
Dissertation

Verwendung von Tunnelausbruchmaterial – Entscheidungsgrundlagen

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der montanistischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr. mont. Robert Galler Lehrstuhl für Subsurface Engineering

eingereicht an der Montanuniversität Leoben Department Mineral Resources and Petroleum Engineering

von

Dipl.-Ing. Daniel Resch

Matr.Nr.: 98 25 540 Gerstnerstraße 5/9 1150 Wien

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubter Hilfsmittel bedient habe.

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

Daniel Resch

Danksagung

Zum Gelingen dieser Dissertation haben viele Personen beigetragen.

Besonders möchte ich mich bei meinem Doktorvater Herrn Univ.-Prof. Dipl.-Ing. Dr. mont. Robert Galler für die Möglichkeit am Forschungsprojekt "Recycling von Tunnelausbruchmaterial" mitzuarbeiten, sowie für die umfassende Betreuung bedanken.

Großer Dank gilt auch Herrn O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl, in dessen Team ich vier Jahre als Universitätsassistent mitarbeiten durfte, für die vielen fachlichen Gespräche sowie für die Übernahme der Zweitbegutachtung dieser Arbeit.

Bedanken möchte ich mich auch bei meinen Kollegen an der TU-Wien, der Montanuniversität Leoben sowie des Forschungsprojektes "Recycling von Tunnelausbruchmaterial". Die gemeinsamen Diskussionen waren stets Antrieb und Motivation für diese Arbeit.

Ein außergewöhnliches Dankeschön gebührt meiner Familie sowie meiner Freundin, die mich immer unterstützen.

Kurzfassung

Diese Dissertation widmet sich den Randbedingungen der Verwendung von Ausbruchmaterial als mineralischer Rohstoff.

Zurzeit befindet sich in Österreich eine große Anzahl an Untertagebauprojekten im Bau oder in der Planung. Hierbei werden große Mengen an Ausbruchmaterial anfallen, die bis heute hauptsächlich als Schüttmaterial verwendet oder deponiert werden.

Wird hingegen dieses Ausbruchmaterial als mineralischer Rohstoff verwendet, können dadurch natürliche Ressourcen mineralischer Rohstoffe geschont werden. Gleichzeitig verringern sich z.B. durch reduzierte Transportwege und Deponieflächen die negativen Belastungen einer Untertagebaustelle auf die Umwelt.

Die Verwendung von Ausbruchmaterial ist dabei wesentlich von den Gesteinseigenschaften, dem Bedarf an mineralischen Rohstoffen abhängig.

Einen wesentlichen Einfluss auf die Verwendbarkeit des Ausbruchmaterials hat auch die Lösemethode. Betrachtet man das Ausbruchmaterial so lässt sich vor allem in Bezug auf die Korngrößenverteilung, die Kornform sowie die chemischen Eigenschaften ein Unterschied zwischen TBM- und NÖT-Vortrieb feststellen. Zur nähren Beschreibung der chemischen Eigenschaften wurden daher von verschiedenen ausgeführten Tunnelprojekten chemische Untersuchungen des Ausbruchmaterial ausgewertet.

Auch die Menge und der Zeitpunkt des anfallenden Ausbruchmaterials sind wesentlich von der Vortriebsart abhängig. Durch die unterschiedlichen Vortriebsleistungen sind eventuell erforderliche Zwischenlager bzw. Aufbereitungsanlagen unterschiedlich zu dimensionieren. Zur Abschätzung des Materialanfalls bzw. Materialbedarfs wurde daher ein Berechnungsprogramm entwickelt. Mithilfe dieses Programms können Variantenstudien für verschiedene Verwendungsszenarien problemlos durchgeführt werden.

Um den Nachweis zu erleichtern, ob das zu erwartende Ausbruchmaterial einer Verwendung zugeführt werden kann, wurde eine Empfehlung von durchzuführenden Materialuntersuchungen erstellt. Die dabei ermittelten Materialkennwerte bilden in der Folge die Eingangsparameter einer Bewertungsmatrix.

Mithilfe dieser Bewertungsmatrix werden die technischen, chemischen und mineralogischen Eigenschaften des zu erwartenden Ausbruchmaterials angegebenen Grenzwerten gegenübergestellt. Durch die Bestimmungen von ausgewählten Materialeigenschaften können so übersichtlich mehrere Verwendungspotentiale gleichzeitig beurteilt werden.

Abstract

This dissertation is dedicated to the boundary conditions for the use of tunnel excavation material as mineral raw material.

Currently, a large number of tunnel projects are being designed or built in Austria. This will create large quantities of excavation material, which so far have been generally used for filling or tipping.

The use of excavation material can save resources of mineral raw materials and also reduces the negative impact of a tunnel construction site on the environment, for example through the reduction of transport distances and required areas for landfill.

The use of excavation material depends greatly on the rock properties and the demand for mineral raw materials.

The method of excavation has also a significant effect on the usability of the material. Considering the excavated material, there are differences in the product from TBM and NATM tunnels regarding grading distribution, grain shape and chemical properties. Therefore chemical examinations of excavation material were evaluated on various tunnel projects.

The amount and timing of the resulting excavated material are too substantially dependent on the tunnelling method. The different advance rates mean that any intermediate stockpiles and processing plants have to be sized accordingly. To estimate the seizure material and the material needs a calculation program was developed. The program enables also the implementation of variational studies.

Furthermore, a recommendation was made which material tests should be carried out. In the following, the determined material parameters represent the basic input data of an evaluation matrix.

The implementation of this evaluation matrix allows comparing technical, chemical and mineralogical properties of the excavated material with specified limit material values.

Inhaltsverzeichnis

1	Ei	inleitung		1
	1.1	Natürl	liche Ressourcen an mineralischen Rohstoffen in Österreich	2
	1.2	Zukün	ftige Tunnelprojekte	4
	1.	.2.1 Zı	ukünftige Tunnelprojekte in Österreich	5
	1.	.2.2 Zi	ukünftige Tunnelprojekte in Deutschland	7
2	R	andbedin	gungen der Verwendung von Tunnelausbruchmaterial	8
	2.1	Allgen	neines	8
	2.2	Geolog	gische Rahmenbedingungen in Österreich	9
3	V	eränderu	ng der Eigenschaften des Ausbruchmaterials durch externe Einflüsse	11
	3.1		lussung der geochemischen Eigenschaften des Ausbruchmaterials durch die	4.4
	2		ebsarbeiten	
	3.		ergleich geochemischer Eigenschaften des Ausbruchmaterials	
		3.1.1.1	Tunnelprojekt 1	
		3.1.1.2	Tunnelprojekt 2	
		3.1.1.3	Tunnelprojekt 3	
		3.1.1.4	Tunnelprojekt 4	
		3.1.1.5	Tunnelprojekt 5	
		3.1.1.6	Tunnelprojekt 6	
		3.1.1.7	Tunnelprojekt 7	
		3.1.1.8	Tunnelprojekt 8	
		3.1.1.9	Tunnelprojekt 9	
		3.1.1.10	Tunnelprojekt 10	
		3.1.1.11	Tunnelprojekt 11	
		3.1.1.12	Tunnelprojekt 12	
		3.1.1.13	Tunnelprojekt 13	
		3.1.1.14	Tunnelprojekt 14	32
		3.1.1.15	Tunnelprojekt 15	33
		3.1.1.16	Zusammenfassung	35
	3.2		lussung der geotechnische Eigenschaften des Ausbruchmaterials durch die ebsarbeiten	37
4	M	laterialan	forderungen unterschiedlicher Verwendungsszenarien	40
	4.1	Gestei	nskörnungen für die Betonproduktion / Betontechnologie	40
	4	11 1	llgamainag	40

	4.1.2	Anforderungen an Gesteinskörnungen	44
	4.1.3	Druckfestigkeit von Gesteinskörnungen	45
	4.1.4	E-Modul der Gesteinskörnung	46
	4.1.5	Kornrohdichte	46
	4.1.6	Kornzusammensetzung	46
	4.1.6.	1 Korngrößenverteilung Innenschalenbeton	51
	4.1.6.	2 Korngrößenverteilung Spritzbeton	54
	4.1.7	Kornform	55
	4.1.8	Muschelschalengehalt	58
	4.1.9	Gehalt an Feinteilen (Abschlämmbares)	58
	4.1.10	Widerstand gegen Zertrümmerung	61
	4.1.10	0.1 LCPC-Test	64
	4.1.11	Frost-Tau-Widerstand	69
	4.1.12	Alkali-Kieselsäure-Reaktivität	70
	4.1.13	Wasserlösliches Chlorid	72
	4.1.14	Säurelösliches Sulfat	72
	4.1.15	Betontechnologie	72
	4.1.15	5.1 Betontechnologie Innenschalenbeton	72
	4.1.15	5.2 Betontechnologie Spritzbeton	74
	4.1.15	5.3 Betontechnologie Tübbingbeton	74
	4.1.15	5.4 Zusatzmittel	75
	4.1.16	Besonderheiten bei der Verwendung von glimmerhaltigen Gesteinskörnung	gen75
	4.1.17	Zusammenfassung	82
	4.2 Ges	steinskörnungen für Tragschichten	84
	4.3 Bah	nnschotter	88
	4.4 Ges	steinskörnungen für Asphaltmischgut	93
	4.5 Zieg	gelton, -lehm	94
	4.6 Kal	kstein als industrieller Rohstoff	97
	4.7 Ges	steinskörnungen für Dämme, Hinterfüllungen und Überschüttungen	
	4.7.1	Gesteinskörnungen für Dämme	
	4.7.2	Gesteinskörnungen für Hinterfüllungen und Überschüttungen	
		sammenfassung	
5		aftliche Randbedingungen	
		rtschaftlichkeit der Verwendung des Ausbruchmaterials	
	_	oonierungskosten	
	5.3 Öko	obilanz	108

6	Materia	aufbereitung	112
	6.1 Mat	erialaufbereitung auf der Baustelle	112
	6.1.1	Materialzerkleinerung und -siebung	113
	6.1.1.	1 Zerkleinerung des Ausbruchmaterials	116
	6.1.1.	2 Siebung des Ausbruchmaterials	118
	6.1.2	Schlammaufbereitung	119
	6.1.3	Wasseraufbereitung	120
	6.1.4	Spezialbestandteile einer Aufbereitungsanlage	120
	6.1.5	Ausschreibung einer Aufbereitungsanlage	122
	6.2 Auf	bereitungsversuche Sulzau	123
7	Baustell	enorganisation	129
	7.1 Plan	nungsschritte der Materialverwendung	129
	7.1.1	Präqualifikationsverfahren für Beton	134
	7.2 Mat	erialbewirtschaftung	135
	7.2.1	Qualitätskontrolle	137
	7.2.1.	Baustellenlabor - Verwendung des Ausbruchmaterials auf der Baustelle	140
	7.2.1.	2 Baustellenlabor – Externer Verwender	141
	7.2.2	Massenmanagement	141
	7.2.2.	1 Beispiele von Massenbilanzen	143
	7.2.2.	2 Berechnungsprogramm Massenmanagement	145
	7.3 Ver	gabe-, Ausschreibungsmöglichkeiten	156
	7.3.1	Subunternehmervariante	159
	7.3.2	Unternehmervariante	160
	7.3.3	Mischvariante	162
8	Rechtlic	he Rahmenbedingungen	163
	8.1 Eige	entumsrecht	163
	8.2 Abf	allrecht	164
	8.2.1	Bundesabfallwirtschaftsplan	166
	8.2.2	Altlastensanierungsgesetz	
	8.2.3	Abfallende	174
		weltverträglichkeitsprüfung (UVP)	
	8.4 Zus	ammenfassung	177
9	Bewertı	ingsmatrix zur Beurteilung der Verwendbarkeit von Tunnelausbruchmaterial.	178
1(enfassung / Ausblick	
11	l Literatu	rverzeichnis	186
12	2 Anhang		194

12.1	Auswertung LA-Tests	194
12.2	Auswertung LCPC-Tests	195
12.3	Auswertungen geochemische Eigenschaften des Ausbruchmaterials	195

Abbildungsverzeichnis

Abbildung 1: Verwendung von Gesteinskörnungen in % von 100 Mio. t/a	3
Abbildung 2: Die konkurrierenden Nutzungsansprüche des Rohstoffes Kies (nach Kündig et a	l.,
1997, und	3
Abbildung 3: Randbedingungen der Verwendung von Tunnelausbruchmaterial	8
Abbildung 4: Baurohstoffe in Österreich	9
Abbildung 5: Elution von lose eingebautem Tunnelausbruch – Eluationskonzentration der	
anthropogenen Parameter	12
Abbildung 6: Fällungsbereich einiger amphoterer Metalle	15
Abbildung 7: pH-Wert - Tunnelprojekt 9	23
Abbildung 8: Nitrit (N) - Tunnelprojekt 9	23
Abbildung 9: Ringversuch Auswertung Aluminium [mg/l] – Tunnelprojekt 9	23
Abbildung 10: Tunnelprojekt 10 – pH-Wert (vor und nach dem Vortrieb)	25
Abbildung 11: Tunnelprojekt 10 – elektrische Leitfähigkeit (vor und nach dem Vortrieb)	25
Abbildung 12: Tunnelprojekt 10 – Aluminium im Eluat (vor und nach dem Vortrieb)	
Abbildung 13: Tunnelprojekt 10 – Nitrit im Eluat (vor und nach dem Vortrieb)	26
Abbildung 14: Tunnelprojekt 11 – Gegenüberstellung pH-Wert	
Abbildung 15: Tunnelprojekt 11 – Gegenüberstellung elektrische Leitfähigkeit	27
Abbildung 16: Tunnelprojekt 12 – Gegenüberstellung pH-Wert	28
Abbildung 17: Tunnelprojekt 12 – Gegenüberstellung elektr. Leitfähigkeit	
Abbildung 18: Tunnelprojekt 13 – Gegenüberstellung pH-Wert	
Abbildung 19: Tunnelprojekt 13 – Gegenüberstellung elektr. Leitfähigkeit	
Abbildung 20: Tunnelprojekt 13 – Gegenüberstellung Parameter Chlorid (im Eluat)	31
Abbildung 21; Tunnelprojekt 13 - Gegenüberstellung Parameter Sulfat (im Eluat)	31
Abbildung 22: Tunnelprojekt 14 - Gegenüberstellung pH-Wert	
Abbildung 23: Tunnelprojekt 15 - Gegenüberstellung pH-Wert	
Abbildung 24: Tunnelprojekt 15 - Gegenüberstellung elektr. Leitfähigkeit	
Abbildung 25: Materialanfall in Abhängigkeit der Vortriebsart	38
Abbildung 26: Materialanfall bei einem TBM-Vortrieb in Abhängigkeit des	
Schneidrollenabstandes	
Abbildung 27: Bereiche möglicher Druckfestigkeiten verschiedener Gesteine in MPa. Die groß	
Schwankungsbreite erfordert eine ständige Eignungsprüfung	41
Abbildung 28: Schematische Darstellung eines Tunnelbaus mit den relevanten	
Expositionsklassen	
Abbildung 29: Grenzsieblinie GK 22 gem. ÖNORM B 4710-1	
Abbildung 30: Zunahme der Feinteile beim Transport von der Aufbereitung in den Mischer	
Abbildung 31: Wasseranspruch für Beton in Abhängigkeit von Konsistenz und Größtkorn bei	
günstiger Kornverteilung und Rundkorn	
Abbildung 32: Sieblinienbereich für Innenschalenbeton GK 16 – Regelbereich	
Abbildung 33: Sieblinienbereich für Innenschalenbeton GK 22 – Regelbereich	
Abbildung 34: Sieblinienbereich für Innenschalenbeton GK 32 – Regelbereich	
Abbildung 35: Günstiger Bereich der Gesamtsieblinie gem. ÖBV-RL Spritzbeton	55
Abbildung 36: Konsistenzvergleich zwischen Kiessandbeton und Beton mit gebrochener	
Grobkörnung	57
Abbildung 37: Einfluss der Gesteinskörnung auf Wasseranspruch, Verarbeitbarkeit und	_
Hohlraumgehalt	57

Abbildung 38: Empfohlenes Sieblinienband für Sand 0/3 mm bei Tunnelprojekt Koralmtunn	el 59
Abbildung 39: LA-Werte (Mittelwert aus drei Versuchen) in Abhängigkeit der Gesteins- und	
Aufbereitungsart	62
Abbildung 40: Sieblinien von Gesteinskörnungen vor und nach der Durchführung eines	
modifizierten LA-Tests	64
Abbildung 41: LCPC-Test	65
Abbildung 42: LCPC-Brechbarkeits-Index (Mittelwert aus drei Versuchen) in Abhängigkeit d	
Gesteins- und Aufbereitungsart	
Abbildung 43: Gegenüberstellung LA-Wert – LCPC-Brechbarkeitsindex	
Abbildung 44: LCPC-Abrasivitätsindex (A _{BR}) (Mittelwert aus drei Versuchen) in Abhängigkei	
der Gesteinsart	
Abbildung 45: Aufbau Cerchar – West-Gerät	
Abbildung 46: Prüfstiftabnutzung	
Abbildung 47: Cerchar-Abrasivitätsindex (CAI)	
Abbildung 48: Vergleich Cerchar-Abrasivitäts-Index – LCPC-Abrasivitätsindex	
Abbildung 49: Mittelwert Schichtsilikatgehalte in Abhängigkeit der Untersuchungsmethode	
Abbildung 50: Freie Schichtsilikate in Unterschiedlichen Korngruppen	
Abbildung 51: Formtrenntisch	
Abbildung 52: Einachsiale Druckfestigkeit ($f_{c,28d}$ und $f_{c,56d}$) in Abhängigkeit des Glimmergehal	
Abbituting 52. Efficience of ucklestigkeit (1c,28d und 1c,56d) in Abhangigkeit des Gillinner genal	
Abbildung 53: Variationen des Glimmergehaltes und der Glimmerarten im Zeitraum 2005 bi	
2009 auf der Baustelle Bodio/Faido des Gotthard-Basistunnels	
	02
Abbildung 54: Sieblinienbereich für ungebundene Obere Tragschichten 0/22 (im	0.0
Anlieferzustand)	80
Abbildung 55: Sieblinienbereich für ungebundene Obere Tragschichten 0/32 (im	0.7
Anlieferzustand)	
Abbildung 56: Sieblinie Schotter II (16/31,5 mm)	
Abbildung 57: Sieblinie Schotter I (31,5/63 mm)	
Abbildung 58: Zusammenhang zwischen den Ergebnissen des LA-Wert und der Schlagfestigk	
Abbildung 59: Wirtschaftlichkeit der Verwendung von Ausbruchmaterial	
Abbildung 60: Ablaufschema einer Ökobilanz	. 109
Abbildung 61: Ökobilanz des Materialbewirtschaftungskonzeptes Projektabschnitt Amsteg	
Gotthard-Basistunnel	. 110
Abbildung 62: Ungefährer Energiebedarf der Maschinen in einer Aufbereitungsanlage –	
Aufgabeleistung ca. 100 t/h	
Abbildung 63: Beispiel für die Kostenverteilung eines Steinbruchbetriebes	
Abbildung 64: Vereinfachtes Flussschema Kieswerk Pumpspeicherkraftwerk Limmern	. 115
Abbildung 65: Vergleich Prallbrecher/ Kegelbrecher: Anteil schlecht geformter Körner	. 118
Abbildung 66: Sieblinien der Baustelle Amsteg (Alp Transit Gotthard)	. 120
Abbildung 67: Friktionstrommel	. 121
Abbildung 68: Flussschema – Aufbereitungsversuche Forschungsprojekt "Recycling von	
Tunnelausbruchmaterial"	
Abbildung 69: Kornformkennzahl SI der Korngruppe 4/8 mm	
Abbildung 70: Kornformkennzahl SI der Korngruppe 8/16 und 16/32 mm	. 125
Abbildung 71: Kornformkennzahl SI der Korngruppe 8/11, 11/16, 16/22 und 22/32 mm	. 126
Abbildung 72: Korngruppensieblinien – Kalkglimmerschiefer	. 127
Abbildung 73: Korngruppensieblinien – Augengneis	. 127

Abbildung 74: Korngruppensieblinien – Kalkglimmerschiefer	127
Abbildung 75: Korngruppensieblinien – Amphibolit	128
Abbildung 76: Korngruppensieblinien – Granitgneis	128
Abbildung 77: Korngruppensieblinien – Raibler Dolomit	128
Abbildung 78: Kosten-Nutzen-Bilanz des Materialbewirtschaftungskonzepts – Gotthard	
Basistunnel	131
Abbildung 79: Phasen der Verwendung von Tunnelausbruchmaterial	133
Abbildung 80: Einflüsse auf die Materialbewirtschaftung	135
Abbildung 81: Nutzbreite Förderband	138
Abbildung 82: Materialbewirtschaftung	
Abbildung 83: Eingabeblatt 1 – Vortriebsklassen – Ausschnitt 1	
Abbildung 84: Makros aktivieren	146
Abbildung 85: Eingabeblatt 1 – Vortriebsklassen – Ausschnitt 2	147
Abbildung 86: Eingabeblatt 2 – Verwendungsklassen	149
Abbildung 87: Eingabeblatt 3 – Tunnelabschnitte	
Abbildung 88: Eingabeblatt 4 – Tunnelabschnitte	150
Abbildung 89: Ergebnisblatt 1 – Bauzeitplan	
Abbildung 90: Ergebnisblatt 2 – Betonverbrauch	
Abbildung 91: Ergebnisblatt 3 – Bedarf Gesteinskörnungen	152
Abbildung 92: Ergebnisblatt 4 – Materialanfall	
Abbildung 93: Ergebnisblatt 6 – Zwischenlager	
Abbildung 94: Ergebnisblatt 6 – Zusammenstellung	
Abbildung 95: Subunternehmervariante	
Abbildung 96: Unternehmervariante	161
Abbildung 97: Mischvariante	
Abbildung 98: Abfallhierarchie	
Abbildung 99: Ablaufschema UVP	176
Abbildung 100: Navigationsleiste Bewertungsmatrix	179
Abbildung 101: Eingabeblatt 1 – Technische Parameter	179
Abbildung 102: Ausschnitt Eingabeblatt 2 – Chemische Parameter	
Abbildung 103: Eingabeblatt – Mineralogische Parameter	
Abbildung 104: Eingabeblatt Sieblinie	
Abbildung 105: Ausschnitt Ergebnisblatt - BAWP / DepVO	
Abbildung 106: Ausschnitt Ergebnisblatt - BAWP / DepVO - Gesamtbeurteilung	182

Tabellenverzeichnis

Tabelle 1: Verwendung von kristallinem Material für die Betonherstellung	1
Tabelle 2: Geplante Hohlraumbauprojekte in Österreich [Quellen: Veröffentlichungen im	
Internet, 2011]	6
Tabelle 3: Auffahrlängen und Ausbruchvolumen der zum Jahreswechsel 2010/11 geplante	n
Tunnel in Deutschland	7
Tabelle 4: Verwendungspotentiale verschiedener Festgesteinsgruppen	10
Tabelle 5: Bodenkonditionierungsmittel in Abhängigkeit der Ortsbruststützung im	
Schildvortrieb	13
Tabelle 6: Sieblinien des Ausbruchmaterials (Mittelwerte des Siebdurchgangs) in Abhängi	gkeit
der Vortriebsart	37
Tabelle 7: Eigenschaften von Gesteinen	41
Tabelle 8: Anforderungen an Gesteinskörnungen	44
Tabelle 9: Kornoberfläche abhängig von der Sieblinie	48
Tabelle 10: Wasseraufnahme nach 24 h Wasserlagerung [M%][Mwilliam [M%]	50
Tabelle 11: Korrektur des anrechenbaren Mindestbindemittelgehaltes	51
Tabelle 12: Auszug aus Tabelle 3/2 der RL Innenschalenbeton – Anforderungen an	
Innenschalenbeton	51
Tabelle 13: Verwendung von Korngruppen und Korngemischen sowie zulässige	
Sieblinienbereiche	52
Tabelle 14: Innenschalenbeton - Massenanteile der Kornkruppen in Abhängigkeit des	
Größtkorns	54
Tabelle 15: Spritzbeton - Massenanteile der Kornkruppen in Abhängigkeit des Größtkorns	55
Tabelle 16: Maximaler Anteil an Abschlämmbarem gem. der Grenzsieblinien ÖNORM B 47:	10-1
	59
Tabelle 17: Mehlkorngehalt (Anteil ≤ 0,125 mm) gem. RL Innenschalenbeton	60
Tabelle 18: Empfohlener Mehlkorngehalt (Kornanteil mit Korngröße < 0,125 mm) gem. ÖN	NORM
B 4710-1	60
Tabelle 19: Probenzubereitung für das Los-Angeles _{d/1,3} -Verfahren	62
Tabelle 20: Klassifikationsschema Brechbarkeitsindex B _R	65
Tabelle 21: Klassifizierung des LCPC-Abrasivitätsindex (A _{BR}), gewonnen aus dem LCPC	
Abrasivitäts Test, im Vergleich mit dem Cerchar-Abrasivitätsindex (CAI) und den zugehöri	gen
Abrasivitäts-Bezeichnungen	69
Tabelle 22: Tabelle 3/3 der RL-Innenschale – Vorschlag für die Zusammensetzung	
(Mischungsverhältnis) von Innenschalenbeton mit Nachweis am Festbeton	73
Tabelle 23: Richtwerte für die Zusammensetzung des Mischgutes für die Spritzbetonklasse	en SpC
II und SpC III gem. ÖBV-RL Spritzbeton	74
Tabelle 24: Betonrezeptur Tübbingbeton Katzenbergtunnel	75
Tabelle 25: Vor- und Nachteile von Beton-Zusatzmittel	75
Tabelle 26: Einachsiale Druckfestigkeit (f _{c,28d} und f _{c,56d}) in Abhängigkeit des Glimmergehal	tes80
Tabelle 27: Versuche/Grenzwerte – Gesteinskörnungen für die Betonproduktion -	
Entwurfsphase	83
Tabelle 28: Versuche/Grenzwerte – Gesteinskörnungen für die Betonproduktion -	
Planungsphase	83
Tabelle 29: Anforderungen an Korngemische für ungebundene tragschichten (Bezeichnung	
Kategorien gem. ÖNORM B 3132)	_

Tabelle 30: Einsatzbereiche für Recyclingbaustoffe bzw. Tunnelausbruchmaterial	86
Tabelle 31: Typische LA-Koeffizienten	90
Tabelle 32: Anforderungen an Bahnschotter	92
Tabelle 33: Anforderungen an Gesteinskörnungen für Asphaltmischgut	94
Tabelle 34: Anforderungen an Gesteinskörnungen für Asphaltmischgut in der Entwurfspha	ase94
Tabelle 35: Durchschnittliche Korngrößenverteilung in Ziegeltonen	95
Tabelle 36: Durchschnittliche chemische Zusammensetzung von deutschen Mauerziegelma	assen
	96
Tabelle 37: Durchschnittlicher Mineralbestand von deutschen Mauerziegelmassen	96
Tabelle 38: Anforderungen an Rohkalkstein	98
Tabelle 39: Korngrößenbereiche der Bodengruppen	99
Tabelle 40: Form der Körnungslinie	
Tabelle 41: Geeignete Bodenarten für Dammschüttungen	100
Tabelle 42: Bedingt geeignete Bodenarten für Dammschüttungen	
Tabelle 43: Geeignete Bodenarten für den Hinterfüllungs- und Überschüttungsbereich	100
Tabelle 44: Untersuchungen in der Entwurfsphase (an Probebohrungen) und in der	
Planungsphase (an aufbereiteten Gesteinskörnungen)	103
Tabelle 45: Untersuchungen in der Planungsphase – an aufbereiteten Gesteinskörnungen	
(zusätzliche Untersuchungen zu jenen der Planungsphase)	
Tabelle 46: Deponierungskosten	
Tabelle 47: Aufgabeleistungen von Aufbereitungsanlagen [Quelle: Firmenprospekte]	113
Tabelle 48: Anteil der Korngruppen an aufbereiteten Material bzw. Baustellenbedarf	
Tabelle 49: Auswahlkriterien für Brecher	
Tabelle 50: Rückmischende Horizontalschlämmanlage (Klassiertank) zur Aufbereitung von	
nach einer vorgegeben Sieblinie	121
Tabelle 51: Aufbereitungsmethode mit der besten Kornformkennzahl SI in Abhängigkeit d	er
Korngruppe	
Tabelle 52: Planungsphasen Koralm-Tunnel	
Tabelle 53: Untersuchungsmethoden abhängig von der Gesteinsart	
Tabelle 54: Mögliche verwendungsspezifische Prüfungen	
Tabelle 55: Mögliche tabellarische Darstellung der Verwendungsklassen	
Tabelle 56: Materialbilanz Aufbereitungsanlage Raron – Lötschberg Basistunnel	
Tabelle 57: Materialbilanz Gotthard-Basistunnel	
Tabelle 58: Materialbilanz geeignetes Material für Gesteinskörnungen	
Tabelle 59: Materialbilanz Materialbewirtschaftung Bodio	
Tabelle 60: Eingabemöglichkeit Betonbedarf in Abhängigkeit der Vortriebsart	
Tabelle 61: Ausbruchquerschnitt und Betonbedarf in Abhängigkeit der Vortriebsart	
Tabelle 62: Verantwortungsbereiche bei Verwendung des Ausbruchmaterials auf der Baus	
Tabelle 63: Aufgabenverteilung Materialbewirtschaftung Nord, Lötschberg-Basistunnel	
Tabelle 64: Haupt- und Zusatzproben gem. DepVO	166
Tabelle 65: Gegenüberstellung der Parameter gem. Deponieverordnung (DepVO) und	
Bundesabfallwirtschaftsplan (BAWP)	168
Tabelle 66: Qualitätsklassen - Einsatzbereiche für Recyclingbaustoffe (Pkt. 7.14 BAWP)	
Tabelle 67: Übersicht über die Anwendungsbereiche der einzelnen Qualitätsklassen (Pkt. 7	
BAWP)	170
Tabelle 68: Gegenüberstellung chem. Parameter (vgl. Anhang)	171
Tabelle 69: Altlastenbeitrag ab 2012 (vgl. §6 ALSAG)	172

Abkürzungsverzeichnis

AAR Alkali-Aggregat-Reaktion AKR Alkali-Kieselsäure-Reaktion

AHWZ Aufbereitete hydraulisch wirksame Zusatzstoffe

ALSAG Altlastensanierungsgesetz

AT Arbeitstag ausg. ausgenommen

AWG Abfallwirtschaftsgesetz
BAWP Bundesabfallwirtschaftsplan

BR Brechbarkeitsindex
BRV Baustoffrecyclingverband

BV Betonverflüssiger bzw. beziehungsweise DB Deutsche Bahn DepVO Deponieverordnung

d.h. das heißt

DSV Düsenstrahlverfahren

EPB Erddruckschild (Earth Pressure Balance Shield)

et al. und andere FM Fließmittel gem. gemäß GK Größtkorn

GWU Grenzwertunterschreitung GWÜ Grenzwertüberschreitung

i.d.R. in der Regel

IG Innenschale Gewölbe Normalbereich
 IGP Innenschale Gewölbe Portalbereich
 IGT Innenschale Gewölbe Taumittelangriff
 IS Innenschale Sohle Normalbereich
 ISP Innenschale Sohle Portalbereich

IXAL Innenschale (Gewölbe, Sohle) mit Sulfatangriff (400 – 1500 SO₄²⁻)
IXAT Innenschale (Gewölbe, Sohle) mit kurzzeitig stark lösendem Angriff

LA Los-Angels-Wert

lfm Laufmeter LP Luftporen lt. laut

MAB Materialaufbereitung

mind. mindestens

NATM New Austrian Tunnelling Method

NBS Neubaustrecke

ÖBV Österreichischer Bautechnik Verein (ehemals ÖVBB - Österreichischer Verein für

Beton- und Bautechnik)

OGH Oberster Gerichtshof

REAP Ressourceneffizienz Aktionsplan

RL Richtlinie

SI Kornformkennzahl

STUVA Studiengesellschaft für unterirdische Verkehrsanlagen

TBM Tunnelbohrmaschine
TS Trockensubstanz
TSM Teilschnittmaschine

TVA Technische Verordnung über Abfälle (Schweiz)

TVM Tunnelvortriebsmaschine

Tunnelwasseraufbereitung Umweltverträglichkeitsprüfung Verwaltungsgerichtshof Verzögerer TWAB UVP

VwGH

VZ

WDI Wasserundurchlässige Innenschale

1 Einleitung

Ausbruchmaterial ist ein Produkt des Tunnel-, Stollen- und Kavernenbaus, welches im Zuge des Vortriebs gewonnen wird. Im Falle der Verwendung kann das Ausbruchmaterial der Gruppe der mineralischen Rohstoffe zugeordnet werden.

Aufgrund der Verknappung der natürlichen Vorkommen an mineralischen Rohstoffen sowie aus Umweltschutzgründen (Flächenverbrauch, Deponievolumen, Transportaufkommen) besteht das öffentliche Interesse Ausbruchmaterial einer Verwendung zuzuführen.

Zu den dabei verfolgten Zielen der Verwendung des Ausbruchmaterials gehören unter anderem:¹

- die maximale Verwendung des anfallenden Ausbruchmaterials,
- die optimale Wirtschaftlichkeit der gesamten Materialbewirtschaftung,
- die Minimierung der Umweltbelastung durch Materialtransport und -aufbereitung.

Erste Erfahrungen mit der Verwendung des Ausbruchmaterials für die Betonproduktion konnten in Österreich bereits bei der Errichtung von Wasserkraftwerken und Verkehrstunnelbauten gewonnen werden (Beispiele siehe Tabelle 1).

Bauzeit	Projekt	Geologie	Verwertetes Materialvolumen
1945 - 1955	Kraftwerksanlage Kaprun	Kalkglimmerschiefer	1,0 Mio. m ³
1966 – 1971	Zemmkraftwerke (2 Kraftstationen, Triebwasserstollen 14 km, Sperre Schlegeis)	Gneise (Glimmer- gehalt 13 – 30%)	1,4 Mio. m ³
1972 – 1978	Maltakraftwerke (2 Kraftstationen, Triebwasserstollen 24 km, Kölnbreinsperre)	Gneise (Glimmer- gehalt 15 – 25%)	2,4 Mio. m ³
1981 - 1987	Zillerkraftwerke (Krafthaus Häusling)	Gneise (Glimmer- gehalt 14 - 30%)	1,7 Mio. m ³
1992 - 1993	Sittenbergtunnel (Innenschalenbeton GK 45)	Granolit	0,2 Mio. m ³
2005 - 2006	Pumpspeicherwerk Feldsee (Innenschalenbeton)	Gneise (Glimmer- gehalt 15 - 20%)	0,02 Mio. m ³

Tabelle 1: Verwendung von kristallinem Material für die Betonherstellung²

Als Vorbild in diesem Zusammenhang können auch die Baumaßnahmen der neuen Eisenbahn-Alpentransversale (NEAT) in der Schweiz herangezogen werden. Bei den Tunnelprojekten Lötschberg-, Gotthard- und Ceneri-Basistunnel war bzw. ist die Verwendung des Ausbruchmaterials wesentlicher Projektsbestandteil. Das Ausbruchmaterial wird dabei erfolgreich als Gesteinskörnung für die Betonproduktion bzw. als Schüttmaterial herangezogen.

Aufbauend auf diesen Erfahrungen und unter Berücksichtigung, dass in Österreich in naher Zukunft viele Kilometer an Tunnelprojekten geplant bzw. gebaut werden, werden seit Dezember 2008 in einem von der Forschungsförderungsgesellschaft unterstützten Forschungsprojekt mögliche Verwendungsszenarien von Tunnelausbruch untersucht.

)C1 2007, 5. 1.

¹ Vgl. [54] Resch, Lassnig, Galler, Ebner 2009, S. 613.

² [38] Huber 2009, S. 1.

Die vorliegende Arbeit beschäftigt sich mit den Randbedingungen, welche direkten Einfluss auf eine Verwendung des Tunnelausbruchmaterials haben. Dabei wird teilweise auf die Ergebnisse des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" zurückgegriffen.

Für die Beantwortung der Frage, ob das anfallende Ausbruchmaterial als Rohstoff verwendet werden kann, sind geologische, technische, wirtschaftliche und rechtliche Randbedingungen zu berücksichtigen. Es handelt sich somit um einen interdisziplinären Entscheidungsprozess.

Ziel der Dissertation ist es, sowohl eine Bewertungsmatrix als auch ein Massenmanagementtool zu entwickeln, welche die Planung der Verwendbarkeit von Tunnelausbruchmaterial in der Projektierungsphase erleichtern sollen.

Hierfür werden in der vorliegenden Arbeit einzelne Randbedingungen der Verwendung näher betrachtet und daraus Entscheidungskriterien abgeleitet. Die so ermittelten Entscheidungskriterien bilden die Grundlage der Bewertungsmatrix.

Da es sich, wie im Bauwesen üblich, bei einem Tunnelprojekt immer um eine "Einzelanfertigung" handelt kann es auch erforderlich sein, von den beschriebenen Entscheidungskriterien abzuweichen.

Weiters werden um die Auswirkungen der Vortriebsarbeiten auf die chemischen Eigenschaften des Ausbruchmaterials festzustellen von ausgeführten Tunnelprojekten die chemischen Analysen des Ausbruchmaterials ausgewertet.

In Zukunft muss es Ziel sein, dass die Überprüfung bzw. Planung einer Nutzung des Ausbruchmaterials bei jedem Tunnelprojekt ein wesentlicher Bestandteil der Projektierungsphase ist und der Projektierende umgekehrt als heute nachweisen muss, warum sich einzelne Ausbruchmaterialien nicht verwenden lassen und daher deponiert werden müssen. Unter dieser Voraussetzung könnte der Untertagebau in Zukunft einen wesentlichen Beitrag zur Schonung der natürlichen Ressourcen und zur CO₂-Reduktion leisten.

Das Ausbruchmaterial unterliegt nach der derzeit gültigen Rechtsgrundlage dem Abfallrecht (vgl. Pkt. 8). In diesem Zusammenhang werden bei der Verwendung von Tunnelausbruchmaterial auch häufig die Begriffe Recycling sowie Verwertung verwendet.

Vereinfacht wird als Verwertung jedes Verfahren bezeichnet, welches Abfälle in umweltgerechter Weise einem sinnvollen Zweck zuführt. Unter Recycling versteht man Verwertungsverfahren, welche Abfallmaterialien zu Produkten, Sachen oder Stoffen aufbereitet. (Vgl. §2 (5)AWG)

Da Ausbruchmaterial jedoch als potentieller Primärrohstoff und nicht als Abfall anzusehen ist, wird in der vorliegenden Arbeit immer von einer möglichen Verwendung und nicht von einer möglichen Verwertung bzw. einem möglichen Recycling des Ausbruchmaterials gesprochen.

1.1 Natürliche Ressourcen an mineralischen Rohstoffen in Österreich

In der Studie "Die volkswirtschaftliche Bedeutung mineralischer Rohstoffe in Österreich" wurde im Jahr 2007 der jährliche Verbrauch an mineralischen Rohstoffen mit 100,1 Mio. t abgeschätzt. Demnach beträgt der pro Kopf Verbrauch an mineralischen Rohstoffen ca. 12 t/Jahr.

Hauptbestandteile der mineralischen Rohstoffe sind dabei Stoffe wie Sand, Kies, Naturstein, Kalk, Lehm, Mergel, Schiefer, Gips und Industriemehl. Zusätzlich wurde der Gesamtverbrauch in

2

³ Vgl. [3] Forum mineralische Rohstoffe

die Gruppe der Natursteine (4,8 Mio. t) sowie Kiese, Sande, Tone und Kaolin (95,3 Mio. t) unterteilt.

Die unterschiedlichen Verwendungsformen der Gesteinskörnungen sind in Abbildung 1 dargestellt.

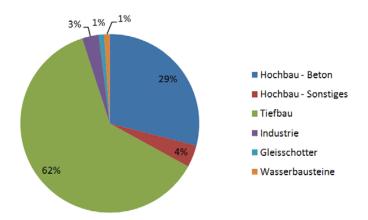


Abbildung 1: Verwendung von Gesteinskörnungen in % von 100 Mio. t/a4

Der Großteil des Rohstoffbedarfs kann durch österreichische Lagerstätten gedeckt werden. Ca. 90% der gewonnenen mineralischen Rohstoffe kommen im Bauwesen als Baustoffe bzw. als Rohstoffe für die Produktion von Bauprodukten zum Einsatz.

Diesem großen Bedarf an mineralischen Rohstoffen steht ein durch unterschiedliche Nutzungsansprüche verminderter Raum für die Produktion (z.B. Steinbrüche) gegenüber. In Abbildung 2 werden beispielhaft die konkurrierenden Nutzungsansprüche des Rohstoffes Kies dargestellt.

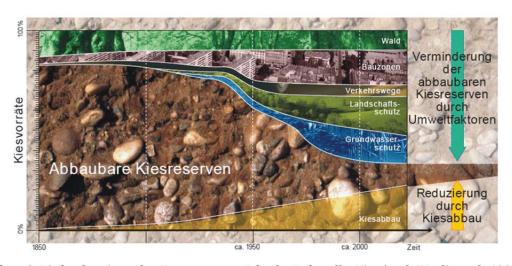


Abbildung 2: Die konkurrierenden Nutzungsansprüche des Rohstoffes Kies (nach Kündig et al., 1997, und Jäckli & Schindler, 1986, verändert)⁵

Als Antwort auf

- die Einschränkung der Zugänglichkeit natürlicher Ressourcen sowie
- die Ressourcenverknappung hervorgerufen durch die wirtschaftliche Entwicklung,

wurde in Österreich durch das Bundesministerium für Wirtschaft, Familie und Jugend der "Österreichische Rohstoffplan" entwickelt.

⁴ [14] Fachverband Steine-Keramik 2009, S. 19.

⁵ Vgl. [4] Geologische Bundesanstalt 2004, S. 31.

Mit dem Ziel langfristig Vorkommen von mineralischen Rohstoffen zu sichern, wurden dadurch erstmals potentielle Lagerstätten anderen Nutzungsansprüchen bzw. einem prognostiziertem Rohstoffbedarf gegenübergestellt.⁶ Als Ergebnis konnten so z.B. Rohstoffflächen identifiziert werden, welche eine Versorgung jedes politischen Bezirkes mit Sand und Kies in den nächsten 50 Jahren gewährleisten. Um die Sicherung der so ausgewiesen Flächen zu ermöglichen, bedarf es jedoch auch einer Berücksichtigung in der Raumplanung der Gemeinden.

Parallel zur Sicherung der Vorkommen gibt es auch Bemühungen den Ressourcenverbrauch einzuschränken. Als aktuellstes Beispiel hierfür kann der Ressourceneffizienz Aktionsplan⁷ (REAP) genannt werden, der dazu beitragen soll, dass der österreichische Ressourcenverbrauch reduziert wird. Als Ziel wird darin mitunter eine Kreislaufwirtschaft, in welcher mineralische Rohstoffe im Nutzungskreislauf gehalten werden, definiert.

Parallel zu den innerstaatlichen Bestrebungen, wird auch durch die Gesetzgebung der europäischen Union aktiv zur Schonung der natürlichen Ressourcen beigetragen.

Ein Beispiel hierfür ist die Rohstoffinitiative der Europäischen Kommission⁸. In dieser wird eine Strategie zur Sicherung der Rohstoffversorgung von Europa beschrieben. In Zukunft sollen die Rahmenbedingungen so gestaltet werden, dass eine dauerhafte Rohstoffversorgung aus europäischen Quellen begünstigt, sowie die Ressourceneffizienz erhöht wird.

In diesem Zusammenhang ist auch die Abfallrahmenrichtlinie (2008/98/EG) zu sehen in der festgelegt wurde, dass bis zum Jahr 2020 die Wiederverwendung oder das Recyceln von nicht gefährlichen Bau- und Abbruchabfällen auf 70 Gewichtsprozent zu steigern ist.⁹ Diese Bestimmung wurde bereits mit der Novelle des Abfallwirtschaftsgesetzes¹⁰ (AWG) in österreichisches Gesetz umgesetzt.

Auch in der neuen Bauproduktenverordnung¹¹ wird auf eine nachhaltige Nutzung der natürlichen Ressourcen verwiesen. Demnach müssen für Bauwerke umweltverträgliche Rohstoffe und Sekundärbaustoffe verwendet werden.

Das Bestreben Tunnelausbruchmaterial nicht zu deponieren sondern einer Verwendung zuzuführen entspricht somit auch den österreichischen sowie der europäischen Zielen, Rohstoffe zu sichern bzw. einzusparen.

1.2 Zukünftige Tunnelprojekte

In einer Abschätzung des Gesamtbauvolumens von zukünftigen Tunnelbauprojekte werden von *HAACK* (2007) für Europa ca. 2.100 km und für Asian ca. 2.500 km angegeben. Hierbei ist jedoch zu berücksichtigen, dass diese Abschätzung vor der Finanz- und Wirtschaftskrise (ab 2008) erfolgte.

⁶ Vgl. [7] Wasserbauer 2007, S. 391 – 396; [8] Weber 2008, S. 289 – 295.

⁷ [94] Ressourceneffizienz Aktionsplan 2012.

⁸ [95] Mitteilung der Kommission an das Europäische Parlament und den Rat 2008.

⁹ Vgl. [6] Richtlinie 2008/98/EG 2008, S. 13.

¹⁰ Vgl. [1] Bundesgesetz über die nachhaltige Abfallwirtschaft 2002, S. 13.

¹¹ [96] Verordnung zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten 2011

¹² Vgl. [11] Haack 2007, S. 13.

In der Folge wird anhand einer tabellarischen Auswertung der zukünftigen Tunnelprojekte das Mengenpotential an Ausbruchmaterial für die Länder Österreich und Deutschland angegeben. Hervorgerufen durch anstehende Großprojekte (Ö: Koralm-, Semmering-, Brenner-Basistunnel; D: München, Stuttgart 21, NBS Wendlingen-Ulm) ist in beiden Ländern in den nächsten Jahren mit dem Anfall großer Ausbruchsmassen zu rechnen.

In der Schweiz wurden in den letzten Jahren mit den Tunnelprojekten Lötschberg- und Gotthard-Basistunnel zwei Großprojekte ausgeführt, bei welchen auch die Verwendung des anfallenden Ausbruchmaterials wesentlicher Projektinhalt war. Mit dem Ceneri-Basistunnel (ca. 15,4 km) wird aktuell wieder ein großes Verkehrstunnelgroßprojekt in der Schweiz verwirklicht.

1.2.1 Zukünftige Tunnelprojekte in Österreich

In Österreich befinden sich zurzeit eine Vielzahl von Untertagebauprojekten im Planungs- bzw. Ausführungsstadium. Es handelt sich dabei sowohl um Verkehrs- (U-Bahn, Autobahn, Eisenbahn) als auch Kraftwerksprojekte. Detailangaben zu den Projekten können der Tabelle 2 entnommen werden. Grundlage der angegeben Daten waren Veröffentlichungen von Auftraggebern bzw. Studien. Hierbei ist jedoch zu berücksichtigen, dass es, aufgrund der teilweise noch ausstehenden Detailplanung, zu wesentlichen Änderungen der angegebenen Daten kommen kann. Einige der angegebenen Projekte befinden sich auch erst in der Vorprojektsphase.

Würde das dabei anfallende Ausbruchvolumen auf bereits bestehende Deponien verbracht, würde dadurch ein wesentlicher Teil des freien Deponievolumens in Österreich (z.B. Bodenaushubdeponie 39,5 Mio. m³)¹³ aufgebraucht. Aus diesem Grund und aus Gründen der Erreichbarkeit wird meist im Nahbereich einer Tunnelbaustelle eine Deponie für das Ausbruchmaterial errichtet.

5

¹³ Vgl. [12] Bundesabfallwirtschaftsplan 2011, S. 117 (Datenlage 2008).

Tunnel	Nutzung	Bundesland		Bezeichnung	Bauherr	Tunnel-/ Stollenlänge	Baubeginn	Ausbruchmaterial fest
Klausertunnel	Straßen		2. Röhre	A9 Pyhrnautobahn	Asfinag	2,2	2016	
Traunfriedtunnel	Straßen	ÖÖ	2. Röhre	A9 Pyhrnautobahn	Asfinag	0,45	2016	1
Speringtunnel	Straßen	ÖÖ	2. Röhre	A9 Pyhrnautobahn	Asfinag	2,9	2016	
Falkensteintunnel	Straßen	ÖÖ	2. Röhre	A9 Pyhrnautobahn	Asfinag	8′0	2016	-
Gleinalmtunnel	Straßen	ST	2. Röhre	A9 Pyhrnautobahn	Asfiang	8,3	-	000'.
Tschirganttunnel	Straßen	F	1 Röhre + Fluchttunnel	A 12 Inntal Autobahn	Asfinag	4,3		515.000
Freinberg	Straßen	ÖÖ	1 Röhre	A 26 Linzer Autobahn	Asfinag	3,2	2014 - 2015	900.000
Freinberg Rampen Donau Süd 1+2	Straßen	ÖÖ	1 Röhre	A 26 Linzer Autobahn	Asfinag	0,37	-	
Pöstlingberg	Straßen	ÖÖ	1 Röhre	A 26 Linzer Autobahn	Asfinag	2,75	-	
Pöstlingberg Donau Nord 1+2	Straßen	ÖÖ	1 Röhre	A 26 Linzer Autobahn	Asfinag	0,21	-	
Lobautunnel	Straßen	*	2 Röhren	S 1 Wiener Außenring Schnells traße	Asfinag	8,3	2014	2.320.000
Rudersdorf	Straßen	ST		S 7 Fürstenfelder Schnellstraße	Asfinag	2,9	-	
Speltenbach	Straßen	ST		S 7 Fürstenfelder Schnellstraße	Asfinag	1	-	
Götschka	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	4,44	2011	,
Neumarkt	Straßen	ÖÖ	2. Röhre	S10 Mühlviertler Schnellstraße Süd	Asfinag	1,97	2012	
Unterflurtrasse Pernau	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	0,27	2012	
Unterflurtrasse Lest	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	0,545	2012	
Unterflurtrasse Gangsiedling	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	0,275	2012	
Unterflurtrasse Walchshof	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	8′0	2011	
Satzinger Siedlung	Straßen	ÖÖ	2 Röhren	S10 Mühlvi ertler Schnell straße Süd	Asfinag	0,293	2011	
Manzenreith	Straßen	ÖÖ	2 Röhren	S10 Mühlviertler Schnellstraße Süd	Asfinag	0,763	2011	
Semmering Basistunnel	Bahn	NÖ/ST	2 Röhren		ÖBB	27,3	2012	5.000.000
			2 Röhren +		:			
Brenner Basistunnel	Bahn	-	Entwässerungss tollen	•	OBB	55	2010	16.015.700
Koralmtunnel	Bahn	ST/K	2 Röhren		ÖBB	32,9	2008	5.000.000
Pummers dorfer Tunnel	Bahn	ÖN	1 Röhre	Lückenschluss St. Pölten - Loosdorf	ÖBB	3,5	2011	
Radleitentunnel	Bahn	ÖN	1 Röhre	Lückenschluss St. Pölten - Loosdorf	ÖBB	0,39	2012	
Bründlkapellentunnel	Bahn	NÖ	1 Röhre	Lückenschluss St. Pölten - Loosdorf	ÖBB	0,82	2012	
Kaunertal	Wasserkraft	T	Wasserstollen	Ausbau des Kraftwerkes Kaunertal	TIWAG	22,9	-	1.375.000 (exkl. Kavernen)
Kühtai	Wasserkraft	⊢	Wasserstollen	Ausbau des Kraftwerkes Sellrain Silz	TIWAG	25,5	-	560.000 (exkl. Kavernen)
Malfontal	Wasserkraft	Т	Wasserstollen	Neubau Speicherkraftwerk Malfontal	TIWAG	,	-	-
Matrei	Wasserkraft	⊢	Wasserstollen	Naubau Speicherkraftwerk Matrei	TIWAG	,	-	
Gemeins chafts kraftwerk Inn	Wasserkraft	T	Wasserstollen	Wasserstollen Neubau Gemeinschaftskraftwerk Inn	Verbund + TIWAG	22,6	2012	950.000
Limberg III	Wasserkraft	S	Wasserstollen	Wasserstollen Ausbau Speicherkraftwerk	Verbund	1	-	170.000 (Limberg II exkl. Kavernen)
Reisseck II	Wasserkraft	¥	Wasserstollen	Ausbau Speicherkraftwerk	Verbund		2010	120.000 (exkl. Kavernen)
Energiespeicher Riedel	Wasserkraft	00	Wasserstollen	Wasserstollen Pumpspeicherkraftwerk	Verbund	Schrägschacht 0,51; Unterwasserstollen 0,41	2014	
Ebensee / Traunsee	Wasserkraft	ÖÖ	Wasserstollen	Pumpspeicherkraftwerk	Energie AG		-	
Molin / Kalkbergwerk	Wasserkraft	ÖÖ	Wasserstollen	Wasserstollen Pumpspeicherkraftwerk	Bernegger	5 Kavernen zu je 1,5 km; Ø 16 m		1
Pfenningberg / Donau	Wasserkraft	ÖÖ	Wasserstollen	Pumpspeicherkraftwerk			-	
Rellswerk	Wasserkraft	>	Wasserstollen	Pumpspeicherkraftwerk	ILLWERKE	,	2012	
Obervermuntwerk II	Wasserkraft	>	Wasserstollen	Ausbau Speicherkraftwerk	ILLWERKE		2013	
U1-Verlängerung	U-Bahn	×	2 Röhren	Reumannplatz - Rothneusiedel	WienerLinien	1,9	2012	240.000
U2-Verlängerung	U-Bahn	W	2 Röhren	Karlsplatz - Gudrunstrasse	Wiener Linien	4,7	-	-

Tabelle 2: Geplante Hohlraumbauprojekte in Österreich [Quellen: Veröffentlichungen im Internet, 2011]

1.2.2 Zukünftige Tunnelprojekte in Deutschland

Für das Gebiet der Bundesrepublik Deutschland werden schon seit längerem bestehende und zukünftige Tunnelbauten statistisch durch die Studiengesellschaft für unterirdische Verkehrsanlagen (STUVA) erfasst. Da die Größe eines Tunnelprojektes nicht nur von der Auffahrlänge sondern auch vom auszubrechenden Tunnelquerschnitt abhängig ist, wird durch die STUVA auch das zu erwartenden Ausbruchvolumen angegeben. In Tabelle 3 werden abhängig von der Tunnelart die Gesamt-Auffahrlänge sowie das Gesamt-Ausbruchvolumen angegeben.

Art der Tunnelnutzung	Auffahrlänge	Ausbruchvolumnen	
	[km]	[10 ³ m ³]	
ZUS: U-, Stadt-, S-Bahn	39,839	2.855,0	
ZB: Fernbahn	174,629	18.996,0	
ZS: Straßen	173,013	21.593,6	
Verkehrstunnel	387,481	43.444,6	
ZA: Abwasser	55,380	501,3	
ZV: Versorgung	0,000	0,0	
ZSo: Sonstiges	4,430	802,4	
Gesamt	447,291	44.748,3	

Tabelle 3: Auffahrlängen und Ausbruchvolumen der zum Jahreswechsel 2010/11 geplanten Tunnel in Deutschland. 14

Durch die zukünftigen Tunnelprojekte in Deutschland ist demnach ein Ausbruchvolumen von ca. $44,4\,$ Mio. $m^3\,$ zu erwarten. Multipliziert mit einer Dichte von $2,6\,$ t/ $m^3\,$ ergibt das eine Gesamtmasse von ca. $115\,$ Mio. t.

Verglichen mit der in Deutschland jährlich produzierten Menge an Sand und Kies von ca. 461 Mio. t^{15} entspricht das ca. 25% der Jahresproduktion.

Hierbei muss jedoch berücksichtigt werden, dass das Ausbruchmaterial nur in seltenen Fällen zu 100% als mineralischer Rohstoff verwendet werden kann. Weiters werden die geplanten Tunnelprojekte im Verlauf von mehreren Jahren verwirklicht. Der mögliche Anteil an der Jahresproduktion von Sand und Kies, welcher durch Ausbruchmaterial abgedeckt werden könnte, verringert sich somit wesentlich.

¹⁴ Vgl. [9] Haack, Schäfer 2010, S. 32.

¹⁵ Vgl. [10] Tiess 2005, S. 35.

2 Randbedingungen der Verwendung von Tunnelausbruchmaterial

2.1 Allgemeines

Die Verwendung des Ausbruchmaterials ist wesentlich von den Eigenschaften und damit der Qualität des Ausbruchmaterials abhängig. Wie eingangs bereits erwähnt sind dabei geologische, technische, rechtliche und wirtschaftliche Randbedingungen zu berücksichtigen.

Eine erste Abschätzung einer möglichen Verwendung kann nach Beurteilung

- geotechnischer Parameter (z.B. Bruchspannung, Kohäsion, innerer Reibungswinkel,...),
- geochemischer Bestandteile (z.B. Anteil an CaO, SiO₂, MgO, Fe₂O₃, Al₂O₃, MnO, SO₃,...) und
- mineralogischer Zusammensetzung (z.B. Anteil an Calcit, Feldspat, Dolomit, Quarz, Glimmer,...)

erfolgen. Ist daraus abgeleitet eine Verwendung möglich sind weitere technische aber auch rechtliche Rahmenbedingungen zu beurteilen.

Hierbei ist zu beachten, dass durch technische Rahmenbedingungen wie die Lösemethode, die Materialaufbereitung und Baustellenorganisation (Materialtransport, Zwischenlagerung) die Eigenschaften des Ausbruchmaterials wie z.B. Kornform, Korngröße und Geochemie beeinflusst werden können.

Um die ökologischen Auswirkungen verschiedener Verwendungsszenarien beurteilen zu können, kann die Methode der Öko-Bilanz herangezogen werden.

Aus rechtlicher Sicht sind vor allem die Fragestellungen bezüglich des Abfallrechtes, des Eigentums sowie Vergabemodelle für die Materialverwendung zu beurteilen.

Entspricht das Ausbruchmaterial Anforderungen eines marktgängigen mineralischen Rohstoffes, ist zusätzlich zu den beschriebenen Randbedingungen auch der baustellenexterne Rohstoffbedarf in die Planung miteinzubeziehen.

In Abbildung 3 werden die Randbedingungen der Verwendung von Tunnelausbruchmaterial gesamthaft dargestellt.



Abbildung 3: Randbedingungen der Verwendung von Tunnelausbruchmaterial¹⁶

_

¹⁶ [5] Jodl, Resch 2011, S. 344.

2.2 Geologische Rahmenbedingungen in Österreich

Österreich lässt sich den geologischen Zonen

- Alpen (Ost- und Südalpen),
- Molassezone und Tertiärbecken sowie der
- Böhmischen Masse

zuordnen. In allen Zonen werden dabei Gesteine als Baurohstoffe bzw. Rohstoffe für bestimmte Verwendungen abgebaut.

In Abbildung 4 werden die Abbauorte für Baurohstoffe, welche in Österreich die bedeutendste Gruppe der festen mineralischen Rohstoffe bilden, dargestellt. Dabei wird zwischen Fest- und Lockergesteinen bzw. deren Untergruppen unterschieden.

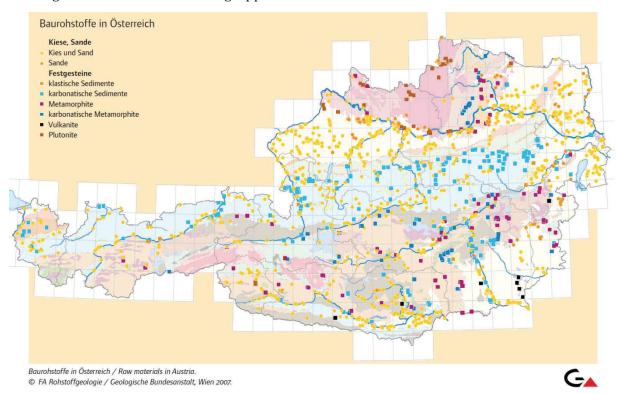


Abbildung 4: Baurohstoffe in Österreich¹⁷

Betrachtet man die Verteilung der Abbauorte so fällt auf, dass diese gleichmäßig über Österreich verteilt sind. Obwohl es sich bei diesen zumeist um obertägige Abbaustellen handelt, liefert die Lage der Abbauorte auch einen Hinweis auf die Qualität bzw. auf eventuell vorhandene Verwendungsmöglichkeiten des Tunnelausbruchmaterials von unterirdischen Verkehrs- bzw. Kraftwerksprojekten.

Gleichzeitig lassen sich aus der Abbildung wirtschaftliche Transportdistanzen für Baurohstoffe in Österreich ableiten (vgl. Pkt. 5.1).

¹⁷ [53]Heinrich 2011.

Verwendungspotentiale

Den unterschiedlichen Festgesteinsgruppen können mit Ausnahme einer großstückigen Verwendung folgende Verwendungspotentiale zugeordnet werden.

Verwendungspotential Festgesteingruppe	Zuschlagstoff für karbonatischen Splittbeton	Zuschlagstoff für silikatischen Splittbeton	Zuschlagstoff für metallurgische Prozesse	Gesteinsmehle für die Landwirtschaft	Schmelzbasalt, Mineralfasern	Flußmittel	Filterstoff	Wasseraufbereitung	Zementrohstoff	Glasherstellung	Futtermittel	Umweltbereich (Wasser, Boden, Luft)	Chemische Industrie	Nahrungsmittelindustrie	Füllstoffe	Feuerfestindsutrie	Farben-, Lackindustrie	Beton-und Mörtelindustrie, Körnungen	Gleisschotter
Karbonatgesteine (Kalke, Dolomite)	Х		Х	Х					Х		Х	Х	Х	Х	Х	Х	Х	Х	
Karbonatische Metamorphite (Marmore)	Х		Х	Х					Х		Х	Х	Х	Х	Х	Х	Х	Х	
Silikatische Metamorphite		х		х					Х										
Vulkanite: basische V.				х	Х	Х	Х	Х											х
Vulkanite: saure V.				х		Х			Х	Х									
Plutonite (Granite)		х																	х

Tabelle 4: Verwendungspotentiale verschiedener Festgesteinsgruppen

Mögliche Verwendungsmöglichkeiten von Lockersedimenten sind beispielsweise:

- Kies, Sand: Gesteinskörnungen für Beton und Mörtel
- Mergel: Zementherstellung
- Tone: Ziegelproduktion, Abdichtungsmaterial
- Quarzsande: Glas-, Zement-, Keramik-, Farben-, Lackproduktion

3 Veränderung der Eigenschaften des Ausbruchmaterials durch externe Einflüsse

Die natürlichen Eigenschaften des Ausbruchmaterials sind von den vorherrschenden geologischen Randbedingungen abhängig. Aufgrund externer Einflüsse durch die Vortriebsarbeiten bzw. der Materialbewirtschaftung kann es jedoch zu einer Veränderung dieser natürlichen Eigenschaften kommen.

Vor allem die geochemischen aber auch die geotechnischen Eigenschaften des anfallenden Ausbruchmaterials können durch externe Einflussfaktoren wesentlich von den geogenen Eigenschaften des anstehenden Materials abweichen.

Ausgehend von Literaturangaben und Untersuchungen von Ausbruchmaterial ausgeführter Tunnelprojekte werden in der Folge mögliche Veränderungen beschrieben.

3.1 Beeinflussung der geochemischen Eigenschaften des Ausbruchmaterials durch die Vortriebsarbeiten

Die geogen bedingten geochemischen Eigenschaften des Ausbruchmaterials können durch die Vortriebsarbeiten (anthropogen) wesentlich beeinflusst werden. In der Vergangenheit war dies vor allem in Bezug auf die Zuordnung des Ausbruchmaterials zu einer Deponieklasse gem. Deponieverordnung¹8 von wesentlicher Bedeutung. Hierfür müssen die chemischen Gehalte im Feststoff und im Eluat bestimmt und mit festgelegten Grenzwerten verglichen werden.

Auch im Fall der Verwendung des Ausbruchmaterials sind die Grenzwerte der chemischen Parameter gem. Bundesabfallwirtschaftsplan¹⁹ einzuhalten.

Im Falle der Verwendung als Industriemineral gelten die chemischen Qualitätsvorgaben des Abnehmers.

Um ein mögliches Verwerwendungspotential abschätzen zu können, ist es daher von Interesse die Auswirkungen der Vortriebsarbeiten auf die chemischen Eigenschaften des Ausbruchmaterials im Vorhinein abzuschätzen.

Stoffeintrag beim NATM-Vortrieb

Im Zuge von Eluatversuchen an Ausbruchmaterial^{20, 21} konnten folgende Grundsätze festgestellt werden:

• Durch den Sprengvortrieb werden lösliche Anteile an Nitrat (NO₃-), Nitrit (NO₂-), und Ammonium (NH₄+) in das Ausbruchmaterial eingetragen.

Nitrat (NO₃-): 6,0 bis 15,0 g-N/Tonne Ausbruch
 Nitrit (NO₂-): 1,0 bis 2,4 g-N/Tonne Ausbruch

o Ammonium (NH₄+): 0,2 bis 3,3 g-N/Tonne Ausbruch

¹⁸ Vgl. [15] Deponieverordnung 2008.

¹⁹ Vgl. [12] Bundesabfallwirtschaftsplan 2011, S. 277 – 279.

²⁰ Vgl. [16] Saxer 1996, S. 48-54.

²¹ Vgl. [19] Saxer 1997, S. 111 – 118.

• Der Stoffaustrag, verursacht durch anthropogene Einflüsse, verläuft in Abhängigkeit des Verhältnisses Eluat zu Feststoff (E/F) nicht linear. Dies bedeutet, dass im Falle einer Auslaugung durch Wasser der Austrag der anthropogenen löslichen Stoffe mit zunehmendem Verhältnis E/F abnimmt. In der Abbildung 5 werden die Konzentrationen der anthropogenen Stoffe Nitrit, Nitrat und Ammonium in den Teileluaten dargestellt.

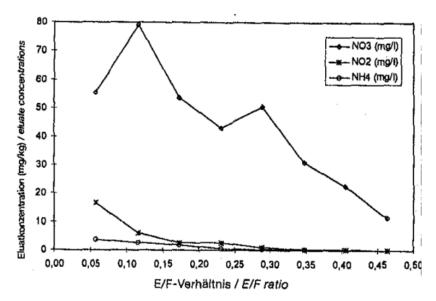


Abbildung 5: Elution von lose eingebautem Tunnelausbruch – Eluationskonzentration der anthropogenen Parameter 22

- Aus dem Maschinenbereich können Öle, Fette, Treibstoffe etc. in das Ausbruchmaterial eingetragen werden.
- Bei Spritzbetonrückständen im Ausbruchmaterial verursacht der lösliche Anteil des Kalkhydrats (Auslaugung von Calcium) eine Erhöhung des pH-Wertes bzw. der Leitfähigkeit.

Im modernen Sprengvortrieb werden heute hauptsächlich Sprengstoffe welche auf Ammonsalpeter (NH₄NO₃) basieren eingesetzt. Das Ausbruchmaterial kann dabei durch das Absetzen von Sprengschwaden bzw. durch Rückstände von nicht umgesetzten Sprengstoffen verunreinigt werden. Wird der Sprengstoff nicht vollständig umgesetzt sind abhängig vom umgebenden chemischen Regime folgende physikalisch-chemische Reaktionsabläufe denkbar²³:

- Basisches Regime anorganisch: NH₄+ Ionen werden zu Ammoniak (NH₃) umgewandelt.
- Basisches Regime organisch: Durch bakterielle Umsetzung von Ammonsalpeter (NH₄NO₃) in Stickstoff (N₂) kann Ammoniak (NH₃) freigesetzt werden.
- Neutrales Regime: Bakterielle Umwandlung von Ammonsalpeter (NH₄NO₃) in Nitrit (NO₂).

Stoffeintrag beim maschinellen Vortrieb

Gem. *SAXER* (1996) kann es im Maschinenbereich zu einem Eintrag von Ölen, Fetten, Treibstoffen etc. in das Ausbruchmaterial kommen.

-

²² [16] Saxer, Lukas 1996, S. 51.

²³ Vgl. [21] Orica Germany GmbH 2006, S. 34.

Beim maschinellen Vortrieb im Lockergestein können durch die Zugabe von Konditionierungsmitteln die chemischen Eigenschaften des Ausbruchmaterials verändert werden. Hinsichtlich der verwendeten Konditionierungsmittel ist zwischen erddruckgestützter und flüssigkeitsgestützter Ortsbrust zu unterscheiden.

Ortsbrust	Lockergestein	Konditionierungsmittel
erddruckgestützt	kohäsionslos	Tensidschäume mit möglicher zusätzli- cher Verwendung von Polymeren
or aur uongostatzt	kohäsiv	Polymer-, Bentonit- und Tonsuspensio- nen bzw. Wasser
flüssigkeitsgestützt		Flüssige Additive

Tabelle 5: Bodenkonditionierungsmittel in Abhängigkeit der Ortsbruststützung im Schildvortrieb²⁴

Auch im Zuge der Errichtung des Katzenbergtunnels (DB-Neubaustrecke Karlsruhe-Basel) kamen in Teilbereichen des Vortriebes Tenside als Konditionierungsmittel zur Anwendung. Die Abbaubarkeit der verwendeten Tenside wurde in diesem Fall aufgrund einer Gefährdungsabschätzung durch die Genehmigungsbehörde aus umwelttechnischer Sicht als günstig eingestuft. Dies wurde auch bei Untersuchungen des anfallenden Ausbruchmaterials (2006-2007) bestätigt. Als Auswirkung der Verwendung der Tenside konnte dabei ein erhöhter Gehalt an DOC (dissolved organic carbon = gelöster organischer Kohlenstoff) im anfallenden Ausbruchmaterial festgestellt werden. Untersuchungen des eingebauten Ausbruchmaterials im Steinbruch nach Beendigung des Vortriebs (2008) lassen weiters darauf rückschließen, dass ein Abbau der erhöhten DOC-Gehalte (Ø DOC von 6 auf 3 mg/l) des Ausbruchmaterials auf der Deponie erfolgte. Zur Stabilisierung des breiigen Ausbruchmaterials wurde Weißfeinkalk zugegeben.²⁵

Stoffeintrag durch Bauhilfsmaßnahmen

Vor allem beim Vortrieb im Lockergestein kann es erforderlich sein, den anstehenden Boden durch Bauhilfsmaßnahmen im Vorfeld der Vortriebsarbeiten zu ertüchtigen. Ein häufig verwendetes Verfahren stellt dabei das Düsenstrahlverfahren (DSV²⁶) dar. Bei diesem Verfahren wird ein zementhaltiges Bindemittel unter hohem Druck in den Untergrund eingebracht. Da üblicherweise größere Mengen an Bindemitteln eingebracht werden als der Boden aufnehmen kann, kommt es gleichzeitig zu einem Rücklauf entlang des Bohrgestänges. Der Rücklauf setzt sich dabei aus Bodenbestandteilen und eingebrachter Bindemittelsuspension zusammen. Aufgrund des hohen Anteils an Bindemitteln wird der Rücklauf gesammelt und nach Trennung der Bestandteile entsorgt. Eine Durchmischung mit dem Ausbruchmaterial ist nach Möglichkeit zu vermeiden. WEISSENBERGER (2010) beschreibt in einem Baustellenbericht, dass abhängig von den geologischen Rahmenbedingungen, mit einem Rücklauf von 0,25 – 1,0 m³ pro m³ des bearbeiteten Bodens zu rechnen ist. Weiters wird darauf hingewiesen, dass die verwendete Suspension Schwermetalle (vor allem Chrom-VI) enthielt.²⁷

Auswirkungen des Düsenstrahlverfahrens auf die chemischen Eigenschaften des Ausbruchmaterials konnten auch bei der Auswertung der chemischen Untersuchungen von durchgeführten Tunnelprojekten festgestellt werden (vgl. Pkt. 3.1.1.10).

²⁵ Vgl. [97] Haid, Hammer 2009, S. 643 – 651.

²⁴ Vgl. [23] Maidl 2011, S. 443.

²⁶ Auch als HDI-, Jet-Grouting- sowie Soilcrete-Verfahren bezeichnet.

²⁷ Vgl. [22] Weissenberger 2010.

Auch Bodeninjektionen können als Bauhilfsmaßnahme im Tunnelbau zum Einsatz kommen. Als Injektionsmittel kommen hierbei Zementsuspensionen, Chemikalien oder Feinstbindemittel zur Anwendung.

Verunreinigung von Schlämmen aus Tunnelentwässerung und Materialaufbereitung

Beim Bau des Gotthard Basistunnels wurde nachgewiesen, dass die anfallenden Schlämme aus der Tunnelentwässerung und der Materialaufbereitung zum Teil erheblich mit Nitrit, Ammonium, Kohlenwasserstoffe und Chromat (Chrom VI) belastet waren.

Folgende Quellen der anthropogenen Verunreinigung konnten dabei identifiziert werden²⁸:

- Kohlenwasserstoffe: Schmiermittel, Treibstoffe und Hydraulikflüssigkeiten
 - Aliphatische Kohlenwasserstoffe > C 10
 - * Schlamm aus Materialaufbereitung (MAB-Schlamm): bis 300 resp. 1.000 mg/kg TS
 - * Schlamm aus Tunnelwasseraufbereitung (TWAB-Schlamm): 500 bis 5.000 mg/kg TS, wiederholt auch bis 10.000 mg/kg TS
 - * MAB-Schlämme aus dem Sprengvortrieb weisen eine höher Belastung durch Kohlenwasserstoffe auf als jene aus einem TBM-Vortrieb
- Nitrit und Ammonium: Sprengvortrieb
 - MAB-Schlamm: Nitrit-Gehalt 1,0 bis 7,0 mg/l, im Einzelfall bis 10 mg/l (Eluat gem. technischer Verordnung über Abfälle - TVA²⁹)
 - o TWAB-Schlamm: Nitrit-Gehalt bis zu 5 mg/l (Eluat TVA)
 - Werden Querschläge im Sprengvortrieb ausgeführt kann auch TBM-Material durch Vermischung des anfallenden Ausbruchmaterials mit Nitrit belastet werden.
 - Im Zuge der Materialaufbereitung kommt es zu einer starken Anreicherung des Prozesswassers (und in weiterer Folge des Schlammes) mit Nitrit.
- Chromat: Spritzbetonrückprall bzw. Eluationen aus eingebautem Spritz- und Ortbeton
 - o Chromat (Chrom VI)³⁰:
 - * MAB-Schlamm: bis zu 0,1 mg/l (Eluat TVA)
 - * TWAB-Schlamm: < 0,1 mg/l (Eluat TVA)

Eluattest

Die Eluierbarkeit von Ausbruchmaterial wird mit Hilfe von Eluationstests untersucht. Es handelt sich dabei um Auslaugversuche, bei welchen organische und anorganische Stoffe durch das Auslaugmittel (z.B. Wasser) aus dem Ausbruchmaterial gelöst werden.

_

²⁸ Vgl. [17] Hitz 2011

²⁹ [18] Technische Verordnung über Abfälle (TVA) 1990

³⁰ Im Gegensatz zur Schweiz gilt in Österreich seit Jänner 2005 (gem. EU-Richtlinie 21003/53/EG) ein Grenzwert für den Gehalt an löslichem Chrom in Zement und zementhaltige Stoffen von 0,0002% der Trockenmasse des Zementes. Aus diesem Grund sind die Werte des Gotthard-Basistunnels nicht auf Österreich übertragbar.

Wird zur Beschreibung des Ausbruchmaterials ein Eluattest durchgeführt ist zu berücksichtigen, dass es durch eine Veränderung des pH-Wertes auch zu Änderung der Löslichkeit von amphoteren Metallen kommen kann. Es kann somit vorkommen, dass z.B. Aluminium welches geogen vorhanden ist, durch die Veränderungen des pH-Wertes, verursacht durch den Einsatz von hydraulischem Bindemittel, verstärkt in Lösung geht. Dieser Zusammenhang wird in Abbildung 6 dargestellt.

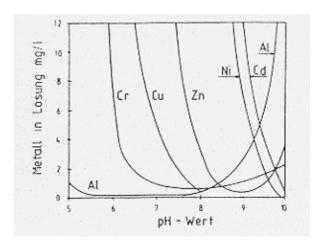


Abbildung 6: Fällungsbereich einiger amphoterer Metalle³¹

Die ermittelte Eluierbarkeit ist somit auch von den Randbedingungen der Untersuchung abhängig. Die Untersuchungsergebnisse können auch durch die Temperatur, dem Verhältnis Ausbruchmaterial-Auslaugmittel aber auch durch die Korngröße des Ausbruchmaterials und somit von der Oberfläche des Ausbruchmaterials beeinflusst werden.

In vielen Fällen wird das Ausbruchmaterial für die Durchführung von Eluattests im Labor zerkleinert. Entspricht diese Korngröße jedoch nicht der Korngröße des für eine Verwendung vorgesehenen Ausbruchmaterials, können die ermittelten Ergebnisse auch nicht für die Beschreibung des tatsächlich zu erwartenden Auslaugverhaltens des Ausbruchmaterials herangezogen werden. Ausbruchmaterial bzw. aus diesem gewonnene Bestandteile sollten daher immer mit ihrer bestimmungsgemäßen Korngröße beurteilt werden.

3.1.1 Vergleich geochemischer Eigenschaften des Ausbruchmaterials

Ausgehend von vorliegenden Daten ausgeführter Tunnelprojekte wurden die chemischen Eigenschaften des Ausbruchmaterials ausgewertet. Grundlage waren jeweils die gem. Deponieverordnung vorgeschriebenen Beurteilungen des Ausbruchmaterials anhand von Haupt- und Nebenproben.

Anhand von vorliegenden Untersuchungen einzelner Tunnelprojekte werden in der Folge Maximal-, Minimalwerte sowie der Durchschnitt der einzelnen Parameter angegeben. Um die Streuung der Gehalte zu beschreiben wurde auch die Standardabweichung berechnet. Die der Auswertung zugrunde liegende Anzahl der Untersuchungen wird in der Spalte "n" (siehe Tabellen unten) angegeben.

Die einzelnen Tunnelprojekte werden mittels durchlaufender Nummerierung gekennzeichnet.

Der Übersichtlichkeit wegen werden nur die Gehalte im Eluat der Parameter pH-Wert, elektrische Leitfähigkeit, Aluminium, Ammonium, Nitrat und Nitrit angegeben. In Ausnahmefällen

³¹ Vgl. [20] Institut für nachhaltige Abfallwirtschaft und Entsorgungstechnik 2009.

werden die Angaben zusätzlich durch die Gehalte im Feststoff der Parameter TOC und Kohlenwasserstoff-Index ergänzt. Erfahrungen haben gezeigt, dass vor allem diese Parameter bei der Bestimmung der Deponieklasse von Bedeutung sind.

Die Gesamtübersicht der ausgewerteten Parameter kann dem Anhang entnommen werden.

Um die Auswirkungen der Vortriebsarbeiten auf die chemischen Eigenschaften des Ausbruchmaterials näher beschreiben zu können wurde, bei einzelnen Tunnelprojekten auch ein Vergleich mit den chemischen Eigenschaften des Ausgangsmaterials (vor den Vortriebsarbeiten) angestellt.

3.1.1.1 Tunnelprojekt 1

Vortriebsart	Tunnellänge	Ausgewertete Proben
Baggervortrieb in Teilquerschnitten mit	2 x ca. 2 km	4 Hauptproben;
teilweiser Auflockerungssprengung;		4 Nebenproben
Offene Bauweise		

Auswertung der chemischen Untersuchungen

				Messwert						
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³²	n	Max.	Min.	Durch- schnitt	Standard- abweichung			
Gehalte im Eluat										
pH-Wert	-	6,5 - 11 (12) ¹⁾	4	11,7	9,4	10,1	0,9			
Leitfähigkeit	mS/m	150 (250)1)	4	123,1	8,5	37,7	49,3			
Aluminium	mg/kg TS	*2)	4	7,8	0,2	2,1	3,3			
Ammonium	mg/kg TS	8	8	24,9	0,22	5,4	7,6			
Nitrat	mg/kg TS	100	4	2,3	2,3	2,3	-			
Nitrit	mg/kg TS	2	4	0,3	0,3	0,3	-			

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Das Ausbruchmaterial überschreitet in einem Fall die Grenzwerte der Bodenaushubdeponie gem. Deponieverordnung. Als Grund der einmaligen Überschreitung der Ammonium (NH₄-N) Konzentration wurde eine kurz vor der Probenentnahme durchgeführte Lockerungssprengung identifiziert.

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

³² Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

3.1.1.2 Tunnelprojekt 2

Vortriebsart	Tunnellänge	Ausgewertete Proben
NATM;	2 x ca. 2 km	18 Hauptproben;
Offene Bauweise		15 Nebenproben

Auswertung der chemischen Untersuchungen

				Messwert						
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³³	n	Max.	Min.	Durch- schnitt	Standard- abweichung			
	Gehalte im Eluat									
pH-Wert	-	6,5 - 11 (12)1)	31	12,2	8,9	11,0	0,9			
Leitfähigkeit	mS/m	150 (250) ¹⁾	31	517	13,0	85,7	88,4			
Aluminium	mg/kg TS	*2)	-	-	-	-	-			
Ammonium	mg/kg TS	8	27	6,1	0,2	1,5	1,8			
Nitrat	mg/kg TS	100	27	12,1	2,3	3,5	2,9			
Nitrit	mg/kg TS	2	27	0,7	0,2	0,3	0,2			

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Insgesamt wurde der Grenzwert für den pH-Wert gem. Bodenaushubdeponie 17 mal überschritten. In 16 Fällen konnte das Ausbruchmaterial aufgrund keiner weiteren Grenzwertüberschreitung und der daraus resultierenden erlaubten Erhöhung des pH-Grenzwertes als Bodenaushubmaterial eingestuft werden. Eine Probe wurde der Baurestmassendeponie zugeordnet, da in diesem Fall auch der Grenzwert der elektrischen Leitfähigkeit überschritten wurde.

Aufgrund einer geogenen Vorbelastung wurde zusätzlich bei 2 Proben der Grenzwert für Nickel im Festgehalt überschritten (vgl. Anhang).

3.1.1.3 Tunnelprojekt 3

Vortriebsart	Tunnellänge	Ausgewertete Proben
NATM (Flüssigsprengstoff)	ca. 5 km	16 Hauptproben;
		35 Nebenproben

Auswertung der chemischen Untersuchungen

			Messwert						
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³⁴	n	Max.	Min.	Durch- schnitt	Standard- abweichung		
	Gehalte im Eluat								
pH-Wert	-	6,5 - 11 (12) ¹⁾	51	11,1	8,4	9,2	0,5		
Leitfähigkeit	mS/m	150 (250) ¹⁾	51	106,0	4,3	16,2	14,8		
Aluminium	mg/kg TS	*2)	9	7,3	0,1	1,7	2,0		
Ammonium	mg/kg TS	8	51	8,9	1,0	2,8	1,1		
Nitrat	mg/kg TS	100	51	80	0,1	4,2	10,9		
Nitrit	mg/kg TS	2	51	11	0,1	0,5	1,6		

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

³³ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

³⁴ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Anmerkungen

Insgesamt wurden 2 Proben der Baurestmassendeponie zugeordnet. Verantwortlich hierfür waren Grenzwertüberschreitungen der Parameter Kohlenwasserstoffindex (im Festgehalt) sowie pH-Wert, Aluminium, Ammonium und Nitrit (im Eluat).

3.1.1.4 Tunnelprojekt 4

Vortriebsart	Tunnellänge	Ausgewertete Proben
NATM (Emulsionssprengstoff)	ca.3 km	9 Hauptproben
		13 Nebenproben

Auswertung der chemischen Untersuchungen

			Messwert					
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³⁵	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
		Geha	alte in	Eluat				
pH-Wert	-	6,5 - 11 (12)1)	22	12,3	8,7	10,7	0,9	
Leitfähigkeit	mS/m	150 (250)1)	20	103,5	9,6	39,6	25,4	
Aluminium	mg/kg TS	*2)	8	37,0	0,9	13,8	9,8	
Ammonium	mg/kg TS	8	22	53,5	0,1	12,0	11,0	
Nitrat	mg/kg TS	100	22	171	16,7	61,0	35,8	
Nitrit	mg/kg TS	2	22	3,5	0,2	1,2	0,8	
		Gehal	te im I	eststoff				
TOC	mg/kg TS	30.000	4	91,9	10,0	47,4	25,7	
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	13	56,0	14,0	32,8	12,0	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Nahezu bei jeder Beprobung des Ausbruchmaterials konnten einzelne oder auch mehrere Überschreitungen der Grenzwerte der Bodenaushubdeponie festgestellt werden. Als Quelle der erhöhten Parameter Stickstoff-Verbindungen, pH-Wert sowie Kohlenwasserstoff-Index konnte der verwendete Emulsionssprengstoff, basierend auf einer Wasser-in-Öl-Emulsion, identifiziert werden.

Gleichzeitig wurde eine höhere Belastung des Kalotten-Ausbruchmaterials im Vergleich zum Strossen-Ausbruchmaterials festgestellt. Dieser Unterschied lässt sich durch den höheren Sprengstoffverbrauch in der Kalotte erklären.

Das Ausbruchmaterial wurde überwiegend der Baurestmassendeponie zugeordnet.

 $^{^{2)}}$ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

 $^{^{3)}}$ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC \leq 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und \leq 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

³⁵ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

3.1.1.5 Tunnelprojekt 5

Vortriebsart	Tunnellänge	Ausgewertete Proben
Baggervortrieb	ca.1 km	1 Sammelprobe aus 40 Stichpro-
		ben; Entnommen von der Bo-
		denaushubdeponie

Auswertung der chemischen Untersuchungen

				Messwert	
Parameter	Einheit	Grenzwert Bodenaushub- deponie ³⁶	Maximum	Minimum	Durchschnitt
		Gehalte im Elu	ıat		
pH-Wert	-	6,5 - 11 (12) ¹⁾	-	-	11,2
Leitfähigkeit	mS/m	150 (250) ¹⁾	-	-	48
Aluminium	mg/kg TS	*2)	-	-	-
Ammonium	mg/kg TS	8	-	-	0,43
Nitrat	mg/kg TS	100	-	-	0,17
Nitrit	mg/kg TS	2	-	-	<0,2
		Gehalte im Fest	stoff		
TOC	mg/kg TS	30.000	-	-	4.000
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	-	-	48

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

In der Mischprobe konnte ein pH-Wert von 11,2 nachgewiesen werde. Da keine weiteren Grenzwerte der Parameter der Bodenaushubdeponie überschritten wurden, wurde das Ausbruchmaterial der Deponieklasse Bodenaushubdeponie zugeordnet.

3.1.1.6 Tunnelprojekt 6

Vortriebsart	Tunnellänge	Ausgewertete Proben	
NATM; Baggervortrieb	ca. 3 km	7 Hauptproben;	
		4 Nebenproben	

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

 $^{^{3)}}$ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC \leq 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und \leq 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

³⁶ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Auswertung der chemischen Untersuchungen

			Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³⁷	n	Max.	Min.	Durch- schnitt	Standard- abweichung
Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12) ¹⁾	11	12,6	7,8	10,9	1,3
Leitfähigkeit	mS/m	150 (250) ¹⁾	11	396,0	0,2	129,8	109,9
Aluminium	mg/kg TS	*2)	8	32,4	0,7	10,0	12,1
Ammonium	mg/kg TS	8	11	3,0	0,2	1,4	0,8
Nitrat	mg/kg TS	100	11	88,0	0,1	18,4	27,8
Nitrit	mg/kg TS	2	11	11,4	0,1	2,0	3,1
Gehalte im Feststoff							
TOC	mg/kg TS	30.000	10	103000	0,5	31.210,0	39.077,9
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	11	380	20	89,6	113,0

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Beim Maximalwert der Parameter Kohlenwasserstoffindex und TOC-Gehalte handelte es ich um ein einmaliges Ereignis. Eine weitere Beprobung zeigte keine Überschreitungen bei den Gesamtgehalten.

