deformed by oil flow.  

Figure 8: Spherical Stokes and non–spherical Hölzer-Sommerfeld particle 

relaxation time behavior against particle Reynolds number. 

Figure 9: Non-spherical particle slip effect.  

Figure 10: Non-spherical particle bulk effect. 

Figure 11: Illustration of acting forces and torques on an assembly of (non-) 

spherical particles. 

Figure 12: Particle simulation with small and large particles.

Figure 13: Drag coefficient of solid spheres plotted against particle Reynolds 

number. Comparison of experimental data with results from Abraham and 

Turton-Levenspiel equation [34, 50]. 

Figure 14: Particle sizing effect: smaller particles follow current more readily. 

Figure 15: Impact inertial effect: particles of higher Stokes number show higher 

probability of impact. 

Figure 16: Sketch of spherical particle-wall impact event. 

Figure 17: Two particles in fibre vicinity with velocity vectors.  

Figure 18: Simple sketch of particle-particle impact event. 
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Figure 19: Particle cloud in digitally reconstructed fibre geometry. 

Figure 20: Particle surrounded by 48 enlarged pressure/velocity help points. 

Figure 21: Accumulation of large particles in simplified fibre geometry. 

Figure 22: Simple filter fibre case with large particles before and while plugging 

effect occurs.  

Figure 23: Pressure difference between inlet and outlet over run-time, 

corresponding to the qualitative, exemplary plugging case shown in Figure 22.  

Figure 24: Simplified horizontal and vertical fibre structure deformed by oil 

current. Dense cloud of rather large particles getting entangled in the structure 

and causing plugging effect, e.g. diversion of the flow. 

Figure 25: Realistic, microscopic (200 m*200 m*300 m) fibre geometry 

reconstructed from CT-scan images. 

Figure 26: The ellipsoid shape can approximate a wide variety of geometries, 

e.g. plates and sticks. 

Figure 27: Exemplary ellipsoid particle with co-rotational coordinate system. 

Figure 28: Non-spherical particle with 18 surface help points and 48 

pressure/velocity help points. 

Figure 29: Non-spherical particle surrounded by help points and panels. 

Figure 30: Positions of the 18 surface help points within the co-rotational particle 

coordinate system. 

Figure 31: Position and orientation of surface normal vector np,16. 

Figure 32: Side view of particle with panels, M/P-points and HP-points.  

Figure 33: Sinking, spherical particles with velocity vectors as well as highlighted 

help point and panel structure. 

Figure 34: Sketch of local force balance and force effect on panel centre. 

Figure 35: Sketch of form and shear force contribution to panel drag force. 

Figure 36a: Ellipsoid particle accelerating towards valve. Alignment along the 

current stream lines.  

Figure 36b: Ellipsoid with activated fibre vicinity module. 
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Figure 37: Pressure force contribution to over all fluid-particle force.  

Figure 38: Shear stress contribution to over all fluid-particle force.  

Figure 39: Flow field formation around large, two-way coupled particle.  

Figure 40: Flow field deviation by ellipsoid particles getting stuck in simplified 

fibre structure.  

Figure 41: Plot of  against Rep.  

Figure 42: Plot of  against S.  

Figure 43: Plot of Vblock against S .  

Figure 44: Plot of log(cd) against log(Rep). 

Figure 45: Ellipsoid with axe ratio a:b:c=1.5:1:1 with orientations =0°, 25°, 45° 

and 90° to flow field with u f=0.4m/s.  

Figure 46: Drag force characteristic for Rep=0.3 for fibre-vicinity-model-coupled 

ellipsoid. 

Figure 47: Drag force characteristic for Rep=0.3 and fibre-vicinity-model-coupled 

ellipsoid using Equ.152.  

Figure 48: Lift force characteristic for Rep=0.3 for fibre-vicinity-model-coupled 

ellipsoid using Equ.151 (blue) and using Equ.152.  

Figure 49: Non-spherical particle immersed in relative fluid flow, with acting drag 

and lift forces. 

Figure 50: cd values of ellipsoid according to CFD model and Spheroid according 

to smooth body LB simulations against . 

Figure 51: cl values of ellipsoid according to CFD model and Spheroid according 

to smooth body LB simulations against .  

Figure 52: Fibre-vicinity-model-coupled particle, settling under the influence of 

gravity.  

Figure 53: Relative settling velocity against relative settling time for spheres, 

settling in an otherwise quiescent, unbounded flow domain.  

Figure 54: Relative settling velocity against relative settling time for ellipsoids 

with a:b:c=1,5:1:1, and a mass equivalent sphere settling in an otherwise 

quiescent, unbounded flow domain.  
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Figure 55: Sketch of the basic hydrodynamic situation of an ellipsoid settling 

under the effect of gravity. 

Figure 56: Ellipsoid with initial orientation =45° settling under the influence of 

gravity.  

Figure 57: Sketch of  spherical and non-spherical particle-wall impact. 