Auch bei anderen Proben konnten Überschreitungen der Parametergrenzwerte der Bodenaushubdeponie nachgewiesen werden. In diesem Fall wurde das Ausbruchmaterial der Baurestmassendeponie zugeordnet.

3.1.1.7 Tunnelprojekt 7

Vortriebsart	Tunnellänge	Ausgewertete Proben
NATM	2 x ca. 3 km	11 Hauptproben;
		9 Nebenproben

Auswertung der chemischen Untersuchungen

			Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³⁸	n	Max.	Min.	Durch- schnitt	Standard- abweichung
Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12)1)	27	12,1	7,6	10,0	1,4
Leitfähigkeit	mS/m	150 (250) ¹⁾	25	329,0	9,7	51,2	66,6
Aluminium	mg/kg TS	*2)	24	26,0	0,9	5,6	6,8
Ammonium	mg/kg TS	8	-	-	-	-	-
Nitrat	mg/kg TS	100	-	-	-	-	-
Nitrit	mg/kg TS	2	23	5,2	0,1	0,8	1,1

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

 $^{^{3)}}$ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und < 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

 $^{^{\}rm 2)}$ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

³⁷ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

³⁸ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Anmerkungen

In Teilbereichen des Tunnels wurden aufgrund von geogen bedingten Eigenschaften des Ausbruchmaterials (Serpentinitzug) die Grenzwerte im Festgehalt für Chrom, Kobalt, Nickel und Cadmium für die Bodenaushubdeponie überschritten.

Bei einzelnen Proben wurden zusätzlich Überschreitungen der Grenzwerte für Aluminium und Nitrit im Eluat festgestellt.

Gem. einer Gesamtbeurteilung des Ausbruchmaterials sind die Grenzwertüberschreitungen auf die geologischen Randbedingungen zurückzuführen. Das Ausbruchmaterial wurde auf einer Bodenaushubdeponie abgelagert.

3.1.1.8 Tunnelprojekt 8

Vortriebsart	Tunnellänge	Ausgewertete Proben
NATM	ca. 4 km	18 Hauptproben und Nebenproben
		88 von der Deponie entnommene
		Proben

Auswertung der chemischen Untersuchungen

			Messwert					
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ³⁹	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
Gehalte im Eluat								
pH-Wert	-	6,5 - 11 (12)1)	76	11,1	7,1	9,3	0,9	
Leitfähigkeit	mS/m	150 (250) ¹⁾	77	508	6,7	66,0	57,8	
Aluminium	mg/kg TS	*2)	84	32,0	0,2	8,1	7,7	
Ammonium	mg/kg TS	8	128	2,0	0,4	0,4	0,2	
Nitrat	mg/kg TS	100	83	8,5	1,0	2,7	1,7	
Nitrit	mg/kg TS	2	128	1,3	0,3	0,9	0,2	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Beim vorliegenden Tunnelprojekt erfolgte die Probenentnehme für die Untersuchung der chemischen Eigenschaften des Ausbruchmaterials im Tunnel als auch am Haufwerk des abgelagerten Ausbruchmaterials.

Für beide Entnahmestellen wurden die Maximal-, Minimal sowie die Durchschnittswerte der einzelnen Parameter ermittelt. Betrachtet man die Ergebnisse der Gegenüberstellungen (siehe Anhang) so kann festgestellt werden, dass sich diese abhängig von der Entnahmestelle teilweise wesentlich unterscheiden.

Eine allgemein gültige Aussage, wonach bei einer der beiden Entnahmestellen höhere Werte festgestellt wurden, kann jedoch nicht aus der Gegenüberstellung abgeleitet werden. Es ist jedoch sehr gut erkennbar, dass es sich bei der Bestimmung der chemischen Eigenschaften des Ausbruchmaterials nur um eine stichprobenartige Betrachtung handelt und das Ergebnis der Untersuchung wesentlich von der Art der Probenentnahme abhängig sein kann.

Im Zuge des Tunnelprojektes wurde das Ausbruchmaterial zu großen Teilen für Schüttmaßnahmen verwendet.

 $^{^{2)}\,}Der\,Wert\,ist\,zu\,bestimmen\,und\,in\,die\,Beurteilung\,des\,Deponieverhaltens\,mit\,einzubeziehen.$

³⁹ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

3.1.1.9 Tunnelprojekt 9

Vortriebsart	Tunnellänge	Ausgewertete Proben	
NATM; Baggervortrieb	ca. 3 km	9 Hauptproben und Nebenproben	

Auswertung der chemischen Untersuchungen

			Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ⁴⁰	n	Max.	Min.	Durch- schnitt	Standard- abweichung
		Geha	alte in	ı Eluat			
pH-Wert	-	6,5 - 11 (12)1)	9	12,0	9,3	11,3	0,8
Leitfähigkeit	mS/m	150 (250) ¹⁾	9	292,0	7,7	111,3	79,2
Aluminium	mg/kg TS	*2)	3	15,5	0,2	6,9	6,4
Ammonium	mg/kg TS	8	9	10,1	1,0	5,3	2,9
Nitrat	mg/kg TS	100	9	149,0	10,0	59,2	40,1
Nitrit	mg/kg TS	2	9	24,7	0,1	7,7	7,5
Gehalte im Feststoff							
TOC	mg/kg TS	30.000	9	33000	1050	13211,1	11708,7
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	9	190,0	20,0	56,0	49,7

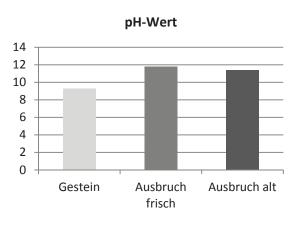
¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Das Ausbruchmaterial überschreitet teilweise die Grenzwerte der Bodenaushubdeponie. Dies betrifft die Parameter pH-Wert, Leitfähigkeit, Aluminium, Ammonium und Nitrit. Die erhöhten Aluminiumwerte wurden in einer Analyse (mit hoher Wahrscheinlichkeit) auf Spritzbetonrückstände und hier vor allem auf den Beschleuniger zurückgeführt.

Als Spb-Beschleuniger können neben Silikaten auch Natrium- oder Kaliumaluminat, amorphe Aluminiumhydroxide und Aluminiumsulfat zur Anwendung kommen.

Zur Verifizierung der Untersuchungsergebnisse des Labors 1 wurden Vergleichsuntersuchungen durchgeführt. Das hierfür erforderliche Probenmaterial wurde an folgenden Stellen entnommen:


- anstehender Fels (Gestein)
- Zwischendeponie (Ausbruch frisch)
- Deponie (Ausbruch alt Ablagerungsdauer ca. 2 Monate)

Die Gegenüberstellung der dabei ermittelten Werte für die Parameter pH-Wert und Nitrit werden in Abbildung 7 und Abbildung 8 angegeben (vgl. Anhang).

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

^{3) – 50} mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und ≤ 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

⁴⁰ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

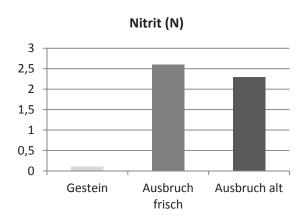


Abbildung 7: pH-Wert - Tunnelprojekt 9

Abbildung 8: Nitrit (N) - Tunnelprojekt 9

Die tendenzielle $\rm NO_2$ -Abnahme mit zunehmender Alterung des Materials kann auf Oxidation des Nitrits zurückgeführt werden. 41

Aufgrund der unterschiedlichen Ergebnisse beim Parameter Aluminium in Abhängigkeit des beauftragten Labors wurde zusätzlich ein Ringversuch (5 Labors) durchgeführt. Dabei konnte nachgewiesen werden, dass die Art der Filtration des Eluats einen maßgeblichen Einfluss auf das Analyseergebnis hat. In der nachfolgenden Abbildung werden die unterschiedlichen Untersuchungsergebnisse dargestellt.

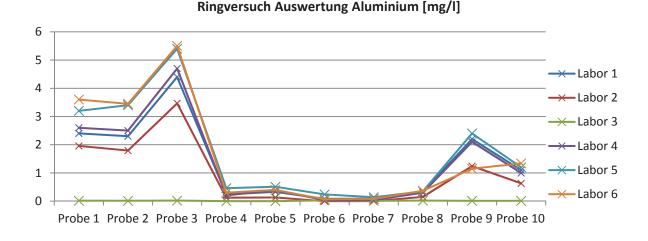


Abbildung 9: Ringversuch Auswertung Aluminium [mg/l] – Tunnelprojekt 942

Das anfallende Ausbruchmaterial wurde auf einer Baurestmassendeponie abgelagert.

⁴¹ Baustellendokumentation Tunnelausbruchmaterial

⁴² Dokumentation – Analytik Tunnelausbruchmaterial; Tunnelprojekt 9.

3.1.1.10 Tunnelprojekt 10

Vortriebsart	Tunnellänge	Ausgewertete Proben
Baggervortrieb mit teilweiser DSV-	ca. 1 km	42 Hauptproben und Nebenpro-
Sicherung		ben;
		26 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen

			Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ⁴³	n	Max.	Min.	Durch- schnitt	Standard- abweichung
		Geha	alte in	ı Eluat			
pH-Wert	-	6,5 - 11 (12)1)	39	12,6	10,5	11,8	0,5
Leitfähigkeit	mS/m	150 (250) ¹⁾	39	266,0	37,0	138,7	52,3
Aluminium	mg/kg TS	*2)	32	20,0	0,9	14,8	6,1
Ammonium	mg/kg TS	8	39	8,5	1,0	1,6	1,4
Nitrat	mg/kg TS	100	26	42,0	2,0	3,7	7,7
Nitrit	mg/kg TS	2	26	1,1	0,1	0,2	0,2
Gehalte im Feststoff							
TOC	mg/kg TS	30.000	24	10.400,0	500	2.922,1	2.336,4
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	33	100,0	5,4	33,3	18,5

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Die chemischen Parameter des Ausbruchmaterials konnten bei diesem Tunnelprojekt den Parametern des Ausgangsmaterials vor den Vortriebsarbeiten gegenübergestellt werden. Die einzelnen Proben werden dabei einem Tunnelmeter zugeordnet. Vor allem bei den Parametern pH-Wert, elektrische Leitfähigkeit sowie Aluminium im Eluat ist die Auswirkung des Vortriebs sehr gut darstellbar.

In Teilbereichen wurde das Ausbruchmaterial der Baurestmassendeponie zugeordnet. Der erhöhte Aluminiumgehalt, welcher im Ausgangsmaterial nicht nachgewiesen werden konnte, lässt sich auf die, durch den erhöhten pH-Wert verursachte, erhöhte Löslichkeit amphoterer Metalle zurückführen (vgl. Abbildung 6).

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

^{3) – 50} mg/kg TM gilt für Bodenaushubmaterial mit TOC ≤ 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und ≤ 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

⁴³ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

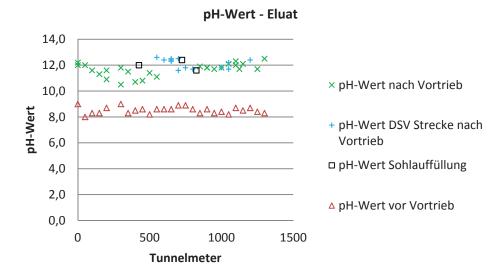


Abbildung 10: Tunnelprojekt 10 – pH-Wert (vor und nach dem Vortrieb)

elekt. Leitfähigkeit - Eluat

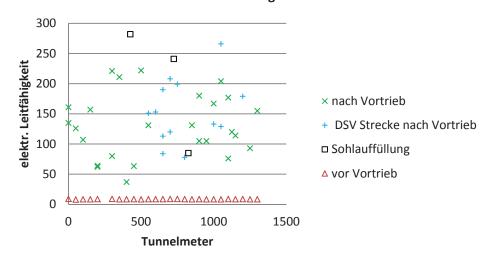


Abbildung 11: Tunnelprojekt 10 - elektrische Leitfähigkeit (vor und nach dem Vortrieb)

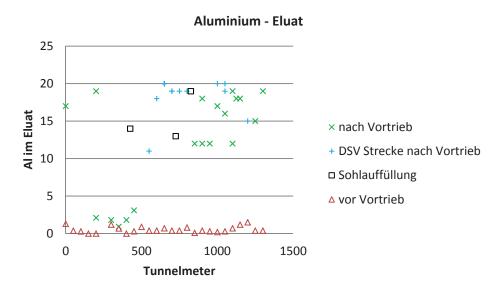


Abbildung 12: Tunnelprojekt 10 - Aluminium im Eluat (vor und nach dem Vortrieb)

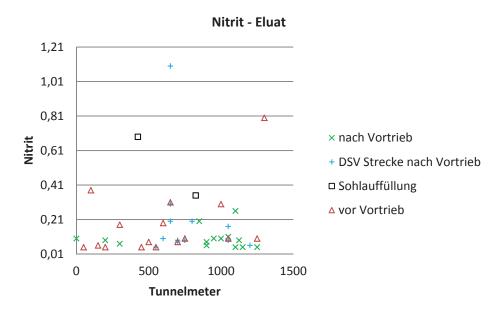


Abbildung 13: Tunnelprojekt 10 - Nitrit im Eluat (vor und nach dem Vortrieb)

3.1.1.11 Tunnelprojekt 11

Vortriebsart	Tunnellänge	Ausgewertete Proben
Baggervortrieb mit teilweiser DSV-	ca. 1 km	54 Hauptproben und Nebenpro-
Sicherung		ben;
		3 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen des Ausbruchmaterials

				Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ⁴⁴	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
		BAGGERVORTI	RIEB -	Gehalte im	Eluat			
pH-Wert	-	6,5 - 11 (12) ¹⁾	24	12,5	11,0	11,8	0,4	
Leitfähigkeit	mS/m	150 (250) ¹⁾	24	280,0	34,0	144,0	65,9	
Aluminium	mg/kg TS	*2)	25	25,0	3,6	14,7	3,9	
	BAGGERVORTRIEB MIT DSV-SICHERUNG - Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12) ¹⁾	30	12,8	11,4	12,1	0,3	
Leitfähigkeit	mS/m	150 (250) ¹⁾	30	668,0	122,0	259,8	126,2	
Aluminium	mg/kg TS	*2)	30	19,0	4,0	15,3	4,4	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Auch bei diesem Tunnelprojekt konnten chemische Parameter des Ausbruchmaterials jenen des anstehenden Bodens gegenübergestellt werden. Zusätzlich konnten die einzelnen Proben den Vortriebsarten Baggervortrieb und Baggervortrieb mit DSV-Sicherung zugeordnet werden. Eine Gegenüberstellung der ermittelten pH-Werte und der elektrischen Leitfähigkeit wird in Abbildung 14 und Abbildung 15 dargestellt.

 $^{^{2)}}$ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

⁴⁴ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

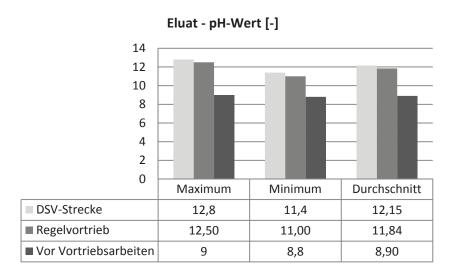


Abbildung 14: Tunnelprojekt 11 – Gegenüberstellung pH-Wert

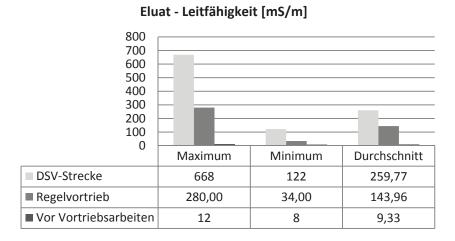


Abbildung 15: Tunnelprojekt 11 - Gegenüberstellung elektrische Leitfähigkeit

Das Ausbruchmaterial wurde auf einer Baurestmassendeponie abgelagert.

3.1.1.12 Tunnelprojekt 12

Vortriebsart	Tunnellänge	Ausgewertete Proben
Sprengvortrieb	ca. 2 km	29 Hauptproben;
		125 Nebenproben;
		47 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen des Ausbruchmaterials

				Messwert			
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ⁴⁵	n	Max.	Min.	Durch- schnitt	Standard- abweichung
		Gel	halte in	Eluat			
pH-Wert	-	6,5 - 11 (12) ¹⁾	31	10,4	7,7	9,1	0,7
Leitfähigkeit	mS/m	150 (250) ¹⁾	154	1099,0	7,0	296,9	183,8
Aluminium	mg/kg TS	*2)	27	11,2	0,1	1,5	2,5
Ammonium	mg/kg TS	8	39	8,5	1,0	1,6	1,4
Nitrat	mg/kg TS	100	11	11,0	2,0	4,3	2,3
Nitrit	mg/kg TS	2	26	0,64	0,03	0,1	0,1
Gehalte im Feststoff							
TOC	mg/kg TS	30.000	19	18.560	3.100	9.938	4.411
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	-	-	-	-	-

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Anmerkungen

Eine Gegenüberstellung der Parameter pH-Wert und elektr. Leitfähigkeit des Ausbruchmaterials mit jenen von Bohrproben können den folgenden Abbildungen entnommen werden.

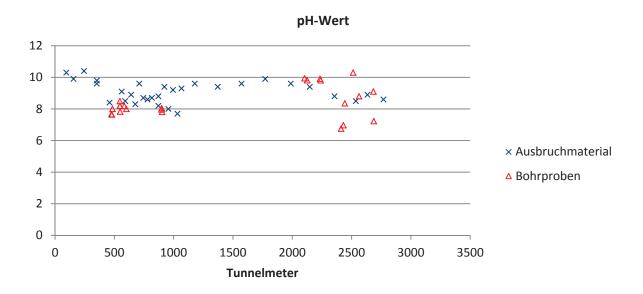


Abbildung 16: Tunnelprojekt 12 - Gegenüberstellung pH-Wert

_

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

 $^{^{3)}}$ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und < 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

⁴⁵ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

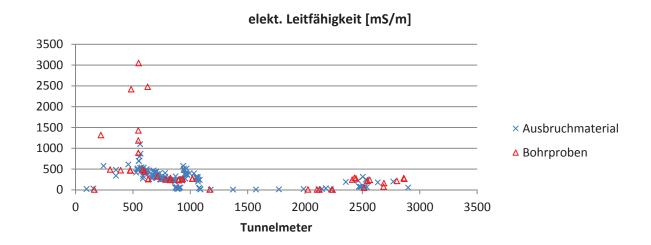


Abbildung 17: Tunnelprojekt 12 - Gegenüberstellung elektr. Leitfähigkeit

Ein eindeutiger Zusammenhang zwischen den chemischen Eigenschaften des Ausbruchmaterials aus den Vortriebsarbeiten und den Bohrproben kann im Gegensatz zu Tunnelprojekt 10 in diesem Fall nicht festgestellt werden.

Aufgrund der geologischen Randbedingungen wurden in Teilbereichen auch die Grenzwerte für Chlorid und Sulfat für die Bodenaushubdeponie überschritten (vgl. Anhang).

Das Ausbruchmaterial wurde teilweise für Schüttungen im Zuge des Tunnelprojektes verwendet.

3.1.1.13 Tunnelprojekt **13**

Vortriebsart	Tunnellänge	Ausgewertete Proben
Sprengvortrieb	ca. 3 km	17 Hauptproben;
		129 Nebenproben;
		42 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen des Ausbruchmaterials

				Messwert				
Parameter	Einheit	Grenzwert Bo- denaushubdepo- nie ⁴⁶	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
		Gel	halte in	ı Eluat				
pH-Wert	-	6,5 - 11 (12) ¹⁾	17	10,5	7,7	9,0	0,7	
Leitfähigkeit	mS/m	150 (250) ¹⁾	146	504,0	9,1	137,2	93,0	
Aluminium	mg/kg TS	*2)	14	12,5	0,35	2,7	3,2	
Ammonium	mg/kg TS	8	8	1,9	0,8	1,3	0,3	
Nitrat	mg/kg TS	100	3	4	3	3,3	0,5	
Nitrit	mg/kg TS	2	9	0,8	0,03	0,2	0,2	
Gehalte im Feststoff								
TOC	mg/kg TS	30.000	8	13.600	2.700	5.844	3.311	
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	-	-	-	-	-	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

 $^{^{\}rm 2)}$ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

³⁾ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und ≤ 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

⁴⁶ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Anmerkungen

Eine Gegenüberstellung der Parameter pH-Wert, elektr. Leitfähigkeit, Chlorid und Sulfat (im Eluat) des Ausbruchmaterials mit jenen von Bohrproben kann den folgenden Abbildungen entnommen werden.

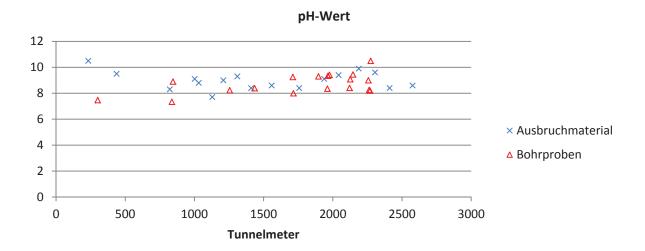


Abbildung 18: Tunnelprojekt 13 - Gegenüberstellung pH-Wert

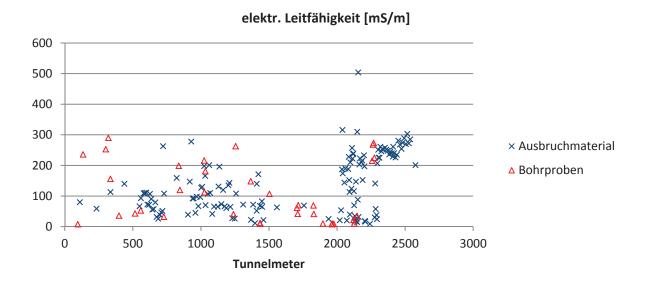


Abbildung 19: Tunnelprojekt 13 - Gegenüberstellung elektr. Leitfähigkeit

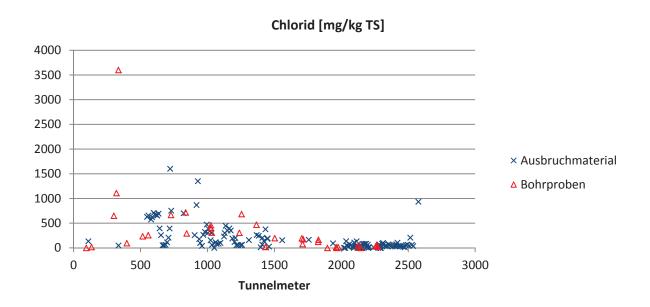


Abbildung 20: Tunnelprojekt 13 - Gegenüberstellung Parameter Chlorid (im Eluat)

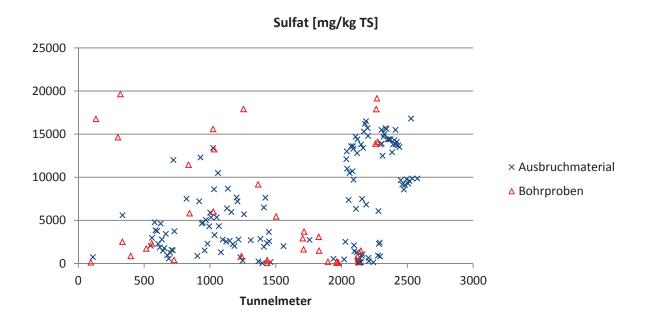


Abbildung 21; Tunnelprojekt 13 - Gegenüberstellung Parameter Sulfat (im Eluat)

Ein eindeutiger Zusammenhang zwischen den chemischen Eigenschaften des Ausbruchmaterials aus den Vortriebsarbeiten und den Bohrproben kann in diesem Fall nicht nachgewiesen werden (vgl. Tunnelprojekt 10).

Aufgrund der geologischen Randbedingungen wurden in Teilbereichen auch die Grenzwerte für Chlorid und Sulfat für die Bodenaushubdeponie überschritten.

Das Ausbruchmaterial wurde teilweise für Schüttungen im Zuge des Tunnelprojektes verwendet.

3.1.1.14 Tunnelprojekt 14

Vortriebsart	Tunnellänge	Ausgewertete Proben
Hydroschild	ca. 6 km	7 Hauptproben
		16 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen des Ausbruchmaterials

			Messwert					
Parameter	Einheit	Grenzwert Bodenaushub- deponie ⁴⁷	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
	Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12) ¹⁾	7	9,3	9,1	9,2	0,1	
Leitfähigkeit	mS/m	150 (250) ¹⁾	7	5,4	4,0	4,8	0,5	
Aluminium	mg/kg TS	*2)	-	-	-	-	-	
Ammonium	mg/kg TS	8	7	0,3	0,1	0,2	0,1	
Nitrat	mg/kg TS	100	7	<0,1	-	-	-	
Nitrit	mg/kg TS	2	7	<0,1	-	-	-	
Gehalte im Feststoff								
TOC	mg/kg TS	30.000	7	<5.000	-	-	-	
Kohlenwasser- stoffindex	mg/kg TS	50/100/2003)	7	<20	-	-	-	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Auswertung der chemischen Untersuchungen der Bohrproben

			Messwert					
Parameter	Einheit	Grenzwert Bodenaushub- deponie ⁴⁸	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
	Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12)1)	16	9,4	8,8	9,2	0,2	
Leitfähigkeit	mS/m	150 (250) ¹⁾	16	224	52	72,9	41,1	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Gegenüberstellung Ausbruchmaterial - Bohrproben

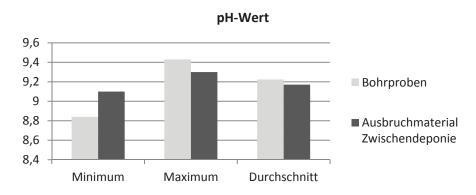


Abbildung 22: Tunnelprojekt 14 - Gegenüberstellung pH-Wert

²⁾ Der Wert ist zu bestimmen und in die Beurteilung des Deponieverhaltens mit einzubeziehen.

³⁾ – 50 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 mg/kg TM; – 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 5.000 und ≤ 20.000 mg/kg TM; – 200 mg/kg TM gilt für Bodenaushubmaterial mit TOC > 20.000 mg/kg TM.

⁴⁷ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

⁴⁸ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Anmerkungen

Im Gegensatz zum herkömmlichen NATM-Vortrieb ist eine Vortriebssicherung mittels Spritzbeton bei einem Vortrieb mit einem Hydroschild nicht erforderlich. Der pH-Wert bzw. die elektrische Leitfähigkeit des Ausbruchmaterials entspricht daher den Werten des anstehenden Gebirges. Eine Ausnahme in diesem Zusammenhang bilden Vortriebsbereiche die im Vorfeld der Vortriebsarbeiten mit DSV bzw. Bodeninjektionen ertüchtigt wurden.

Die für die Ortsbruststützung verwendete Bentonitsuspension wurde mittels Separationsanlage vom gewonnen Ausbruchmaterial getrennt und wiederverwendet.

Das anfallende Ausbruchmaterial wurde für Schüttmaßnahmen sowie für die Sohlauffüllung im Tunnel herangezogen.

3.1.1.15 Tunnelprojekt **15**

Vortriebsart	Tunnellänge	Ausgewertete Proben
Hydroschild	ca. 6 km	129 Hauptproben;
		16 Proben des Ausgangsmaterials

Auswertung der chemischen Untersuchungen des Ausbruchmaterials

			Messwert					
Parameter	Einheit	Grenzwert Bodenaushub- deponie ⁴⁹	n	Max.	Min.	Durch- schnitt	Standard- abweichung	
		Ge	halte in	Eluat				
pH-Wert	-	6,5 - 11 (12) ¹⁾	129	11,8	7,6	9,4	0,9	
Leitfähigkeit	mS/m	150 (250) ¹⁾	129	147	3,8	18,4	32,0	
Aluminium	mg/kg TS	*2)	124	25,7	1,1	5,3	5,5	
Ammonium	mg/kg TS	8	79	0,9	0,2	0,3	0,2	
Nitrat	mg/kg TS	100	-	-	-	-	-	
Nitrit	mg/kg TS	2	8	0,2	0,1	0,1	0,04	
	Gehalte im Feststoff							
TOC	mg/kg TS	30.000	32	10.400	3.100	4.934	1.814	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

Auswertung der chemischen Untersuchungen der Bohrproben

			Messwert					
Parameter	Einheit	Grenzwert Bodenaushub- deponie ⁵⁰	n Max.		Min.	Durch- schnitt	Standard- abweichung	
	Gehalte im Eluat							
pH-Wert	-	6,5 - 11 (12) ¹⁾	21	9,4	7,8	8,7	0,4	
Leitfähigkeit	mS/m	150 (250) ¹⁾	21	111,3	55,5	69,2	16,0	

¹⁾ Werden die Gesamtgehalte der Spalte I in Tabelle 1 der Deponieverordnung eingehalten, so ist ein pH-Wert von 6,5 bis 12 zulässig. In diesem Fall beträgt bei einem pH-Wert zwischen 11 und 12 der Grenzwert für die elektrische Leitfähigkeit 250 mS/m.

 $^{^{2)}\,}Der\,Wert\,ist\,zu\,bestimmen\,und\,in\,die\,Beurteilung\,des\,Deponieverhaltens\,mit\,einzubeziehen.$

⁴⁹ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

⁵⁰ Gem. Deponieverordnung 2008, Anhang 1, Tabelle 1+2.

Gegenüberstellung Ausbruchmaterial - Bohrproben

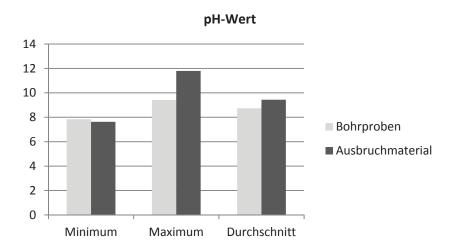


Abbildung 23: Tunnelprojekt 15 - Gegenüberstellung pH-Wert

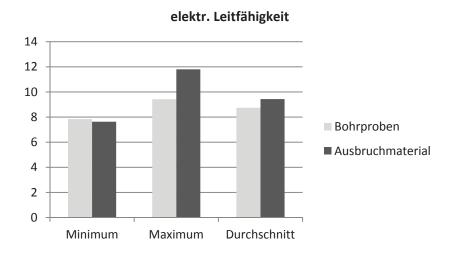


Abbildung 24: Tunnelprojekt 15 - Gegenüberstellung elektr. Leitfähigkeit

Anmerkungen

Die für die Ortsbruststützung verwendete Bentonitsuspension wurde mittels Separationsanlage vom gewonnen Ausbruchmaterial getrennt und wiederverwendet.

Auch bei diesem Hydroschildvortrieb sind die pH-Werte bzw. die Werte der elektrischen Leitfähigkeit des Ausbruchmaterials mit jenen des anstehenden Bodens vergleichbar. Nur bei einzelnen Proben konnten erhöhte pH-Werte, Aluminiumgehalte im Eluat bzw. Gehalte an Kohlenwasserstoffen nachgewiesen werden.

Die erhöhten pH-Werte können dabei eventuell auf eine Durchmischung des Ausbruchmaterials aus dem Hydroschildvortrieb mit Ausbruchmaterial aus einem NATM-Vortrieb (z.B. Fluchtstollen) zurückgeführt werden.

Das anfallende Ausbruchmaterial wurde für Schüttmaßnahmen, die Betonproduktion sowie für die Sohlauffüllung herangezogen.

3.1.1.16 Zusammenfassung

Die Bestimmung der chemischen Eigenschaften des anstehenden Gebirges bzw. des Ausbruchmaterials ist ein wichtiger Bestandteil der Charakterisierung des Ausbruchmaterials.

Heute steht vor allem die Bestimmung der erforderlichen Deponieklasse bei der chemischen Untersuchung des Ausbruchmaterials im Vordergrund. Hierfür sind gem. Deponieverordnung z.B. für die Bodenaushubdeponie 14 Parameter im Feststoff und 26 Parameter im Eluat auszuwerten.⁵¹

Für die Planung möglicher Verwendungsszenarien ist es jedoch schon im Vorfeld der Vortriebsarbeiten unabdingbar die chemischen Eigenschaften des Ausbruchmaterials abzuschätzen. Vor allem die Verwendbarkeit des Ausbruchmaterials als Schüttmaterial aber auch als Industrierohstoff kann wesentlich durch die chemischen Eigenschaften beeinflusst werden.

Aus diesem Grund sollte in Zukunft der anstehende Boden/Fels obligatorisch in der Projektierungsphase auf die chemischen Eigenschaften hin untersucht werden. Die für die Untersuchung erforderlichen Bodenproben könnte man dabei sehr leicht den ohnehin durchzuführenden Probebohrungen entnehmen. Als Materialmenge werden hierfür ca. 2 kg benötigt.

Durch die Bestimmung der chemischen Eigenschaften des anstehenden Bodens ist auch die Identifizierung von geogen bedingten Grenzwertüberschreitungen gewährleistet.

Betrachtet man die vorgenommene Auswertung von chemischen Untersuchungen ausgeführter Tunnelprojekte so ist erkennbar, dass für die Untersuchung von Tunnelausbruchmaterial die in der Deponieverordnung festgelegte Anzahl der bei Vollanalysen zu untersuchenden Parameter wesentlich verringert werden könnte.

Eine Überschreitung der Grenzwerte der Bodenaushubdeponie im Falle eines NATM-Vortriebs konnte demnach vor allem bei folgenden Parametern festgestellt werden:

- im Eluat:
 - o pH-Wert
 - o Aluminium (in der derzeit gültigen Deponieverordnung kein Grenzwert für Bodenaushub-, Inert- und Baurestmassendeponie)
 - o elektrische Leitfähigkeit
 - o Ammonium
 - Nitrit
 - Kohlenwasserstoff
- Im Feststoff:
 - $\circ \ \ Kohlenwasserstoff$

Die Grenzwertüberschreitung der angegeben Parameter ist dabei auf Bauhilfsstoffe, welche im Zuge der Vortriebsarbeiten verwendet werden, zurückzuführen. Vor allem die Verwendung von Spritzbeton und Sprengstoffen ist für eine Parametererhöhung verantwortlich. Kommen diese Stoffe nicht zum Einsatz (z.B. bei einem mechanischen Vortrieb) könnte die Anzahl der zu unter-

⁵¹ Vgl. [15] Deponieverordnung 2008, Anhang 1.

suchenden Parameter weiter verringert werden. Hierbei ist jedoch zu berücksichtigen, dass in diesem Fall Ausbruchmaterial aus einem mechanischen Vortrieb streng von parallel laufenden NATM-Vortrieben (z.B. für Querschläge) zu trennen ist.

Im Bedarfsfall ist die angegebene Liste der zu untersuchenden Parameter aufgrund von geogen bedingten Besonderheiten des Ausbruchmaterials zu ergänzen.

Wird der anstehende Boden schon in der Planungsphase auf seine chemischen Eigenschaften untersucht, könnten gleichzeitig weitere, am Ausbruchmaterial zu untersuchende, Parameter definiert werden.

Diese Vorgehensweise würde auch den im Bundesabfallwirtschaftsplan für Recyclingmaterial definierten Leitparametern entsprechen (vgl. Pkt. 8.2.1).

Die grundlegende Charakterisierung von Tunnelausbruch wird derzeit in der Deponieverordnung geregelt⁵². Demnach sind für die grundlegende Charakterisierung

- Hauptproben (alle 600 m; mind. jedoch 3 pro Tunnel)
- Nebenproben (zw. den Hauptproben Abstand max. 200 m)

zu entnehmen.

Bei den Hauptproben ist gem. Deponieverordnung eine Vollanalyse durchzuführen. Bei Nebenproben sind jedenfalls im Eluat die Parameter pH-Wert, Leitfähigkeit, Nitrat-Stickstoff, Nitrit-Stickstoff, Ammonium-Stickstoff und im Feststoff die Parameter Kohlenwasserstoffindex und TOC zu untersuchen. Werden bei einem Tunnelausbruch keine Sprengmittel verwendet, kann die Untersuchung von Nitrat- und Nitrit-Stickstoff entfallen.

Angaben über die heranzuziehende Analysemethode werden in der Deponieverordnung nicht festgelegt. Die vorgenommene Auswertung von Analyseprotokollen sowie Untersuchungen haben jedoch gezeigt, dass die Wahl der Analysemethode großen Einfluss auf das Analyseergebnis haben kann (vgl. Pkt. 3.1 und Pkt. 3.1.1.9). Das gleiche gilt auch für den Zeitpunkt der Probenentnahme sowie die Korngröße der zu untersuchenden Probe.

Soll in Zukunft das Ausbruchmaterial schon in der Projektierungsphase eines Tunnelprojektes auf die chemischen Eigenschaften untersucht werden, muss auch die Probenentnahme bei Probebohrungen definiert werden. Als Vorlage einer Arbeitsanweisung für die Untersuchung des anstehenden Boden/Fels könnte dabei die ÖNORM S 2126⁵³ "Grundlegende Charakterisierung von Aushubmaterial vor Beginn der Aushub- oder Abräumtätigkeit" herangezogen werden.

Da es das vordergründige Ziel sein muss Ausbruchmaterial einer Verwendung zuzuführen, sollten diese Bestimmungen jedoch nicht als Ergänzung in die Deponieverordnung mit aufgenommen werden. Vielmehr wäre es wünschenswert, diese in einer eigenen Norm oder einem eigenen Regelblatt festzulegen.

_

⁵² Vgl. [15] Deponieverordnung 2008, Anhang 4, Teil 2, Pkt. 1.3.

⁵³ [133] ÖNORM S 2126 2010.

3.2 Beeinflussung der geotechnische Eigenschaften des Ausbruchmaterials durch die Vortriebsarbeiten

Die geotechnischen Eigenschaften des anstehenden Gesteins werden wesentlich durch die Gesteinsart beeinflusst.

Durch die Vortriebsart wird vor allem die Kornform bzw. die Sieblinie des Ausgangsmaterials verändert. Dies gilt vor allem für Vortriebe im Festgestein.

Neben den Vortriebsarbeiten haben aber auch geologische Randbedingungen wie

- Trennflächen (z.B. Klüftung),
- · Gebirgsdruck und
- Textur des Gesteins (Schieferungsgrad, Anisotropie)

einen wesentlichen Einfluss auf die Kornform bzw. die Sieblinie des Ausbruchmaterials.54

Sieblinie des Ausbruchmaterials

Tabelle 6 enthält abhängig von der Vortriebsart für bestimmte Korngruppen massenprozentuelle Angaben des anfallenden Ausbruchmaterials.

		Auswer	Schneid- spurab-	Korngruppen Ausbruchmaterial [M%]				
Vortriebsart	Gesteinsart wer- tungen	stand [mm]	0/0,02 [mm]	0/4 [mm]	> 30 [mm]	> 100 [mm]		
konventioneller Sprengvortrieb	Kristallines Gestein	2	-	0-1	2-5	85-95	75-85	
TSM-Vortrieb	Jura-Kalke	14	-	5-15	15-40	5-40	0-5	
TBM-Vortrieb	Sedimente, Plutoni- te, Metamorphite	35	70-85	5-10	20-50	20-45	0-5	

Tabelle 6: Sieblinien des Ausbruchmaterials (Mittelwerte des Siebdurchgangs) in Abhängigkeit der Vortriebsart⁵⁵

In der nachfolgenden Tabelle werden die Mittelwerte der in Tabelle 6 angegeben Massenprozentbereiche dargestellt.

⁵⁵ Vgl. [98] Thalmann 1995, S. 25.

⁵⁴ Vgl. [90] Thalmann 1996, S. 37.

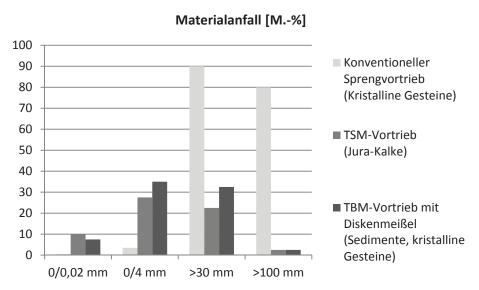


Abbildung 25: Materialanfall in Abhängigkeit der Vortriebsart⁵⁶

Aus der Darstellung ist sehr gut erkennbar, dass sich die Sieblinie eines maschinellen Vortriebs wesentlich von jener eines NATM-Vortriebs unterscheidet. Das Ausbruchmaterial im Festgestein eines maschinellen Vortriebs ist feinkörniger als das Ausbruchmaterial eines NATM-Vortriebs. Dies ist vor allem bei der Abschätzung der für bestimmte Verwendungsmöglichkeiten zur Verfügung stehenden Massen zu berücksichtigen.

Vergleicht man so die Sieblinie des Ausbruchmaterials des maschinellen Vortriebs mit den gem. der Betonnorm einzuhaltenden Sieblinien (vgl. auch Pkt. 4.1.6) ist festzustellen, dass nur Teile des Ausbruchmaterials für die Betonproduktion verwendet werden können.

In diesem Zusammenhang ist auch zu berücksichtigen, dass es im Zuge der Aufbereitung des Ausbruchmaterials zu einer weiteren Verfeinerung kommt. So kann der abschlämmbare Feinstanteil (<0,063 mm) nach der Aufbereitung bis zu 15% der Gesamtmenge betragen.⁵⁷

Versuche bei einem TBM-Vortrieb (Durchmesser 5 m; in Granit) mit veränderlichen Schneidrollenabstand im Brustbereich (86, 129, 172 mm) haben gezeigt, dass sich der Anteil grober Korngruppen mit zunehmenden Schneidrollenabstand (Diskenabstand) vergrößert.⁵⁸

Der Anteil an Feinteilen am Ausbruchmaterial wird auch wesentlich durch den Anpressdruck der Disken beeinflusst.

⁵⁶ Vgl. [98] Thalmann 1995, S. 25.

⁵⁷ Vgl. [98] Thalmann 1995, S. 24.

⁵⁸ Vgl. [99] Büchi, Thalmann 1995.

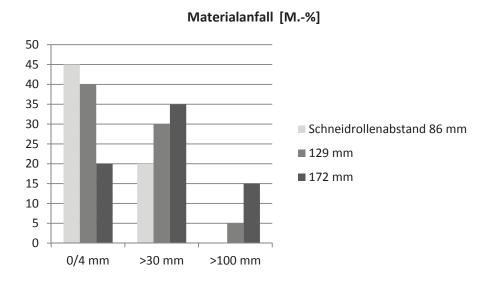


Abbildung 26: Materialanfall bei einem TBM-Vortrieb in Abhängigkeit des Schneidrollenabstandes⁵⁹

Kornform des Ausbruchmaterials

Charakteristisch für das Ausbruchmaterial eines TBM-Vortriebs ist neben einem hohen Feinanteil auch die plattig-ellipsoide Kornform (Chips) der groben Korngruppen.

Radialverlaufende Risse an der Felsoberfläche verursachen während des Fräsvorganges das Absplittern der Chips von der Ortsbrust.⁶⁰

Diese plattig-ellipsoide Kornform ist vor allem bei der Verwendung des Ausbruchmaterials für die Betonproduktion im Hinblick auf die Verarbeitbarkeit des Betons problematisch (vgl. Pkt. 4.1.7).

Gleichzeitig neigt plattiges Gesteinsmaterial, durch das Abbrechen der kantigen Ränder während des Transports, zur Nachverfeinerung der Sieblinie.

Durch eine auf das Ausbruchmaterial abgestimmte Aufbereitungsmethode kann jedoch auf die Besonderheiten von TBM-Ausbruchmaterial reagiert werden (vgl. Pkt.6.1).

Der Zusammenhang zwischen Schneidrollenabstand und Sieblinie bzw. Kornform des Ausbruchmaterials wird derzeit auch im Zuge des Forschungsprojektes "Recycling von Tunnelausbruch" untersucht. Dabei werden, an für zukünftige österreichische Tunnelprojekte repräsentativen Lithologien, Schneidversuche mit unterschiedlicher Penetration sowie unterschiedlichen Schneidspurabständen an einem Linearprüfstand durchgeführt.

⁵⁹ Vgl. [89] Thalmann 1997, S. 29.

⁶⁰ Vgl. [74] Thalmann 1994, S. 27.

4 Materialanforderungen unterschiedlicher Verwendungsszenarien

Die Verwendung von Tunnelausbruchmaterial ist wesentlich abhängig von den technischen Materialanforderungen der unterschiedlichen Verwendungsszenarien. Ausgehend von Normen, Richtlinien, Forschungs- sowie Praxisberichten werden im Folgenden für unterschiedliche Verwendungsszenarien einzuhaltende Materialanforderungen zusammengestellt.

Generell ist darauf hinzuweisen, dass für den Nachweis einer möglichen Verwendung des Ausbruchmaterials eine mehrstufige Untersuchungsabfolge erforderlich ist. Erste Untersuchungen sollten bereits an Gesteinskörnungen aus Probebohrungen erfolgen. Aufbauend auf diesen Ergebnissen sollten in der Folge weitere Untersuchungen an größeren Materialmengen durchgeführt werden.

Wird die Eignung des Ausbruchmaterials für eine spezielle Verwendung mithilfe von Untersuchungen (Eignungsprüfungen) nachgewiesen, ist auch ein Abweichen von den in Richtlinien und Normen angegebenen Materialanforderungen möglich.

Die Materialanforderungen bilden die Grundlage für die Entscheidungskriterien der in dieser Arbeit später folgenden Bewertungsmatrix.

4.1 Gesteinskörnungen für die Betonproduktion / Betontechnologie

4.1.1 Allgemeines

Gesteinskörnungen werden definiert als:

Körniges Material für die Verwendung im Bauwesen. Gesteinskörnungen können natürlich, industriell hergestellt oder rezykliert sein.⁶¹

Wird das Ausbruchmaterial als Gesteinskörnung für die Betonproduktion verwendet, ist es zielführend damit teilweise bzw. vollständig den Bedarf der Tunnelbaustelle abzudecken. Aus diesem Grund wird in der Folge besonderes auf die Bestimmungen für Tunnelbetone eingegangen.

Beton ist ein wesentlicher Baustoff im Untertagebau und wird sowohl für die Primärsicherung des Vortriebes als auch für den permanenten Ausbau verwendet. Der Baustoff Beton besteht aus einem Zweiphasensystem. Hierbei wird zwischen Frischbeton mit den Phasen Zementleim und Gesteinskörnung sowie Festbeton mit den Phasen Zementstein und Gesteinskörnung unterschieden. Hauptbestandteil des Betons mit ca. 70 Vol.% sind dabei die Gesteinskörnungen. Weitere Bestandteile des Betons sind Zement, Wasser und eventuell Zusatzmittel und Zusatzstoffe.

Berücksichtigt man, dass in Österreich pro Jahr ca. 11 Mio. m³ Beton⁶² verarbeitet werden besteht ein Bedarf an Gesteinskörnungen von ca. 7,7 Mio. m³ pro Jahr.

Die Druckfestigkeit der als Gesteinskörnung verwendeten Gesteine (ausgenommen z.B. poröse Kalksteine) ist üblicherweise wesentlich höher als die des herzustellenden Betons. Die Gesteinskörnungen bilden somit das Stützgerüst im Beton.

⁶¹ [28] ÖNORM EN 12620 2008, S. 7.

⁶² Vgl. [24] Betonakademie 2011, S. 3.

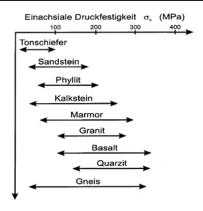


Abbildung 27: Bereiche möglicher Druckfestigkeiten verschiedener Gesteine in MPa. Die große Schwankungsbreite erfordert eine ständige Eignungsprüfung.63

Gleichzeitig beeinflussen die Gesteinskörnungen wesentliche Betoneigenschaften wie z.B. E-Modul, Zugbruchdehnung, Temperaturdehnzahl, Beton-Rohdichte oder Verarbeitbarkeit.⁶⁴

Einen Überblick über Eigenschaften unterschiedlicher Gesteine gibt Tabelle 7.

Gesteinsart	Roh- dichte $ ho_R$	Dichte ρ	Wasserauf- nahme	Druckfestigkeit des trockenen Gesteins DIN 52 105	E-Modul ¹⁾			
	t/m³	kg/dm³	M%	N/mm²	kN/mm ²			
Erstarrungsgesteine:			•					
Granit	2,60-2,65	2,62-2,85	0,2-0,5	160-240	38-76			
Diorit, Gabbro	2,80-3,00	2,85-3,05	0,2-0,4	170-300	50-60			
Quarzporphyr	2,55-2,80	2,58-2,83	0,2-0,7	180-300	25-65			
Basalt	2,90-3,05	3,00-3,15	0,1-0,3	250-440	96 (ρ _R = 3,05)			
Schichtgesteine (Prüfung rechtwinklig zur	Schichtung)							
Kieselige Gesteine								
a) Quarzit, Grauwacke	2,60-2,65	2,64-2,68	0,2-0,5	150-300	$60 (\rho_R = 2,63)$			
b) quarzitischer Sandstein	2,60-2,65	2,64-2,68	0,2-0,5	120-200	10-20			
c) sonstiger Sandstein	2,00-2,65	2,64-2,72	0,2-9,0	30-180	2-15			
Kalksteine								
a) dichte Kalke	2,65-2,85	2,70-2,90	0,1-0,6	80-180	82 (ρ _R = 2,69)			
b) sonst. Kalkgesteine	1,70-2,60	2,70-2,74	0,2-10	20-90	-			
Metamorphe Gesteine:								
a) Gneise, Granulit	2,65-3,00	2,67-3,05	0,1-0,6	160-280	10-30			
b) Amphibolit	2,70-3,10	2,75-3,15	0,1-0,4	170-280	-			
c) Serpentin	2,50-2,90	2,62-2,78	0,1-0,7	140-250	-			

 $^{^{1)}}$ Gesteinskörnungen mit hohem E-Modul behindern das Schwinden des Zementsteines besonders stark. 65

Tabelle 7: Eigenschaften von Gesteinen⁶⁶

⁶³ Vgl. [13] Schubert 1994

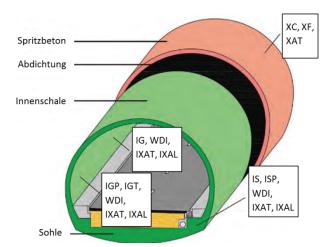
⁶⁴ Vgl. [31] Krispel, Huber 2009, S. 120.

⁶⁵ Vgl. [25] Springenschmid 2007, S. 110.

Die Anforderungen an Gesteinskörnungen für die Betonproduktion werden mitunter in folgenden Normen festgelegt:

- ÖNORM EN 12620:2008 Gesteinskörnungen für Beton
- ÖNORM B 3131:2010 Gesteinskörnungen für Beton Regeln zur Umsetzung der ÖNORM EN 12620
- ÖNORM B 4710-1:2007 Beton Teil 1 Festlegung, Herstellung, Verwendung und Konformitätsnachweis (Regeln zur Umsetzung der ÖNORM EN 206-1 für Normal- und Schwerbeton)

Als weitere Richtlinien für Tunnelbeton können auch die


- ÖBV⁶⁷-Richtlinie Innenschalenbeton: 2003 sowie die
- ÖBV-Richtlinie Spritzbeton: 2009

herangezogen werden.

Innenschalenbeton

Innenschalenbeton wird in Österreich durch die ÖBV-Richtlinie Innenschalenbeton geregelt.

Im Hohlraumbau wird die Innenschale (Stärke 30 – 60 cm) als tragende, dauerhafte Betonauskleidung eingesetzt. Abhängig von den Randbedingungen kann die Innenschale auch als wasserdichte Innenschale oder (durch die Zugabe von Polypropylen-Fasern) mit brandbeständigem Beton ausgeführt werden. Mögliche Einwirkungen der Umgebungsbedingungen und die sich daraus ableitenden Expositionsklassen werden in Abbildung 28 dargestellt.

Abkürzung	Expositionsklasse
-	XC, XF, XAT C₃A-frei,
IS	XC3
ISP	XC3/XF3
IG	XC3
IGP	XC3/XF3
IGT	XC4/XF4
WDI	XC4/XF3/XA1T/XA1L C₃A-frei
IXAT	XC4/XF3/XA1T C ₃ A-frei
IXAL	XC4/XF3/XA1Li
	IS ISP IG IGP IGT WDI IXAT

ÖVBB-Richtlinie Spritzbeton

Abbildung 28: Schematische Darstellung eines Tunnelbaus mit den relevanten Expositionsklassen

Bezeichnung der Expositionsklassen⁶⁸ der Abbildung 28:

- XC Korrosion, ausgelöst durch Karbonatisierung und Dichtigkeit des Betongefüges
- XD Korrosion, ausgelöst durch Chloride, ausgenommen Meerwasser

⁶⁶ Vgl. [60] Neroth, Vollenschaar 2011, S. 146.

 $^{^{67}}$ ÖBV – Österreichische Bautechnik Vereinigung (ehemals ÖVBB – Österreichische Vereinigung für Beton und Bautechnik).

⁶⁸ Vgl. [29] ÖNORM B 4710-1 2007.

- XF Frostangriff mit oder ohne Taumittel
- XA Chemischer Angriff

In Österreich werden Innenschalen hauptsächlich ohne Bewehrung ausgeführt. Anwendungsgebiete bewehrter Innenschalen sind vor allem der innerstädtische Tunnelbau und wasserundurchlässige Innenschalen. Aus statischen Gründen kann in diesen Bereichen eine Bewehrung erforderlich sein.

Innenschalenbeton zeichnet sich durch seinen frühen Ausschalzeitpunkt aus (meist nach 10 bis 14 h). Bei einer Blocklänge von 8 - 12 m und einer Betonage im Tagestakt, können so, bei der Verwendung von 2 Schalwagen (Betonage Lücke auf Lücke), große Betonierleistungen erreicht werden.

Um gleichzeitig zum frühen Ausschalzeitpunkt den besonderen Anforderungen der Expositionsklassen zu entsprechen, kommen spezielle Zemente (C₃A-frei, begrenzte frühzeitige Wärmeentwicklung), aufbereitete hydraulisch wirksame Zusatzstoffe (AHWZ) und Zusatzmittel zur Anwendung.

Beim Betoneinbau sind zusätzlich Bestimmungen bezüglich Betoneinbautemperatur, maximale Bauteillängen und Nachbehandlungsmaßnahmen zu beachten.

In der Regel wird für die Innenschale Beton der Druckfestigkeitsklassen C 20/25 oder C 25/30 verwendet.

Spritzbeton

Spritzbeton wird in Österreich durch die ÖBV-Richtlinie Spritzbeton geregelt.

Spritzbeton wird vor allem zur Vortriebssicherung eingesetzt. Hinsichtlich Verarbeitung wird zwischen Trocken- und Nassspritzbeton unterschieden. Beim Trockenspritzverfahren erfolgt im Gegensatz zum Nassspritzverfahren die Wasserzugabe erst an der Düse. Trockenspritzbeton eignet sich vor allem für die Sicherung kleiner Flächen und bei oftmaligen Arbeitsunterbrechungen. Aufgrund der wesentlich größeren Spritzleistung und der wesentlich verminderten Staubentwicklung kommt im modernen NATM-Vortrieb meist das Nassspritzverfahren zum Einsatz.

Im Gegensatz zum Innenschalenbeton enthält Spritzbeton in der Regel ein kleineres Größtkorn sowie einen größeren Feinkorn- und Zementanteil.

Die Eigenschaften des Spritzbetons werden mit Hilfe von

- Spritzbetonklassen: SpC I (geringe Anforderungen), SpC II (Regelfall), SpC III
- Frühfestigkeitsklassen: J₁, J₂, J₃
- Festigkeitsklassen: SpC 8/10 bis SpC 35/45
- Expositionsklassen

festgelegt.

Tübbingbeton

Tübbinge können im Zuge des maschinellen Vortriebs sowohl zur Hohlraumstützung als auch als Innenschale verwendet werden. Es wird dabei zwischen einem einschaligen und einem zweischaligen Ausbau unterschieden. Beim einschaligen Ausbau übernehmen die eingebauten Tübbinge sowohl die Holraumstützung als auch die Funktion der Innenschale. Beim zweischaligen Ausbau wird eine Tübbing-Außenschale mit einer herkömmlichen Innenschale (Ortbeton) kombiniert. In Österreich wurden bis heute nur bewehrte Tübbinge eingebaut.

Wesentlich sind neben den Betoneigenschaften des Tübbings auch die geometrischen Ausbildungen sowie die Fugenkonstruktionen der einzelnen Tübbinge. Tübbingsysteme werden in der ÖBV-Richtlinie "Tübbingsysteme aus Beton" ⁶⁹ geregelt.

4.1.2 Anforderungen an Gesteinskörnungen

Die Mindestanforderungen an Gesteinskörnungen werden in der Tabelle NAD 6⁷⁰ der ÖNORM B 4710-1 festgelegt. Zusammengefasst werden diese in Tabelle 8 angegeben (Anforderungen welche für jede Betonsorte gelten sind fett gedruckt).

Symbol ²⁾
anzugeben; ±30 kg/m ³
G _A 90, G _C 90/15, G _C 85/20
G _F 85, begrenzte Schwankung
SI _{NR} , SI ₄₀
SC ₁₀
> 4 mm: f _{1,5} , ≤ 4 mm: f ₅ , (f ₁₀), f _x
LA _{NR} , LA ₂₀
M _{DE} NR
PSV _{NR} , PSV ₅₀
AAV _{NR}
Annr
F _{NR} , F ₁ , F ₂
F _{NR} , F ₁
i.A. kein Nachweis erforderlich
Beanspruchungsklasse gem. ÖNORM B 3100
chloridfrei
AS _{0,8}
keine Beeinträchtigung
keine Anforderung, 2%, 15%

¹⁾ Die bei jeder Betonsorte einzuhaltenden Anforderungen sind fett gedruckt.

Tabelle 8: Anforderungen an Gesteinskörnungen⁷¹

 $^{^{2)}}$ NR ... an Eigenschaften werden keine Anforderungen gestellt

⁶⁹ [42] ÖBV-RL Tübbingsysteme aus Beton

⁷⁰ [29] ÖNORM B 4710-1 2007, S. 48-49.

⁷¹ [32]Zement+Beton 2010, S. 72.

4.1.3 Druckfestigkeit von Gesteinskörnungen

Die Druckfestigkeit von Gesteinskörnungen wird in der ÖNORM EN 12620 nicht definiert. Üblicherweise ist jedoch die Druckfestigkeit der Gesteinskörnung wesentlich höher als die des herzustellenden Betons (vgl. Tabelle 7).

Die Prüfung der einachsigen Druckfestigkeit wird in der ÖNORM EN 1926⁷² geregelt.

Gesteinskörnungen aus gebrochenem Festgestein mit einer Druckfestigkeit von mind. $100~\rm N/mm^2$ können als ausreichend fest angenommen werden. 73

Generell wird empfohlen, dass die Druckfestigkeit der Gesteinskörnungen mindestens die doppelte Druckfestigkeit des Betons erreicht.

THALMANN [1996] empfiehlt eine minimale Gesteinsfestigkeit (bei anisotropen Gesteinen parallel zur Struktur) von⁷⁴:

- 60 N/mm² für Beton der Festigkeitsklasse C 20/25 bzw.
- 75 N/mm² für Beton der Festigkeitsklasse C 30/37

Werden Gesteine mit einer geringen Druckfestigkeit verwendet, ist auf ein eventuelles Nachbrechen während des Transportes bzw. des Mischens besonders zu achten. Eine Anpassung der Sieblinie wird in diesem Fall empfohlen.

Als Entscheidungskriterium für die Bewertungsmatrix werden die von *THALMANN* [1996] angegebenen Gesteinsfestigkeiten herangezogen.

Punktlastversuch

Bei spröden und festen Gesteinen kann die Druckfestigkeit in vielen Fällen auch mithilfe des Punktlastversuches abgeschätzt werden. Es wird dabei eine Gesteinsprobe zwischen zwei Lasteinleitungsspitzen durch eine Kraft bis zum Bruch belastet. Das Ergebnis wird als Punktlastindex (i_s) angegeben. Es handelt sich dabei um eine Beschreibung der indirekte Zugfestigkeit der Gesteinsprobe.

Der Punktlastindex ergibt sich aus der Division der Bruchkraft (F_B) durch die Bruchfläche (A). Liegen mehrere Einzelversuche vor kann als repräsentativer Wert die Punktlastfestigkeit (I_S) bestimmt werden. Die einaxiale Druckfestigkeit ergibt sich in der Folge durch Multiplikation der Punktlastfestigkeit mit einem Umrechnungsfaktor (c).

Der Umrechnungsfaktor sollte dabei anhand von vergleichenden Untersuchungen von einaxialer Druckfestigkeit und Punktlastfestigkeit ermittelt werden.

Da der Punktlastversuch nicht genormt ist, wurde für die Versuchsdurchführung eine Empfehlung erstellt.⁷⁵

Wesentlichen Einfluss auf den Punktlastindex hat dabei die Form des Probekörpers. Um auch TBM-Chips für den Versuch verwenden zu können entwickelte *THALMANN* (1996) einen eigenen Korrekturfaktor.

⁷² [109] ÖNORM EN 1926 1999.

⁷³ Vgl. [92] Schießl 2007, S. 55.

⁷⁴ Vgl. [90] Thalmann 1996, S. 41.

⁷⁵ Vgl. [91] Thuro 2010.

Aufgrund der Einfachheit des Versuches eignet sich der Punktlastversuch auch für den Einsatz auf der Baustelle. Der Punktlastindex wurde daher auch als Auswahlkriterium für die Verwendung des Ausbruchmaterials als Gesteinskörnung für die Betonproduktion im Rahmen der Projekte AlpTransit Lötschberg und Gotthard herangezogen. Hierbei wurden für die Verwendung folgende Grenzwerte festgelegt^{76 77}:

I_{S50} parallel: ≥ 2,5 N/mm²
 I_{S50} normal: ≥ 3,5 N/mm²

4.1.4 E-Modul der Gesteinskörnung

Der E-Modul von Beton wird wesentlich vom E-Modul der Gesteinskörnung beeinflusst. Demnach verringert ein hoher E-Modul der Gesteinskörnung das Kriechen und Schwinden des Betons.

Wie die Druckfestigkeit der Gesteinskörnung wird auch der E-Modul in der ÖNORM EN 12620 nicht definiert.

Angaben über die Bandbreite des E-Moduls in Abhängigkeit der Gesteinsart können Tabelle 7 entnommen werden.

Die Bestimmung des E-Moduls der Gesteinskörnung kann durch Rückrechnung ausgehend vom E-Modul des Betons (gem. ONR 23303) bzw. durch die Bestimmung am Festgestein (gem. ÖNORM B 3124-9) erfolgen.

Für die Verwendung des Ausbruchmaterials für die Betonproduktion wird ein E-Modul der Gesteinskörnung von mind. 30.000 N/mm² empfohlen.⁷⁸ Diese Empfehlung wird auch als Entscheidungskriterium in der Bewertungsmatrix herangezogen.

4.1.5 Kornrohdichte

Die Kornrohdichte ist ein wesentlicher Parameter für die Berechnung der Betonzusammensetzung. Im Falle der Verwendung von Tunnelausbruch als Gesteinskörnung für die Betonproduktion ist daher ein Gesteinswechsel im Vortrieb zu berücksichtigen.

Die Kornrohdichten unterschiedlicher Gesteine werden in Tabelle 7 angegeben.

4.1.6 Kornzusammensetzung

Die Beschreibung der Korngrößenverteilung erfolgt mittels Sieblinie. Dabei wird die Gesteinskörnung mithilfe von Sieben in Korngruppen unterteilt und der jeweilige Siebrückstand auf dem Analysesieb abgewogen. Durch Verknüpfung des kumulierten Siebdurchganges [%] mit der Siebweite [mm] lässt sich die als Sieblinie bezeichnete Summenlinie darstellen (vgl. ÖNORM EN 933-1⁷⁹).

Bei der Siebung kommen Maschensiebe (0,063 – 2 mm) bzw. Quadratlochsiebe (4 – 62,5 mm) zur Anwendung⁸⁰.

⁷⁶ Vgl. [90] Thalmann 1196, S. 51.

⁷⁷ [88] Pichler, Huber 2009.

⁷⁸ [100] Gesprächsprotokoll Forschungsprojekt Recycling von Tunnelausbruchmaterial

⁷⁹ [104] ÖNORM EN 933-1 2012.

^{80 [24]} Betonakademie 2011, S. 64.

Die Bezeichnung der Korngruppen erfolgt durch Angabe der unteren (d) und oberen (D) Siebgröße z.B. 4/8 mm. Abhängig vom Größtkorn (GK) dürfen dabei die Korngruppen auch Anteile an Überkorn (> D) und Anteile an Unterkorn (< d) enthalten⁸¹.

Als grobe Gesteinskörnungen werden Korngruppen bezeichnet mit D \geq 4 mm und d \geq 2 mm.⁸²

In der ÖNORM EN 12620 werden die maximalen Anteile an Über- und Unterkorn mittels Kategorisierung angegeben. So sind z.B. für die Kategorie $G_{\rm C}90/15$ 10% Überkorn und 15% Unterkorn zulässig.

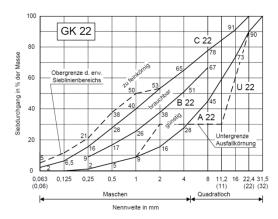
Grobe Gesteinskörnungen werden dabei mit der Kategoriebezeichnung G_CXX/XX , feine Gesteinskörnungen mit G_FXX und Korngemische mit G_AXX gekennzeichnet.

Für aufbereitete Gesteinskörnungen werden beim Tunnelprojekt Koralmtunnel für die unterschiedlichen Korngruppen beispielsweise folgende Kategorien gefordert:83

- 8/16 und 16/32 mm: G_C90/10
- 3/8 mm: G_C90/15 (Die Trennung von Sand erfolgt bei 3 mm. Dadurch soll das Entmischen des Sandes bei der Deponierung verringert werden.)

Aufgrund der Festigkeits- und Expositionsklasse wird mit der Tab. NAD 4 der ÖNORM B 4710-1 die Mindestanzahl der für die Betonherstellung zu verwendenden Korngruppen festgelegt (siehe Tabelle 13).

Mögliche Gesamtsieblinien (abhängig vom GK) werden in der ÖNORM B 4710-1 angegeben.


Die Korngröße sowie die Kornverteilung haben einen wesentlichen Einfluss auf den Wasseranspruch der Gesteinskörnung.

Betrachtet man Gesteinskörnungen mit unterschiedlichem Größtkorn so nimmt die Oberfläche der Gesteinskörnungen mit abnehmendem Größtkorn stark zu. Demgemäß verfügen auch feine Gesteinskörnungen über eine größere Oberfläche als grobe Gesteinskörnungen. Vergleicht man die Oberflächen der Grenzsieblinien A und C für ein Größtkorn 22 mm (gem. ÖNORM B 4710-1) so hat die Gesteinskörnung der Sieblinie C22 die 4,5 fache Oberfläche der Sieblinie A22 (vgl. Tabelle 9).

⁸¹ Vgl. [28] ÖNORM EN 12620 2008, S. 9 – 14.

⁸² Vgl. [28] ÖNORM EN 12620 2008, S. 7..

^{83 [88]} Pichler, Huber 2009.

Sieblinie	Kornoberfläche
A22	1,0 m ²
B22	2,5 m2
C22	4,5 m ²

Tabelle 9: Kornoberfläche abhängig von der Sieblinie⁸⁵

Abbildung 29: Grenzsieblinie GK 22 gem. ÖNORM B 4710-184

SCHNEIDER (2010) gibt an, dass sich bei einem Vergleich einer Gesteinskörnung in der Mitte des günstigen Bereiches (Sieblinie AB 32, rundliche gedrungene Gesteinskörnung) mit Tunnelausbruchmaterial (gleiche Sieblinie) der Hohlraumgehalt zwischen den Gesteinskörnungen aufgrund der ungünstigen Kornform von ca. 27% auf 35% erhöht. Daraus resultiert eine Wasserzunahme von 270 auf 350 $l/m^3.86$

Da es erforderlich ist, dass alle Gesteinskörner mit Zementleim umhüllt werden, hat die Oberfläche der Gesteinskörnung auch einen direkten Einfluss auf den erforderlichen Zementbedarf.

Gleichzeitig muss der verbleibende Hohlraum der Gesteinskörnung durch Mehrkornleim, welcher sich zusammensetzt aus den < 0,125 mm-Komponenten Zement, Zusatzstoffe, Zusatzmittel, Gesteinsmehl und Wasser, gefüllt werden. Der erforderliche Mehlkorngehalt ist zusätzlich zu Hohlraumgehalt und Größtkorn auch von der Konsistenz und der Verarbeitungsmethode abhängig.⁸⁷ So verfügt Pumpbeton aufgrund der erforderlichen höheren Stabilität üblicherweise über einen größeren Anteil an Mehlkorn als herkömmlicher Beton.

Für Gesteinskörnungen wird abhängig vom Größtkorn in der ÖNORM B 4710-1 (Tabelle NAD 9) ein empfohlener Mehlkorngehalt angegeben (vgl. Pkt. 4.1.9).88

Aus Gründer der Stabilität (kein Entwischen) empfiehlt SCHNEIDER (2010) für Beton im Untertagebau ein Wasser-Mehlkornverhältnis von 0.35 - 0.40.89

Werden glimmerhaltige Gesteinskörnungen für die Betonproduktion verwendet, ist dabei zu berücksichtigen, dass es aufgrund ihrer geringeren Druck- und Scherfestigkeit im Zuge des Umlagerns bzw. Transportes sowie während des Mischvorganges zu einer Verfeinerung der Sieblinie kommt. Dieser Umstand wurde durch *HUBER* (1971) im Zuge der Untersuchungen an glimmerhaltigen Gneisen nachgewiesen (siehe Abbildung 30).

^{84 [29]} ÖNORM B 4710-1 2007, S. 44.

^{85 [32]} Zement+Beton 2010, S. 91.

⁸⁶ Vgl. [34] Schneider 2010, S. 222.

⁸⁷ Vgl. [34] Schneider 2010, S. 225.

^{88 [29]} ÖNORM B 4710-1 2007, S. 57.

⁸⁹ Vgl. [34] Schneider 2010, S. 226)

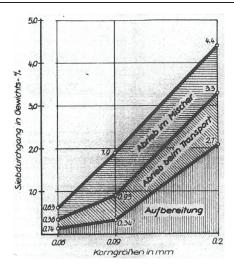


Abbildung 30: Zunahme der Feinteile beim Transport von der Aufbereitung in den Mischer⁹⁰

In Abbildung 31 wird zur Abschätzung das erforderliche Gesamtwasser in Abhängigkeit von der Betonkonsistenz und dem Größtkorn der Gesteinskörnung angegeben. Demgemäß steigt bei gleichbleibender Konsistenz der Wasseranspruch durch die Verringerung des Größtkorns der Gesteinskörnung.

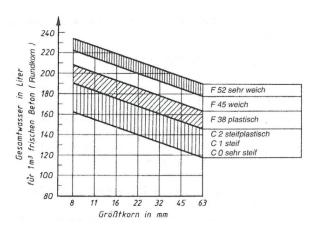


Abbildung 31: Wasseranspruch für Beton in Abhängigkeit von Konsistenz und Größtkorn bei günstiger Kornverteilung und Rundkorn⁹¹

Wasseranspruch und Bindemittelverbrauch sind über den W/B-Wert verknüpft. Der W/B-Wert setzt sich aus dem wirksamen Wassergehalt (W) und dem anrechenbaren Bindemittelgehalt⁹² (B) zusammen. Bestandteile des wirksamen Wassergehaltes sind:

Zugabewasser

- + Oberflächenwasser der Gesteinskörnung
- + Zusatzmittel (> 3 l/m³)
- <u>- Kernfeuchte (WK) (bei sehr trockenen Gesteinskörnungen, bzw. bei Schichtsilikaten)</u> Wirksamer Wassergehalt

⁹¹ [32] Zement + Beton 2010, S. 183.

⁹⁰ [37] Huber 1971, S. 143.

⁹² Anrechenbarer Bindemittelgehalt = Zementgehalt + k . Zusatzstoffgehalt (k-Wert ist abhängig von der Art des Betonzusatzstoffes)

Kernfeuchte

Kernfeuchte (W_K) wird definiert als:

Im Korn der Gesteinskörnung enthaltene Wassermenge, die eine bis zur Massekonstanz getrocknete Gesteinskörnung nach 30-minutiger Wasserlagerung aufgenommen hat.⁹³

Die Kernfeuchte wird durch folgende Gleichung berechnet:

$$W_k = \frac{100 \, x \, (M_1 - M_5)}{M_5}$$

 M_1 ... Masse der wassergesättigten und oberflächentrockenen Gesteinskörnung in Luft, in Gramm

 $M_5 \dots Masse$ der nach Ofentrocknung 30 Minuten Wasser gelagerten und oberflächentrockenen Gesteinskörnung in Luft, in Gramm

Verfügt die Gesteinskörnung über eine Kernfeuchte von > 0,5 M-% kann die Kernfeuchte bei der Berechnung des W/B-Wertes berücksichtigt werden. Die für den W/B-Wert maßgebende Kernfeuchte ergibt sich dabei aus der Subtraktion von 0,5 M-% von der Gesamt-Kernfeuchte.⁹⁴

• Kernfeuchte (W/B-Wert) = Kernfeuchte (WK) in % der Masse – 0,5% der Masse

Trockene Gesteinskörnungen können eventuell einen Teil des Zugabewassers aufsaugen und so dem Erhärtungsprozess entziehen. Dieses Phänomen ist vor allem bei porigen Leichtzuschlägen aber auch z.B. bei glimmerhaltigen Gesteinskörnungen zu berücksichtigen. Wird in diesem Fall nicht durch eine angepasste Betonrezeptur auf die Kernfeuchte reagiert, so ist mit einer steiferen Konsistenz des Betons zu rechnen (= Herabsetzung des W/B-Wertes).

Die Wasseraufnahme einer Gesteinskörnung nach Eintauchen für 24 h (WA $_{24}$) wird gem. ÖNORM EN 1097-6 nach folgender Gleichung berechnet 95 :

$$WA_{24} = \frac{100 \, x \, (M_1 - M_4)}{M_4}$$
 M₁ ... Masse der wasser nung in Luft, in Gramm

 \mbox{M}_1 ... Masse der wassergesättigten und oberflächentrockenen Gesteinskörnung in Luft, in Gramm

 $M_4\ ...\ Masse der ofengetrockneten Messprobe in Luft, in Gramm$

Wesentlich beeinflusst wird die Wasseraufnahmefähigkeit durch die Porosität der Gesteinskörnung. Da diese auch die Gesteinsfestigkeit beeinflusst kann die Wasseraufnahme auch als Parameter für die Gesteinsfestigkeit herangezogen werden.

Tabelle 10 enthält die ermittelte Wasseraufnahme [M.-%] von, für zukünftige österreichische Untertageprojekte, typischen Lithologien. Demnach ist bei einer Verwendung dieser Lithologien für die Betonproduktion die Berücksichtigung der Kernfeuchte wesentlich.

	Wasseraufnahme nach 24 h Wasserlagerung (W ₂₄) [M%]							
Korngruppe	Kalkglimmer- schiefer	Augengneis	Biotit- Plagioklas- Gneis	Amphibolit	Granitgneis	Raibler Dolomit		
0/4	0,43	1,90	1,80	0,70	0,32	0,60		
4/8	0,73	1,20	0,80	0,50	0,46	0,40		
8/16	0,52	0,80	0,40	0,60	0,24	0,30		
16/32	0,13	0,60	0,40	0,50	0,29	0,30		

Tabelle 10: Wasseraufnahme nach 24 h Wasserlagerung [M.-%]96

94 Vgl. [29] ÖNORM B 4710-1 2007, S. 65.

^{93 [46]} ONR-23303 2010, S. 10.

^{95 [61]} ÖNORM EN 1097-6 2006 S. 10.

Die Bestimmung des Gesamt-Wassergehaltes einer Gesteinskörnung erfolgt gem. ÖNORM EN 1097-5.97

In der Tabelle NAD 10 der ÖNORM B 4710-1 werden abhängig von der Expositionsklasse maximale W/B-Werte angegeben.

Zementverbrauch in Abhängigkeit der Korngröße

Wird Ausbruchmaterial als Gesteinskörnung verwendet, ist davon auszugehen, dass vor allem TBM-Material über einen großen Anteil an Feinmaterial verfügt. Gleichzeitig besteht ein Mangel an groben Gesteinskörnungen. Demgemäß kann es für die Deckung des Eigenbedarfs an Gesteinskörnungen auf der Baustelle erforderlich sein, dass das Größtkorn einzelner Betonsorten verringert wird. Ein daraus resultierender Mehrbedarf an Bindemittel ist dabei zu berücksichtigen. Zur Abschätzung des Mehrbedarfs können die Werte aus der Tabelle NAD 10 der ÖNORM B 4710-1 herangezogen werden.

Korrektur anrechenbarer Mindestbindemittelgehalt GK 22 = 100%				
GK 32	GK 16	GK 11	GK 8	GK 4
- 5%	+ 5%	+ 10%	+ 15%	+ 25%

Tabelle 11: Korrektur des anrechenbaren Mindestbindemittelgehaltes98

Aus Gründen des begrenzten Anteils an Grobkorn im TBM-Ausbruchmaterial wurde beim Gotthard-Basistunnel das Größtkorn der hergestellten Gesteinskörnung auf 22 mm limitiert.⁹⁹

4.1.6.1 Korngrößenverteilung Innenschalenbeton

Die ÖBV-RL Innenschalenbeton enthält folgende Anforderungen an die Kornzusammensetzung der Gesteinskörnungen.

			Gewölbebeton und Sohlbeton mit besonderen Eigenschaften				
	Gewölbe- beton (Normal- bereich)	Sohle, Sohl- Gewölbe, Widerlager (Normal- bereich)	Frostangriff ohne Taumittel bzw. mit Tunnel- anstrich (Portal- bereich)	Frostan- griff mit Taumittel ohne Tunnel- anstrich	Wasser- undurch- lässige Innescha- le	Sulfatan- griff SO ₄ -2 400- 1500mg/l	lösender Angriffe
Sieblinienklassen	SK21)	SK21)	SK11)	SK1	SK11)	SK11)	SK11)

¹⁾ Bei Verwendung von 4 Korngruppen dürfen 2 Gesteinskörnungen mit einem Kleinstkorn von unter 4 mm verwendet werden, wobei eine Gesteinskörnung ein Größtkorn von 4 mm und eine von max. 16 mm aufweisen darf. Die Verwendung von Korngemischen 0/16 mm ist mit Ausnahme der Betonsorte IGT¹⁰⁰ zulässig.

Tabelle 12: Auszug aus Tabelle 3/2 der RL Innenschalenbeton - Anforderungen an Innenschalenbeton¹⁰¹

Die Sieblinienklassen werden in der ÖNORM B 4710 Tabelle NAD 4 definiert.

 $^{^{96}\,\}mathrm{Vgl.}$ [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial

^{97 [43]} ÖNORM EN 1097-5 2008.

⁹⁸ Vgl. [29] ÖNORM B 4710-1, S. 62.

⁹⁹ Vgl. [58] Zbinden 2007, S. 12.

¹⁰⁰ Gewölbe- und Sohlbeton mit besonderen Eigenschaften, Frostangriff mit Taumittel ohne Tunnelanstrich

¹⁰¹ Vgl. [26] ÖBV-RL Innenschalenbeton 2003, S. 8.

Sieblini-	Zulässige Betonsorte	Anforderungen an die Kornzusammensetzung			
enklasse SK ^a		Mindestanzahl der Korngruppen bei		Sieblinienbereich ^b	
		GK ≥ 22 GK ≤ 16			
1	sämtliche Betonsorten insgesamt 3 Korngruppen, davon 1 Korn-gruppe his 4 mm ^c sämtliche Festigkeits- klasse und X0, XC1, XC2 insgesamt 2 Korn-gruppen, davon 1 Korn- gruppe bis 4 mm ^c	Sieblinie bis 4 mm im wesentlichen obere Hälfte günstiger Bereich, darüber stetige Sieblinie bzw. Ausfallskörnung			
		Sieblinie bis 4 mm im wesentlichen untere Hälfte günstiger Bereich, darüber stetige Sieblinie bzw. Ausfallskörnung			
Sämtliche Betonsorten, ausgenommen ≥ C 50/60 und XF4, XA2, XA3 2 Sämtliche Festigkeits- klassen X0, XC1, XC2	insgesamt 2 Korngruppen, davon 1		Sieblinie bis 4 mm im wesentlichen obere Hälfte günstiger Bereich, darüber stetige Sieblinie bzw. Ausfallskörnung		
	_	Korngruppe bis 4 mm ^c		Sieblinie bis 4 mm im wesentlichen untere Hälfte günstiger Bereich, darüber stetige Sieblinie bzw. Ausfallskörnung	
3	≤ C 25/30 und X0, XC1, XC2, PB	aufbereitetes Korn	gemisch	günstiger und brauchbarer Bereich	
0	≤ C 12/15 und X0 und Rezeptbeton aller Betonsorten	nicht aufbereitetes Korngemisch gem. 5.2.3.2		günstiger, brauchbarer und erweiterter Sieblinienbereich	

^a Wird die für die Betonherstellung verwendete Gesteinskörnung vom Betonhersteller selbst produziert, ist im Zuge der Produktionskontrolle des Betons auch die Produktionskontrolle (mit aufrechtem Überwachungsvertrag) der Gesteinskörnung (Anforderung gemäß Tabelle NAD 6) durchzuführen.

Tabelle 13: Verwendung von Korngruppen und Korngemischen sowie zulässige Sieblinienbereiche 102

In Bezug auf das Größtkorn wird empfohlen, ein möglichst großes Größtkorn inkl. Überkorn (max. 5%) unter Berücksichtigung z.B. der Bauteildicke und Bewehrungsführung zu verwenden.

Ausgehend von langjährigen Erfahrungen werden in der ÖBV-RL Innenschalenbeton abhängig vom Größtkorn folgende Sieblinienbereiche angegeben.

 $^{^{\}rm b}$ Abweichungen dürfen die geforderten Eigenschaften des Betons nicht beeinträchtigen.

^c Mindestens eine Korngruppe mit höchstens 4 mm Größtkorn, die andere(n) mit mindestens 2 mm Kleinstkorn (bei Spritzbeton sind die in der jeweiligen Regel festgelegten Anforderungen einzuhalten). Die Kombination von Korngruppen mit Korngemischen ist nicht zulässig.

¹⁰² [29] ÖNORM B 4710-1 2007, S. 46.

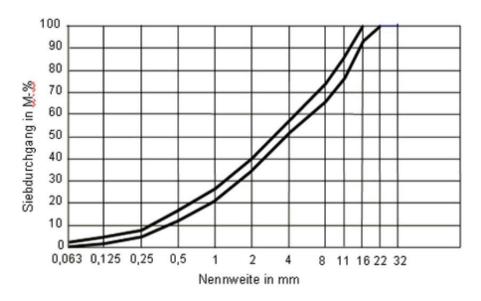


Abbildung 32: Sieblinienbereich für Innenschalenbeton GK 16 – Regelbereich 103

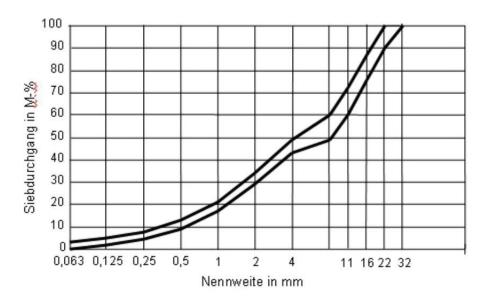


Abbildung 33: Sieblinienbereich für Innenschalenbeton GK 22 – Regelbereich

_

 $^{^{103}}$ [26] ÖBV-RL Innenschalenbeton 2003, S. 13.

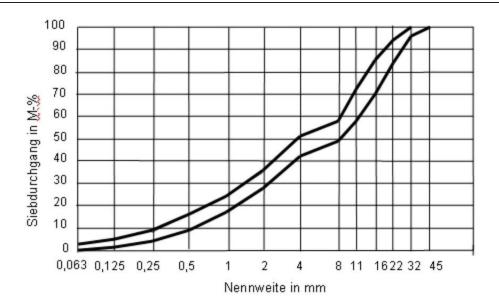


Abbildung 34: Sieblinienbereich für Innenschalenbeton GK 32 - Regelbereich

Umgelegt auf die Korngruppen 0/4, 4/8, 8/16 und 16/32 ergeben sich somit im Mittel folgende Massenanteile.

Größtkorn	Korngruppen*)					
dioistroin	0/4 mm	4/8 mm	8/16 mm	16/22	16/32 mm	
GK 16	54%	16%	30%	-	-	
GK 22	47%	8%	26%	19%	-	
GK 32	47%	7%	25%	-	21%	

^{*)} Die angegeben Massenanteile in % wurden mittels arithmetischem Mittel aus Unter- und Obergrenze der angegebenen Sieblinienbereiche ermittelt. Der Anteil der jeweils größten Korngruppe ergibt sich durch Subtraktion der Summe der restlichen Korngruppen von 100%.

Tabelle 14: Innenschalenbeton - Massenanteile der Kornkruppen in Abhängigkeit des Größtkorns

4.1.6.2 Korngrößenverteilung Spritzbeton

Gemäß der ÖBV-RL Spritzbeton dürfen grobe Gesteinskörnungen¹⁰⁴ max. 1,5 Massen-% an Feinanteilen (< 0,063 mm) aufweisen. Für feine Gesteinskörnungen¹⁰⁵ beträgt die Obergrenze 3 Masse-% wobei diese bei karbonatischen Gesteinen um 5 Masse-% erhöht werden darf (vgl. Pkt. 4.1.6.1).

Ein günstiger Bereich der Gesamtsieblinie von Spritzbeton für Körnung 0/8 und 8/11 wird in Abbildung 35 dargestellt. Zusätzlich werden in der ÖBV-RL zulässige Abweichungen in Masse-% zum Wert der Erstprüfungen angegeben.

_

¹⁰⁴ Korngruppen mit D nicht kleiner als 4 mm und d nicht kleiner als 2 mm.

¹⁰⁵ Korngruppen mit D nicht größer als 4 mm.

100 obere Grenze günstiger Bereich untere Grenze günstiger Bereich 75 85 Siebdurchgang in % der Masse 80 65 55 60 40 45 25 18 8 2 4 8 0,25 0,5 11 0.063 Nennweite in min

Günstiger Bereich der Gesamtsieblinie Körnung 0/8, 0/11

Abbildung 35: Günstiger Bereich der Gesamtsieblinie gem. ÖBV-RL Spritzbeton¹⁰⁶

Umgelegt auf die Korngruppen 0/4, 4/8 und 8/11 ergeben sich somit im Mittel folgende Massenanteile.

Größtkorn	Korngruppen*)			
di distribili	0/4 mm	4/8 mm	8/11 mm	
GK 11	70%	90%	10%	

^{*)} Die angegeben Massenanteile in % wurden mittels arithmetischem Mittel aus Unter- und Obergrenze der angegebenen Sieblinienbereiche ermittelt. Der Anteil der jeweils größten Korngruppe ergibt sich durch Subtraktion der Summe der restlichen Korngruppen von 100%.

Tabelle 15: Spritzbeton - Massenanteile der Kornkruppen in Abhängigkeit des Größtkorns

Um eine zielsicher Mischung und Verarbeitung gewährleisten zu können, wird für Trockenspritzbeton bei Verwendung eines Spritzbindemittels (SBM 107) ein Wassergehalt der Gesteinskörnung von 2,0 – 4,0 Masse-% empfohlen.

4.1.7 Kornform

Die Kornform eines Einzelkorns ($d \ge 4$ mm, $D \le 63$ mm) kann gem. ÖNORM EN 933-4¹⁰⁸ mit Hilfe eines Kornform-Messschiebers unter Ermittlung der Kornformkennzahl (SI) beschrieben werden. Es wird dabei das Verhältnis zwischen kleinster (E) und größter (L) Kornabmessung bestimmt. Körner mit einem Abmessungsverhältnis von L/E > 3 werden als "nicht-kubisch" bezeichnet. Die Gesamtmasse der nicht-kubischen Körner (M_2) wird der Probengesamtmasse (M_1) gegenübergestellt (SI = $M_2/M_1 \times 100$ [%]).

Nicht-kubische Körner haben Einfluss auf die Verarbeitbarkeit des Frischbetons.

Das Maximum der Kornformkennzahl (SI) wird in der ÖNORM B 4710-1 mit \leq 40 (=SI₄₀) festgelegt.¹⁰⁹ D.h. es dürfen maximal 40 M.-% an nicht kubischen Körnern in der Gesteinskörnung

¹⁰⁶ [27] ÖBV-RL Spritzbeton 2009, S. 14.

¹⁰⁷ SBM – Schnell erstarrende Bindemittel ohne Zugabe von Zusatzmittel (Erstarrungsbeschleuniger).

¹⁰⁸ Vgl. [30] ÖNORM EN 933-4 2008.

¹⁰⁹ Vgl. [29] ÖNORM B 4710-1 2007, S. 48.

enthalten sein. Gesteinskörnungen für Beton der Expositionsklassen X0, XC1, XC2 unterliegen keiner Einschränkung.

Alternativ kann die Kornform einer Gesteinskörnung auch mittels Plattigkeitskennzahl (FI_{xx}) gem. ÖNORM EN 933-3 110 beschrieben werden. Die Gesteinskörnung wird dabei in Kornklassen aufgeteilt und anschließend mit Stabsieben (Schlitzweite = GK/2) ein zweites Mal gesiebt. Die Plattigkeitskennzahl entspricht dem prozentuellen Massenanteil der plattigen Körnern an der Gesamtprobe. Dieses Verfahren ist für Korngrößen zwischen 4 und 80 mm geeignet.

Im Zuge des Tunnelprojektes Gotthard-Basistunnel wurde für die Splittfraktionen 4/8, 8/16 und 16/22 mm als Richtwert eine Plattigkeitskennzahl von 35 (= FI_{35}) festgelegt¹¹¹.

Beim Tunnelprojekt Koralmtunnel wird aufgrund von Aufbereitungs- und Betonversuchen für die Korngruppen 8/16 und 16/32 eine Kornformkennzahl von SI_{25} und für die Korngruppe 3/8 mm eine Kornformkennzahl von SI_{40} empfohlen. 112

Für die Bewertungsmatrix werden die beim Koralmtunnel empfohlenen Kornformkennzahlen als Entscheidungskriterium herangezogen.

Im Zuge des Forschungsprojektes Recycling von Tunnelausbruchmaterial wurde die Kornform in Abhängigkei der Aufbereitungsart an für zukünftige österreichische Tunnelprojekte typischen Lithologien untersucht. Die Ergebnisse werden im Pkt. 6.2 dargestellt.

Kornoberfläche

Der prozentuelle Anteil von Brechkorn an der Gesteinskörnung aus natürlichen Vorkommen kann mithilfe des, in der ÖNORM EN 933-5 definierten, Prüfverfahrens ermittelt werden. Gebrochenem Korn werden dabei Körner mit mehr als 50% gebrochener Oberfläche zugeordnet. Die Einteilung erfolgt in C-Kategorien mit tiefgestellter Angabe des Anteils der gebrochenen und gerundeten Körner (z.B. $C_{50/10}$). Tunnelausbruch besteht zu 100% aus gebrochenen Körnern (= $C_{100/0}$).

Gebrochenes Korn verfügt im Vergleich zu einem runden Korn über eine größere Oberfläche. Dies hat direkten Einfluss auf den Wasseranspruch und den daraus resultierenden Bindemittelverbrauch. Die Auswirkung von gebrochenen Gesteinskörnungen auf das Ausbreitmaß wurde bei Versuchen an der TU-München untersucht. Ein Konsistenzvergleich zwischen einer gebrochenen und einer runden Gesteinskörnung wird in Abbildung 36 angegeben. Durch den Einsatz von Zusatzmitteln kann diesem Unterschied jedoch entgegengewirkt werden.

¹¹¹ Vgl. [63] Gugelmann 2006, S. 103.

^{110 [62]} ÖNORM EN 933-3 2004.

¹¹² Vgl. [88] Pichler, Huber 2009, S. 5.

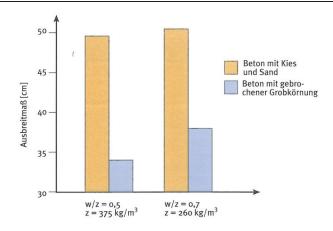


Abbildung 36: Konsistenzvergleich zwischen Kiessandbeton und Beton mit gebrochener Grobkörnung¹¹³

Um daher auch bei der Verwendung von gebrochener Gesteinskörnung die gleiche Konsistenz wie bei runden Gesteinskörnungen zu erreichen, ist entweder der Zementanteil im Beton zu erhöhen oder die Zugabe von Fließmitteln erforderlich. Der Zementmehrbedarf kann dabei bis zu 18 Masse-% betragen.¹¹⁴

Wird kantiges Korn < 4 mm verwendet, ist der Wasseranspruch bei gleicher Sieblinie um etwa 10 bis 15% größer als bei rundem Korn. Der Wasseranspruch von grobem, kantigem Korn (über 4 mm) ist im Allgemeinen nur wenig (5%) größer als jener von rundem Korn.¹¹⁵

Der Einfluss der Kornform auf Wasseranspruch, Verarbeitbarkeit und Hohlraumgehalt wird in Abbildung 37 zusammenfassend dargestellt.

	na	türlich	gebrochen		
Kornform	kugelig	nicht kugelig (stengelig/plattig)	kubisch	nicht kubisch	
Kantigkeit		rund	kan	to.	
Oberflächen- rauhigkeit		glatt	ra		
Kornoberfläche Wasserbedarf	gering			hoch	
Verarbeitbarkeit Verdichtbarkeit	optimal	2		erschwert	
Hohlraumgehalt	gering	4		hoch	

Abbildung 37: Einfluss der Gesteinskörnung auf Wasseranspruch, Verarbeitbarkeit und Hohlraumgehalt¹¹⁶

Zum Unterschied zu Beton mit Rundkorn (Alluvialkies) sind bei der Verwendung von Brechkorn folgende Veränderungen festzustellen:¹¹⁷

• Betondruckfestigkeit ist leicht höher.

^{113 [39]} Weber, Riechers 2003, S. 40.

¹¹⁴ Vgl. [39] Weber, Riechers 2003, S. 41.

¹¹⁵ [32] Zement+Beton 2010, S. 92-93.

¹¹⁶ [34] Schneider 2010, S. 224.

¹¹⁷ Vgl. [51] Leemann, Thalmann-Suter, Kruse 1999

- Verhältnis Biegezugfestigkeit zu Druckfestigkeit ist leicht höher.
- Bei Verwendung von kristallinem Gestein sinkt der E-Modul ab (= positiver Einfluss auf die Rissneigung).
- Verminderte Reißneigung. 118

Die Kornform von Tunnelausbruchmaterial kann sehr stark durch die Aufbereitungsart und die Petrographie beeinflusst werden. So ist z.B. bei glimmerhaltigen Gesteinen mit einer geringeren Druck- und Scherfestigkeit und im Falle einer Aufbereitung mit einer ungünstigen Kornform zu rechnen.

Die Kornoberfläche sollte möglichst sauber sein. An der Kornoberfläche haftende Feinteile können die Verbindung zwischen Zementstein und Korn negativ beeinflussen.

4.1.8 Muschelschalengehalt

Der Muschelschalengehalt ist bei Gesteinskörnungen die aus dem Meer gewonnen werden nachzuweisen. Bei Gesteinskörnungen, mit denen langjährige Erfahrungen bei der Betonherstellung vorliegen gelten die Anforderungen gem. ÖNORM B 4710-1 als erfüllt.

4.1.9 Gehalt an Feinteilen (Abschlämmbares)

Feinteile (Abschlämmbares) sind Bestandteile der Gesteinskörnung mit einem Durchmesser von < 0,063 mm. Die Bestimmung erfolgt mittels Nasssiebung. Der Anteil an Feinteilen kann wesentlichen Einfluss auf den Wasseranspruch und die Frostbeständigkeit haben.

Die Bestimmung der Feinanteile erfolgt gem. der ÖNORM EN 933-1.119

Haften Feinteile an der Oberfläche von größeren Körnern, oder kommen diese als Knollen vor, so kann daraus ein schlechter Verbund zwischen Zementstein und dem einzelnen Korn resultieren. Eine verminderte Betonfestigkeit ist die Folge. Gleichzeitig können aber gleichmäßig verteilte Feinteile zu einem dichteren Gefüge der Gesteinskörnung beitragen.

Im Falle eines lösenden chemischen Angriffes ist der Karbonatgehalt der feinen Gesteinskörnungen zu beachten.

Gem. ÖNORM EN 12620 werden für unterschiedliche Gesteinskörnungen Kategorien für den Siebdurchgang durch das 0,063 mm Sieb als Masseanteil in Prozent angegeben.

• $f_{1,5}$... Siebdurchgang $\leq 1,5$ M-%

Hinsichtlich dem Anteil an Abschlämmbarem (Anteil < 0,063 mm) wird in der ÖBV-Richtlinie Innenschalenbeton auf die Bestimmungen der ÖNORM B 4710-1 verwiesen (siehe Tabelle 16). Bei gebrochenen Gesteinskörnungen, welche hauptsächlich aus karbonatischen Gesteinen bestehen und bei welchen der Anteil unter 0,02 mm nicht 3 Masse-% übersteigt, darf der Anteil an Abschlämmbarem bei einem GK von 32 bzw. 45 mm zusätzlich um 5 Masse-% erhöht werden.

Der maximale Anteil an Abschlämmbarem in Abhängigkeit vom Größtkorn gemäß ÖNORM B 4710-1 wird in der Tabelle 16 angegeben.

-

¹¹⁸ Vgl. [33] DAUB 2001, S. 31.

¹¹⁹ [104] ÖNORM EN 933-1 2012.

	Maximaler Anteil a	Höchst zulässige	
Größtkorn	Sieblinie C [Masse-%]	Erweiterter Sieblinienbereich [Masse-%]	Abweichung ¹⁾²⁾ [Masse-%]
GK4	4	5	2,6
GK8	3	5	2,3
GK11	3	5	2,3
GK16	3	5	1,5
GK22	2	5	1,5
GK32	2	5	1,5

¹⁾ Gilt bei SK 1 und SK 2 als nachgewiesen, wenn

Erfolgt die Prüfung der Kornzusammensetzung der Gesteinskörnung am Frischbeton, dürfen die angegebenen höchstzulässigen Abweichungen um max. 50 % überschritten werden.

Tabelle 16: Maximaler Anteil an Abschlämmbarem gem. der Grenzsieblinien ÖNORM B 4710-1120

Gemäß ÖNORM B 4710-1 ist eine Überschreitung der angegeben Grenzwerte an Abschlämmbarem erlaubt, wenn bei der Erstprüfung Bestimmungen bezüglich erhöhtem Wasseranspruch ($< 10 \text{ l/m}^3$) und Frostklassen (F_1 , F_2) der Körnung 0/4 nachgewiesen werden.

Für das Tunnelprojekt Koralmtunnel (kristallines Gestein) werden für die unterschiedlichen Korngruppen beispielsweise folgende Grenzwerte für den Feinteilgehalt empfohlen: 121

- 0/3 mm: f_6
- 3/8, 8/16 und 16/32 mm: f_{1.0}

Das empfohlene Sieblinienband für den Sand 0/3 mm wird in Abbildung 38 dargestellt.

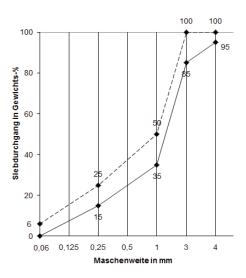


Abbildung 38: Empfohlenes Sieblinienband für Sand 0/3 mm bei Tunnelprojekt Koralmtunnel122

[–] für die Körnungen ≤ 4 mm bei den Siebendurchgängen < 4 mm eine Abweichung von maximal 50 % der zulässigen Abweichung gemäß ÖNORM EN 12620:2005, Tabelle C.1 nachgewiesen wird (bezeichnet mit "Kategorie C.1 / 0,5").

[–] die Körnungen > 4 mm der ÖNORM EN 12620 entsprechen und bei Körnungen > 4 mm mit D > 11,2 mm und D/d > 2 die Abweichung beim mittleren Sieb von maximal 50 % der zulässigen Abweichung gemäß ÖNORM EN 12620 nachgewiesen wird und der Anteil an Über- und Unterkorn um maximal \pm 5 % schwankt.

²⁾ Der gemäß der Erstprüfung festgelegte höchstzulässige Anteil an Abschlämmbarem darf nur dann überschritten werden, wenn der Wasseranspruch gegenüber dem Zielwert gemäß Erstprüfung hierdurch um nicht mehr als 10 l/m³ ansteigt.

¹²⁰ Vgl. [29] ÖNORM B 4710-1 2007, S. 42 – 45 und 47.

¹²¹ Vgl. [88] Pichler, Huber 2009, S. 5.

Mehlkorn

Es wird unterschieden zwischen Abschämmbarem und Mehlkorn. Als Mehlkorn wird der Kornanteil mit einer Korngröße < 0,125 mm im Beton definiert. Mehlkorn enthält somit zusätzlich zu Gesteinskörnern auch Körner aus Zement und Zusatzstoffen. Das Mehlkorn hat großen Einfluss auf die Verarbeitungseigenschaften des Betons. In der ÖBV-Richtlinie Innenschalenbeton wird daher ein minimaler Mehlkorngehalt angegeben (vgl. Tabelle 17).

Größtkorn	Mehlkorngehalt
GK16	mind. 390 kg/m ³
GK22	mind. 370 kg/m ³
GK32	mind. 350 kg/m ³

Tabelle 17: Mehlkorngehalt (Anteil ≤ 0,125 mm) gem. RL Innenschalenbeton¹²⁴

Wird ein zu hoher Mehlkorngehalt verwendet kann dies zu:

- einer Erhöhung des Wasseranspruchs und des Zementbedarfs (bei gleicher Konsistenz),
- zu einer Erhöhung der Schwind- und Kriechmaße,
- sowie zur Verminderung des Frost- und Tauwiderstandes sowie des Abnutzungswiderstandes

führen.125

Ein zu geringer Mehlkorngehalt fördert das Entmischen bzw. das Bluten des Betons. 126

Im Vergleich zur ÖBV-Richtlinie Innenschalenbeton empfiehlt die ÖNORM B 4710-1 (Tabelle NAD 9) für Konsistenzen ≤ F45 folgende Mehlkorngehalte (< 0,125 mm).

Größtkorn der Gesteinskörnung	Empfohlener Mehlkorn- gehalt [kg/m³]
GK 8	450 ± 25
GK16	375 ± 25
GK22	350 ± 25
GK32	325 ± 25

Tabelle 18: Empfohlener Mehlkorngehalt (Kornanteil mit Korngröße < 0,125 mm) gem. ÖNORM B 4710-1127

Kommen für brandbeständigen Beton Kunststofffasern zum Einsatz so kann auf die dadurch verursachte Veränderung des Wasseranspruches, des Luftgehaltes und der rheologischen Eigenschaften durch einen erhöhten Mehlkorngehalt und ein abgestimmtes Bindemittel-Zusatzmittel-System reagiert werden.¹²⁸

Füller

Im Gegensatz zu Abschlämmbarem werden Füller bei der Betonproduktion zugegeben um bestimmte Eigenschaften zu erreichen. Füller sind Gesteinskörnungen (z.B. Quarzmehl, Kalkstein-

¹²² Vgl. [88] Pichler, Huber 2009, S. 5.

¹²³ Vgl. [29] ÖNORM B 4710-1 2007, S. 21.

¹²⁴ [26] ÖBV-RL Innenschalenbeton 2003, S. 12.

¹²⁵ Vgl. [60]Neroth, Vollenschaar 2011, S. 278.

¹²⁶ Vgl. [29] ÖNORM B 4710-1:2007, S. 57.

¹²⁷ [29] ÖNORM B 4710-1:2007, S. 57.

¹²⁸ Vgl. [31] Krispel, Huber 2009, S. 123.

mehl) mit einem überwiegenden Anteil an Körnern < 0,063 mm und dienen der Verbesserung der Kornabstufung. Füller sind der Gruppe der inaktiven Zusatzstoffe (Typ 1) zuzuordnen.

4.1.10 Widerstand gegen Zertrümmerung

Abhängig vom Einsatzbereich des Betons sind gegebenenfalls Widerstände gegen Verschleißbeanspruchungen der Gesteinskörnung nachzuweisen.

Der Widerstand gegen Zertrümmerung kann mit dem Los-Angeles-Test (LA-Test) gem. ÖNORM EN 1097-2¹²⁹ untersucht werden. Dabei werden 5 kg einer definierte Gesteinskörnung (10 – 14 mm) in einer Prüftrommel einer Abrieb- und Schlagbeanspruchung mit 11 Stahlkugeln (500 Umdrehungen) ausgesetzt. Die Drehgeschwindigkeit beträgt dabei 31 – 33 Umdrehungen pro Minute. Nach der Versuchsdurchführung wird der Siebrückstand der Probe (m) auf einem 1,6 mm Analysesieb bestimmt. Der Los-Angeles-Wert (LA-Wert) wird aus folgender Formel berechnet:

$$LA = \frac{5.000 - m}{50}$$
 LA ... Los-Angeles-Wert m ... Siebrückstand der Probe (m) auf einem 1,6 mm Analysesieb

Da der Wiederstand gegen Zertrümmerung unter anderem auch von der Gesteinsfestigkeit abhängig ist, eignet sich der LA-Wert auch als Paramater für die diese.

Ein Los-Angels-Wert von 20 (LA₂₀) bedeutet, dass 20% der geprüften Gesteinskörnung nach der Versuchsdurchführung einen Durchmesser kleiner als 1,6 mm haben. Vergleichbare Ergebnisse können auch mithilfe des LCPC-Brechbarkeits-Tests ermittelt werden (siehe unten).

Zu berücksichtigen ist, dass das Testergebnis auch durch die Aufbereitungsart der Gesteinskörnung beeinflusst werden kann. Es wird daher empfohlen, die zu untersuchende Korngruppe aus der zu untersuchenden Gesteinskörnung auszusieben.

In Abbildung 39 wird die Auswirkung der Aufbereitungsart auf den LA-Wert dargestellt. Das untersuchte Material wurde einerseits mittels Backenbrecher und Prallmühle und andererseits mit Backenbrecher und Kegelmühle gebrochen (vgl. Pkt. 0).

_

¹²⁹ [72] ÖNORM EN 1097-2:2010.

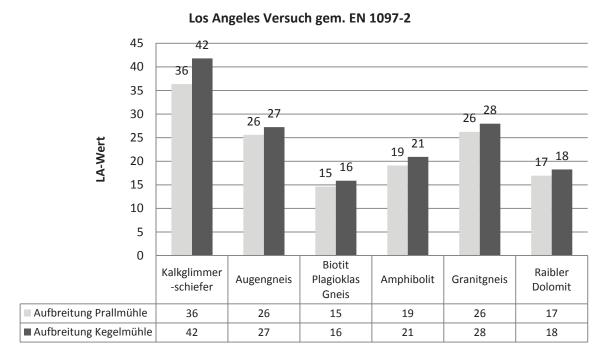


Abbildung 39: LA-Werte (Mittelwert aus drei Versuchen) in Abhängigkeit der Gesteins- und Aufbereitungsart

Der LA-Test wird vor allem für die Untersuchung von Gesteinskörnungen für den Straßenbau herangezogen. Er eignet sich jedoch auch für die Beschreibung der Gesteinshärte.

Auch für Bahnschotter kommt der LA-Test zum Einsatz. Hierbei ist jedoch eine spezielle Versuchsdurchführung zu beachten (vgl. Pkt. 4.3).

Bei der Beurteilung von angegebenen LA-Werten sind zusätzlich zur Versuchsdurchführung und der Aufbereitungsart der Gesteinskörnung auch folgende Randbedingungen zu berücksichtigen¹³⁰:

- Das Testergebnis kann von der Kornform der gebrochenen Gesteinskörnung beeinflusst werden.
- Enthält das zu beurteilende Gestein mehrere Lithologien, ist zu berücksichtigen, dass sich eventuell der LA-Wert in Abhängigkeit der betrachteten Korngruppe verändert.

Da beide Einflüsse bei der Beurteilung von Ausbruchmaterial auftreten können, empfiehlt *THALMANN* (1996) die Verwendung einer Mischprobe. Diese besteht dabei aus den in der Tabelle 19 angegebenen Korngruppen, wobei jeweils die plattigen Komponenten mithilfe von Stangensieben auszusieben sind.

Korngruppe	Spaltsieb Abstand	Menge
[mm]	[mm]	[g]
4/8	3,15	1500
8/16	6,3	2500
16/20	12	1000

Tabelle 19: Probenzubereitung für das Los-Angeles $_{d/1,3}\text{-}\text{Verfahren}^{131}$

-

¹³⁰ Vgl. [90] Thalmann 1996, S. 56.

Verwendet man eine Mischprobe vermindert sich auch der Materialbedarf für die Probenzubereitung wesentlich. So können zum Unterschied zur normgemäßen Versuchsdurchführung bei der Verwendung einer Mischprobe aus dem zu untersuchenden Material gleichzeitig mehrere Korngruppen (mit kleinerer Menge) entnommen werden.

Beim Tunnelprojekt AlpTransit wurden für einen Beton der Festigkeitsklasse B 40/30 (= C 30/37) folgende Anforderungen festgelegt:¹³²

- Ausbruchmaterial:
 - o Brechbarkeits-Index ≤ 75
 - o Punktlast-Index I_{S50} (vgl. Pkt. 7.2)
 - * anisotropes Gestein (parallel zur Schieferung) ≥ 2,5 N/mm²
 - * isotropes Gestein ≥ 3,5 N/mm²
- Aufbereitetes Ausbruchmaterial
 - \circ Los-Angels-Index ≤ 40

Diese Anforderungen bezüglich des Brechbarkeits-Index und des Los-Angels-Index werden auch als Entscheidungskriterium in der Bewertungsmatrix herangezogen.

Zur Beschreibung des Nachbrechens der Gesteinskörnung während des Mischens bzw. des Materialtransports, kommt häufig auch ein modifizierter LA-Test zur Anwendung. Dabei wird die Gesteinskörnung in der LA-Trommel, ohne Zugabe der Stahlkugeln, eine bestimmte Dauer gemischt.

In Abbildung 40 werden Sieblinien zweier Gesteinskörnungen vor und nach Durchführung eines modifizierten LA-Tests dargestellt. Dabei wurden 35 kg Gesteinskörnung (ca. 45% 0/4; 10% 4/8; 25% 8/16 und 20% 16/32 mm) bei 500 Trommelumdrehungen einer Korn zu Korn Beanspruchung ausgesetzt. Die daraus resultierende Verfeinerung der Sieblinie ist sehr gut erkennbar.

Der modifizierte LA-Test liefert einen Hinweis wie stark die betrachtete Gesteinskörnung zum Nachbrechen (z.B. während des Transportes oder des Mischvorganges) neigt. Es können dabei einzelne Korngruppen (z.B. 8/16, 16/32 mm) aber auch ganze Sieblinien untersucht werden.

¹³¹ [90] Thalmann 1996, S. 57.

^{132 [51]} Leemann, Thalmann, Kruse 1999.

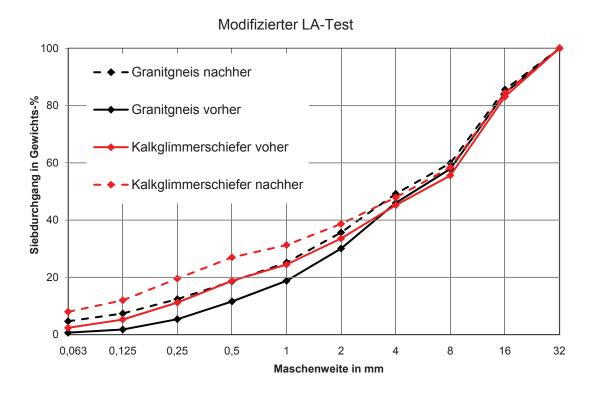


Abbildung 40: Sieblinien von Gesteinskörnungen vor und nach der Durchführung eines modifizierten LATests 133

4.1.10.1 LCPC-Test

Im Vergleich zum LA-Test können mithilfe des LCPC-Tests vergleichbare Testergebnisse erzielt werden.

Der LCPC¹³⁴-Test wurde in Frankreich entwickelt und genormt (AFNOR P 18-579:1990). Der LCPC-Test kann sowohl zur Beschreibung der

- Brechbarkeit (Brechbarkeitsindex B_R) als auch der
- Abrasivität (Abrasivitätsindex ABR)

einer Gesteinskörnung herangezogen werden.

Beim LCPC-Test werden 500 g (\pm 2 g) der Korngruppe 4/6,3 mm in einem zylindrischen Behälter durch ein sich drehenden Metallflügel (Rockwell B 60-75; Drehzahl = 4.500 Umdrehungen/Minute) 5 Minuten beansprucht.

¹³³ [101] Forschungsprojekt Recycling von Tunnelausbruchmaterial, Untersuchungsergebnisse

¹³⁴ LCPC: Laboratoire Central des Ponts et Chaussées

Abbildung 41: LCPC-Test

Brechbarkeit (Brechbarkeitsindex - B_R)

Für die Auswertung wird im Anschluss an den Versuch der Rückstand der zerkleinerten Gesteinskörnung am 1,6 mm Analysesieb bestimmt. Der Brechbarkeitsindex (B_R) ergibt sich aus folgender Formel:

$$B_R = \frac{m}{M} [-]$$

m \dots Gewicht des Siebrückstandes am 1,6 mm Analysesieb nach der Versuchsdurchführung

M ... Gewicht der Probe vor der Versuchsdurchführung

Zur Klassifizierung der geprüften Gesteinskörnungen schlägt der Hersteller folgendes Schema vor:

B_R	0	25	50	75	100
Brechbarkeit	Sehr schwach	schwach	mittel	stark	sehr stark

Tabelle 20: Klassifikationsschema Brechbarkeitsindex B_R¹³⁵

Wie der LA-Wert ist auch der Brechbarkeitsindex von der Kornform abhängig. 136

Auswertungen von LCPC-Tests werden in Abbildung 42 angegeben. Wie zuvor bei den LA-Werten wurde auch hier die Gesteinskörnung im Anschluss an die Aufbereitung des Materials ausgesiebt. Ebenso konnte die Auswirkung der Aufbereitung auf den Brechbarkeitsindex nachgewiesen werden.

¹³⁵ [90] Thalmann 1996, S. 59.

¹³⁶ Vgl. [90] Thalmann 1996, S. 59.

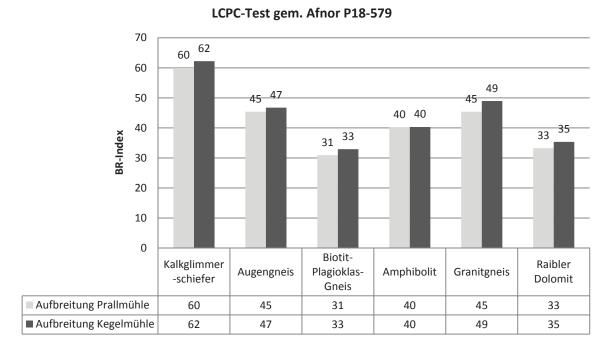


Abbildung 42: LCPC-Brechbarkeits-Index (Mittelwert aus drei Versuchen) in Abhängigkeit der Gesteins- und Aufbereitungsart

Vergleicht man den LA-Wert mit dem Brechbarkeitsindex so ist erkennbar, dass zwischen den Ergebnissen eine Korrelation besteht. In Abbildung 43 werden die zuvor angegebenen Ergebnisse (Mittelwert aus drei Versuchen) der LA- und LCPC-Versuche gegenübergestellt.

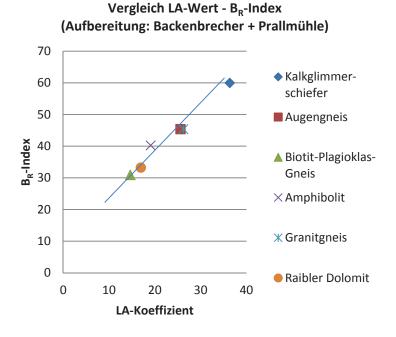


Abbildung 43: Gegenüberstellung LA-Wert – LCPC-Brechbarkeitsindex

THALMANN (1996) ermittelte auf Grundlage von Auswertungen verschiedener Gesteinstypen eine Gleichung für die Umrechnung zwischen Brechbarkeitsindex und Los-Angeles-Index.

$$B_R = 3,25 (\pm 5,93) + 1,63 (\pm 0,17) * LA$$

Aufgrund der erforderlichen, vergleichsweise zum LA-Test, geringen Probenmenge eignet sich der LCPC-Test sehr gut für die Überprüfung von Gesteinskörnungen in einem Baustellenlabor. Auch an, aus Probebohrungen gewonnenen, Gesteinskörnungen kann so sehr leicht eine Abschätzung bezüglich des Widerstandes gegen Zertrümmerung erfolgen. Dies ist unter anderem auch für die Verwendung des Ausbruchmaterials als Gesteinskörnung für Tragschichten oder für Asphaltmischgut von wesentlicher Bedeutung (siehe unten).

Abrasivität (Abrasivitätsindex - ABR)

Zusätzlich zur Bestimmung der Brechbarkeit von Gesteinskörnungen kann mithilfe des LCPC-Tests auch die Abrasivität von Boden und Fels beschrieben werden. Dabei wird die Abnutzung des Metallflügels während der Versuchsdurchführung bestimmt. Der Abrasivitätsindex ergibt sich aus folgender Formel:

$$A_{BR}=rac{m_{Fo}-m_{F}}{M}$$
 [-] m_{F0} ... Gewicht des Metallflügels vor Versuch m_{F} ... Gewicht des Metallflügels nach Versuch m_{F} ... Gewicht der Probe vor der Versuchsdurchführung

Die festgestellte Abrasivität beschreibt das Verschleißpotential einer Gesteinskörnung an Werkzeugen (z.B. Bohreinrichtungen, Brecher) und kann so als für die Kalkulation wesentlicher Parameter herangezogen werden. Die Parameter Mineralbestand der Komponenten, Korngrößenverteilung und Kornrundung sind dabei zu berücksichtigen¹³⁷.

In Abbildung 44 werden für unterschiedliche Lithologien ermittelte Abrasivitätsindizes angegeben. Diese wurden parallel zu den in Abbildung 42 angegebenen Brechbarkeitsindizes bestimmt.

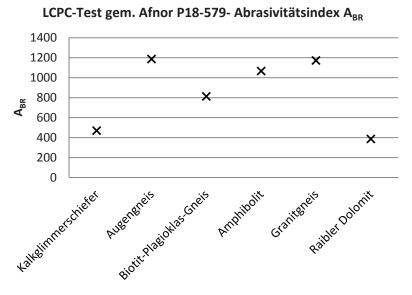
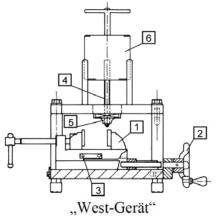



Abbildung 44: LCPC-Abrasivitätsindex (ABR) (Mittelwert aus drei Versuchen) in Abhängigkeit der Gesteinsart

Alternativ lässt sich das Verschleißpotential von Festgestein auch mithilfe des Cercharversuches beschreiben. Bei diesem wird die Abnutzung eines Stahlstiftes, welcher über eine raue Gesteinsoberfläche bei konstanter Auflast 10 mm gezogen wird, ermittelt. Pro Versuch ist der Versuchs-

¹³⁷ Vgl. [139] Thuro, Käsling 2009, S. 186.

ablauf mit 5 Prüfstiften durchzuführen. Als Ergebnis wird der Cerchar-Abrasivitätsindex (CAI) ermittelt. Die Prüfstiftabnutzung von 0,1 mm entspricht 1 CAI.

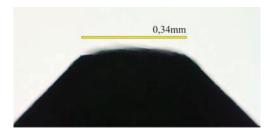


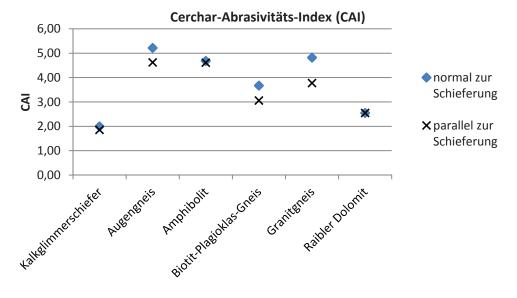
Abbildung 46: Prüfstiftabnutzung

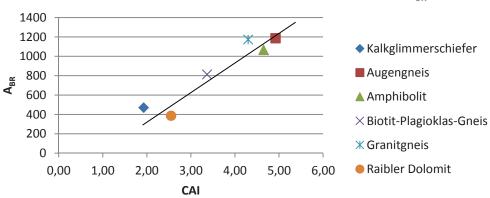
1 Schraubstock, 2 Handkurbel, 3 Schlitten 4 Prüfstift, 5 Prüfstiftführung, 6 Gewicht

Abbildung 45: Aufbau Cerchar - West-Gerät¹³⁸

Vergleicht man den mittels Cerchar-Versuch ermittelten Cerchar-Abrasivitätsindex (CAI) mit dem LCPC-Abrasivitätsindex (A_{BR}) aus dem LCPC-Test so ist eine Korrelation der Ergebnisse feststellbar (vgl. Abbildung 48). Dies wurde mitunter auch von $B\ddot{U}CHI$ et al. (1996) und THURO et al. (2009) beschrieben¹³⁹.

In der folgenden Abbildung werden für unterschiedliche Lithologien Abrasivitätsindizes parallel und normal zur Schieferung angegeben. Der Cerchar-Versuch wurde dabei an Bruchflächen durchgeführt.




Abbildung 47: Cerchar-Abrasivitätsindex (CAI)

_

^{138 [141]} Käsling, Thiele, Thuro 2007, S. 230

¹³⁹ Vgl. [140] Büchi, Mathier, Wyss 1995 und [139] Thuro, Käsling 2009.

Abbildung 48 enthält einen Vergleich von Cerchar-Abrasivitätsindizes (CAI) mit LCPC-Abrasivitätsindizes (A_{BR}). Hierfür wurden die CAI der Abbildung 47 der einzelnen Lithologien gemittelt und dem A_{BR} aus Abbildung 44 gegenübergestellt.

Cerchar-Abrasivitäts-Index (CAI) - LCPC-Abrasivitätsindex (A_{BR})

Abbildung 48: Vergleich Cerchar-Abrasivitäts-Index – LCPC-Abrasivitätsindex

Zur Klassifizierung der Abrasivität kann Tabelle 21 herangezogen werden.

A _{BR} (g/t)	CAI [0,1 mm]	Abrasivitäts- bezeichung	Beispiele für Festgesteine und Komponenten in Lockergesteinen
0 – 50	0 - 0,3	nicht abrasiv	Holz, Torf, organische Beimengungen
50 - 100	0,3 - 0,5	kaum abrasiv	Ton-Schluff-Stein, Mergelstein
100 - 250	0,5 – 1,0	schwach abrasiv	Tonschiefer, Sandstein (feinkörnig, schwach tonig gebunden), Kalkstein (rein), Marmor (rein)
250 – 500	1,0 - 2,0	abrasiv	Kalkstein (sandig), Marmor (quarzhaltig), Sandstein (fest, karbonatisch gebunden)
500 – 1250	2,0 - 4,0	stark (sehr) abrasiv	Sandstein (kieselig gebunden), Quarzsandstein, Porphyr, Andesit, Basalt, Phyllit, Glimmerschiefer, z.T. Amphibolit
1250 – 2000	4,0 - 6,0	extrem abrasiv	(Gang-)Quarz, Granit, Quarzit, Eklogit, z.T. Amphibolit

Tabelle 21: Klassifizierung des LCPC-Abrasivitätsindex (ABR), gewonnen aus dem LCPC Abrasivitäts Test, im Vergleich mit dem Cerchar-Abrasivitätsindex (CAI) und den zugehörigen Abrasivitäts-Bezeichnungen¹⁴⁰

4.1.11 Frost-Tau-Widerstand

Der Frost-Tau-Widerstand ist in Österreich sowohl an der groben als auch feinen Gesteinskörnungen nachzuweisen.

Die Frostbeständigkeit grober Gesteinskörnungen (4 – 63 mm) wird mittels Dosenfrostversuch nach ÖNORM EN 1367-1 untersucht. Gesteinskörnungen werden dabei einem mehrmaligen Gefrier-/Auftauvorgang unterzogen. Die daraus resultierenden Kornabplatzungen werden mittels anschließender Siebung bestimmt. Mit Ausnahme von Beton der keinen Umweltbelastungen ausgesetzt ist, müssen die Gesteinskörnungen die Grenze der Kategorie F_2 (Masseverlust $\leq 2\%$) einhalten (bei Taumittelbelastung F_1).

¹⁴⁰ Vgl. [91] Thuro, Singer, Käsling, Bauer 2006, S. 286.

Die Frostbeständigkeit von feinen Gesteinskörnungen (≤ 4 mm) wird durch die Bestimmung der Oberflächenabwitterung an einem genormten Betonwürfel bestimmt (gem. ONR 23303).¹⁴¹

Der Frost-Tauwiderstand kann auch durch die Aufbereitung der Gesteinskörnung beeinflusst werden. Die Quetschzerkleinerung mittels Backenbrecher kann demnach zu feinen Anrissen in den gebrochenen Körnern führen, welche in der Folge die Frostbeständigkeit herabsetzen.¹⁴²

Für Tunnelbetone ist der Frost-Tau-Widerstand üblicherweise nur im Portalbereich von Bedeutung.

4.1.12 Alkali-Kieselsäure-Reaktivität

Die Beurteilung der Alkali-Kieselsäure-Reaktivität im Beton erfolgt gemäß der ÖNORM B 3100¹⁴³.

Die Alkali-Kieselsäure-Reaktion (AKR) ist ein Reaktionstyp der Alkali-Aggregat-Reaktion (AAR). Im Falle der Alkali-Kieselsäure-Reaktion (AKR) sind Gesteine mit amorpher und teilkristalliner Kieselsäure beteiligt.

Bei der Alkali-Aggregat-Reaktion (AAR) kommt es zu einer Reaktion zwischen Bestandteilen der Gesteinskörnung und der Porenlösung im Beton. Die daraus resultierenden Dehnungen im Beton können zu Betonschäden führen, wenn dabei die Zugfestigkeit des Betons überschritten wird. Die AAR ist eine langsam ablaufende Reaktion. Schäden treten daher oft erst sehr lange nach dem Betoneinbau auf.

Durch die AAR können Ausplatzungen, Risse und Ausblühungen an der Oberfläche verursacht werden.

Für die Entstehung der AAR ist neben einer, in Hinblick auf Alkalien reaktiven, Gesteinskörnung auch eine ausreichende Feuchtigkeit und ein hoher, wirksamer Alkaligehalt der Porenlösung erforderlich. Für die Schweiz wurden folgende Gesteinstypen als potentiell reaktiv definiert:

- kieselige bzw. sandige Kalke
- Sandsteine
- Hornfels
- Gneise
- stark deformierte Quarzite
- Schiefer

Bei der Verwendung von Ausbruchmaterial ist zusätzlich zu berücksichtigen, dass die Reaktivität der Gesteinskörnung durch das Brechen erhöht wird. 144

Das Eintreten einer AAR kann jedoch sowohl durch konstruktive als auch betontechnologische Maßnahmen vermieden werden. Mithilfe konstruktiver Maßnahmen soll das Eindringen von Wasser in den Betonbauteil verhindert werden. In betontechnologischer Hinsicht kann die AAR durch einen geringen W/B-Wert, die Verwendung von Zumahlstoffen im Zement sowie den Einsatz von alkaliarmen Zusatzmitteln vermindert werden. Bei Berücksichtigung dieser Maß-

_

¹⁴¹ ONR 23303 2010, S. 107.

¹⁴² Vgl. [25] Springenschmid 2007, S. 47.

¹⁴³ ÖNORM B 3100 2008: Beurteilung der Alkali-Kieselsäure-Reaktivität im Beton

¹⁴⁴ Vgl. [48] Cemsuisse 2005, S. 13 - 17.

nahmen kann auch potentiell reaktives Gesteinsmaterial für die Betonproduktion verwendet werden.¹⁴⁵

Im Gegensatz zu Teilen von Deutschland (v.a. Norddeutschland) und der Schweiz ist in Österreich die Gefahr von Schäden an der Betonoberfläche aufgrund einer Alkali-Kieselsäure-Reaktivität von untergeordneter Bedeutung.

Entsprechend aufbereitete Gesteinskörnungen aus österreichischen Abbaugebieten, welche ausreichend lange für die Betonherstellung verwendet wurden, haben demnach bis heute keine schadensauslösende Alkali-Kieselsäure-Reaktivitäten im Beton verursacht.¹⁴⁶

Zur Bestimmung der Reaktivität des Betons werden in der ÖNORM B 3100 eine Schnell- und eine Langzeitprüfung (bei negativer Schnellprüfung) definiert. Gleichzeitig wird darauf hingewiesen, dass Langzeiterfahrungen mit den Gesteinskörungen ohne AAR-Schäden gegenüber den Testergebnissen Vorrang zu geben ist. Für die Beurteilung der Gesteinskörnungen werden zusätzlich zwei Beanspruchungsklassen eingeführt.

- Beanspruchungsklasse 1 sämtliche Bauteile mit Ausnahme von jenen der Beanspruchungsklasse 2:
 - Liegen praktische Erfahrungen (mind. 7 Jahre) mit Gesteinskörnungen aus dem Abbaugebiet vor, so ist keine Untersuchung erforderlich.
- Beanspruchungsklasse 2 Betonfahrbahn-Decken (Ober und Unterbeton):
 Liegen praktische Erfahrungen (mind. 20 Jahre) mit Gesteinskörnungen aus dem Abbauge-

biet als Gesteinskörnung für Betonfahrbahnen vor, so ist keine Untersuchung erforderlich.

Schnellprüfung der Gesteinskörnung an Mörtelprismen

Die Bestimmung der AKR-Reaktivität der Gesteinskörnung wird über die Längenänderung von drei (13 Tage in 1 molarer NaOH-Lösung gelagerten) Betonprismen (4 x 4 x 16 cm) festgestellt. Als Bindemittel wird ein Einheitszement CEM I 42,3R verwendet.

Ist die Dehnung der Betonprismen (Mittelwert aus drei Messungen) vom 2. bis 14. Tag \leq 1,0 % ist die Gesteinskörnung als unbedenklich einzustufen.

Langzeitprüfung der Gesteinskörnung an Mörtelprismen

Gesteinskörnungen, welche den Grenzwert der Schnellprüfung überschreiten sind einer Langzeitprüfung zu unterziehen. Hierbei werden zwei, mit der zu prüfenden Gesteinskörnung und einem Einheitszement hergestellte, Prismen nach 24 h 6 Tage an der Luft und anschließend 51 Wochen lang in 1 molarer NaOH-Lösung gelagert.

Ist die Dehnung der Betonprismen ($10 \times 10 \times 40 \pm 4$ cm) vom 8. Tag bis zur 52 Woche $\leq 0.5 \%$ (Einzelwert als Mittelwert der 2 geprüften Prismen) ist die Gesteinskörnung als unbedenklich einzustufen.

Liegen Ergebnisse aus zwei Prüfungen vor, gilt für den Mittelwert der Dehnung beider Prüfungen als Grenze eine Dehnung von 0,7‰.

Zur Abklärung der Alkali-Kieselsäre-Reaktivität im Zuge der Projektierungsphase des Tunnelprojektes wird ein Schnelltest gem. ÖNORM B 3100 empfohlen. Als Ausgangsmaterial kann dabei Probenmaterial von Probebohrungen verwendet werden.

-

¹⁴⁵ Vgl. [48] Cemsuisse 2005, S. 44 – 45.

¹⁴⁶ Vgl. [45] ÖNORM B 3100 2008, S. 3.

4.1.13 Wasserlösliches Chlorid

Zum Schutz der Bewehrung vor Korrosion muss der Chloridgehalt (Cl) der Gesteinskörnungen ≤0,01 M-% sein (chloridfrei). Natürliche Gesteinskörnungen aus binnenländischen Vorkommen erfüllen diese Grenze üblicherweise.

Die Bestimmung des wasserlöslichen Chloridgehalts erfolgt gem. ÖNORM EN 1744-1147.

4.1.14 Säurelösliches Sulfat

Um Schäden hervorgerufen durch Treiben zu vermeiden soll der Anteil an säurelöslichen Sulfaten (Alkalisulfate, Gips oder Anhydrit) von 0,8 M-% (AS_{0,8}) nicht überschritten werden.

Die Bestimmung des säurelöslichen Sulfats (SO₃) erfolgt gem. ÖNORM EN 1744-1. Es werden dabei 100 g einer Sandprobe in einer Kreuzschlagmühle auf eine Korngröße < 0,125 mm gemahlen. Im Anschluss wird an 2 g der gemahlenen Sandprobe im Salzsäureaufschluss der Sulfatgehalt photometrisch bestimmt.

4.1.15 Betontechnologie

Durch vielfältige Variationsmöglichkeiten in der Verarbeitung und Zusammensetzung von Beton kann sowohl auf äußere Umwelteinflüsse (z.B. Expositionsklassen), auf Besonderheiten der Betonausgangsstoffe sowie auf baubetriebliche Randbedingungen reagiert werden. Bei der Verwendung von Ausbruchmaterial als Gesteinskörnung kann so auch bei nicht idealen Gesteinseigenschaften die für den Bauprozess erforderliche Betonqualität erreicht werden. In diesem Zusammenhang sind auch eventuelle Qualitätsschwankungen des Ausbruchmaterials (z.B. Dichteänderungen während des Vortriebs) zu berücksichtigen.

Im Falle von großen Tunnelprojekten sind bei der Betonherstellung häufig spezielle Randbedingungen zu berücksichtigen. So mussten z.B. beim Teilabschnitt Sedrun des Gotthard Basistunnels ca. 2,5 bis 3 Stunden für die Betonherstellung, das Beladen des Zuges, den Transport und den Einbau durch die Betonrezeptur ermöglicht werden. Daraus ergab sich eine Offenzeit von ca. 4 Stunden. Gleichzeitig war aufgrund des Bauprogramms 10 Stunden nach dem Einbringen des Betons eine Mindestbetonfestigkeit von 5 N/mm² gefordert.¹⁴⁸

4.1.15.1 Betontechnologie Innenschalenbeton

Abhängig von der Betonverwendung werden in der Richtlinie Innenschalenbeton folgende Konsistenzklassen empfohlen:

- unbewehrte Gewölbebetone im oberen Bereich von F45 (=Ausbreitmaß)
- bewehrte Sohlen F52
- bewehrte Gewölbe F59

Für unterschiedliche Anwendungen schlägt die RL Innenschalenbeton folgende Betonzusammensetzungen vor:

 $^{^{147}}$ ÖNORM EN 1744-1 2010: Prüfverfahren für chemische Eigenschaften von Gesteinskörnungen - Teil 1: Chemische Analyse

¹⁴⁸ Vgl. [40] Hürlimann 2010, S. 118.

			Gewölbebeton und Sohlbeton mit besonderen Eigenschaften					
	Gewölbe- beton (Normal- bereich)	Sohle, Sohl- Gewölbe, Widerlager (Normal- bereich)	Frostangriff ohne Taumittel bzw. mit Tunnel- anstrich (Portal- bereich)	Frostan- griff mit Taumittel ohne Tunnelan- strich	WDI	Sulfatan- griff SO ₄ -2 400- 1500mg/l	lösender Angriffe	
Abkürzungen für Betonsorte	C20/25(56) IG/ GK2)	C20/25(56) IS/ GK2)	C20/25(56) IGP/ISP/ GK2)	C25/30 (56)IGT/ GK2)	C25/30 (56)WDI/ GK2)	C25/30 (56)IXAT/ GK2)	C25/30 (56)IXAL/ GK2)	
Empfohlener Zement- gehalt ¹⁾ kg/m ³	250-270	210-240	250-270	270-290	250-270	250-270	250-270	
Aufbereitete hydraulisch wirksame Zusatzstoffe (AHWZ) kg/m³	70-50	80-60	70-50	80-60	70-50	70-50	70-50	
Maximaler Gesamtwas- sergehalt l/m ³	≤ 190	≤ 190	≤ 190	≤ 170	≤ 170	≤ 170	≤ 170	
Größtkorn der Gesteins- körnung	GK16, GK22, GK32	GK32, GK45	GK22, GK32	GK22, GK32	GK16, GK22	GK22, GK32	GK22, GK32	
Gesteinskörnungen Bereich 2/3 (A+B)-B bei g = 2700 kg/m ³	1850-1920	1870-1940	1850-1920	1750-1870	1850-1920	1850-1920	1850- 1920	
Zusatzmittel BV, FM, LP, LPV		Dosierung	laut Erfordernis	für Luftgehalt	und Verarbeith	parkeit		
Luftgehalt	2,5-5,0	2,5-5,0	2,5-5,0	2,5-5,0	2,5-5,0	2,5-5,0	2,5-5,0	
W/B-Wert (Zielwert)	≤ 0,63	≤ 0,63	≤ 0,63	≤ 0,50	≤ 0,58	≤ 0,58	≤ 0,58	
Zementart gem. ÖNORM B 3327-1	WT38, WT42	WT38, bei dicken Sohlen > 1,2 m: WT33 C ₃ A-frei	WT38, WT42	WT38, WT38 C₃A- frei	WT33 C ₃ A- frei, WT38 C ₃ A-frei, bei dicken Sohlen > 1,2 m: WT33 C ₃ A- frei	WT38 C ₃ A-frei, WT42 C ₃ A-frei	WT38 WT42	

¹⁾Zementgehalt von > 250 kg/m³ zur Einhaltung der üblichen Ausschalfrist erforderlich.

Tabelle 22: Tabelle 3/3 der RL-Innenschale – Vorschlag für die Zusammensetzung (Mischungsverhältnis) von Innenschalenbeton mit Nachweis am Festbeton¹⁴⁹

Durch die Hydratationswärme hervorgerufene Zwangsspannungen können durch Gesteinskörnungen mit niedriger Temperaturdehnzahl wie z.B. Basalt, Kalkstein (nicht quarzitische Körnungen) verringert werden.

_

 $^{^{\}rm 2)}$ Für unbewehrte Innenschalen gilt GK 32 als Standradgrößtkorn, für bewehrte Innenschalen GK 22.

¹⁴⁹ [26] ÖBV-RL Innenschalenbeton 2003, S. 10.

4.1.15.2 Betontechnologie Spritzbeton

Als Anhaltspunkt für das Mischgut für die Spritzbetonklassen SpC II und SpC III werden in der ÖBV-RL-Spritzbeton folgende Richtwerte angegeben.

	Trockenspritzbeton	Nassspritzbeton
Zement, SBM	310 bis 360 kg/m ³	380 bis 450 kg/m ³
Zusatzstoffe (z.B. Flugasche)	50 bis 30 kg/m ³	70 bis 0 kg/m ³
Bindemitteldosierung (Zement, SBM und zusatzstoffe)	340 bis 400 kg/m ³ 1)	400 bis 500 kg/m ³
Wasser-Bindemittewert ²⁾	≤ 0,50 bei Anforderungen J ₂ und/oder J ₃	
Konsistenz (Ausbreitmaß)	-	Günstiger Bereich: Dicht- strom: AM = 60 ± 5 cm $^{3)}$; Dünnstrom: AM = 65 ± 5 cm $^{3)}$
Gesteinskörnungen: Regelbereich s. oben	GK8, GK 11	GK8, max. GK 11

 $^{^{\}rm 1)}$ Bei Bindemitteldosierung unter 340 kg/m $^{\rm 3}$ wird die Haftung des Spritzbetons an der Auftragsfläche deutlich vermindert.

Tabelle 23: Richtwerte für die Zusammensetzung des Mischgutes für die Spritzbetonklassen SpC II und SpC III gem. $\ddot{\text{OBV-RL}}$ Spritzbeton 150

4.1.15.3 Betontechnologie Tübbingbeton

Im Gegensatz zu Innenschalenbeton wird für Tübbinge üblicherweise eine wesentlich höhere Betondruckfestigkeit gefordert. Aufgrund der gegebenen Randbedingungen (Abhebefestigkeit, Kraftübertragung in den Fugen, Pressenkräfte, Nachläuferlasten,...) werden Stahlbetontübbinge häufig mit einer Druckfestigkeit C40/50 ausgeführt.

Tübbingbeton wird in Fertigteilwerken hergestellt und in Stahlschalungen eingebaut. Um die Leistungsfähigkeit der Produktion zu erhöhen, kann der Frischbeton einer Wärmebehandlung unterzogen werden. Das Abheben nach kurzer Zeit ist somit bei Einhaltung der erforderlichen Zugfestigkeit (in der Regel zwischen $0.8-1.2\ N/mm^2$) ¹⁵¹ möglich.

Als Zementgehalt haben sich aufgrund der geforderten Abhebefestigkeit ca. 340 – 380 kg/m³ bewährt. Das Größtkorn sollte wie bei der Innenschale so groß wie möglich gewählt werden. Bei einem Größtkorn von 32 mm empfiehlt sich ein Anteil der Körnung $\leq 0,25$ mm von 450 – 470 kg/m³.152

In Tabelle 24 wird die Betonrezeptur für die Tübbinge des Katzenbergtunnels angegeben.

-

²⁾ bezogen auf Mischgut. Bei Trockenspritzbeton beträgt der Wasser-Zementwert üblicherweise 0,35 bis 0,50

³⁾ siehe Richtlinie Spritzbeton Seite 26

¹⁵⁰ [27] ÖBV-RL Spritzbeton 2009, S. 18.

¹⁵¹ [42] ÖBV-RL Tübbingbeton 2009, S. 25.

¹⁵² Vgl. [33] Daub 2011, S. 38.

	Zement [kg/m³]	Flugasche [kg/m³]	w/z	k-Wert ¹⁵³	Zusatzmittel
Tübbing Katzenbergtunnel	CEM I 52,5 N 200 ± 20	120 ± 20	0,50	0,60	FM

Tabelle 24: Betonrezeptur Tübbingbeton Katzenbergtunnel¹⁵⁴

4.1.15.4 Zusatzmittel

Zur Beeinflussung der Eigenschaften des Frisch- wie Festbetons werden häufig Zusatzmittel eingesetzt.

Zusatzmittel	Vorteile	Nachteile
Betonverflüssiger (BV)	bessere Verarbeitbarkeit, geringerer Wasseranspruch, höhere Festigkeit, höhere Dichtheit, verbesserte Frostbe- ständigkeit	Bluten, Erstarrungsverhalten, Luftporen- einführung und Luftporenkennwerte
Fließmittel (FM)	wesentlich leichtere Verdichtung, leich- tes Ausfüllen komplizierter Schalungen, einfaches Betonieren stark bewehrter Bauteile, hohe Frühfestigkeit	Entmischung bei nicht richtiger Betonzu- sammensetzung, Bluten, Luftporenein- führung und Luftporenkennwerte, Erstarrungsverhalten, Bildung von Frühschwindrissen bei Wärme und Wind
Luftporenbildner (LP)	Frost-Tausalz-Beständigkeit, Frostbe- ständigkeit, Einsparung von Zugabewas- ser und/oder Feinkorn, verminderte kapillare Saugfähigkeit	Festigkeitsabfall gegenüber Beton und LP-Mittel
Erstarrungsbeschleuniger	kurze Verarbeitungszeit, rasche Festig- keitsentwicklung, verbesserte Nasshaf- tung bei Spritzbeton	Verringerung der Festigkeit zu späterem Prüfterminen
Erhärtungsbeschleuniger	rasche Festigkeitsentwicklung, frühere Ausschalzeitpunkte, betonieren bei tiefen Temperaturen, Gefrierbeständigkeit	Verringerung der Festigkeit zu späterem Prüfterminen
Verzögerer (VZ)	Verzögerung der Anfangserhärtung, Verlängerung der Verarbeitungszeit, Betonieren bei höheren Temperaturen, Verringerung von Temperaturspannun- gen, Erhöhung der 28-Tage-Festigkeit	Spätere aber stärkere Wärmeentwick- lung, Gefahr von Spannungsrissen

Tabelle 25: Vor- und Nachteile von Beton-Zusatzmittel¹⁵⁵

Erfahrungen beim Gotthard-Basistunnel haben gezeigt, dass es abhängig von der Art und der Menge von Schichtsilikaten im Feinsand zu erheblicher Adsorption von Fließmittel (auf Polycarboxylatether-Basis) kommen kann. In Versuchen wurden Adsorptionsraten von Fließmitteln von 17-31% festgestellt (Normalbereich bis 10%). Dies führte in der Folge zu einem teilweise deutlich früheren als geplanten Ansteifen des Betons. 156

4.1.16 Besonderheiten bei der Verwendung von glimmerhaltigen Gesteinskörnungen

Glimmer ist ein gesteinsbildendes Mineral und häufiger Bestandteil von magmatischen, metamorphen und Sedimentgesteinen. Kristalline Gesteine wie Granite, Gneise und metamorphe

¹⁵³ Zur Berechnung des anrechenbarer Bindemittelgehaltes

¹⁵⁴ Vgl. [49] BVK-Betontechnische Merkblätter, Massenbeton 2007

¹⁵⁵ Vgl. [32] Zement + Beton 2010, S. 80 – 81.

¹⁵⁶ Vgl. [35] Schaab 2010, S. 128.

Schiefer können zum Teil große Mengen an Glimmer enthalten. Glimmer gehört zur Gruppe der Schichtsilikate.

Es kann unterschieden werden zwischen Dunkelglimmer (z.B. Biotit) und Hellglimmer (z.B. Muskovit). Typische Eigenschaft von Glimmer ist seine vollkommene Spaltbarkeit.

HUBER (1971) untersuchte im Zuge der Ausführung der Zemmkraftwerke in den Zillertaler Alpen die Auswirkungen von glimmerhaltigen Gesteinskörnungen auf die Betoneigenschaften. Demnach können durch Glimmerbestandteile der Gesteinskörnung die Druck- bzw. Scherfestigkeit, die Frostbeständigkeit, die Kornform sowie die Kernfeuchte des Einzelkorns sowie der Wasseranspruch der Gesteinskörnung beeinflusst werden. Trotz dieser Besonderheiten wurden in Österreich erfolgreich große Wasserkraftanlagen, bei Verwendung von glimmerhaltigen Gesteinskörnungen, ausgeführt (vgl. Tabelle 1).

Im Folgenden werden die Auswirkungen von Schichtsilikaten auf die Gesteinskörnung bzw. auf den Beton näher beschrieben.

1) Auswirkungen auf Festigkeitseigenschaften von Gesteinskörnungen bzw. Beton

Aufgrund des schichtenförmigen Aufbaus der Glimmerlagen lassen sich die einzelnen Schichtebenen leicht trennen. Die Druck- und Scherfestigkeit des Gesteins wird dadurch vermindert.

Dieser Umstand ist jedoch nicht nur bei der Aufbereitung sondern in der Folge auch beim Transport bzw. beim Mischen von glimmerhaltigen Gesteinskörnungen zu berücksichtigen (vgl. Abbildung 30). Durch die geringe Gesteinsfestigkeit entsteht ein hoher Anteil an glimmerreichen Abrieb, der teilweise an den feuchten Grobkörnungen haften bleibt. Dadurch kann der Verbund zwischen Zementstein und Gesteinskörnung beeinträchtigt werden. 157

Diese verringerte Verbundwirkung kann auch die Biegezugfestigkeit sowie die Wasserdichtheit des Betons negativ beeinflussen. 158

Ein weiterer Grund der erhöhten Wasserleitfähigkeit ist die, durch Schichtsilikate verursachte, Zunahme von Kapillarporen im Beton. 159

Aus diesem Grund wird bei der Verwendung von glimmerhalten Gesteinskörnungen ein zusätzliches Waschen der Gesteinskörnung kurz vor dem Betonmischen empfohlen. An der Kornoberfläche haftende Feinteile können so entfernt werden. Gleichzeitig lassen sich dabei auch unterschiedliche Kernfeuchten der Gesteinskörnung ausgleichen (siehe unten).

Durch die geringen Festigkeitseigenschaften von glimmerhaltigen Gesteinskörnungen kann in der Folge auch die Betonfestigkeit (Druck- und Zugfestigkeit) negativ beeinflusst werden.

2) Auswirkung auf die Kernfeuchte von Gesteinskörnungen

Natürliche Gesteinskörnungen verfügen über, für Wasser zugängliche, Hohlräume. Sind diese bzw. das Gesteinskorn trocken kann darin Wasser angelagert werden. Dieses eingelagerte Wasser steht in der Folge für den Erhärtungsprozess (Hydratation) des Betons nicht mehr zur Verfügung.

Zwischen den Schichtflächen des Glimmers lässt sich in Abhängigkeit der Schichtflächenöffnung (z.B. auch beeinflusst durch Verwitterung) besonders viel Wasser einlagern. Wird daher eine trockene glimmerhaltige Gesteinskörnung für die Betonproduktion verwendet, wird ein Teil des

¹⁵⁷ Vgl. [37] Huber 1971, S. 204.

¹⁵⁸ Vgl. [37] Huber 1971, S. 142.

¹⁵⁹ Vgl. [51] Leemann, Thalmann-Suter, Kruse 1999.

Zugabewassers von der Gesteinskörnung aufgenommen. In diesem Fall ist daher der für die zu erreichende Betonqualität erforderliche W/B-Wert zu erhöhen. 160

Gem. ÖNORM B 4710-1 darf die Kernfeuchte, wenn diese über 0,5% der Masse der Gesteinskörnung liegt, bei der Betonrezeptur berücksichtigt werden.¹⁶¹

HUBER (1971) gibt an, dass die Kernfeuchte von Gneis für die Korngruppe 1 – 4 mm abhängig von der Sieblinie am größten ist und bis zu 3 M-% der Gesteinskörnung betragen kann. ¹⁶²

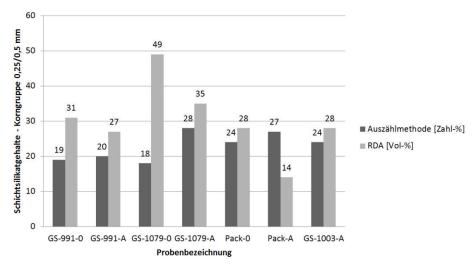
3) Auswirkungen auf die Verarbeitbarkeit von Beton

Nach *LEEMANN* et al. (1999) verschlechtert sich die Verarbeitbarkeit von Beton sowohl bei zunehmendem Anteil von Schichtsilikaten in der Gesteinskörnung als auch mit zunehmender Korngröße der Schichtsilikate. Gründe hierfür sind die vergrößerte Oberfläche der Gesteinskörnung sowie die plattige Kornform der Schichtsilikate.

Bestimmung und Grenzwerte des Glimmeranteils

Der Glimmeranteil kann mithilfe folgender Verfahren bestimmt werden:

- Auszählmethode mittels Binokular
 - o am Dünnschliff [Stück-%]
 - o an der Sandfraktion [Stück-%]
- Trennmethode mittels Formtrenntisch [Gew.-%]
- Trennung mittels Schwereflüssigkeit [Gew.-%]
- Röntgendiffraktometeranalyse (RDA) [Vol.-%]


Die mit den unterschiedlichen Verfahren festgestellten Glimmergehalte lassen sich jedoch nur bedingt miteinander vergleichen. Bei Untersuchungen im Zuge des Tunnelprojektes Koralmtunnel konnte z.B. gezeigt werden, dass sich die Ergebnisse der Röntgendiffraktometeranalyse (semiquantitative Analyse) von jenen der Auszählmethode wesentlich unterscheiden (vgl. Abbildung 49).

-

¹⁶⁰ Vgl. [37] Huber 1971, S. 30.

¹⁶¹ Vgl. [29] ÖNORM B 4710-1 2007, S. 65.

¹⁶² Vgl. [37] Huber 1971, S. 201.

Legende: Probenbezeichnung GD-xxx-**0** = Probenmaterial aus Rohmaterial Probenbezeichnung GD-xxx-A = Probenmaterial aus aufbereiteter Gesteinskörnung

Abbildung 49: Mittelwert Schichtsilikatgehalte¹⁶³ in Abhängigkeit der Untersuchungsmethode¹⁶⁴

Gleiches konnte für unterschiedliche Korngruppen nachgewiesen werden. Abbildung 50 zeigt den Mittelwert des Anteils freier Schichtsilikate, in Abhängigkeit der betrachteten Korngruppe, von unterschiedlichen Gesteinen. Die Auswertung erfolgte in diesem Fall mithilfe der Auszählmethode an Sandunterfraktionen.

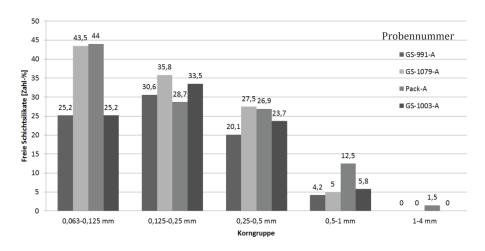


Abbildung 50: Freie Schichtsilikate in Unterschiedlichen Korngruppen¹⁶⁵

Wird glimmerhaltiges Gestein für die Betonproduktion verwendet, ist es daher von großer Bedeutung, dass sämtliche Untersuchungen mit dem gleichen Verfahren an der gleichen Korngruppe erfolgen.

Untersuchungen im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" haben ergeben, dass die Bestimmungsverfahren RDA und Formtrenntisch vergleichbare Glimmergehalte liefern.

¹⁶³ Einzelminerale als auch Körner resp. Mineralaggregate welche mehrheitlich aus Glimmermineralien

¹⁶⁴ Vgl. [88] Pichler, Huber 2009

¹⁶⁵ Vgl. [88] Pichler, Huber 2009.

In der Schweiz wurde, ausgehend von Untersuchungen an unterschiedlichen Ausbruchmaterialien, der repräsentative Korngrößenbereich für die Schichtsilikatbestimmung mit 0.25-0.50 mm definiert. Gleichzeitig wurde festgestellt, dass für den Einfluss auf Beton nicht der Massenanteil sondern die Stückzahl wesentlich ist. Aus diesem Grund wurde als Untersuchungsmethode das Auszählverfahren mittels Binokular festgelegt. Nach der Versuchsempfehlung erhält man einen repräsentativen Wert für den Anteil an freien Schichtsilikaten für den Sand (0-4 mm) bei einer Auszählung mittels Binokular von mind. 200 Körnern der Fraktion 0.25-0.50 mm. Den Schichtsilikaten werden dabei einzelne Schichtsilikat-Plättchen und Sandkörner mit mehr als 50% Schichtsilikaten an der Oberfläche zugeordnet.

Für Beton der Festigkeitsklasse B 40/30 (= C 30/37) wurden für das Tunnelprojekt AlpTransit folgende maximalen Anteile an freien Schichtsilikaten empfohlen:

- Rohsand im Ausbruchmaterial: ≤ 40 Stück-% in der Fraktion 0,25 0,50 mm
- Aufbereiteter Sand: ≤ 35 Stück-% in der Fraktion 0,25 0,50 mm (entspricht < 14 Stück-% im Sand 0/4 mm ¹⁶⁷)

Werden diese Grenzwerte überschritten sind weitergehende Untersuchungen erforderlich.

Der um 5% niedrigere Grenzwert für aufbereiteten Sand ergibt sich aus der Annahme, dass sich der Glimmeranteil bei einer Nass-Sandaufbereitung leicht reduziert.

Für Untersuchungen der Gesteinskörnungen für den Koralmtunnel wurde das Probenmaterial trocken aufbereitet. In diesem Fall konnte daher teilweise eine Anreicherung der Schichtsilikate nach der Aufbereitung festgestellt werden (vgl. Abbildung 49).¹⁶⁸

Ausgehend von Untersuchungen im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" wird, aufgrund der Einfachheit der Durchführung, als Verfahren für die Glimmerbestimmung auf der Baustelle der Formtrenntisch empfohlen. Mit Hilfe des Formtrenntisches können schnell blättchenförmige Minerale von unregelmäßig geformten Mineralen bzw. Verwachsungen mechanisch getrennt werden. Das zu untersuchende Mineralgemenge wird dabei auf einen geneigten Tisch, welcher durch einen Wurfvibrator angetrieben wird, aufgebracht.

Durch die Schwingung des Tisches werden blättchenförmige Minerale (Glimmer) nach rechts transportiert und dort in einem Sammelbehälter aufgefangen (vgl. Abbildung 51). Die restlichen Minerale (kugelige Aggregate) sammeln sich in einem unterhalb der Aufgabeöffnung angeordneten bzw. in einem rechts davon angeordneten Behälter. Zur Verbesserung des Ergebnisses können die im mittleren Behälter gesammelten Minerale neuerlich auf den Trenntisch aufgebracht werden.

Aufgrund einer möglichen Veränderung der Schwingungsamplitude kann die Trennwirkung des Formtrenntisches sehr einfach auf die zu untersuchende Lithologie abgestimmt bzw. geeicht werden.

Nach Abschluss der Trennung der Minerale wird der im rechten Behälter gesammelte Glimmer gewogen. Als Ergebnis erhält man den Glimmeranteil des betrachteten Mineralgemisches in der Einheit Massen-%.

Die Durchführung der Untersuchung wird im Sieblinienbereich 0,125 – 0,250 mm empfohlen¹⁶⁹.

¹⁶⁶ Vgl. [51] Leemann, Thalmann-Suter, Kruse 1999.

^{167 [52]} Kruse, Schindler, Thalmann, 2003.

¹⁶⁸ Vgl. [88] Pichler, Huber 2009.

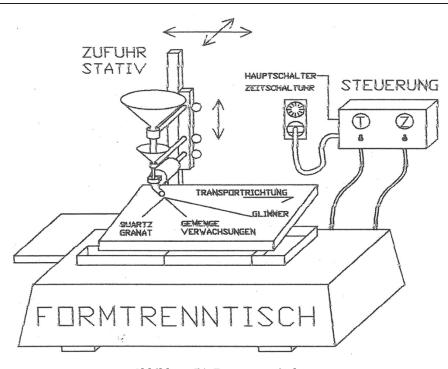


Abbildung 51: Formtrenntisch¹⁷⁰

Im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" wurden auch Betonversuche mit Gesteinskörnungen aus unterschiedlichen Lithologien bzw. mit unterschiedlichem Glimmergehalt durchgeführt. Ausgehend von einer festgelegten Betonrezeptur (260 kg/m 3 Zement; 60 kg/m 3 AHWZ; W/B = 0,60) wurde die einachsiale Druckfestigkeit nach 28 und 56 Tagen bestimmt. Die Versuchsergebnisse werden in der nachfolgenden Tabelle angegeben.

Lithologie	Glimmergehalt gem. Formtrenntisch	Einachsiale Druckfes- tigkeit nach 28 Tagen	Einachsiale Druckfes- tigkeit nach 56 Tagen	
	[Gew%*]	[N/mm ²]	[N/mm ²]	
Kalkglimmerschiefer	24	39	40	
Augengneis	7 – 11	33	38	
Amphibolit	9 -13	32	41	
Granitgneis	20	33	39	
Biotit-Plagioklas-Gneis	7	35	-	
Raibler Dolomit	-	38	42	

* in aufbereiteter Fraktion 100 – 200 μm

Tabelle 26: Einachsiale Druckfestigkeit (f_{c,28d} und f_{c,56d}) in Abhängigkeit des Glimmergehaltes¹⁷¹

¹⁶⁹ Vgl. [100] Gesprächsprotokoll Forschungsprojekt Recycling von Tunnelausbruchmaterial.

¹⁷⁰ Vgl. [137] Gebrauchsanweisung Formtrenntisch.

¹⁷¹ [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial

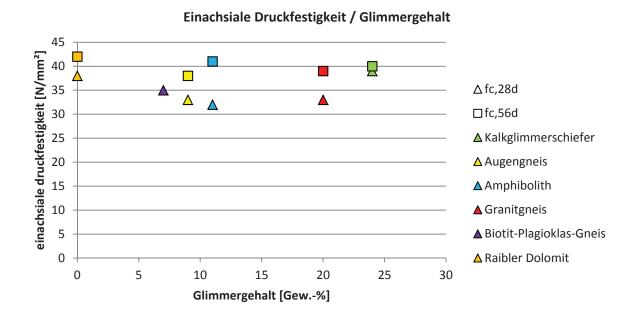


Abbildung 52: Einachsiale Druckfestigkeit (fc,28d und fc,56d) in Abhängigkeit des Glimmergehaltes

Vergleicht man die erreichten Druckfestigkeiten mit den Glimmergehalten der betrachteten Lithologien (0 - 24 Gew.-%) so ist kein direkter Zusammenhang zwischen den beiden Parametern erkennbar.

Ausgehend von diesen Untersuchungsergebnissen wird für aufbereitete Gesteinskörnungen als Entscheidungskriterium der Bewertungsmatrix ein maximaler Glimmergehalt von 25 Gew.-% angenommen. Berücksichtigt man, dass sich durch eine Nass-Aufbereitung des Ausbruchmaterials der Glimmergehalt um ca. 5% verringert (vgl. Erfahrungen Tunnelprojekt AlpTransit), ergibt sich ein maximaler Glimmergehalt des anfallenden Ausbruchmaterials von 30 Gew.-% (Bestimmung mittels Formtrenntisch).

Aufgrund der angegebenen Auswirkungen von Glimmer auf die Betoneigenschaften sollte ein möglichst gleichbleibender Glimmergehalt der Gesteinskörnung angestrebt werden. Dass dies jedoch nicht immer möglich ist zeigt Abbildung 53. Es werden darin die Variationen des Glimmergehaltes und der Glimmerarten im Zeitraum von 2005 bis 2009 auf der Baustelle Bodio/Faido des Gotthard-Basistunnels dargestellt. Eine spezielle Abstimmung der Betonrezeptur auf diese Schwankungen ist in diesem Fall unabdingbar.

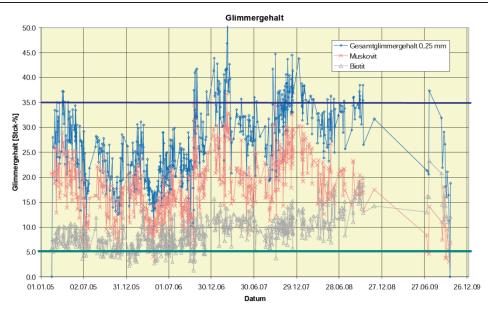


Abbildung 53: Variationen des Glimmergehaltes und der Glimmerarten im Zeitraum 2005 bis 2009 auf der Baustelle Bodio/Faido des Gotthard-Basistunnels¹⁷²

4.1.17 Zusammenfassung

Eine mögliche Verwendung des Ausbruchmaterials als Gesteinskörnung für die Betonproduktion wird maßgebend von der Gesteinshärte und den petrographischen Eigenschaften bestimmt.

Im Folgenden werden die, für die Verwendung von Ausbruchmaterial als Gesteinskörnung für Tunnelbeton, erforderlichen Anforderungen zusammenfassend dargestellt.

Die angeführte Empfehlung von durchzuführenden Untersuchungen basiert auf der Annahme, dass der Nachweis der Eignung des Ausbruchmaterials für die Betonproduktion in zwei aufeinanderfolgenden Phasen erfolgt.

Es wird dabei zwischen der Entwurf- und der Ausschreibungsplanungsphase unterschieden (vgl. Pkt. 7.1).

Prüfungen und deren Grenzwerte in der Entwurfsphase

Für die Untersuchung, ob das zu erwartende Ausbruchmaterial für die Betonproduktion geeignet ist, kann Probenmaterial aus Probebohrungen im Bereich der Tunnelachse herangezogen werden.

Werden die angegeben Grenzwerte der einzelnen Parameter eingehalten ist das Ausbruchmaterial für die Verwendung als Gesteinskörnung für die Betonproduktion geeignet.

Werden einzelne Grenzwerte geringfügig überschritten bedeutet das jedoch noch nicht, dass das Ausbruchmaterial für die Betonproduktion gänzlich ungeeignet ist. Vielmehr ist eine geringfügige Grenzwertüberschreitung ein Hinweis, dass auf diese im Falle einer Materialverwendung speziell Rücksicht genommen werden muss.

Folgende Prüfungen sind in der Entwurfsphase durchzuführen:

_

¹⁷² [35] Schaab 2010, S. 124.

Parameter	Grenzwert	Anmerkungen	Norm	vgl. Pkt.	
Druckfestigkeit	mind. 60 N/mm ²	für Beton C 25/30	ON EN 1926:2007	4.1.3	
Draemestighere	mind. 70 N/mm ²	Für Beton C 30/37	01(E1(1)20.2007	7.1.3	
E-Modul	E ≥ 30.000 N/mm ²	-	ONR 23303:2010 ON B 3124- 9:1986	4.1.4	
Widerstand gegen Zer- trümmerung	BR ≤ 75	Brechbarkeits-Index	AFNOR P 18- 579:1990	4.1.10.1	
Frost-Tau-Widerstand	F ₂	bei Frostbeanspruchung	ON EN 1367-	4.1.11	
Trost raa wracistana	F ₁	bei Taumittelbelastung	1:2007	7.1.11	
Glimmergehalt	≤ 25 Gew% in der Fraktion 0,125-0,25 mm	Formtrenntisch	-	4.1.16	

Tabelle 27: Versuche/Grenzwerte - Gesteinskörnungen für die Betonproduktion - Entwurfsphase

Prüfungen und deren Grenzwerte in der Planungsphase

Im Zuge der Planungsphase sind die Prüfungen der Entwurfsphase zu wiederholen. Dadurch können die bereits vorliegenden Ergebnisse kontrolliert werden.

Im Gegensatz zur Entwurfsphase sollte für die Materialuntersuchungen in der Planungsphase das Probenmaterial einem Großversuch der Materialaufbereitung unterzogen werden (vgl. Pkt. 6.1).

Zusätzlich zu den Prüfungen der Entwurfsphase wird in der Planungsphase die Durchführung folgender Versuche empfohlen:

Parameter	Grenzwert	Anmerkungen	Norm	vgl. Pkt.	
Vormania		Sieblinien	ON EN 933-1:2012	416	
Kornzusammensetzung	-	Siebilnien	ON EN 12620:2008	4.1.6	
	SI ₄₀	Korngruppe 4/8			
Kornform	SI ₂₅	Korngruppe 8/16, 16/32	ON EN 933-4:2008	4.1.7	
Widerstand gegen Zer- trümmerung	LA ≤ 40	Los-Angeles-Wert	ON-1097-2:2010	4.1.10.1	
Alkali-Kieselsäure- Reaktivität	Dehnung ≤ 1‰	Schnellprüfung	ON B 3100:2008	4.1.12	
Frost-Tau-Widerstand	F ₂	bei Frostbeanspru- chung	ON EN 1367-1:2007	4.1.11	
11000 144 11140.004114	F ₁	bei Taumittelbelas- tung	511 211 1307 11 2 007		
Glimmergehalt	≤ 30 Gew% in der Fraktion 0,125 - 0,25 mm	Formtrenntisch	-	4.1.16	
Wasseraufnahme	-	-	ON EN 1097-6 2006	4.1.6	
Kornfeuchte	-	-	ON EN 1097-5 2006	4.1.6	
Rohdichte	-	-	ON EN 1097-6 2006	4.1.1	
Modifizierter LA-Wert	-	Nachbrechverhalten	-	4.1.10	
Wasserlösliches Chlorid	chloridfrei (≤ 0,01%)	-	ON EN 1744-1	4.1.13	
Säurelösliches Sulfat	AS _{0,8} (≤ 0,8%)	-	ON EN 1744-1	4.1.14	

Tabelle 28: Versuche/Grenzwerte - Gesteinskörnungen für die Betonproduktion - Planungsphase

Die Ergebnisse der durchgeführten Untersuchungen an den Gesteinskörnungen dienen in der Folge Betonversuchen.

Im Forschungsprojekt "Recycling von Tunnelausbruchmaterial" wurden so z.B. folgende Betoneigenschaften von Innenschalenbeton und Tübbingbeton untersucht:

- Optimierung der Zusammensetzung
- Frischbetoneigenschaften
- Verarbeitbarkeit
- Druckfestigkeit
- Nachweis der Expositionsklasse XC3 und XF3 am Festbeton

Werden in der Planungsphase bereits vertiefte Betonversuche vorgenommen wird zusätzlich zu den angegeben Untersuchungen auch eine Bestimmung der Kornform, Rauheit und Sieblinie im Feinstbereich der Gesteinskörnung (0/0,2 mm) mittels fotooptischem Verfahren (Flow-Particle-Image-Analyzer - FPIA) empfohlen.¹⁷³

Durch die im Zuge der Betonversuche gewonnenen Erkenntnisse kann bereits in der Ausschreibungserstellung auf zu erwartende Besonderheiten des Ausbruchmaterials reagiert werden.

4.2 Gesteinskörnungen für Tragschichten

Tragschichten werden unterteilt in:

- Ungebundene Tragschichten
 - o Ungebundene Obere Tragschicht (mechanisch stabilisierte Tragschicht)
 - Ungebundene Untere Tragschicht (Frostkoffer)
- Gebundene Tragschichten
 - o Hydraulisch gebundene Tragschichten
 - o Bituminös gebundene Tragschichten

Die Anforderungen an Gesteinskörnungen für Tragschichten werden durch folgende Normen und Richtlinien festgelegt:

- ÖNORM EN 13242 2008: Gesteinskörnungen für ungebundene und hydraulisch gebundene Gemische für Ingenieur- und Straßenbau
- ÖNORM B 3132 2010: Gesteinskörnungen für ungebundene und hydraulisch gebundene Gemische für Ingenieur- und Straßenbau - Regeln zur Umsetzung der ÖNORM EN 13242
- RVS 08.15.01 2010: Technische Vertragsbedingungen, Unterbauplanum und ungebundene Tragschichten; Ungebundene Tragschichten
- RVS 08.17.01 2009: Technische Vertragsbedingungen, Betondecken; Mit Bindemittel stabilisierte Tragschichten

¹⁷³ Vgl. [110] Fischböck, Nischer 2009.

Um Tunnelausbruchmaterial als Gesteinskörnungen für Tagschichten verwenden zu können müssen folgende Materialmerkmale in Abhängigkeit von U-Klassen bzw. der zu erwartenden Verkehrsbelastung eingehalten werden.

		Klassen für Ungebundene Untere Ungebundene									
Bezug zu	Bezug zur ÖNORM EN 13242		ungebundene Obere Tragschicht						Ungebundene Untere Tragschicht		
			für alle LK ³⁾		LK II bis VI			für alle LK			ohne gebun- dene Über- bauung
Ab- schnitt	Merkmale	U1 ⁵)	U2	U3	U4	U5	U6	U7	U8	U9	U10
4.3.1	Korngrößenverteilung gem. ÖNORM EN 933-1 vgl. Pkt. 4.1.6		GA85 ⁴⁾ und Sieblinien 0/22, 0/32, 0/45, 0/63 (siehe unten für 0/22 und 0/32)							G _A 75	
4.4	Kornform von groben Gesteinskörnungen gem. ÖNORM EN 933-4 vgl. Pkt. 4.1.7	SI ₄₀				SINR			\ \		
4.5	Anteil an gebrochenen Körnern in groben Gesteinskörnungen ⁶⁾ gem. ÖNORM EN 933-5 vgl. Pkt. 4.1.7	C90/3	C50/30	C90/3	C50/30	C _{NR}	C90/3	C50/30	C _{NR}	C50/30	C_{NR}
4.6+4.7	Gehalt an Feinteilen gem. ÖNORM EN 933-1 vgl. Pkt. 4.1.9	f ₃ , f ₅ ¹), f ₇ ¹), f ₉ ¹), f ₁₂ ¹)						f _{NR}			
5.2	Widerstand gegen Zertrümmerung gem. ÖNORM EN 1097-2 (an Korngruppe 8/11)	LA ₃₀ LA ₄₀						LA _{NR}			
	vgl. Pkt. 4.1.10 Widerstand gegen										
7.3.2	Frost-Tau-Wechsel der Kornklasse 8/16 gem. ÖNORM EN 1367-1	F ₂ ²⁾						Fnr			
	vgl. Pkt. 4.1.11										

¹⁾ Wenn die Bestimmungen der Qualität der Feinteile gefordert ist und der Gehalt an Freianteilen im Gesteinskörnungsbereich 3% der Masse übersteigt, ist der Nachweis gemäß ÖNORM B 4810 und ÖNORM B 4811 zu führen.

Tabelle 29: Anforderungen an Korngemische für ungebundene tragschichten (Bezeichnung der Kategorien gem. ÖNORM B 3132) 174

Die angegebenen Werte der Tabelle 29 werden auch in der Richtlinie für Recycling-Baustoffe für die Definition von Güteklassen herangezogen. Dabei werden den U-Klassen gem. RVS 08.15.01 folgende Güteklassen und Einsatzbereiche für Recycling-Baustoffe zugeordnet. Da die Materialanforderungen sowohl für Recycling-Baustoffe als auch natürliche Gesteinskörnungen gelten können die Einsatzbereiche auch für Tunnelausbruchmaterial herangezogen werden.

_

²⁾ Bei WA₂42, geprüft gemäß EN 1097-6, Abschnitt 8 ist F₂ erfüllt.

³⁾ Lastklassen (S, I, II, III, IV, V, VI) gem. RVS 03.08.63 2008

⁴⁾ bis zu 15% Überkorn

⁵⁾ Klasseneinteilung

 $^{^{6)}}$ Ausbruchmaterial aus einem Festgesteinsvortrieb entspricht der Kategorie $C_{100/0}$ (100% gebrochenes Material)

¹⁷⁴ Vgl. [87] RVS 08.15.01 2010, S. 3.

				Eins	atzbere	iche für	Recyclir	ng-Baus	toffe
U-Klassen gem. RVS 08.15.01	Güteklasse gem. RL Recycling- Baustoffe	frostsicher	frostbeständig	obere ungebunden Trag- schicht	untere ungebunden Trag- schicht	mit erhöhten Widerstand gegen Zertrümmerung	hydraulisch gebundene Tragschicht	Bituminös gebundene Tragschicht	Schüttmaterialien für Straßenbau, Parkplätze, Lärmschutzwälle, Auffüllungen, Künettenverfüllungen, Untergrundverbesserungen
U1, U2	Güteklasse S	X	X	X	X	Х	Х	X	X
U3, U4, U5	Güteklasse I	Х	X	Х	Х		Х	Х	Х
U6, U7, U8	Güteklasse II	Х	X		Х		Х		Х
U9, U10	Güteklasse III						х		Х
U11	Güteklasse IV						1		Α

 $Tabelle~30: Einsatzbereiche ~f\"ur~Recycling baustoffe~bzw.~Tunnelausbruch material ^{175}$

In der RVS 08.05.01 werden auch Grenzsieblinien abhängig vom Größtkorn angegeben (siehe unten: Sieblinien 0/22, 0/32). Können diese Sieblinien nicht eingehalten werden kann der Nachweis der Verdichtbarkeit und Tragfähigkeit auch an einem Probefeld erfolgen. Die Richtlinie Recycling-Baustoffe enthält davon abweichend Sieblinien in Abhängigkeit der Korngruppe und der Güteklasse.

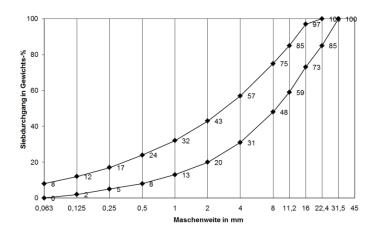


Abbildung 54: Sieblinienbereich für ungebundene Obere Tragschichten 0/22 (im Anlieferzustand)¹⁷⁶

_

¹⁷⁵ Vgl. [83] Richtlinie Recycling-Baustoffe 2009, S. 9-10.