Figure 58: Qualitative sketch of the influence of non-spherical impact elasticity 

on particle-wall impact situation. 

Figure 59: Screen shot of benchmark case. Ellipsoid particle just before and 

after hitting a wall boundary patch.  

Figure 60: Sketch of a non-spherical particle-fibre impact/interaction situation.  

Figure 61: Benchmark case to test particle-fibre interaction module.  

Figure 62: Adhesion-based, filter fibre efficiency for a simplified fibre structure 

case.  

Figure 63: Sketch of impact situation with non-spherical particles A and B, 

before, during and after collision.  

Figure 64: Six consequential screenshots of collision benchmark case. 

Figure 65: Sketch of exemplary collision force transfer situation.  

Figure 66: Four consequental screenshots of densely packed, arbitrarily sized, 

spherical particles driven downward by gravity.  

Figure 67: Screenshots of densely packed, arbitrarily sized, non-spherical 

particles. Gravity acts downward. Velocity vectors are visible.  

Figure 68: Screen shot of benchmark case one. Dense cloud of non-spherical 

particles (30 m Dsph 50 m) in realistic, deforming filter fibre geometry A, 

200 m*200 m*200 m.  

Figure 69: Screen shot of benchmark case two. Some spherical dirt particles 

(Dsph~25 m) are carried by oil current through large, realistic filter fibre geometry 

B, 250 m*250 m*1000 m.  

Figure 70: Screen shot of benchmark case three. Spherical and plate-like 

bakteria (Dsph~50 m)  deposit in dense clusters within simplified fibre structure.  

Figure 71: Plot of particle velocity up[m/s] against speed up time t[s]. 
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Figure 72: Plot of particle speed up curves for exemplary fluid time step 

tf=1.333s, particle dimension Dsph=0.01m, dynamic fluid viscosity f=0.1Pas, 

particle density p=2000 kg/m³, and uniform flow velocity uf=0.2m/s.  

Figure 73: Exemplary plot of non-spherical particle speed up, for Dsph=0.001m, 

uf=0.1m/s, f=0.1Pas with tangent at t=0s and non–spherical particle relaxation 

time p,nonsph =8*10-4 s.  

Figure 74: Ratio of spherical particle relaxation time according to Hölzer-

Sommerfeld drag p,H/S and spherical particle relaxation time according to Stokes’ 

drag implementation p,St plotted against particle Reynolds number. 

Figure 75: Spherical and non–spherical particle relaxation time behavior against 

relative half axe deviation around Dsph.  

Figure 76: Evaluation of Equ.218 for varying tp/ p, with uf=0.2 m/s.  

Figure 77: Comparison of analytical and numerical speed up curve with 

tp/ p=0.3 and uf=0.2m/s.  

Figure 78: Plot of rel against tp/ p for a spherical particle of arbitrary size and 

composition which speeds up in an arbitrary fluid. 

Figure 79: Plot of rel against tp/ p with tp/ p ranging from 0.0 to tp,end/ p=0.55.  

Figure 80: Ratio of krel( tp,0/ p)/krel( tp,0/ p =0.001) plotted against tp,0/ p.  

Figure 81: Plot of krel against M. Maximum krel value at Mmax=1.60. Definition of 

M99,9 value and krel;99,9 value. 

Figure 82: Plot of krel against M.  

Figure 83: Comparison of exemplary, spherical particle velocity curves 

calculated for same physical conditions with static and event-force-adapted time 

stepping scheme.  

Figure 84a: Plot of up,max  against log( p,0) for the case of I=6*10-6 kgm/s.  

Figure 84b: Plot of up,max/up,max,static (being the relative difference between the 

two up,max curves shown in Figure 84a) against log( p,0) for the case of I=6*10-6 

kgm/s.  

Figure 85: Plot of up,max against up,max,unhindered for the case of p,0=7.78*10-2 s.  

Comparison of static time stepping scheme and adaptive time stepping scheme.  
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Figure 86: Plot of up,max/up,max,adaptive (being the relative difference between the 

two up,max curves shown in Figure 85) against up,max,unhindered for the case of 

p,0=7.78*10-2s and tp,static=7.78*10-3s.  

Figure 87: Sketch of the deposition and deformation situation of Epiterial 

bacteria on solid fibre surface. 

Figure 88: Screenshot of simulation run in simplified fibre geometry. Spherical 

bacteria, immersed in a watery fluid come in (1.), hit the fibres, deform and settle 

there (2.). 

Figure 89: Screenshot of simulation run in realistic, microscopic fibre geometry.  

Figure 90: Four consequential screenshots from qualitative benchmark case, 

including two oppositely charged particles in an otherwise unbounded fluid 

domain.  

Figure 91: Three consequential screenshots from qualitative benchmark case 

including two positively charged particles and one negatively charged fibre.  

Figure 92: Activity diagram of total workflow, parted into pre-processing, 

processing and post-processing.  