¹⁷⁶ [87] RVS 08.15.01 2010, S. 12.

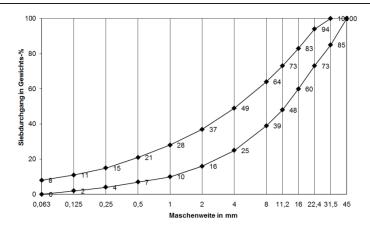


Abbildung 55: Sieblinienbereich für ungebundene Obere Tragschichten 0/32 (im Anlieferzustand)¹⁷⁷

Zusätzlich zu den dargestellten technischen Materialanforderungen sind auch chemische Materialanforderungen, welche sich aus dem Umweltschutz bzw. dem Bundesabfallwirtschaftsplan ableiten, einzuhalten. Diese chemischen Anforderungen werden im Pkt. 8.2.1 einer näheren Betrachtung unterzogen.

Zur Überprüfung der Eignung des anfallenden Ausbruchmaterials sind folgende Untersuchungen während der Entwurfs- bzw. der Planungsphase vorzunehmen. Abhängig vom Untersuchungsstadium werden folgende Probeentnahmen empfohlen:

- Entwurfsphase: Probenentnahme aus Probebohrungen
- Planungsphase: Probenentnahme aus Aufbereitungsversuchen

Prüfungen und deren Grenzwerte in der Entwurfsphase

Untersuchung	Klassen für									
	ungebundene Obere Tragschicht Ungebundene Untere Tragschicht							Ungebundene Tragschichten ohne gebun-		
	für all	e LK¹)	LK II bis VI			für alle LK			dene Über- bauung	
	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
Widerstand gegen Zertrümmerung		•								
Brechbarkeitsindex	BR =	: 552)			BR =	753)		-		
vgl. Pkt. 4.1.10.1										
Widerstand gegen Frost-Tau- Wechsel der Kornklasse 8/16 gem. ÖNORM EN 1367-1	F ₂ F _{NR}						IR			
vgl. Pkt. 4.1.11										

¹⁾ Lastklassen (S, I, II, III, IV, V, VI) gem. RVS 03.08.63 2008

-

 $^{^{2)}}$ Brechbarkeitsindex wurde mittels Umrechnungsformel (aufgerundet) ausgehend vom LA-Wert LA $_{30}$ ermittelt (vgl. Pkt. 4.1.10.1)

 $^{^{3)}}$ vgl. Pkt. 4.1.10.1 Anforderungen an Gesteinskörnungen für Beton

¹⁷⁷ [87] RVS 08.15.01 2010, S. 12.

Prüfungen und deren Grenzwerte in der Planungsphase

Zusätzlich zur Wiederholung der Prüfungen der Entwurfsphase werden für die Planungsphase folgende Materialprüfungen empfohlen:

	Klassen für											
Untersuchung	ungebundene Obere Tragschicht Ungebundene Tragschi								Ungebundene Tragschichten ohne gebun-			
ontersuchung	für alle LK ²⁾		LK II bis VI			für alle LK			dene Über- bauung			
	U14)	U2	U3	U4	U5	U6	U7	U8	U9	U10		
Korngrößenverteilung gem. ÖNORM EN 933-1				n 1 bis 4	(siehe		G _A 85		G _A 75			
vgl. Pkt. 4.1.6	unten für 0/22 und 0/32)					GNOO						
Kornform von groben Gesteins- körnungen gem. ÖNORM EN 933-4	SI ₄₀						}					
vgl. Pkt. 4.1.7												
Anteil an gebrochenen Körnern in groben Gesteinskörnungen ⁶⁾ gem. ÖNORM EN 933-5	C _{90/3}	C _{50/30}	C _{90/}	C _{50/30}	C_{NR}	C _{90/3}	C _{50/30}	C_{NR}	C _{50/30}	C_{NR}		
vgl. Pkt. 4.1.7												
Gehalt an Feinteilen gem. ÖNORM EN 933-1			f	3, f ₅ 1), f ₇ 1),	f ₉ 1), f ₁₂	1)	I		$f_{ m NR}$			
vgl. Pkt. 4.1.9												
Widerstand gegen Zertrümmerung gem. ÖNORM EN 1097-2 (an Korngruppe 8/11)	LA ₃₀ LA ₄₀					LA ₃₀ LA ₄₀		LA ₃₀ LA ₄₀			LA	NR
vgl. Pkt. 4.1.10												
Widerstand gegen Frost-Tau- Wechsel der Kornklasse 8/16 gem. ÖNORM EN 1367-1	F ₂					Fnr						
vgl. Pkt. 4.1.11												

¹⁾ Wenn die Bestimmungen der Qualität der Feinteile gefordert ist und der Gehalt an Freianteilen im Gesteinskörnungsbereich 3% der Masse übersteigt, ist der Nachweis gemäß ÖNORM B 4810 und ÖNORM B 4811 zu führen.

4.3 Bahnschotter

Als Bahn- bzw. Gleisschotter werden hauptsächlich Hartgesteine (z.B. Granit, Basalt, Diabas) verwendet. Die erforderlichen Anforderungen an Gleisschotter werden durch folgende Normen bzw. Regelungen festgelegt:

- ÖNORM EN 13450:2004 Gesteinskörnungen für Gleisschotter
- ÖNORM B 3133:2003 Regeln zur Umsetzung der ÖNORM EN 13450
- ÖBB BH 700:2011 Technische Lieferbedingungen für Oberbauschotter

²⁾ Lastklassen (S, I, II, III, IV, V, VI) gem. RVS 03.08.63 2008

³⁾ bis zu 15% Überkorn

⁴⁾ Klasseneinteilung

Gemäß der technischen Lieferbedingungen für Oberbauschotter wird abhängig von der Korngrößenverteilung unterschieden zwischen:

- Schotter I 31,5/63 mm (mind. 50 M.-% 31,5/50 mm)
- Schotter II 16/31,5 mm

Schotter I wird für Hauptgleise und Schotter II für Nebengleise verwendet. In den nachfolgenden Abbildungen werden die einzuhaltenden Sieblinienbereiche für Schotter I und II dargestellt.

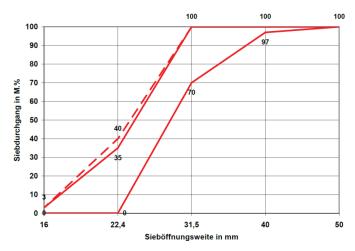


Abbildung 56: Sieblinie Schotter II (16/31,5 mm)¹⁷⁸

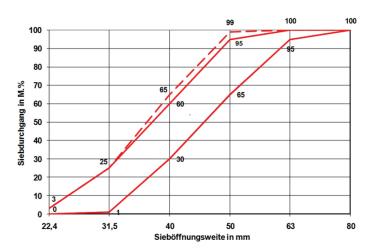


Abbildung 57: Sieblinie Schotter I (31,5/63 mm)179

Bei Schotter I wird für die Korngruppe 31,5/50 mm ein Anteil ≥ 50 Masse-% gefordert.

Der Feinkornanteil (< 0,5 mm) bzw. der Feinstkornanteil (< 0,063 mm) ist mit 1,0 M.-% beschränkt. Bei staubarmen Schotter z.B. für die Verwendung im Tunnel ist ein Feinstkornanteil von 0,5 M.-% einzuhalten.

Bezüglich der Kornform wird eine Kornformkennzahl zwischen SI₅ und SI₃₀ gefordert (vgl. Pkt. 4.1.7). Zusätzlich dürfen höchstens 6 % der Körner der Lieferkörnung I (31,5/63 mm) eine größere Länge als 100 mm aufweisen.

Die physikalischen Anforderungen von Bahnschotter werden durch folgende Versuche nachgewiesen:

¹⁷⁸ [71] ÖBB BH 700 2011, S. 19.

¹⁷⁹ [71] ÖBB BH 700 2011, S. 18.

• Schlag-Abrieb-Festigkeit:

 LA_{RB} -Wert \leq 22 (vgl. Pkt. 4.1.10) (LA_{RB} - Wert \leq 24 wenn Schlagzertrümmerungswert \leq 20 oder der Micro-Deval-Wert \leq 12 (siehe unten) erreicht wird)

Zum Unterschied zu herkömmlichen Gesteinskörnungen gelten für Bahnschotter folgende Bestimmungen¹⁸⁰:

o heranzuziehende Korngruppe: 10 kg der Korngruppe 31,5/50 mm

o Kugelladung: 12 Kugeln (Gesamtgewicht 5210 g ± 90 g)

o Trommelumdrehungen: 1.000 Umdrehungen

Typische LA-Koeffizienten						
Granit	12 - 15					
Basalt	8,7 – 9,5					
Diabas	9,5 – 10,5					
Kalkstein	13,7 – 23					

Tabelle 31: Typische LA-Koeffizienten¹⁸¹

• Schlagfestigkeit:

Die Schlagfestigkeit wird mit einem Schlagprüfgerät (ÖNORM EN 1097-2¹⁸²) festgestellt. Auch für diesen Versuch werden in der ÖNORM EN 13450 Sonderbestimmungen für die Prüfung von Bahnschotter festgelegt.

Dabei sind für Bahnschotter mind. drei Einzelmessproben (31,5/40,0 mm) durch zwanzig Schläge mit einem Fallhammer (50 kg) zu beanspruchen. Anschließend wird die Gesteinskörnung mit einem 8 mm Analysensieb gesiebt. Der Schlagzertrümmerungswert (SZ_{RB}) ergibt sich aus:

$$SZ_{RB} = \frac{M_1}{M} \ [\%]$$

M ... Masse der Probe vor der Prüfung.

M1 ... Siebdurchgang durch das 8 mm Sieb.

Für Gleisschotter wird ein $SZ_{RB} \le 22$ gefordert. ($SZ_{RB} \le 24$, wenn $LA \le 20$ und der Micro-Deval-Wert ≤ 12 (siehe unten) erreicht wird)

Abbildung 58 zeigt den Zusammenhang zwischen dem LA-Wert und der Schlagzertrümmerung (gem. ÖNORM EN 1097-2) am Beispiel von in Bayern vorkommenden mineralischen Rohstoffen.

¹⁸⁰ Vgl. [93] ÖNORM EN 13450 2004, Anhang C.

¹⁸¹ [50] Klotzinger 2008, S. 35.

¹⁸² Vgl. [72] ÖNORM EN 1097-2:2010.

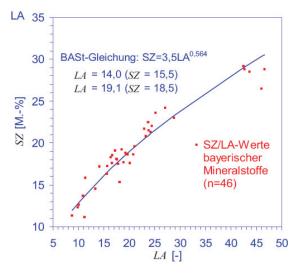


Abbildung 58: Zusammenhang zwischen den Ergebnissen des LA-Wert und der Schlagfestigkeit¹⁸³

• Widerstand gegen Verschleiß

Der Micro-Deval-Koeffizient¹⁸⁴ (M_{DE}) wird ähnlich zum LA-Wert mithilfe einer Trommel, in der die Gesteinskörnung (500 g) mit Stahlkugeln und Wasser gedreht wird, ermittelt. Im Anschluss wird auch hier der Siebrückstand auf dem 1,6 mm Sieb (m [g]) festgestellt.

$$M_{DE}RB = \frac{500 - m}{5}$$
 [%]

Für Gleisschotter wird ein $M_{DE}RB \le 16$ gefordert. ($M_{DE}RB \le 20$, wenn $SZ_{RB} \le 20$ oder $LA_{RB} \le 20$)¹⁸⁵

Gleichzeitig werden in den technischen Lieferbedingungen für Oberbauschotter auch Grenzwerte für Gehalte im Feststoff und im Eluat angegeben. Diese Grenzwerte entsprechen den Grenzwerten der Inertdeponie gem. der Deponieverordnung (vgl. Pkt. 8.2.1).

Auch die Wasseraufnahme (W_{cm}) ist nachzuweisen. Ist diese größer als 0,5 M.-% sind der Frost-Tau-Wechsel-Widerstand (ÖNORM EN 1367-1) und der Kristallisationsversuch (ÖNORM EN 1367-2) durchzuführen.

Bei Basalt ist die Raumbeständigkeit nach ÖNORM EN 1367-3 nachzuweisen.

Bis zum Vorliegen international akkordierter Werte enthält die ÖBB BH 700 keine Grenzwerte für den Frostwiderstand (gem. ON EN 1367-1) und die Beständigkeit gegen Magnesiumsulfat (gem. ON EN 1367-2).

Tunnelausbruchmaterial wird nur in Ausnahmefällen die Qualitätsanforderungen von Gleisschotter erfüllen. In diesem Zusammenhang sind vor allem der hohe LA-Wert und die geforderte Korngrößenverteilung bzw. die Korngruppe problematisch. Nur Ausbruchmaterial eines Sprengvortriebs in sehr hartem Gestein würde eventuell die gestellten Anforderungen erfüllen.

¹⁸⁴ [73] ÖNORM EN 1097-1:2004.

¹⁸³ [92] Schießl 2007, S. 57.

¹⁸⁵ Vgl. [71] ÖBB BH 700 2011,

Auch die Überprüfung der Eignung des anfallenden Ausbruchmaterials für die Bahnschotterproduktion sollte zweistufig erfolgen.

Während der Entwurfsphase wird die Überprüfung des Widerstandes gegen die Zertrümmerung mit dem LCPC-Test empfohlen. Als Probenmaterial kann Material von Probebohrungen herangezogen werden.

Als Grenzwert ergibt sich, durch Umrechnung des in der technischen Lieferbedingungen für Oberbauschotter geforderten LA-Wertes (LA_{RB} -Wert \leq 22), ein Brechbarkeitsindex von BR = 40 (vgl. Pkt. 4.1.10.1).

$$BR = LA \times (1,63 \pm 0,17) + (3,25 \pm 5,93)$$
 BR ... Brechbarkeitsindex LA ... Los-Angels-Wert

Entspricht das Ausbruchmaterial dieser Anforderung sollten im Zuge der Planungsphase an aufbereiteten Gesteinskörnungen folgende Untersuchungen durchgeführt werden. Dabei sind die Bestimmungen der ÖBB BH 700 in Bezug auf das zu verwendende Probenmaterial bzw. die Versuchsdurchführung zu berücksichtigen.

Parameter	Grenzwert	Anmerkungen	Norm/Richtlinie	vgl. Pkt.	
Kornzusammensetzung	-	Sieblinien Schotter I 31,5/63mm; Schotter II 16/31,5	ÖBB BH 700:2011 ON EN 933-1:2012	4.1.6	
Feinkorn	1 M%	Durchgang durch 0,5 mm Sieb	ÖBB BH 700:2011 ON EN 933-1:2012	-	
Feinstkorn	1 M% ¹⁾	Durchgang durch 0,063 mm Sieb	ÖBB BH 700:2011 ÖN EN 933-1:2012	-	
Kornform	SI ₅ - SI ₃₀	-	ÖBB BH 700:2011 ON EN 933-4:2008	4.1.7	
Kornlänge	6 M%	Körner mit Länge >100 mm	ÖBB BH 700:2011	-	
Widerstand gegen Zer-	LA _{RB} ≤ 22	-	ÖBB BH 700:2011	4.1.10.1	
trümmerung (Los-Angeles- Wert)	LA _{RB} ≤ 24	$SZ_{RB} \le 20$ $M_{DE}RB \le 12$	ON-1097-2:2010	4.1.10.1	
	$SZ_{RB} \leq 22$	-	ÖBB BH 700:2011	-	
Schlagzertrümmerung	$SZ_{RB} \le 24$	$LA_{RB} \le 20$ $M_{DE}RB \le 12$	ON-1097-2:2010 EN 13450		
Widerstand gegen Ver-	$M_{DE}RB \le 16$	-	ÖBB BH 700:2011		
schleiß	$M_{DE}RB \le 20$	$LA_{RB} \le 20 \text{ oder}$ $SZ_{RB} \le 20$	ON-1097-2:2010 EN 13450	-	
Wasseraufnahme	$W_{cm} \leq 0.5^{2}$	-	ÖBB BH 700:2011 ON EN 1097-6:2006	-	

 $^{^{1)}}$ Bei Verwendung im Tunnel \leq 0,5 M.-%

Tabelle 32: Anforderungen an Bahnschotter

²⁾ Bei Grenzwertüberschreitung Bestimmung Frost-Tau-Wechsel gem. ÖNORM EN 1367-1 und Kristallisationsversuch gem. ÖMORM EN 1367-2 erforderlich.

4.4 Gesteinskörnungen für Asphaltmischgut

Die Anforderungen an Gesteinskörnungen für Asphaltmischgut werden im Anhang 2 der RVS $08.97.05^{186}$ zusammenfassend dargestellt. Die wesentlichen Parameter (von groben Gesteinskörnungen) im Hinblick auf die Verwendung von Tunnelausbruch werden in der folgenden Tabelle angegeben.

	ezug zur ÖNORM						derunger				
	EN 13043:2004		ı		Geste	insklasse	en bzw. S	ollwerte	1	1	
Ab- schni tt	Merkmal gem. CE-Kennzeichnung	G1ª	G2a	G3a	G4	G5	G6	G7	G8	G9	GSa
4.1.3	Korngrößenverteilung gem. ÖNORM EN 933-1	Korngru 2/4, 2 11/	gemeinen uppen 0/1 /5, 4/8, 8 /16, 16/22 0/15, G _F 8	., 0/2, /11, 2,	Kornį	gruppen zuläss		einskörr 20, G _F 85		nische	wie G1
4.1.4	Gehalt an Feinanteile gemäß ÖNORM 933- 1		grob: f ₁ fein: f ₁₆					b: f ₂ :: f _{NR}			wie G1
	Kornform von groben Gesteinskör- nungen gem. ÖNORM EN 933-4		SI ₁₅					-			SI ₁₅
4.1.6	Masseanteil nicht- kubischer Körner im Anteil ≥ 4 mm gemäß ÖNORM EN 933-4, bezogen auf den Anteil ≥ 4 mm, in%				≤ 20	≤ 25	≤ 30	≤	20	≤ 25	-
	Anteil gebrochener Körner in groben Gesteinskörnungen gemäß ÖNORM EN 933-5	C _{100/0}	C90/	1				-			C _{100/0}
4.1.7	Masseanteil gebro- chener Körner im Anteil ≥ 4 mm gemäß ÖNORM EN 933-5, bezogen auf den Anteil ≥ 4 mm Anteil Cc, in %c) Anteil Ctc, in % Anteil Ctr, in%		-		≥ 90 ≥ 30 ≤ 1	≥ 50 - -	- - -	100 ≥ 90 0	≥ 90 ≥ 30 ≤ 1	≥ 50 - -	
4.2.2	Widerstand gegen Zertrümmerung für grobe Gesteinskör- nungen gemäß ÖNORM EN 1097- 2:1998, Abschnitt 5	LA ₂₀		LA ₂₅		LA ₃₀	LA ₄₀	LA ₂₅	L.	A_{30}	LA ₂₀
4.2.3	Widerstand gegen Polieren an groben Gesteinskörnungen gemäß ÖNORM EN 1097-8	PSV ₅₀	PSV ₄₄	PSV ange- ge- ben		PSV _{NR}		F	PSV _{angegeb}	en	PSV ₅₀
4.2.9.	Wiederstand gegen Frost-Tau-Wechsel an 8/196 gemäß ÖNORM EN 1367-1 ^b		F ₁					G ₂			F ₁

^a Die feine Gesteinskörnung ist aus einer Bezugsquelle zu beziehen, in der die groben Gesteinskörnungen einen LA-Wert LA $_{20}$ für G1 und GS sowie einen LA-Wert LA $_{25}$ für G2 und G3 aufweisen.

¹⁸⁶ [105] RVS 08.97.05 2010.

Tabelle 33: Anforderungen an Gesteinskörnungen für Asphaltmischgut¹⁸⁷

Zur Abklärung der Eignung des Ausbruchmaterials als Gesteinskörnung für Asphaltmischgut sollte in der Entwurfsphase der Widerstand gegen Zertrümmerung an von Probebohrungen entnommenen Proben durchgeführt werden.

Die Überprüfung sollte dabei mittels LCPC-Test erfolgen. Die für die einzelnen Gesteinsklassen maßgebenden Brechbarkeitsindizes werden in der folgenden Tabelle angegeben. Die Umrechnung der LA-Werte in die Brechbarkeitsindizes erfolgt gemäß der im Pkt. 4.1.10.1 beschriebenen Formel.

	Bezug zur ÖNORM EN 13043:2004				Gest	Anfor einsklass	derunge en bzw.		ρ		
Ab- schni tt	Merkmal gem. CE-Kennzeichnung	G1	G2	G3	G4	G5	G6	G7	G8	G9	GS
4.2.2	Widerstand gegen Zertrümmerung für grobe Gesteinskör- nungen gemäß LCPC- Test	BR ₄₀		BR ₄₅		BR ₅₅	BR ₇₀	BR ₄₅	BI	R ₅₅	BR ₄₀
4.2.9. 2	Wiederstand gegen Frost-Tau-Wechsel an 8/196 gemäß ÖNORM EN 1367-1 ^b		F ₁]	F_2			F ₁

Tabelle 34: Anforderungen an Gesteinskörnungen für Asphaltmischgut in der Entwurfsphase

Werden die angegeben Grenzwerte eingehalten sind während der Planungsphase die Anforderungen gem. Tabelle 33 an aufbereiteten Material zu untersuchen.

Abhängig von der Asphaltmischgutart werden in der RVS 08.97.05 verschiedene Sieblinien angegeben. Diese werden auch in der Bewertungsmatrix berücksichtigt.

4.5 Ziegelton, -lehm

Die Anforderungen an Ziegelton bzw. -lehm werden in Abhängigkeit der Ziegelart festgelegt.

Bezüglich der Ziegelart wird unterschieden zwischen

- Blockziegel (Hintermauerziegel),
- Klinker (Vormauerziegel),
- Pflasterklinker,
- Dachziegel und
- Steinzeugrohre.

 $^{^{\}mathrm{b}}$ Bei WA $_{24}1$ ist F $_{1}$ erfüllt, Bei WA $_{24}2$ F $_{2}$. Die Wasseraufnahme gemäß ÖNORM EN 1097-6 ist an Körnungen >32 mm zu prüfen. Steht keine Prüfkörnung >32 mm zur Verfügung, ist die Wasseraufnahme an der größten zur Verfügung stehenden Körnung durchzuführen.

^c Körner mit mehr als 90% gebrochener Oberfläche (tc); Körner mit mehr als 50% gebrochener Oberfläche (c); Körner mit mehr als 50% gebrochener Oberfläche (r); Körner mit mehr als 50% gebrochener Oberfläche (tr); Körner mit mehr als 90% gebrochener Oberfläche (tr);

¹⁸⁷ Vgl. [105] RVS 08.97.05 2010.

Ziegelton- bzw. Lehm für die Blockziegelproduktion muss dabei die geringsten Anforderungen erfüllen. Im Folgenden werden nur die Anforderungen für Blockziegel (Hintermauerziegel) als Entscheidungskriterien für die Bewertungsmatrix angegeben.

Wesentlich für die Ziegelproduktion ist eine gleichbleibende Rohstoffqualität. Aus diesem Grund wird Ziegelton häufig zwischengelagert wodurch eine Vermischung ermöglicht wird. Auch eine Mischung von Rohstoffen aus unterschiedlichen Gewinnungsstätten kommt häufig zur Anwendung.

Die Aufbereitung von Ziegelton erfolgt im Ziegelwerk. Kann Ausbruchmaterial für die Ziegelproduktion verwendet werden, ist aus Sicht der Baustelle daher nur der Rohstofftransport zu bewerkstelligen.

Während der Aufbereitung durchläuft Ziegelton folgende Verfahrensschritte:

- Dosieren
- Zerkleinern
- Mischen und Homogenisieren

Die Korngrößenverteilung ist für Ziegelton von großer Bedeutung. Während der Aufbereitung wird das Ausgangsmaterial in einer stufenweisen Zerkleinerung auf eine maximale Korngröße von 2 mm verkleinert. ¹⁸⁸

Durchschnittliche Korngrößenverteilungen von Ziegeltonen werden in Tabelle 35 angegeben.

	Korngrößenver	rteilung [M%]
Korngrößen	Vollziegel ¹⁾	Viellochziegel
> 0,020 mm	50 - 70	40 - 60
0,020 – 0,002 mm	15 - 35	15 – 35
< 0,002 mm	10 - 25	20 - 35

¹⁾ bis 15% Lochanteil

Tabelle 35: Durchschnittliche Korngrößenverteilung in Ziegeltonen¹⁸⁹

Die durchschnittliche chemische Zusammensetzung bzw. den durchschnittlichen Mineralbestand deutscher Mauerziegelmassen (Richtwerte) enthalten die folgenden Tabellen.

¹⁸⁸ Vgl. [107] Boos 2003, S. 35.

¹⁸⁹ Vgl. [106] Lorenz, Gwosdz 2003, S. 414.

Chemische Zusammensetzung [M%]	Bereich der größten Häufigkeit
Chemische Zusammensetzung [M70]	Mauerziegelmassen (Voll- und Hochlochziegel)
SiO ₂ - Siliciumdioxid	49,2 - 68,0
AL ₂ O ₃ - Aluminiumoxid	10,2 - 19,4
Fe ₂ O ₃ - Eisen(III)-oxid	2,7 - 8,0
TiO ₂ - Titan(IV)-oxid	0,3 - 1,7
CaO - Calciumoxid (gebrannter Kalk)	0,3 - 9,4 1)
MgO - Magnesiumoxid	0,5 - 2,9
K ₂ O - Kaliumoxid	1,3 - 4,0
Na ₂ O - Natriumoxid	0,3 - 1,2
CaCO ₃ – Calciumcarbonat	0 - 18
Corg	0,04 - 1,0
Gesamt-Schwefel	0,04 - 0,56
GV - Glühverlust	4,2 - 9,1

 $^{^{1)}}$ für Mergeltone bis 13,5 M.-% maximaler Kalkgehalt: 30% CaCO3 (=17% CaO); ab ca. 17% CaCO3 (10% CaO) gelbbrennend

 $Tabelle~36: Durchschnittliche~chemische~Zusammensetzung~von~deutschen~Mauerziegelmassen^{190}$

Mineralogische Zusammensetzung	Bereich der größten Häufigkeit
[M%]	Mauerziegelmassen (Voll- und Hochlochziegel)
Kaolinit (fire clay-Mineral)	0 - 15
Sericit + Illit	10 - 20
Smektit	0 – 5
Chlorit	0 – 5
Quarz	30 – 55
Feldspat	0 – 13
Calcit	0 - 10
Dolomit + Ankerit	<1
Goethit	<1
Hämatit	<1
Siderit	<1
Pyrit	<1
Gips	<1
Hornblende	<1
Röntgenamorpher Rest	1 - 10

 $Tabelle~37: Durchschnittlicher~Mineralbestand~von~deutschen~Mauerziegelmassen^{191}$

¹⁹¹ Vgl. [106] Lorenz, Gwosdz 2003, S. 410.

¹⁹⁰ Vgl. [106] Lorenz, Gwosdz 2003, S. 410.

Vor allem schwefelhaltige Minerale (Pyrit, Markasit, Gips und Magnesiumsulfat) sind, da sie Ausblühungen verursachen können, in der Ziegelproduktion unerwünscht.

Entspricht das anfallende Ausbruchmaterial den angegebenen Anforderungen sollte bereits in der Projektierungsphase der Bedarf an Ziegelton im Umkreis des Tunnelprojektes festgestellt werden. Besteht dieser, können in einem nächsten Schritt Proben des Ausbruchmaterials dem Ziegelproduzenten für weitere Untersuchungen (z.B. Brennversuche) zur Verfügung gestellt werden.

Parallel zu Ziegelton und -lehm werden bei der Ziegelproduktion häufig auch Magerungsmittel verwendet. Hierfür kann eventuell auch Gesteinsmehl, welches im Zuge der Vortriebsarbeiten oder der Materialaufbereitung anfällt, herangezogen werden.

Vor allem granitische und gneisige Gesteinseinheiten sind hierfür geeignet.¹⁹² Der Eignungsnachweis kann auch in diesem Fall nur aufgrund von genauen Untersuchungen des potentiellen Abnehmers erfolgen.

4.6 Kalkstein als industrieller Rohstoff

Für viele Produkte dient Kalkstein als Rohstoff.

Neben der Verwendung z.B. als Gesteinskörnung für die Betonproduktion ist Kalkstein auch ein wichtiger Rohstoff der Zementindustrie, der chemischen Industrie sowie der Stahl-, Glas-, Papier-, Kunststoff-, Kosmetik- und Lebensmittelindustrie. Auch in der Landwirtschaft wird Kalkmehl zur Verbesserung der Bodeneigenschaften eingesetzt.

Im Folgenden werden die Anforderungen an Rohkalk für die Anwendungen

- Flussmittel für die Stahlproduktion,
- Branntkalk,
- Portlandzement und
- Landwirtschaft

angegeben. Diese Anforderungen dienen auch als Entscheidungskriterien der Bewertungsmatrix.

¹⁹² Vgl. [108] Rickli 2000, S. 9.

		Chemische Zusamme	nsetzung [M%]	
Chemische Zusammensetzung [M%]	Flussmittel für Roheisen, Stahl, NE-Metalle	Branntkalk	Portlandzement (Deutschland)	Landwirtschaft ⁶⁾
CaCO ₃ – Calciumcar- bonat	>95	>97	>75	>90
CaO – Calciumoxid	>95,2	>53,2	>42	>50,4
MgCO ₃ - Magnesi- umcarbonat	<10	<3	<6	vorteilhaft
MgO - Magnesiumoxid	<5	<22)	<3	
SiO ₂ - Siliciumdioxid	<1,5	-	<15	- 7)
Al ₂ O ₃ - Aluminiumoxid	<1	<0,9	<5	<1
Fe ₂ O ₃ - Eisen(III)-oxid	<2	<0,9	<43)	<1
Na ₂ O - Natriumoxid	<0,5	-	<14)	<0,05
K ₂ O - Kaliumoxid	<0,5	-	<14)	<0,05
SO ₃ - Schwefeltrioxid	<0,05	-	<0,55)	-
P ₂ O ₅ – Phosphor- pentoxid	<0,01	-	<0,5	-
Korngröße	0-3, 0-8, 8-40, 20- 63mm; heute bevor- zugt als Pulver, meist pelletiert	10-160mm ¹⁾	Je nach Ofentyp unterschiedlich	97 M% <3mm 70 M% <1mm
Bemerkungen	Für Roheisen ca. <3M % Nichtcarbonat; für Stahl in Stückform: 8- 45mm (Konverter), 2- 12mm (Schlackenbild- ner), in Gießereien 20- 35mm Ø; Al2O3- Herstellung: 90 M% <74μm	Bei Verfahren mit Zyklon-Vorwärmer und Planetenküh- ler: <1mm; Druck- festigkeit ca. 40N/mm²	Allgemein gilt: organische Substanz <0,2 M%, im Zement Cl<0,1 M%; in Rohmehlmischung Na ₂ O+K ₂ O <0,2-0,4 M%	Bei größerer Feinheit wir- kungsvoller, z.B. 0,1-0,2mmØ

¹⁾ Drehrohrofen: 10-60mm, Schachtofen je nach Verfahren: 30-160mm, 40-80mm, 10-40mm

Tabelle 38: Anforderungen an Rohkalkstein¹⁹³

²⁾ Kann beträchtlich höher sein, wenn dolomitischer Kalkstein calciniert wird

 $^{^{3)}}$ Für die Herstellung von weißem Zement <0.2 M.-% Fe $_20_3$ im Kalkstein; im Endprodukt (Zement) 0.2-0.5 M.-% Fe $_20_3$.

⁴⁾ K₂0:Na₂0 = >5: 1, wobei Na₂0 <0,3 M.-%

⁵⁾ In Deutschland richten sich die höchstzulässigen S0₃-Werte im mit Gipsstein versetzten und gemahlenen Klinker, d.h. dem Zement, nach der Zementart und der Mahlfeinheit.

 $^{^{6)}}$ Zum großen Teil, vor allen in industrialisierten Ländern, auch Branntkalk eingesetzt. Schwermetall-Gehalte: As <30 ppm, Pb < 120 ppm, Cd <2 ppm, Cr < 150 ppm, Cu <35 ppm, Ni <50-<100 ppm, Hg <3 ppm, Tl <2 ppm, Zn <200 ppm $^{7)}$ Nicht zu Hoch

 $^{^{193}\,\}mathrm{Vgl.}$ [106] Lorenz, Gwosdz 2003, S. 300

4.7 Gesteinskörnungen für Dämme, Hinterfüllungen und Überschüttungen

4.7.1 Gesteinskörnungen für Dämme

Die Anforderungen an Gesteinskörnungen für Erdarbeiten werden in der RVS $08.03.01^{194}$ geregelt.

Zur Klassifizierung der Gesteinskörnung ist der Korngrößenbereich und die Korngrößenverteilung (vgl. Pkt. 4.1.6) zu bestimmen

Die Korngrößenbereiche der Bodengruppen werden in der ÖNORM B 4400-1 definiert.

Bodengruppe	Korngröße	enbereich
Boueiigi appe	mr	n
großer Block	> 63	30
Block	> 200	≤ 630
Stein	> 63	≤ 200
Kies	> 2	≤ 63
Sand	> 0,063	≤ 2
Schluff	> 0,002	≤ 0,063
Feinstkorn oder Ton	≤ 0,0	002

Tabelle 39: Korngrößenbereiche der Bodengruppen¹⁹⁵

Für die Ermittlung der Bezeichnung der Korngrößenverteilung (z.B. enggestuft) sind die Ungleichförmigkeits- bzw. die Krümmungszahl der Körnungslinien (Sieblinien) zu ermitteln.

Ungleichförmigkeitszahl - C_U:

$$C_U = \frac{D_{60}}{D_{10}}$$

 $D_{10}\left(D_{60}\right)$... Korngröße der 10% (60%) der Masseanteile der Gesamtmenge entsprechen

Krümmungszahl C_C:

$$C_C = \frac{D_{30}^2}{D_{10} \times D_{60}}$$

Die Zuordnung der Bezeichnung der Korngrößenverteilung zu den Bereichen der Ungleichförmigkeits- und Krümmungszahl wird in der folgenden Tabelle angegeben.

Beschreibung	Ungleichförmigkeitszahl C _U	Krümmungszahl Cc
weitgestuft ("W") oder flach verlaufend	> 15	1 < C _C < 3
gut gestuft ("G") oder mäßig steil verlaufend	6 – 15	<1
enggestuft ("E") oder steil verlaufend	< 6	<1
intermittierend ("I") gestuft oder stufenförmig verlaufend	üblicherweise hoch	beliebig (üblicherweise < 0,5)

Tabelle 40: Form der Körnungslinie¹⁹⁶

¹⁹⁵ [103] ÖNORM B 4400-1 2010, S. 6.

 $^{^{194}\ [102]\} RVS\ 08.03.01\ 2010.$

¹⁹⁶ [103] ÖNORM B 4400-1 2010, S. 7.

Gem. der RVS 08.03.01 sind für Dämme folgende Böden bzw. Felsbruch zu verwenden:

Bezeic	hnung	Korngrößenbereich [mm]	Cu	Сс
Gr,E	Kies, enggestuft	2-63 mm	< 6	< 1
Gr,W	Kies, weitgestuft	2-63 mm	>15	1-3
Gr,G	Kies, gutgestuft	2-63 mm	6 - 15	<1
Gr,I	Kies, intermittierend	2-63 mm	üblicherweise hoch	-
si`Gr	schwach ¹⁾ schluffiger Kies	2-63 + < 15% M% 0,002-0,063 mm	-	-
cl`Gr	schwach toniger Kies	2-63 + < 15% M% < 0,002 mm	-	-
si`Sa	schwach schluffiger Sand	0,063-2 + < 15% M% 0,002-0,063 mm	-	-
-	Felsbruch	-	-	-

^{1) &}lt; 15% Masseanteil

Tabelle 41: Geeignete Bodenarten für Dammschüttungen¹⁹⁷

Werden Böden der Tabelle 42 verwendet, ist deren Eignung durch Bestimmung der Verdichtbarkeit und des optimalen Einbauwassergehaltes nachzuweisen.

Sa,E	Sand, enggestuft	Cl/Gr	Ton/Kies
Sa,W	Sand, weitgestuft	si Sa	schluffiger Sand
Sa,G	Sand, gutgestuft	Si/Sa	Schuff/Sand
Sa,I	Sand, intermittierend	cl` Sa	schwach toniger Sand
si,Gr	schluffiger (15 – 30%) Kies	cl Sa	toniger Sand
Si/Gr	Sand/Schluff	Cl/Sa	Ton/Sand
cl Gr	toniger Kies	-	-

Tabelle 42: Bedingt geeignete Bodenarten für Dammschüttungen¹⁹⁸

4.7.2 Gesteinskörnungen für Hinterfüllungen und Überschüttungen

Gem. der RVS 08.03.01 sind für den Hinterfüllungs- und Überschüttungsbereich (ausgen. Entwässerungsbereich) folgende Böden zugelassen:

Bezeic	hnung	Korngrößenbereich [mm]	C_{U}	Cc
Gr,E	Kies, enggestuft	2-63 mm	< 6	< 1
Gr,W	Kies, weitgestuft	2-63 mm	>15	1-3
Gr,G	Kies, gutgestuft	2-63 mm	6 - 15	<1
Gr,I	Kies, intermittierend	2-63 mm	üblicherweise hoch	-
si`Gr	schwach ¹⁾ schluffiger Kies	2-63 + < 15% M% 0,002-0,063 mm	-	-
cl`Gr	schwach toniger Kies	2-63 + < 15% M% < 0,002 mm	-	-
Gemiso Gesteir	che aus gebrochenem 1	0-16 bis 0-90 + < 15% M% < 0,063 mm	-	-

^{1) &}lt; 15% Masseanteil

Tabelle 43: Geeignete Bodenarten für den Hinterfüllungs- und Überschüttungsbereich 199

¹⁹⁸ Vgl. [102] RVS 08.03.01 2010, S. 7.

¹⁹⁷ Vgl. [102] RVS 08.03.01 2010, S. 7.

¹⁹⁹ Vgl. [102] RVS 08.03.01 2010, S. 13.

Insgesamt ist festzuhalten, dass Ausbruchmaterial nur in Ausnahmefällen nicht für Dammschüttungen, Hinterfüllungen und Überschüttungen verwendet werden kann. Aus diesem Grund ist diese Verwendung des Ausbruchmaterials auch nicht Bestandteil der Bewertungsmatrix.

Als problematisch sind vor allem weiche, wasserhaltige Ausbruchmaterialien (z.B. aus einem Mixschildvortrieb) anzusehen. In vielen Fällen wird jedoch durch nachgeschaltete Separationsanlagen die Einbaufähigkeit des Ausbruchmaterials wesentlich verbessert.

Es besteht auch die Möglichkeit das einzubauende Ausbruchmaterial durch Anwendung von Spezialtiefbaumaßnahmen (z.B. Oberflächenstabilisierung) zu verbessern.

Vielfach wird die Schüttqualität auch durch die Vermischung des Ausbruchmaterials mit anderen Gesteinskörnungen erreicht.

Zusätzlich zu den dargestellten technischen Materialanforderungen sind auch chemische Materialanforderungen gem. Bundesabfallwirtschaftsplan einzuhalten (vgl. Pkt. 8.2.1).

Die Überprüfung der Eignung des Ausbruchmaterials als Schüttmaterial während der Planungsphase ist im Allgemeinen ausreichend.

4.8 Zusammenfassung

Für die Verwendung von Ausbruchmaterial als Primärrohstoff muss dieses die, in Regelwerken und Normen angegebenen, Anforderungen erfüllen. Aus diesem Grund wurden für die Verwendungsmöglichkeiten:

- Gesteinskörnung für die Betonproduktion
- Gesteinskörnung für Tragschichten
- Bahnschotter
- Gesteinskörnung für Asphaltmischgut
- Ziegelton, -lehm
- Kalkstein als industrieller Rohstoff
- Gesteinskörnung für Dämme, Hinterfüllungen und Überschüttungen

die Grenzwerte einzelner Parameter sowie die dazugehörigen Versuchsmethoden zusammenfassend dargestellt.

Um die Umsetzung des Qualitätsnachweises zu erleichtern, wurden außerdem die einzelnen Untersuchungen der Entwurfs- bzw. der Ausschreibungsplanungsphase eines Untertagebauprojektes zugeordnet. Dabei wurde auch berücksichtigt, dass in der Entwurfsphase eines Projektes nur Gesteinsproben aus Probebohrungen zur Verfügung stehen.

Eigene Probebohrungen für die Beurteilung der Verwendbarkeit des Ausbruchmaterials sollten nicht erforderlich sein. Vielmehr sollte aus Probebohrungen für die geotechnische Planung eines Untertagebauwerkes ausreichend Probenmaterial zur Verfügung stehen.

Eine erste Einschätzung ob ein Verwendungspotential besteht, kann durch einen erfahrenen Geologen, unter Einbeziehung der angegeben Anforderungen, bereits aufgrund einer Betrachtung der geologischen Randbedingungen des Projektes erfolgen. Zur Verifizierung dieser ersten Einschätzung können die Untersuchungen der Entwurfsphase herangezogen werden.

Durch die Zuordnung der Untersuchungen zu Projektphasen werden auch weitgehend unnötige Versuchsreihen vermieden. Nur wenn die in der Entwurfsphase vorgenommenen Untersuchungen eine Verwendungsmöglichkeit bestätigen wird in der Planungsphase eine vertiefte Betrachtung vorgenommen.

Parallel zu den Untersuchungen der Planungsphase wird empfohlen auch jene der Entwurfsphase zu wiederholen. Einerseits können dadurch die bereits vorliegenden Ergebnisse kontrolliert werden, andererseits können z.B. Auswirkungen einer erforderlichen Materialaufbereitung mit berücksichtigt werden.

Die bei den Untersuchungen ermittelten Eigenschaften der Gesteinskörnungen dienen in der Folge der Ausschreibung bzw. der Detailplanung der Verwendung des Ausbruchmaterials. Um Mehrfachuntersuchungen zu vermeiden sollten diese Ergebnisse auch den Ausschreibungsunterlagen beigelegt werden.

Im Folgenden werden die Anforderungen an Ausbruchmaterial in Abhängigkeit der Verwendung tabellarisch dargestellt. Es wird dabei zwischen:

- Untersuchungen in der Entwurfsphase (an Material aus Probebohrungen), welche in der Planungsphase (an aufbereiteten Gesteinskörnungen) zu wiederholen sind und
- Untersuchungen in der Planungsphase (an aufbereiteten Gesteinskörnungen) unterschieden.

Untersuchungen in der Entwurfsphase (an Probebohrungen) und in der Planungsphase (an aufbereiteten Gesteinskörnungen)

		Gesteinskörnungen	Gestein	Gesteinskörnungen für Trag- schichten		Gestein	skörnungen für	Gesteinskörnungen für Asphaltmischgut		Ziegelton ³⁾		Kalkstein als industrieller Rohstoff	ustrieller Rohsto	JJC
Farameter	Norm	rur Beton- produktion	U1-U2	U3-U8 U9-U10	Bannschotter	G1, GS G2, G3	:3 G4, G7	65, 68, 69	95	Vollziegel Viellochziegel	Flussmittel	Branntkalk	Portland- zement	Landwirt- schaft
Vgl. Kapitel	•	4.1.17		4.2	4.3		4.4			4.5		4	4.6	
Technische Parameter														
Druckfestigkeit	ON EN 1926:2007	60 N/mm ^{2 5)} , 70 N/mm ^{2 6)}												
E-Modul	ON B 3124-9:1986	≥ 30.000 N/mm ²												
Widerstand gegen Zertrümme- rung – LCPC-Test (BR)	AFNOR P 18-579:1990	s 75	> 55	s 75	s 40	s 40 s 45	5 < 45	≥ 55	> 70					
Frost-Tau-Widerstand	ON EN 1367-1:2007	F ₂ , F ₁ ³)	TÉ.	F ₂ ²⁾		F ₁		F ₂						
Korngrößenverteilung	ON EN 933-1:2012	×		U1-U5 x	×		×			S0.720mm > 0.020mm S0.720mm S0.720mm S0.720mm S0.720m S1.535% S1				
Chemische Parameter [M%]														
SiO ₂										49,2 - 68,0	<1,5		<15	
AL_2O_3										10,2 - 19,4	<1	6'0>	<5	<1
Fe ₂ O ₃										2,7 - 8,0	<2	6'0>	<4	<1
TiO_2										0,3 - 1,7				
CAO										0,3 - 9,4 1)	>95,2	>53,2	>42	>50,4
MgO										0,5 - 2,9	<5	<2	<3	
K ₂ O		_								1,3 - 4,0	<0'2		7	<0,05
Na ₂ O										0,3 - 1,2	<0,5		^ 1	<0,05
CaCO ₃										0 - 18	>95	>97	>75	>90
Corg										0,04 - 1,0				
Gesamt-Schwefel										0,04 - 0,56				
GV										4,2 - 9,1				
$MgCO_3$											<10	<3	9>	
SO ₃											<0,05		<0,5	
P_2O_5											<0,01		<0,5	
Auswertung gem. Bundesab- fallwirtschaftsplan und		×		X	×		×			×				
Deponieverorunung														
Mineralogische Parameter									ľ					
Glimmergehalt		≤ 30 Stück-% in der Fraktion 0,125 – 0,25 mm⁴)												
Mineralbestand [M%]:										Kaolinti (fre clay-Mineral) 0-15; Sericit - Illit 10-20; Smekti 0-5; Chlorit 0-5; Quarz 30-55; Feldspat 0-13; Calcit 0-10; Dolomit + Ankerit <1; Goethit <1; Hämatit <1; Siderit <1; Pyrit <1; Gips <1; Hornblende <1; Rontgenamorpher Rest 1-10				
1) für Mergeltone bis 13,5 M% maximaler Kalkgehalt: 30% CaCO ₃ (=17% CaO); ab ca. 17% CaCO ₃ (10% CaO) gelbbrennend	aximaler Kalkgehalt: 30% C	CaCO ₃ (=17% CaO); ab	ca. 17% Ca	CO ₃ (10% CaO) gelbbrenn	end									

² An Korngröße 8/16
9 Bei Taumittelbeanspruchung
9 Formtrenntisch
5 C.25/30
6 C.30/37
7 bis 15% Lochanteil
9 Roheisen, Stahl, NE-Metalle

Tabelle 44: Untersuchungen in der Entwurfsphase (an Probebohrungen) und in der Planungsphase (an aufbereiteten Gesteinskörnungen)

Untersuchungen in der Planungsphase – an aufbereiteten Gesteinskörnungen (zusätzliche Untersuchungen zu jenen der Planungsphase)

		Gesteinskör-	Gesteinskörnungen für Tragschichten	gen für Tragsc	hichten				Gest	einskörnungen fi	Gesteinskörnungen für Asphaltmischgut	nt				Kalkstein als
Parameter	Norm	nungen rur Betonproduk- tion	U1-U2 U3-U5	80-90	U9- U10	Bahnschotter	G111) G211)	(11)	G4	G5 (C	C5 95	85	69	GS11)	Ziegel- ton	industrieller Rohstoff
Vgl. Kapitel		4.1.17		4.2		4.3				4.4					4.5	4.6
Technische Parameter																
Kornzusammensetzung	ON EN 12620:2008	$G_{c}90/10^{2}$, $G_{c}90/15^{1}$	G _A 85 ³⁾	G _A 85	G _A 75	Sieblinien ⁶⁾¹⁷⁾	Gc90/1!	$G_{c}90/15,G_{F}85^{19}$./06 ² D	Gc90/20, Gr85, GA90 ²⁰⁾			Gc90/15, GF85 ¹⁹⁾		
Kornform	ON EN 933-4:2008	SL ₄₀ ¹⁾ SI ₂₅ ²⁾	SI ₄₀	IS	SINR	SI ₅ - SI ₃₀ 6)	S	SI ₁₅						SI ₁₅		
Kornform; Masseanteil nicht- kubischer Körner im Anteil ≥ 4 mm bezogen auf den Anteil ≥ 4 mm	ON EN 933-4:2008								<2014)	s25 ¹⁴⁾ s3	s30 ¹⁴⁾ s2	≤2014)	<2514)			
Widerstand gegen Zertrümmerung ²²⁾	ON EN1097-2:2010	LA ₄₀	LA ₃₀	LA ₄₀	LANR	LArb < 22; LArb < 246)8)	LA_{20}	LA ₂₅		LA ₃₀ L	LA ₄₀ LA ₂₅	LA ₃₀	0	LA ₂₀		
Frost-Tau-Widerstand	ON EN 1367-1:2007	F2, F15)	F2		FNR		F	F ₁ 12)			F ₂ 12)			F ₁ 12)		
Wasseraufnahme	ON EN 1097-6 2006	×				< 0,5 M% ^{6) 18)}										
Kornfeuchte	ON EN 1097-5 2006	×														
Rohdichte	ON EN 1097-6 2006	×			1											
Modifizierter LA-Wert		X											-			
Gehalt an Feinteilen	ON EN 933-1:2012		f3, f54), f74), f94), f124)	94), f ₁₂ 4)	fnr	$f_1^{(6)1(6)}$	grob: f ₁	grob: f _i ; fein: f _{i6}		grc	grob: f2; fein: f _{NR}			grob: f ₁ ; fein: f ₁₆		
Feinkorn	ON EN 933-1:20126					<0,5mm <1M%										
Kornlänge	ÖBB BH 700:2011					<6 M% ⁷⁾										
Schlagzertrümmerung	ON-1097-2:2010 EN 134506)					SZ _{RB} ≤22; SZ _{RB} ≤24 ^{6) 9)}										
Widometrand gordon Vorechloio	ON-1097-1:2011					M _{DE} RB ≤ 16; M _{DE} RB ≤										
Widel stalld gegell verschiells	EN 13450 ⁶⁾					206) 10)										
Anteil gebrochener Körner in groben Gesteinskörnungen	ON EN 933-5:2005		U1, U3, U6 = $C_{90/3}$; U2, U4, U7, U9 = $C_{50/30}$; U5, U10 = C_{NR}	C _{90/3} ; U2, U4, U7, U9 U5, U10 = C _{NR}	9 = C _{50/30} ;		C _{100/0}	C90/10						C _{100/0}		
Anteil gebrochener Körner; Massean-																
teil gebrochener Körner im Anteil ≥ 4 mm, bezogen auf den Anteil ≥ 4 mm	ON EN 933-5:2005															
Anteil Cc, in % ¹³⁾ Anteil Ctc, in % Anteil Ctr, in%									≥90 ≥90 ≥1≥	>50	100 ≥90 0	≥30 ≥30				
Widerstand gegen Polieren an groben Gesteinskörnungen	ON EN 1097-8:2011						PSV ₅₀ PSV ₄₄	J ₄₄ PSV _{angege} -		PSV _{NR}		PSVangegeben		PSV ₅₀		
Chemische Parameter													-			
Alkali-Kieselsäure-Reaktivität 21)	ON B 3100:2008	Dehnung ≤ 1‰														
Wasserlösliches Chlorid [M%]	ON EN 1744-1:2010	< 0,01%														
Säurelösliches Sulfat [M%]	ON EN 1744-1:2010	$AS_{0.8} (\le 0.8\%)$														
Mineralogische Parameter																
Glimmergehalt		\$ 25 Stück-% in Fraktion 0,125 - 0,25 mm ¹⁵⁾														
Spezialuntersuchungen																
Spezialuntersuchungen durch						Versuche gem. ÖBB BH 700				X					X	Х
Betonversuche		×														
1) Korngruppe 4/8 (gem. Untersuchungen Tunnelprojekt Koralmtunnel)	en Tunnelprojekt Koraln	ntunnel)					12) Bei WA241 is	st F1 erfüllt, Bei W	'A242 F2. Die V	⁷ asseraufnahme	gemäß ÖNORM E	N 1097-6 ista	n Körnunge	12 Bei WA21 1 ist F. erfüllt, Bei WA22 Fz. Die Wasseraufnahme gemäß ÖNORM EN 1097-6 ist an Körnungen >32 mm zu prüfen. Steht keine Prüfsörnung	. Steht keine	Prüfkörnung
2) Korngruppe 8/16, 16/32 (gem. Untersuchungen Tunnelprojekt Koralmtunnel)	rsuchungen Tunnelprojel	kt Koralmtunnel)					>32 mm zur Vo	erfügung, ist die V	Vasseraufnah	me an der größt. Ffische (fc): Köm	en zur Verfügung :	stehenden Kö	nung durch ner Oberflä	>32 mm zur Verfügung, ist die Vasseraufinalme an der größter zur Leyerfügung stehenden Kömung durchzuführen. 18 Krauen mit nach als 60% anhondenen Pharfäche frið Krámer mit nach a 18 fölk cahbochanner Ohanfärlen mit mahr als 60% anhondenen	200 € 100%	approchener
"Obs. Auf 2.7% Overante notes and a service and a service and serv	t der Feinteile gefordert i.	st und der Gehalt a	ın Freianteilen im Ges	steinskörnung	hereich 3%	der Masse übersteigt.	Oberfläche (r.):	Körner mit weni	gerals 50% g	shrochener Ober	fläche (r): Körner	· mit mehr als	90% gebro	chener Oberfläche (t	rl. Tunnelau:	hruchmaterial
Wellis are prominimingen see gamme.	t del l'emiche Bereit	15t Mila dei deimit	all Filementen in ce	Stellisma mans	300 000	uel masse areases	Openiacine (1), nor	-1	But and only a	concentration of	יייייייייייייייייייייייייייייייייייייי	Illivincin and	70 /u Brr. c	יין הייה וומריי הוומויי	J. 14111121	Ul deminate

entspricts to the construction of the construc derlich.

¹⁹ Im Allgemeinen die Korngruppen 0/1, 0/2, 2/4, 2/5, 4/8, 8/11, 11/16, 16/22,

²⁰ Korngruppen umd Gesteinskörnungsgemische zulässig

²¹ Schnellprüfung

²² LA-Test ist der Nachweis gemäß ÖNORM B 4811 zu führen.

Stock and schweis gemäß ÖNORM B 4811 zu führen.

Stock and schweis gemäß ÖNORM B 4811 zu führen.

Stock and schweis gemäß ÖNORM B 4811 zu führen.

Stock and schweis gemäß ÖNORM B 4811 zu führen.

Stock and schweis gemäß ÖNORM B 4812

Stock and schweis B 412

Stock and schw

Tabelle 45: Untersuchungen in der Planungsphase – an aufbereiteten Gesteinskörnungen (zusätzliche Untersuchungen zu jenen der Planungsphase)

5 Wirtschaftliche Randbedingungen

5.1 Wirtschaftlichkeit der Verwendung des Ausbruchmaterials

Die Wirtschaftlichkeit der Verwendung des Ausbruchmaterials ist von folgenden Faktoren abhängig:

- Marktwert des für die Verwendung vorgesehenen Ausbruchmaterials
- Einsparungen resultierend aus der Verwendung des Ausbruchmaterials
- Aufwendungen resultierend aus der Verwendung des Ausbruchmaterials

Ist die Summe aus dem Marktwert und den Einsparungen größer oder gleich den erforderlichen Aufwendungen ist die Verwendung des Ausbruchmaterials als wirtschaftlich anzusehen.

Die Randbedingungen der Wirtschaftlichkeit werden in der folgenden Abbildung dargestellt.

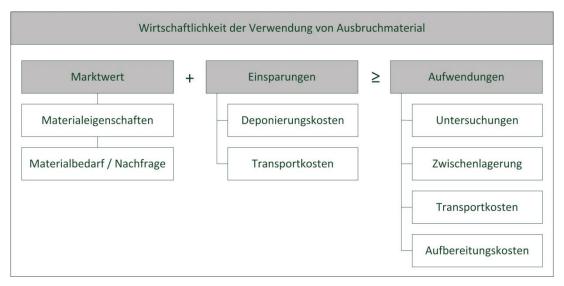


Abbildung 59: Wirtschaftlichkeit der Verwendung von Ausbruchmaterial

Faktoren wie die Einsparung von

- Landverbrauch.
- Ressourcenverbrauch,
- Deponievolumen,
- Transporte sowie die
- Verminderung von Lärm und Staub

werden in dieser Betrachtung nicht berücksichtigt. In Zukunft werden aber auch diese Faktoren immer mehr an Bedeutung gewinnen. Als Instrument der Quantifizierung dieser, mit der Verwendung von Ausbruchmaterial im Zusammenhang stehenden, Einsparungen könnte die Ökobilanzierung herangezogen werden (vgl. Pkt. 5.3).

Eine Gegenüberstellung der Kosten und Nutzen der Verwendung des Ausbruchmaterials am Beispiel Gotthard-Basistunnel wird im Pkt. 7.1 angegeben.

Marktwert des für die Verwendung vorgesehenen Ausbruchmaterials

Ziel der Verwendung des Ausbruchmaterials ist es, dass anfallende Material einer Verwendung zuzuführen.

Als Abnehmer kommen die Baustelle selbst (interne Verwendung) als auch rohstoffverarbeitende bzw. rohstoffproduzierende Betriebe (externe Verwendung) in Frage.

Wird das Ausbruchmaterial auf der Baustelle verwendet, ist der Marktwert des Ausbruchmaterials Teil der durch die Verwendung erzielbaren Einsparungen.

Der Marktwert des an einen externen Abnehmer abgegeben Materials wird durch die Materialeigenschaften und davon abhängig vom Materialbedarf bzw. der Nachfrage bestimmt.

Im Falle einer Weitergabe an einen externen Abnehmer ist jedoch zu berücksichtigen, dass große Abgabemengen in kurzer Zeit den Marktpreis wesentlich beeinflussen könnten. Im Extremfall könnte es auch zu einer Verdrängung bestehender Marktteilnehmer kommen. Um dieser Gefahr entgegenzuwirken, sollte im Zuge der Entwurfs- bzw. Planungsphase eines Untertagebauprojektes die Marktsituation im Umkreis des Tunnelprojektes ermittelt werden.

DOPLER [2009] führte eine solche Betrachtung von sechs zukünftigen österreichischen Tunnelprojektes durch. Ausgehend von der Bestimmungen einer wirtschaftlichen Transportdistanz für unterschiedliche Produkte, wurden im Umkreis der betrachteten Tunnelprojekte rohstoffverarbeitende bzw. rohstoffproduzierende Betriebe ermittelt.²⁰⁰

Aufgrund dieser Marktanalyse kann in der Folge eine Abgabemenge an Rohstoffen, welche die bestehenden Strukturen nicht gefährdet, festgelegt werden.

Ein Verbleib des Ausbruchmaterials im Besitz des Auftraggebers (vgl. Pkt. 8.1) würde diese Vorgehensweise erleichtern.

Ist eine Begrenzung erforderlich, muss das für die Verwendung geeignete Ausbruchmaterial zwischengelagert werden. Wird hierbei jedoch die Zeit von 3 Jahren überschritten, ist nach derzeitig geltender Rechtslage eine ALSAG-Gebühr (≥ 9,2 €/t) zu entrichten. Dies würde unweigerlich zu einer wesentlichen Verschlechterung der Wirtschaftlichkeit einer Verwendung des Ausbruchmaterials führen. Es muss daher das Ziel sein, Ausbruchmaterial, welches bestimmte chemische wie technische Anforderungen erfüllt, von der derzeit geltenden ALSAG-Regelung auszunehmen (vgl. Pkt. 8.2).

Ein weiterer Vorteil der beschriebenen Marktanalyse ist es, dass dadurch mögliche Abnehmer des Ausbruchmaterials ermittelt werden. In der Planungsphase der Verwendung des Ausbruchmaterials könnten diese in der Folge auch an den Eignungsuntersuchungen mitwirken.

Einsparungen - resultierend aus der Verwendung des Ausbruchmaterials

Können Teile des Ausbruchmaterials als Rohstoff verwendet werden, verringert sich der Bedarf des normalerweise erforderlichen Deponievolumens. Die Bestandteile der Deponierungskosten werden im Pkt. 5.2 angegeben.

²⁰⁰ Vgl. [121] Dopler 2009.

Wird das Ausbruchmaterial auf der Baustelle verwendet kommt es zusätzlich zu Einsparungen bei den Transportkosten. Der Antransport von Fremdmaterial sowie der Abtransport des Ausbruchmaterials auf die Deponie entfallen in diesem Fall teilweise.

Aufwendungen - resultierend aus der Verwendung des Ausbruchmaterials

Die aufgrund der Verwendung von Ausbruchmaterial anfallenden zusätzlichen Aufwendungen lassen sich folgenden Punkten zuordnen:

• Untersuchungen des Verwendungspotentials

Zur Abklärung der Verwendungsmöglichkeiten des Ausbruchmaterials müssen im Zuge der Entwurfs- und Planungsphase die im Pkt. 4 angegeben Untersuchungen vorgenommen werden. Um die daraus resultierenden Kosten zu minimieren wurden die im Pkt. 4 angegebenen Untersuchungen zwei Phasen zugeordnet.

Kommt es zu einer Verwendung des anfallenden Materials bedarf es zusätzlich einer begleitenden Qualitätskontrolle mit daraus resultierenden Kosten.

Zwischenlagerung

Die Kosten der Zwischenlagerung lassen sich mit jenen der Enddeponierung vergleichen. Zum Unterschied zur Enddeponie wird jedoch die Deponiefläche bei einer Zwischendeponie nur temporär beansprucht. Zusätzlich Kosten fallen für das neuerliche Aufnehmen des zwischengelagerten Materials an.

Transportkosten

Wird das Ausbruchmaterial an einen externen Abnehmer übergeben sind hierfür anfallende Transportkosten zu berücksichtigen.

Die Kosten sind dabei abhängig von der Wahl des Transportmittels, der Transportlänge sowie der Anbindung der Baustelle an das öffentliche Verkehrsnetz. Die maximale wirtschaftliche Transportlänge von Ausbruchmaterial ergibt aus folgender Formel:

$$\label{eq:max_transport} \textit{Max.Transportweite} \left[km\right] = \frac{\textit{Marktwert} + \textit{Einsparungen} - \textit{Aufwendungen}}{\textit{Transportkosten pro Kilometer}}$$

Die Transportkosten pro Kilometer setzen sich dabei aus den Kosten- für das Be- und Entladen des Transportmittels, sowie den wegabhängigen Kosten (Lohn-, Geräte-, Material- und event. Mautkosten) zusammen.

Bei Gesteinskörnungen für die Betonproduktion spricht man üblicherweise von einem wirtschaftlichen Transportradius von ca. 30 km.

Als wirtschaftliche Transportlängen für Kalkstein werden in der Literatur folgende Entfernungen angegeben²⁰¹:

- \circ < 50 100 km
- o bei Zement- und Kalkindustrie < 20 30 km

• Aufbereitungskosten

Ist für die Verwendung des Ausbruchmaterials eine Aufbereitung auf der Baustelle erforderlich sind auch diese Kosten zu berücksichtigen.

²⁰¹ Vgl. [106] Lorenz, Gwosdz 2003, S. 299

5.2 Deponierungskosten

Nach einer Auswertung von Deponierungskosten durch die ÖBB ist bei der Deponierung von Ausbruchmaterial (Bodenaushubqualität) mit Kosten von 6-10 €/m³ zu rechnen. Regionale Unterschiede sind hierbei vor allem im Hinblick auf die Grundstückspreise zu berücksichtigen.

Auswertung ÖBB – Deponierungskosten 6 €/m³ (=100%)					
Aufsichts- und Nebenkosten ²⁾	9%				
Rekultivierung	5%				
Einbau + Verdichtung	16%				
Verfuhr	45%				
Deponievorbereitung	7%				
Grundeinlöse oder Deponieentgelt ¹⁾	18%				

Tabelle 46: Deponierungskosten²⁰²

- ¹⁾ Wird das Grundstück nur gepachtet sind hierfür ca. 4% des Verkehrswertes zu berücksichtigen. Dieser ist regional sehr unterschiedlich (z.B. Weststeiermark 2-3 €/m²; Grazer Raum $20 €/m^2$).
- ²⁾ Bei einer Bodenaushubdeponie mit einem Fassungsvermögen ca. 1 Mio. m³ wird von Kosten für Überwachung, Aufsicht, Staubmessung, chem. Analysen mit 10.000 − 20.000 €/Mo gerechnet. Eine Deponienachbetreuung ist bei Bodenaushubdeponien nicht erforderlich.

Für Ausbruchmaterial (Anteil an bodenfremden Bestandteilen < 5%) das

- auf einer Bodenaushub-, Inertabfall- oder Baurestmassendeponie abgelagert wird, bzw.
- zulässigerweise für Verfüllungen von Geländeunebenheiten oder das Vornehmen von Geländeanpassungen verwendet wird

ist keine ALSAG-Gebühr zu entrichten (vgl. Pkt. 8.2.2).

5.3 Ökobilanz

Der Begriff Ökobilanz wird in der ÖNORM EN ISO 14040 definiert:

Zusammenstellung und Beurteilung der Input- und Outputflüsse und der potentiellen Umweltwirkungen eines Produktsystems im Laufe eines Lebensweges. 203

²⁰² Vgl. [125] Harer, Pichler 2009.

²⁰³ [127] ÖNORM EN ISO 14040 2009, Pkt. 3.2.

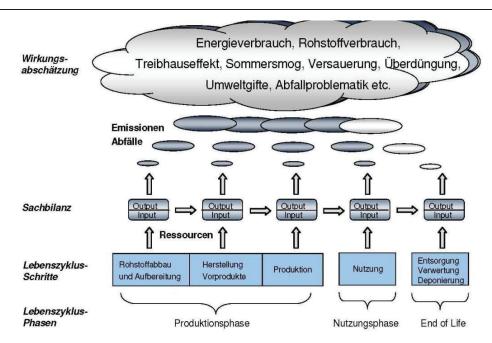


Abbildung 60: Ablaufschema einer Ökobilanz²⁰⁴

Mithilfe einer Ökobilanz können unterschiedliche Verwendungsszenarien des Ausbruchmaterials mit dem Szenario Deponierung des Ausbruchmaterials verglichen werden. Dabei werden verursachte Emissionen der einzelnen Szenarien im Hinblick auf ihre Umweltauswirkungen erfasst und bewertet. Wird das Ausbruchmaterial zur Substitution von Primärrostoffen verwendet, lassen sich so die daraus resultierenden Effekte darstellen.

Typische Wirkungskategorien sind dabei:

- das Treibhauspotential
- die Versauerung
- die Eutrophierung und
- das photochemische Oxidationspotential.

Die Ökobilanz ist daher, neben der wirtschaftlichen Betrachtung, ein weiteres Instrument die Verwendung von Ausbruchmaterial einer ganzheitlichen Betrachtung zu unterziehen. Gleichzeitig können im Hinblick auf die Umweltwirkung problematische Prozesse identifiziert werden.²⁰⁵

Für die Aussagekraft der ermittelten Umweltauswirkung der untersuchten Szenarien ist eine klare Abgrenzung der betrachteten Prozesse von großer Bedeutung.

Für den Projektabschnitt Amsteg des Tunnelprojektes Gotthard-Basistunnel wurde die Materialbewirtschaftung einer Betrachtung mittels Öko-Bilanz unterzogen. Als Ausgangsbasis (100% relative Kosten, 100% relative Umweltbelastung) wurde dabei das Szenario Deponierung des Ausbruchmaterials und Materialtransport mittels LKW herangezogen.

Werden die Transporte mittels Bahn durchgeführt, kann demnach die relative Umweltbelastung bei gleichbleibenden Kosten um 20% verringert werden.

²⁰⁴ [129] Merl, Kieselbach 2009, S. 8.

²⁰⁵ Vgl. [129] Merl, Kieselbach 2009.

²⁰⁶ Vgl. [64] Zbinden, Hitz, 2002, S. 83

Durch die Verwendung des Ausbruchmaterials und Transport mittels Bahn verringert sich die relative Umweltbelastung auf 30%. Die Verwendung des Ausbruchmaterials ermöglicht auch Einsparungen um 20% (vgl. Pkt. 7.1).

Abbildung 61: Ökobilanz des Materialbewirtschaftungskonzeptes Projektabschnitt Amsteg Gotthard-Basistunnel 207

Ein wesentlicher Einfluss auf das Ergebnis einer Ökobilanz ist dabei vor allem durch den Energieverbrauch (z.B. Strom, Diesel) der einzelnen Verwendungsszenarien zu erwarten.

In der folgenden Tabelle wird der Energiebedarf der einzelnen Maschinen in einer Aufbereitungsanlage für Ausbruchmaterial angegeben.

Daraus ergibt sich ein Energieverbrauch von²⁰⁸:

- 6.6 kWh/t Energieverbrauch pro t Rohmaterial bei 100 t/h Aufgabeleistung
- 8.9 kWh/t Energieverbrauch pro t Fraktion bei 100 t/h Aufgabeleistung

Die große Abhängigkeit des Energieverbrauches von der Menge des zu brechenden Materials ist dabei zu berücksichtigen.

²⁰⁷ [64] Zbinden, Hitz, 2002, S. 84.

²⁰⁸ [130] Firmenangabe 2011.

Maschinentyp	kW	Anzahl	Total [kW]
Vertikalbrecher	100	2	200
Horizontalbrecher	100	1	100
2-Deck-Sieb	30	4	120
Entwässerungsrinne	15	2	30
Frischwasserpumpe	50	1	50
Schmutzwasserpumpe	50	1	50
Kleine Bandanlage	10	8	80
Zuführband	75	1	75
Becherförderer	75	2	150
Abzugsbänder	5	6	30
Sammelbänder	15	2	30
Schlammpumpe	60	1	60
Kammerfilterpresse	20	2	40
Installierte Leistung			1.015
Verbrauchsleistung (ca. 65%)	660		

Abbildung 62: Ungefährer Energiebedarf der Maschinen in einer Aufbereitungsanlage – Aufgabeleistung ca. $100\ t/h^{209}$

Werden die Vortriebsarbeiten in die Betrachtung der Ökobilanz mit einbezogen können als Anhaltspunkt folgende Energieverbräuche herangezogen werden²¹⁰:

- Zyklischer Vortrieb:
 - o Baggervortrieb:

* Diesel: 3,0 bis 3,5 lt/m³

* Strom: 15 bis 25 kWh/m³

o Sprengvortrieb:

* Diesel: ca. 2,5 lt/m³

* Strom: 15 bis 25 kWh/m³

• Kontinuierlicher Vortrieb:

o Offene TVM:

* Diesel: ca. 1,0 lt/m³ (für Betrieb der Dieselloks)

* Strom: 15 bis 25 kWh/m³

o EPB/Hydro:

* Diesel: ca. 1,0 lt/m³ (für Betrieb der Dieselloks)

* Strom: 35 bis 50 kWh/m³

²¹⁰ [130] Firmenangabe 2011.

²⁰⁹ [130] Firmenangabe 2011.

6 Materialaufbereitung

Entspricht das anfallende Ausbruchmaterial den Anforderungen an Gesteinskörnungen für die Betonproduktion muss dieses, bevor es verwendet werden kann, aufbereitet werden. Die hierfür erforderliche Aufbereitungsanlage ist ein wesentlicher Bestandteil der Materialbewirtschaftung.

Im Idealfall erfolgt die Aufbereitung in einer bereits bestehenden Anlage in der Nähe des Tunnelportals. Geographische Gegebenheiten, aber auch der zeitlich begrenzte große Materialanfall bzw. der Materialbedarf der Baustelle, machen es jedoch in vielen Fällen erforderlich, auf dem Baustellengelände eine Aufbereitungsanlage zu errichten.

Kann das Ausbruchmaterial als Primärrohstoff in der Baustoffindustrie (z.B. Ziegel-, Zementindustrie) herangezogen werden, sollte der Rohstoffabnehmer, welcher im Regelfall, aufgrund der erforderlichen komplexen Aufbereitung über die entsprechenden Anlagen verfügt, die Bearbeitung des Ausbruchmaterials übernehmen.

6.1 Materialaufbereitung auf der Baustelle

Soll mit dem Ausbruchmaterial der Eigenbedarf einer Baustelle an Gesteinskörnungen teilweise oder ganz abgedeckt werden, ist hierfür eine stationäre Materialaufbereitungsanlage als Element der Baustelleneinrichtung zu errichten.

Bei der Planung einer stationären Materialaufbereitung sind dabei folgende Anlagenteile zu berücksichtigen:

- Materialzerkleinerung und -siebung
- Schlammaufbereitung
- Zwischenlager für Ausbruchmaterial
- Zwischenlager für Gesteinskörnungen
- Wasseraufbereitung
- event. Verladestation für Bahntransport

Aufgrund der durchschnittlichen Nutzungsdauer einer Aufbereitungsanlage von ca. 25 Jahren²¹¹ muss bei einer Installation einer Aufbereitungsanlage auf der Baustelle auch eine Nachnutzung für die Anlagenteile vorgesehen werden.

Zur Beschreibung der Betriebs- und Installationskosten können Erfahrungen aus der mineralischen Rohstoffindustrie herangezogen werden. Abbildung 63 enthält ein Beispiel für die Kostenverteilung eines Steinbruchbetriebes.

²¹¹ Vgl. [119] Kirschbaum, Reinhardt, Kamermans 2009.

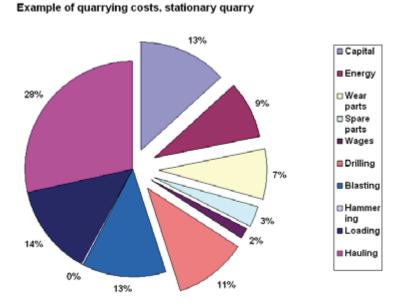


Abbildung 63: Beispiel für die Kostenverteilung eines Steinbruchbetriebes²¹²

6.1.1 Materialzerkleinerung und -siebung

Aufgabe einer Aufbereitungsanlage ist es das anfallende Ausbruchmaterial zu brechen und in die gewünschten Korngruppen aufzuteilen. Hauptbestandteile der Anlage sind dabei Brecher und Siebe, welche aufeinander abgestimmt eingesetzt werden.

Die erforderliche Aufgabeleistung einer Aufbereitungsanlage sowie die Größe der Zwischenlager ergeben sich aus der Betrachtung der zeitlichen Abfolge des Materialanfalls bzw. des Bedarfs an aufbereiteten Gesteinskörnungen. Gleichzeitig ist zu berücksichtigen, dass es im Zuge der Vortriebsarbeiten zu wesentlichen Schwankungen der Eigenschaften des Ausbruchmaterials kommen kann.

Zur Bestimmung der erforderlichen Aufgabeleistung sowie der Zwischenlagergrößen kann das im Pkt. 7.2.2.2 beschriebene Berechnungsprogramm herangezogen werden.

In Tabelle 47 werden beispielhaft Aufgabeleistungen von Aufbereitungsanlagen von Projekten in der Schweiz angegeben.

Projekt	Aufgabeleistung - Aufbereitung
Pumpspeicherkraftwerk Limmern	160 t/h
Pumpspeicherkraftwerk Nant de Drance	150 t/h
Gotthard-Basistunnel Baulos Amsteg	250 t/h
Ceneri-Basistunnel	150 t/h

Tabelle 47: Aufgabeleistungen von Aufbereitungsanlagen [Quelle: Firmenprospekte]

²¹² [120] Metso Minerals 2009.

Die Wahl der Bestandteile einer Aufbereitungsanlage sowie deren Abfolge im Betrieb sind wesentlich von der

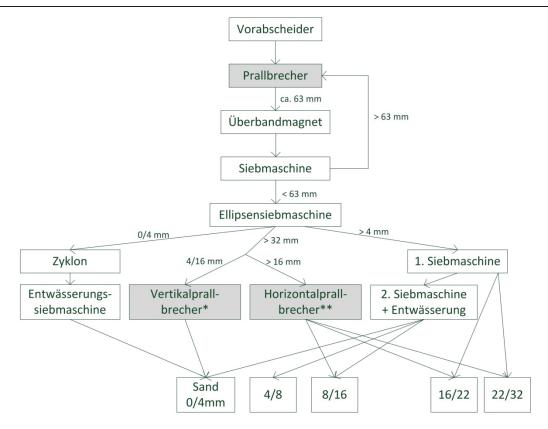
- Gesteinsart (karbonatisches oder kristallines Gestein) sowie von den
- Eigenschaften des Ausbruchmaterials und den
- geforderten Eigenschaften der zu produzierenden Gesteinskörnungen

abhängig. Bei den Eigenschaften des Ausgangsmaterials sind vor allem die Kornform sowie die Sieblinie maßgebend. Beide Parameter werden, wie im Pkt. 3.2 beschrieben, durch die geologischen Gegebenheiten sowie durch die Vortriebsmethode bestimmt.

Die Eingangsparameter für die Planung einer Aufbereitungsanlage sollten im Zuge der Planungsphase anhand von Aufbereitungsversuchen ermittelt werden. Hierfür werden großtechnische Aufbereitungsversuche empfohlen. Im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" wurden so z.B. je 30 t der betrachteten Lithologien aufbereitet (siehe unten). Als Probenmaterial kann Ausbruchmaterial z.B. aus Erkundungstollen verwendet werden. Idealerweise wurde dieses auch schon mit der gleichen Vortriebsmethode gewonnen wie der später auszuführende Hauptvortrieb.

Ziel dieser Aufbereitungsversuche ist es das Bruchverhalten des anfallenden Ausbruchmaterials festzustellen. Darauf aufbauend kann in der Folge ein Flussschema der Aufbereitungsanlage geplant werden.

Die Festlegung der erforderlichen Aufgabeleistung der Aufbereitungsanlage ist vor allem vom geplanten Bauprogramm abhängig. Daraus ergibt sich der zu erwartende Materialanfall wie auch der Bedarf an Gesteinskörnungen.


Zusätzlich sind aber auch Auflagen des Umweltschutzes sowie die geographischen Randbedingungen der Baustelle bei der Planung einer Aufbereitungsanlage zu berücksichtigen.

Aufgrund der Vielzahl an Einflüssen handelt es sich bei Aufbereitungsanlagen für Ausbruchmaterial üblicherweise um maßgeschneiderte Spezialausführungen.

Für die Planung, den Aufbau und die Inbetriebnahme einer Aufbereitungsanlage inkl. der erforderlichen Zusatzausrüstungen werden ca. 15 - 20 Monate empfohlen.²¹³

In Abbildung 64 wird das vereinfachte Flussschema des Kieswerks des Pumpspeicherkraftwerks Limmern (Schweiz) dargestellt. Zusätzlich zum dargestellten Ablauf können in diesem Kieswerk mittels Materialweichen auch alle Einzelkomponenten von 4 – 32 mm dem Horizontal- und Vertikalprallbrecher zugeführt werden.

²¹³ [130] Firmenangabe 2011.

- * Einstellung mittels Frequenzsteuerung
- ** reversierbarer Horizontalbrecher (durch die entsprechende Spalteinstellung werden Sand und Körnungen > 4mm hergestellt)

Abbildung 64: Vereinfachtes Flussschema Kieswerk Pumpspeicherkraftwerk Limmern²¹⁴

Durch ein abgestimmtes Aufbereitungsflussschema können aus dem Ausbruchmaterial die erforderlichen Gesteinskörnungen für die Betonproduktion produziert werden.

Grobe Gesteinskörnungen (NATM-Vortrieb) können dabei sehr einfach durch Brecher auf die gewünschte Korngröße zerkleinert werden.

Enthält das Ausbruchmaterial jedoch große Anteile an Feinmaterial (z.B. TBM-Vortrieb) muss im Vergleich zu grobem Ausbruchmaterial mehr Ausbruchmaterial aufbereitet werden. Dabei kommt es zu einem Überschuss an feinen Gesteinskörnungen.

In diesem Zusammenhang ist es daher sehr wesentlich ob die produzierten Gesteinskörnungen für Spritzbeton (z.B. GK 8 mm) oder für Ortbeton (z.B. GK 32 mm) verwendet werden.

Für den Fall, dass nur der Eigenbedarf der Baustelle abgedeckt werden soll, haben Erfahrungen in der Schweiz ergeben, dass bei einer Verkleinerung des Größtkorns der Gesteinskörnung für Ortbeton von 32 auf 22 mm ca. 15 – 40% (in Abhängigkeit der Eingangssieblinie) weniger Ausbruchmaterial aufbereitet werden muss.²¹⁵

Im Zuge des Tunnelprojektes Lötschberg-Basistunnel konnte im Baulos Raron sämtliches Ausbruchmaterial der Kasse 1 der Verwendung als Gesteinskörnung für die Betonproduktion zugeführt werden (vgl. Pkt. 7.2.2.1). Der Output der Materialaufbereitung in den einzelnen Korngruppen bzw. der Bedarf der Baustelle wird in der folgenden Tabelle dargestellt.

²¹⁴ Vgl. [117] Homepage: http://www.martitechnik, 03.09.2011.

²¹⁵ [130] Firmenangabe 2011.

		Korngrupp	oen [mm]	
	0/4	4/8	8/16	16/22
Output Materialaufbereitung (pro aufbereiteter Einheit)	ca. 40%	ca. 22%	ca. 33%	ca. 5%
Lötschberg-Basistunnel Baustellenbedarf Gesamt	ca. 48%	ca. 22%	ca. 28%	ca. 2%

Tabelle 48: Anteil der Korngruppen an aufbereiteten Material bzw. Baustellenbedarf²¹⁶

Flächenbedarf für eine Materialaufbereitung auf der Baustelle²¹⁷

- Materialaufbereitungsanlage Aufgabeleistung 150 t/h: ca. 400 m² (ca. 15 x 25 m); minimale Zufahrtsmöglichkeit auf zwei Seiten für Radlader der 30 t Klasse (Volvo L 220, CAT 966)
- Schlammaufbereitung: ca. 200 m² (ca. 10 x 20 m), minimale Zufahrtsmöglichkeit auf zwei Seiten für Radlader der 30 t Klasse
- Rohmateriallager: ca. 200.000 bis 300.000 t; offenes Lager, Lagerhöhe ca. 20 m
- Komponentenlager: Materialmenge für ca. 15 Tage des Maximalverbrauchs; aus Qualitätsgründen (Verschmutzung der Gesteinskörnungen) ist ein Innenlager (z.B. Siloanlage) einem Außenlager vorzuziehen; bei einem Außenlager ist der Winterbetrieb nachzuweisen.

6.1.1.1 Zerkleinerung des Ausbruchmaterials

Durch eine auf das Ausbruchmaterial abgestimmte Zerkleinerungsart werden auch die Materialeigenschaften der zu produzierenden Gesteinskörnung beeinflusst.

Die Zerkleinerung des Ausgangsmaterials erfolgt durch Brecher oder Mühlen (Produktkorngröße $d_{max} < 1 \text{ mm}^{218}$). Abhängig von der Brecherart wird das Ausbruchmaterial einer Druck-, Biege.-, Scher-, Schlag- oder Prallbeanspruchung ausgesetzt.

Üblicherweise wird das Ausbruchmaterial in mehreren Brechstufen auf die gewünschte Korngröße zerkleinert.

Folgende Brecherarten kommen vorwiegend bei der Zerkleinerung von Ausbruchmaterial zu Gesteinskörnungen zur Anwendung:

- Backenbrecher (Druckbeanspruchung)
- Kegelbrecher
 - o Flachkegelbrecher (Druck-, Schlag- und Scherbeanspruchung)
 - Steilkegelbrecher (Druck- und Scherbeanspruchung)
- Schlagwalzenbrecher (Druck- und Schlagbeanspruchung)
- Prallbrecher (Schlag- und Prallbeanspruchung)

Die Vor- und Nachteile der einzelnen Brecherarten werden in Tabelle 49 angegeben.

²¹⁶ Vgl. [123] Äschbach 2003, S. 11.

²¹⁷ [130] Firmenangabe 2011.

²¹⁸ Vgl. [118] Schnellert 2008, S. 3.

Materialaufbereitung

Тур	Vorteile	Nachteile	Verwendung
Backenbrecher	 relativ geringer Verschleiß geringer Feinanteil große Durchsätze bei grobkörnigem Gut 	 plattige Kornform starker Überkornanfall besonders bei plattig bre- chenden Aufgabestücken 	- Wird häufig als Vorbrecher verwendet
Flachkegelbrecher	- kubische Kornform - gut abgestufte Körnungsli- nie	- höhere Investitionskosten als bei Backenbrecher	Steilkegelbrecher: Vorzer- kleinerungFlachkegelbrecher: Nachzerkleinerung
Prallbrecher	- stetige Körnungslinie - kubische Kornform - hohe konstante Durchsatz- leistung - großer Zerkleinerungsgrad - unempfindlich gegen Fremdkörper	- begrenzte Aufgabekorngröße - relativ hoher Verschleiß - produziert unter Umständen zu viel Feinkorn	- Nachbrecher
Schlagwalzenbrecher	- obere Korngröße eng begrenzt - geringer Feinanteil - hohe Durchsatzleistung - geringe Bauhöhe - geringe Wartung - kurze Wechselzeiten der Brechwerkzeuge - lange Standzeit - niedrige Betriebkosten	- plattige Kornform - starker Überkornanfall besonders bei plattig bre- chenden Aufgabestücken	- Vor-, Nach- und Feinbre- cher

Tabelle 49: Auswahlkriterien für Brecher²¹⁹

Bei einem TBM-Vortrieb bzw. einem NATM-Vortrieb wo das Ausbruchmaterial mittels Förderband aus dem Tunnel transportiert wird, erfolgt die erste Zerkleinerung (Primärstufe der Zerkleinerung) des anfallenden Ausbruchmaterials an der Aufgabestelle auf das Förderband. Hierfür werden meist Backenbrecher eingesetzt. Alternativ kommen aber auch Schlagwalzenbrecher zur Anwendung.²²⁰

Erfolgt der Materialtransport mittels LKW bzw. Tunnelbahn ist die Vorbrechstufe (Primärstufe) meist Bestandteil der Aufbereitungsanlage.

Das vorzerkleinerte Ausbruchmaterial wird in der Folge hauptsächlich mithilfe von Kegel- und Prallbrechern weiter zerkleinert (Sekundär- und Tertiärstufe).

Bei Prallbrechern kann zwischen Horizontal- und Vertikal-Prallbrechern unterschieden werden. Beim Vertikal-Prallbrecher wird das zu zerkleinernde Gestein durch den Rotor in ein Gesteinsbett im Maschinengehäuse geschleudert. Durch diese Korn zu Korn Zerkleinerung ist der Vertikal-Prallbrecher einem wesentlich geringerem Verschleiß als der Horizontal-Prallbrecher ausgesetzt.

Durch die Brecherart und die Anordnung dieser kann die Kornform sowie der Zerkleinerungsgrad der aufbereiteten Korngruppen beeinflusst werden. Enthält das Ausbruchmaterial einen großen Anteil an plattigen Gesteinskörnern (z.B. Ausbruchmaterial aus einem TBM-Vortrieb) kann durch das Brechen mittels Prallbrecher die Kornform wesentlich verbessert werden (vgl. Abbildung 65). Ein im Vergleich zum Kegelbrecher größerer Verschleiß ist bei der Verwendung eines Prallbrechers jedoch zu berücksichtigen. Durch die Brecherwahl kann so auch auf die, durch die Vortriebsmethode verursachten Besonderheiten des Ausbruchmaterials reagiert werden.

²¹⁹ Vgl. [113] Kohler 1997, S. 134 und [114] Firmenprospekte Aubema.

²²⁰ Vgl. [115] DBT Mineral Processing 2011.

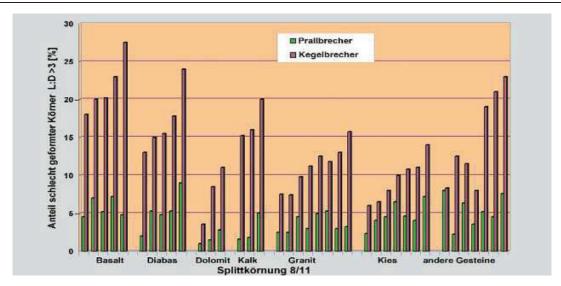


Abbildung 65: Vergleich Prallbrecher/ Kegelbrecher: Anteil schlecht geformter Körner²²¹

Der dargestellte eindeutige Zusammenhang zwischen der Brecherart und der Kornform des aufbereiteten Materials konnte bei Brechversuchen im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" nicht bestätigt werden (siehe unten).