Figure 93: Activity diagram showing workflow of the fluid-particle simulation.  

Figure 94: Activity diagram showing workflow of the particle movement 

algorithm.  

Figure 95: Inheritance diagram of C++ based, (non-)spherical particle solver.  

Figure 96: Outtake of cloudProperties dictionary. Sub-section injection. 

Figure 97: Outtake of cloudProperties dictionary. Sub-sections 

interpolationSchemes, general and wall. 

Figure 98: Outtake of cloudProperties dictionary. Sub-sections particle. 

Figure 99: Sketch of the basic structure of the grafical user interface as it 

interlinks program modules according to the user workflow. 

Figure 100: Exemplary image of simplified fibre geometry. Easy determination of 

geometric parameters Apores, npores, Dpores, pores, Dfibre. 

Figure 101: Definition of Stmin.  

Figure 102: Definition of Stmax.  
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Figure 103: Comparison of filter fibre efficiency results for semi-analytical 

calculation according to Equ.280 and for CFD results using the non-spherical 

particle solver.  

Figure 104: Comparison of filter fibre efficiency curves.  

Figure 105: Process plan of multi-pass test rig proposed by ISO 4548-12 

opposed by process plan of simplified version underlying the oil-fibre test facility. 

Figure 106: Image of actual oil-fibre test facility, opposed by process plan.  

Figure 107: Images of main components of test facility: 1.)compressor, 

2.)pressure vessel, 3.)flow measurement device, 4.)magnetic valve, 5.)magnetic 

valve display, 6.)pressure sensor and 7.)sample holding device. 

Figure 108: Rh-B marked PMMA particles in oil dispersion and on filter fibre 

sample. 

Figure 109: Screenshot of LabView® based grafical user interface of 

measurement and control software.  

Figure 110: LaVision®, Image Intense, Particle Image Velocimetry camera with 

optical bellows. 

Figure 111: Systec ® DriveSet SD Standard with three degrees of motional 

freedom and PIV camera placed on it. 

Figure 112: New Wave Research® laser with dispersive lense. 

Figure 113: Measurement principle behind the laser fluorescence macroscopy

method to determine 3D particle distribution.  

Figure 114: Exemplary picture of particle distribution within 2mm*2mm image 

region of filter fibre sample.  

Figure 115: Fibre sample, Ds=2.5cm laden with test particles.  

Figure 116: Sample holding device with fibre sample, positioned in front of 

camera which shifts position in z direction. 
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Figure 117: Exemplary result of 2D shape recognition function.  

Figure 118: Example of the basic functionality of the EOG focus measure. 

Figure 119: Methodology behind the construction of 3D objects, positioned in 

vector space from 2D shapes belonging together.  

Figure 120: Final result of reconstructed picture series. 3D image of local test 

particle distribution. 

Figure 121: Exemplary, numerical evaluation of 3D test particle distribution.  

Figure 122: Set up of a simple scene to verify the functionality of the 3D particle 

reconstruction method.  

Figure 123: Direct comparison of an ordinar 2D picture taken from the five 

spheres and a screen shot taken from the optical, three-dimensionalized 

reconstruction result yielded by the Matlab® algorithm. 

Figure 124: Overview of the particle distribution measurement mode. 

Figure 125: Overview of the filter fibre efficiency measurement mode. 

Figure 126: Pressure drop over filter fibre thickness against volumetric fluid flow 

rate.  

Figure 127: Screen shot of flow simulation to obtain pressure drop over filter 

fibre medium. 140 m*140 m*(800 m -1000 m) portions of the fibre structure 

(blue) were reconstructed.  

Figure 128: Comparison of simulated and experimentally derived filter fibre 

efficiency curve for material A43.  

Figure 129: Comparison of filter fibre efficiency curves for one and the same 

fibre geometry. Case a) is calculated without adhesional effects and case b) is 

calculated by initiating strong adhesion. 

Figure 130: Comparison of filter fibre efficiency curves for one and the same 

fibre geometry without adhesional effects (equivalent to chapter 9.1, case a) ) . 

Case a) is calculated with spherical particles and case b) is calculated with non-

spherical particles of mass equivalent spheres.  

Figure 131: Comparison of particle penetration depth curves for one and the 

same fibre geometry (see Figure 128). Case a) is calculated with spherical 

particles and no adhesion, case b) is calculated with non-spherical particles and 
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no adhesion and case c) is calculated with non-spherical particles and with 

adhesion.  

Figure 132: Comparison of filter fibre efficiency curves for different but simular 

materials. 

Figure 133: Comparison of particle penetration depth curves. 

Figure 134: Filter fibre efficiency curve of A55 with superposed, Gauss 

distribution of theoretical dirt particle cloud with =30 m and =10 m.  

Figure 135: Filter fibre efficiency curve of A43 with superposed, Gauss 

distribution of theoretical dirt particle cloud with =30 m and =10 m. 

Figure 136: Filter fibre efficiency curves of A43.  
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