Aufbereitungsversuche haben gezeigt, dass TBM-Ausbruchmaterial erst ab der Korngröße 8 mm gebrochen werden muss. Körner < 8 mm erfüllen demnach oftmals die Kornform-Anforderungen an Gesteinskörnungen für die Betonproduktion.²²²

Im Zuge des Tunnelprojektes Gotthard-Basistunnel kamen in der Sekundär- und Tertiärstufe der Zerkleinerung Prallbrecher zur Anwendung.²²³

6.1.1.2 Siebung des Ausbruchmaterials

Den einzelnen Brechstufen vor bzw. nachgeschaltet werden Siebmaschinen.

Vorgeschaltete Siebe entlasten durch den Vorabzug von bereits zerkleinerten Gesteinskörnungen die nachfolgenden Brecher. Dem Brechvorgang nachgeschaltete Siebe ermöglichen die Zuteilung der gebrochenen Gesteinskörner zu Korngruppen.

Zur Aufteilung des Gesteinsmaterials in unterschiedliche Korngruppen verfügen die Siebmaschinen über nacheinander angeordnete Siebdecks.

Bei der Siebung des Ausbruchmaterials wird zusätzlich zwischen einer Nass- und Trockensiebung unterschieden. Wesentlicher Vorteil der Trockensiebung gegenüber der Nasssiebung ist die einfache Verfahrensart (z.B. Entfall der Schlammaufbereitung).

Eine Trockenaufbereitung kann vor allem bei karbonatischen Gesteinen, aufgrund der positiven Eigenschaften der Feinteile, erfolgen (vgl. Pkt. 4.1.9).

Feine Gesteinskörnungen bzw. Gesteinskörnungen die zur Agglomeration neigen, müssen jedoch nass abgesiebt werden. Dies gilt vor allem für kristallines Gestein.

Wird ein Teil des Ausbruchmaterials vor der Aufbereitung ausgesiebt so erfolgt diese Siebung trocken. Das abgetrennte Material kann in der Folge z.B. für Schüttungen verwendet werden.

²²³ Vgl. [64] Zbinden, Hitz 2002, S. 85.

²²¹ [122] SBM Mineral Processing Firmenprospekt.

²²² Vgl. [89] Thalmann 1997, S. 34.

Aufgrund des hohen Feinteilgehaltes wird im Baulos Koralmtunnel KAT 2 die Korngruppe 0/16 vorabgesiebt (vgl. Pkt. 6.1.5).

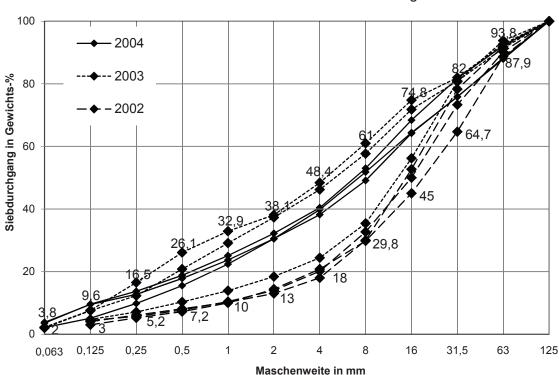
In der Aufbereitungsanlage Mitholz des Tunnelprojektes Lötschberg-Basistunnel wurde der Sand für die Betonproduktion aus gewaschenen und ungewaschenen Sand zusammengemischt.²²⁴

6.1.2 Schlammaufbereitung

Bei der Nassaufbereitung von kristallinen Gesteinen kann in vielen Fällen der Feinteilgehalt zu einem bestimmenden Leistungsfaktor der Aufbereitungsleistung werden. Vor allem die Festlegung des Trennschnittes zwischen Schlamm und Feinsand ist von großer Bedeutung.

Folgende Zusammenhänge sind hierbei zu berücksichtigen²²⁵:

- Eine "grobe" Trennung bei 0.125 mm (d_{95}) führt einerseits zu einem höheren Schlammanteil, andererseits jedoch auch zu einer höheren Leistung der Schlammpressen.
- Eine "feine" Trennung bei 0,063 mm (d₉₅) verursacht einen Mehrverbrauch an Zement (20 30 kg/m³). Gleichzeitig erreicht der Beton aber bessere Beton-Dichtheitswerte.


Die Trennung von Feinsand und Schlamm erfolgt hauptsächlich mittels Hydro-Zyklonen. Der Schlammanteil kann anschließend in einer Schlammpresse entwässert werden. Die Schlammpresse ist meist auch das die Aufbereitungsleistung limitierende Kriterium.

Schwankungen des Feinteilgehaltes im Ausbruchmaterial sind dabei zu berücksichtigen.

Abbildung 66 enthält typische Sieblinien des Ausbruchmaterials der Baustelle Amsteg (Gotthard-Basistunnel) aus einem Zeitraum von 3 Jahren. In diesem Fall schwankte der Feinteilgehalt (< 0,125 mm) zwischen 3 und 9,6%.

 $^{^{224}\,\}text{Vgl.}$ [134] Pralong, Burdin, Thalmann 2002, S. 5.

²²⁵ [130] Firmenangabe 2011.

Sieblinien Ausbruchmaterial Baustelle Amsteg

Abbildung 66: Sieblinien der Baustelle Amsteg (Alp Transit Gotthard)²²⁶

6.1.3 Wasseraufbereitung

Im Falle einer Nassaufbereitung werden, bei einer Aufgabeleistung von 100 t/h, pro Siebdeck einer Siebmaschine ca. 25 m³-Wasser pro Stunde benötigt. Das Wasser wird dabei in einem geschlossenen Kreislauf geführt. Durch den Wassergehalt der aufbereiteten Gesteinskörnungen (ca. 15%) kommt es jedoch zu einem laufenden Wasserverlust.²²⁷

Da sich im Wasser einer Aufbereitungsanlage chemische Bestandteile des Ausbruchmaterials anreichern können, muss dieses, bevor es in einen Vorfluter abgegeben werden kann, aufbereitet werden. Hierfür kann das Brauchwasser in eine bestehende Kläranlage eingeleitet werden. Als Alternative wird häufig auch eine eigene Kläranlage am Baustellengelände errichtet.

Auch das während der Bauarbeiten anfallende Tunnelwasser muss einer Reinigung zugeführt werden.

6.1.4 Spezialbestandteile einer Aufbereitungsanlage

Horizontalschlämmanlage

Entspricht die Sieblinie des aufbereiteten Sandes nicht den Anforderungen kann durch eine Horizontalschlämmanlage die geforderte Sieblinie erzeugt werden. Dabei werden die Sandkörner in Abhängigkeit ihrer Sinkgeschwindigkeit einer Korngruppe zugeordnet. Aus den so klassierten Korngruppen kann in der Folge eine beliebige Sandsieblinie zusammengestellt werden.

²²⁶ [130] Firmenangabe 2011.

²²⁷ [130] Firmenangabe 2011.

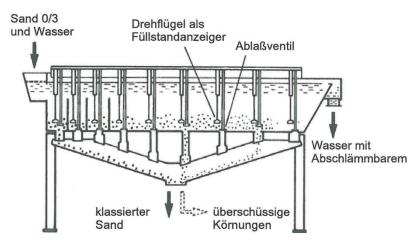


Tabelle 50: Rückmischende Horizontalschlämmanlage (Klassiertank) zur Aufbereitung von Sand nach einer vorgegeben Sieblinie 228

Friktionstrommel

Zur Verbesserung der Kornform wurde in der Aufbereitungsanlage Amsteg auch eine Friktionstrommel eingesetzt.

Die Friktionstrommel besteht aus einer zylindrischen Trommel in der sich ein gegenläufig angetriebener, exzentrisch angeordneter Rotor befindet²²⁹. Durch die Drehbewegung wird das Ausbruchmaterial einer Korn-zu-Korn-Beanspruchung ausgesetzt, wodurch die Kanten der Gesteinskörner abgerundet werden.

Nachteilig wirkt sich dabei ein zusätzlicher Anfall von Feinteilen sowie ein zusätzlicher Energiebedarf (150 kW) der Aufbereitungsanlage aus. Bei modernen Aufbereitungsanlagen (z.B. Aufbereitungsanlage Ceneri-Basistunnel) kommen keine Friktionstrommeln mehr zum Einsatz.

Abbildung 67: Friktionstrommel

Entglimmerungsanlage²³⁰

Aufgrund eines sehr hohen Glimmergehaltes $(40 - 50 \text{ Stück-}\% \text{ im Brechsand } 0/1\text{mm})^{231}$ und einem Mangel an Ersatzrohstoffen im Bereich der Tunnelbaustelle, wurde im Baulos Sedrun des Tunnelprojektes Gotthard Basistunnel eine Entglimmerungsanlage für den Sand 0/1 mm installiert.

²²⁸ [25] Springenschmid 2007, S. 54.

²²⁹ Vgl. [116] Homepage: http://www.rohrbagger.de, 02.09.2011.

²³⁰ Vgl. [111] Präsentation Entglimmerung.

²³¹ Vgl. [112] Cichos, Plate, Klitta, Schnitzler, Puntli, Thalmann 1993.

Die Entglimmerungsanlage wurde dabei in eine bereits bestehende Aufbereitungsanlage integriert und konnte je nach Bedarf, mit einer Leistung von 25 – max. 30 t/h, zugeschalten werden.

Durch den Einsatz der Entglimmerungsanlage konnte in der Folge der Glimmeranteil im Aufgabebereich um mind. 50% verringert werden. Auch die Forderungen

- der Minimierung des Verlustes an Mehlkornanteil (0,063 0,125 mm), sowie
- dass keine Belastung des Abwassers und der Deponie durch die eingesetzten Chemikalien auftritt

wurden durch die installierte Anlage eingehalten.

Die (Investitions-) Kosten für die erforderlichen Bauleistungen und die Anlagentechnik beliefen sich auf ca. 1,3 Mio. €.

6.1.5 Ausschreibung einer Aufbereitungsanlage

Aufgrund der speziellen Anforderungen, aber auch um Ausführungsvarianten der Hersteller von Aufbereitungsanlagen zu ermöglichen, wird eine funktionale Ausschreibung von Aufbereitungsanlagen empfohlen.

Grundlage einer funktionalen Ausschreibung sollten dabei folgende Angaben sein: 232

- Aufzubereitende Rohmaterialmengen der Gesamtbaustelle, Bandbreite der Rohmaterialsieblinien auf Grund von Vorversuchen
- Terminprogramm mit Terminen für Bauphase, Inbetriebnahme, Testphase, Produktionsphase, Demontagephase
- Produktionsprogramm mit minimalen Produktions- bzw. Abgabemengen von einzelnen Fraktionen pro Stunde, pro Tag, pro Woche, pro Monat
- Betriebssicherheitsfaktoren (Maximale Ausfallzeit der Anlage durch technische Mängel)
- Schnittstellen zu anderen Losen (Tunnelbaulos, Deponiebaulos etc.)
- Zur Verfügung stehende Flächen mit Deponieflächen, Verkehrsflächen, Wasserbezugspunkten, Abwasserabgabepunkten, Strombezugspunkten
- Minimale Silo- und Außenlagerkapazitäten für Rohmaterial (Tunnelausbruch) und Fertigprodukte (Fraktionen)
- Einzuhaltende Umweltschutzvorgaben (Lärm, Staub, Gewässerschutz, Abfall, Luftreinhaltung, Verkehr, Siedlungen)
- Wasserbezugskosten und Strombezugskosten

Exemplarisch werden die an die Aufbereitungsanlage des Tunnelprojektes Koralmtunnel (KAT 2) mitunter gestellten Anlagenerfordernisse nachfolgend angegeben^{233,234}:

• Die Gesteinskörnung 0/16 mm ist aufgrund des großen Feinanteils vorabzusieben. Nur im Sonderfall soll die Gesteinskörnung 0/16 mm aufbereitet werden.

²³² [130] Firmenangabe 2011.

²³³ Vgl. [124] ÖBB-Infrastruktur AG, Ausschreibung Koralmtunnel KAT 2, 2009.

²³⁴ Vgl. [88] Pichler, Huber 2009.

- Um eine gute Kornform zu erreichen sind Vertikalbrecher (mit Frequenzumformer) und/oder Kegelbrecher zu installieren.
- Die Trennung von Sand erfolgt bei 3 mm. Dadurch soll das Entmischen des Sandes bei der Deponierung verringert werden.
- Für die Sandproduktion (0/3 mm) sind geeignete Sandbrecher (z.B. Sandprallmühlen) zu installieren.
- Für grobe Gesteinskörnungen ist eine Nassklassierung vorzusehen.
- Sandklassierung: mind. 100 t/h; maximaler Wassergehalt des Sandes 8%
- Für die Feinsandrückgewinnung ist eine Multizyklonanlage zu installieren.
- Für die Gesteinskörnungen 8/16 und 16/32 ist unmittelbar vor der Mischanlage eine Nachwaschanlage mit anschließender Entwässerung vorzusehen. Diese dient der Entfernung von anhaftendem Abrieb, der Kernsättigung sowie zur Kühlung der Gesteinskörnung.

6.2 Aufbereitungsversuche Sulzau

Im Zuge des Forschungsprojektes "Recycling von Tunnelausbruchmaterial" wurden an folgenden für zukünftige österreichische Tunnelprojekte typischen Lithologien Brechversuche durchgeführt:

- Kalkglimmerschiefer (NATM- + TBM-Ausbruchmaterial)
- Augengneis (Entnahme im Steinbruch)
- Biotit Plagioklas Gneis (NATM-Ausbruchmaterial)
- Amphibolit (Entnahme im Steinbruch)
- Granitgneis (Entnahme im Steinbruch)
- Raibler Dolomit (Entnahme im Steinbruch)

Diese Versuche wurden, um realitätsnahe Ergebnisse zu erhalten, an einer bestehenden Aufbereitungsanlage durchgeführt. Insgesamt wurden dabei 30 t jeder Lithologie aufbereitet.

Um die Auswirkung der Zerkleinerungsart auf die Eigenschaften der gewonnenen Gesteinskörnungen zu untersuchen, wurde das Gesteinsmaterial dabei mit folgenden Brecherstufen zerkleinert:

• Aufbereitung I

Primärbrecher: Backenbrecher Sekundärbrecher: Prallbrecher

• Aufbereitung II

Primärbrecher: Backenbrecher Sekundärbrecher: Kegelbrecher

Das gebrochene Material wurde in der Folge in einer Nass-Sortieranlage in die Korngruppen 0/4, 4/8, 8/16 und 16/32 getrennt.

Das Flussschema der durchgeführten Aufbereitungsversuche wird in Abbildung 68 dargestellt.

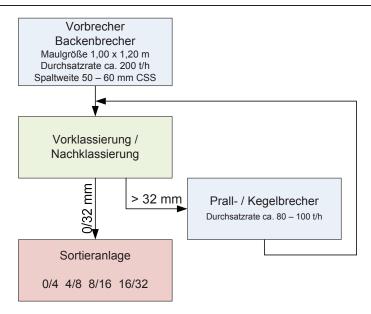


Abbildung 68: Flussschema – Aufbereitungsversuche Forschungsprojekt "Recycling von Tunnelausbruchmaterial"

Bei den Untersuchungen des Widerstandes gegen die Zertrümmerung, der Kornform sowie der Sieblinie der produzierten Korngruppen konnten dabei Auswirkungen auf die Untersuchungsergebnisse in Abhängigkeit der Aufbereitungsart festgestellt werden.

Demnach verfügen die mittels Backen- und Kegelbrecher aufbereiteten Gesteinskörnungen über eine geringfügig höhere Verschleißbereitschaft (vgl. Pkt. 4.1.10).

In den folgenden Abbildungen wird die Kornform in Abhängigkeit der Korngruppe der untersuchten Lithologien dargestellt.

In den Abbildungen wird jeweils die Bezeichnung der Lithologie mit nachgestellter Nummer für die Aufbereitungsart angegeben. Dabei steht I für die Aufbereitung Backenbrecher/Prallmühle und II für Backenbrecher/Kegelmühle.

Kornform

Ein eindeutiger Zusammenhang zwischen Kornform und Aufbereitungsmethode kann dabei nicht nachgewiesen werden. Im Falle des Kalkglimmerschiefers ist jedoch zu berücksichtigen, dass für die Aufbereitung I TBM-Ausbruchmaterial, für die Aufbereitung II NATM-Ausbruchmaterial verwendet wurde.

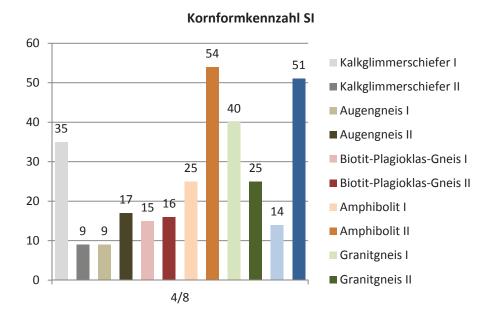


Abbildung 69: Kornformkennzahl SI der Korngruppe 4/8 mm²³⁵

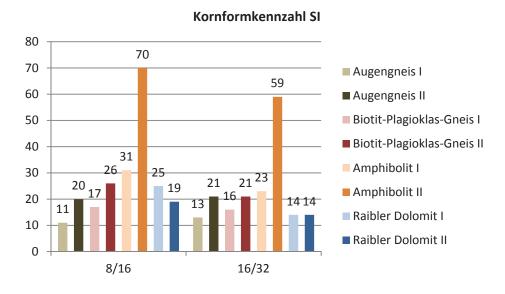


Abbildung 70: Kornformkennzahl SI der Korngruppe 8/16 und $16/32\ mm^{236}$

 $^{^{235}}$ Vgl. [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial 236 Vgl. [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial

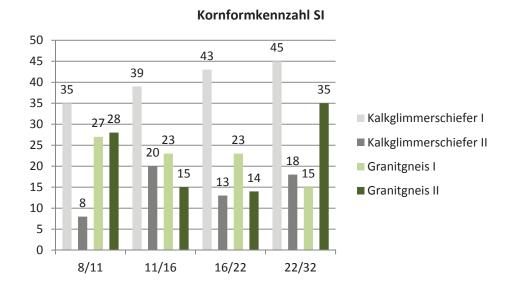


Abbildung 71: Kornformkennzahl SI der Korngruppe 8/11, 11/16, 16/22 und 22/32 mm²³⁷

Die Aufbereitungsmethode mit der besten Kornformkennzahl (SI) in Abhängigkeit der Korngruppe wird in Tabelle 51 dargestellt.

			K	Corngruppe	n			
Lithologie	4/8	8/11	11/16	8/16	16/22	22/32	16/32	
Kalkglimmerschiefer*	II	II	II		II	II		
Augengneis	I			I			I	
Biotit-Plagioklas-Gneis	I/II			I			I	
Amphibolit	I			I			I	
Granitgneis	II	I/II	II		II	I		
Raibler Dolomit	I			II			I/II	
	I Backe	enbrecher +	Prallmühle	e II Ba	II Backenbrecher + Kegelmühle			
	* Aufbere	eitung I: TB	M-Material	Aufbei	Aufbereitung II: NATM-Material			

Tabelle 51: Aufbereitungsmethode mit der besten Kornformkennzahl SI in Abhängigkeit der Korngruppe

Sieblinie der Korngruppen

Auch bei der Betrachtung der Sieblinien der einzelnen Korngruppen²³⁸ kann keine eindeutige Abhängigkeit von der gewählten Aufbereitungsart festgestellt werden. Teilweise weisen grobe Gesteinskörnungen der Aufbereitung mit Kegelbrecher eine feinere Sieblinie auf als jene der Aufbereitung mit Prallbrecher.

²³⁷ Vgl. [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial ²³⁸ Vgl. [101] Untersuchungsergebnisse Forschungsprojekt Recycling von Tunnelausbruchmaterial

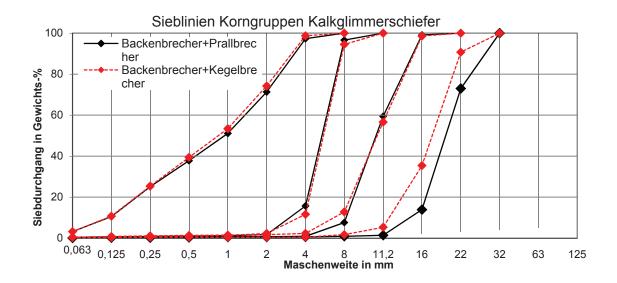


Abbildung 72: Korngruppensieblinien - Kalkglimmerschiefer

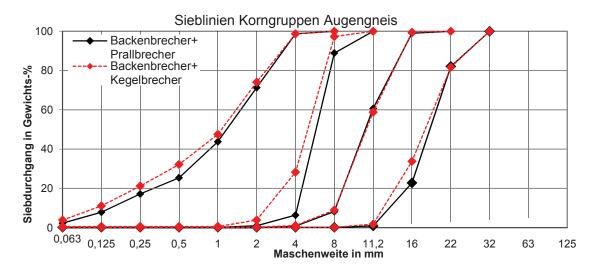


Abbildung 73: Korngruppensieblinien - Augengneis

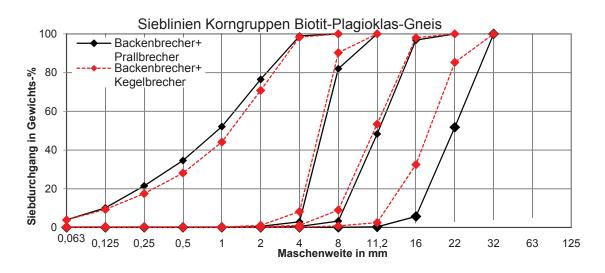


Abbildung 74: Korngruppensieblinien - Kalkglimmerschiefer

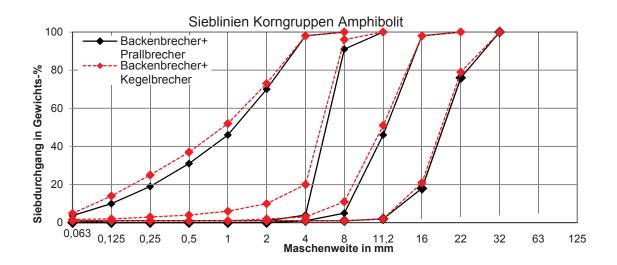


Abbildung 75: Korngruppensieblinien – Amphibolit

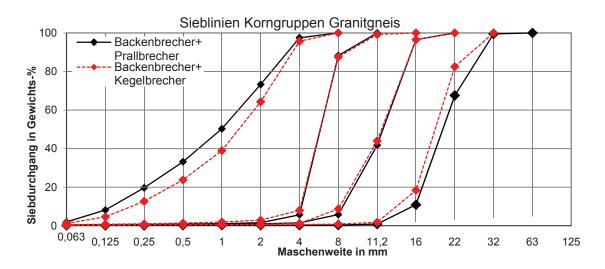


Abbildung 76: Korngruppensieblinien - Granitgneis

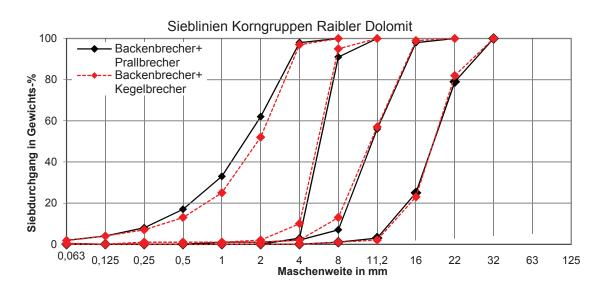


Abbildung 77: Korngruppensieblinien - Raibler Dolomit

7 Baustellenorganisation

7.1 Planungsschritte der Materialverwendung

Um die Ziele der Verwendung von Ausbruchmaterial

- maximale Verwendung des anfallenden Ausbruchmaterials,
- optimale Wirtschaftlichkeit der gesamten Materialbewirtschaftung sowie
- Minimierung der Umweltbelastung durch Materialtransport und -aufbereitung

zu erreichen, ist die Berücksichtigung der Verwendung im gesamten Planungsprozess eines Projektes erforderlich. Die Betrachtung der Verwendung sollte somit gleichzeitig mit der Bestimmung der zukünftigen Trassenführung beginnen und mit der Überprüfung der tatsächlichen Umsetzung auf der Baustelle enden.

Wie bei einem herkömmlichen Bauprojekt kann auch bei der Umsetzung einer Verwendung des Ausbruchmaterials zwischen den Phasen:

- Entwurfsphase
- Planungsphase
- Ausführungsphase

unterschieden werden. Auch die zeitlichen Abläufe der einzelnen Phasen des Bauprojektes können mit jenen der Materialverwendung verglichen werden. So wurde z.B. beim Koralmtunnel mit Beginn der Grobplanung auch die Verwendung des anfallenden Ausbruchmaterials untersucht²³⁹. In Tabelle 52 wird der zeitliche Ablauf der Planungsphasen des Koralmtunnels angegeben. Es wird dabei deutlich, dass für eine genaue Planung bzw. Untersuchung der Materialverwendung lange Zeiträume vorzusehen sind.

1998	Beginn der Grobplanung und geologisch-geotechnische Bearbeitung der Trassenkorridore
2001	Trassenauswahl
2003	Abschluss der Umweltverträglichkeitsprüfung für Abschnitt Wettmannstätten - St-Andrä
2003	Baubeginn Erkundungstunnel und -schächte (Ausbruchmaterial diente auch Aufbereitungsversuchen)
2007	eisenbahnrechtliche Baugenehmigung
2008	Baubeginn erstes Baulos
2011	Vortriebbeginn Baulos 2 mit Materialaufbereitung auf der Baustelle für die Betonproduktion

Tabelle 52: Planungsphasen Koralm-Tunnel²⁴⁰

Im Folgenden werden die einzelnen Planungsphasen der Materialverwendung näher beschrieben.

-

²³⁹ Vgl. [56] Pichler, Fleischhacker 2008, S. 300.

²⁴⁰ Vgl. [55] Harer, Pichler 2009, S. 629.

Entwurfsphase

Parallel zur Festlegung der Tunnelachse kann auf Grundlage von ersten geologischen Auswertungen bereits eine grobe Zuordnung einzelner Tunnelabschnitte zu den Lithologien Kristallin, Karbonat und Lockergestein erfolgen. Aus dieser Zuteilung lässt sich in der Folge grob ein mögliches Verwendungspotential abschätzen.

- Im Kristallin-, Karbonat- und Lockergestein ist demnach eine Verwendung des Ausbruchmaterials als Gesteinskörnung für die Betonproduktion denkbar.
- Feinkörnige Lockersedimente können eventuell in der Ziegelindustrie eingesetzt werden.
- Ausbruchmaterial aus Karbonatgestein entspricht zusätzlich unter Umständen den Qualitätsanforderungen von industriellen Rohstoffen.

Die genauen Anforderungen an das Ausbruchmaterial für eine Verwendung werden im Pkt. 4 angegeben.

Parallel zu dieser ersten Beurteilung des Ausbruchmaterials, sollte bereits in diesem Planungsstadium auch eine Betrachtung der wirtschaftlichen Rahmenbedingungen erfolgen.

Für industrielle Rohstoffe kann abhängig von den zu erwartenden Rohstoffpreisen eine wirtschaftliche Transportlänge ermittelt werden (vgl. Pkt. 5.1). Besteht die Möglichkeit potentielle Abnehmer innerhalb der wirtschaftlichen Transportlänge zu beliefern, ist es somit sinnvoll eine weitere Untersuchung der Verwendung vorzunehmen.

Soll das Ausbruchmaterial auf der Tunnelbaustelle für Schüttungen oder für die Betonproduktion herangezogen werden, sind sowohl zusätzliche Kosten als auch daraus resultierende Einsparungen zu berücksichtigen. Kosten entstehen vor allem durch die Materialaufbereitung und das eventuell aufwendige Materialmanagement. Einsparungen sind durch den Minderbedarf an Rohstoffen, ferner an Deponieflächen aber auch durch Reduzierung der Transporte zu erzielen.

Beim Gotthard-Basistunnel wurde das Ausbruchmaterial für Schüttungen und für die Betonproduktion verwendet. Die dabei anfallenden Mehrkosten für zusätzliche Planungen und Vorversuche beliefen sich auf ca. 8 Mio. CHF. Demgegenüber konnten jedoch Einsparungen von ca. 100 Mio. CHF aufgrund verringerter Transport- und Deponierungskosten sowie geringerer Rohstoffkosten erzielt werden.

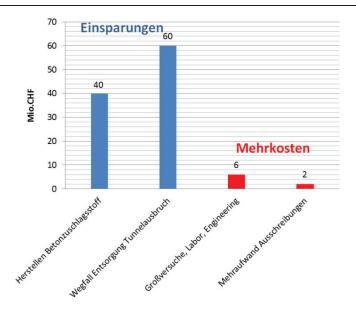


Abbildung 78: Kosten-Nutzen-Bilanz des Materialbewirtschaftungskonzepts - Gotthard Basistunnel²⁴¹

Bei Tunnelprojekten wird die geotechnische Erkundung häufig in mehrere Phasen eingeteilt. Unter der Annahme, dass die Erkundung in zwei Phasen abläuft, kann davon ausgegangen werden, dass die erste Erkundungsphase der endgültigen Trassenfestlegung dient. Im Zuge der zweiten Phase werden die bereits vorhandenen Bodenkennwerte durch eine im Bereich der Tunnelachse verdichtete Probenkampagne verifiziert bzw. ergänzt. Gleichzeitig zu den geotechnischen Untersuchungen sollten im Zuge der zweiten Erkundungsphase, abhängig vom zuvor festgestellten Verwendungspotential, auch Untersuchungen des Ausbruchmaterials im Hinblick auf

- Geochemie,
- Diffraktometrie, bzw.
- Dünnschliffpetrographie

vorgenommen werden. Eventuell erforderliche Untersuchungen in Abhängigkeit von der Gesteinsart werden in Tabelle 53 angegeben.

Karbonatgestein	Kristallingestein	Lockergestein
Mineralbestand	Mineralbestand	Mineralbestand
Geochemie	Geochemie	Siebanalyse, Kornform
Frost-Tau Widerstand	Frost-Tau Widerstand	Frost-Tau Widerstand
Geotechnische Parameter	Geotechnische Parameter	Geochemie
		Geotechnische Parameter

Tabelle 53: Untersuchungsmethoden abhängig von der Gesteinsart²⁴²

Die bei den Untersuchungen einzuhaltenden Grenzwerte werden im Pkt. 4.8 zusammenfassend dargestellt.

_

²⁴¹ Vgl. [64] Zbinden, Hitz 2002, S. 83.

²⁴² [54] Resch, Lassnig, Galler, Ebner 2009, S. 616.

Für die Beurteilung der Verwendung des Ausbruchmaterials in der Entwurfsphase sind die für die Bauprojektierung ohnehin erforderlichen Erkundungen heranzuziehen. Es kann somit das aus den Probebohrungen gewonnene Material für die Untersuchungen verwendet werden. Damit sind keine zusätzlichen Probebohrungen erforderlich.

Die während der Entwurfsphase gewonnenen Ergebnisse können anschließend in Lithologischen Datenblättern gesammelt dargestellt werden. Aufbauend auf diese Erkenntnisse können unter Berücksichtigung der Anforderungen an Rohstoffe (z.B. aus Richtlinie, ÖNORM) mögliche Verwendungspotentiale festgelegt werden.

Planungsphase (Ausschreibungsplanung)

Um die tatsächliche Eignung des Ausbruchmaterials zu bestimmen sind nach der Festlegung der Verwendungspotentiale verwendungsspezifische Prüfungen durchzuführen. Hierfür sind üblicherweise größere Mengen des zu untersuchenden Ausbruchmaterials erforderlich. Im Idealfall kann zu diesem Zeitpunkt bereits auf Ausbruchmaterial von Versuchstollen (mit den gleichen Eigenschaften wie das prognostizierte Ausbruchmaterial) zurückgegriffen werden. Ist dies nicht möglich, muss Material mit vergleichbaren Eigenschaften an der Geländeoberfläche entnommen werden.

Zusätzlich sollten auch die während der Entwurfsphase ermittelten Ergebnisse in der Planungsphase noch einmal überprüft werden.

In Tabelle 54 werden erforderliche Untersuchungen des Ausbruchmaterials in der Planungsphase angegeben.

Gesteinskörnungen	Spezialanwendungen	Schüttmaterial
Untersuchungen an Gesteinskörnungen	Geochemie für Karbonate Korngrößenverteilung, minera-	Korngrößenverteilung Gehalt an Feinanteilen
Mörtelversuche Betonversuche	logische Analyse und Brennver- suche für Ziegelrohstoffe	Widerstand gegen Zertrümmerung
		Verdichtbarkeit Wasseraufnahme

 $Tabelle\ 54:\ M\"{o}gliche\ verwendungsspezifische\ Pr\"{u}fungen^{243}$

Soll das zukünftige Ausbruchmaterial als Gesteinskörnung für die Betonproduktion verwendet werden, ist es zielführend mithilfe von Brechversuchen auch ein zukünftiges Aufbereitungsschema zu entwerfen. Gleichzeitig können in diesem Fall bei den verwendungsspezifischen Prüfungen bereits die Auswirkungen der Materialaufbereitung mit berücksichtigt werden (vgl. Pkt. 6.1).

Wie im Pkt. 3 angegeben, kann auch die Vortriebsmethode die Verwendung von Ausbruchmaterial beeinflussen. Für die Durchführung verwendungsspezifischer Prüfungen ist Tunnelausbruchmaterial einem an der Oberfläche entnommenen Material vorzuziehen.

Die Ergebnisse der Untersuchungen in der Entwurfs- und Planungsphase sind im Anschluss Grundlage der Ausschreibung sowie der Detailplanung der Materialbewirtschaftung.

²⁴³ [57] Lassnig, Ebner 2010.

Ausführungsphase

Aufgrund der geforderten Qualitätssicherung ist im Zuge der Verwendung des Ausbruchmaterials eine regelmäßige Überprüfung erforderlich.

Diese Überprüfungen sind ein wesentlicher Bestandteil der Materialbewirtschaftung auf der Baustelle. Wie bei der Überprüfung der Betonqualitäten üblich, muss auch für die Überprüfung des Ausbruchmaterials sowie der daraus produzierten Rohstoffe ein Prüfplan erstellt werden.

Um lange Wartezeiten auf Prüfergebnisse zu vermeiden, sollte hierfür ein Baustellenlabor mit speziellen Prüfeinrichtungen eingerichtet werden. Parallel zu den Überprüfungen auf der Baustelle ist es jedoch auch erforderlich ergänzende Untersuchungen an Materialversuchsanstalten weiterzugeben (vgl. Pkt. 7.2).

Die einzelnen Phasen der Verwendung von Ausbruchmaterial werden in Abbildung 79 dargestellt.

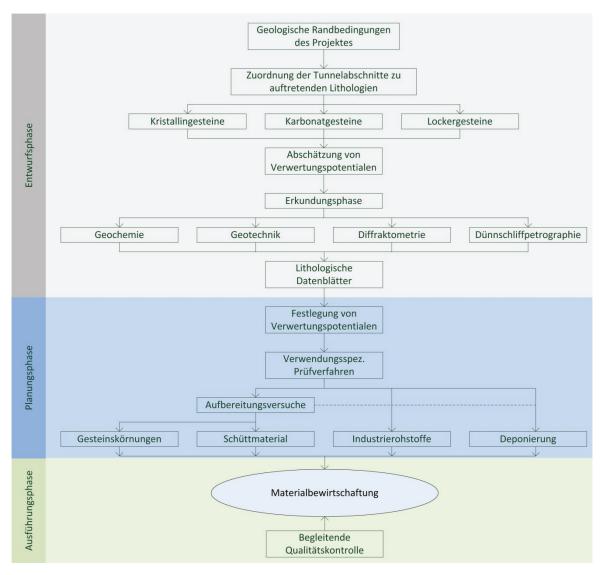


Abbildung 79: Phasen der Verwendung von Tunnelausbruchmaterial

7.1.1 Präqualifikationsverfahren für Beton²⁴⁴

Im Zuge der Ausführung des Gotthard-Basistunnels musste durch die Betontechnologie auf eine besondere Kombination von Randbedingungen wie z.B.:

- große Transportdistanzen,
- besondere Umgebungsbedingungen (hohe Temperatur und Luftfeuchtigkeit),
- betonangreifendes Bergwasser und
- besondere Gesteinseigenschaften (TBM-Material)

reagiert werden. Um die daraus entstandenen Fragestellungen bereits im Vorhinein (vor der Vergabe der einzelnen Baulose) abzuklären wurde ein Beton-Präqualifikationsverfahren durchgeführt. Ziel des Prüfsystems war es Betonmischungen bzw. Betonkonzepte unter Berücksichtigung der besonderen Randbedingungen für die wichtigsten Betonsorten (2 Spritz- und 2 Ortbetone) zu entwickeln. Weiters wurde, um den unterschiedlichen Randbedingungen des Gotthard-Basistunnels besser zu entsprechen, der Tunnel in drei Abschnitte eingeteilt. Am Prüfsystem konnten sich Anbieterteams bestehend aus Produzenten bzw. Lieferanten der Betonbestandteile Zement, Zusatzstoffe und Zusatzmittel beteiligen. Diese Anbieterteams mussten in der Folge im Zuge einer dreistufigen Prüfung (Eignungsnachweis, Vor- und Hauptprüfung) nachweisen, dass die von Ihnen entworfenen Betone den gestellten Anforderungen genügten.

Der letztendlich beauftragte Tunnelbauunternehmer musste auf Grundlage der so zugelassenen Betonkonzepte seine tatsächlich zum Einsatz kommenden Rezepturen entwickeln und deren Eignung gegenüber dem Werkbesteller (i.d.R. als Auftraggeber bezeichnet) nachweisen. Aufgrund des Prüfsystems lag somit schon zum Zeitpunkt der Ausschreibung der Hauptbaulose der Nachweis eines geeigneten Betonkonzeptes vor.²⁴⁵

Aus Sicht eines Materiallieferanten wird jedoch angemerkt, dass für die am Prüfsystem beteiligten Unternehmen hohe Kosten anfielen. Sowohl der große Prüfaufwand als auch die lange Prüfungsdauer (2 Jahre für Sulfatbeständigkeit) verursachten große wirtschaftliche Belastungen. Weiters verhinderten vom Bauherrn geforderte Einzelkriterien die Zulassung wirtschaftlich und technisch vorteilhafter Mischungen.

Gleichzeitig wurden durch mehrere Anbieterteams dieselben Resultate erzielt. Es wäre daher auch möglich gewesen, aus einzelnen Systemversuchen Minimalstandards für die Ausschreibung zu ermitteln. 246

Sowohl im Zuge der Planungsphase des Gotthard-Basistunnels als auch des Koralmtunnels wurden Untersuchungen, mit dem Ziel die Verwendung des Tunnelausbruchmaterials nachzuweisen, durchgeführt. Für aussagekräftige Untersuchungen ist es dabei erforderlich Material, welches dem zu erwartenden Ausbruchmaterial entspricht, zu verwenden. Es ist daher naheliegend im Zuge von Vorerkundungen mittels Versuchsstollen auch ein groß angelegtes Versuchsprogramm durchzuführen.

Im Gegensatz zum Gotthard-Basistunnel erfolgte beim Lötschberg-Basistunnel die Durchführung von Vorversuchen mit aufbereiteten Zuschlagsstoffen erst nach der Auftragsvergabe. Durch

²⁴⁴ Beispiel Alp-Transit Schweiz

²⁴⁵ Vgl. [58] Zbinden 2007, S. 11 - 18.

²⁴⁶ Vgl. [59] Schlumpf 2010, S. 250 - 260.

diese Vorgehensweise konnten der Bauherr dem Bauunternehmer realistische Resultate vorlegen. Die Kosten der Vorversuche, der Eignungsprüfungen der aufbereiteten Gesteinskörnungen sowie der AAR-Abklärung beliefen sich auf ca. 1,2 Mio. CHF.²⁴⁷

In Zukunft sollte das Ausbruchmaterial jedoch nicht mehr nur in Hinblick auf die Eignung als Gesteinskörnung für die Betonproduktion sondern auch auf alternative Verwendungen hin untersucht werden. Wie das Beispiel des Präqualifikationsverfahrens beim Gotthard-Basistunnel gezeigt hat, können daran auch zukünftige Stofflieferanten beteiligt werden. Es ist auch denkbar, potentielle Abnehmer des Ausbruchmaterials an den Voruntersuchungen mitwirken zu lassen.

7.2 Materialbewirtschaftung

Die Materialbewirtschaftung umfasst die Themengebiete Materialtransport, Materialzwischenbzw. -ablagerung sowie die Materialaufbereitung.

Im Falle der Verwendung von Ausbruchmaterial steht heute mit oberster Priorität die Verwendung des Ausbruchmaterials

- als Gesteinskörnung für die Betonproduktion sowie
- als Schüttmaterial

direkt auf der Baustelle im Vordergrund. Erfüllt das Ausbruchmaterial die Qualitätsanforderungen von Industrierohstoffen ist jedoch, unter der Voraussetzung einer wirtschaftlichen Transportmöglichkeit die Weitergabe an externe Abnehmer unter Umständen ökonomischer.

Dazu ist ferner anzumerken, dass üblicherweise nur ein Teil der Ausbruchmassen auf der Baustelle verwendet werden kann.

In beiden Fällen ist es erforderlich sowohl die auftretenden Massenströme zu steuern als auch die erforderlichen Materialqualitäten zu prüfen. Instrumente hierfür bilden das Massenmanagement bzw. die Qualitätskontrolle.

Grundlage der Materialbewirtschaftung auf der Baustelle sind die im Zuge der Planungsphase bestimmten Randbedingungen. Das zu erwartende Ausbruchmaterial wird dabei in Verwendungskategorien eingeteilt. Diese können jedoch im Zuge der Bauausführungen verschiedenen Änderungen unterliegen. Mögliche Einflüsse auf die Materialbewirtschaftung werden in Abbildung 80 angegeben.

	Mögliche Einflüsse durch:					
Materialbewirtschaftung	Baubetrieb	Geologie	Umweltschutz			
- Qualitätskontrolle	X	Х	Х			
- Massenmanagement	X	Х				

Abbildung 80: Einflüsse auf die Materialbewirtschaftung

Verwendungsklassifizierung

Im Zuge des Tunnelprojektes Koralmtunnel wird das Ausbruchmaterial beispielsweise folgenden Klassen zugeteilt²⁴⁸:

-

²⁴⁷ Vgl. [131] BLS AlpTransit 2008, S. 25.

- MK1: Gesteinskörnung für die Betonproduktion und Frostkoffermaterial
- MK2: Schüttmaterial für Bahndämme und Bodenauswechslungen
- MK3: Schüttmaterial für Lärmschutzdämme und Geländemodellierungen
- MK4: bautechnisch ungeeignetes Material Verfüllungen, Rekultivierung bzw. Deponierung

Beim Gotthard Basistunnel kamen die Klassen Gesteinskörnung für die Betonproduktion (A-Material) und Schüttmaterial (B-Material) zur Anwendung.²⁴⁹ Diese Verwendungen wurden beim Lötschberg-Basistunnel mit den Klassen K1 - K3 bezeichnet.²⁵⁰

- K1: Ausbruchmaterial für die Aufbereitung zu Betonzuschlagsstoffen und zu Kiessand I geeignet
- K2: Ausbruchmaterial für die Aufbereitung zu Betonzuschlagsstoffen bedingt geeignet, für Kiessand II geeignet
- K3: Ausbruchmaterial für die Aufbereitung zu Betonzuschlagsstoffen ungeeignet, geeignet für Schüttungen²⁵¹

Aus den angegebenen Bezeichnungen des Ausbruchmaterials ist nur die Hauptverwendungsart abzulesen.

Da für die Planung und Durchführung der Materialbewirtschaftung aber das gesamte Ausmaß der Verwendung von Interesse ist, wäre eine Präzisierung der derzeit üblichen Bezeichnungsart von Vorteil.

Vergleicht man Karbonatgestein mit glimmerhaltigem Gneis so kann aus beiden Gesteinen eine Gesteinskörnung für Beton gewonnen werden. Der prozentuelle Anteil des nutzbaren Teiles wird sich jedoch stark unterscheiden. Auch durch die Vortriebsmethode kann es zu Unterschieden hinsichtlich der Verwendbarkeit kommen.

Wie bei der Vortriebsplanung mit Hilfe von Vortriebsklassen (1. und 2. Ordnungszahl²⁵²) üblich, könnte auch die Beschreibung der Materialbewirtschaftung anhand eines zweigliedrigen Bewertungssystems, wie nachfolgend erläutert, erfolgen.

Durch den vorgestellten Buchstaben (1. Ordnungszahl) wird dabei die Verwendungsart angegeben. Mittels nachfolgender Zahl (2. Ordnungszahl) könnte das tatsächliche Verwendungspotential in Massen-% vom anfallenden Ausbruchmaterial beschrieben werden. Die Bezeichnung A-40 würde demnach ein Ausbruchmaterial bezeichnen von welchem schlussendlich 40% für eine hochwertige Verwendung zur Verfügung stehen.

Beschränkt man die 1. Ordnungszahl auf die Buchstaben

- A Hochwertige Verwendung
- B Schüttmaterial
- C Deponiematerial

so kann durch nachgestellte Nummer die Verwendungsklasse präzisiert werden. Bsp.: C1 – Material Bodenaushubdeponie; C2 – Material Inertabfalldeponie

²⁴⁸ Vgl. [55] Harer, Pichler 2009, S. 630.

²⁴⁹ Vgl. [64] Zbinden, Hitz 2002, S. 84.

²⁵⁰ Vgl. [41] Teuscher, Thalmann, Fetzer, Carron 2007, S. 6.

²⁵¹ [70] BLS AlpTransit AG 2008, S. 10.

²⁵² Vgl. [65] ÖNORM B 2203-1, S. 11.

Wie bei den Expositionsklassen in der Betontechnologie üblich könnte durch das Aneinanderreihen von Verwendungsklassen das gesamte Verwendungspotential des Ausbruchmaterials beschrieben werden. Beispiel einer Bezeichnung:

- A1-40/B2-30/C1-28/C2-2
 - A1-40 = 40% Gesteinskörnung für die Betonproduktion
 - o B2-30 = 30% Schüttmaterial Lärmschutzwand
 - o C1-28 = 28% Material Bodenaushubdeponie
 - o C3-2 = 2% Material Baurestmassendeponie

Verwendungs- klasse	Bezeichnung .	Statio	on [m]	Verwendungsklassen [Gew%]								
		von	bis	A1	A2	А3	B1	B2	В3	C1	C2	С3
1	A1-40/B2-30/C1-28/C3-2	0	500	40	-	-	-	30	-	28	-	2

Tabelle 55: Mögliche tabellarische Darstellung der Verwendungsklassen

7.2.1 Qualitätskontrolle

Für die Verwendung von Tunnelausbruchmaterial ist es von großer Bedeutung, dass das anfallende Ausbruchmaterial sowie die aufbereiteten Materialen einer laufenden Kontrolle unterzogen werden. Diesbezüglich kann auch auf die Erfahrungen der Tunnelprojekte Lötschberg- und Gotthard-Basistunnel zurückgegriffen werden.

In der Planungsphase wird aufgrund von Materialuntersuchungen einzelnen Tunnelabschnitten ein Verwendungspotential zugeordnet. Dies muss in der Folge im Zuge der Vortriebarbeiten auf ihre Richtigkeit überprüft werden. Um unnötige Transportwege zu vermeiden, sollte diese Entscheidung so früh wie möglich fallen.

Beim Bau des Gotthard-Basistunnels erfolgte diese Überprüfung durch einen Tunnelgeologen direkt an der Ortsbrust. Durch eine visuelle Begutachtung der Ortsbrust bzw. des Ausbruchmaterials hinsichtlich Lithologie und Petrographie wurde einmal täglich dem Ausbruchmaterial eine Verwendungsmöglichkeit zugeordnet. Zusätzliche Begutachtungen waren nur bei einem Wechsel der geologischen Verhältnisse erforderlich.²⁵³

Ergänzend können mit Fortlauf der Vortriebsarbeiten aufbauend auf Erfahrungen auch Maschinenparameter wie z.B. der Anpressdruck einer Tunnelbohrmaschine in die Beurteilung mit einbezogen werden.

Die in der Planungsphase prognostizierten Verwendungspotentiale können durch geologische, baubetriebliche aber auch umweltbezogene Änderungen beeinflusst werden. So kann z.B. durch einen Vortriebswechsel das Ausbruchmaterial über eine andere Sieblinie oder aber auch über andere chemische Eigenschaften verfügen. Beide Änderungen können in der Folge eventuell die Verwendung beeinflussen.

Laufen mehrere Vortriebe in unterschiedlichen geologischen Zonen gleichzeitig, ist auf das getrennte Schuttern des anfallenden Ausbruchmaterials besonders Acht zu geben. Das Material

_

²⁵³ Vgl. [64] Zbinden, Hitz 2002, S. 84.

ist dabei getrennt abzuführen. Kommen Förderbänder zum Einsatz sind am Band zwischen den unterschiedlichen Materialqualitäten Abstände freizuhalten.

Um die weitere Bearbeitung des Ausbruchmaterials zu erleichtern, wird üblicherweise vorgeschrieben, dass das Ausbruchmaterial im Tunnel auf die Korngruppe 0/200 mm vorgebrochen wird.

Das Größtkorn des Ausbruchmaterials sollte bei einer Förderung mittels Förderband max. 1/3 der Nutzbreite des Bandes betragen²⁵⁴.

Abbildung 81: Nutzbreite Förderband

Am Tunnelportal wird das Ausbruchmaterial anschließend der weiteren Verwendung zugeführt.

Die Übergabe des Ausbruchmaterials vom Tunnelbauunternehmen zur Materialbewirtschaftung erfolgte beim Gotthard-Basistunnel an der Kippstelle. Nachfolgend wurde das Ausbruchmaterial mittels Materialtriage der weiteren Verwendung zugeteilt.²⁵⁵

Von der Materialtriage aus kann das Ausbruchmaterial folgenden Verwendungen zugeführt werden:

- Deponie
- Zwischendeponie
- Externer Abnehmer
- Aufbereitungsanlage für Gesteinskörnungen

Um die getroffene Zuordnung des Ausbruchmaterials auf ihre Richtigkeit zu überprüfen kann an der Materialtriage auch Material für eine Untersuchung entnommen werden. Beim Gotthard-Basistunnel wurde hierfür eigens ein Baustellenlabor für folgende Qualitätsprüfungen eingerichtet²⁵⁶:

- Gesteinshärte
- Petrographie
- Siebanalyse
- Kornform

Durch schnelle Laboruntersuchungen kann so im Bedarfsfall sehr rasch auf Fehler der Zuordnung im Tunnel reagiert werden. Diese Untersuchungen dienten gleichzeitig als Qualitätsnachweis des dem Materialbewirtschafter übergebenen Ausbruchmaterials.

²⁵⁴ [66] Gesprächsprotokoll 2011.

²⁵⁵ Vgl. [64] Zbinden, Hitz, 2002, S. 85.

²⁵⁶ Vgl. [67] Lieb 2009, S. 35.

Material für die Produktion von Gesteinskörnungen für die Betonproduktion wird im Anschluss an die Materialtriage in die Aufbereitungsanlage weitertransportiert. Um Spitzen des Materialanfalls abfedern zu können sollte aber auch ein optionaler Transport auf Zwischenlager ermöglicht werden.

Auch das aufbereitete Material muss, wie schon das Ausgangsmaterial, einer neuerlichen Untersuchung unterzogen werden. Dies kann wieder im Baustellenlabor, oder im Falle von aufwendigeren Untersuchungen auch in externen Labors, durchgeführt werden (vgl. Pkt. 7.2.1.1). Die Ergebnisse sind Grundlage des Qualitätsnachweises der Materialbewirtschaftung gegenüber dem Betonproduzenten.

Wie auf jeder Tunnelbaustelle üblich, wird auch im Falle der Verwendung des Ausbruchmaterials als Gesteinskörnung der hergestellte Beton auf die vom Auftraggeber geforderten Eigenschaften überprüft.

Im Gesamten betrachtet sind somit im Falle der Verwendung des Ausbruchmaterials folgende Materialüberprüfungen durchzuführen:

- Untersuchung und Zuordnung in der Planungsphase
- Visuelle Überprüfung und Zuordnung durch einen vor Ort für dieses Fachgebiet tätigen Ingenieur (bzw. Tunnelgeologen)
- Laboruntersuchungen des Ausbruchmaterials
- Laboruntersuchungen des aufbereiteten Materials
- Laboruntersuchungen des Betons (Konformitäts- und Produktionskontrolle gem. ÖNORM B 4710-1²⁵⁷)

Abhängig von den vertraglichen Bestimmungen werden die einzelnen Untersuchungen im Auftrag des Auftraggebers vorgenommen. In vielen Fällen wird aber auch der Werkunternehmer (i.d.F. als Auftragnehmer bezeichnet) ein Interesse an deren Durchführung haben (vgl. Pkt. 7.3).

Der Ablauf der Materialverwendung auf der Baustelle wird im Überblick in Abbildung 82 dargestellt. Demnach kann die Zuteilung des Ausbruchmaterials zur Deponie bzw. zu den Verwendungsmöglichkeiten sowohl durch die Materialtriage als auch nach der Aufbereitung erfolgen. Um Anfallsspitzen des Ausbruchmaterials abfedern zu können ist vor der Materialaufbereitung ein Zwischenlager anzuordnen. Dieses kann je nach Erfordernis Ausbruchmaterial aufnehmen bzw. wieder abgeben.

Nach der Aufbereitungsanlage ist ein Zwischenlager für die aufbereiteten Gesteinskörnungen anzulegen.

Die Größe des Zwischenlagers wird durch das Bauprogramm bestimmt. Für die Planung der Zwischenlagergröße kann das in der Folge beschriebene Berechnungsprogramm herangezogen werden (vgl. Pkt. 7.2.2.2).

²⁵⁷ Vgl. [29] ÖNORM B 4710-1 2007, Pkt. 8 und 9.

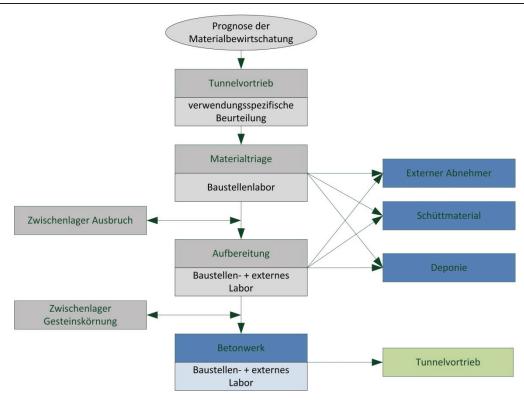


Abbildung 82: Materialbewirtschaftung

7.2.1.1 Baustellenlabor - Verwendung des Ausbruchmaterials auf der Baustelle

Ist das Ausbruchmaterial für eine Verwendung auf der Baustelle geeignet, müssen parallel zu den Vortriebsarbeiten die Materialeigenschaften

- des Ausbruchmaterials,
- als auch der aufbereiteten Gesteinskörnungen

überprüft werden. Hierfür ist ein Baustellenlabor einzurichten. Aufgabe des Baustellenlabors ist es einerseits durch Untersuchungsergebnisse die an der Ortsbrust vorgenommene verwendungsspezifische Beurteilung zu bestätigen, andererseits die Eigenschaften der aufbereiteten Gesteinskörnungen zu überprüfen.

Die im Baustellenlabor enthaltenen Prüfmethoden orientieren sich an den im Pkt. 4.8 zusammenfassend dargestellten Prüfmethoden.

Folgende Prüfmethoden werden für das Baustellenlabor in Abhängigkeit des zu prüfenden Materials empfohlen.

Prüfungen des Ausbruchmaterials

- Druckfestigkeit mittels Punktlastversuch (vgl. Pkt. 4.1.3)
- Widerstand gegen Zertrümmerung mittels LCPC-Test (vgl. Pkt. 4.1.10.1)
- Glimmergehalt mittels Formtrenntisch (vgl. Pkt. 4.1.16)
- Siebanalyse gem. ÖNORM EN 933-1 (vgl. Pkt. 4.1.6)
- Kornform gem. ÖNORM EN 933-4 (vgl. Pkt. 4.1.7)

Prüfungen der aufbereiteten Gesteinskörnungen

- Druckfestigkeit (vgl. Pkt. 4.1.3)
- Widerstand gegen Zertrümmerung mittels LCPC-Test (vgl. Pkt. 4.1.10.1)
- Glimmergehalt mittels Formtrenntisch (vgl. Pkt. 4.1.16)
- Siebanalyse gem. ÖNORM EN 933-1 (vgl. Pkt. 4.1.6)
- Kornform gem. ÖNORM EN 933-4 (vgl. Pkt. 4.1.7)
- Kornzusammensetzung (Sieblinie) gem. ÖNORM EN 933-1 (vgl. Pkt. 4.1.6)
- Gehalt an Feinteilen gem. ÖNORM EN 933-1 (vgl. Pkt. 4.1.6)
- Frost-Tau-Widerstand gem. ÖNORM EN 1367-1 (vgl. Pkt. 4.1.11)
- Kornfeuchte gem. ÖNORM EN 1097-5 (vgl. Pkt. 4.1.11)
- Rohdichte gem. ÖNORM EN 1097-6 (vgl. Pkt. 4.1.5)

Das Intervall der durchzuführenden Untersuchungen sowie die dabei einzuhaltenden Grenzwerte sind in einem Prüfplan, aufbauend auf

- die im Zuge der Planungsphase ermittelten Gesteinseigenschaften,
- Anforderungen aus Normen und Richtlinien, sowie
- den geologischen und bautechnischen Randbedingungen der Baustelle

festzuschreiben.

Die Ergebnisse des Baustellenlabors sollten zusätzlich durch Untersuchungen in einem baustellenexternen Prüfungslabor verifiziert werden.

Der Widerstand der Zertrümmerung ist in diesem Fall mittels LA-Test nachzuweisen (vgl. Pkt. 4.1.10). Die Druckfestigkeit des Gesteins ist gem. ÖNORM EN 1926 festzustellen (vgl. Pkt. 4.1.3).

Ergänzende Untersuchungen wie z.B. der Nachweis der Alkali-Kieselsäure-Reaktivität sind ebenfalls an ein baustellenexternes Prüfungsinstitut weiterzugeben.

7.2.1.2 Baustellenlabor – Externer Verwender

Wird das Ausbruchmaterial von einem externen Verwender abgenommen, ist auch in diesem Fall eine Qualitätskontrolle des anfallenden Materials erforderlich. Der Prüfplan bzw. die darin enthaltenen Untersuchungen sind dabei durch den Materialabnehmer festzulegen.

Untersuchungen der chemischen bzw. der mineralogischen Zusammensetzung sind aufgrund der hierfür erforderlichen Laboreinrichtung jedenfalls an ein baustellenexternes Prüfungsinstitut weiterzugeben.

7.2.2 Massenmanagement

Ausgehend von Untersuchungen in der Planungsphase kann ein prognostiziertes Ausmaß der verschiedenen Verwendungsmöglichkeiten bestimmt werden. Dieses kann sich in der Folge z.B. beim Auffahren nicht prognostizierter geologischer Zonen wesentlich ändern.

Zusätzlich zu den geologischen Randbedingungen ist die Materialbewirtschaftung auch wesentlich vom Baubetrieb der Tunnelbaustelle abhängig.

Jeder geplanten Verwendung wird in der Planungsphase ein Bauprogramm zugrunde gelegt. Kommt es im Zuge der Ausführung zu Änderungen, muss, um den Bauablauf durch die Materialbewirtschaftung nicht zu behindern, möglichst rasch auf diese reagiert werden können.

Folgende Änderungen des Baubetriebs sind dabei exemplarisch zu beachten:

- Änderung des Bauprogramms:
 - o Zeitliche Abfolge von mehreren Vortrieben (Hauptvortriebe, Querschläge)
 - o Zeitliche Abfolge des einzelnen Vortriebs (Vortriebsicherung, Innenschale)
 - o Zeitliche Abfolge anderer Bauvorhaben (z.B. Tunnelbau Dammbau)
- Vortriebsänderungen
 - o Änderung der Vortriebsart (NATM, TBM)
 - o Verzögerungen bzw. Beschleunigungen des Vortriebs

Sowohl Änderungen des Bauprogramms als auch Vortriebsänderungen können Auswirkungen auf den Bedarf an Gesteinskörnungen als auch auf den Materialanfall haben. Gleiches gilt natürlich auch für geologisch bedingte Änderungen. Beides kann einen wesentlichen Einfluss auf die Materialbewirtschaftung haben.

Um beim Auftreten einer wesentlichen Änderung des Massenmanagements reagieren zu können sind daher schon in der Planungsphase Sicherheitsvorkehrungen zu treffen. So sind z.B. auch eine eventuell zeitlich begrenzte Fremdversorgung der Baustelle mit Gesteinskörnungen oder aber auch ein eventuelles Überangebot in die Überlegungen mit einzubeziehen.

Zusätzlich sollte, um Veränderungen rechtzeitig erkennen zu können, auch in Hinblick auf das Massenmanagement regelmäßig ein Soll-Ist-Vergleich des Materialanfalls wie des Materialbedarfs durchgeführt werden²⁵⁸. Eine durchgehende Erfassung der anfallenden Massen ist hierfür eine Grundvoraussetzung.

Wesentlich für einen möglichst reibungslosen Ablauf der Materialbewirtschaftung ist die genügend große Auslegung der Zwischenlager. Wie in Abbildung 82 dargestellt ist hierbei zwischen einem

- Zwischenlager für das Ausbruchmaterial und einem
- Zwischenlager für aufbereitete Stoffe

zu unterscheiden.

Ersteres ist vor allem für das Ausgleichen der Spitzen des anfallenden Ausbruchmaterials aus dem Vortrieb erforderlich. Ist dieses in ausreichender Größe vorhanden, kann die Aufbereitungsanlage auf einen durchschnittlichen Materialanfall ausgelegt werden. Die Materialaufbereitung lässt sich so auch teilweise vom Tunnelvortrieb entkoppeln.

Die Größe des Zwischenlagers für die aufbereiteten Gesteinskörnungen ist im Wesentlichen von den Vorgaben des Baubetriebs abhängig. Da durch die Materialbewirtschaftung der Untertagebau nicht beeinflusst werden darf, ist dieses so groß wie möglich zu wählen. Vor allem die zeitliche Abfolge von Tunnelausbruch und Tunnelausbau ist von großer Bedeutung.

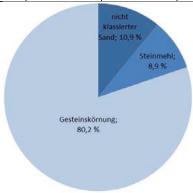
²⁵⁸ Vgl. [68] Lieb 2009, S. 626.

Zur Abschätzung der erforderlichen Zwischenlagergrößen, sowie des Bedarfs an Gesteinskörnungen für den Untertagebau kann das Berechnungsprogramm Massenmanagement herangezogen werden (vgl. Pkt. 7.2.2.2).

Durch ein optimal abgestimmtes Massenmanagement könnte vermutlich in vielen Fällen der Eigenbedarf einer Tunnelbaustelle an Gesteinskörnungen für die Betonproduktion abgedeckt werden. Gleichzeitig könnten die für den Tunnelbau erforderlichen Transportwege sowie das Deponievolumen maßgebend vermindert werden.

Im Folgenden werden Beispiele von Massenbilanzen ausgeführter Tunnelprojekte angegeben.

7.2.2.1 Beispiele von Massenbilanzen


Materialbilanz Lötschberg-Basistunnel

In Tabelle 56 ist die Materialbilanz der Aufbereitungsanlage Raron angegeben. Diese Aufbereitungsanlage war Teil des Südabschnittes des Lötschberg-Basistunnels. Insgesamt vielen in diesem Bereich ca. 10 Mio. t Ausbruchmaterial an, wovon ca. 7,83 Mio.t die Materialbewirtschaftung Raron betrafen. Von diesen 7,83 Mio. t entsprachen ca. 3,11 Mio. t (40%) den Qualitätsanforderungen von Gesteinskörnungen für die Betonproduktion (K1-Material). In der Aufbereitungsanlage wurden schlussendlich aus 2,8 Mio.t K1-Material ca. 2,25 Mio.t (80,1%) Gesteinskörnungen für die Betonproduktion produziert.²⁵⁹

Im Südabschnitt des Lötschberg-Basistunnels wurden insgesamt 1,7 Mio. t Gesteinskörnungen für die Betonproduktion benötigt.²⁶⁰

Aufbereitungsanlage Raron - Lötschberg Basistunnel

Aufgabe K1-Material									
2,802 Mio.t (=100%)									
Ausschuss aus Produktion Aufbereitete Betonzuschlagsstoffe									
0,556	Mio. t	2,246 Mio. t							
19,9	9%	80,1%							
Nicht klas- sierter Sand	Steinmehl	0/4	4/8	8/16	16/22				
0,306 Mio. t	0,250 Mio. t	0,917 Mio. t	0,534 Mio. t	0,647 Mio. t	0,148 Mio. t				
10,9%	8,9%	32,7%	19,1%	23,1%	5,3%				

 $Tabelle\ 56: Material bilanz\ Aufbereitungsanlage\ Raron\ -\ L\"{o}tschberg\ Basistunnel^{261}$

-

²⁵⁹ Vgl. [41] Teuscher, Thalmann, Fetzer, Carron 2007, S. 6.

²⁶⁰ Vgl. [70] BLS AlpTransit AG 2008, S. 9.

Materialbilanz Gotthard-Basistunnel

Beim Gotthard-Basistunnel wurden ca. 25 Mio. t Ausbruchmaterial abgebaut, ca. 9,0 Mio. t (36%) waren geeignet für die Produktion von Gesteinskörnungen. In Tabelle 57 wird die Materialbilanz des Gesamtprojektes angegeben.

	Materialanfall gesamt 25 Mio.t (100%)									
	Geeignet für G	esteinskörnunge	n	Ungeeignetes Material für Gesteinskör- nungen			Schlämme aus den Vortrieben			
9,0 Mio.t (36,0%)				15	0,1 Mio.t					
Gesteins- körnungen	Abgabe an Dritte	Aufberei- tungsverlus- te	Schlämme in Inertstoff- deponie	Eigenbedarf für Damm- schüttungen	Ablagerung und Rekul- tivierung	Schüttma- terial für Dritte	Reaktorde- ponie			
7,3 Mio.t	0,6 Mio.t	0,6 Mio.t	0,5 Mio.t	4,9 Mio.t	7,5 Mio.t	3,5 Mio.t	0,2 Mio.t			
29,0% (80,6%*)	2,5% (6,9%*)	2,5% (6,9%*)	2,0% (5,6%*)	19,6%	30,0%	14,0%	0,9%			

^{*} bezogen auf 9,0 Mio. t = 100%

Tabelle 57: Materialbilanz Gotthard-Basistunnel²⁶²

Betrachtet man nur den Aufbereitungsprozess des geeigneten Materials ergeben sich folgende Anteile.

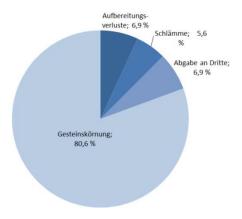


Tabelle 58: Materialbilanz geeignetes Material für Gesteinskörnungen 263

 $^{^{261}\,\}text{Vgl.}$ [41] Teuscher, Thalmann, Fetzer, Carron 2007, S. 5.

²⁶² Vgl. [67] Lieb 2009, S. 35.

²⁶³ Vgl. [67] Lieb 2009, S. 35.

Materialbilanz Baustelle Bodio - Gotthard-Basistunnel

In Tabelle 59 wird die Materialbilanz der Materialbewirtschaftung Bodio angegeben.

Materialanfall Gesamt – Baustelle Bodio 9,4 Mio. t (100%)								
Gesteinskörnungen	Klärschlamm	Schüttmaterial	Deponiematerial					
1,8 Mio. t	0,2 Mio. t	2,3 Mio. t	5,1 Mio. t					
19%	2%	24%	54%					

Tabelle 59: Materialbilanz Materialbewirtschaftung Bodio²⁶⁴

7.2.2.2 Berechnungsprogramm Massenmanagement

Mithilfe des erstellten Berechnungsprogramms kann der Anfall des Ausbruchmaterials (in Abhängigkeit von Materialklassen) dem Bedarf der Baustelle an Gesteinskörnungen eines Vortriebs gegenübergestellt werden.

Der betrachtete Vortrieb kann hierfür in max. 40 Bereiche unterteilt werden. Jedem dieser Bereiche ist in der Folge

- eine (von 10) Vortriebklasse und
- eine (von 10) Verwendungsklasse

zuzuordnen.

Um eine einfache Anwendung zu gewährleisten wurde das Berechnungsprogramm im Tabellenkalkulationsprogramm Excel 2010 erstellt. Durch den Benutzer können nur die freigegeben Zellen (Eingabebereiche) bearbeitet werden.

Das Programm enthält insgesamt 10 Arbeitsblätter, die vom Benutzer eingesehen werden können. Die Berechnungsblätter werden ausgeblendet. Das Blättern zwischen den einzelnen Arbeitsblättern erfolgt mithilfe der Navigationsleiste im linken oder oberen Blattbereich.

In der Folge werden die einzelnen Arbeitsblätter des Berechnungsprogramms erläutert. Zur leichteren Verständlichkeit werden hierfür Bildausschnitte angeführt.

Das Programm wurde so konzipiert, dass es sowohl für einen TVM- als auch NATM-Vortrieb verwendet werden kann.

Durch das Programm wird es ermöglicht, für jeden beliebigen Arbeitstag die berechneten Daten

- Materialanfall und
- Materialbedarf

abzufragen.

Die Berechnung sämtlicher Arbeitsschritte ist im Programm auf 4.000 Arbeitstage begrenzt.

Berechnung von mehreren parallel laufenden Vortrieben

Soll der Materialanfall bzw. -bedarf von mehreren parallel ablaufenden Vortrieben betrachtet werden, ist in einem ersten Schritt für jeden Vortrieb eine Berechnung durchzuführen. Hierfür ist für jeden Vortrieb eine eigene Datei (Berechnungsprogramm) anzulegen.

-

²⁶⁴ Vgl. [69] Kruse 2002, S. 28.

Die Tageswerte des Berechnungsprogramms können über die Benützung des Hyperlinks im letzten Ergebnisblatt (6) eigesehen werden. Die Tageswerte werden in einem eigenen Arbeitsblatt tabellarisch für die einzelnen berechneten Parameter angegeben.

Für eine Überlagerung mit anderen Vortrieben können diese in der Folge in eine neue Tabellenkalkulation ausgelesen werden

Eingabeblätter

Als Basis der Berechnungen dienen insgesamt 4 Eingabeblätter.

In diesen werden Angaben zu

- Vortriebsklassen,
- Verwendungsklassen,
- Tunnelabschnitten und
- Sieblinien unterschiedlicher Betonsorten

abgefragt. Die Navigation in den Eingabeblättern kann mittels Maus und Pfeiltasten erfolgen.

Eingabeblatt 1 - Vortriebsklassen

Zu Beginn ist in diesem Arbeitsblatt die Vortriebslänge [m], die Vortriebsart und die Anzahl der Vortriebsklassen anzugeben.

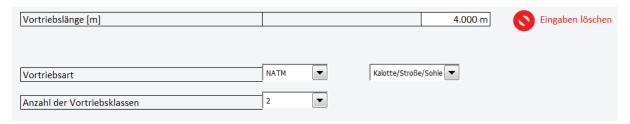


Abbildung 83: Eingabeblatt 1 - Vortriebsklassen - Ausschnitt 1

Bei der Vortriebsart kann mittels Steuerelement zwischen einem NATM- und TVM-Vortrieb gewählt werden. Bei der Wahl des NATM-Vortriebs wird zusätzlich zwischen einem Vollausbruch und einem Kalotten-/Strossen-/Sohl-Vortrieb unterschieden.

Unter der Eingabe der Vortriebsart kann die Anzahl der Vortriebsklassen festgelegt werden. Das Berechnungsprogramm ermöglicht die Definition von max. 10 Vortriebsklassen.

Im Falle einer Neueingabe können sämtliche Angaben des Arbeitsblattes "Vortriebsklasse" durch Klicken auf den roten, rechts oben positionierten Schriftzug "Eingabe Löschen" gelöscht werden. Hierfür müssen die Makros des Programms aktiviert werden (siehe Abbildung 84).

Abbildung 84: Makros aktivieren

In der Folge sind für die einzelnen Vortriebsklassen folgende Parameter anzugeben:

- Ausbruchquerschnitt [m²]
- Vortriebsgeschwindigkeit der Kalotte [lfm/AT]
- Abstand des Kalottenvortriebs vom Strosse/Sohl-Vortrieb [m]
- Betonbedarf [m³/lfm Tunnel]
- Zeitliche Abfolge der Betonierarbeiten [AT]
- Betonierleistung
- Sohlauffüllung [m³/lfm]
- Zeitliche Abfolge der Sohlauffüllung [m³/lfm]
- Leistung der Sohlauffüllung [m³/AT]

Vortriebsklasse	1	
Querschnittsaufteilung	Kalotte/Stross/Sohle	
	I.,	
Ausbruchsquerschnitt [m²]	Kalotte	60,00 m²
	Stroße	30,00 m²
	Sohle	20,00 m ²
Vortriebsgeschwindigkeit [Ifm/AT]	Kalotte	5,00 lfm/AT
Abstand der Vortriebe [m]	Abstand Kalotte - Strosse+Sohle	200,00 m
Betonbedarf [m³/lfm Tunnel]	Spritzbeton Kalotte	5,00 m³/lfm
	Spritzbeton Stroße	3,00 m³/lfm
	Spritzbeton Sohle	2,00 m³/lfm
	Sohlbeton	6,00 m³/lfm
	Inneninschalenbeton	7,00 m³/lfm
	Konstruktionsbeton 1	4,00 m³/lfm
	Konstruktionsbeton 2	6,00 m³/lfm
Zeitliche Abfolge der Betonierarbeiten [AT]	Start Sohlbeton	300 AT
(in Arbeitstagen vor bzw. nach Vortriebsbeginn	Start Innenschalenbeton	600 AT
der Kalotte)	Start Konstruktionsbeton 1	-200 AT
	Start Konstruktionsbeton 2	0 AT
	-	
	I	
Betonierleistung [m³/AT]	Sohlbeton	50,00 m³/AT
	Innenschalenbeton	60,00 m³/AT
	Konstruktionsbeton 1	30,00 m³/AT
	Konstruktionsbeton 2	26,00 m ³ /AT
	-	
Sohlauffüllung [m³/lfm]		5,00 m³/lfm
Zeitliche Abfolge Sohlauffüllung (in Arbeitstagen na	nch Vortriebsbeginn) [AT]	500 AT
Loietung Sohlauffüllung [m³/AT]		E0.00 m ³ /AT
Leistung Sohlauffüllung [m³/AT]		50,00 m³/AT

Abbildung 85: Eingabeblatt 1 – Vortriebsklassen – Ausschnitt 2

Im Falle eines Kalotten-/Strossen-/Sohlen-Vortriebs sind für die einzelnen Ortsbrustteile die Flächen anzugeben. Bei einem NATM-Vollausbruch bzw. einem TVM-Ausbruch wird nur die Gesamtfläche der Ortsbrust abgefragt.

Die Vortriebsgeschwindigkeit der Kalotte bzw. des Gesamtausbruchs bestimmt in der Folge den zeitlichen Ablauf des Materialanfalls.

Bei einem Kalotten-/Strossen-/Sohl-Vortrieb kann zusätzlich der Abstand (in Metern) zwischen Kalottenvortrieb und Strossen-/Sohlvortrieb definiert werden. Da üblicherweise der Sohlvortrieb gleichzeitig mit der Strosse bzw. in einem kurzen Abstand zu Strosse erfolgt, wird im Programm der Vortrieb der Strosse und Sohle gemeinsam betrachtet. Ändert sich der Abstand im Zuge der Vortriebsarbeiten wird dies durch einen Stillstand des Kalotten- bzw. des Strossen-/Sohl-Vortriebs im Berechnungsprogramm berücksichtigt (vgl. Ergebnisblatt 1).

Abhängig von der Vortriebsart ist in der Folge der Betonbedarf im m³ pro Laufmeter Tunnel festzulegen. Die Eingabemöglichkeiten werden in Abhängigkeit der Vortriebsart in der folgenden Tabelle angegeben.

NATM- Kalotte/Strosse/Sohle	NATM – Vollausbruch	TVM
Spritzbeton Kalotte	Spritzbeton	Tübbingbeton
Spritzbeton Strosse	Sohlbeton	Sohlbeton
Spritzbeton Sohle	Innenschalenbeton	Innenschalenbeton
Sohlbeton	Konstruktionsbeton 1	Konstruktionsbeton 1
Innenschalenbeton	Konstruktionsbeton 2	Konstruktionsbeton 2
Konstruktionsbeton 1		
Konstruktionsbeton 2		

Tabelle 60: Eingabemöglichkeit Betonbedarf in Abhängigkeit der Vortriebsart

Mit Ausnahme für Spritz- und Tübbingbeton ist anschließend für die einzelnen Betonarten die zeitliche Abfolge der Betonierarbeiten zu definieren. Der Start der Betonarbeiten ist dabei in Abhängigkeit zum Beginn der Vortriebsarbeiten einzugeben. D.h. beginnen die Betonarbeiten z.B. 200 Arbeitstage vor den Vortriebsarbeiten (z.B. Betonarbeiten im Tübbingwerk) so ist in diesem Fall –200 AT (negatives Vorzeichen) einzugeben. Die Eingabe 0 Arbeitstage bedeutet, dass die Betonarbeiten gleichzeitig mit den Vortriebsarbeiten beginnen.

In der Berechnung und in den Ergebnisblättern werden alle Ergebnisse auf den frühesten Beginn der Betonarbeiten bezogen.

Zum Schluss der Eingaben für die erste Vortriebsklasse sind noch die Betonierleistung in m³ pro Laufmeter sowie Angaben betreffend die Sohlauffüllung anzugeben.

Eingabeblatt 2 - Verwendungsklassen

Die Anzahl der Verwendungsklassen kann mittels Steuerelement festgelegt werden. Maximal können 10 Verwendungsklassen definiert werden.

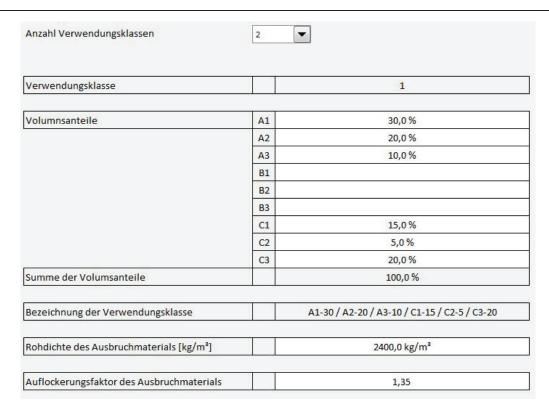


Abbildung 86: Eingabeblatt 2 - Verwendungsklassen

Für jede Verwendungsklasse kann in der Folge der Volumsanteil des prognostizierten Verwendungspotentials (A1-C3) angegeben werden (vgl. Pkt. 7.2). Die Definition der einzelnen Verwendungspotentiale kann für jedes Projekt individuell erfolgen.

Nur die Klasse A1 ist der Verwendung des Ausbruchmaterials als Gesteinskörnung für die Betonproduktion vorbehalten. Der Materialanfall der Klasse A1 wird in der Folge dem Bedarf an Gesteinskörnungen gegenübergestellt (vgl. Ergebnisblatt 5 + 6). Die Wahl des Volumsanteils der Klasse A1 sollte daher auf Aufbereitungsversuchen basieren.

Die Gesamtbezeichnung der Verwendungsklasse wird automatisch generiert.

Zusätzlich sind in diesem Arbeitsblatt die Rohdichte des Ausbruchmaterials und der durch den Vortrieb verursachte Auflockerungsfaktor festzulegen.

Im Einreichoperat für das eisenbahnrechtliche Baugenehmigungsverfahren des Semmering-Basistunnels werden z.B. folgende Auflockerungsfaktoren angegeben:²⁶⁵

- Auflockerungsfaktor für den Abtrag (fest zu lose): 1,4
- Auflockerungsfaktor nach Wiedereinbau (fest zu eingebaut): 1,25

Zum Vergleich wird für das Tunnelprojekt Brenner-Basistunnel ein mittlerer Auflockerungsfaktor für Ausbruchmaterial aus

- maschinellem Vortrieb von 1.35 und für
- konventionellen Vortrieb von 1.45

im eingebauten Zustand angenommen.²⁶⁶

-

²⁶⁵ Vgl. [135] ÖBB-Infrastruktur 2010, S. 19.

²⁶⁶ Vgl. [136] Kordina 2008, S. 226.

Eingabeblatt 3 – Abschnitte

Im Berechnungsprogramm wird der betrachtete Vortrieb in einzelne Abschnitte unterteilt. Maximal können hierbei 40 Abschnitte durch die Festlegung der Tunnelmeter definiert werden. Den einzelnen Abschnitten sind in der Folge die zuvor festgelegten Vortriebsklassen und Verwendungsklassen zuzuordnen.

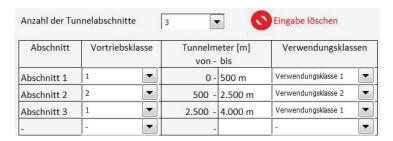


Abbildung 87: Eingabeblatt 3 - Tunnelabschnitte

Eingabeblatt 4 - Sieblinien für die Betonproduktion

Im Eingabeblatt 4 können für die einzelnen Betonsorten sowie die Sohlauffüllung die Sieblinien festgelegt werden. Die Sieblinien sind dabei aus den Korngruppen 0/4, 4/8, 8/11; 11/16; 16/22 und 22/32 mm zusammenzustellen. Empfehlungen bezüglich der Sieblinie für Innenschalenbeton und Spritzbeton werden im Pkt. 4.1.6 angegeben.

Ergänzend ist der Gesamtbedarf an Gesteinskörnungen für $1~\mathrm{m}^3$ Beton anzugeben.

	Anteil an Gesteinskörnung [%]							kg Gesteinskörnungen in 1
	0/4 mm	4/8 mm	8/11 mm	11/16 mm	16/22 mm	22/32 mm	Summe	m³ Beton
Spritzbeton	30,0 %	40,0 %	30,0 %				100,0 %	1800
Sohlbeton	15,0 %	20,0 %	20,0 %	20,0 %	20,0 %	5,0 %	100,0 %	1800
Innenschalenbeton	15,0 %	20,0 %	20,0 %	20,0 %	20,0 %	5,0 %	100,0 %	1800
Konstruktionsbeton 1	15,0 %	20,0 %	20,0 %	20,0 %	20,0 %	5,0 %	100,0 %	1800
Konstruktionsbeton 2	15,0 %	20,0 %	20,0 %	20,0 %	20,0 %	5,0%	100,0 %	1800

Abbildung 88: Eingabeblatt 4 - Tunnelabschnitte

Ergebnisblätter

Ausgehend von den Eingaben werden in der Folge die Berechnungsergebnisse in den Ergebnisblättern angegeben bzw. dargestellt.

Ergebnisblatt 1 - Bauzeitplan

Im ersten Ergebnisblatt wird der Bauzeitplan in einem Diagramm dargestellt. Zusätzlich wird die Gesamtbauzeit sowie die Bauzeit der einzelnen Abschnitte in einer Tabelle angegeben.

Wird im Falle eines Kalotten-/Strossen-/Sohl-Vortriebs in den Vortriebsklassen der einzelnen Tunnelabschnitte der Abstand zwischen Kalotten- und Strossen-/Sohlvortrieb verändert, wird dies im Berechnungsprogramm berücksichtigt. In diesem Fall kommt es zu einem Stillstand eines der beiden Vortriebe (vgl. Abbildung 89).

Im unteren Bereich des Blattes kann zusätzlich eine Abfrage der Station der einzelnen Arbeiten in Abhängigkeit eines Arbeitstages erfolgen.

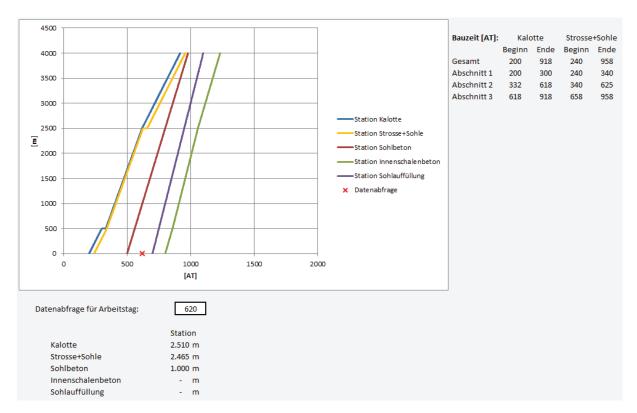


Abbildung 89: Ergebnisblatt 1 - Bauzeitplan

Ergebnisblatt 2 - Betonbedarf

Der Betonbedarf für die einzelnen Betonsorten wird tabellarisch dargestellt. Auch hier werden die Ergebnisse des Gesamtvortriebs sowie der einzelnen Abschnitte angegeben.

	SpB Kalotte	SpB Strosse+Sohle	Sohlbeton	Innenschalen- beton	Konst. Beton 1	Konst. Beton 2	Sohlauffüllung
Betonverbrauch Gesamt	20.000	18.000	18.000	28.000	16.000	24.000	12.000
Betonverbrauch pro Abschnitt							
Abschnitt 1	2.500	2.500	3.000	3.500	2.000	3.000	2.500
Abschnitt 2	10.000	8.000	6.000	14.000	8.000	12.000	2.000
Abschnitt 3	7.500	7.500	9.000	10.500	6.000	9.000	7.500

Abbildung 90: Ergebnisblatt 2 - Betonverbrauch

Ergebnisblatt 3 - Bedarf Gesteinskörnungen

Im Diagramm wird der zeitliche Verlauf des Bedarfs an den einzelnen Korngruppen sowie der gesamten Gesteinskörnung dargestellt.

Zusätzlich kann auch hier eine Datenabfrage für einen bestimmten Arbeitstag erfolgen.

Ergänzend wird rechts unten auch der Gesamtbedarf tabellarisch angegeben.

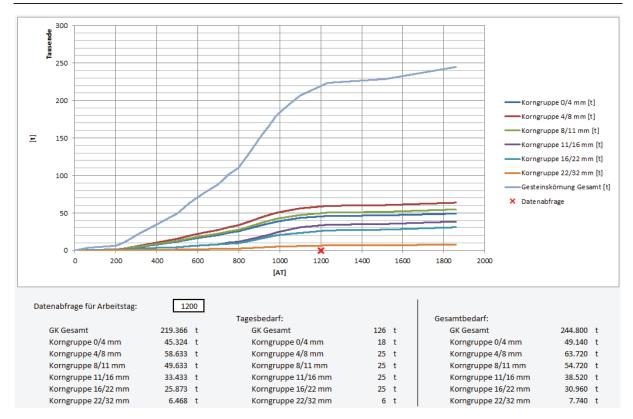


Abbildung 91: Ergebnisblatt 3 - Bedarf Gesteinskörnungen

Ergebnisblatt 4 - Material

Im Ergebnisblatt Material wird der zeitliche Anfall des Ausbruchmaterials gesamt bzw. der einzelnen Klassen (A1-C3) dargestellt.

Rechts neben dem Diagramm wird der Anfall des Ausbruchmaterials tabellarisch angeben. Unter dem Diagramm kann wieder für einen bestimmten Arbeitstag eine Datenabfrage erfolgen.

Zusätzlich werden die Gesamtmengen der Verwendungsmöglichkeiten angegeben.

Die Ergebnisse können in den Einheiten m³-lose, m³-fest und t abgefragt werden.

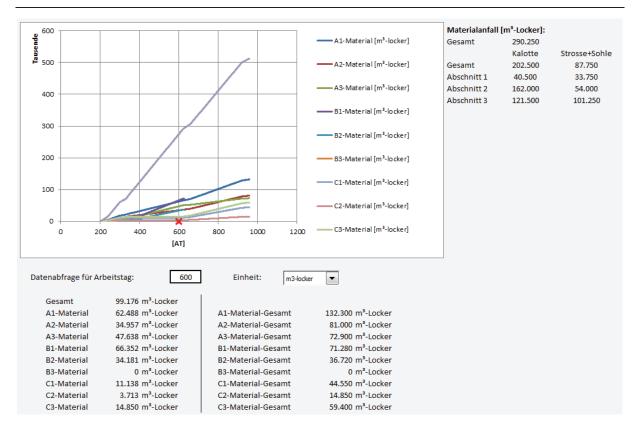


Abbildung 92: Ergebnisblatt 4 - Materialanfall

Ergebnisblatt 5 - Zwischenlager

Der zeitliche Verlauf der am Zwischenlager abgelagerten, aufbereiteten Gesteinskörnungen ergibt sich aus der Gegenüberstellung des Materialanfalls der Klasse A1 und des Bedarfs an Gesteinskörnungen.

Zusätzlich wird die erforderliche Fremdversorgung der Baustelle mit Gesteinskörnungen angegeben.

Stichtagsbezogen kann auch hier wieder eine Datenabfrage erfolgen.

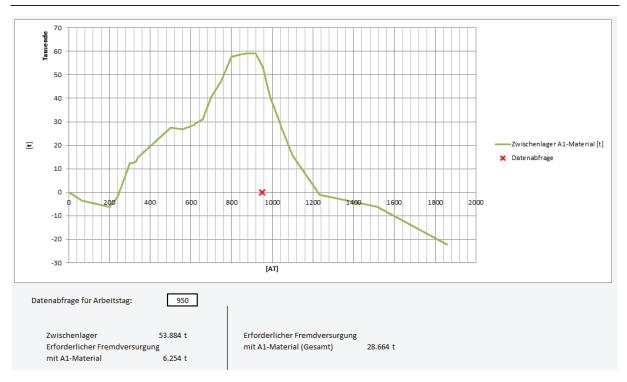


Abbildung 93: Ergebnisblatt 6 - Zwischenlager

Ergebnisblatt 6 - Gegenüberstellung

Im Ergebnisblatt 6 werden die zeitlichen Verläufe

- des Zwischenlagers der Gesteinskörnungen für die Betonproduktion
- des Materialanfalls der Klasse 1
- sowie des Bedarfs an Gesteinskörnungen

gegenübergestellt.

Zusätzlich zur stichtagsbezogenen Datenabfrage werden die Gesamtmengen angegeben.

Über das orange hinterlegte Feld gelangt man in ein Arbeitsblatt, in welchem sämtliche Tageswerte der berechneten Parameter tabellarisch angeführt werden. Von dort können diese auch leicht in eine neue Tabellenkalkulation ausgelesen werden.

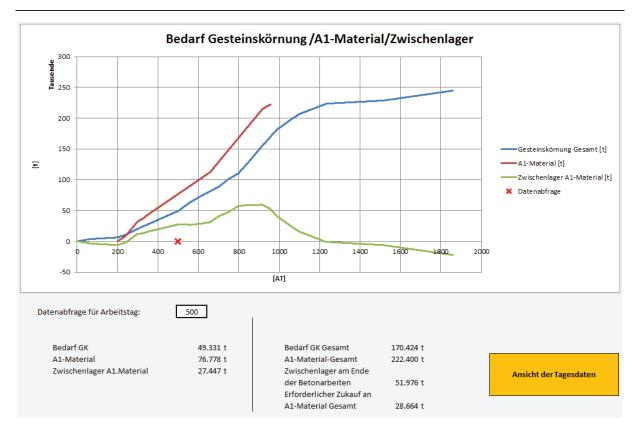


Abbildung 94: Ergebnisblatt 6 - Zusammenstellung

Das Berechnungsprogramm kann auch für Variantenstudien bezüglich der Vortriebsart verwendet werden. So können z.B. bei der Angebotserstellung verschiedene Vortriebsvarianten betrachtet werden.

In Tabelle 61 wird der Ausbruchquerschnitt sowie der erforderliche Betonbedarf pro Laufmeter Tunnel eines Projektes angegeben, bei welchem der Auftragnehmer zwischen einem TBM- und NATM-Vortrieb wählen könnte.

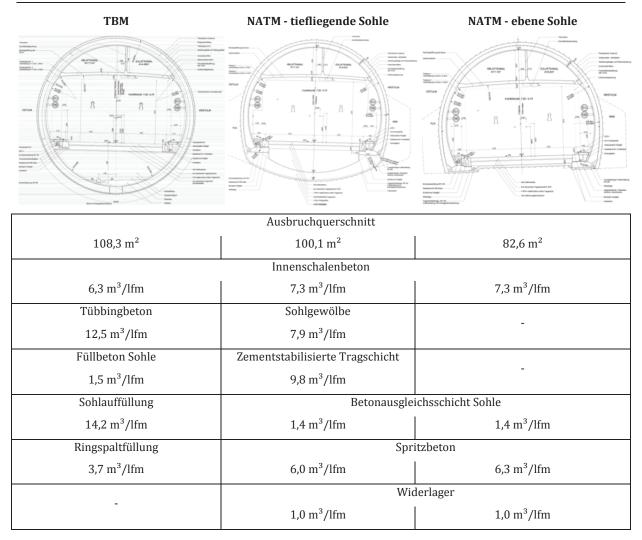


Tabelle 61: Ausbruchquerschnitt und Betonbedarf in Abhängigkeit der Vortriebsart

Das Berechnungsprogramm Massenmanagement kann dem Anhang entnommen werden (beiliegende CD).

7.3 Vergabe-, Ausschreibungsmöglichkeiten

Der Einfachheit halber wird in der Folge immer vom Tunnelbau gesprochen. Sämtliche Ausführungen gelten natürlich aber auch für den Stollen- und sonstigen Untertagebau. Selbiges gilt für den Begriff des Unternehmers. Dieser ist mit dem Begriff Arbeitsgemeinschaften gleichzusetzen.

Wie im Kapitel 7.2 beschrieben ist für die Verwendung des Ausbruchmaterials eine genaue Untersuchung der Rahmenbedingungen im Zuge der Planungsphase notwendig. Nur wenn die daraus erhaltenen Erkenntnisse in die Ausschreibung einfließen, kann das Ausbruchmaterial erfolgreich einer Verwendung zugeführt werden.

In Ausnahmefällen ist es auch möglich, dass die Verwendung des Ausbruchmaterials erst durch das Tunnelbauunternehmen geplant und ausgeführt wird. Entspricht z.B. das Ausbruchmaterial den Anforderungen an Gesteinskörnungen für die Betonproduktion und befindet sich in der Nähe der Tunnelbaustelle bereits eine Aufbereitungsanlage, so wird das Tunnelbauunternehmen, um sich die Deponierungskosten zu ersparen, versuchen das Ausbruchmaterial aufzubereiten. Da die Materialaufbereitung nicht zu den Kernqualifikationen eines Tunnelbauunterneh-

mens zählt, ist jedoch davon auszugehen, dass dies nur bei idealen Voraussetzungen d.h. offensichtlichen wirtschaftlichen Vorteilen durchgeführt wird.

Wie bei Tunnel- und Kraftwerksprojekten der Vergangenheit gezeigt, ist die Verwendung des Ausbruchmaterials jedoch auch bei schwierigen Randbedingungen sinnvoll.

Prinzipiell ist festzustellen, dass der Auftraggeber eines Untertagebauprojektes in Bezug auf die erforderliche Materialbeschaffung nicht nur wirtschaftliche Faktoren in den Vordergrund stellen sollte. Vielmehr sollten zukünftig auch Fragen des Lärmschutzes, des verringerten Ressourcensowie Flächenverbrauches sowie Möglichkeiten der CO₂-Reduktion in den Vordergrund gerückt werden. Es ist auch davon auszugehen, dass diese Fragestellungen in Zukunft an Wichtigkeit deutlich gewinnen werden.

Nachfolgend wird auf mögliche Vergabeformen der Verwendung auf der Baustelle näher eingegangen. Sollte das Ausbruchmaterial als Industrierohstoff Verwendung finden, sind zwischen dem Rohstofflieferanten und dem Abnehmer spezielle Verträge abzuschließen.

Entschließt sich der Auftraggeber eines Tunnelprojektes zur Verwendung des Ausbruchmaterials auf der Baustelle, so stehen hierfür drei Vergabemodelle zur Auswahl. Wie bereits in der Vergangenheit üblich, kann die Materialbewirtschaftung als Teil des Bauauftrages vergeben werden. Eine weitere Möglichkeit besteht darin, die Materialbewirtschaftung unabhängig von den Bauarbeiten gesondert auszuschreiben. Die dritte Vergabeform ist eine Kombination der ersten zwei angegebenen Möglichkeiten.

Von besonderem Interesse ist dabei die Verwendung von Teilen des Ausbruchmaterials für die Betonproduktion. In der folgenden Betrachtung der einzelnen Vergabemöglichkeiten für die Materialbewirtschaftung wird jedoch davon ausgegangen, dass die Betonproduktion Teil des Untertagebaus ist. Prinzipiell wäre jedoch auch hier eine eigenständige Vergabe bzw. eine gemeinsame Vergabe mit der Materialbewirtschaftung möglich.

Der Einfachheit halber werden die einzelnen Vergabevarianten als

- Subunternehmervariante (Materialbewirtschaftung ist Teil des Bauvertrages),
- Unternehmervariante (eigenständige Materialbewirtschaftung) und
- Mischvariante (Kombination der Subunternehmer- und Unternehmervariante)

bezeichnet. Weiters wird angenommen, dass die Teilleistungen der Materialbewirtschaftung bestehend aus

- Materialtransport,
- Materialzwischenlagerung,
- Materialaufbereitung und
- Materialendlagerung

in einem Gesamtpaket vergeben werden. Grundsätzlich wäre auch eine Vergabe von Teilleistungen möglich.

Durch eine erfolgreiche Materialbewirtschaftung auf der Baustelle kann im Idealfall der Eigenbedarf an Gesteinskörnungen für die Betonproduktion abgedeckt werden. Voraussetzung dazu sind hierfür geeignete geologischen Randbedingungen der Baustelle sowie eine darauf abgestimmte Betontechnologie.

Da die geologischen Gegebenheiten und die Betontechnologie nicht durch die Materialbewirtschaftung beeinflusst werden können, verteilt sich das Risiko der Verwendung auf den Auftraggeber, den Untertagebau und die Materialbewirtschaftung.

In Folgenden werden die Verantwortungsbereiche der Projektbeteiligten näher erläutert.

Auftraggeber

Schreibt der Auftraggeber die Verwendung des Ausbruchmaterials als Gesteinskörnung aus, so ist er auch für die natürlichen Eigenschaften des Ausbruchmaterials (z.B. Gesteinshärte, Petrographie) verantwortlich. Es gelten in diesem Fall somit für das Ausbruchmaterial die gleichen Bestimmungen wie für den Baugrund.

Der Baugrund und somit auch das Ausbruchmaterial ist ein Stoff mit dessen Hilfe das Werk (bzw. die Leistung) herzustellen ist. Das Ausbruchmaterial ist durch den Auftraggeber zur Verfügung zu stellen.²⁶⁷

Entsprechen die tatsächlichen Eigenschaften des Ausbruchmaterials nicht den prognostizierten Eigenschaften ist hierfür der Auftraggeber verantwortlich. Kann dadurch das Ausbruchmaterial nicht für die Betonproduktion verwendet werden, sind somit daraus resultierende Mehrkosten auch vom Auftraggeber zu tragen. Aus Sicht der Vertragssicherheit ist es daher unbedingt notwendig, dass schon im Vorfeld der eigentlichen Baumaßnahmen die Eignung des Ausbruchmaterials nachgewiesen wird.

Ist für ein Tunnelprojekt eine Umweltverträglichkeitsprüfung (UVP) durchzuführen sind ohnedies die Massenströme im UVP-Verfahren darzustellen.

Aus diesem Grund erscheint auch die Beauftragung des Auftragnehmers (Untertagebau bzw. Materialbewirtschaftung) mit der Untersuchung des Verwendungspotentials als nicht praktikabel. Vielmehr handelt es sich hierbei um eine klassische Planungsleistung des Auftraggebers.

Der Auftragnehmer ist daher auch nur bei offensichtlichen Fehlern zur Prüf- und Warnpflicht verpflichtet.

Der Werkunternehmer ist nicht verpflichtet, kosten- und zeitaufwendige Spezialuntersuchungen durchzuführen. Ausnahme: Es gibt eine gesonderte Vereinbarung (Vormerkungen!) – dann aber gegen Entgelt!²⁶⁸

Materialuntersuchungen und daraus abgeleitete Verwendungsprognosen fallen nicht unter die Prüf- und Warnpflicht des Auftragnehmers.

Materialbewirtschaftung

Das Ausbruchmaterial wird durch den Auftraggeber an die Materialbewirtschaftung übergeben. Die Produktion von Gesteinskörnungen für die Betonherstellung erfolgt in Aufbereitungsanlagen auf der Baustelle oder in bereits bestehenden Anlagen in der Nähe der Baustelle. Da eine Just-in-Time-Belieferung des Betonwerkes nicht zielführend ist, muss das aufbereitete Material auch teilweise zwischengelagert werden.

Die Materialaufbereitung ist für die Einhaltung der Kornform und der Sieblinien der Gesteinskörnungen zuständig.

_

²⁶⁷ Vgl. [75] Wenusch 2009, S. 185.

²⁶⁸ [76] Kurbos 2006, S. 50.

Untertagebau

Ist die Betonherstellung eine Teilleistung des Tunnelbauunternehmens ist dieses auch für den Entwurf der Betonrezeptur sowie des Nachweises der geforderten Betonqualität verantwortlich. Die Verpflichtung das aufbereitete Ausbruchmaterial zu verwenden sowie die Vorgabe der erforderlichen Betonqualitäten werden durch den Auftraggeber vorgegeben. Eventuell zu berücksichtigende Besonderheiten können durch den Auftraggeber bereits im Planungsstadium untersucht werden (vgl. Pkt. 7.1.1).

Die Verantwortungsbereiche der, an der Verwendung des Ausbruchmaterials als Gesteinskörnung für Betonproduktion, beteiligten Unternehmen werden in der Tabelle 62 zusammenfassend angegeben. Diese Verantwortungsbereiche werden auch nicht durch die im Folgenden beschriebenen Vergabevarianten beeinflusst.

	Verantwortungsbereiche
Auftraggeber	Gesteinshärte
	Petrographie
Materialbewirtschaftung	Siebkurve
	Kornform
Untertagebau	Betonrezeptur
	Betonqualität

Tabelle 62: Verantwortungsbereiche bei Verwendung des Ausbruchmaterials auf der Baustelle

7.3.1 Subunternehmervariante

Diese Vergabeart entspricht der in Österreich üblichen Vorgehensweise. Demnach ist die Materialbewirtschaftung Teil der Beauftragung des Tunnelbauunternehmens. In der Vergangenheit war jedoch meistens keine Aufbereitung, sondern lediglich die Ablagerung des Ausbruchmaterials auf Deponien gefordert.

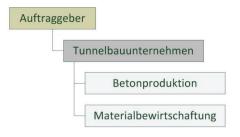


Abbildung 95: Subunternehmervariante

Ein wesentlicher Vorteil dieser Variante aus Sicht des Auftraggebers ist sicherlich die einfache Kommunikation und Zuständigkeitsverteilung mit nur einem Vertragspartner.

Bei der Ausschreibung der Materialbewirtschaftung kann die Dimensionierung bzw. Auslegung z.B. der Aufbereitungsanlage dem Auftragnehmer überlassen werden. Dadurch vermindert sich das Risiko, dass eine vom Auftraggeber geplante Materialbewirtschaftung nicht zum Bauprogramm des Tunnelbaus passt.

Ein Nachteil aus Sicht des Auftraggebers dieser Vergabevariante könnte sein, dass bei eventuellen Zusatzaufträgen im Bereich der Materialbewirtschaftung realistischerweise nur ein An-

sprechpartner zur Verfügung steht. Bei diesem Vertragsmodell wird es für ein externes Unternehmen sehr schwer möglich sein, ein wirtschaftliches Angebot legen zu können.

Aus Sicht des Auftragnehmers liegt der größte Vorteil dieser Vergabevariante in der Möglichkeit die Materialbewirtschaftung auf das Bauprogramm abzustimmen. Weiters können Wechselwirkungen zwischen Materialbewirtschaftung und Untertagebau intern behandelt werden.

Aufgrund der speziellen Anforderungen vor allem an die Materialaufbereitung wird das Tunnelbauunternehmen jedoch meist gezwungen sein, diese an ein Subunternehmen weiter zu vergeben.

Beim Tunnelprojekt KAT 2- Koramltunnel wurde die Materialbewirtschaftung als Teil des Untertagebaus vergeben.

7.3.2 Unternehmervariante

Die Unternehmervariante entspricht der Vergabeform der Tunnelprojekte der AlpTransit.²⁶⁹

Es wird dabei die Materialbewirtschaftung unabhängig von den Tunnelbauarbeiten ausgeschrieben. Durch diese Unabhängigkeit kann die Materialbewirtschaftung auch zu anderen Zeiten als der Tunnelbau vergeben werden. So kann z.B. die Materialbewirtschaftung nicht nur für den Hauptvortrieb sondern eventuell auch schon für den Vortrieb eines Zugangsstollens verwendet werden. Als Ausführungsbeispiel ist hierfür der Tunnelprojekt Ceneri-Basistunnel zu nennen.

Auch auf eventuell erforderliche Vergabezeitpunkte kann ideal reagiert werden. Für den Aufbau einer stationären Aufbereitungsanlage ist bis zu einem Jahr erforderlich.²⁷⁰ Verglichen mit der wesentlich kürzeren Zeit für die Baustelleneinrichtung eines NATM-Vortriebes kann somit die Vergabe des Tunnelbaus zu einem späteren Zeitpunkt erfolgen.

Werden für ein Tunnelprojekt mehrere Baulose ausgeschrieben bietet die Unternehmervariante die Möglichkeit eine baulosüberschreitende Materialbewirtschaftung auszuschreiben. Diese Möglichkeit kam z.B. beim Lötschberg-Basistunnel zum Einsatz. In diesem Fall können auch sehr leicht Qualitätsunterschiede des Ausbruchmaterials zwischen den einzelnen Baulosen ausgeglichen werden. Auch auf ein Materialüberangebot bzw. einen -mangel in einem Baulos kann so sehr flexibel reagiert werden.

Sollte es zu Problemen bei der Betonproduktion kommen, steht dem Auftraggeber eine "neutrale" Materialbewirtschaftung gegenüber. Gleichzeitig ist auch mit einer verstärkten gegenseitigen Kontrolle zwischen Tunnelbau und Materialaufbereitung zu rechnen.

Als wesentlicher Nachteil aus Sicht des Auftraggebers ist die größere Anzahl an Ansprechpartnern zu nennen. Bei Meinungsverschiedenheiten zwischen der Materialbewirtschaftung und der Betonproduktion wird der Auftraggeber oft auch gezwungen sein schlichtend einzugreifen. Insgesamt wird das Tunnelbauunternehmen wenig Interesse an Fragen der Materialbewirtschaftung zeigen.

Gleichzeitig bedarf die eigenständige Ausschreibung der Materialbewirtschaftung einer genaueren Vorplanung seitens des Auftraggebers. Er muss schon in der Planungsphase die erforderliche Leistung der Aufbereitungsanlage sowie zu erwartende Gesteinseigenschaften vorgeben.

-

²⁶⁹ Vgl. [41] Teuschr, Thalmann, Fetzer, Carron 2007, S. 6.

²⁷⁰ [66] Gesprächsprotokoll Ceneri-Basistunnel 2011

Bei der Unternehmervariante kann im Hinblick auf den Materialbesitz zwischen folgenden Möglichkeiten unterschieden werden:

- Ausbruchmaterial bleibt im Besitz des Auftraggebers
- Ausbruchmaterial geht in den Besitz der Materialbewirtschaftung über

Im ersten Fall bleibt das Ausbruchmaterial sowie das aufbereitete Material im Besitz des Auftraggebers. Er gibt also das Ausbruchmaterial an die Materialbewirtschaftung und die aufbereiteten Gesteinskörnungen an das Tunnelbauunternehmen lediglich weiter. Er könnte jedoch auch die aufbereiteten Gesteinskörnungen an das Betonwerk verkaufen.

Im zweiten Fall geht das Ausbruchmaterial in den Besitz der Materialbewirtschaftung über. Dieses verkauft in der Folge die produzierten Gesteinskörnungen an das Tunnelbauunternehmen, welches zur Abnahme durch den Auftraggeber verpflichtet wurde.

Hierbei ist zu berücksichtigen, dass das Ausbruchmaterial grundsätzlich im Eigentum des Grundstückbesitzers ist (vgl. Pkt. 8.1).

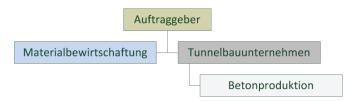


Abbildung 96: Unternehmervariante

Insgesamt ist festzustellen, dass bei dieser Vergabevariante der Auftraggeber in Belangen der Materialbewirtschaftung eine wesentlich aktivere Rolle einnimmt als bei der Subunternehmervariante.

Als Beispiel wird in Tabelle 63 die Aufgabenverteilung bei der Materialbewirtschaftung Nord des Lötschberg-Basistunnels angegeben. In diesem Fall wurde die Deponiebewirtschaftung eigenständig vergeben. Die Materialbewirtschaftung war beauftragt das Ausbruchmaterial des Bauherrn aufzubereiten. Die Verantwortung für die Qualität des Ausbruchmaterials blieb dabei beim Auftraggeber (=Materialbesitzer). Die Materialbewirtschaftung übernahm im Gegenzug die Gewährleistung der Qualitätsanforderungen der aufbereiteten Gesteinskörnungen.

Aufgaben im Zusammenhang mit der Materialbewirtschaftung	Tunnelbauunternehmung	Materialbewirtschafter	Deponiebewirtschaftung	Bauherrschaft
Gewinnung Ausbruchmaterial	Х			
Verantwortlichkeit für die Qualität des Ausbruchmaterials				Х
Sicherstellung Korndurchmesser < 200 mm	Х			
Sicherstellung metall- und fremdmaterialfrei	Х	Х		
Transporte Ausbruchstelle bis Kippgossen ²⁷¹				
Übernahme / Weiterleitung auf Deponie		Х		
Übernahme auf Deponie zur Zwischen-/Endlagerung			Х	
Aufbereitung zu Gesteinskörnungen für die Betonproduktion		Х		
Lieferung per Band an den Tunnelbauer Mitholz		Х		
Lieferung per Bahn / Camion an Betonanlage Frutigen		Х		
Übernahme der Gesteinskörnungen	Х			
Betonarbeiten	Х			

Tabelle 63: Aufgabenverteilung Materialbewirtschaftung Nord, Lötschberg-Basistunnel²⁷²

7.3.3 Mischvariante

Bei der Mischvariante wird die eigenständige Vergabe der Materialbewirtschaftung (Unternehmervariante) mit der Subunternehmervergabe kombiniert. Der Auftraggeber beauftragt z.B. im Zuge der Arbeiten am Zugangsstollen eine Materialbewirtschaftung die in der Folge vom Tunnelbauunternehmen des Haupttunnels übernommen werden muss. Die eigenständige Materialbewirtschaftung wird so zum Subunternehmer des Tunnelbauunternehmens.

Es lassen sich somit Vorteile der Subunternehmervariante mit jenen der Unternehmervariante kombinieren.

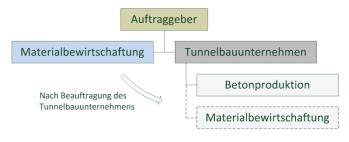


Abbildung 97: Mischvariante

_

²⁷¹ Große Metallwannen wo der Materialbewirtschafter das Material übernimmt.

²⁷² Vgl. [70] BLS AlpTransit 2008, S. 18.

8 Rechtliche Rahmenbedingungen

8.1 Eigentumsrecht

Grundeigentum ist in Österreich nach unten hin nur dann begrenzt wenn der objektiven Möglichkeit der Einwirkung eine Grenze gesetzt ist (vgl. ABGB §297). Demgemäß bleibt Ausbruchmaterial im Eigentum des Grundstücksbesitzers.

Die Eigentumsfrage des Ausbruchmaterials war auch schon mehrfach Gegenstand von Entscheidungen durch den Obersten Gerichtshof (OGH).

Dabei wurde festgestellt, dass der Grundstückseigentümer das Ausbruchmaterial für sich verwenden kann. Gleichzeitig können auch die Ausbruchskosten nicht von einem eventuellen Vergütungsbetrag abgezogen werden (vgl. 10b607/95 OGH).

Übernimmt der Grundstückseigentümer das Material, so ist er auch für dessen Aufbereitung, Zwischenlagerung und Endlagerung zuständig. Gleichzeitig ist er nicht berechtigt unbrauchbares Material zurückzustellen. Die Entscheidung ob das Ausbruchmaterial übernommen wird muss in angemessener, den Baufortschritt nicht unnötig verzögernder Frist bekannt gegeben werden (vgl. 10b49/99h OGH).

Eine Übergabe bzw. Übernahme des Ausbruchmaterials wird sinnvollerweise, abhängig von der Baustelleneinrichtung, in der Nähe des Tunnelportals erfolgen.

Abgeleitet von diesen Entscheidungen ist es somit erforderlich, dass im Falle einer geplanten Verwendung des Ausbruchmaterials durch den Bauherrn schon in der Planungsphase ein Einvernehmen mit dem Grundstücksbesitzer hergestellt wird. Sollte zum Zeitpunkt der Vergabe der Materialbewirtschaftung die Einigung mit dem Grundstücksbesitzer noch ausstehen, könnte daraus ein erhebliches Vertragsrisiko, verbunden mit Mehrkosten, resultieren.

Will der Auftraggeber des Tunnelprojektes das Ausbruchmaterial nutzen, ist daher gegebenenfalls auch eine Ablöse an den Grundstücksbesitzer zu zahlen. Die Höhe der Ablöse (Vergütung) des Ausbruchmaterials wird sich dabei an den erzielbaren Rohstoffpreisen orientieren. Im Zusammenhang mit Ausbruchmaterial, welches für Schallschutzdämme verwendet wurde, stellte der OGH fest, dass der Wert des Ausbruchmaterials nicht mit dem Verkehrswert eines, aus einer gewerblichen Grube bezogenen, Materials gleichzusetzten ist (vgl. 10b49/99h).

Die Nutzung des Ausbruchmaterials durch den Grundstücksbesitzer kann erhebliche Auswirkungen auf die Selbstversorgung der Baustelle mit Gesteinskörnungen für die Betonproduktion haben.

Gerade am Beginn der Vortriebsarbeiten ist es erforderlich einen Vorrat an Gesteinskörnungen aufzubauen. Betrachtet man nun den Fall, dass das anfallende Ausbruchmaterial am Beginn der Vortriebsarbeiten den Qualitätsanforderungen an Gesteinskörnungen entspricht, jedoch nicht zur Verfügung steht, müsste externes Material zugeführt werden. Um die daraus resultierenden negativen Auswirkungen (z.B. Verminderung der Wirtschaftlichkeit der Aufbereitungsanlage, zusätzliche Transportkette) zu vermeiden, sollte daher versucht werden, mit dem Grundstücksbesitzer einen Abtausch des Ausbruchmaterials zu vereinbaren. Dem Grundstücksbesitzer könnte in diesem Fall ein Ausbruchmaterial zu einem späteren Zeitpunkt zur Verfügung gestellt werden. Eventuelle Qualitätsänderungen in Vortriebsrichtung sind dabei zu berücksichtigen.

Mineralrohstoffgesetz

In Sonderfällen wird das Eigentumsrecht durch Bestimmungen des Mineralrohstoffgesetztes (MinroG)²⁷³ überlagert.

Gemäß dem MinroG wird zwischen bergfreien, bundeseigenen und grundeigenen mineralischen Rohstoffen unterschieden. Vom Eigentumsrecht des Grundstückbesitzers ausgenommen sind dabei bergfreie und bundeseigene mineralische Rohstoffe. Zu den bergfreien mineralischen Rohstoffen zählen z.B. alle mineralischen Rohstoffe aus denen man Eisen oder Kupfer gewinnen kann, Gips, Anhydrit, alle Arten von Kohle, Magnesit, Kalkstein (mit einem CaCO3-Anteil \geq 95%) und Diabas, Quarzsand (SiO2-Anteil > 80%) sowie Tone, soweit diese als Lockergesteine vorliegen (vgl. § 3. (1) MinroG). Für die Erschließung und Gewinnung dieser Rohstoffe ist eine Schürfund Bergwerksberechtigung erforderlich.

Im Eigentum des Bundes bleiben z.B. die mineralischen Rohstoffe Steinsalz und Kohlenwasserstoffe (§ 4. (1) MinroG).

Gesteinskörnungen für die Betonproduktion sind den grundeigenen mineralischen Rohstoffen zuzuordnen und stehen, somit auch nach den Bestimmungen des MinroG, im Eigentum des Grundstückbesitzers.

Da das vordergründige Ziel eines Tunnelprojektes nicht die Gewinnung von mineralischen Rohstoffen ist, ist das Ausbruchmaterial auch nicht dem Regime des Mineralrohstoffgesetztes zuzuordnen.²⁷⁴ Im Falle der Verwendung von im Ausbruchmaterial enthaltenen grundeigenen mineralischen Rohstoffen sind daher auch keine Genehmigungen nach dem MinroG erforderlich.

8.2 Abfallrecht

Anfallendes Tunnelausbruchmaterial gilt in Österreich nach den derzeitig gültigen rechtlichen Bestimmungen als Abfall.

Der Abfallbegriff wird im Abfallwirtschaftsgesetz (AWG)²⁷⁵ definiert. Demnach sind Abfälle bewegliche Sachen, derer sich der Abfallbesitzer entledigen will (Entledigungsabsicht = subjektiver Abfallbegriff) oder zu entledigen hat (Entledigungspflicht = objektiver Abfallbegriff).

Subjektiver Abfallbegriff

Entledigt sich ein Voreigentümer bzw. ein Vorinhaber eines Ausbruchmaterials wird die Sache zum Abfall. Diese Eigenschaft verliert das Material erst wieder durch eine zulässige Verwendung (vgl. VwGH 20.02.2003, 2002/07/0133).

"Von einer Entledigung […] kann nur dann gesprochen werden, wenn die Weggabe einer Sache in erster Linie darauf abzielt, diese los zu werden." (VwGH 22.12.2005, 2005/07/0088)

Eine Ausschreibung in der das Ausbruchmaterial automatisch an den Aufragnehmer (das Tunnelbauunternehmen) übergeht, erfüllt somit den subjektiven Abfallbegriff. Das Ausbruchmaterial ist in diesem Fall als Abfall anzusehen.²⁷⁶

²⁷³ [77] Mineralrohstoffgesetz

²⁷⁴ Vgl. [78] Gretzmacher, Reichel, Stanek 2010.

²⁷⁵ [1] Abfallwirtschaftsgesetz 2002.

Wird jedoch das Material gegen Entgelt an ein anderes Unternehmen abgegeben, kann davon ausgegangen werden, dass keine Entledigungsabsicht vorliegt (vgl. VwGH 22.12.2005, 2005/07/0088). Trotzdem schließt eine Erzielbarkeit eines Entgeltes eine Abfalleigenschaft nicht aus. Im Zweifelsfall ist daher ein Feststellungsbescheid bei der Bezirksverwaltungsbehörde (gem. §6 AWG) anzustreben.

Objektiver Abfallbegriff

Ist die Sammlung, Lagerung, Beförderung und Behandlung einer beweglichen Sache im öffentlichen Interesse so ist der objektive Abfallbegriff erfüllt (vgl. §2 (1) AWG). Hiervon ausgenommen ist eine Sache, die nach allgemeiner Verkehrsauffassung neu ist, bzw. wenn diese in einer für sie bestimmungsgemäßen Verwendung steht (vgl. §1 (3) AWG). Das öffentliche Interesse bezieht sich dabei auf den Schutz des Menschen und der Natur.

Ausgenommen von den Bestimmungen des AWG und damit kein Abfall sind nicht kontaminierte Böden und andere natürlich vorkommende Materialien, die im Zuge von Bauarbeiten ausgehoben werden, sofern diese in ihrem natürlichen Zustand an dem Ort, an dem sie ausgehoben wurden, für Bauzwecke verwendet werden (vgl. §3 (1) AWG). Werden diese Materialen an einem anderen Ort verwendet gelten sie als Abfall.

Als nicht kontaminierter Boden gilt jener der auf einer Bodenaushubdeponie (gem. Deponieverordnung) abgelagert werden kann. Bei Tunnelausbruch muss der Nachweis, dass es sich um ein nicht kontaminiertes Material handelt, durch eine grundlegende Charakterisierung gem. Deponieverordnung (DepVO, Anhang 4, Teil 2, Pkt. 1.3) erfolgen (siehe unten).

Als selber Ort ist in diesem Zusammenhang bei Linienbaustellen innerhalb des Bauloses zu verstehen.²⁷⁷

Abfallhierarchie

Die Abfallwirtschaft ist mitunter nach folgenden Zielen auszurichten (vgl. §1 (1) AWG):

- Schädliche Einwirkungen auf die Umwelt sowie Emissionen von Luftschadstoffen müssen so gering wie möglich gehalten werden.
- Ressourcenschonung (Rohstoffe, Wasser, Energie, Landschaft, Flächen, Deponievolumen)
- Durch die Verwendung von Abfällen darf kein größeres Gefährdungspotential hervorgerufen werden als bei der Verwendung von Primärrohstoffen.

Betrachtet man die Verwendung des Tunnelausbruchmaterials so trägt diese in mehrerlei Hinsicht zur Ressourcenschonung bei. Abgesehen von der Schonung von Primärrohstoffen werden zusätzlich auch Deponieflächen sowie Transportlängen und daraus resultierend Energie und Emissionen eingespart.

Zusätzlich zu den Zielen wird im AWG auch eine fünfstufige Abfallhierarchie angegeben (vgl. Abbildung 98). Anhand dieser Rangordnung sind alle Regelungen im Abfallbereich auszurichten. Da dies jedoch nicht immer möglich bzw. zweckmäßig ist, sind bei der endgültigen Entscheidung der Abfallbehandlung auch ökologische, technische und wirtschaftliche Randbedingungen sowie die Marktfähigkeit der gewonnenen Stoffe zu berücksichtigen (vgl. §1. (2) AWG). Abweichungen von der Abfallhierarchie sind möglich, wenn aufgrund einer Lebenszyklusbetrachtung eine für die Umwelt bessere Option gefunden wird (vgl. Pkt. 1.2 BAWP).

²⁷⁶ Vgl. [79] Entacher, Resch, Reichel, Galler 2011.

²⁷⁷ Vgl. [132] Wolfslehner 2011.

Abbildung 98: Abfallhierarchie²⁷⁸

Charakterisierung von Ausbruchmaterial im Abfallrecht

Die erforderliche Charakterisierung von Tunnelausbruchmaterial wird in der Deponieverordnung (DepVO) angegeben. Zusätzlich regelt die DepVO betriebsbezogene und technische Anforderungen an Deponien.

Insgesamt werden in der DepVO 5 Deponieklassen definiert. Für Tunnelausbruchmaterial sind vor allem Bodenaushub-, Inertabfall- und Baurestmassendeponien von Bedeutung.

Für Tunnelausbruch enthält die Deponieverordnung auch spezielle Bestimmungen. Demgemäß wird Tunnelausbruch dem Bodenaushubmaterial zugeordnet. Bodenaushubmaterial darf dabei nur einen Anteil von nicht mehr als 5 V.-% an bodenfremden Bestandteilen enthalten (vgl. §3 DepVO).

Um die Auswirkungen der Vortriebsarbeiten zu berücksichtigen sind zusätzlich zu Hauptprobenahmestellen auch Zusatzprobenahmestellen festgelegt. Der Parameterumfang der Hauptproben (Vollanalyse) kann dem Anhang 4, Teil 1, Pkt. 2 der DepVO entnommen werden. Der maximale Abstand der Probenahmestellen sowie der erforderliche Parametersatz für Zusatzproben wird in Tabelle 64 angeben.

	Hauptprobe	Zusatzpro	be
Parameterumfang	Vollanalyse gem. Anhang 4, Teil 1, Pkt. 2 DepVO	im Eluat ¹⁾ : Leitfähigkeit, pH-Wert, Nitrat-Stickstoff ²⁾ , Nitrit- Stickstoff ²⁾ , Ammonium-Stickstoff	im Feststoff ¹⁾ : Kohlen- wasserstoffindex und TOC
Max. Entnahmeab- stand	alle 600 m, mind. jedoch 3 pro Tunnel	zwischen den Hauptprobenahmeste	ellen von höchstens 200 m

 $^{^{\}rm 1)}$ Parameter sind aufgrund der Ergebnisse der Analysen der Hauptproben festzulegen. Müssen jedoch mind. die angegebenen Parameter umfassen.

Tabelle 64: Haupt- und Zusatzproben gem. DepVO²⁷⁹

Auswertungen von Haupt- und Zusatzproben unterschiedlicher Tunnelprojekte werden im Pkt. 3.1.1 angegeben.

8.2.1 Bundesabfallwirtschaftsplan

Im derzeit gültigen Bundesabfallwirtschaftsplan (BAWP) 2011 wurden erstmals explizit Bestimmungen für den Tunnelausbruch aufgenommen. Demnach darf Tunnelausbruch zur Unter-

²⁷⁹ Vgl. [15] Deponieverordnung 2008, Anhang 4, Teil 2, Pkt. 1.3.

²⁾ Kann bei einem Tunnelvortrieb ohne Sprengmittel entfallen.

²⁷⁸ Homepage: http://www.verpackungsblog.com, 2011.

grundverfüllung und als Recyclingbaustoff verwendet werden. Bezüglich der einzuhaltenden Bestimmungen wird auf jene der Aushubmaterialien und Baurestmassen verwiesen.

Tunnelausbruch als Recyclingbaustoff (vgl. Pkt. 7.14 BAWP)

Recycling wird im AWG definiert als (§2 (4) AWG):

"jedes Verwertungsverfahren, durch das Abfallmaterialien zu Produkten, Sachen oder Stoffen entweder für den ursprünglichen Zweck oder für andere Zwecke aufbereitet werden. Es schließt die Aufbereitung organischer Materialien ein, aber nicht die energetische Verwertung und die Aufbereitung zu Materialien, die für die Verwendung als Brennstoff oder zur Verfüllung bestimmt sind."

Abhängig von den chemischen Parametern werden im BAWP für Recyclingbaustoffe Qualitätsklassen (A+, A, B, C) angegeben. Wie bereits aus der Deponieverordnung bekannt, ist auch gem. BAWP das betreffende Material einer chemischen Analyse zu unterziehen. Zum Unterschied zur Deponieverordnung ist hierbei jedoch nicht das anfallende Ausbruchmaterial sondern der daraus gewonnene Rohstoff zu bewerten.

Die Bestimmung der Qualitätsklasse erfolgt anhand von Leitparametern. Gibt es einen Hinweis bzw. einen Verdacht auf eine Kontamination wird im BAWP zusätzlich, eine die Leitparameter ergänzende, Liste an zu untersuchenden Parametern angegeben.

Die Parameter gem. Deponieverordnung und Bundesabfallwirtschaftsplan werden in der folgenden Tabelle angegeben. Die Leitparameter für Recyclingbaustoffe werden dabei durch eine rote Schrift gekennzeichnet.

				Grenzwerte	der Depor	ieverordnung 2008					Bodes	abfall wirtschafts plan Pkt. 7.34 Bau	okt. 7.14 Baure stmass.	en				Bodesabfally	ii ris chaftsplan Pkt. 7.15 Aushubm	Aushubmaterialien		
	Boden	Bode naush ub-De ponie		Inertabfall-Deponie	_	Baure stmass en-Deponie	Seponie	Reststoff-Deponie	onie	Qualitätsklasse A+	asse A+	Qualitäts klass e A	'asse A	Qualitätsklasse B	lasse B	Masse A1	4	Klasse A2-G	×	Klass e A2	Klass	Klasse BA
Duramothy	Tabelle 1		7	Tabelle 1 Tabelle 2	lle 2	Tabelle 1	Tabelle 2	Tabelle 1	Tabelle 2					•								
	Gesamt- Gesamt- gehalt gehalt [mg/kgTM] [mg/kgTM]	Gesamt- Gehalt im Gesamt- Eluat gehalt [mg/kg [mg/kgTM] TM]	t Gesamt- gehalt G [mg/kg/TM]	rt- Gehaltim t Eluat t [mg/kg fM] TM]		Ge samt- Geh gehalt Eluat [mg/kg TM] T	Gehalt im Ge Eluat [mg/kg 8 TM] [mg	Gesamt- G gehalt Elu [mg/kg/TM]	Gehaltim Eluat[mg/kg geh TM	Gesamt- gehalt [mg/kg El TM] TA	Gehaltim Eluat [mg/kg gr TM] bel L/5 10	Gesamt- gehalt [mg/kg El TM] TA	Gehalt im Eluat [mg/kg ge TM] bei t/S10	Gesamt- gehalt [mg/kg B TM Th	Gehalt im Bust [mg/kg TM] bei t/510	Gesamt- gehalt [mg/kgTM]	Gehalt im Ge Buat B [mg/kg B TM]	Gesamt Gehalt im gehalt Eluat [mg/kg TM] TM]	Ge samt- ge halt [mg/kg TM]	Gehalt im Elust [mg/kg TM]	Gesamt- gehalt [mg/kgTM]	Gehaltim Eluat [mg/kg TM]
ph-Wertund elektrische Leitfähigkeit ph-Wert min obt-Wert mon		Ш	6.8	65	(Q		6 18]		6 27]		7,5		7.5		7,5		. 14)	6,5		4,5 10]14] 8		4,5 10)14) 8
elektrische Leitfähigkeit (ms/m) Abdampfrücks tände		150	100	150		120	300 1920]		(*) 29)		150		150 010		150 0.10		. 14)15)	2000	15]	40 10)14)15)		40 10)14)15)
Anorgani sche Stoffe Alumi ni um (als Al)		(a)	- 19	(,)	. 12)	-			100 30]								. 11)	2		. 11)		. 11)
Antimon (als Sb) Arsen (als As)	. 05	500 002	200	90'0	×	. 00	75	2000	2,7	- 20	90'0	. 30	90'0	. 90	0,1	20 7)	.0,3	30 0,3	. 06	0,3	50/200 7/8)	5'0
Barium (als Ba) Bie i (als Pb)	150	500 1	. 200	20	36	. 0	20		100	. 00	20	100	20	100 VIII)	20,00	100	10	100 0,3	100	10	150/500 7)8)	10
Bor(als B)	. ~	4 0.005	. 4	. 000		J.	30	2000		. 02		- 12		. 1,	. u	0.5 1171		11 003	. :	. 0	2/4 7/8	
Chrom ges amt (als Cr)	300	200	08	0.5	. 16		2 2 2		10	40	0,3	18	45	(IIIA 06	1	100	0,3	90 03	100	0.3	300/500 7/8]	1
Chrom sechswertig (als Cr.) Cobalt (als Co.)	. 8		. 8		31	. 100	2									. 03		30 0.5	. 8	. 1	. 02	. 1
Elsen (als Fe)	. 001	- (*)	. [9	3	12)	, c	. 0	1	20 30)	. 8	. 0	. 8	1-	CIIIA 06		. 09	. 11)	- S	. 8	. 11)	100/500 718	2 11)
Auprer (as Cu) Molybdan (als Mo)	700	300	-	ds			n l		201	8	0,5	2	5'0	30 vm	5'0		0,5	0,5	3 -	0,5	lay out out	2'0 2'2
Nickel (als Ni) Quecksi Iber (als Hz)	100	2 0.01	2 2	0,0	8	00 -	2 05	20 233	10	30	0.01	55	0,0	55 VIII)	900	0.5 71	9/0	000 000	07	0.01	100/500 7/8]	1 001
Selen (als Se)				0.1	H				0,5		0,1		0,1		0,1		0,1	- 07		0/1		0,1
Siber (als Ag) Zirik (als Zh)	200	200 20	1.000	4	1.5	00.	20 7		1 00	100	. 4	450	4	450	18	150 7)	0,2	300 18	450	18	500/1.000 738]	20
Zinn (als Sn)		- 2		2			10		20								2	- 0.5		2		2
Ammonium (als N) Onlord (als CI)			1	08	13)	100	900		300		N 008		\$ 008 V		7000 V							. 13]
Cyanide, leicht frei setzbar (als CN)		0700	•	9.2			1		1								0,2	- 0,1		0,2		0,2
Ruorid (als F)	1		1	100	1	ľ	8 8	1	150		10	1	10	1	15	1	2001	- 15	1	20		20
Nitrit(als N)		2		2	H		10	H	15	H	0,5 V)	H	1 V		2 VJ		2	0,5		2		2
Phosphat (als P)			1	2 000	12) 14)	,	200		8				3500		000		5	1 200		2		60
Phenolindex			H		fat fet	1	177	H		Ħ	1	t	1		1							
DOC			1			1	1				500 VI)		500 VI)	1	900 VIII)							
Organische Summenparameter		-											- ALOOS		0000							
TOC (all s C) Ko'hi en was se is toff-Index	30000	2) 200	30.00	9) 500	30	000 16]17]	00 00	5,000 24,25	100						5	50/100/200 2		200 100	10.000 5) 10	10) 100 10)	10,000 5[6]10] 50/100/200 2[6]	100 10]
EOX (Als CI)		- 0,3	7.1	0,3	15)		3 22]		30 31]													
AUX (as CI) anionenaktive Tenside (als MBAS)			+		H	H			. 02								1 12	. 0,3		1 12		1 12
Phenolindex	<u>.</u>		. 8	-				300		100								- 0005				
davon Berzola) pyren	0,4		2				H	200			Ħ	27	H			0,2		0,2	0,2		0,4	
PCB (7 Verbindungen)				-		+										0,1 99		0,1 9)	0,1 9)		1 99	
BTEX	. 9		. 9					. 9								6 50		1 99	1 9		1 9	
1) Ist bei Bodenaushubmaterial der Gehalt	eines Schadstoffe	s geogen bedingt, so	isteine Übersch	reitung bis zu dem	in Spalte II				9 (1	ei einem pH-Wert z	wischen 11,0 und 12,	5 beträgtder Grenzwe	ortfürdie elektrische	Leitfähigkeit 200 mS	/w.	Ergänzu	ng für Klasse A2-G (Ve yillum (als Be)	rwertung im und unmit	elbarüber dem Grundwasser)	as ser)		
angeführten Grenzwert zulössig. Für Bode naushubmaterial mit geogener Belastung ist die Schlüsse in Nummer 31411.33 zu verwenden.	le naush ub materia	il mit ge og en er Belas	tung ist die Schil.	Jssel-Nummer 3143	133 zu verwende	'n.			00	3el Überschreitung.	des Wertes siehe Pur	nkt R4.1.4 der "Richtlis	vie für Recycling-Baus	stoffe" (Österreichisc	her	Bo	(aks B)	2	П			
2) Bei nicht verunreinigtem Bodenaushub.	naterial und nicht	verunreinigten Bode	en bestandteilen							Baustoff-Recycling \	Verband ÖBRV 2009, 2	8. Auflage)				₩.	ngan (als Mn)	0.5	T			
mit autgrund inner humusgenante ernonien IOC-Werten : 50.000 mg/kg 3) –50 mg/kg TM gilt für Bodenaushubmaterial mit TOC s 5.000 mg/kg TM,	erial mit TOC ≤ 5.0.	30 mg/kg TM,							ii ≥	Bei einem CaysU4- Bei einem Asphaltz	vernal this von 2 U,43 anteil von maximal 5 I	III) bet einem tajoole-vernatuis von 2 U,As im blustgiit ein srenzweit von 8,000 mg/kg 15. IV) Bet einem Asphaltanteil von maximal 5 M-% entfällt dies e Prüfung.	twen von suud mg/k, ifung.	· 100		d.	X (16 Verbindungen)	0000	16			
= 100 mg/kg TM gilt für Bodenaushubmaterial mit TOC> 5 000 und s 2000 mg/kg TM, = 200 mg/kg TM allt für Bodenaushubmaterial mit TOC> 20 000 mg/kg TM.	terial mit TOC > 5	000 und < 2000 0mg/l.	kg TM,						[IA	Der Grenz wert gilt	als eingehalten, wen	in der arithmetische N	Attelwert all er Unter-	Such ungserge bnisse.	der letzten	£ S	allium (als TI)	0,1				
4) Für aufgrund natürlicher Entwicklung we	rsauerten Boden (ilt der pH-Werteberg	9ich ab 3.5.							berschreitet. Zur Be	erechnung der Tolera	Week and the commence of the c	47.3.2 der "Richtlinie»	für Recycling-Bausto	ffe"	5	omVI (als Cr)	0,2	П			
5) Für geogen bedingt gipshaltiges Bodenaushubmaterial beträgtder Grenzwert für die elektrische Leitfähigkeit 300 mS/m. 6) Der Wert ist zu bestimmen und in die Beurtreilung des Denonleverhaltens mit einzubosiehen.	ushubmaterial be urtellung des Den	trägtder Grenzwert i onleverhaltens mit e	für die elektrisch vinzubeziehen.	e Leitfähigkeit 300	mS/m.				, illy	Osterreichischer Ba Kann bei eigenem	ustoff-Recycling Verk pH-Wertoder alterna	band OBRV 2009, 8. At ativ bel L/S = 101 /kg us	flage). nd oH-Wert 7.5bis 8.6	Juntersucht werden.		5 3	orid (als CI) ani de gesamt (als CN)	1,000	T			
7) Gilt auch als eingehalten, wenn der Para	meter AOX nicht a	mehr als 0,3 mg/kgTN	M beträgt.						VIII	() Statt Sulfat und Cl	hlorid können die We	erte für volls tändig ge-	öste Feststoffe (TDS)	herange zogen werd	len.				1			
Werden die Gesamtgehalte der Spalte i L2der Grenzwertfürdie elektrische Leit	in Tabelle 1 einge fähigkeit 250 mS/A	halten, so istein pH- m.	Wert von 6,5 bis	12 zulässig. In die se	m Fall beträgt be	i einempH-Wert zw	schen 11 und		\$ (8	ulfat muss aber jeo Für geogen bedingt.	lenfalls bestimmt we 'e Gehalte in Gesteins	rden. skömungen gelten div	? Grerzwerte der Spal	ite II der Tabelle 1		1 mg/kg TMbei eine	mpH-Wert ≥ 6; pH-V	ertnach ÖNORML 1083				
9) Bei einem Glühverlust von nicht größer.	als 5 Mas se prozer.	t gilt der TOC-Grenzw	wertals eingehal	ten.						es Anhangs 1 der D.	eponieverordnung 20.	308 (siehe auch Kapite	17.16. Gleis aus hubma	aterial).		Song/kg TMgilt für	Bodenaushub und -r	vaterial mit TOCs 5.000	ng/kg TM			
.10) Für aufgrund naturlicher Entwicklung versauertes Bodenaus hubmaternal gilt der pH-Wernebereich ab 3,5. 11) Bei einem pH-Wert zwischen 11 und 12 beträgt der Grenzwert für die elektrische Leitfähigkeit 250 mS/m. Für geogen bedingt gjoshaltiges Bodenaushubmater	neträgt der Grenzw	ushubmaterial giltde vertfürdie elektrisch	er pH-Wertebere se Leitfähigkeit 2	ich ab 3,5. '50 mS/m. Für geog.	n bedingt gipsha	itiges Bodenaushub.	material		. X	Bei Hirweisen oder aurestmassendepor	rdem Verdacht auf ei. nie gem. Dep VO 2008	ine Kontaminations in 8 herarz uz ie hen und 4	d für die Qualitätskla. sinzuhalten.	sse C die Parameter.		100 mg/kg TM gilt fü 200 mg/kg TM gilt fü	r Bodenaushub und - r Bodenaushub und -	naterial mit TOC > 5.000 naterial mit TOC > 20.00	JOD mg/kg TM gift für Bodenaushub und -material mit TOC > 5,000 mg/kg TM und ≤ 20,000 mg/ kg TM 200 mg/kg TM	1g/kgTM		
beträgt der Grenzwert für die elektrische Leitfähigkeit 300 mS/m.	e Leitfähigkeit 300.	1 mS/m.) bezogen auf Trockn	ung bei 30° Celsius			3) bezogen auf Trocknung bei 30° Celsius		
 Der Wert ist zu bestimmen und in die B. Statt der Grenzwerte für Chlorid und Sul. 	eurteilung des De) fat kann ein Grenz	yonie verhaltens mit v wert für den Abdams	einzubeziehen. afrückstand von-	\$ 000 ms/ks TMans	pwendet werden				Rot	Rate Schrift = Leitra rame ter sem. BAWP	meter sem. BAWP				4	Bodenaushub aus Ir kann in Gebieten ek	idustrie-, Gewerbe- u icher Belastung auße	nd Siedlungsgebieten m rhalb des Grundwassen	iteiner PAK-Hintergrund und außerhalb unmittell	fbelastung bis 20mg/kg TA barüber dem Grundwasse		
14) Wirdbei einem Abfall der Grenzwert vo	n 1 000 mg/kg TM:	nicht eingehalten, ist	teine Annahme	dennoch zulässig, w	enn die Auslaug.	ingdie folgenden W	erte									eingebaut werden,	wobei die Bildung vor	Sickerwasserdurch Ob	rflächerwersiegelung bz	rwverdichtungzuumerb	nden ist.	
nicht überschreitet: 1500 mg/l als Co be 1 / S = 0.1 / bezonter andbreiteben Gleichen	I L/S = 0,1 I/kg unc	16 000 mg/kg bei L/S:	= 10 l/kg. Zur Ern nstest arforderli	nittlung des Grenzw	erts bei 101 Avs kann on	thundra durch									ar lê	Fürdie Herstellung	von Rekulti vierungss onsich i Amsterial die	thichten gelten die Keni d im Einzelfall in Abetin	werte der Rekultivierung mune mit der Behönde A	gsrichtlinie.		
den Chargen-Auslaugtest oder einen Pe	rkol ationstest unt	er annähernden lokal	1en Gleichgewich	tsbedingungenen	nittelt werden.										, K	Zur Verwertungals	andwirtschaftliche B	skultivierungsschicht (K	asse A1) oder als landwir	vy a commenge accommensation and a management of the commensation	gsschicht	
15) Gilt auch als eingehalten, wenn der Par.	ameter AOX nicht	mehr als 0,3 mg/kg Th.	M beträgt.	c s												in Bereichen verglei	chbarer Belastungs sit	uation (Klasse BA) ist fü				
 Mchtmaßgeblich für Abfalle gemäß §7. 	27 lit. b, cundh.	r Billian 100 dielle.	reingelie certian												80) ktfürBodenaushul	material der Gehalt o	ines Schadstoffes geogr	n bedingt, so ist eine Übr	jeue renqui uue zusakaidi udri des desamigernakem der nakudi > 2 min zu umersudien. 8) ist für Bodenaushubmateiral der Gehalt eines Schadstoffes geogen bedingt, so ist eine Überschreitung bis zum höheren	ren	
18) Für aufgrund natürlicher Entwicklung ve	Sauertes Bodena	us hubmate rial gilt de	or pH-Wertebere	ich ab 3,5.											4	angeführten Grenz wert zulässig	ertzulässig					
 Fur mit nydraulischen Bindemittein ver- gefährenrele vante Eigenschaftreizend c 	estigte Apfalle oc ider åtzend aufwe	isen, ist der Grenzwe	getannione Abt. ert von 300mS/n	me oder stabilisier. nnach 28 Tagen Aus	e getannione AD: härtezeit einzuhs	raile, sorem sie auss ilten.	Thiestign die								, f	j nur bei verdacht zu 0) gilt für Untergrund	untersuchen (auch w verfüllung	ennes tur d				
20) Bei frisch gebrochenem Beton, Betonie	ung srückständen.	und Bentonit-Schläm	men: 800 mS/m.												4	1) Der Wert ist zu bes	Emmen und im Anal	senbericht				
21) Fur gipshattgen Bauschuft und andere gipshalt ge Abstaller, sofern letztere auf einem Monokompartiment abgelagert werden, ist eine überschreitung bis zu 14 000 mg/kg Sulfatumer der Bedingung zulässig, dass die Ga-Konzentration im Bluat mindestens die 0,43-fache eimittelte Sulfatkonzentration	i psraitige Abtalle ing zulässig, dass	, sofern letztere aut. de Ca-Konzentration.	einem Monokor. Im Eluat mindes	ipartiment abgelag. tens die 0,43-fache	ertwerden, istei. ermittelte Sulfat	ne Uberschreitung E. konzentration	10								., #	2) Giltauch als einge 3) Bei der Verwertun	naiten, wenn der Para 5 von Material der Kla	meter EOX sse BA giltfüreine geog	ene Hintergrundbelastur	ng ein Grenzwert bis zu 40	mg/kgTM.	
erreicht; in die sen Fällen ist auch eine L	berschreitungde.	Grenzwertes für die	elektrische Leit	fahigkeit zulässig.											1	4) Fürdie Herstellun	tyon Rekulti vierungs	schichten gelten für pH-	Wert und elektrische Leit	fâhigkeit die jeweiligen		
24) ont act as engelanted, wentuer relativester ACA mort men as angulg in betrage. 23) Wern Quecksilber in forms driventslicher sulfidischer Verbindungen vorliegt, ist ein Quecksilbergehalt bis maximal 100 mg/kg TM zulässig. Liegt Quecksilber	nerer Aux nem.	ribindungen vorliegt,	Jetragt. Jistein Quecksili	berge halt bis maxin	ral 100 mg/kg TM	zuläs sig. Liegt Quec	csilber								17	5) Im Falle einer Dep	onierung eines Boder	aus hub materials gelter	nie. für pH-Wert und elektris	besummingsmernden und wermwerte der nekutorrechtigsnatinime. 15) Im Fälle einer Depanierung eines Bodenaushubmaterials gelten für pH-Wert und elektrische Leitfähigkeit die emsprechenden	rechenden	
in Form schwerlöslicher suiffdischer Ver maximal 2000 methe that suifesie	rbindungenvorur	od wurde der Abfall s.	tabilisiert oder i.	mmobilisiert, ist eir	Quecksilbergeh	alt bis										Grenzwerte des Anf	ang 1 der Deponieve	ordnung 2008.				
24) Bei einem Glühverlustvon nicht größer.	als 8 Mas se prozen	t gilt der TOC Grenzw	vertals eingehal	ten.																		
25) Dieser Grenzwert gilt nicht für Abfälle g	emäß § 72 71it. al	disc.	and the second second		200 mm from 200 mm	-																
27) Für mithydraulischen Bindemitteln verf	estigte oder stabi	Sierte Abfälle ist eir.	npH-Wertbis 13	Telinorett men	Storinging im.	-Sk Sk																
28) Für stark alkalische Rückstände aus friemischen Prozessen gelten die Bestimmungen des §9. 20) Der Werties in Nedermann fan McChmittod in die Beurnalities mit den sie ben	mischen Prozesse	ngelten die Bestimm	ungen des §9.																			
CS) Del mercial to beautified provided as	III I nie benimm	Of The STREET, THE	i i																			

Tabelle 65: Gegenüberstellung der Parameter gem. Deponieverordnung (DepVO) und Bundesabfallwirtschaftsplan (BAWP)

Die Anwendungsformen von Recyclingbaustoffen werden in Abhängigkeit der Qualitätsklasse und der hydrologischen Standortvoraussetzung (dem Flurabstand) in der folgenden Tabelle angegeben. Die Beurteilung der hydrologischen Standortvoraussetzung hat durch einen Experten auf dem Gebiet der Hydrologie bzw. Grundwasserwirtschaft zu erfolgen.

Anwendungsform	hydrogeologisch sensibles Gebiet	hydrogeologisch weniger sensibles Gebiet	innerhalb des Deponie- körpers ⁴⁾
ungebunden ohne Deck- schicht ¹⁾	Qualitätsklasse A+	Qualitätsklassen ²⁾ A+, A	Qualitätsklassen A+, A, B, C
ungebunden mit Deck- schicht oder in gebunde- ner Form ohne/mit Deckschicht ¹⁾	Qualitätsklassen ³⁾ A+, A	Qualitätsklassen A+, A, B	Qualitätsklassen A+, A, B, C
als Zuschlagstoff für Asphalt oder Beton	Qualitätsklassen A+, A, B	Qualitätsklassen A+, A, B	Qualitätsklassen A+, A, B, C

¹⁾ Als Deckschichten gelten bindemittelgebundene Schichten (Asphaltbelag, Betonbelag), welche die Durchsickerung des gesamten Recycling-Baustoffs mit Niederschlägen verhindert.

Tabelle 66: Qualitätsklassen - Einsatzbereiche für Recyclingbaustoffe (Pkt. 7.14 BAWP)

Eine gleichbleibende Qualität ist durch ein Qualitätssicherungssystem zu gewährleisten. Diesbezüglich wird auch auf die Richtlinie für Recycling-Baustoffe²⁸⁰ herausgegeben vom Baustoffrecycling Verband (BRV) verwiesen.

Die Grenzwerte (mit Ausnahme des pH-Wertes) der Leitparameter der Qualitätsklasse B entsprechen den Grenzwerten der Bodenaushubdeponie gem. Deponieverordnung

Tunnelausbruch für Untergrundverfüllungen (vgl. Pkt. 7.15 BAWP)

Tunnelausbruch wird im BAWP den Aushubmaterialien zugeordnet. Hinsichtlich der für eine Untergrundverfüllung notwendigen Charakterisierung des Ausbruchmaterials (Probenentnahme) wird auf die Bestimmungen der Deponieverordnung verwiesen. Gleichzeitig sind jedoch die im BAWP angegeben Grenzwerte der Parameter der einzelnen Qualitätsklassen einzuhalten. Der Parameterumfang für Aushubmaterialien wurde dabei so festgelegt, dass gleichzeitig eine Beurteilung gem. Deponieverordnung möglich ist.

Die einzuhaltenden Parameter werden im Anhang jenen der Deponieverordnung und der Baurestmassen gegenübergestellt.

Im BAWP werden für die Verwendung von Bodenaushubmaterial bzw. von Tunnelausbruchmaterial für Untergrundverfüllungen folgende Qualitätsklassen festgelegt (vgl. Pkt. 7.15.2 BAWP):

• Klasse A1 – Verwendung als landwirtschaftliche Rekultivierungsschicht: Die Rekultivierungsschicht ist für landwirtschaftliche Nutzung geeignet.

²⁾ Bis zu einer maximalen Schichtdecke von 2 m und einer maximalen Kubatur von 20.000 m³ können auch Recycling-Baustoffe anderer Qualitätsklassen eingesetzt werden, sofern die Grenzwerte der Qualitätsklasse A nur im Parameter Sulfat bis maximal 4.500 mg/kg TS überschritten werden.

³⁾ Im Falle der Anwendung mit Deckschicht können auch Recycling-Baustoffe anderer Qualitätsklassen eingesetzt werden, sofern die Grenzwerte der Qualitätsklasse A nur im Parameter Sulfat bis maximal 4.500 mg/kg TS überschritten werden.

⁴⁾ Nur bei Deponien für nicht gefährliche Abfälle, sofern der Einsatzbereich von der Deponiesickerwassersammlung erfasst ist.

²⁸⁰ [83] Richtlinie Baustoff-Recycling 2009.

- Klasse A2 Verwendung als Untergrundverfüllung
- Klasse A2G Verwendung im und unmittelbar über dem Grundwasser
- Klasse BA Sonderregelung für Bodenaushubmaterial mit Hintergrundbelastung: Material mit geogener Belastung kann in Bereichen gleicher Belastungssituation für Untergrundverfüllungen und Rekultivierungsschichten verwendet werden.

Ein Überblick der Anwendungsbereiche der einzelnen Qualitätsklassen wird in Tabelle 67 angegeben.

	Landwirtschaftliche Rekultivierung	Nicht landwirtschaftli- che Rekultivierung	Untergrundverfüllung	Untergrundverfüllung im und unmittelbar über dem Grundwasser
Klasse A1	JA	JA	NEIN ¹⁾	NEIN
Klasse A2	NEIN	JA	JA	NEIN
Klasse A2-G	NEIN	JA	JA	JA
Klasse BA	JA ²⁾	JA ²⁾	JA ²⁾	NEIN

¹⁾ Bei Einhaltung der Grenzwerte für den TOC-Gesamt und TOC im Eluat von A2 ist auch eine Untergrundverfüllung möglich.

Tabelle 67: Übersicht über die Anwendungsbereiche der einzelnen Qualitätsklassen (Pkt. 7.15.2 BAWP)

Für Untergrundverfüllungen welche im Zusammenhang mit konkreten Bauvorhaben auch eine bautechnische Funktion erfüllen ist neben der ökologischen auch die technische Eignung nachzuweisen. Als Verwendungsmöglichkeiten werden in diesem Zusammenhang im BAWP

- Verfüllungen oder Bodenaustausch im Zusammenhang mit der Herstellung von Dämmen und Unterbauten für Straßen, Gleisanlagen oder Fundamenten,
- Baugruben- oder Künettenverfüllungen sowie die
- Herstellung eines Lärmschutzwalls

angeführt. Der Nachweis der technischen Eignung des Aushubmaterials kann dabei durch die Erfüllung der in technischen Normen und Richtlinien angegebenen Richtwerte erfolgen.

Die folgende Tabelle (Ausschnitt aus Tabelle 65) stellt die Grenzwerte der Leitparameter für Baurestmassen jenen des Aushubmaterialien bzw. der Deponieverordnung gegenüber.

²⁾ Nur in Bereichen vergleichbarer Belastungssituation in Abstimmung mit der für den Einbau örtlich zuständigen Abfallbehörde.

		Grenzwerte	der Deponi	ieve	rordnung 2008					BAWP Pk	t. 7.14	Baurestma	ssen			BAWP Pkt. 7	7.15 A	lushubmat	erialien
	В	odenaushub-Dep	onie		Inertabfa	II-Deponie		Qualit	äts	klasse A		Q	ualität	sklasse B			Klas	se A2	
Parameter	Tal	belle 1	Tabelle 2	2	Tabelle 1	Tabelle	2	z.B. ungebunde in hydrologisc G	h w			Deckscl wenige	nischt i r sensi	den bzw. mit in hydrologi iblen Gebiet oduktion	sch	z.B. nich Rekultivierun		wirtschaftli tergrundve	
	I Gesamt- gehalt [mg/kg TM]	II ⁿ Gesamt- gehalt [mg/kg TM]	Gehalt im Eluat [mg/kg TM]		Gesamt- gehalt [mg/kg TM]	Gehalt im Eluat [mg/kg TM]		Gesamt- gehalt [mg/kg TM]		Gehalt im Eluat [mg/kg TM] bei L/S 10		Gesamt- gehalt [mg/kg TM]	Gehalt im Eluat [mg/kg TM] bei L/S 10		Gesamt- gehalt [mg/kg TM]		Gehalt im Eluat [mg/kg TM]	
	pH-Wert und	elektrische Leitf	ähigkeit																$\overline{}$
pH-Wert min	-	-	6,50	2)	-	6,5	5)	-		7,5		-		7,5		-		4,5	16)17)
pH-Wert max	-	-	11,00	4)	-	12		-	П	12,5	10)	-		12,5	10)	-		8	
elektrische Leitfähigkeit [ms/m]	-	-	150	3)	-	150	6)	-		150	9) 11)	-		150	9) 11)	-		40	16)17) 18)
	Ano	rganische Stoffe																	
Chrom gesamt (als Cr)	300	500	1		500	0,5		90	П	0,5		90	14)	1		100		0,3	
Kupfer (als Cu)	100	500	2		500	2		90	П	1		90	14)	2		90		0,6	
Ammonium (als N)	-	-	8		-	8		-		4	13)	-		8	13)	-		8	
Nitrit (als N)	-	-	2		-	2		-		1	13)	-		2	13)	-		2	
Sulfat (als SO4)	-	-	-		-	1.000	7) 8)	-		2500		-		6000	11)	-		-	
Kohlenwasserstoff-Index	50/10	0/200 1)	5		500	5		-		3		-		5		50/100/200	1)	5	
PAK (16 Verbindungen)	4	1	-		20	-		12 1	2)	-		20	12)	-		2	15)	-	

Tabelle 68: Gegenüberstellung chem. Parameter (vgl. Anhang)

Aus Baurestmassen gewonnene Recycling-Baustoffe der Qualitätsklasse A können gem. BAWP als Baustoff ungebunden bzw. ohne Deckschicht verwendet werden. Gleiches gilt für Aushubmaterialien der Klasse A2. Vergleicht man jedoch die Grenzwerte der chemischen Parameter so fällt auf, dass sich diese teilweise (z.B. pH-Wert) wesentlich voneinander unterscheiden. Überträgt man diesen Umstand auf Tunnelausbruchmaterial würde das heißen, das für aufbereitetes Ausbruchmaterial andere (niedrigere) Grenzwerte gelten als für das beim Vortrieb anfallende.

Ähnliches gilt für die Betrachtung der Grenzwerte der Bodenaushubdeponie und der Untergrundverfüllungen (Klasse A2). In der Deponieverordnung werden für eine Bodenaushubdeponie keine Bestimmungen bezüglich Untergrundanforderungen (§22 AWG), Vorflut (§24 AWG), Deponiebasisabdichtung (§27 AWG) und Basisentwässerung (§28 AWG) festgelegt. Warum sich die Grenzwerte für Untergrundverfüllungen von jenen der Bodenaushubdeponie unterscheiden ist nicht nachvollziehbar und sollte zukünftig geklärt werden.

Die erstmalige Aufnahme von Tunnelausbruchmaterial in den Bundesabfallwirtschaftsplan zeigt, dass sich auch der Gesetzgeber mit der Thematik Verwendung des Ausbruchmaterials beschäftigt. Gem. der derzeitigen Regelung wird das Tunnelausbruchmaterial Aushubmaterial bzw. Baurestmassen zugeordnet.

Hierbei ist jedoch zu berücksichtigen, dass nach der vorliegenden Definition die Verwendung von Tunnelausbruchmaterial nicht dem Begriff Recycling und somit auch nicht den Recycling-Baustoffen zuzuordnen ist. Recycling bezieht sich auf die Nutzung derselben Materialeigenschaften (Metall zu Metall) und nicht auf die (Rück-) Gewinnung von Grundstoffen bzw. Rohstoffen. Da es sich bei Tunnelausbruchmaterial um einen Primärrohstoff handelt kann die Verwendung dieses auch nicht unter dem Recycling-Begriff subsumiert werden.²⁸¹

Auch bei den Randbedingungen einer Verwendung bestehen wesentliche Unterschiede in Abhängigkeit des Ausgangsmaterials. Das erforderliche Massenmanagement sowie die Qualitätssicherung einer Tunnelbaustelle unterscheiden sich wesentlich von einer herkömmlichen Aushubbaustelle.

Aus diesem Grund wäre es sinnvoll für Tunnelausbruchmaterial auf Basis der vorliegenden Erfahrungen eigene Bestimmungen zu verfassen.

²⁸¹ Vgl. [78] Gretzmacher, Reichel, Stanek 2010, S. 22.

8.2.2 Altlastensanierungsgesetz

Zur Finanzierung von Sanierungen und Sicherung von Altlasten wurde in Österreich das Altlastensanierungsgesetz²⁸² (ALSAG) erlassen. Im ALSAG werden mitunter folgende Tätigkeiten einem Altlastenbeitrag unterworfen:

- Deponierung von Abfällen
- Verfüllung von Geländeunebenheiten (z.B. Baugruben)
- Vornahme von Geländeanpassungen (z.B. Unterbauten von Straßen)
- Bergversatz von Abfällen
- Lagerung von Abfällen über die Zwischenlagerfrist (vor Beseitigung über 1 Jahr, vor Verwertung mehr als 3 Jahre)

In Tabelle 69 werden beispielhaft Altlastenbeiträge welche ab 2012 gelten angegeben.

	Altlastenbeitrag ab 2012 (je angefangene Tonne)
Erdaushub (ausgen. betragsfrei)	
mineralische Baurestmassen (vgl. Anhang 2 DepVO 2008)	9,20 €/to
sonstige mineralische Abfälle (vgl. Anhang 1, Tab. 5+6 DepVO)	
alle übrigen Abfälle	87,0 €/to
Bei Ablagerung auf Deponie	
- Bodenaushub-, Inertabfall- und Baurestmassendeponie	9,20 €/to
- Reststoffdeponie	20,60 €/to
- Massenabfalldeponie oder Deponien für gefährliche Abfälle	29,80 €/to

Tabelle 69: Altlastenbeitrag ab 2012 (vgl. §6 ALSAG)

Die im Zusammenhang mit dem ALSAG erforderlichen Aufzeichnungen müssen durch den Beitragsschuldner sieben Jahre aufbewahrt werden (vgl. §8 ALSAG).

Nicht beitragspflichtig sind z.B.:

- Erdaushub (überwiegender Massenanteil Erde oder Boden)
 - bei, in unbedingt erforderlicher Ausmaß (=wie viel²⁸³), zulässiger²⁸⁴ Verwendung für Verfüllung von Geländeunebenheiten, -anpassungen und Bergversatz (vgl. §3 Abs. 1a Z4 ALSAG)
 - o bei Ablagerung auf einer Inertabfall- und Baurestmassendeponie (vgl. §3 Abs. 1a Z5 ALSAG)
- Bodenaushub (Anteil an bodenfremden Bestandteilen < 5%; Bodenaushub ist Bestandteil des Erdaushubs)
 - o bei zulässiger Verwendung für Verfüllung von Geländeunebenheiten, -anpassungen und Bergversatz (vgl. §3 Abs. 1a Z4 ALSAG)
 - o bei Ablagerung auf einer Bodenaushub-, Inertabfall- und Baurestmassendeponie²⁸⁵

_

²⁸² [82] Altlastensanierungsgesetz.

²⁸³ Vgl. [79] Entacher, Resch, Reichel, Galler 2011.

²⁸⁴ z. B. wasserrechtliche, naturschutzrechtliche, abfallwirtschaftsrechtlich Genehmigung

• Berge (taubes Gestein), Abraummaterial sowie Schlämme die dem Mineralrohstoffgesetz unterliegen und die wieder in die ursprünglichen Lagerstätten zurückgeführt werden (vgl. §3 Abs. 1a Z1 ALSAG).

In Bezug auf die Verwendung von Tunnelausbruchmaterial ist vor allem die maximale Zwischenlagerungsdauer von 3 Jahren für eine Verwendung problematisch.

Betrachtet man die zeitliche Abfolge des Materialanfalls bzw. -bedarfs einer Tunnelbaustelle ist festzustellen, dass aufgrund der dem Vortrieb nachfolgenden Ausbaumaßnahmen das Anlegen von Materialspeichern unbedingt erforderlich ist.

Erstrecken sich die Baumaßnahmen, wie bei einem größeren Tunnelprojekt üblich, über mehrere Jahre so kann es hierbei sehr leicht zu einer Überschreitung der 3 jährigen Zwischenlagerungsdauer kommen. Der in diesem Fall fällige ALSAG-Beitrag würde jedoch die Wirtschaftlichkeit der Verwendung stark beeinflussen.

Gleiches gilt auch für den Fall, dass ein im Zuge der Vortriebsarbeiten anfallender Industrierohstoff an baustellenexterne Abnehmer weitergegeben werden könnte. Grundsätzlich ist davon auszugehen, dass in der Umgebung des Tunnelprojektes bereits vor Beginn der Vortriebsarbeiten ein funktionierender Rohstoffmarkt existierte. Würde nun das anfallende Ausbruchmaterial (der Rohstoff) ohne Zwischenlagerung weitergegeben werden, hätte das große Auswirkungen auf bestehende Rohstofflieferanten. Da das Material bei einem Tunnelprojekt nur temporär anfällt, muss somit der Bestand der vorhandenen Rohstoffversorgungsbetriebe garantiert werden. Auch in diesem Fall ist daher eine Zwischenlagerung, die eine gleichmäßige, begrenzte Abgabe von Rohstoffen ermöglicht, unbedingt erforderlich.

Besteht für einen Teil des anfallenden Rohstoffes im Zuge der Bauarbeiten bzw. kurz danach kein Bedarf, könnte dieser auf sogenannten Sekundärlagerstätten zwischengelagert werden. Durch das Anlegen dieser Lagerstätten könnte die Durchmischung mit unbrauchbaren Materialien verhindert werden. Die technische Ausrüstung der Sekundärlagerstätten müsste sich, abhängig von den chemischen Eigenschaften des abzulagernden Materials, an den technischen Anforderungen für Deponien der DepVO orientieren.

Da ein Primärrohstoff nicht den Bestimmungen des ALSAG unterliegt, kann eine zu kurz bemessene Zwischenlagerungsdauer zu einer wesentlichen Verschlechterung der Wirtschaftlichkeit einer Verwendung führen.

Unter Berücksichtigung der beschriebenen Problematik wäre daher eine Verlängerung der im ALSAG festgelegten maximalen Zwischenlagerungsdauer für Tunnelausbruchmaterial von großer Bedeutung.

In diesem Zusammenhang ist auch darauf hinzuweisen, dass die Verwendung des Ausbruchmaterials dem Ziel der Ressourcenschonung des AWG entspricht. Eine eventuell fällige Altlastensanierungsgebühr die eine Verwendung verhindert, würde daher auch dem Ziel des AWG widersprechen.

Berücksichtigt man, dass Tunnelprojekte hauptsächlich von staatsnahen Unternehmen (z.B. ÖBB, Asfinag, Energieunternehmen) ausgeführt werden, ist die Sinnhaftigkeit eines eventuell anfallenden Altlastensanierungsbeitrages für Tunnelausbruchmaterial zu hinterfragen.

8.2.3 Abfallende

Die rechtlichen Grundlagen für ein Abfallende werden national im AWG bzw. auf EU-Ebene in der Abfallrahmenrichtlinie (RL 2008/98/EG) festgelegt.

Grundsätzlich tritt das Abfallendende von Altstoffen erst ein, wenn sie oder die aus ihnen gewonnenen Stoffe unmittelbar als Substitution von Rohstoffen oder von aus Primärstoffen erzeugten Produkten verwendet werden (vgl. §5 (1) AWG).

Altstoffe sind Abfälle, welche getrennt von anderen Abfällen gesammelt werden, oder Stoffe, die durch eine Behandlung aus Abfällen gewonnen werden, um diese Abfälle nachweislich einer zulässigen Verwendung zuzuführen (vgl. §2 (4 Z1) AWG).

Das AWG ermöglicht jedoch auch den Erlass einer Abfallendeverordnung durch den Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. Durch eine solche Abfallende-Regelung kann ein Abfall vorzeitig zu einem Nicht-Abfall erklärt werden.

Eine Abfallendeverordnung ist zu erlassen, wenn folgende Kriterien erfüllt werden (vgl. §5 (2) AWG):

- die Sache wird üblicherweise für diesen bestimmten Verwendungszweck eingesetzt,
- ein Markt existiert.
- es liegen Qualitätskriterien vor, welche die abfallspezifischen Schadstoffe berücksichtigen und
- es geht von dieser Sache kein höheres Umweltrisiko aus als bei einem vergleichbaren Primärstoff oder einem vergleichbaren Produkt aus Primärrohstoff.

Zurzeit ist erst eine EU-Abfallendeverordnung nämlich für Eisen-, Stahl- und Aluminiumschrott (EU-Verordnung Nr. 333/2011) in Kraft getreten. Weitere EU-Verordnungen für Papier, Kupferschrott, Glas, Kompost und Kunststoffe sind in Vorbereitung. Existieren für bestimmte Stoffe keine EU-Regelungen kann eine nationale Abfallendeverordnung geschaffen werden.

Für gekörntes Gesteinsmaterial z.B. aus Bau- und Abbruchabfällen läuft derzeit eine Vorstudie auf europäischer Ebene. 286 Ob daraus eine EU-Abfallendeverordnung entsteht ist jedoch noch offen.

Aus diesem Grund gibt es Bestrebungen eine Abfallendeverordnung für Baurestmassen der Qualitätsklassen A und A+ (gem. Pkt. 7.14 BAWP) auf nationaler Ebene zu erlassen.²⁸⁷

Abfallende für Tunnelausbruchmaterial

Betrachtet man die im AWG festgelegten Voraussetzungen (§5 AWG) für eine Abfallendeverordnung so liegt der Schluss nahe, dass man auch für Tunnelausbruchmaterial ein Abfallende anstreben sollte.

Schon heute wird Ausbruchmaterial bestimmungsgemäß in Analogie zu Primärrohstoffen eingesetzt. Beispiele hierfür sind Dammschüttungen, Schüttmaßnahmen für Lärmschutzwände und Gesteinskörnungen für die Betonproduktion. Hierfür existiert auch österreichweit ein Markt.

Unter bestimmten Voraussetzungen wären jedoch auch noch weitere Verwendungsmöglichkeiten als Industrierohstoff und daraus resultierend weitere Absatzmöglichkeiten gegeben.

_

²⁸⁶ Vgl. [80] Eder 2011.

²⁸⁷ Vgl. [84] Car 2011.

Dabei zu berücksichtigen ist die temporäre Tätigkeit des Tunnelbaus; der Anfall des Ausbruchmaterials ist zeitlich beschränkt.

Voraussetzung eines Abfallendes von Tunnelausbruchmaterial, das äußerst vielfältig anfallen kann, soll allerdings nicht sein, dass das Ausbruchmaterial einer bestimmten Aufbereitung unterzogen werden muss. Eine solche Regelung wäre höchstwahrscheinlich kontraproduktiv. Da das Ausbruchmaterial ausgehend von den geologischen Randbedingungen sehr unterschiedlich verwendet werden kann, wäre eine Festlegung eines Aufbereitungsschemas nicht zielführend zumal es in einigen Fällen möglich ist, dass das Ausbruchmaterial ohne weitere Aufbereitung verwendet werden kann (z.B. Dammschüttungen).

Hinsichtlich der technischen Anforderungen wird auf das Kapitel Materialanforderungen unterschiedlicher Verwendungsszenarien (Pkt. 4) verwiesen. Tunnelausbruchsmaterial entspricht in vielen Fällen diesen Anforderungen.

Die für ein Abfallende erforderlichen Qualitätskriterien im Zusammenhang mit umweltrechtlichen Bestimmungen könnten aus den vorliegenden Regelungen (z.B. DepVO, BAWP) bzw. aus bereits durchgeführten Untersuchungen von Ausbruchmaterial abgeleitet werden. Hierbei sollte jedoch auch die Art der Verwendung mit einbezogen werden. Bei Ausbruchmaterial welches z.B. als Rohstoff der Kalkindustrie verwendet wird, ist die Festlegung eines Grenzwerts für den pH-Wertes nicht erforderlich. Gleiches gilt auch für aus Ausbruchmaterial gewonnene Gesteinskörnungen, die für Beton oder kalk- bzw. zementstabilisierte Tragschichten verwendet werden.

Bereits Stand der Technik ist es, das anfallende Ausbruchmaterial regelmäßig entsprechend den Vorgaben der Deponieverordnung zu untersuchen.

Darauf aufbauend könnten wie im BAWP im Zusammenhang mit Baurestmassen vorgegeben auch für Ausbruchmaterial Umwelt-Qualitätsklassen bestimmt werden. Die Grenzwerte der Parameter für ein Abfallende sollten dabei auf Grundlage von Untersuchungen von Ausbruchmaterial festgelegt werden (vgl. Pkt. 3.1.1). Auch für Ausbruchmaterial könnten so Leitparameter definiert werden. Hierbei sollten jedoch von der Verwendung abhängige Leitparameter definiert werden. Besonderheiten von geogen belasteten Böden sind dabei zu berücksichtigen.

Bestandteil einer Abfallendeverordnung für Tunnelausbruchmaterial sollte zusätzlich auch eine Regelung für eventuell erforderliche Zwischenlagerungen (Sekundärlagerstätten) sein.

Eine Abfallendeverordnung könnte dazu beitragen, Tunnelausbruchmaterial vermehrt als Primärrohstoff wahrzunehmen. Gleichzeitig könnten rechtliche Unsicherheiten hinsichtlich des Altlastensanierungsgesetzes beseitigt und Vereinfachungen in der Verwaltung erreicht werden.

8.3 Umweltverträglichkeitsprüfung (UVP)

Die Umweltverträglichkeitsprüfung wird im Umweltverträglichkeitsprüfungsgesetz²⁸⁸ (UVP-G) geregelt.

Anhand von im UVP-G angeführten Schwellenwerten bzw. Kriterien (Anhang 1 UVP-G) kann festgestellt werden ob für ein geplantes Projekt eine UVP durchzuführen ist. Für Projekte mit begrenzten Auswirkungen auf die Umwelt ist eventuell auch die Durchführung einer UVP im vereinfachten Verfahren möglich.

²⁸⁸ [85] Umweltverträglichkeitsprüfungsgesetz 2000.

Die UVP wird in einem konzentrierten Genehmigungsverfahren unter Einbeziehung der Öffentlichkeit durchgeführt. Die einzelnen Verfahrensschritte einer UVP werden in Abbildung 99 dargestellt.

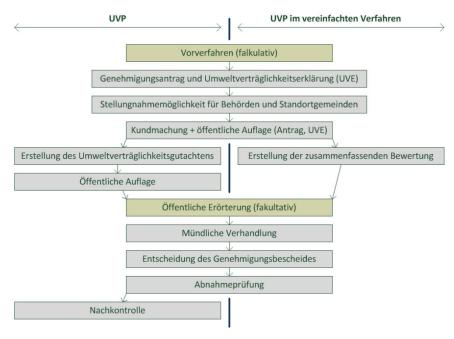


Abbildung 99: Ablaufschema UVP²⁸⁹

Aufgabe einer Umweltverträglichkeitsprüfung ist es die, durch ein Projekt verursachten, unmittelbaren und mittelbaren Auswirkungen auf

- Menschen, Tiere, Pflanzen und deren Lebensräume,
- Boden, Wasser, Luft und Klima,
- die Landschaft und
- Sach- und Kulturgüter

festzustellen, zu beschreiben und zu bewerten.

Bei einer UVP eines Untertageprojektes sind die Darstellung der Massenströme sowie des Deponiemanagements von großer Bedeutung.

Dass eine Verwendung des Ausbruchmaterials auch bei schwierigen geologischen Randbedingungen möglich und sinnvoll ist, konnte in der Vergangenheit schon mehrmals nachgewiesen werden. Aus diesem Grund sollte auch den möglichen positiven Folgen einer Verwendung wie z.B.:

- der Verminderung des Bedarfs an natürlichen Rohstoffen,
- der Verringerung des Transportaufkommens und
- der Einsparung von Deponievolumen
- der damit einhergehenden CO₂-Reduktion

-

²⁸⁹ Vgl. [86] Petek 2011, S. 11.

in Zukunft im UVP-Verfahren eine wichtigere Rolle beigemessen werden. Dies würde auch der im AWG enthaltenen Abfallhierarchie entsprechen. Eine Deponierung von Materialien sollte nur in Ausnahmefällen erfolgen.

Betrachtet man Tunnelbaustellen mit und ohne Verwendung des Ausbruchmaterials ist festzustellen, dass sich diese im Hinblick auf die Materialbewirtschaftung (Transport, Aufbereitung, Zwischenlagerung und Endlagerung) wesentlich unterscheiden. Um die Randbedingungen für die Verwendung richtig einschätzen zu können, ist ein ausführliches Untersuchungsprogramm durchzuführen (vgl. Pkt. 7.1).

Da die Beurteilung des Tunnelprojektes im UVP-Verfahren ganzheitlich erfolgt, ist eine Nachträgliche Änderung von wesentlichen Randbedingungen nach Vorliegen des UVP-Genehmigungsbescheides nur mehr unter erschwerten Bedingungen möglich.

Wird die Verwendung des Ausbruchmaterials im UVP-Verfahren nicht berücksichtigt ist davon auszugehen, dass das Ausbruchmaterial deponiert wird.

8.4 Zusammenfassung

Im Zusammenhang mit der Verwendung des Ausbruchmaterials sind Bestimmungen des Eigentumsrechts, des Abfallrechts und des Umweltrechts zu berücksichtigen.

In Österreich bleibt das Ausbruchmaterial im Allgemeinen im Eigentum des Grundstückseigentümers. Demgemäß sind daher im Bedarfsfall Vereinbarungen über die Nutzung des Ausbruchmaterials zwischen dem Auftraggeber eines Tunnelprojektes und den Grundstückseigentümern zu treffen.

Betrachtet man die Bestimmungen des Abfallrechts so ist Ausbruchmaterial derzeit dem Abfallbegriff zuzuordnen. Daraus resultieren vor allem in Bezug auf das Altlastensanierungsgesetz rechtliche Unsicherheiten, die eine Verwendung wesentlich erschweren können.

Um die Kreislaufwirtschaft zu forcieren, sollte für Tunnelausbruchmaterial eine Abfallende-Verordnung auf nationaler Ebene erstellt werden. Diese könnte sich an der sich derzeit in Diskussion befindlichen, Abfallende-Verordnung für Baurestmassen (Recycling-Baustoffe) orientieren. Zusätzlich sollten verwendungsspezifische Anforderungen berücksichtigt werden. Hierfür könnten von der Verwendung abhängige Leitparameter definiert werden. Besonderheiten des Untertagebaus wie z.B. die Notwendigkeit von ausreichenden Zwischenlagerungsmöglichkeiten des Materials auf der Baustelle sollten dabei berücksichtigt werden.

Gerade bei großen Tunnelprojekten die auch dem UVP-G unterliegen ist es erforderlich, dass die Verwendung des Ausbruchmaterials verstärkt im UVP-Verfahren Berücksichtigung findet.

Hierfür ist jedoch eine Anpassung der rechtlichen Bestimmungen an die Besonderheiten des Untertagebaus erforderlich.

Werden dieses Vorschläge umgesetzt ist davon auszugehen, dass das Ausbruchmaterial bei zukünftigen Projekten vermehrt einer Verwendung zugeführt wird.

Um die Umsetzung der Verwendung des Ausbruchmaterials zu forcieren, sollte eine Richtlinie erstellt werden, die zusätzlich zu den rechtlichen auch die technischen und geologischen Randbedingungen beinhaltet. Diese Richtlinie könnte in der Folge für alle Beteiligten eine klare Handlungsanweisung darstellen.

9 Bewertungsmatrix zur Beurteilung der Verwendbarkeit von Tunnelausbruchmaterial

Ausgehend von den

- im Pkt. 4 angegebenen technischen, mineralogischen und chemischen Anforderungen an Gesteinskörnungen sowie der im
- Bundesabfallwirtschaftsplan bzw. in der Deponieverordnung festgelegten chemischen Grenzwerte (vgl. Pkt. 8.2)

wurde eine Bewertungsmatrix zur Beurteilung der Verwendbarkeit von Tunnelausbruchmaterial erstellt.

Dabei werden in einem Excel-Programm einzelne Parameter von Gesteinsproben z.B. aus Probebohrungen bzw. von aufbereiteten Gesteinskörungen Grenzwerten aus Normen und Richtlinien gegenübergestellt.

Mithilfe der Bewertungsmatrix kann so sehr einfach die Eignung des Ausbruchmaterials für die Verwendung als

- Gesteinskörnung für die Betonproduktion,
- Gesteinskörnung für Tragschichten,
- Bahnschotter,
- Gesteinskörnung für Asphaltmischgut,
- Ziegelton und
- industrieller Rohstoff (von Kalkstein)

in der Entwurfs- und Planungsphase eines Tunnelprojektes bestimmt werden.

Der Nachweis der Verwendbarkeit des Tunnelausbruchmaterials sollte so früh wie möglich erfolgen. Hierfür wurden die Materialuntersuchungen den Projektphasen Entwurfs- und Planungsphase zugeteilt (vgl. 4.8).

Die Bewertungsmatrix kann in beiden Phasen verwendet werden. Auch einzelne Materialparameter können sehr einfach im Hinblick auf die Materialverwendung überprüft werden.

Untersuchungen der Planungsphase (2. Untersuchungsphase) werden in der Bewertungsmatrix mit *kursiver Schrift* auf dunkelgrauem Hintergrund gekennzeichnet.

Werden einzelne Grenzwerte überschritten, bedeutet dies jedoch nicht gezwungenermaßen ein Ausscheiden der Verwendungsmöglichkeit. In einem solchen Fall muss jedoch die Verwendbarkeit des Ausbruchmaterials einer genaueren Untersuchung unterzogen werden. Entspricht das Ausbruchmaterial den Anforderungen müssen zur Kontrolle der Ergebnisse verwendungsspezifische Untersuchungen (z.B. Betonversuche, Brennversuche von Ziegelton) durchgeführt werden.

Im Folgenden wird die Funktionsweise der Bewertungsmatrix näher beschrieben. Für den Benutzer sind insgesamt 10 Tabellenblätter einsehbar. Diese gliedern sich in 4 Eingabeblätter und 6 Ergebnisblätter.

Durch den Benutzer können nur die Eingabezellen (weißer Hintergrund) und die Steuerelemente bearbeitet werden. Berechnungstabellenblätter werden der Übersichtlichkeit wegen ausgeblendet.

Zwischen den einzelnen Tabellenblättern kann durch Klicken auf die Flächen der Navigationsleiste geblättert werden (vgl. Abbildung 100). Das jeweils aktuelle Tabellenblatt wird dabei durch eine farbliche Hinterlegung gekennzeichnet.

Technische Paramete	Chemische Para	meter Mineralogisc	he Parameter	Sieblinie	BAWP / DepVO
Gesteinskönung für	Gesteinskörnung für	Gesteinskörnung für	Gesteinskörnung für	Ziegelton	Kalk als industrieller
Betonproduktion	Tragschichten	Bahnschotter	Asphaltmischgut		Rohstoff

Abbildung 100: Navigationsleiste Bewertungsmatrix

In den Eingabeblättern

- (Geo-)Technische Parameter
- Chemische Parameter
- Mineralogische Parameter und
- Sieblinie

werden die, für die Bewertung eines Verwendungsszenarios erforderlichen Eigenschaften des zu beurteilenden Gesteinsmaterials abgefragt.

Eingabeblatt - Technische Parameter

Hier können die Ergebnisse der technischen Untersuchungen eingegeben werden. Die Untersuchungen der Planungsphase (2. Untersuchungsphase) werden dabei durch die Schriftart *kursiv* auf dunkelgrau hinterlegten Hintergrund gekennzeichnet.

	Norm/Richtlinie	Messw	vert
Druckfestigkeit	ON EN 1926:2007	65,0	N/mm²
E-Modul	ON B 3124-9:1986	33.000	N/mm ²
Widerstand gegen Zertümmerung			
LCPC-Test: Brechbarkeitsindex [B _R]	AFNOR P 18-579:1990	30	-
Frost-(Tau)-Widerstand	ON EN 1367-1:2007	F2	[•]
		2.	
Kornform (Antail der nicht kubischen Körner)	ON EN 933-1:2012	siehe eigenes T	40 V 50 + 1 V 50 V V 50 - 1 V 50 V
		0.11 (Magazini Antonio 11 12 12 12 12 12 12 12 12 12 12 12 12	
Korngrößenverteilung Kornform (Anteil der nicht kubischen Körner) Widerstand gegen Zertümmerung	ON EN 933-1:2012 ON EN 933-4	siehe eigenes T	M%
Kornform (Anteil der nicht kubischen Körner)		0.11 (Magazini Antonio 11 12 12 12 12 12 12 12 12 12 12 12 12	
Kornform (Anteil der nicht kubischen Körner) Widerstand gegen Zertümmerung LA-Wert [LA]	ON EN 933-4	30	M%
Kornform (Anteil der nicht kubischen Körner) Widerstand gegen Zertümmerung	ON EN 933-4 ON EN 1097-2:2010	30	M%
Kornform (Anteil der nicht kubischen Körner) Widerstand gegen Zertümmerung LA-Wert [LA] Wasseraufnahme ¹⁾	ON EN 933-4 ON EN 1097-2:2010 ON EN 1097-6:2006	30 32 0,4	M%

Abbildung 101: Eingabeblatt 1 - Technische Parameter

Eingabeblatt - Chemische Parameter

Sowohl in der Entwurfs- als auch der Planungsphase ist das Gesteinsmaterial auf seine chemischen Eigenschaften zu überprüfen. Hierfür sind Haupt- und Nebenelemente des Materials zu bestimmen. Um das Gestein auch im Hinblick auf die Anforderungen gem. Bundesabfallwirtschaftsplan (BAWP) und Deponieverordnung (DepVO) beurteilen zu können, ist auch die Eluierbarkeit von chemischen Parametern nachzuweisen. Der Einfluss der Vortriebsmethode auf die chemischen Eigenschaften ist dabei zu berücksichtigen (vgl. Pkt. 3.1).

Eluat	Einheit	Messwert
pH-Wert	[-]	10,9
elektrische Leitfähigkeit [ms/m]	[mS/m]	167
Abdampfrückstände	[mg/kg TM]	4000
Anorganische Stoffe		111
Aluminium (als Al)	[mg/kg TM]	8

estgehalt		
Anorganische Stoffe		
Arsen (als As)	[mg/kg TM]	50
Blei (als Pb)	[mg/kg TM]	100
Cadmium (Cd)	[mg/kg TM]	0,5
Chrom gesamt (als Cr)	[mg/kg TM]	

Abbildung 102: Ausschnitt Eingabeblatt 2 - Chemische Parameter

Die chemischen Parameter der Gesteinskörnung werden im Ergebnisblatt "BAWP / DepVO" den Grenzwerten des Bundesabfallwirtschaftsplans BAWP sowie der DepVO gegenübergestellt.

Zusätzlich können in diesem Eingabeblatt auch die Ergebnisse der Untersuchungen

- Alkali-Kieselsäure-Reaktivität
- Wasserlösliches Chlorid
- Säurelösliches Sulfat

eingetragen werden.

Eingabeblatt - Mineralogische Parameter

Das Eingabeblatt enthält die mineralogischen Bestandteile der untersuchten Gesteinsprobe. Im Falle des Glimmeranteils ist zusätzlich auszuwählen, ob der Glimmergehalt an einer trockenaufbereiteten Probe (Ausbruchmaterial) oder an einer nass-aufbereiteten Probe (aufbereitete Gesteinskörnung) bestimmt wurde. Dies ist in der Folge für die Festlegung des Grenzwertes des Glimmergehaltes von Bedeutung (vgl. Pkt. 4.1.16).

	Massen-%		
Glimmer	37,0 %	Ausbruchmaterial	-
		-	
Kaolinit (fire clay-Mineral)	7,0 %		
Sericit + Illit	15,0 %		
Smektit	2,0 %		
Chlorit	2,0 %		
Quarz	25,0 %		
Feldspat	10,0 %		
Calcit	55,0 %		
Dolomit + Ankerit	0,5 %		
Goethit			
Hämatit			
Siderit			
Pyrit	0,5 %		
Gips			
Hornblende	0,5 %		
Röntgenamorpher Rest	3,0 %		

Abbildung 103: Eingabeblatt - Mineralogische Parameter

Eingabeblatt - Sieblinie

In diesem Tabellenblatt wird die Sieblinie des zu bewertenden Gesteinsmaterials abgefragt. Einflüsse der Vertriebs- sowie der Aufbereitungsmethode sind dabei zu berücksichtigen.

	Siebdurchgang in Massen-%		Siebdurchgang in Massen-%
0,063 mm	3,8 %	<0,002 mm	30 %
0,125 mm	9,6 %	0,02 - 0,002 mm	4 %
0,25 mm	15,5 %	> 0,02 mm	35 %
0,5 mm	18,2 %	·	
1 mm	23,1 %		
2 mm	31,0 %		
4 mm	39,8 %		
5,6 mm	66		
8 mm	52,3 %		
11,2 (11) mm			
16 mm	68,7 %		
22 mm	1.0		
31,5 (32) mm	78,9 %		
40 mm			
45 mm			
50 mm			
63 mm	92,2 %		
80 mm	100,0 %		

Abbildung 104: Eingabeblatt Sieblinie

Die angegeben Siebgrößen ergeben sich aus Materialanforderungen aus Normen und Richtlinien. Stehen einzelne Ergebnisse des Siebdurchgangs nicht zur Verfügung können die Eingabezellen einfach freigelassen werden.

Die Sieblinie des zu beurteilenden Gesteinsmaterials wird in den Ergebnisblättern empfohlenen Sieblinienbereichen gegenübergestellt.

Ergebnisblatt - BAWP / DepVO

Die eingegebenen chemischen Parameter werden den Grenzwerten

- gem. Deponieverordnung
 - o Bodenaushubdeponie
 - o Inertabfalldeponie
 - $\circ \ Baurest mass en deponie$
 - o Reststoffdeponie
- gem. Bundesabfallwirtschaftsplan
 - o Recycling-Baustoffe
 - * Qualitätsklassen A+, A und B
 - o Aushubmaterialien
 - * Qualitätsklassen A1, A2-G, A2 und BA

gegenübergestellt.

Wird ein Grenzwert überschritten erscheint rechts neben dem Grenzwert der Eintrag "GWÜ" für Grenzwertüberschreitung (vgl. Abbildung 105).

Mit Hilfe von Steuerelementen können zusätzlich folgende Randbedingungen festgelegt werden:

- Gehalt eines Schadstoffes bei Bodenaushubmaterial geogen bedingt-
- Erhöhter TOC-Wert aufgrund Humusgehalts bei nicht verunreinigtem Bodenaushubmaterial und nicht verunreinigten Bodenbestandteilen.
- Aufgrund natürlicher Entwicklung versauertes Bodenaushubmaterial.
- Geogen bedingt gipshaltiges Bodenaushubmaterial.
- Frisch gebrochener Beton, Betonierungsrückstand und Bentonit-Schlämme.

4) Aufgrund natürlicher Einwirkungen	versauerter Boden			Gem. Depo	nieverordnung	
 5) Geogen bedingt gipshaltiger Boden 20) Frisch gebrochener Beton; Betonit 	Schlämme		Bodenaushub- deponie	Inertabfall-deponie	Baurestmassen- deponie	Reststoff-deponie
uat	Einheit	Messwert	Grenzwert	Grenzwert	Grenzwert	Grenzwert
pH-Wert	[-]	10,9	3,5 - 11 ^{4)8]}	3,5 - 12 ¹⁰⁾	3,5 - 13	6 - 12 27)28)
elektrische Leitfähigkeit [ms/m]	[mS/m]	167	150 ⁵⁾ GWÜ	150 ¹¹⁾ GWÜ	350 ¹⁹⁾²⁰⁾	_ 29)
Abdampfrückstände	[mg/kg TM]	4000		-	25.000	60.000
Anorganische Stoffe						
Aluminium (als Al)	[mg/kg TM]	8	_ 6)	- 12)	2	100 30)
Antimon (als Sb)	[mg/kg TM]	0.06		0.06	2	0.7

Abbildung 105: Ausschnitt Ergebnisblatt - BAWP / DepVO

Zusammenfassend wird die Eignung (alle Grenzwerte werden eingehalten) des untersuchten Materials tabellarisch angegeben.

	Geeignet
Bodenaushubdeponie	NEIN
Inertabfalldeponie	NEIN
Baurestmassendeponie	NEIN
Reststoffdeponie	JA
Qualitätsklasse A+	NEIN
Qualitätsklasse A	NEIN
Qualitätsklasse B	NEIN
Qualitätsklasse A1	NEIN
Qualitätsklasse A2-G	NEIN
Qualitätsklasse A2	NEIN
Qualitätsklasse BA	NEIN

Abbildung 106: Ausschnitt Ergebnisblatt - BAWP / DepVO - Gesamtbeurteilung

In den Ergebnisblättern

- Gesteinskörnung für die Betonproduktion
- Gesteinskörnung für Tragschichten,
- Bahnschotter,
- Gesteinskörnung für Asphaltmischgut,
- Ziegelton und
- industrieller Rohstoff von Kalkstein

werden die eingegebenen Untersuchungsergebnisse Grenzwerten gegenübergestellt.

Die Bewertung von Untersuchungsergebnissen der 2. Untersuchungsphase (Planungsphase) wird durch *kursive Schrift* auf dunkelgrauem Hintergrund gekennzeichnet.

Dort wo im Bundesabfallwirtschaftsplan Grenzwerte bezüglich der Verwendbarkeit des Ausbruchmaterials angegeben werden, wird die Eignung tabellarisch dargestellt. Die Auswertung der einzelnen Parameter kann dem Ergebnisblatt "BAWP / DepVO" entnommen werden.

Für die Verwendungsmöglichkeiten

- Gesteinskörnung für die Betonproduktion
- Gesteinskörnung für Tragschichten,
- Bahnschotter und
- Gesteinskörnung für Asphaltmischgut

wird die Sieblinie der Gesteinsprobe empfohlenen Sieblinienbereichen gegenübergestellt (vgl. Pkt. 4).

Die Bewertungsmatrix kann dem Anhang entnommen werden (beiliegende CD).

10 Zusammenfassung / Ausblick

Gem. der europäischen und österreichischen Umweltgesetzgebung ist in Zukunft der Ressourcenverbrauch einzuschränken. Eine Möglichkeit dieser Forderung bei der Errichtung von Untertagebauwerken nachzukommen stellt die Verwendung von Tunnelausbruchmaterial dar.

So kann durch die Verwendung von Ausbruchmaterial als mineralischer Rohstoff der Verbrauch von Rohstoffreserven aber auch an Grund und Boden (z.B. Deponieflächen) wesentlich verringert werden. Durch die einhergehende Verkürzung der Transportwege sind auch positive Auswirkungen auf die Emissionen (z.B. Staub, Lärm, CO₂) einer Untertagebaustelle zu erwarten.

Die Verwendung von Tunnelausbruchmaterial als mineralischer Rohstoff ist wesentlich von den geologischen, technischen und rechtlichen Randbedingungen eines Untertagebauprojektes abhängig. Entspricht das Ausbruchmaterial den Anforderungen eines mineralischen Rohstoffes ist zusätzlich auch der Rohstoffbedarf im Projektumfeld zu berücksichtigen.

In der vorliegenden Arbeit wurden die einzelnen Randbedingungen einer näheren Betrachtung unterzogen.

Ausgehend von Untersuchungsergebnissen wurden die Auswirkungen der Vortriebsarbeiten auf die chemischen Eigenschaften des Ausbruchmaterials ermittelt. Dabei konnte gezeigt werden, dass vor allem die Parameter pH-Wert, Aluminium, elektrische Leitfähigkeit, Ammonium, Nitrit und Kohlenwasserstoff durch den Einsatz von Spritzbeton und Sprengmittel beeinflussen werden.

Zusätzlich zu den chemischen Eigenschaften werden aber auch die geotechnischen Eigenschaften Kornform und Sieblinie des anstehenden Gesteins wesentlich durch die Vortriebsarbeiten verändert.

Aufgrund der Komplexität ist es erforderlich die Verwendung des Ausbruchmaterials schon im Zuge der Projektierungs- und Planungsphase eines Untertagebauwerkes zu berücksichtigen.

Um den Nachweis, ob das zu erwartende Ausbruchmaterial einer Verwendung zugeführt werden kann, zu erleichtern, wurde daher eine Empfehlung von durchzuführenden Materialuntersuchungen erstellt. Dabei wurden die Verwendungsmöglichkeiten Gesteinskörnung für die Betonproduktion, Gesteinskörnung für Tragschichten, Bahnschotter, Gesteinskörnung für Asphaltmischgut, Ziegelton und industrieller Rohstoff (Kalkstein) berücksichtigt.

Um eine Abschätzung des Verwendungspotentials so früh wie möglich zu erreichen, wurden die Materialuntersuchungen dabei den Projektphasen Projektierungs- und Planungsphase zugeteilt. Erste Untersuchungen der technischen, chemischen und mineralogischen Eigenschaften können so bereits an Materialproben aus Probebohrungen durchgeführt werden. Eine erste Abschätzung des Verwendungspotentials wird so schon in der der Projektierungsphase eines Untertagebauprojektes ermöglicht.

Werden die in Abhängigkeit der Verwendungsart definierten Materialanforderungen eingehalten, sollten in einem zweiten Schritt in der Planungsphase eines Untertagebauprojektes weitere Materialuntersuchungen vorgenommen werden. Hierbei wird auch die Durchführung von großtechnischen Aufbereitungsversuchen empfohlen. Dadurch kann der Einfluss einer Materialaufbereitung auf das Verwendungspotential berücksichtigt werden. Im Idealfall steht außerdem als Probenmaterial Ausbruchmaterial z.B. aus Erkundungstollen, welches mit der gleichen Vortriebsmethode wie im Hauptvortrieb vorgesehen gewonnen wurde, zur Verfügung.

Die definierten Materialuntersuchungen bilden in der Folge auch die Grundlage einer Qualitätssicherung auf der Baustelle.

Um den Nachweis von Verwendungspotentialen zu erleichtern, wurde eine Bewertungsmatrix erstellt. Darin werden die technischen, chemischen und mineralogischen Eigenschaften den angegebenen Grenzwerten gegenübergestellt. Durch die Bestimmungen von ausgewählten Materialeigenschaften können so sehr einfach mehrere Verwendungspotentiale gleichzeitig beurteilt werden.

Kann das Ausbruchmaterial als mineralischer Rohstoff verwendet werden, muss in einem nächsten Schritt das hierfür erforderliche Massenmanagement geplant werden. Hierbei ist vor allem die Wechselbeziehung zwischen Materialanfall und Materialbedarf zu berücksichtigen. Als Hilfstool wurde hierfür ein Berechnungsprogramm entwickelt. Mithilfe dieses Programms können auch Variantenstudien für verschiedene Verwendungsszenarien problemlos durchgeführt werden.

Beide Programme wurden, um die Anwendung zu erleichtern, auf Basis des Tabellenkalkulationsprogramm Excel 2000 erstellt.

Im Zusammenhang mit der Verwendung des Ausbruchmaterials sind auch Bestimmungen des Eigentumsrechts, des Abfallrechts und des Umweltrechts zu berücksichtigen.

In Österreich bleibt das Ausbruchmaterial im Allgemeinen im Eigentum des Grundstückseigentümers.

Betrachtet man die Bestimmungen des Abfallrechts so ist Ausbruchmaterial derzeit dem Abfallbegriff zuzuordnen. Daraus resultieren vor allem in Bezug auf das Altlastensanierungsgesetz rechtliche Unsicherheiten, die eine Verwendung wesentlich erschweren können.

Um die Kreislaufwirtschaft zu forcieren, sollte für Tunnelausbruchmaterial daher eine Abfallende-Verordnung auf nationaler Ebene erstellt werden.

Dabei ist auch zu berücksichtigen, dass das Ausbruchmaterial a priori in Zukunft als mineralischer Rohstoff und nicht als Abfall gesehen wird.

In Zukunft sollte die Untersuchung und Planung einer Verwendung von Ausbruchmaterial integralerer Bestandteil eines jeden Untertagebauprojektes sein. Zur Unterstützung dieses Zieles sollte daher mithilfe von Auftraggebern und Auftragnehmern von Untertagebauwerken in Österreich ein Regelblatt mit Empfehlungen bezüglich der Verwendung von Ausbruchmaterial erstellt werden.

11 Literaturverzeichnis

- [1] Bundesgesetz über die nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002 AWG 2002), BGBl. I Nr. 102 Wien: 2011
- [2] Bundesministerium für Wirtschaft, Familie und Jugend: Österreichisches Montan-Handbuch 2010, 84. Jahrgang – Wien: Eigenverlag, 2010
- [3] Forum mineralische Rohstoffe: Die volkswirtschaftliche Bedeutung mineralischer Rohstoffe in Österreich Wien: Eigenverlag, 2007
- [4] Geologische Bundesanstalt: Außeruniversitäre Forschung in Österreich am Beispiel der geologischen Bundesanstalt Wien: Eigenverlag, 2004
- [5] Jodl H.G., Resch D.: NATM und TBM eine baubetriebliche Gegenüberstellung. Geomechanics and Tunnelling Berlin: Wilhelm Ernst & Sohn, 2011, Heft 4
- [6] Richtlinie 2008/98/EG des europäischen Parlaments und des Rates über Abfälle und zur Aufhebung bestimmter Richtlinien Brüssel: 2008
- [7] Wasserbauer R.: Die volkswirtschaftliche Bedeutung mineralischer Rohstoffe in Österreich. Berg- und Hüttenmännische Monatshefte Wien: Springer, 2007, Volume 152, Nummer 12, S. 391 396
- [8] Weber L.: Zur Rohstoffinitiative der Europäischen Kommission (Mitteilung der Kommission an das Europäische Parlament und den Rat, KOM (2008) 699). Bergund Hüttenmännische Monatshefte Wien: Springer, 2008, Volume 153, Nummer 12, S. 289 295
- [9] Haack A., Schäfer M.: Tunnelbau in Deutschland Statistik 2010/2011, Analyse und Ausblick. Tunnel Gütersloh: Bauverlag, 2011, Heft 8, S. 28 41
- [10] Tiess G.: Bedeutung der Sand- und Kiesindustrie in Europa. Berg- und Hüttenmännische Monatshefte Wien: Springer, 2005, Volume 150, Nummer 2, S. 33 38
- [11] Haack A.: Zukunftsweisende Entwicklungen bei Bau und Betrieb von Tunneln. Tunnel – Gütersloh: Bauverlag, 2007, Heft 8, S. 12 – 22
- [12] Bundesabfallwirtschaftsplan 2011 (BAWP) Wien: Bundesministerium für Landund Forstwirtschaft, Umwelt und Wasserwirtschaft, 2011
- [13] Schubert W.: Felsmechanik und Tunnelbau. Vorlesungsskriptum TU Graz: Eigenverlag, 1994
- [14] Fachverband Stein- und Keramischen Industrie Österreich: Der Weg der Steine 08/09 Wien: Eigenverlag, 2009
- [15] Deponieverordnung 2008 Wien: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Fassung vom 09.11.2011
- [16] Saxer A., Lukas W.: Beurteilung des stofflichen Austrages aus deponiertem Tunnelausbruchmaterial. Tunnel Gütersloh: Bauverlag, 1996, Heft 7, S. 48 54
- [17] Hitz A., Schneebeli W.: Verwertung belasteter Schlämme aus dem Gotthard-Basistunnel. http://www.alptransit.ch. 29.07.2011
- [18] Technische Verordnung über Abfälle (TVA) Bern: Schweizer Bundesrat, 1990
- [19] Saxer A., Lukas W.: Untersuchung es umweltrelevanten Gefährdungspotentials von Tunnelausbruch. Felsbau Essen: VGE Verlag GmbH, 1997, S. 111 118
- [20] Institut für nachhaltige Abfallwirtschaft und Entsorgungstechnik, Montanuniversität Leoben: Seminarunterlagen Leoben: Eigenverlag, 2009

- [21] Orica Germany GmbH: Explosivstoffe und ihr Einfluss auf Grund- und Oberflächenwasser. Nobel Hefte -Troisdorf: Eigenverlag, 2006
- [22] Weissenberger M.: Unterquerung Autobahn A2 am Ceneri Basistunnel Erfahrungen mit Bauhilfsmaßnahmen. Kolloquium "Bauhilfsmaßnahmen im Tunnelbau" Zurüch: ETH-Zürich, 2010
- [23] Maidl B., Herrenknecht M., Maidl U., Wehmeyer G.: Maschineller Tunnelbau im Schildvortrieb, 2. Auflage Berlin: Wilhelm Ernst & Sohn, 2011
- [24] Betonakademie: Betontechnologie 2, Seminarunterlagen Wien: Eigenverlag, 2011
- [25] Springenschmid R.: Betontechnologie für die Praxis Berlin: Bauwerk Verlag, 2007
- [26] Richtlinie Innenschalenbeton Wien: Österreichische Vereinigung für Beton- und Bautechnik 2003
- [27] Richtlinie Spritzbeton Wien: Österreichische Vereinigung für Beton- und Bautechnik 2009
- [28] ÖNORM EN 12620:2008, Gesteinskörnungen für Beton Wien: Österreichisches Normungsinstitut 2008
- [29] ÖNORM B 4710-1:2007, Beton, Teil 1 Wien: Österreichisches Normungsinstitut 2007
- [30] ÖNORM EN 933-4:2008, Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen, Teil 4, Bestimmung der Kornform Kornformkennzahl Wien: Österreichisches Normungsinstitut 2008
- [31] Krispel St., Huber H.: Beton für Tunnelinnenschalen. Tagungsband Brennerkongress Innsbruck: Eigenverlag, 2009
- [32] Zement + Beton: Zement und Beton, Fachtextbuch Wien: AV + Astoria Druckzentrum, 2010
- [33] DAUB: Betonauskleidung für Tunnel in geschlossener Bauweise. Tunnel Gütersloh: Bauverlag, 2001, Heft 3, S. 31
- [34] Schneider B.: Beton im Untertagebau, Teil 1. Swiss Tunnel Congress 2010 Luzern: Eigenverlag, 2010, S. 220 226
- [35] Schaab A.: Beton, Baustoff des Tunnelbaus Betontechnologie der Teilabschnitte Bodio/Fadio am Gotthard-Basistunnel. Swiss Tunnel Congress 2010 – Eigenverlag, 2010, S. 120 - 133
- [36] Beeler P.: Spannungsfeld neue Normen. Swiss Tunnel Congress 2010 Luzern: Eigenverlag, 2010, S. 236 249
- [37] Huber H.: Der Einfluss von gebrochenen Gneiszuschlagstoffen auf den Beton der Zemmkraftwerke. Dissertation Universität Innsbruck Mayrhofen: Eigenverlag, 1971
- [38] Huber H.: Forschungsprojekt Verwertung von Tunnelausbruchmaterial, Nichtveröffentlichte Stellungnahme Wien: Eigenverlag, 2009
- [39] Weber R., Riechers H. J.: Kies und Sand für Beton Duisburg: Verlag Bau+Technik, 2003
- [40] Hürlimann C.: Optimierung des Betonsystems der Alptransit-Baustelle Sedrun. Konferenz Betonbauten in der Schweiz 2010 - Washington: Eigenverlag, 2010
- [41] Teuscher P., Thalmann C., Fetzer A., Carron Ch.: Alpenquerende Tunnel; Material-bewirtschaftung und Betontechnologie beim Lötschberg-Basistunnel. Beton- und

- Stahlbetonbau Berlin, Ernst & Sohn, 2007, Heft 1, S. 2 10
- [42] Richtlinie Tübbingsysteme aus Beton Wien: Österreichische Vereinigung für Beton- und Bautechnik, 2009
- [43] ÖNORM EN 1097-5, Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen, Teil 5, Bestimmung des Wassergehaltes durch Ofentrocknung Wien: Österreichisches Normungsinstitut, 2010
- [44] ÖNORM EN 1367-1, Prüfverfahren für thermische Eigenschaften und Verwitterungsbeständigkeit von Gesteinskörnungen Teil 1: Bestimmung des Widerstands gegen Frost-Tau-Wechsel Wien: Österreichisches Normungsinstitut, 2007
- [45] ÖNORM B 3100, Beurteilung der Alkali-Kieselsäure-Reaktivität im Beton Wien: Österreichisches Normungsinstitut, 2008
- [46] ÖNR 23303, Prüfverfahren Beton (PVB) Nationale Anwendung der Prüfnormen für Beton und seiner Ausgangsstoffe Wien: Österreichisches Normungsinstitut, 2010
- [47] Eppensteiner W., Augustin-Gyurits K., Pfeiler A.: Unbedenklichkeit von in Österreich verwendeten Gesteinskörnungen betreffend Alkali-Kieselsäure-Reakivität (AKR) im Beton Wien, Eigenverlag, 2009
- [48] Verband der Schweizer Cementindustrie: Alkali-Aggregat-reaktion (AAR) in der Schweiz Bern, Eigenverlag, 2005
- [49] BVK-Betontechnische Merkblätter: Merkblatt Massenbeton Düsseldorf, Bundesverband Kraftwerksnebenprodukte e. V., 2007
- [50] Klotzinger E.: Der Oberbauschotter, Teil 1, Anforderungen und Beanspruchung. Eurailpress Hamburg, 2008, Nr. 01+02
- [51] Leemann A., Thalmann-Suter C., Kruse M.: Ergänzende Prüfungen zu den bestehenden beton-Normen für gebrochene Zuschlagsstoff, Erfahrungen bei AlpTransit Gotthad Zürich, 1999, Nr. 24.
- [52] Kruse M.; Schindler C., Thalmann C.: Aggregates for high quality concrete and shotcrete made out of excavated rock material experiences gained on the Alp-Transit tunnel projects. Proceedings of industrial minerals and buildings stones Istanbul, 2003
- [53] Heinrich M.: Baurohstoffe in Österreich. http://www.boehlauverlag.com/download. 13.11.2011
- [54] Resch D., Lassnig K., Galler R., Ebner F.: Tunnelausbruch, hochwertiger Rohstoff. Geomechanics an Tunnelling Berlin: Ernst & Sohn, 2009, Nr. 5
- [55] Harer G., Pichler P.: Lösungen zur nachhaltigen Verringerung des Deponieerfordernisses beim Koralmtunnel. Geomechanics an Tunnelling Berlin: Ernst & Sohn, 2009, Nr. 5
- [56] Pichler P., Fleischhacker E.: Handling of Excavated Material from the Koralm Tunnel in Styria. Geomechanics an Tunnelling Berlin: Ernst & Sohn, 2008, Nr. 4
- [57] Lassing K., Ebner F.: Verwertung von Tunnelausbruchmaterial, Potential bei Zukunftsprojekten Österreichs aus Sicht der Geologie. Vortrag Bergbautag – Bad Gastein, 2010
- [58] Zbinden P.: Alpenquerende Tunnel, Prüfsystem für Betonmischungen beim Gotthard-Basistunnel. Beton- und Stahlbetonbau Berlin, 2007, Nr. 1
- [59] Schlumpf J.: Betonsysteme Gotthard-Basistunnel; Ausschreibung, Zulassung, Umsetzung und Erfahrungen aus Sicht der Materiallieferanten. Swiss Tunnel Congress

- Luzern, 2010
- [60] Neroth G., Vollenschaar D.: Wendehorst Baustoffkunde, 27. Auflage Braunschweig: Vieweg + Teubner, 2011
- [61] ÖNORM EN 1097-6, Prüfverfahren für mechanische und physikalische Eigenschaften von Ge-steinskörnungen Teil 6: Bestimmungen der Rohdichte und der Wasseraufnahme Wien: Österreichisches Normungsinstitut, 2006
- [62] ÖNORM EN 933-3, Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen Teil 3: Bestimmungen der Kornform Plattigkeitskennzahl Wien: Österreichisches Normungsinstitut, 2004
- [63] Gugelmann B.: Optimierung der Betonproduktion auf der Alp-Transit-Baustelle Bodio Zürich: SIA Schweizerischer Ingenieur und Architektenverein, 2006
- [64] Zbinden P., Hitz A.: Materialbewirtschaftung des Gotthard-Basistunnels. Felsbau Essen, 2002, Nr. 5
- [65] ÖNORM B 2203-1, Untertagebauarbeiten Werkvertragsnorm Teil 1: Zyklischer Vortrieb Wien: Österreichisches Normungsinstitut, 2001
- [66] Gesprächsprotokoll, Exkursion Ceneri-Basistunnel, Materialbewirtschaftung Agir Aggregat AG, 2011
- [67] Lieb R.: Anspruchsvolle Materialbewirtschaftung. Tunnel Gütersloh: Bauverlag, 2009, Heft 4
- [68] Lieb R.: Materialbewirtschaftung am Gotthard-Basistunnel Kenntnisse aus 15 Jahren Ausführung. Geomechanics an Tunnelling Berlin, 2009, Nr. 5
- [69] Kruse M.: Aufbereitung des Ausbruchmaterials am Gotthard-Basistunnel. Tunnel Gütersloh: Bauverlag, 2002, Heft 5
- [70] BLS AlpTransit AG: Schlussbericht Logistik Ausbruch- und Materialbewirtschaftung Lötschberg-Basistunnel Raron, 2008
- [71] ÖBB BH 700, Technische Lieferbedingungen für Oberbauschotter: Österreichische Bundesbahnen, 2011
- [72] ÖNORM EN 1097-2, Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen, Teil 2, Verfahren zur Bestimmung des Widerstandes gegen Zertrümmerung Wien: Österreichisches Normungsinstitut 2010
- [73] ÖNORM EN 1097-1, Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen, Teil 1, Bestimmung des Widerstandes gegen Verschleiß (Micro-deval) Wien: Österreichisches Normungsinstitut 2004
- [74] Thalmann C.: Wiederverwertung von Ausbruchmaterial aus dem konventionellen und maschinellen Tunnelvortrieb zu Kiesersatzprodukten eine Herausforderung an die Kieswerke. Die Schweizer Baustoff-Industrie 1994, Heft 6
- [75] Wenusch H.: ÖNORM B 2110, Praxiskommentar zum Bauwerksvertrag Wien: Springer, 2009
- [76] Kurbos R.: Baurecht in der Praxis Wien: Linde, 2006
- [77] Mineralrohstoffgesetz (MinroG), Fassung vom 01.12.2011
- [78] Gretzmacher G., Reichel P., Stanek W.: Rechtliche Einordnung von Tunnelausbruch unveröffentlicht, 2010
- [79] Entacher M., Resch D., Reichel P., Galler R.: Wiederverwertung von Tunnelausbruchmaterial, Abfallrecht im Berg- und Tunnelbau. Geomechanics an Tunnelling Berlin, 2011, Nr. 5

- [80] Eder P.: Abfallendeverordnung auf EU-Ebene. Vortrag Abfallrecht für die Praxis Wien, 2011
- [81] Deponieverordnung 2008, Fassung vom 09.11.2011
- [82] Altlastensanierungsgesetz 1989 (ALSAG), Fassung vom 09.11.2011
- [83] Richtlinie für Recycling-Baustoffe Wien: Baustoff-Recycling Verband 2009, 8. Auflage
- [84] Car M.: Abfallendeverordnung für Baurestmassen. Vortrag Abfallrecht für die Praxis Wien, 2011
- [85] Umweltverträglichkeitsprüfungsgesetz 2000 (UVP-G), Fassung vom 01.11.2011
- [86] Petek W.: Die UVP und ihre rechtlichen Grundlagen in der EU und in Österreich. Vortrag Spezialseminar UVP, Chancen oder Fessel für Projekte Salzburg, 2011
- [87] RVS 08.15.01, Technische Vertragsbedingungen, Unterbauplanum und ungebundene Tragschichten; Ungebundene Tragschichten Wien: Österreichisches Forschungsgesellschaft Straße + Schiene + Verkehr 2010
- [88] Pichler W., Huber H.: Prüfungsergebnis; Verwendbarkeit von Tunnelausbruch als Gesteinskörnung für Beton; Koralmtunnel 2009
- [89] Thalmann-Suter C.: Tunnelhaufwerk, lästiges Entsorgungsmaterial oder potentieller Betonzuschlag. Tunnel Gütersloh: Bauverlag, 1997, Heft 1
- [90] Thalmann C.: Beurteilung und Möglichkeiten der Wiederverwertung von Ausbruchmaterial aus dem maschinellen Tunnelvortrieb zu Betonzuschlagstoffen. Dissertation ETH Zürich Zürich: Schweizerische Geotchnische Kommission, 1996
- [91] Thuro K.: Empfehlungen Nr. 5 "Punktlastversuche an Gesteinsproben" des Arbeitskreises 3.3 "Versuchstechnik Fels" der Deutschen Gesellschaft für Geotechnik. Bautechnik Berlin: Ernst&Sohn, 2010, Heft 6
- [92] Schießl E.H.P.: Skriptum zur Grundvorlesung in Baustoffkunde, Teil C Gesteinskörnungen. München Lehrstuhl für Baustoffkunde und Werkstoffprüfung, Technische Universität München, 2007
- [93] ÖNORM EN 13450, Gesteinskörnungen für Gleisschotter Wien: Österreichisches Normungsinstitut 2004
- [94] Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Ressourceneffizienz Aktionsplan (REAP) Wien: Eigenverlag, 2012
- [95] Europäische Kommission: Mitteilung der Kommission an das Europäische Parlament und den Rat, COM(2008) 699
- [96] Europäisches Parlament und Rat: Verordnung zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten und zur Aufhebung der Richtlinie 89/106/EWG des Rates, Verordnung (EU) Nr. 305/2011
- [97] Haid H.G., Hammer H.: Katzenbergtunnel umwelttechnische und genehmigungsrechtliche Randbedingungen für die Verwertung von Tunnelausbruchmaterial. Geomechanics an Tunnelling Berlin: Ernst & Sohn, 2009, Nr. 5
- [98] Thalmann C.: Optimale Wiederverwertung von TBM-Ausbruchmaterial. Schweizer Ingenieur und Architekt Zürich: Verlags-AG der akademischen technischen Vereine, 1995, Nr. 47
- [99] Büchi E., Thalmann C.: Wiederverwendung von TBM-Ausbruchmaterial Einfluss des Schneidrollenabstandes. Tagungsband Symposium TBM Know-How zum Projekt NEAT Luzern: Eigenverlag, 1995
- [100] Forschungsprojekt Recycling von Tunnelausbruchmaterial, Gesprächsprotokoll,

- 03.02.2012
- [101] Forschungsprojekt Recycling von Tunnelausbruchmaterial, Untersuchungsergebnisse, 03.02.2012
- [102] RVS 08.03.01, Technische Vertragsbedingungen, Erdarbeiten Wien: Österreichisches Forschungsgesellschaft Straße + Schiene + Verkehr 2010
- [103] ÖNORM B 4400-1, Geotechnik, Teil 1, Benennung, Beschreibung und Klassifizierung von Böden Wien: Österreichisches Normungsinstitut 2010
- [104] ÖNORM EN 933-1, Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen, Teil 1, Bestimmung der Korngrößenverteilung, Siebverfahren Wien: Österreichisches Normungsinstitut 2012
- [105] RVS 08.97.05, Technische Vertragsbedingungen, Anforderungen an Asphaltmischgut Wien: Österreichisches Forschungsgesellschaft Straße + Schiene + Verkehr 2010
- [106] Lorenz W., Gwosdz W.: Handbuch zur geologisch-technischen Bewertung von mineralischen Baurohstoffen; Geologisches Jahrbuch; Sonderhefte Reihe H; Heft SH 16 Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe und den Staatlichen Geologischen Diensten in der Bundesrepublik Deutschland, 2003
- [107] Boos R.: Stand der Technik bei der Herstellung keramischer Erzeugnisse (Dachziegel, Ziegelsteinen, feuerfesten Steinen und Feinkeramik) durch Brennen. Schriftenreihe des BMLFUW Wien: Bundesministerium für Land- und Forstwirtschaft Umwelt und Wasserwirtschaft, 2003
- [108] Rickli M.: Tunnelausbruchmaterial als Ersatzrohstoff für grobkeramische Produkte und digitale Mikrostrukturanalyse zur Qualitätssicherung. Inauguraldissertation Bern: Universität Bern, 2000
- [109] ÖNORM EN 1926, Prüfverfahren für Naturstein Bestimmung der Druckfestigkeit Wien: Österreichisches Normungsinstitut 1999
- [110] Fischböck E.K., Nischer P.: Kornzusammensetzung des Mehlkorns; Notwendigkeit der Ermittlung und Einfluss der Bestimmungsmethode auf das Ergebnis. Zement+Beton Wien: Vereinigung der österreichischen Zementindustrie, 2009, Heft 5
- [111] Präsentation Entglimmerung von Sand 0/1: Sieber Cassina + Handke AG. http://www.sch-chur.ch. 03.10.2011
- [112] Cichos Ch., Plate H., Klitta M., Schnitzler U., Puntli P., Thalmann C.: Erfahrungen bei der Inbetriebnahme einer Flotationsanlage zur Entglimmerung von Brechsand beim Bau des Gotthard-Basistunnels. Tagungsband Aufbereitung und Recycling Freiberg, 1993
- [113] Kohler G.: Recyclingpraxis Baustoffe, 3. Auflage Köln: TÜV Verlag, 1997
- [114] Firmenprospekte: Firma Aubema Maschinenfabrik GmbH, 2011
- [115] DBT Mineral Pocessing: Schlagwalzenbrecher im Lötschberg-Basistunnel. Tunnel Gütersloh: Bauverlag, 2011, Heft 4, S. 123 128
- [116] Firmenprospekt: Firma Rohr Bagger GmbH. http://www.rohrbagger.de. 02.09.2011
- [117] Firma Marti Technik AG: Firmenprospekt. http://www.martitechnik.ch. 03.09.2011
- [118] Schnellert T.: Praktikumsanleitung; Grobzerkleinerung von Rohstoffen und Bauabfällen. Bauhaus-Universität Weimar Weimar, 2008

- [119] Kirschbaum M., Reinhardt W., Kamermans F.: Auslegung und Bauweise einer modernen Aufbereitungsanlage für Schotter und Splitte. Gesteins-Perspektiven Iffezheim, 2009, Heft 7
- [120] Metso Minerals: Steigerung der Wirtschaftlichkeit von Aufbereitungsanlagen. Advanced Minig Solutions - Clausthal-Zellerfeld, 2009, Ausgabe 01
- [121] Dopler Ch.: Widerverwertung von Tunnelausbruchmaterial in naheliegenden Produktions- und Industriestandorten. Diplomarbeit Montanuniversität Leoben Leoben, 2009
- [122] SBM Mineral Processing: Firmenprospekt Prallbrecher. http://www.sbm-mp.at, 02.06.2011
- [123] Äschbach M.: Lötschberg Basistunnel; Vergleich der Vortriebe TBM/SPV im Baulos Raron. Vortrag Alp Transit-Tagung Locarno, 2003
- [124] ÖBB Infrastruktur AG: Ausschreibung Koralmtunnel Baulos KAT2, Teil 3.2.4, 2009
- [125] Harer G., Pichler P.: Lösungen zur nachhaltigen Verringerung des Deponieerfordernisses beim Koralmtunnel. Vortrag Geomechanikkolloquium Salzburg, 2009
- [126] Bundesinnung Bau, Fachverband der Bauindustrie: ALSAG-Merkblatt 2010 Wien, 2010
- [127] ÖNORM EN ISO 14040: Umweltmanagement Ökobilanz Grundsätze und Rahmenbedingungen Wien: Österreichisches Normungsinstitut 2009
- [128] ÖNORM EN ISO 14025: Umweltkennzeichnungen und -deklarationen Typ III Umweltdeklaration Grundsätze und Verfahren Wien: Österreichisches Normungsinstitut 2010
- [129] Merl A., Kieselbach S.: Recycling von Tunnelausbruch Umweltauswirkungen; Vorgezogene erste Bewertung. Forschungsprojekt Recycling von Tunnelausbruchmaterial – Wien, 2009
- [130] Anfragebeantwortung 2011
- [131] BLS AlpTransit AG: Schlussbericht Betontechnologie Lötschberg-Basistunnel Raron, 2008
- [132] Wolfslehner E.: Rechtsansichten zu den Ausnahmebeständen des §3 Abs. 1 Z1 und Z8 Abfallwirtschaftsgesetz 2002 (AWG 2002) Wien: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 20.09.2011
- [133] ÖNORM S 2126: Grundlegende Charakterisierung von Ausbruchmaterial vor Beginn der Aushub- oder Abräumtätigkeit – Wien: Österreichisches Normungsinstitut 2010
- [134] Pralong J., Burdin J., Thalmann C.: Ausbruchmaterial Bewirtschaftung / Betontechnologie. Vortrag FGU-Tagung Thun, 2002
- [135] ÖBB-Infrastruktur: Semmering-Basistunnel Neu; Einreichoperat für das eisenbahnrechtliche Baugenehmigungsverfahren einschließlich wasserrechtlicher belange. Plannummer: 5510-EB-1001AL-00-1001-F01, 2010
- [136] Kordina H.: Eisenbahnrechtliches Baugenehmigungsverfahren Gutachten gemäß § 31a Eisbg; Brenner Basistunnel Wien 2008
- [137] Gebrauchsanweisung Formtrenntisch: Firma FARGON.
- [138] Thuro K., Singer J., Käsling H., Bauer M.: Abrasivitätsuntersuchungen an Lockergesteinen im Hinblick auf die Gebirgslösung. Tagungsbeitrag 29. Baugrundtagung – Bremen 2006

- [139] Thuro K., Käsling H.: Klassifikation der Abrasivität von Boden und Fels. Geomechanics and Tunnelling Berlin: Wilhelm Ernst & Sohn, 2009, Heft 2
- [140] Büchi E., Mathier j., Wyss Ch.: Gesteinsabrasivität ein bedeutender Kostenfaktor beim mechanischen Abbau von Fest- und Lockergestein. Tunnel Gütersloh: Bauverlag, 1995, Heft 5
- [141] Käsling H., Thiele I., Thuro K.: Abrasivitätsuntersuchungen mit dem Cerchar-Test eine Evaluierung der Versuchsbedingungen. Tagungsbeitrag 16. Tagung für Ingenieurgeologie und Forum "Junge Ingenieurgeologen" Bochum 2007

12 Anhang

12.1 Auswertung LA-Tests

Nr.	Probe	Lithologie	LA-Koeffizient (10/14)	Ø LA-Koeffizient (10/14)	LA-Kategorie*)
1	1.1.1	Kalkglimmerschiefer	36,1		
2	1.1.2	Kalkglimmerschiefer	36,6	36	LA ₄₀
3	1.1.3	Kalkglimmerschiefer	35,1		
4	1.2.1	Kalkglimmerschiefer	41,0		
5	1.2.2	Kalkglimmerschiefer	42,8	42	LA ₅₀
6	1.2.3	Kalkglimmerschiefer	41,6		
7	2.1.1	Augengneis	25,5		
8	2.1.2	Augengneis	25,7	26	LA ₃₀
9		Augengneis	25,6		
10	2.2.1	Augengneis	26,9		
11		Augengneis	27,9	27	LA ₃₀
12		Augengneis	26,9		
13		Biotit - Plagioglas - Gneis	15,1		
14		Biotit - Plagioglas - Gneis	14,6	15	LA ₁₅
-		Biotit - Plagioglas - Gneis	14,2		
-		Biotit - Plagioglas - Gneis	15,2		
-		Biotit - Plagioglas - Gneis	16,5	16	LA ₂₀
-		Biotit - Plagioglas - Gneis	15,9	1	
-		Plagioglas	19,9		
20	4.1.2	Plagioglas	19,7	19	LA ₂₀
21	4.1.3	Plagioglas	17,7		
22	4.2.1	Plagioglas	21,2		
23	4.2.2	Plagioglas	20,3	21	LA ₂₅
24	4.2.3	Plagioglas	21,3		
25	5.1.1	Wechselgneis	27,2		
26	5.1.2	Wechselgneis	26,2	26	LA ₃₀
27	5.1.3	Wechselgneis	25,3		
28	5.2.1	Wechselgneis	28,6		
29	5.2.2	Wechselgneis	28,7	28	LA ₃₀
30	5.2.3	Wechselgneis	26,6		
31	6.1.1	Karbonatgestein	16,7		
32	6.1.2	Karbonatgestein	16,4	17	LA ₂₀
33	6.1.3	Karbonatgestein	17,7		
34	6.2.1	Karbonatgestein	18,6		
35	6.2.2	Karbonatgestein	18,3	18	LA ₂₀
36	6.2.3	Karbonatgestein	17,9		

Legende:

x.1.x Aufbereitung: Backenbrechr + Prallmühle x.2.x Aufbereitung: Backenbrechr + Kegelmühle

*) gem. ÖNORM EN 12620

12.2 Auswertung LCPC-Tests

		LCP	C-Brechbark	eitsindex	LC	PC-Abrasivitä	tsindex
Probe	Lithologie	B _R [%]	Ø B _R [%]	Brechbarkeits- Bezeichnung	A _{BR} [g/t]	Ø A _{BR} [g/t]	Abrasivitäts- Bezeichnung
1.1.1	Kalkglimmerschiefer	59	- 60	mittel	500	510	stark abrasiv
1.1.2	Kalkglimmerschiefer	60	00	mitter	520	310	Stark aprasiv
1.2.1	Kalkglimmerschiefer	62	- 62	mittel	420	420	abrasiv
1.2.2	Kalkglimmerschiefer	62	02	mitter	420	420	aniasiv
2.1.1	Augengneis	46	- 45	mittelschwach	1220	1190	stark abrasiv
2.1.2	Augengneis	45	43	IIIItteisciiwacii	1160	1190	Stark aprasiv
2.2.1	Augengneis	47	47	mittelschwach	1180	1190	stark abrasiv
2.2.2	Augengneis	46	47	IIIItteisciiwacii	1200	1190	Stark aprasiv
3.1.1	Biotit - Plagioglas - Gneis	30	- 31	mittelschwach	800	780	stark abrasiv
3.1.2	Biotit - Plagioglas - Gneis	31	31	IIIItteisciiwacii	760	760	Stark aprasiv
3.2.1	Biotit - Plagioglas - Gneis	33	- 33	mittelschwach	820	830	stark abrasiv
3.2.2	Biotit - Plagioglas - Gneis	33	33	IIIItteisciiwacii	840	830	Stark abrasiv
4.1.1	Plagioglas	40	40	mittelschwach	1080	1070	stark abrasiv
4.1.2	Plagioglas	40	40	IIIItteisciiwacii	1060	1070	Stark abrasiv
4.2.1	Plagioglas	40	40	mittelschwach	1080	1080	stark abrasiv
4.2.2	Plagioglas	40	40	IIIItteisciiwacii	1080	1080	Stark abrasiv
5.1.1	Wechselgneis	45	45	mittelschwach	1200	1190	stark abrasiv
5.1.2	Wechselgneis	45	43	IIIItteisciiwacii	1180	1190	Stark aprasiv
5.2.1	Wechselgneis	48	48	mittelschwach	1140	1130	stark abrasiv
5.2.2	Wechselgneis	48	40	IIIItteisciiwacii	1120	1130	Stark aprasiv
6.1.1	Karbonatgestein	33	- 33	mittelschwach	420	410	abrasiv
6.1.2	Karbonatgestein	34	33	mitteischwach	400	410	aniasiv
6.2.1	Karbonatgestein	35	- 35	mittelschwach	400	380	abrasiv
6.2.2	Karbonatgestein	35	33	IIIItteistiiwatii	360	360	abiasiv

12.3 Auswertungen geochemische Eigenschaften des Ausbruchmaterials

Chemische Parameter - Tunnelprojekt 1

< - Zeichen wurden entfernt

Festgehalt

		Grenzwerte	ww07-657.1	ww07-691.1	ww07-764.1	ww07-764.2	ww07-764.3	ww07-764.4	ww07-691.3	07-691.2			Auswe	ertung	
			Ostvortriebl Nordröhre TM 68	Ostvortrieb Südröhre TM 182,7					Ostvortrieb Südröhre TM 84,8	Westvortrieb Nordröhre TM 75,9	n	Maximum	Minimum	Durch- schnitt	Standardabweich ung
Arsen (als As)	mg/kgTS	50	1,8						1,4	3,1	3	3,1	1,4	2,10	0,73
Blei (als Pb)	mg/kgTS	150	8,4	9,8					11,4	8,2	4	11,4	8,2	9,45	1,28
Cadmium (als Cd)	mg/kgTS	2	<0,1	<0,1					<0,1	<0,1	0				
Chrom gesamt (als Cr)	mg/kgTS	300	37,6	41,2					81,5	65	4	81,5	37,6	56,33	17,95
Kobalt (als Co)	mg/kgTS	50	8,4	6,8					5,3	4,2	4	8,4	4,2	6,18	1,58
Kupfer (als Cu)	mg/kgTS	100	55	17,9					3,5	<0,3	3	55	3,5	25,47	21,69
Nickel (als Ni)	mg/kgTS	100	36,7	37,8					24,3	27,5	4	37,8	24,3	31,58	5,80
Quecksilber (als Hg)	mg/kgTS	1	0,013						0,039	0,04	3	0,04	0,013	0,03	0,01
Zink (als Zn)	mg/kgTS	500	102,3	115,2					70,7	79,8	4	115,2	70,7	92,00	17,66
TOC (als C)	mg/kgTS	20000	<1000	<1000					<1000	<1000	0				
Glühverlust	Masse-%	(3)	7	3					6	4	4	7	3	5,00	1,58
Trockensubstanz	%				91,2	93,1	89,9	92,8			4	93,1	89,9	91,75	1,29
KW-Index	mg/kgTS	20/50/100/200	<10,96	<12,74					<11,49	<11,03	0				

Eluat															
		Grenzwerte	ww07-657.1	ww07-691.1	ww07-764.1	ww07-764.2	ww07-764.3	ww07-764.4	ww07-691.3	07-691.2	1				
			Ostvortriebl	Ostvortrieb					Ostvortrieb	Westvortrieb					
			Nordröhre TM	Südröhre TM					Südröhre TM	Nordröhre TM					
			68	182,7					84,8	75,9					
pH-Wert	-	6,5 bis 11/12	9,4	11,7					9,7	9,7	4	11,7	9,4	10,13	0,92
Leitfähigkeit	mS/m	150	9,8	123,1					8,5	9,3	4	123,1	8,5	37,68	49,32
Abdampfrückstand	mg/kgTS	8000	750	4.420					440	560	4	4420	440	1542,50	1665,00
Aluminium (als Al)	mg/kgTS	<5	0,2	7,8					0,2	0,2	4	7,8	0,2	2,10	3,29
Arsen (als As)	mg/kgTS	0,5	0,41	<0,01					0,28	0,08	3	0,41	0,08	0,26	0,14
Barium (als Ba)	mg/kgTS	10									0				
Blei (als Pb)	mg/kgTS	1	0,01	0,05					0,16	0,39	4	0,39	0,01	0,15	0,15
Cadmium (als Cd)	mg/kgTS	0,05	<0,002	<0,002					<0,002	<0,002	0				
Chrom gesamt (als Cr)	mg/kgTS	1	0,02	0,63					0,06	0,15	4	0,63	0,02	0,22	0,24
Chrom VI (als Cr)	mg/kgTS	0,5	0,05								1	0,05	0,05	0,05	0,00
Eisen (als fe)	mg/kgTS	10	0,05	2,4					<0,1	1,6	3	2,4	0,05	1,35	0,98
Kobalt (als Co)	mg/kgTS	1	<0,01	<0,1					<0,1	<0,1	0				
Kupfer (als Cu)	mg/kgTS	2	0,01	<1,1					0,13	<0,1	2	0,13	0,01	0,07	0,06
Nickel (als Ni)	mg/kgTS	1	<0,01	0,3					<0,1	<0,1	1	0,3	0,3	0,30	0,00
Quecksilber (als Hg)	mg/kgTS	0,01	<0,002	<0,002					<0,002	<0,002	0				
Silber (als Ag)	mg/kgTS	0,2									0				
Zink (als Zn)	mg/kgTS	10	0,3	<1					<1	<1	1	0,3	0,3	0,30	0,00
Zinn (als Sn)	mg/kgTS	2									0				
Ammonium (Als N)	mg/kg TS	8	0,79	24,9	2,8	0,76	3,6	6,7	3,4	0,22	8	24,9	0,22	5,40	7,63
Chlorid (als CI)	mg/kg TS	2000	<10	20					<10	<10	1	20	20	20,00	0,00
Cyanid gesamt (Als CN)	mg/kg TS										0				
Cyanid leicht freisetzbar (als CN)	mg/kg TS	0,2	<0,1	<0,1					<0,1	<0,1	0				
Fluorid (als F)	mg/kgTS	20	1,7	2,3					3,3	4,4	4	4,4	1,7	2,93	1,03
Nitrat (als N)	mg/kgTS	100	2,3	2,3					2,3	2,3	4	2,3	2,3	2,30	
Nitrit (als N)	mg/kgTS	2	0,3	0,3					0,3	0,3	4	0,3	0,3	0,30	
Phosphat (als P)	mg/kgTS	5	<3	<3					<3	<3	0				
TOC (als C)	mg/kgTS	200	<10	56,2					13,7	17,9	3	56,2	13,7	29,27	19,12
KW-Index	mg/kgTS	5	<1	<1					<1	<1	0				
anionenaktive Tenside (als TBS)	mg/kgTS	1									0				
											,				
Deponieklasse			BAD	BAD	1	1	l	1	BAD	BAD					

vgl. nachfolgende Untersuchungen im Nahbereich -> einmalige Überschreitung der NH4-N Konzentration ist auf kurz zuvor stattgefundene Lockerungssprengung zurückzuführen

흐
9
=
5
⊢
ĕ
ಕ
E
ă
e e
8
Έ
ě

annet or anne		erit. 2	m -		600 0 000 0 46 46 46 17 17 17 17 17 17 17 17 17 17 17 17 17	6 000 000 000 000 000 000 000 000 000 0	7 8 8 1000 m 1200 West West 1200 1200 1200 1200 1200 1200 1200 120	3 1 1	10 000 m 8000 m 8000 m 10 000 m 10 0000 m 10 000	6	12 m 2850 m 2850 m 3 d d d d d d d d d d d d d d d d d d	13 West West 10 c3 c03 c43 c3 c3 c3 c3 c43 c43 c43 c43 c43 c4	2400m 14 2400m 1 3 3 4 3 4 5 3 6 3 6 3 6 3 6 6 6 6 6 6 6 6 6 6 6 6		2000m 10 Opt 000	17 11 100m 250 0st 00st	18 19 19 200 m 2200 m 2200 m 004 004 004 004 004 004 004 004 004	20 m 400 m 400 m West	21 00st m 00st	300 m West	23 West 11	00t m 130 m 130 m	25 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	20 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	28 1000m West West	00 00 m oo o	1700m 004	31 7700m 25 West	32 33 38 3800m 3800 OCt Wee	33 34 34 West Oxt	35 0m 2000m 1 West	36 m 2100 m 2100 m 200 m 20 0st	37 Ost Ost	38 2700 m Ost	39 2800 m 2 Ost	2900 m 10 0st	000 140 000 000	42 43 43 44 400 m 20m 20m 20m 20m 20m 20m 20m 20m 20m	43 44 20 m 200 m 2	м	46 40 m	300 m 00st 00st	98 80 7 7 05t 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 800m 900 West 0	300 m n oo o	Maximum 46 111 111 111 111 111 111 111 111 111		Auswei Auswei 3 3 7 7 3 4,2 3 3 4,2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mum Dur mum Dur 3 3 3 3 1 1
9m		500 32	11	22	16 35	16	8 10	10 12	3	ç	6	22	*	1	1	+	1	4			1	+	1	1	4	1		1	+	+	4	4				1	+	~	4	+	+		1	1	-	15	49		69	+
9m	mg/kgTS 200	30000 xx	×	×	x <1000	×	×	×	×	×	××	×	×	×	×	×	××	××	xx	×	×	×	o x	×	×	×	×	××	×	×	×	×	xx	×	××	××	×	xx <10	1000 3000	<1000	<1000	×	×	×	×	ox 1	3000	3000	٥	300000
W.	% ass 6/4	3	<2	· 0	<2 <0.1	<2	<2 <2	2 <2	<2	<2	L	<2	<2	<2	<2	<2 <	<2 <2	<2	<2	<2	<2	2	2	2 2	0	7	7	0	2	<2 <2	<2	<2>	<2	<2	<2	<2	<2	<2	L			7	0	4	4	1 2				
8m	9 STS 6	9		l			-	L	L	L	L		ľ	H	H	L	L	L	Ĺ		l	H	L	L	L			H	L				Ĺ		ľ	l	H	<0,1	11	P			l			0				
911	mg/kgTS 2	20 <90	0 < 0	× 06>	< 0> < 30	-20	(S)	<50 <50	05	(6)	- 20	¢30	9	69	200	<50 <5	c50 <50	0 <50	<50	¢30	· 06>	× 06>	<90 <5	<90 <90	650	06>	-20	-20	9 09	90 90	0 <50	05>	<50	<50	<50	<50	× 20 ×	<90 <2	<30 16	130	¢30	(S)	(S)	(6)	900	-20	130	16		63,00
am.	mg/kgTS 4	4	41	<1	<1 <0.1	<1	<1 <1	13	<1		<1	<1	<1	<1		×1	<1 <1	<1	<1	<1	<1		V	4	V	V	V	V	0	<1 <1	17	43	<1	<1	<1	<1	<1	<1 0.1	0.128	0,161	ĺ	V	V	7	P	2	0,361	0.128		0,14
dayon Benzolatovnen	no kors	102	100	0 100	100/		,	101	* **	100	ŀ	10"	1.0	100		4.0	10	10"	100	10"	101		900	101	10"	* **	* **		* * *	10	* **			* **	* 0	* 0*		200	2000	1000	Ĺ	10"	10"	100			0.000	0.000		000

Chemische Parameter - Tunnelprojekt 4	nelprojekt.	4																		
			_			Kalottenvortieb	Seb						Strosse	Strossenvortrieb						
Analyseergebnisse Festgehalt	it.			1526/05	1889/05	2781/05	3255/05	3495/05		13110	14281	14623 14624	14626	14825 148	14826 14942	15068		Ausw	Auswertung	
		Nachwisgrenze/	Grenzwert It.	KA 01/05	KA 04/05	KA 06/05	KA 08/05			KA 12/05	Ø	K	KA 17/05		KA 20/05 N	N KA21/05 N		Н	-	Standradabw
Parameter		Bestimmungs- grenze	Bescheid	Hauptprobe N 780	 Zusatzprobe N 1340	Hauptprobe N 1911	Zusatzprobe N 2375	be N Hauptprobe N 2566	z	Hauptprobe N 3107	14/05 N 2232	2562 2667	σ	18/05 N 19/05 I 2880 3141	>		n Maximum	n Minimum	Durchschnitt	_
Arsen (als As)	mg/kgTS	10	20	10	20		10	10		10	0,29	2,7		V	<1		7 50	0,29	13,28	15,46
Blei (als Pb)	mg/kgTS	10	150	10	20	13	340	10		4,5	\$	9'6		, S	5,5		8 340	4,5	51,58	109,11
Cadmium (als Cd)	mg/kgTS	0,1/1	2	6,0	1	2'0	6'9	9'0		0,25	0,11	960'0		YO .	60'0		6'5 6	60'0	66'0	1,76
Chrom gesamt (als Cr)	mg/kgTS		1	8,5	62	49	10	42		134	6,1	71,5		9	63		9 134	6,1	49,57	38,22
Kobalt (als Co)	mg/kgTS	-/10	20	10	22	18	21	10		20	3,9	13,7		1.	19		77 6	3,9	15,29	5,86
Kupfer (als Cu)	mg/kgTS		100	16	25	43	47	26		09	12,9	28		4	44		09 6	12,9	36,88	16,47
Nickel (als Ni)	mg/kgTS		100	12	09	51	140	40		82	6'6	61		4	40		9 140	6,8	55,03	37,15
Quecksilber (als Hg)	mg/kgTS	0,2 / 0,5	1	5'0	0,2	0,2	0,2	0,2		0,2	<0,024	40,14		Y0>	900'0>		5'0 9	0,2	0,25	0,11
Zink (als Zn)	mg/kgTS	- /0,2	200	09	89	114	250	48		66	58,7	06		80	89		9 250	48	97,41	57,63
Benzo(a)pyren	mg/kgTS	0,05 / 0,1	0,4	0,1	000	0,1	0,1	0,1		50'0	<0,01			10/0>	10'01		6 0,1	90'0	80'0	0,02
BTEX (Benzol, Toluol, Ethylbenzol, Xylol)	mg/kgTS	1/5	9	5	2	1	1	1		n.n.	n.n.	n.n.		n.n.	'n.		5 5	1	2,60	1,96
Kohlenwasserstoffindex	mg/kgTS		20	91,9	34,3	48,5	65,2			85	61		35	10 1	15 27	17	14 91,9	10	47,43	25,69
Summe Kohlewasserstoffe	mg/kgTS		200	42	95	29	20	48			31			38 14	14 18	28	13 56	14	32,85	12,03
PAK	mg/kgTS	0,25 / 1,5	4	0,25	0,25	1,5	1,5	1,5		n.n.	n.n.	u.n.		u.n.	'n.		5 1,5	0,25	1,00	0,61
TOC (als C)	mg/kgTS	-/2000	20000	<5000	<5000	<5000	<2000	<2000		1254	829	1011		S.	575	Ī	4 1254	575	879,50	269,66

									Kalo Trenvory	Gen								Strossenvortner	ortried						
Analyse ergebnisse des wässrigen Eluats	n Eluats		1526/05	1602/2	1771/05	1889/05	2088/05	2452/05			3255/05 3495		3649/05 12968	13110	13386	14281 14623	14624	14626 1	14825 14826	14942	15068				
	Nachwisgrenze	grenze/ Granzwart It		KA 02/05	KA 03/05	KA 04/05	KA 05/05	Ukw 1-1	KA 06/05 K	KA 07/05 KA	KA 08/05 KA 09			35 KA12/05	5 KA 13/05	KA	Ŋ	KA 17/05		KA 20/05 N	KA21/05 N				
Parameter	Bestimmungs- grenze	_	_	Zusatzprobe N 988	Zusatzprobe N 1193	Hauptprobe N Zusatzprobe N Zus	(S	onderprobe) Ha N 1720	Hauptprobe N Zus 1911	Zusatzprobe N Zusatz 2170 2	Zusatzprobe N Hauptp 2375 25	Hauptprobe N Zusatzprobe P 2566 2739	tzprobe N Zusatzprobe P 2739 2931	be N Hauptprobe	e N Zusatzprobe N 3304		16/05 N 2667	7	18/05 N 19/05 N 2880 3141						
																H	\vdash								
pH-Wert -		6,5 / 11	10,3	8,7	6	10,1	10	10,9	10,7	10,2	10 10	10,3	11 11,2	12	11,4	11,6 11,3	3 11,3	10,8	11,5 10,8	10,3	12,3	22 12,3	8,7	10,71	98'0
eitfähigkeit m ³	m2/m	150	27	22,8	9,57	32,9	25,4				18,7 32	32,2 42,2	2,2 29,3	103,5	94,5	39 52,1	-				67,1	20 103,5	9,57	39,57	25,39
odampfrückstand	mg/kgTS	8000										347	02:			985 3930	3685	1360 2	2693 1040		7670	0.292 6	753	2.842,89	2.078,37
luminium (als AI) mg	mg/kgTS 1	2				16,4			7'01		9,2 8,	9'8		13,7		0,91	37		13,7			8 37	0,91	13,78	9,80
mmonium (als N)	mg/kgTS 0,1	1 8	0,1	53,5	9'9	0,1		11,8	4,3				14,6 7,1	11,4	2,1	4,5 12			5,3 2,8	16,2		22 53,5	0,1	11,96	10,97
sen (als As) mg	mg/kgTS 0,1	1 0,5	0,1			0,1						2,0		0,46		0,01	<0,51		<0,18			6 0,46	0,01	0,16	0,14
arium (als Ba) mg	mg/kgTS 0,5	5 10	9'0			1,4			5'0		0,5 0,	5'(2,1		5'0	0,93		0,23			9 2,1	0,23	08'0	95'0
lei (als Pb) mį	mg/kgTS 0,1	1	0,1			0,1			1,0			2′1		0,64		<0,01	0,51		<0,46	2		7 0,64	0,1	0,25	0,21
admium (als Cd) mg	mg/kgTS 0,005 / 0,01	7 0,01 0,05	00'00			10'0			90'0	_		01		0,02		<0,01	0000		<0,018	8		20'0 2	0000	0,02	100
nlorid (als CI) mg	ng/kgTS	2000	10,1			3,2			4		3,7 4,	4,8		80		3,9	6,8		1,3			1,01 6	1,3	5,09	2,56
ilsCr)	mg/kgTS 0,1/0,5	0,5	0,2			0,5			0,2			1,1		6'0		<0,03	0,05		<0,45	2		7 0,9	0,05	0,35	0,28
hrom VI (als Cr) mg	mg/kgTS 0,1/0,5		0,2			0,5			0,2			1,1		60'0		0,1	<0,1		<0,091	Ð		6 0,5	60'0	0,27	0,17
yanid leicht freisetzbar (als CN) mg	mg/kgTS 0,1	1 0,2	0,1			0,1			0,1			1,1		0,14		60'0>	<0,1		<0,18	3		6 0,14	0,1	0,11	0,01
	mg/kgTS 0,1/1		0,3			0,2			0,2			1,1		1,1		0,048	<0,05		0,46			8 1,1	0,048	0,51	0,38
luorid (als F) mg	mg/kgTS 0,1/1	/1 20	1,4			0,1			1		1 2,	7,2		2,8		1,3	<2,3		0,46			8 2,8	0,1	1,28	0,82
		/1 1	0,5			0,5			0,5		0,5 0,	0,5		0,7		<0,01	<0,21		<0,46	2		6 0,7	0,5	0,53	0,07
	mg/kgTS 0,1/0,5	0,5 2	0,2			0,2			0,2			1,1		0,7		<0,01	0,11		<0,46	2		7 0,7	0,1	0,29	0,21
lickel (als Ni) mg	mg/kgTS 0,1/0,5	0,5	0,5			0,5			0,5		0,5 0,	0,1		0,7		<0,01	0,21		<0,46	2		7 0,7	0,1	0,43	0,19
	mg/kgTS	100	59,2	53,2	32,1		113	44	42,2	3	105 99	99,2 59,	59,9 46	81	20	21 43	52,5	43,7	93 17,3	37	16,7	22 171	16,7	61,04	35,84
trit (als N) mg	mg/kgTS	2	0,67	1,5	0,7	1,8	1,2	1	0,7	0,7	1,5	2,3 1,4	1,4 0,46	1,2	1,9	1,7 0,31	0,46	0,17	1,1 0,491	1,8	3,5	22 3,5	0,17	1,21	0,76
nosphat (als P) mg	mg/kgTS 0,1/0,3	0,3 5	0,1			0,1			0,1		0,1 0,	0,1		0,31		0,31	<0,34		<0,31	,		7 0,31	0,1	0,16	60'0
ils Hg)	ng/kgTS 0,01 / 0,005	0,005 0,01	0,01			0,005			0,01	,	0,01 0,0	0,01		0,005		<0,009	<0,05		<0,003	3		0,01	0,005	0,01	00'0
ber (als Ag) mg	mg/kgTS 0,02 / 0,5	70,5 0,2	0,2			0,1			0,2			0,5		60'0		<0,01	0,11		160'0>	Ð		7 0,5	60'0	0,24	0,17
nk (als Zn) mg	mg/kgTS 0,2	2 10	0,4			0,2			0,2		0,5 0,	0,2		0,55		0,02	0,05		0,15			9 0,55	0,02	0,25	0,18
inn (als Sn) mg	mg/kgTS 0,01/0,5	7 0,5 2	0,01			0,5			0,2		0,5 0,	0,1		0,91		<0,01	0,51		<0,46	2		7 0,91	0,01	0,39	0,29
extrahlerbare organisch gebundene Halogene (EOX) als CI)	mg/kgTS 0,1	1 0,3	0,5			0,1		0,1			0,1 0,	0,2		0,008		<0,0>	0,01		0,02			8 0,5	800'0	0,13	0,15
ohlenwasserstoffindex mg	mg/kgTS 0,170,2	0,2 5	1,3	0,1	0,26	1	1	2	2	1,1	1	1 0,1	(1 4,1	0,27	0,24	2,9 5,	3,9	3,5	3 3	3	4	22 5,7	0,1	2,16	1,68
OC (als C) mg	mg/kgTS	200	0,1	12,1	9'6	14.5	12,4	7,2	2	10,3	13,5 17	17,6 23,	23,6 36	27	28	<30 <28,7	7 <30,3	<27,3	<28,18 <27,3	3 <27,2	27,1	15 36	0,1	16,27	69'6

	Festgehalt			Mischprobe aus 40 Einzelproben
	GZ		Grenzwerte	- , ,
	pH-Wert	-		
Mess- und Grenzwerte der allgemeinen und anorganischen Parameter	Leitfähigkeit	mS/m		
	Abdampfrückstand	mg/kgTS		
	Aluminium (als Al)	mg/kgTS		
	Ammonium (als N)	mg/kgTS		
	Antimon (als Sb)	mg/kgTS		
	Arsen (als As)	mg/kgTS	50	18
	Barium (als Ba)	mg/kgTS		
	Beryllium (als Be)	mg/kgTS		
	Blei (als Pb)	mg/kgTS	150	9,5
	Bor (als B)	mg/kgTS		
	Cadmium (als Cd)	mg/kgTS	2	<0,3
	Calcium (als Ca)	mg/kgTS	_	10,5
	Chlorid (als CI)	mg/kgTS		
	Chrom gesamt (als Cr)	mg/kgTS	300	4,4
	Chrom VI (als Cr)	mg/kgTS	300	7,7
	Cyanid gesamt (als CN)	mg/kgTS		
	Cyanid leicht freisetzbar (als CN)	mg/kgTS		
	Eisen (als fe)	mg/kgTS		
Š	Kobalt (als Co)		50	9,6
en	Kupfer (als Cu)	mg/kgTS	100	28
e.		mg/kgTS	100	28
eш	Magnesium (als Mg)	mg/kgTS		
allge	Mangan (als Mn)	mg/kgTS	400	24
ē	Nickel (als Ni)	mg/kgTS	100	21
Mess- und Grenzwerte d	Quecksilber (als Hg)	mg/kgTS	1	<0,1
	Selen (als Se)	mg/kgTS		
	Silber (als Ag)	mg/kgTS		
	Thallium (als TI)	mg/kgTS		
	Vanadium (als V)	mg/kgTS		
	Zink (als Zn)	mg/kgTS	500	32
	Zinn (als Sn)	mg/kgTS		
	Fluorid (als F)	mg/kgTS		
	Nitrat (als N)	mg/kgTS		
	Nitrit (als N)	mg/kgTS		
	Phosphat (als P)	mg/kgTS		
	Schwefel (als S)	mg/kgTS		
	Sulfat (als SO4)	mg/kgTS		
	Sulfid (als S)	mg/kgTS		
	TOC (als C)	mg/kgTS	20000	4000
	Glühverlust 3)	Masse-%		
	Summe Benzol, Ethylbenzol, Toluol,			
	Xylol (BTEX)	mg/kgTS		
_	extrahierbare organisch gebundene	£		
	Halogene (EOX) als CI)	mg/kgTS		
che	ausblasbare organisch gebundene			
Mess- und Grenzwerte der organischen Parameter	Halogene (POX) (als CI)	mg/kgTS		
	Kohlenwasserstoffindex	mg/kgTS	20 (50)	48
	Summe der polyzyklischen	6/ 1.6.1.5	20 (30)	
	aromatischen Kohlenwasserstoffe (PAK)	mg/kgTS	4	n.n.
	Phenole (als Index)	mg/kgTS		
	Summe der polychlorierten Biphenyle (PCB)2)	mg/kgTS		
ŭ	anionenaktive Tenside (als TBS)	mg/kgTS		
Mess-L	Atmungsaktivität nach 4 Tagen			
		mg O2/gTS		
	Gasspendensumme 21 Tage	NL/kgTS		
	Brennwert (oberer Heizwert)	kJ/kgTS		

		Mischprobe				
	Eluat					
				Einzelproben		
	GZ		Grenzwerte			
	pH-Wert	-	6,5 bis 11/12	11,2		
	Leitfähigkeit	mS/m	150	48		
	Abdampfrückstand	mg/kgTS	8000	460		
	Aluminium (als Al)	mg/kgTS	5,0/10,0			
	Ammonium (als N)	mg/kgTS	8	0,43		
	Antimon (als Sb)	mg/kgTS				
	Arsen (als As)	mg/kgTS	0,5	<0,1		
	Barium (als Ba)	mg/kgTS	10	0,81		
	Beryllium (als Be)	mg/kgTS				
	Blei (als Pb)	mg/kgTS	1	<0,1		
	Bor (als B)	mg/kgTS				
	Cadmium (als Cd)	mg/kgTS	0,05	<0,002		
	Calcium (als Ca)	mg/kgTS				
	Chlorid (als CI)	mg/kgTS	2000	30		
	Chrom gesamt (als Cr)	mg/kgTS	1	0,01		
	Chrom VI (als Cr)	mg/kgTS	0,5	<0,05		
	Cyanid gesamt (als CN)	mg/kgTS				
	Cyanid leicht freisetzbar (als CN)	mg/kgTS	0,2	<0,05		
	Eisen (als fe)	mg/kgTS				
	Kobalt (als Co)	mg/kgTS	1	<0,03		
	Kupfer (als Cu)	mg/kgTS	2	0,01		
	Magnesium (als Mg)	mg/kgTS				
	Mangan (als Mn)	mg/kgTS				
	Nickel (als Ni)	mg/kgTS	1	<0,01		
	Quecksilber (als Hg)	mg/kgTS	0,01	<0,002		
	Selen (als Se)	mg/kgTS				
	Silber (als Ag)	mg/kgTS	0,2	<0,02		
	Thallium (als TI)	mg/kgTS				
	Vanadium (als V)	mg/kgTS				
	Zink (als Zn)	mg/kgTS	10	0,02		
	Zinn (als Sn)	mg/kgTS	2	<0,1		
	Fluorid (als F)	mg/kgTS	20	<1		
	Nitrat (als N)	mg/kgTS	100	1,2		
	Nitrit (als N)	mg/kgTS	2	0,17		
	Phosphat (als P)	mg/kgTS	5	<0,2		
	Schwefel (als S)	mg/kgTS				
	Sulfat (als SO4)	mg/kgTS				
	Sulfid (als S)	mg/kgTS				
	TOC (als C)	mg/kgTS	200	30		
	Glühverlust 3)	Masse-%				
	Summe Benzol, Ethylbenzol, Toluol, Xylol (BTEX)	mg/kgTS				
	extrahierbare organisch gebundene	mg/kgTS	0,3	<0,2		
	Halogene (EOX) als CI)	8/8	-,-	,-		
	ausblasbare organisch gebundene	mg/kgTS				
	Halogene (POX) (als CI)					
arameter	Kohlenwasserstoffindex	mg/kgTS	5	0,64		
	Summe der polyzyklischen aromatischen					
	Kohlenwasserstoffe (PAK) 1)	mg/kgTS				
ran		r				
Pa	Phenole (als Index)	mg/kgTS				
	Summe der polychlorierten Biphenyle	mg/kgTS				
	(PCB)2)					
	anionenaktive Tenside (als TBS)	mg/kgTS	1	<0,5		
	Atmungsaktivität nach 4 Tagen	mg O2/gTS				
	Gasspendensumme 21 Tage	NL/kgTS				
	Brennwert (oberer Heizwert)	kJ/kgTS				

Mess- und Grenzwerte der organischen

<-Zeichen wurde entfernt

			h		

	Festgehalt		Grenzwerte	7600306	7600406	7600607	7600807	7602107	7602407	7602807	7603107	7603307	7603707	7604508					
			Grenzwerte	Gesamtbeurteil	Gesamtbeurteil ung	Gesamtbeurteil ung	Gesamtbeurteil	Zusatzuntersuch tung	Gesamtbeurteil	Gesamtbeurteil	Gesamtbeurteil ung	Zusatzuntersuch tung		Zusatzuntersuch tung			Auswe	ertung	
				Humushaltiges Material	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb	Nordvortrieb					Standrad-
				Vorportalbereic h Süd	TM 133,60	TM 293,60	TM 719,60	TM 936,60	TM 1.100	TM 1.360	TM 1.510	TM 503,4	TM 1.621	TM 1.800	n	Maximum	Minimum	Durch-schnitt	abweichung
	pH-Wert Leitfähigkeit	- mS/m													0				
	Abdampfrückstand Aluminium (als Al)	mg/kgTS mg/kgTS													0				
	Ammonium (als N) Antimon (als Sb)	mg/kgTS mg/kgTS													0				
	Arsen (als As) Barium (als Ba)	mg/kgTS mg/kgTS	50	5,52	<1,25	8,5	20,4		12,6	57	2,5				0	57	2,5	17,75	19,30
_	Beryllium (als Be) Blei (als Pb) Bor (als B)	mg/kgTS mg/kgTS mg/kgTS	150	17	3	9	14	6,9	3,2	5,7	2,07	2,86	1,78	33	11	33	1,78	8,96	9,04
Parameter	Cadmium (als Cd) Calcium (als Ca)	mg/kgTS mg/kgTS	2	<0,125	0,125	0,29	0,15		0,1	<0,0125	0,07				5	0,29	0,07	0,15	0,08
schen Pa	Chlorid (als CI) Chrom gesamt (als Cr)	mg/kgTS mg/kgTS	300	40	42	22	34,7		17,6	30,3	23,7				7	42	17,6	30,04	8,25
anorganis	Chrom VI (als Cr) Cyanid gesamt (als CN)	mg/kgTS mg/kgTS													0				
nud and	Cyanid leicht freisetzbar (als CN) Eisen (als fe)	mg/kgTS mg/kgTS													0				
algemeinen	Kobalt (als Co) Kupfer (als Cu) Magnesium (als Mg)	mg/kgTS mg/kgTS mg/kgTS	50 100	10 49	2,7 19,44	1,8 42	12,3 45	5,4	12,6 23	4,4 400	5,21 2,82	3,8	4,53	29	7 11 0	12,6 400	1,8 2,82	7,00 56,73	4,35 115,13
ralgen	Mangan (als Mn) Nickel (als Ni)	mg/kgTS mg/kgTS	100	41	5	7	74	11,5	20,9	12,5	4,9	3,54	4,53	23,2	0	74	3,54	18,92	20,20
er te der	Quecksilber (als Hg) Selen (als Se)	mg/kgTS mg/kgTS	1	<0,25	<0,25	<0,25	<0,25		0,72	7,4	1,5				3		0,72	3,21	2,98
und Grenzwer	Silber (als Ag) Thallium (als TI)	mg/kgTS mg/kgTS													0				
	Vanadium (als V) Zink (als Zn)	mg/kgTS mg/kgTS	500	174	65	<62,5	103	32	48	37,3	21,6	70,4	85	53	10	174	21,6	68,93	24,73
Mess	Zinn (als Sn) Fluorid (als F) Nitrat (als N)	mg/kgTS mg/kgTS													0				
	Nitrat (als N) Nitrit (als N) Phosphat (als P)	mg/kgTS mg/kgTS mg/kgTS													0				
	Schwefel (als S) Sulfat (als SO4)	mg/kgTS mg/kgTS													0				
	Sulfid (als S) TOC (als C)	mg/kgTS mg/kgTS	20000 4)	57000	103000	97600	11000	0,5	5000	38500	6,76	0,99	0,87	n.u.	10		0,5	31210,91	40182,67
	Glühverlust 3) Summe Benzol, Ethylbenzol, Toluol,	Masse-% mg/kgTS	6	0,06	<0,01	<0,01	<6		<0,01	<0,5	<0,5			2,3	1	2,3	2,3	2,30	
	Xylol (BTEX) extrahierbare organisch gebundene Halogene (EOX) als CI)	mg/kgTS													0				
nischen	ausblasbare organisch gebundene Halogene (POX) (als CI)	mg/kgTS													0				
er orga	Kohlenwasserstoffindex Summe der polyzyklischen	mg/kgTS	200 5)	380	260	50	61,4	20	27	20	20	60	20	67	11	380	20	89,58	69,02
enzwerte der i Parameter	aromatischen Kohlenwasserstoffe (PAK) 1)	mg/kgTS	0,5	<0,4	<0,04	<0,4	<0,4		<0,4	<0,4	<0,4				0				
Grenzv	Phenole (als Index) Summe der polychlorierten Biphenyle	mg/kgTS mg/kgTS													0				
s- und Gre	(PCB)2) anionenaktive Tenside (als TBS) Atmungsaktivität nach 4 Tagen	mg/kgTS													0				
Mess-	Gasspendensumme 21 Tage Brennwert (oberer Heizwert)	mg O2/gTS NL/kgTS kJ/kgTS													0				
	Eluat pH-Wert		6,5 bis 11/12	7,81	11.97	12.55	11.44	11,14	11.53	11,42	9.98	12.49	9.46	10,6	10	12.55	9.46	11.26	0.96
	Leitfähigkeit Abdampfrückstand	mS/m mg/kgTS	150 8000	0,23 2.300	262 6.000	396 6025	84 2050	30 1240	142 2201	107 3613	100	180 4934	100 <2000	26,9 1000	10		26,9 1000	142,79 3238,78	106,89 1862,72
	Aluminium (als Al) Ammonium (als N)	mg/kgTS mg/kgTS	<5 8	<5 0,913	<0,5 1,06	14,3 0,2	32,4 2,98	1,3	26,7 0,98	0,962 0,92	2086 0,665 0,4	2,2 2,13	1,36 2,33	1,39 1,8	8	32,4 2,98	0,665	10,00 1,41	12,13 0,84
	Antimon (als Sb) Arsen (als As)	mg/kgTS mg/kgTS	0,5	<0,1	<0,1	<0,01	0,03		0,1	0,025	0,141				0	0,141	0,025	0,07	0,05
	Barium (als Ba) Beryllium (als Be)	mg/kgTS mg/kgTS	10	<10 0,15	<0,1	4,12 0,13	0,11		0,135	0,201	0,05				0	4,12	0,05	0,92	1,60
	Blei (als Pb) Bor (als B) Cadmium (als Cd)	mg/kgTS mg/kgTS mg/kgTS	0,05	<0,01	<0,1	<0,01	0,03		0,016 <0,001	0,032	<0,001				5 0 2	0,13	0,006	0,04	0,04
	Calcium (als Ca) Chlorid (als Cl)	mg/kgTS mg/kgTS	2000	26,8	25,2	14,3	7		1,89	4,89	1,52				0	25,2	1,52	9,20	8,33
	Chrom gesamt (als Cr) Chrom VI (als Cr)	mg/kgTS mg/kgTS	1 0,5	<0,1 <0,5	<0,1 <0,5	0,2 <0,25	0,118 <0,25		0,116 <0,25	0,145 <0,25	0,091 <0,25				5	0,2	0,091	0,13	0,04
	Cyanid gesamt (als CN) Cyanid leicht freisetzbar (als CN)	mg/kgTS mg/kgTS	0,2	<0,1	<0,1	<0,1	<0,1		<0,1	0,21	<0,1				0	0,21	0,21	0,21	
	Eisen (als fe) Kobalt (als Co)	mg/kgTS mg/kgTS	10 1 2	4,2 <0,1	2,2 <0,1	2,3 0,024	0,254		2,08 0,008	1,7 0,024	0,544				5	2,3 0,024	0,254	1,51 0,02	0,81 0,01
	Kupfer (als Cu) Magnesium (als Mg) Mangan (als Mn)	mg/kgTS mg/kgTS mg/kgTS	2	<0,1	<0,1	0,043	0,047		0,027	0,07	0,01				0	0,07	0,01	0,04	0,02
	Nickel (als Ni) Quecksilber (als Hg)	mg/kgTS mg/kgTS	1 0,01	<0,005 <0,01	<0,005 <0,01	0,016 <0,02	0,026 0,011		<0,001 0,006	0,03 0,0024	0,008				4	0,03	0,008	0,02	0,01
	Selen (als Se) Silber (als Ag)	mg/kgTS mg/kgTS	0,2	<0,1	<0,1	<0,01	0,039		<0,001	0,002	0,006				0	0,039	0,002	0,02	0,02
	Thallium (als TI) Vanadium (als V)	mg/kgTS mg/kgTS													0				
	Zink (als Zn) Zinn (als Sn) Eluorid (als E)	mg/kgTS mg/kgTS	10 2	<5 <0,1 10,5	<5 <0,1 5,04	<5 0,011	0,12		0,071 0,002	0,094 0,004	0,272 0,008 0,988				5	0,272 0,011	0,071	0,14 0,01	0,08 0,00
	Fluorid (als F) Nitrat (als N) Nitrit (als N)	mg/kgTS mg/kgTS mg/kgTS	20 100 2	10,5 88 0,2	5,04 6,42 0,2	<0,2 0,63 0,82	<0,2 63,3 11,4	3,1 0,9	2,83 0,9 0,2	1,96 8,2 1,9	0,988 12,9 2,4	13,1	0,1 0,1	5,2 1,84	10 10	5,04 63,3 11,4	0,988 0,1 0,1	2,70 11,39 2,22	1,50 17,87 3,18
	Phosphat (als P) Schwefel (als S)	mg/kgTS mg/kgTS		<0,2	35,2	<0,2	<0,2	<0,1	<0,2	<0,2	0,252	3,3	<0,1	<0,5	3	35,2	0,252	12,92	15,81
	Sulfat (als SO4) Sulfid (als S)	mg/kgTS mg/kgTS								-			-		0				
	TOC (als C) Glühverlust 3)	mg/kgTS Masse-%	200	116	<100	173	40,1		31,1	17,61	20,2				5	173	17,61	56,40	58,85
	Summe Benzol, Ethylbenzol, Toluol, Xylol (BTEX) extrahierbare organisch gebundene	mg/kgTS													0				
chen	extrahierbare organisch gebundene Halogene (EOX) als CI) ausblasbare organisch gebundene	mg/kgTS	0,3	<0,25	<0,25	<0,25	<0,25		<0,25	<0,2	<0,2				0				
organischer	Halogene (POX) (als CI) Kohlenwasserstoffindex	mg/kgTS mg/kgTS	5	30	30	12,8	15,1	<1	< 5	<s< td=""><td><5</td><td><</td><td><s< td=""><td>0,14</td><td>0</td><td>30</td><td>0,14</td><td>14,51</td><td>10,60</td></s<></td></s<>	<5	<	<s< td=""><td>0,14</td><td>0</td><td>30</td><td>0,14</td><td>14,51</td><td>10,60</td></s<>	0,14	0	30	0,14	14,51	10,60
te der c	Summe der polyzyklischen aromatischen Kohlenwasserstoffe (PAK)	mg/kgTS													0				
renzwerte der	1) Phenole (als Index)	mg/kgTS													0				
9 pun	Summe der polychlorierten Biphenyle (PCB)2) anionenaktive Tenside (als TBS)	mg/kgTS mg/kgTS	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0,9	0	0,9	0,9	0,90	
Mess-L		mg/kg1S mg O2/gTS NL/kgTS		1	7	V1	×1	×1	- 1	\1	×1	<1	×1	6,0	0	0,9	0,9	0,90	
	Brennwert (oberer Heizwert) Anmerkungen	kJ/kgTS			Hohe TOC-Gehalte										0				
					und Überschreitungen beim Kohlenwasserstoff- Index (+einmalige														
					Oberschreitung) sind														
					Überschreitung der elekt. Leitf. Liegt innerhalb der analytischen														
					Fehlergrenze +/-5%. Phosphat Überschreitung														
					konnte auch nicht mehr festgestellt werden.														
	L						l	l			l	1		l					

F	

															Standard- stweichung		251,30	16,06	416,19	1,35		1,40	95'99	6,91	1,12			
															Mittelwert		198,92	20,08	251,97	1,40		26'6	51,18	5,77	080	1,50		0,02
														Auswertung	Minimum		23	6'0	4,7	0,15		9'2	6,7	1,3	60'0	1,5		0,02
															Maximum		880	61	1335	5,8		12,1	329	56	5,19	1,5		0,02
															u u		42	42	42	15		22	22	24	23	1	0	1
															Voreinschnitt- KDN		22	36	31	<0,3		8,2	12,2	3,6	0,31	40,1	<0,3	<0,2
															Voreinschnitt- KDN		23	8,9	10	2		11,5	76,4	56	0,13	<0,1	<0,3	<0,2
KDN		22	36	31	<0,3		8,2	12,2	3,6	15,0	<0,1	<0,3	<0,2		Voreinschnitt-KDS		22	36	31			8,2	11	3,6	0,31	<0,1	<0,3	<0,2
NDN		23	6'8	10	2		11,5	76,4	26	0,13	<0,1	<0,3	<0,2		Voreinschnitt-KDS Vo		110	19	99			8,3	6'6	2,7	0,12	<0,1	<0,3	<0,4
reinschnitt-KDS		55	36	3.1			8,2	11	3,6	0,31	40,1	<0,3	<0,2		LKDS 600m Vc		79.4	52,9	1170							40,4	40,3	<0,2
Vareinschnitt-KDS Vareinschnitt-KDS		110	19	99			8,3	2'6	2,7	0,12	40,1	<0,3	4/0>		LKD S 500 m		599	25,4	445							40,4	40,3	<0,2
RKDN1800m V		- 22	6'0	29,5	1,3		10,9	88	1,3	2,13	40,4	<0,3	<0,2		LKDS 400m		578	22	825	<0,15		12,1	15,3	6'0>	0,24	40,4	<0,3	<0,2
RKDN 1700m		76,5	10,7	36,5							<0,4	<0,3	<0,2		LKDS 300m		445	48								<0,1	<0,1	<0,1
RKDN 1600m		54,5	12,6	22,1	<0,05		10,6	58,5	3	5,19	40,4	<0,3	<0,2		LKDS 200m		751	29,8		96'0		11,9	329	4,3	0,3	40,4	40,3	<0,2
RKDN 1400m		25,7	5,2	5,3							40,4	<0,3	<0,2		LKDN 2 - 100 m		88	10,8	33							40,4	<0,3	<0,2
RKDN 1200m		58	12	22							40,4	<0,3	<0,2		LKDN 2 - 200m		39,1	6'0	13,7	82'0		10,9	44,3	*	0,36	40,4	40,3	<0,2
RKDN 1012m		24,3	6,3	4,7	<0,15		10	19,1	2,1	0,57	40,4	<0,3	<0,2		LKDN 2 - 300 m		62,3	6,7	18,9							40,4	<0,3	<0,2
RKDN 814m		8,53	14,6	28,8							<0,4	<0,3	<0,2		LKDN 2 - 400m		02	4,6	8'92	1,6		11	14,4	1,9	1,43	<0,4	<0,3	<0,2
RKDN 615m		185	20	55							40,4	<0,3	<0,2		UKDN 600-800m		80	13,5	32,9	<0,05		8/8	21,9	2,1	60,3	40,4	<0,3	<0,2
RKDN 463m		85,8	14,5	33,6	1,2		11	149	5,9	<0,3	40,4	<0,3	<0,2		M0081-1 NON 1-1800M		37,6	6,7	12,6	2,3		2'6	12,1	3,8	0,43	40,4	<0,3	<0,2
RKDS 700m		37,3	5,3	11,9							<0,4	<0,3	<0,2		KDN1-1700m		66,1	12,8	32							<0,4	<0,3	0,02
RKDS 600m		999	38'6	1335	5,8		66	19,3	1,8	0,3	40,4	<0,3	<0,2		LKDN 1 - 1600m L		150	6'0	51,9	0,15		6'6	20,7	3,7	2,2	1,5	40,3	<0,2
RKDS 500m		237	29,1	490							40%	<0,3	<0,2		LKDN 1 -1500m		53,6	11,6	12,3			9'4				40,4	<0,3	<0,2
RKDS400m		828	52,3	1089	6'0		11	47,3	7,8	60'0	40,4	<0,3	<0,2		LKDN 1 - 1400m		39,4	1,4	11,4	0,15		11	82,7	3	66'0	40,4	<0,3	<0,2
RKDS 300m			48								40,4	<0,3	<0,2		LKDN 1 - 1200m		131	4,3	18,6	1,2		10,4	21,1	2,2	65'0	<0,05	<0,05	<0,05
KDS 180-200m		880	61		0,3		11,1	102,4	1,8	0,24	40,1	<0,3	40,1		LKDN 1 - 1100m U		6'02	15,6	23			7,8				40,4	<0,3	<0,2
KDS 60-120m K		220	30	210	6,0		11,4	65,7	18	1,5	<0,1	<0,3	<0,1		LKDN1-1004m Li		43,7	11,4	16,4							<0,4	<0,3	<0,2
Grenzwerte		200	20	200	4		11	150		2	1	1	1		Grenzwerte LK		200	20	200	4		11	150		2	1	1	1
		mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS		ŀ	mS/m	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS				mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS			mS/m	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS
	Festgehalt	Chrom	Kobalt	Nickel	Cadmium	Eluat	pH-Wert	Leitfähigkeit	Aluminium	Nitrit	Chrom	Kobalt	Nickel			Festgehalt	Chrom	Kobalt	Nickel	Cadmium	Eluat	pH-Wert	Leitfähigkeit	Aluminium	Nitrit	Chrom	Kobalt	Nickel

	R5 (0-2m)
	4157A 93,4
	++
	Н
	#
	₩
	#
	Щ
	4
	#
	4
	. 0
	11
	< 0.02 0.03
	<0.02
	0.05
	0,02
	<0.02
	< 0.02 < 0.02
	2002
	<0.02
	<0.02
	/sn
	ŀ
Color Colo	
	8.69
	67,6
	< 0.9
	L
	1
	1
	3.40
	ŀ
	1
	1
	ŀ
	Ц
	Ĭ
	ľ
	Ц
	+
	Н
	+
	Ц
	1
	Н
	+
	l
	1
	1
	1
	ŀ
	Ц
	+
	Н
	+
	+
	Н
	+
	+
	Н
	+
	1
	H
	Ц

	R80+R81+R8 R61+R62+R 8+R89+R90 4+R65+R66 (6-8m) (6-8m)	933 945			<10 <10		<10 120	40,30 0,39 <10 <10	<10 <10	40 11	12 180			1.	40.02 40.02	4002 40,02	4002 4002	-0,02 -0,02 -0,02 -0,02	40,02 40,02	-0,02 -0,02	4002 4002	40.02 40.02	ব্যস্ত ব্যস্ত							1	40,1 40,1	985	0,1 0,1	7,7 6,2	4,0 4,0	3 %1		40,4	1,7 15	0,6 0,4	0,2 0,2	400 400	40,1	40,1	40,1	10000	0,1 0,1	-0,1	-0,2												1		-
	8 0+68 1+68 8+68 9+6 90 (1 -6m)	93.6	Ш		- 01>		15	40,30	<to><t0< td=""></t0<></to>	<10	2.4			ŀ	<0,02	40,02	40,02	40,02	40,02	<0,02	40,022	<0,02	<032					ŀ		ļ	40,1	. 00	40.1	8.8	410	4,1		40,4	61	0,7	-003	1000	401	401	- 40.1		- 07.1	-0.1	- 0,2		ŀ												
	89-107 1863-1869-107 +079 0-1071-1079 n) (6-8m)	5 94.1			. 01> 0		11	30 43,30 0 <10	0 <10	1 40,1	91			1	20,00	22 40,02	22 402	2000 20	20,00	2000 21	2000 2000	2000- 21	22 00,32							1	1 40,1	- 00	1,00	150	010	5 2		2 40,2	6,3	0,6	2 40,2	100	100	410	1 40,1		100	1,00,1	. di 2													-	
	861+RG2+R6 RG3+R99+R7 4+RG5+R66 0+R71+R79 (4-6m) (4-6m)	93 93			10 4		16 13 52 10	0,30 of,	10 41	0,1 <0,	51 68			ľ	0,022 40,1	0,02 40,0	0,02 40	0,02 40,0	0,02 40,0	0,02	0,02 40,0	000 000	0.32								0,1 <0,1	0.5	0,1 <0	7,7 7,7	1,0 41,	3		0,2 <0,	14	u.z <u.< td=""><td>02 <0</td><td>101</td><td>0,1</td><td>0,1 40</td><td>0,1 <0</td><td>100</td><td>0.1</td><td>0,1 <0</td><td>0,2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.<>	02 <0	101	0,1	0,1 40	0,1 <0	100	0.1	0,1 <0	0,2														
-	R16 (0-2m) 4+R1	96.3					37																						6,67											£0 ·																							
ľ	R16(0-2m)	42933	186	. 1000	48.1	0,01	100	1,4	1.4	<0,1	410	40,01	40,02	90'0>	40,02	40,02	40,02	20'05	40,02	<0,02	40,022	0,03	0,03	1000	10,05	10,00	8,15	2,06	161	.13	40,1	90.	40,1	c10	. 00	90	9113	40,4	. 0.4	7,1	-003	1007	401	411	1,0	100	- 100	0,5	- 40.2														
	6 884 4895 489 6 6489 8489 9 (6 8 m)	93.7			- c10		19	4330	<10 <10	40,1	n .				40,02	40,02	40.02	40,02	40,02	40,02	40,02	40,02	0,02								40,1	- 005	40,1	980	. 10	42.0	O.12	40,4	0,4	0,7	-0,2	100	40.1	401	-0,1		100	-0,1	-0,2														
_	+8.9 PB4+ PB5+ PB +6- 6+PB8+PB9 (4-6m)	931			. <10		15 < 10	17	410	12 <0,1	- 13			ŀ	0,02	40,02	40,02	40,02	40,02	20'00	40,02	20'05	000								401	- 50>	10>	920		20	v17)	<0,2	0,5	900	< 0.02	- 07	100	100	10>		10>	*01	×05														ĺ
	872+873+87 R91+892+89 4+882+883 7 (4-6m + 6- (6-8m) 8m)	3 925			. 010	1	1 <10	30 q33 A 23	1 <10	2 20	90	-		1	03 0,02 02 «0,0	02 40,00 02 40,00	02 400 02 400	02 40,00	02 400	02 40	02 alt	02 40,0	000								100 11	500	100 11	7,2		44	0,1	12 0,2	4 0,5	7 0,5	. 02	10	100	100	1700 17		10	.00 17	20 -								1				-		
	44182483 4418 44182483 4418 (4-64) (6-	93.8 9			- oto		21 <t0 <<="" td=""><td>0,30 <(</td><td><to><to><to><to><to><to><to><to><to><to></to></to></to></to></to></to></to></to></to></to></td><td>12 40,1 d</td><td>16</td><td></td><td></td><td></td><td>0,02 0,</td><td>40,002 of 40,002 of</td><td>40,022 of 40,022 of</td><td>40,002 of</td><td>40,022 A</td><td>40,022 A</td><td>40,002 of</td><td>40,022 4</td><td>0,02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>911 9</td><td>90.5</td><td>40.1</td><td>7,7</td><td>010</td><td>67</td><td>0,10</td><td>0,4 d 0,2 d</td><td>0,7</td><td>0,8</td><td>0,2</td><td>0.10</td><td>100</td><td>100</td><td>0,1 0</td><td></td><td>0,11</td><td>0,1</td><td>975</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t0>	0,30 <(<to><to><to><to><to><to><to><to><to><to></to></to></to></to></to></to></to></to></to></to>	12 40,1 d	16				0,02 0,	40,002 of 40,002 of	40,022 of 40,022 of	40,002 of	40,022 A	40,022 A	40,002 of	40,022 4	0,02								911 9	90.5	40.1	7,7	010	67	0,10	0,4 d 0,2 d	0,7	0,8	0,2	0.10	100	100	0,1 0		0,11	0,1	975														
-	5+1775+1884 84+175 5+1775+1884 84+ (6-8m)	92,7			- cto		17	33	10	32	41				40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	200	H							441	905	40,1	8.2	. 017	6.5	0,12	40,4	9'0	90	-0.2	- 0.1	100	100	-0.1		- 170	-0,1	41.2														
	967+ R75+ R8 5 +R75 +R84 (4-6 m)	97.6			<10		21	43,30	22 52	33	43				40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	0,02								<0,1	50>	10>	96		8,5	r(1)	<0,04	0,9	50	<0.02	100	102	401	10>		10>	-01	<0,2														l
	R6 R48+R52+R6 96 8+R77+R85 (6-8m)	465 M			. 01>		410	40,30	<10	40,1	- 30				40,02	40,02	40,02	40,02	4000	40,02	40,02	40,02	0,02							ŀ	40,1	SUP	1,00	6,6		3,2	(T)	40,4	0,4	0,7	- 05	10 . 00	100	40,1	40,1	****	1'0>	-0,1	- 40'5														ì
	2-R36-R31-R3 R48-R52-R6 2-R36-R37 8-R77-R36 (2-4m) (4-6m)	94533			· <10	1	t3 ct0	2 4330	ot > 0	1 40,1	- 22				2 0,02	2 <002	2 <002	2 <002	2 4002	2 <002	2 <002	2 <002	200							1	1 40,1	50>	1,00	7,8		28	C1'0	2 02	0,6	0,5	2 40,2	1000	100	100	1 40,1		100	10 × 01	. d2														١
	3+029+13 R30+13 3+134+135 2+136 (2-4m) (2-4	6,7 9					2 4	030 0,3	ct0 ct	c10 c1	40 41	0,01 40,0	0,02 40,0	700 900	0,02 40,0	0,02 d) 0,02 d)	0,02 40,0	00 200	0,02 40,0	000 000	0,02 40,0	(00 20°0	0,32 0,0	000	0,01	001 00	dus du				901 40	0.00	0,1	5,3	G,0 cl.	2,9 2,		0,4 0,2 0,2	7.	0,4	0,2 40	001	001	0110	0,1 00		001	0,1 0	. 0														
	64027(2- 348 64027(2- 348 4m) (3	97.6			- 01>		<10	<0,30 <to< td=""><td><tp><tp><tp><tp><tp><tp><tp><tp><tp><tp></tp></tp></tp></tp></tp></tp></tp></tp></tp></tp></td><td><10 <0,1</td><td>31</td><td>40,01</td><td>4002</td><td>40,05</td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td>933</td><td>40,01</td><td>40.01</td><td>40,01</td><td>orros.</td><td></td><td></td><td>1</td><td>901</td><td>- 00</td><td>40.1</td><td>2,3</td><td>4,0</td><td><1.0</td><td></td><td>43,4</td><td>9,1</td><td>40,2</td><td>-0.2</td><td>100</td><td>100</td><td>40</td><td>100</td><td>10/04</td><td>170</td><td>-0.1</td><td>- A2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></to<>	<tp><tp><tp><tp><tp><tp><tp><tp><tp><tp></tp></tp></tp></tp></tp></tp></tp></tp></tp></tp>	<10 <0,1	31	40,01	4002	40,05	40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	933	40,01	40.01	40,01	orros.			1	901	- 00	40.1	2,3	4,0	<1.0		43,4	9,1	40,2	-0.2	100	100	40	100	10/04	170	-0.1	- A2														
	R30+R31+R3 2+R36+R37(0 2m)	96.7			- 410		25	43.30	410	40.1	40,01	40,01	40,02	-00,00	40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	933	1000	40,01	40.01	an'no				430	- 40	10>	48	CLD ODS	1,9		40,4		0,3	- 005	70.00	170	40,1	10>		10	-071	. 402														
	8.28+8.29+8.3 3+8.34+8.35 (0-2m)	948			cto		19	0,47	<t0< td=""><td><10 40,1</td><td>55 <0,01</td><td><0.01</td><td>4002</td><td>9000></td><td>40,02</td><td>40,02</td><td>40,02</td><td>40,02</td><td><0.02</td><td><0.02 <0.02</td><td>4002</td><td>-0,02 -0,02</td><td>4001</td><td>1000</td><td>100></td><td>×001</td><td>an'no</td><td></td><td></td><td></td><td>40,1</td><td>50></td><td>1,0</td><td>6.2</td><td>410</td><td>2.4</td><td></td><td>40,4</td><td>м.</td><td>0,4</td><td>40,2</td><td>100</td><td>100</td><td>10></td><td>100</td><td></td><td>l'm</td><td>*01</td><td>. a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t0<>	<10 40,1	55 <0,01	<0.01	4002	9000>	40,02	40,02	40,02	40,02	<0.02	<0.02 <0.02	4002	-0,02 -0,02	4001	1000	100>	×001	an'no				40,1	50>	1,0	6.2	410	2.4		40,4	м.	0,4	40,2	100	100	10>	100		l'm	*01	. a														
	100 64827 (0- 100 64827 (0- 0 2m)	97,7			to		ct0 11	40,3 <10	<to><to><to><to><to><to><to><to><to><to></to></to></to></to></to></to></to></to></to></to>	<10	30	1 40,01	2 40.02	90'0> 9	2 40,02	2 4002	2 4002	2 40,02	2 4002	2 40,02	2 4002	2 4002	2 00,32	4001	2 4001	2 4001	an'no				40,1	. 80	40.1	13	41,0	<1,0		40,4	48	40,2	975	1 000	100	0,1	- 000		- 011	1,00	. di.													. 50	ĺ
ŀ	905 +937 +99 R95 +937 +99 8+8 99+8 L00 8+8 99+8 L00 (0-2 m) Q -4m)	3,7 4,00	27 86	. 000	101 <001	. 0'07	18 14 10 <10	0,3 40,5 18 21	11 <10	0.1 40.1	31 28	101 <0,0	000 < 000	00> 901	1,02 <0,0	000 <00	000 < 000	00> 201	201	000 400	200 > 201	00> 201	1,32 <0,3	200	200	200	.86 9.41	.17 9.88	7,7 78	000 010	0,1 40,1	005 400	0,1	1,1 9,1	1,0 41,0	13	300	0.4 40.4 0.2 40.2	0,1	1,5 0,7	0,2 40,3	0.0 5.0	100	100	011 401	0.1	011 401	01 001	0,2 1,01 <00	00> 101	00> 201	001 4000	001 4000 001 4000	001 4000	001 4000	001 4000	000 4000 001 4000	001 4000	001 4000	001 4000	0005 40,00	0005 40,00	
ŀ	R84+R85+R8 R96+ 6+ R87+ R92 8+R9 (2-4m) (0-	93.7 9	18	0000	4001 et		15 <10	203	10	138	29	40.01 a 40.01 a	व्यक्त	D 90'00	40,02 d	4002 4	40.02	40,02	40.02	4,02	40,02	40,02	40,32 a	4000	40,02	4002 4	923 8	7,46 9	5,88	0019	0 100	40.05	100	14	410	370	3800	<0.2	2,9	0,5	402	0,7	100	100	102	100	100	0,3	40,2 40,01	4011	40,02	40,06 4 40,001 40	0> 10000>	< 0,001 40	0 0001 000	<0.0001 40	0> 10000>	< 0,001 40	0 0001 000	< 0,000 40 40 40	0,0005 d	0,0005 40,	
F	6+885+88 88 6+887+892 6+ (0-2m)	96,1	100	ct0000	40,01 <10	-0,02	13 74	<03	<10	18	40,01	40,01	40.02	40,05	40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	90,32	2000	40,02	40,02	9,4	10,45	53,6	3800	40,1	40,05	0,1	88	410	3.6	2100	40,2	20	975	40,00	0,7	100	0.1	40,1	100	40,1	40,1	40,01	40,01	40,02	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	<0,00005	<00000>	
	882+883+89 0+891+895 (2-4m)	95,1	8.	- ct000	<10	0,02	12	40,3	<10	16	40,01	40,01	40,02	40,05	40,02	40,02	4002	40,02	4002	4002	4002	-0,02	4032	4002	40,02	4002	20,0	9,16	65,8	2000	40,1	40.05	40.1	9,4	41,0	379	3200	40,2	40,1	90	40.05	1000	401	011	40,1	40.1	40,1	40,1	40,01	40,01	40,02	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	<0,000.05	<0,00005	
	HB RB2+RB3+Rb RB+ 0+RB1+R95 m) (0-2m)	93.4	8 -	- ct000	0,02 <10	0,02	12	22	ot>	40,1	38 <001	<0.001	<0.002	900>	40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,02	40,32	40,02	<0.002	40,02	9,25	9,91	64.9	0000 CT0	901	20,05	ğ ç	82	41,0	13	3100	40,4	40,1	900	40,2	40,1	100	100	4011	100	40.1	401	<0.01	<001	<002	× 000 e	10000	1 40,001	10000	10000	10000	10000	10000	5 40,016	5 40,0005	5 <0,000.05	ĺ
L	179+R80+R8 R79+R80+R8 1+R89+R89+ 1+R89+R89+ R94 (0-2m) R9.4 (2-4m)	301 4336	100	. 000	10,01		4 16 10 <10	2 12	010 <10	10 <10 11 <0,1	11 14 ,01 40,01	10,0> 10,	20 an	000	20° 20°	20° 20°	20° 20°	20'0	20,0	20,00	20° 20°	10 m	32 0,3	200	2000	70 00	85 8,55	97 8,42	3,4 88	01> 010	11 40,1	200 40,00	11 001	2. 5.4	0,0	1.	00 4300	32 03.2	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	80 8	22 40.2	31 00.1	11 40 11	100	170 - 401	11 401	711 401	1,1 0,1	10.	10,0	10,00- 10,00	001 40,00	001 40,00	001 40,00	001 40,00	001 40,00	001 40,00	001 40,00	001 40,00	001 40,00	2005 40,000	2005 40,000	
	R9+R11+R12 R79+F +R13 +R17 (G 1+R8 8m) R94 (958 9	100	. 0000 d000	40.01 40 <10 <	-0,02 -0	100	40,3	ot 0 16	410 c	98 2	0,01 0	40.02 40 40.01 40	00'00	0,02 d 0,02 d	0,02 40	0,02 0	0,02 40	0,02 0	9 0 0	0,02 40	40,02	932 0	000	40,02	0005 00	8,855	9,05	88,1 9 6,53 6,	7400 8K	0,1	90,00	401	8.1 6	4.00	21	4700 S1	9,4	1100	0,5	92 9	0,10	100	27	×0,1 ×	40,1	40,1	0,3	0,01	4,01	40,02 40	0,005 40	0,001 <0,0	0,001 <0,0	0,001 <0,000	0,001 <0,0	0,001 <0,0	0,001 <0,000	0,001 <0,000	0,001 <0,000	0,0005 40,0	0,0005 -0,1	
ŀ	R9+R11+R12 R9+ +R13+R17 (4 +R1 6 m)	96.7	100	<t000< td=""><t000< td=""></t000<></t000<>	<0.01 <10	-0,02	18	40,3	<to><to><to><to><to><to><to><to><to><to></to></to></to></to></to></to></to></to></to></to>	<0.1	7A 40,01	40,01	4002	9000	40,02	4002	4002	4002	4002	4002	4002	40,02	4032	4002	40,02	4002	8,88	8.72	7,03	8000 <10	40,1	4005	40.1	77	41,0	N.	2000	40,4	33	90.5	40,2	40,1	100	100	< 0.1	40.1	40,1	40,1	40,2	4001	40,02	-0,001	40,001	40,001	-0,001	0,001	40,001	4001	-0,001	-0,001	<0.00005	<0,00005	
	R7 +f8+ R14+ F R19+ R23 (6- + 8m)	96,5	66	c1000	<001	<0,02	120	40,3 <10	<to><to><to><to><to><to><to><to><to><to></to></to></to></to></to></to></to></to></to></to>	<10	72 40,01	10,00	10,00	90'0>	40,02	40,02	40,02	40,02	40,02	9,000	20,02	20,00-	40,32	2000	40,02	40,02	9,2	9,37	5.61	0069	40,1	9000	100	8.2	41,0	9'5	27.00	43,4	40,1	0,7	40,2	40,11	170	100	40.1	40.1	40,1	40,1	40,01	40,01	40,02	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,00005	40,00005	
	R7+R8+R14 m) R19+R23 (4 6m)	95.8	18.	· 1000	-0.01 <10	-0,02	98 02	40,3	ot> <10	<0,1 <0,1	M 40,01	40,01	40,02	90'0>	40,02	40,02	4000 4000 4000 4000	40,02	40,02	9,00	40,02	40,02	40,32	20 0	40,02	40,02	8.99	9,16	59,6	480.0	40,1	40,05	901	8.1	41,0	4.7	3000	40,2	40,1	900	40.0	100	100	00.0	1000	40.1	90,1	40,1	40,01	40,01	40,02	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	4,0005	5 40,000 5	ì
L	28+8.7 + 87.78 S+ 86. (4-6 m)	1 95.9	18	000 4000	01 <0,01	-0,02	19 54	3 40,3	0 <10	1 <0.1	01 40,01	01 40,01	10,02	90'0> 90	2000 - 2000	02 40,02	20 40 20	20'00 20'00	20 40,02	02 < 0,02	20'00 20	2000- 20	32 033	200	2005	70 00 70	1 201	8 8,37	5 100	0006 00	10 × 01	5 40.05	10 × 0,1	9.2	0 <10	1,5	. 8200	2 <0.2	1 <0.1	0,5	2 402	1 <01	100	100	1,0 × 0,1	10> 17	1,0 <0,1	100	<0,0	9,00	02 40,02	006 -0,06 101 <0,00	101 <0.001	011 <0,001	01 <0,001	0,001 0,001 <0,001 0,001 0,001	01 <0,001	01 <0,001	01 <0,001	101 <0,001	005 4,000	000 40,000	
ŀ	R68+R7 R67+R 77+R78 6+R77 F2m) (2-4	1287 412 16.2 93	20	. 000 000 000 000	101 d)	002 -0	ct0 t	20 00	ct0 t	0,1 0	24 3	0,01 <0,0	002 d	0000	0,02 -0,	0,02 eQ,	4002 40,02	002 40,	0,02 c0,	0,02 < 0,0	002 d	0,02 40,	032 00	002	002 d	002 -01	5,75 8,75 5,76 8,75	3,19 9,0	11,1 78 1,71 7,5	D 009	0,1 0	005 eQ	0,1 <0	37 7,	0,0	d A	100 429	0,4 d)	48 5	0,3 0,	000 00,2 00,1	001 00	001	901	0,1 40	011 0	0,1 40	011 00 011 00	40,2 40,2 40,001 40,001	1001	1002 40,1	40,001 40,0	700 1001	1001 1001 1001	700 1001	1001 40,0	1001 403	1001	700 1001	1001 d),	0,0005 40,0	0,000	
	66+R72+R7 R67- HR73+R75 6+R (2-4m) (X	94.4	82	- 0000 - 0000	410	- 0,02	15	15 <10	-013 <10	-0,1	40,01	<0,01	40,02	90'0>	40,02	-0,02	900	40,02	40,02	<0,02	20,00	20,00	0,32	40,02	40,00	40,02	8.91	9,72	72,1	53.00 ct0	40,1	2000	+0.1	7,6	41,0	2.9	3800	40,4	9	0,5	40,2	40,1	441	100	< 0,1	40.1	40,1	40,1	40,2 11 40,001 4	4,001	40,002	40,005	40,001	4001 4	4,001 c	40,001	40,001	4,001 ×	4,001 c	 0,001 0,016 	40,0005 <0	40,000.05	
t	966 H72 H7 B 3H7 BH75 3 (0-2m)	94.4	18	· 1000	-0,01 <10	-0,02	18	40,3	ct0 <10	<10	-0,01	40,01	40,02	40,05	40,02	40,02	40,02	40,02	40,02	<0,02	40,02	40,02	40,00	4000	40,02	40,02	8,84	9.68	58	4000	40,1	40,05	100	7,8	41,0	2.1	2000	40,4	7,2	0,4	40.0	90,01	100	100	1000	40.1	40,1	40,1	40,000	40000	40,002	40,000	10000-	40,001	10000>	100000+	10000>	40,001	10000>	40,016	40005	<0,0005	
	R6 969+R70+R7 5 1 (0-2+2-4m)	948	18	. 000 d 000	<0,01	-0,02	13	<0,3	<10 <10	<0.10	40,01	<0,01	40,02	40,05	40,02	40,02	40,02	40,02	40,02	<0,02	40,02	40,02	40.32	40,02	40,02	40,02	901	9,33	7,01	7400	10>	40,05	1,00	7,1	410	2	2300	<0,4	<0,1	40,5	40.0	401	100	100	1,02	10>	10>	100	40,001	40,001	40,002	40,006	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40,001	40005	40,000	Ì
	2+R6 R61+R62+ R65 3+R64+R6 V (2-4m)	95.8	8	- 0000 - 0000 - 0000	40,01	2 40,02	14	410	30 410	410	1 40,01	1 < 0,01	2 40,02	90'00- 5	2 40.02	2 40,02	2 40.02	2 40,02	2 40,02	2 <0,02	2 40.02	2 40,02	2 40,32	2 4002	2 40.02	2 40.02	20'6	9,83	5 78,9	0019 0	1,00,1	5 40.05	1000	28.5	400	40	4300	40,7	4.4	0,5	97	100	100	100	10 < 0.1	100	1,00	1,00	00,001	1 4,001	1 1	36 40,006		11	1 40,001	01 40,001	11 40,001	1 40,001	1 40,001	00001	05 40,000 05 40,000 05	900000	ĺ
-	75745 R61486 294860 348644 4m) (0-2m	0,2 96	181	. 000	10.0 <0.00	105 -076	17 14	13 40.	1,5 490	0,1 40,1	24 85	<0.01 <0.01 <0.01	2002 400	90'.	0,1 <0,0	102 <0.0	40,02 <0,02	200 <000	102 <0.00	102 <00 102 <00	000> 200	000> 201	1,12 <0,3	701 400	701 <000	3.01 <0.00	,98 8.65	1002 85	25 6,82	200 7300 ct0 12	0.1 < 0.1	15 400	0,1 < 0,1	2 49	1,0 41,1	13 41.0	300 5400	0.2 40.2	0,1 00,1	1,5 0,5	0.2 40.2	1,3 40,1	011	011	0.1 < 0.0	0.11	01 40	0,1 of 1	.001 al.0	001 400	001 40,00	001 40,00	001 40,00	001 40,00	001 400	001 40,00	001 400	001 40,00	001 400	1001 40,01	000 40,00	.001 40,00.	
1	6 HB7 HB R56+ R59-R50 8-R1 31-2m) (2-	93.8 4	22.	11000	<0,01 << <	0,01 6	12 1	40,3	5.7	6,1 4	28 -0,01	40,01 4	40,022 et	00,00	0000 1	40,02 4	4,02 4	40,02 4	< 0.02 <1	40,02 4	क्षण व	40,02	000	40.01	< 0.01	0001	8352 R	10,78	928 9	ct0 4	100	40,05	× 010 ×	8.5	41,0	1,7	2000	< 0.2	28 e0,1	0,8	402 4	0,3 6	100	100	100	4071	0,11	40,1	40,2 4 1 <0,001 40,	40001 A	<0,0002 40	<0,000 do	<00001 40 (0001 40	<0,001 40 <0,001 40	<0,001 40 <0,001 40	<0,001 40 <0,001 40	<0,0001 d0 <0,0001 d0	<0,001 40	<0,001 40 <0,001 40	<0,000 ed.	c0,001 d	<0,001 +0,	
l	888480은 Reh ROS (Research Reference Reference Reference Report Report Report Reference Referenc	94 9	8	400	· 10,01	-0,01	7,1	<0.3	2,1	6,8	19 × 0,01	< 0.01	40,02 40,02	< 0.05	4,002 4,002 4,005	40,02	40,02	40,02	< 0.02	<0.02	याफ याफ याफ	20 00 00 00 00 00 00 00 00 00 00 00 00 0	200	40,01	< 0.01	< 0.01	9,23	10,53 10,36	8,96	3800	1,0>	40,05	100	5.4	41.0	3.5	2000	<0,4	10>	0,7	402	0,3	1,00	100	1,0>	10>	10>	<0.11	40,001	40,001	40,002	40,006	40,001	40,001	40,001	40,001 <0,001 40,001 40,001 40,001 <0,001 40,001 40,001	40,001	40,001	40,001	- 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 40,001 < 4	40,001	40,001	
	8 48+8 49 (0 - 2 m+2-8m)	94.3	19,6	40,1 <1000	0000	0000	<10	40,3	410 410	<0.1	1000 >	< 0,01	40,02	> 000	40,02	40,02	0,01	40,02	< 0.02	< 0,02	40,02	40,02	0,18	1000	1000 >	1000	8,84	10,53	53,7	<5,0	40,1	500	<0.1	6,3	<1,0	2		<0,4	81 .	0,4	<0.2	100.0	401	1,00	<0,1		. (11	1,00				I.	ı.		İ.			Ī.	I.	I.			

	25	iman Durchschritt	78.53	1100000	,005 0,01 3,6 10,30 0.02	10 21,46	7,1 60,61	2,1 11,23	6,8 17,27 US 0,45	12 86.86			80	100 000	100 000	102 0.07	102 000	102 0,02	1000 201	1000 201	200 000	7.02 0.24				168 891	106 9,32	(37 7,28	12,50		080		1 6.13	0 1,30	3,19	280 3061,79	88	0.33	0,2 0,51	20'0 10'	g3 a66	13	07 050	0,1 0,10	0.10	71 0.10	13 0.27													
	Parwers.	n Medrum M	23 20 00	1 11000 1	2 12 0	0 00	10 600	31 33 7 35 23 490	30 94 1 0,45	0 410	000	000	0 0 0	2 0,02	15 0,07	13 0,24	22 0,05 22 0,05	18 0,06	9 0,08	21 0,16	21 0,16	88 0.97	0 0	0 0	00	28 9,41	72 11,1	N 9.28	2 13	0 0	1 0,8	0 0	75 14	1 1,3	28 00	7 1,2	0 88	0 02	72 1	0 000	8 1,6	0 036	13 2,7	1 0,1	1 01	1 0 0,3	6 0,5	 000	000	000	000	000	000	000	000	 0	0 0	0 0	0 0	0 0
131 132 132 132 132	RI 3/2-RI 4/2-RI 3/2-RI 4/2-RI 3/3-RI 4/2-RI 4/2-RI 3/3-RI 4/2-RI 3/3-RI 4/2-RI 3/3-RI	97				<10 <10	1 <10 <10 0 <0,30 <0,30	410 410	10> 10> 1	8 -				2 400 400	2 4002 4002	2 402 402	2 e0,02 e0,02	2 402 402 2 402 402	2 40,02 40,02 2 40,02 40,02	2 40,02 40,02 2 40,02 40,02	2 40,02 40,02 2 40,02 40,02	व वास वास							107	5 425 425	5 0,8 40,5	100 100	4,0 1,1	0 <10 <10 0 <10 <10	4.0 4.0	1 00 400	43 46	9 42	2 40,2 40,2	1 40,01 40,01		9,1 40,1	1,1 4,1	1 40,1 40,1	40.1 40.2		2 40.2 40.2													
128 129 131	13-113-113-113-113-113-113-113-113-113-	97,7			</td <td>21 <10 <10</td> <td>0.96 <0.30 <0.00</td> <td>410 410 410 410 410 410 18 410 12</td> <td>40 40 15 40,1 40,1 40,</td> <td>210 36 45</td> <td></td> <td></td> <td></td> <td>4002 4002 400</td> <td>00> 200- 200-</td> <td>40.02 40.02 <0.00</td> <td>-0,02 -0,02 -0,00 -0,02 -0,02 -0,00</td> <td>40,02 40,02 <0,0</td> <td>0.03 40,02 <0,00</td> <td>00> 200> 200</td> <td>0,07 <0,02 <0,00</td> <td>0.24 <0.32 <0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Q.5 Q.5 Q.5</td> <td>0,5 0,5 0,</td> <td>91 91 9</td> <td>62 12 12</td> <td>41,0 41,0 41,1 41,0 41,0 41,1</td> <td>4,0 4,0</td> <td>d,4 d,4 d),</td> <td>40,2 40,2 40, 1,7 1,2 8,8</td> <td>40.2 di -</td> <td>0,4 40,2 40,</td> <td>-0,2 -0,2 -0,0 -0,01 -0,01 <0,0</td> <td>401 401 40.</td> <td>41 41 41 41 41 41 41 41 41 41 41 41 41 4</td> <td>401 05 1</td> <td>40,1 40,1 40,4</td> <td>40.</td> <td></td> <td>40,1 40,1 40,</td> <td></td>	21 <10 <10	0.96 <0.30 <0.00	410 410 410 410 410 410 18 410 12	40 40 15 40,1 40,1 40,	210 36 45				4002 4002 400	00> 200- 200-	40.02 40.02 <0.00	-0,02 -0,02 -0,00 -0,02 -0,02 -0,00	40,02 40,02 <0,0	0.03 40,02 <0,00	00> 200> 200	0,07 <0,02 <0,00	0.24 <0.32 <0.5								Q.5 Q.5 Q.5	0,5 0,5 0,	91 91 9	62 12 12	41,0 41,0 41,1 41,0 41,0 41,1	4,0 4,0	d,4 d,4 d),	40,2 40,2 40, 1,7 1,2 8,8	40.2 di -	0,4 40,2 40,	-0,2 -0,2 -0,0 -0,01 -0,01 <0,0	401 401 40.	41 41 41 41 41 41 41 41 41 41 41 41 41 4	401 05 1	40,1 40,1 40,4	40.		40,1 40,1 40,													
120	961+962+96 R1 (10-0m) 3+984+965 (9-0m)	90 00 00			. <10	11 01	11 15	<10	. <10	300				4000	2000	4000	- 40,02	. 40.02	2000-	- 40,02	- 40,02	. 013								- 4,2	500			· <1,0	. 22	. 00	402		970	- 40,2	. 100	10.0	100 .	. 401	. 10		100													
123 124 125	R8 (10-Em) R11 (11-Em) R5 (10-Em)	4903 49640 49641				7 27 30	38 48 81																																																					
121 122	R14K5+R9+R 10+R11(0)- R9 (8-Cm) Em)	4 49.25 49.038			- 010	. 8	40,3		40,1						2000	4000	2 4002	40.02	- 2000 2	2000	-0.02									d2 .			. 63	<100 -	- 079		c02 0.3		0,4	1 40,2		· · · · · · · · · · · · · · · · · · ·	- 10>	. 401 .																
118 119 120	501 +855 +85 559 (6.8 m) + 850 48 54 85 9 (4 cm) + 851 48 55 485 741 541 124 81 12	91,7 91,8			- cto - cto	15 11 18	40 40 58	410 410 410 410 410 410 410 410 410 410	14 <10 11 e0,1 e0,1 e0,1	. 16 100				4002 4002 400 4002 4002 400	4002 4002 400	<0.002 40.02 40.0	<0.00 2 e0.02 e0.00 <0.00 2 e0.00 e0.00	4002 4002 400 0,03 40,02 40,0	0,09 40,02 40,0	0,05 40,02 40,0	0,07 0,02 0,00 0,08 0,02 0,00	3,09 0,19 0,18								4,1 4,2 4,3	40,5 40,5 40,5	401 401 401	48 44 44	41,0 41,0 41,7 41,0 41,0 41,5	6.6 5.2 1,4	40.4 40.4 0.5	40,2 40,2 40,2 25 18 0.5	at at at	0,6 0,5 0,7	40,2 40,2 40,0 40,01 40,01 40,0	-0.1 -0.1 -0.3	41 41 41	401 401 40.1	40,1 40,1 40,1	. 0.1		401 401 40,1													
5 116 117	192-R 93-R 5 R94+ R95 +R6 8 (9-Em) + 6-R 98+R 99+ R58 (6-8m) R100 (9-Em)	94.9					3 40,3 0,47	410 410	1 401 0,45	. 410 300				22 40,00 40,00 24 40,00 40,00	20 and and a	2 402 402	22 40,02 40,02	22 402 402 22 402 0.04	22 40,02 0,08	3 0,02 0,08	3 0,02 0,16	2 0.14 0.86								3 423 44.0	5 40,5	1 01 01	7 6.8 5.1	0 <1,0 <1,0	1 2,2 41,0	4 0,95 40,4	2 <02 <0,2 3 S.9 L.6	2 <0.2	03 03	2 <0.2 <0.1		1 401 401	1 <01 011	01 <0.01 -0.01	1 401 40.1		2 402 401													
113 114 11	R6 8+R5 6+R7 R40+R 45+R1 R 67+R 3+R 2+ 8+R5 0+R8 7 4+R8 (8+Err) R91 (8+Err)	48540 48791 483 94,9 94,7 94			ct0 ct0	13 <10	410 410 41	410 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	410 410 41 43,1 43,1 40	22 <00 <0				40.02 40.02 40.00	0.05 -0.02 -0.0	0.12 40.02 40.02	4002 4002 40,	<0.002 40.02 40,44	40,02 0,0M 40,	4002 0,05 0,0	0,07 0,03 0,0	0.67 0.4 0.5								d,9 d,3 d	40,5 40,5 40	. and .	4,4 6,8 5, 2,4 10 8,	4,0 4,0 4	1,4 22 2,	40.4 0.83 40	5 di a	an 2 an 3	0,3 0,3 0,	40,2 40,2 40 40,01 40,01 40,		41 41 41 6 41 41 6	401 401 40	401 401 40	-01 -01 -0		401 40,1 di 40.2 di 40.2 di													
111 112	R 35+R 37+R 4 R 40+R 44 (4- P46-H98 +P4 1 1+R 42+R45 (6m + 6-8m) + 9 +R23 +R5 3 (9-6m) R23 (9-6m) (9-6m)	48.281 4.8539 97 95,2			010 <10	5 14 <10	9 96 <10 13 <0,3 <0,3	10 <10 <10	10 <10 <10 1,1 <0,1 <0,1	. 41				02 402 402	200 200 20	000 000	02 0,02 0,04	02 402 402	200 200 20	200 200 20	00 00 00 00 00 00 00 00 00 00 00 00 00	11 011 0.97								,1 ct,1 c2.0	5 <0,5 <0,5	10 401	32 43	,0 <1,0 <1,0 ,0 <1,0 <1,0	1,6 1,2	40.4 40.4	2 <02 002	3 03 402	4 0,4 0,3	01 40,2 40,2		1,1 <0,1 = 0,1	1,0 <0,1 = 0,1	001 <0.001 00.001			1,1 <0,1 =0,1													
108 109	22 5412 5412 83148 3248 3 748 2948 30 848 3948 43 (8-5m) (8-5m)	47830 47891 96 96			- 43	10 39	43 43 4	410 410 4 21 410 4	40,1 40,1 4	. 43				4002 4002	40,02 40,02 4	4002 4002 4	-0,02 -0,02 0 -0,02 -0,02 0	40,02 4002 4 40,02 4002 4	40,02 40,02 4 40,02 40,02 4	40,02 40,02 4 40,02 40,02 4	40,02 40,02 4 40,02 40,02 4	0.05 0.05								420 424 <	40,5 40,5 4	01 01 .	3,6 2,4	<1,0 <1,0 <1,0 <	5,1 2,4		4)2 4)2 4	413 413 O	0,3 0,4	40,2 40,2 4	0.1	0,1 0,1 0 0,1 0,1 0	401 401	40.01 40.11 4	401 401 4		40,1 40,1 4													<u>.</u>
105 106 107	45-R50+R5 R45+R50+R5 R28+R33+R3 R45 R45+R37+R50 R4-R57+R50 R4-R57+R50 R5-R52 R5-R50 R5	944			<10 <10 <76	n 2	410 410 31	410 410 410 410 410 22	010 <10 <10 0,1 <0,1 <0,1	. 19 72 				000 000 000	2000 2000	100 400 400 100 400	योक योक योक	1,02 4,02 4,02 1,04 4,02 4,02	2010s 2010s 2010s 2010s 2010s 2010s	0,02 40,02 40,02 0,16 0,02 40,02	3,15 0,02 40,02 3,24 0,05 40,02	0.07 0.08								an 44,1 44,1 ap 42,3 42,3	0.5 < 0.5 < 0.5	0,1 <0,1 <0,1	6.7 2,4 5,7 3 1,2 3,2	c1,0 <1,0 <1,0 c1,0 <1,0 <1,0	1,4 1,6 3,7	0,40 40.40	0.2 <0.2 <0.2 1.3 3.9 32	03 02 003	0,6 0,3 0,4	0,2 <0,2 <0,2 0,05 <0,05 <0,01	01 <01 -01	0,1 <0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	0,1 <0,1 0,1	40,1 <0,1 40,1	0.1 <0.1		0,1 <0,1 0,1													
103 104	-	-			- c10 c10		0,94 40,3	</td <td><10 <10 <0.0 <0.0 <0.1 <0.1 </td> <td>88 ·</td> <td></td> <td></td> <td></td> <td>т</td> <td>т</td> <td>П</td> <td>т</td> <td>0,05 0,05</td> <td>40,02 40,02</td> <td>0,00 0,00</td> <td>40,02 0,02</td> <td>0.41 0.43</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4,0 4,0</td> <td>40,5 40,5</td> <td></td> <td>2,1 3,8</td> <td><1,0 <1,0</td> <td>41,0 41,0</td> <td>40,4 40,4</td> <td>3 33</td> <td>40.2</td> <td>0,2 40,2</td> <td>40,2 <0.01</td> <td>- 401</td> <td>91 91</td> <td>401 401</td> <td>40.01 40.01</td> <td>-01 -01</td> <td></td> <td>401 401</td> <td></td> <td>- - -</td>	<10 <10 <0.0 <0.0 <0.1 <0.1	88 ·				т	т	П	т	0,05 0,05	40,02 40,02	0,00 0,00	40,02 0,02	0.41 0.43								4,0 4,0	40,5 40,5		2,1 3,8	<1,0 <1,0	41,0 41,0	40,4 40,4	3 33	40.2	0,2 40,2	40,2 <0.01	- 401	91 91	401 401	40.01 40.01	-01 -01		401 401													- - -
100 101 102	HRSSHRS RRZ+R86+R8 RRZ+R86+R T78+R87 7+R8+R81 7+R8+R81 5-6m) (4-6m) (6-8m)	91,7 97 96			<10 <10 <10	14 <10 15	410 28 16 40,3 1,8 40,3	410 410 410 410 410 410	× 0,1	. 86				41 0,000 0,0	0,02 0,02 0,02	0.08 0.08	0,02 0,05 0,05	-0,02 0,02 0,02	व्यक्त न्यक्त न्यक	-0,02 0,04 0,04 0,02 0,02 0,02	0,04 0,02 0,02 0,11 0,03 0,03	0,45 0,46 0,43							100	42,0 44,0 44,0	40,5 <0,5 40,5	0,1 (0,1 0,1	5,5 <1,0 4,3 2,1 1,6 1,1 2,1 2,8	410	6 <1,0 1,6	40,4 40,4 40,4	40,2 <0,2 40,2 32 2.6 4.5	40.2 0.045	0,5 <0,2 0,4	40,2 <0,2 40,2 40,1 40,01 40,01	401 401	9,1 (0,1 0,1) 9,1 (0,1 0,1)	0,1 <0,1 0,1	0,1 <0,1 0,1	-0.1 <0.1		0,1 <0,1 0,1													
66 86		93.7 93.6 9			< 10 < 10 <	17 23	40.5 40.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<0,10 <0,0 <0,1 <0,11 <	30 88				400 400 400	0.02 <0.02 0.02	0.02 <0.02	-0,02 <0,02 c	-0,02 <0,02 -	0,02 <0,02	40,00 4,002 4	Q 03 < 0,02 0	0.49 0.2								4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	- d(5 d(5 v	401 401	2,8 2,7	<1,0 <1,0 <1,0 <1,0	1,6 1,4	की की	23 42	0.5	90 90	40,2 40,2	- 0.1	41 41 41 41	0.2 40.1	401 401 401 c	- 401		401 401													
Otermische Dwarn eber - Turm ebrojekt i Proben een nahm e am Haufwer k siet e 3 5 5 97	R61 (G-8m) NG-4 (G-8m) 1+079+18 (R-6m) (R-6m)	#132 #134 46501 943			- cto	21 27 16	R6 21 14 	44 3.3 <10						4002	20'05	0002	20,02	. 400	2000	- 0002		0.34								300	- 40,5		. 43					. 0	0.0					- 40,1																

Chemische Parameter - Tunnelprojekt 8			-	2	٣	4	r	9	7	×	6	10	11	12	13	14	15 16		17 18	19	L			
Probenentnahme im Tunnel			Vortrieb	Vortrieb	,	Vortrieb	,	,	Vortrieb	,	Vor	Vortrieb Ost	:	IOV	ep	۸		ν						
			West 2 + 894,7m	West 1 +207m	Vortrieb Ost 2a +995,6m	st West 2 n +1301,7m		Vortrieb Ost Vortrieb Ost 3 +341m 2+353,4m	West 2 V +648,8m ⁴	Vortrieb Ost Vortrieb Osi 4 +190,5m 3 +44,0m		2a Vor +1159,8m 2a+	Vortrieb Ost Vortrieb Ost 2a +546,8m 2 +187,7m		West 2 Vortri +648,8m 2a+7.	Vortrieb Ost West 2 2a +738,6m +1063,7n	West 2 Vortrieb Ost +1063,7m 3 +632,2m	b Ost West 2 2,2m +1063,7m		Vortrieb Ost Vortrieb Ost 3 +367m	Ost	Auswertung	rtung	
			NBS-km:	NBS-km:	NBS-km:	NBS-km:	_	NBS-km:	NBS-km:	NBS-km:	NBS-km: NI	NBS-km: NI	NBS-km: NB:	NBS-km: NBS	NBS-km: NBS	NBS-km: NBS-	NBS-km: NBS-km:		NBS-km: NBS-km:	km: NBS-km:	u :u	MAX	Ν	DURCH-
Gesamtgehalt	Untersuchungsmehode		200	- 1	-1 1		- 1	004:00	- 1	- 1	- 1	- 1	- 1	+ 1	+ 1	- 1	4	1	- 1	4				
Arsen		mg/kg TS	6'8	48,2	6,1	41	<2	26	3,9	<2	7	8,4									14	48,2	2,8	14,74
Blei		mg/kg TS	5,7	55,9	3,1	10,9	30	7,7	1,4	1,2		3,9	+			2,2 10		+		·	18	276	1,2	27,84
Cadmium		mg/kg TS	0,3	1,9	<0,3	<0,3	<0,3	<0,3	40,3	<0,3		1	1	+		+	+	+			9	4,1	0,3	1,38
Chrom gesamt		mg/kg IS	3.3	7 2 2	d,c	1,95	E,I	7,67	7,2	1,5	5,5	44,5	13,3	30'p	7 7'7	/9 7'7	5,74	7,4	7		1b	3.3	1,5	2 90
Kupfer		me/ke TS	7.7	13.3	2.5	29.3	2.2	14.5	1.5	7 7	2.1	17.5	9.3	16.7	1.5	2.2 15	15.8		3.7	,	17	29.3	1.2	8.48
Nickel		me/ke TS	83	4.7	2.1	31.3	1/2	13	1.1			33.9									16	40.6	1.1	10.48
Quecksilber		mg/kg TS	2	7	1/2	,				<0,02		200									0	O(OL	+ (+	OL/OT
Zink		mg/kg TS	21,4	91,4	7,8	28,5	40,7	25,2	10,9	9,5	1270	40,9	10,6	36,8 1	7 7	7,1 45	45,8 13,8		5,3 80		18	1270	5,3	97,59
Glühverlust	ÖN M 6295	%	1,87	1,05						0,4											m	1,87	0,4	1,11
Summe Kohlenwasserstoffe (IR)		mg/kg TS			<5	<5	7,1	\$	<5		<5	<5	<5	<5	<5 <		5> <5		<5 <5		2	7,1	5,9	6,50
Summe Kohlenwasserstoffe (Index)	EN 14039 E	mg/kg TS	<20	<20				<20	<20	<20										0 <20	0			
PAK (16)		mg/kg TS	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,1	<0,1										٠ ټ		0,12	0,12	0,12
Benz(a)pyren		mg/kg TS	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	40,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1 <(<0,1 <0	<0,1 <0,1	,1 <0,1	,1 <0,1	٠	0			
BTX		mg/kg TS																			0			
AOX (ale CI)		mg/kg TS				.	.				.										0			
ACA (813 CI)		21 SV /SI 12																			0			
Eluat																								
pH-Wert	ÖN M 6244		8,48	9,21						96'6										10,51	3	96'6	8,48	9,22
elektr. Leitfähigkeit	ÖN EN 27888	mS/m	15,9	9,81				,		7,33			,							12,5	3	15,9	7,33	11,01
Abdampfrückstand	DIN 38409 T1	mg/kg TS	876	530						271											3	876	271	259,00
Aluminium	LÖN EN ISO 11885	mg/kg TS	0,2	0,3						2,1												2,1	0,2	0,87
Arsen	LON EN ISO 11885	mg/kg TS	<0,2	<0,2	<0,2	0,42	<0,2	0,26	<0,2	<0,2	<0,2	<0,2	> 0,35	<0,2	<0,2	<0,2 <0	<0,2 <0,2	+	<0,2 <0,2			0,42	0,26	0,34
Barium	LON EN ISO 11885	mg/kg TS	<0,1	<0,1	. 6	, ,	. 6	. 0		<0,1	+			+	+	+	+							
Blei	LON EN ISO 11885	mg/kg IS	<0,1	1,00	<0,1	<0,1	<0,1	1,00	40,1	<0,1	+	+	+	+	+	+	40,1	+	+	+				
Chrom gegamt	ION EN ISO 11885	mg/kg 15	10,07	10,07	<0,01	10,01	10,01	10,01	10,07	10,01	. 0.01	10,01	20,01	10,01	50,01	40,01	20,01		<0,01 <0,01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 20,01	0			
Chrom VI	ON MEN ISO TISSES	mg/kg TS	70,7	1,00	100	1,0,	100	1,0,1	100	×0,1		+	-		+	+	+	+		+				
Eigen	ON EN ISO 11885	ma/ka TS	2,07	2,07						107														
Cobalt	ION EN ISO 11885	mg/kg TS	<0.1	<0.1		. .				<0.1														
Kupfer	LÖN EN ISO 11885	mg/kg TS	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0.1	<0,1 <(<0,1 <0	<0,1 <0,1		<0,1 <0,1					
Nickel	LÖN EN ISO 11885	mg/kg TS	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1														
Quecksilber	ÖN EN 12338	mg/kg TS	<0,002	<0,002						<0,002										<0,002	2 0			
Silber	LÖN EN ISO 11885	mg/kg TS	<0,1	<0,1						<0,1											0			
Zink	LON EN ISO 11885	mg/kg TS	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	40,1	<0,1	0,17	<0,1	<0,1	<0,1	<0,1 <(<0,1 <0,1	0,1 <0,1	V	0,1 <0,1	.1 <0,1	-1	0,17	0,17	0,17
Ammonium-N	ÖN ISO 7150/1	mg/kg TS	† ∇	5 ₹						2,2												2	2	2,00
Chlorid	EN ISO 10304-1	mg/kg TS	<10	<10		,			,	<10		,		,		ľ	ľ				0			
Cyanid leicht freisetzbar	ÖN M 6285	mg/kg TS	<0,02	<0,02						<0,02											0			
Fluorid	EN ISO 10304-1	mg/kg TS	7	3		,			,	2		,								2		7	2	4,00
Nitrat-N	EN ISO 10304-1	mg/kg TS	<2	<2						<2										<2				
Nitrit-N	ÖN M 6282	mg/kg TS	<0,5	<0,5						<0,5										<0'2				
Pho sp hat-P	EN ISO 10304-1	mg/kg TS	<0,5	<0'2						<0,5										<0'2				
TOC	ÖN M 6284	mg/kg TS	25	21						19												25	19	21,67
EOX	ON EN 1485	mg/kg TS	<0,2	<0,2						<0,2										<0,2				
Summe Kohlenwasserstoffe (IR)	EN ISO 9377-2	mg/kg TS				, 4	, ,	, «	, 4		, 4						1			1				
Summe Konlenwasserstotte (Index)	ČN M 6627 15	mg/kg IS	7	7	7	7	7	7	7	7'0>	7>	7>	7>	7	7	7>	7>		7	7	0			
PAK (1b)	ON M 6627 IE	mg/kg 15																		'				
Benglapyren		mg/kg 15																						
PCB		me/ke TS																			0			
AOX (als CI)		mg/kg TS			-	-		Į.	ļ.	-		+		<u> </u>	ļ.	ľ	Ľ				0			
,		00								-								_	_	_				

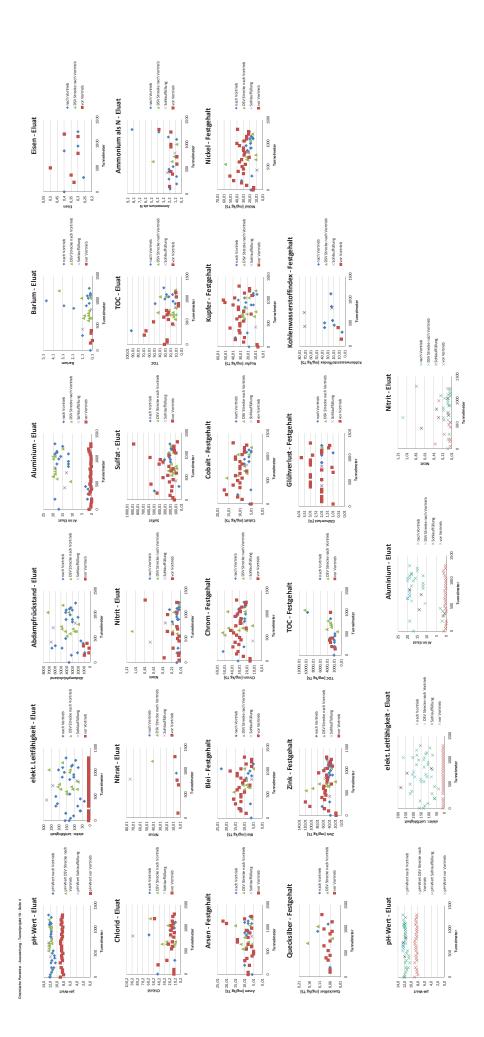
Chemische Parameter - Tunnelprojekt 9

Ta	bel	le	1:	

Probenbezeichnung			7600707	7600907	7601007	7601107	7602007	P060889-19	P060889-8	P060889-14		Auswertung	(ohne Materi	al P060889-8)	
Material			Ausbruch	Ausbruch	Ausbruch	Ausbruch	Ausbruch	Ausbruch frisch	Gestein	Ausbruch alt	n	Max	Min	Durchschnitt	Standardabw eichung
Herkunft			506,9	658,8+1122,6	321,9	620		Zwischenlager	anstehender Fels	Deponie					
Labor			1	1	1	1	1	2	2	2					
Gesamtgehalte	Einheit	Grenzwerte BAD													
Trockensubstanz	%							93,6	100	94,7	2	94,7	93,6	94,15	0,55
TOC gesamt	mg/kg	20000*	33000	<5000	27000	18000	<5000	3540	1050	1910	5	33000	1910	16690,00	12372,54
KW-Index (GC)	mg/kg	20/50/100/200**	<50	71,2	34,8	29,8	<20	48	<20	40	5	71,2	29,8	44,76	14,53
Eluatgehalte															
pH-Wert		6,5-11/12***	12,01	11,44	10,98	11,92	10,81	11,78	9,28	11,41	7	12,01	10,81	11,48	0,43
Leitfähigkeit	mS/m	150/250***	292	137	112	143	24	140	7,7	68	7	292	24	130,86	77,42
Abdampfrückstand	mg/kg	8000	20903	7611	6263	3605	1359	800	540	2800	7	20903	800	6191,57	6426,08
Aluminium	mg/kg	5	0,17	15,5							2	15,5	0,17	7,84	7,67
Ammonium (N)	mg/kg	8	6,32	10,1	3,95	9,31	3,75	7,1	2	4,2	7	10,1	3,75	6,39	2,41
Nitrat (N)	mg/kg	100	68,3	46,2	22,7	67,7	18,3	84	<10	67	7	84	18,3	53,46	23,22
Nitrit (N)	mg/kg	2	14	7,51	4,15	24,7	2,2	2,6	<0,1	2,3	7	24,7	2,2	8,21	7,79
Phosphat	mg/kg	5	<0,2	<0,2	<0,2	<0,2	<0,1	<0,2	<0,2	<0,2	0				
KW Index	mg/kg	5	8,9	24	15,9	17,1	<1	2	<1	1	6	24	1	11,48	8,31

^{**}Nohere Grenzwerte in Ausnahmefällen für nicht verunreinigte Böden möglich

**Verknüpfung KW und TOC


***Bei Einhaltung der Grenzwerte der Tabelle 1 der DVO - Grenzwerte von 12 bzw. 250

Chrom VI [mg/kg TS]			<0.1	6,6	<0,1	1,0		1									1		l					Shrom VI	[mg/kg TS]	1	0.3				•	-	0,2				l	0.3	0,2	0,2	0,2	0,2	1,0	0.1	0,1	0,1	0,2	0,2	1,0	- i	0.1	0,1	0,1	0,2	0,1	1,0	0.2	0,1			0,2		0,1
Chrom Gesamt C [mg/kg TS] [n	<0,1	1,00	<0,1	1,00	<0,1	<0,1	1,0>	×0.1	×0.1	<0.1	<0,1	<0,1	<0,1	<0,1	<0,1	1,0>	40.1	<0.1	<0.1	<0,1	<0,1	<0,1			[mg/kg TS] [n		0.4						0,2						0,3	0,2	0,2	0,2	1,0	2,0	<0,1	0,2	0,2	0,2	5,0	7,0	0.1	0,2	0,2	0,2	0,1	0,2	0.2	0,1			0,2	c	2,0
Cadmium C [mg/kg TS]	<0,01	0,00	<0,01	40,01	<0,01	<0,01	<0,01	10,00	×0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	×0,01	<0.01	<0.01	<0,01	<0,01	<0,01			[mg/kg TS]		<0.01						<0,01						<0,01	<0,01	<0,01	<0,01	10,05	20,03	<0,01	<0,01	<0,01	<0,01	10,00	10'0>	<0.01	<0,01	<0,01	<0,01	<0,01	10,07	10.02	<0,01			<0,01	80 01	10,0
Bor [mg/kg TS]				₹ ₹																				TOT million TO	Bor [mg/kg		<1.0						>																														
Blei [mg/kg TS]	<0,1	40,1 1,00	<0,1	40,1	<0,1	<0,1	<0,1	40.1	×0.1	<0.1	<0,1	<0,1	<0,1	<0.1	<0.1	<0.1	40.1	40.1	001	<0.1	<0,1	<0,1		T and and and	le i gwg/kg i sj		<0.1						<0.1						<0,1	<0,1	<0,1	0,2	40.1	- 0.	<0,1	<0,1	<0,1	40,1	1,00	-0'	<0.1	<0,1	<0,1	<0,1	<0,1	40,1	<0.1	<0,1			<0,1	9	1,0,1
Beryllium [mg/kg TS]			<0,01	0,01	<0,01	<0,01																			[mg/kg TS]		<0.01						<0,01						<0,01	<0,01	<0,01	<0,01	000	0,0	<0,01	<0,01	<0,01	<0.01	0,07	000	<0.01	<0,01	<0,01	<0,01	<0.01	40,01	0.01	<0,01			<0,01	***	10,0
Barium [mg/kg TS]			0,27	0,1	0,21	0,2																		Barlum [mg/kg	TSJ		0.3						1,1						0,5	0,2	4'0	- 5	0.0	6,0	4,0	2	3	7.0	4.0	Q.	12	6,0	0,5	9'0	6,0	ر د د	5 50	4,0			0,2		1,1
Arsen [mg/kg TS]	<0,1	1,00	<0,1	6,6	<0.1	<0,1	40,1	1,00	9 6	40.1	40,1	40,1	<0,1	<0,1	<0,1	<0,1	-0-	40.1	100	<0.1	<0,1	<0,1		Arsen [mg/kg	TSJ		40.1						<0.1						<0,1	40,1	1,0>	40,1	40,1	- 6	<0.1	<0,1	<0,1	40.1	1,0,0	- io	<0.1	40,1	<0,1	<0,1	40,1	- G	9 6	<0,1			<0,1	Ģ	-0,1
Antimon [mg/kg TS]	<0,1	40,1 1,00	<0,1	00,1	<0,1	<0,1	<0.1	40.1	×0.1	40.1	<0,1	<0,1	<0,1	<0.1	<0,1	<0.1	40.1	<0.1	<0.1	<0.1	<0,1	<0,1			[mg/kg TS]		<0.1						<0,1						<0,1	<0,1	<0,1	<0.1	40.1	- 0.	<0.1	<0,1	<0,1	40,1	1,00	- '0'	<0.1	<0,1	<0,1	<0,1	<0.1	40,1	- 0°.	<0,1			<0,1	9	-0,1
Al Eluat [mg/kg TS]	1,3	0,20	<0,1	0 0 0	0,68	<0,1	0,3	8.0	0.4	7.0	0,4	0,4	8'0	0.1	0,4	6,0	0.2	0.7	12	1,5	9,0	9'0		Al Eluat [mg/kg	TSJ		17				L,2	2	1,8	0,92	1,8	3,1		11	18	20	20	200	9 0	10	19	12	12	- 48	12	30	61	20	16	19	12	18	15 0	15	19		19	13	141
Abdampfrückst , and [mg/kg TS]			1000	190	1140	513																		Abdampfrücks	and [mg/kg TS]		3600			3220	2340	6570	4830	5980	1190	15/0	981+	4010	3460	2390	2670	4280	7890	4980	2000	3040	3020	4150	2430	3450	7310	3690	4190	4100	3060	3300	4710	2490			2540	6340	20/0
elekt. Lf. [mS/m]	10	19	23	15	24	15	12	16	13	5 4	10	13	14	20	17	21	18	4.6	10	10	25	17		elekt. Lf.	[m/Sm]	404	135	126	107	157	4 6	221	8	211	37	63,4	131	121	153	84	113	190	120	199	78	131	105	180	105	133	588	129	204	177	76	120	179	93	155		85	241	707
pH-Wert	0'6	0,8,8	8,3	7,0	8,3	8,5	8,6	2,2	0,80	9,6	8,9	6,8	9,8	8,3	8,6	8,3	4,00	8.7	. 82	8,7	8,4	8,3			ph-wer	000	12.2	12,0	11,6	11,3	8,01	118	10,5	11,5	10,7	8,01	1	12.6	12,4	12,3	12,4	12,5	11,0	11.8	11.7	11,9	11,8	11,8	/11./	44.8	12.2	11,7	12,1	12,3	12,0	11./	12.4	11.7	12,5		11,6	12,4	,
Rel. Parameter															Hg i. El.			Ho i. El.	Ho E						Kel. Parameter		Ph. Al				14	Ē						pH. Lf. Al	pH, Lf, Al	Ph, Al	Ph, Al	pH, Lf, Al	A 14 A	PH. Li. A	A	₹	A	₹:	Z Z	2 4	pH. Lf. Al	×	pH, Lf, Al	pH, Lf, Al	₹ :	W F	pH. Lf. Al	×	pH, NH4, Al		M	F-136721 14 31 11	H, LI, M, NVTIIR
Beurt.	BAD	BAD	BAD	BAD	BAD	BAD	BAD	BAU	BAD	BAD	BAD	BAD	BAD	BAD	BRM	BAD	BAD	BRM	BRM	BAD	BAD	BAD		1	Beur.	OVO	W BRM	V BAD	BAD	BAD	BAU	BAD	BAD	BAD	BAD	BAD	BAD	BRM	TM BRW	V BRM	V BRM	V BRW	BRM	TMRRM	VBRM	I BRM	V BRM	V BRW	BRM	V BRW	VBRM	VBRM	V BRM	V BRM	V BRW	V BRW	VBRM	VBRM	VBRW		a BRM	aBRM	Blan
Details zur PN	Brunnenbohrung	2 Brunnenbonrung 2 Brunnenbohrung	(Brunnenbohrung	Brunnenbohrung	Brunnenbohrung	2 Brunnenbohrung	4 Brunnenbohrung	Brunnenbohrung	ABLUMENDO MUNICA	3Brunnenbohrung	O Brunnenbohrung	Brunnenbohrung	. Brunnenbohrung	Brunnenbohrung	Brunnenbohrung	(Brunnenbohrung	Brunnenbohrung	Brunnenbohrung	(Brunnenbohrung	Brunnenbohrung	Brunnenbohrung E	O Brunnenbohrung		1	Details zur PN	T to How to Co.	Haufen H (D2 TME	Haufen H (D1 TI	D1 TM 102	D1 TM 60	UT IM 40	Haufen H	C1 TM 28	C1 TM 68	C2 TM 129	C2 IM 1/0	C1 TM 250.3	C1 TM 285	Haufen H (C1 TI	Haufen H (C1 TV	Haufen H (C1 TI	Haufen H (C2 TM	Houfon H (B) Ti	Haufen H (B1 TMF	Haufen H (B1 TI	A1 TM 3 v. T Kalo	Haufen H (A2 TM	Haufen H (A2 TI	Harrison H (A1 Th	Hairfen H (A1 TA	Haufen H (A1 Ti	Haufen H (A1 TM	Haufen H (A2 TM	Haufen H (A1 TI	Haufen H (A2 TI	Hauren H (A4 II	Haufen H (A2 TI	Haufen H (A2 TI	Haufen H (A2 TMB		Haufen Heinestr	Haufen Heinestra BRM	Hauren Helfresu
Datum PN	2.2003, 12., 26.2	يرا⊵	4	9.9.10	: 1	ğ	5.242,23.200	10.9.2003, 13.4	14.10.2003, 23.		10.2003, 13.12	2003, 10., 12.2.	17.11.200	5.11., 4., 10.12.20	24.2., 27.4.2004	03.1., 21., 29.420	10.1	1. 13.4	13 25 5 29 620	18. 15.6. 7.7 200	200	2., 29.4., 4.5.20		No.	Datum	24 00 2004	21.09.2004			- 1	22.06.2004	- 1	-		24.06.2004	_		_	09.12.2044			_		31 03 2005	┸				70.05.2005	\perp	\perp	16.06.2005			25.08.2005	\perp	21.09.2005	\perp	22		24.10.2005	20.09.2005	10.11.2000
Lage von W nach O		100	15/	200	35/	400	450	900	93	650	707	75/	800	85/	106	999	1000	1100	115/			1300		Lage von W	nach O			35	100	15/	200	300	300	350	400	450	256	256	009	99	65/	650	0/02	750	108	850	006	006	820	1000	105/	1050	1050	1100	1100	1125	1200	1250	1300			725	
Lage	TM 200-250	TM 100-150	TM 50-100	TM 0-50	TM 50-100	TM 100-150	TM 150-200	TM 260 200	TM 300-350	TM 350-400	TM 400-450	TM 450-500	TM 500-550	TM 550-600	TM 600-650	IM 650-700	TM 750.800	TM 800-850	TM 850-900	TM 900-950	TM 950-1000	TM 1000-1050		-	Lage	TM 200 250	TM 200-250	TM 150-200	TM 100-150	TM 50-100	TM 0-50	TM 0-50	TM 0-50	TM 50-100	TM 100-150	TM 150-200	TM 250-300	TM 250-300	TM 300-350	TM 350-400																					Sohlauffüllung	Sohlauffüllung	Soniaumunung
Bauteil	D2	0 0	Q	م د	0	0	0	0	ی د	CB	8	B	×	A	٧	۷.	K 4		A	. 4	٧	٧		-	Bautell	c	D2	٥	Q	٥	10	10	C1	C1	C2	S	ی د	5	0	C1	C/B	C/B	20 0	0 00	8	٧	٧	⋖ -	< <	ς 4		٧	٧	×	⋖ -	< <	< <	. 4	A			8	
GB-nr.	GB-044-4	GB-042-4	GB-040-4	GB-035-3	GB-038-4	GB-039-4	GB-045-4	GB-046-4	GB-047-4	GB-049-4	GB-050-4	GB-051-4	GB-060-4	GB-061-4	GB-062-4	GB-063-4	GB-004-4	GB-066-4	GB-067-4	GB-068-4	GB-069-4	GB-070-4		-	GB-DI.	N. OB 044.4	GB-053-4	IK: GB-043-4	IK: GB-042-4	K: GB-040-4	IK: GB-035-3	IK: GB-036-3	GB-041-4	IK: GB-038-4	K: GB-039-4	K: GB-045-4	IK: GB-040-4	GB-058-4	GB-071-4	GB-073-4	GB-074-5	GB-076-5	GB-080-3	GB-0/ 0-5	GB-084-5	GB-085-5	GB-095-5	GB-094-5	GB-086-5	GB-067-5	GB-091-5	GB-092-5	GB-096-5	GB-099-5	GB-097-5	GB-103-5	GB-100-5	GB-102-5	GB-107-6		GB-103-5	OD 404 E	GP-104-0
Labor Nr.	0886/2004	0884/2004	0297/2004	5996/2003	0295/2004	0296/2004	0887/2004	0888/2004	O868/2004	0891/2004	0892/2004	0893/2004	2961/2004	2962/2004	2963/2004	2964/2004	2005/2004	2967/2004	2968/2004	2969/2004	2970/2004	2971/2004		1	Labor Nr.	PODG/DOGG	3958/2004			1990/2004	1872/2004	376A/2004						5385/2004	6064/2004	6110/2004	0008/2005	0180/2005	0416/2005	053872005	0739/2005	0813/2005	2225/2005	2003/2005	1085/2005	1326/2005	1504/2005	1724/2005	3169/2005	4196/2005	3428/2005	3679/2005	4374/2005	4834/2005	4716/2006	lino	05201/2005	4043/2005	DZ92/2005
					dəi	ıμο	V J	DA I	uəB	Bun,	tür'	d																	qə	րա	ŅΨ	sec	ւ ճս	njų.	М			-	qə	91	γο. 1 Λο	18-/	\SC	nuhi J	ьч	цэ	en dei	յան Bun	λün' V	d	۸s	a	ср	en l	apao Bun	λüτ' V	DSV	3		hlauffi			

Paramter - Tunnelprojekt 9	
Chemische Seite 1	

anionenaktive Tenside [mg/kg TS]	60, 15, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18		anionenaktive Tenside [mg/kg TS]	<0,05			<0,1													Ī						
Phenole [mg/kg TS]	0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1		Phenole [mg/kg TS]				1,0>																			
Kohlenwassers toff-Index [mg/kg TS]	5555		Kohlenwassers p toff-index [mg/kg TS]				5													Ī						
ausblasbare organ. Geb. Halogene (als CI)	(6) (6) (6) (7) (8) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8		ausblasbare organ. Geb. Halogene (als CI)				<01																			
Benzol, Toluol, Ethylberzol, Xylole (BTEX) [mg/kg TS]	700 1000 1000		Benzol, Toluol, Ethylbenzol, Xylole (BTEX) [mg/kg TS]				<0,3																			
TOC als C [mg/kg TS]	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		TOC als C [mg/kg TS]	<10		<10	93			12	17	11	16	4 42	11	49	16	31	53	24 45	17	11	33 22	:	12	14
Sulfat [mg/kg TS]	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (Sulfat [mg/kg TS]	130		200	45			180	190	240	200	100	190	310	220	210	150	230	140	180	190		330	66
Phosphat (als P)	0.00 0.00 0.00 0.00 0.00 0.00	•	Phosphat (als P)	1,0>			0,72									<0,05										Ī
Nitrit als N [mg/kg TS]	0.00 (•	Nitrit als N [mg/kg TS]	1,0		60'0	0.07			0,05	1,1	0,2	80'0	60'0	0,2	90'0	0,00	0,1	0,09	0,11	0,26	60'0	90'0		0,35	69'0
Nitrat als N [mg/kg TS]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:	Nitrat als N [mg/kg TS]	8		8	8			2	7 7	0 0	4	8 8	0 0	2 5	7 9	\$	7 7	7 0	88	77	3 5 0		75	\$
Fluorid	9999		Fluorid	<10		<10	<11			<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	×10 ×10		<10	<10
Cyanid leicht freisetzbar [mg/kg TS]	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Cyanid leicht freisetzbar [mg/kg TS]	<0,02			<0,02																			
Chlorid [mg/kg TS]	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		Chlorid [mg/kg TS]	43		43	11			<10	27	11	10	> 26	16	<10	20 20	12	24	×10	<10	10	57 <10		89	<10
Ammonium als N NH4-N [mg/kg TS]	\$25 4 4 4 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5		Ammonium als N NH4-N [mg/kg TS]	v v v	2,1	1,0	2,3 10	2 7 3	2,3	2 5	5,0	1,8		1,4	₽		v v	10	· v v	7 5	1,0	2.4	4.0	8,5	1,3	2,6
Zinn [mg/kg TS]			Zinn [mg/kg TS]	<0,1			<0,1				1,0>	<0,1	<0,1	40,1 60,1	<0.1	<0,1	1,0>	<0,1	<0,1	1,0>	<0,1	<0,1	40,1 40,1		<0,1	<0,1
Zink [mg/kg TS]	0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60	:	Zink [mg/kg TS]	<0,2			0,22			4	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2 <0,2	<0,2	<0,2	40.2 40.2	ļ.	<0,2	<0,2
Vanadium [mg/kg TS]	ବିବିଶିଷ		Vanadium [mg/kg TS]	1,0>			1,0>						40,1	6,0,0	1,00	40,1	1,0,	1,0>	1,00	- 6	1,00	0,6	- 1.0,0		<0,1	<0,1
Thallium [mg/kg TS]	ବିବିଶିଷ୍	:	Thallium [mg/kg TS]	1,0>			1,0>				1,0,	40,1	-0,1	0,0,0	1,00	40,1	1,0,	1,0>	1,00	- 10	1,0>	0,1	- 1.0		<0,1	<0,1
Silber [mg/kg TS]	0 0 0 0		Silber [mg/kg TS]	<0,1			<0,1				<0,1	<0,1	+0,1	40,1 40,1	1,0>	40,1	<0,1	1,0>	10>	- vo.1	<0,1	<0,1	100		<0,1	<0,1
Selen [mg/kg TS]	ତି ତି ତି ତି	ELUAT	Selen [mg/kg TS]	1,0>			1,0>			4	1,0	0,1	1,0>	6, 6 1, 6	1,00	0,1	1,0	1,0>	1,00	- 10	1,00	1.0	. 6, 8		1,0>	1,0>
Quecksilber [mg/kg TS]	6 0002 6 0002		Quecksilber [mg/kg TS]	<0,002			<0,002							<0,1							900'0	<0.002	<0,002	0	<0,002	<0,002
Nickel [mg/kg TS]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	Nickel [mg/kg TS]	1,0>			<0,1				<0,1	<0,1	<0,1	40,1 60,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	1,00		<0,1	<0,1
Mangan [mg/kg TS]	0.05 (2.00) (2.0		Mangan [mg/kg TS]	1,0>			1,0>				1,0,	0,1	40,1	6,0,0	1,00	40,1	1,0,	1,0>	1,00	- 6	1,00	0,6	- 1.0,0		<0,1	<0,1
Kupfer [mg/kg N TS]	000000000000000000000000000000000000000		Kupfer [mg/kg M TS]	1,0			40,1				- Q	0,2	<0,1	6, 6,	1,0	0,1	- Q	40,1	1,00	- V	1,00	0,1	- 1,0,0		<0,1	<0,1
Cobalt [mg/kg P			Cobalt [mg/kg H	<0,1			<0,1				<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	1,00		<0,1	<0.1
Eisen [mg/kg C	6.02 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03		Elsen (mg/kg C TS]	0,4			0,26			4	<0,7 <0,2	<0,2	<0,2	<0,2 <0,2	<0,2	<0,2	0,3	<0,2	<0,2	<0,2	<0,2 <0,2	<0,2	<0,2 <0,2 0.3	}	<0,2	<0,2

								_									_		_			_	_			,	_	_										_			_	_					_		_	_		_					_	_	_		_		_	_	_		_	_	_	_
davon Benzo(a) pyren [mg/kg TS]	6	0.1	1,0>	<0.1			- 6	- 6	1.05	9.5	- 0	50.1	. 6	- 0	1.00	0.0	0.1	. 0	100	<0.1	40.1	<0.1	<0.1	1,0>	<0.1				davon Senzo(a) pyren	[mg/kg TS]		40.1						1,0>																																
poly cycl.aroma t. Kohlenwassers toffe (PAK) [mg/kg TS]	. 900	40.5	40,5	5,0>	<0.1	0,31	40,5	50,05	202	50.5	-0'S	50.5	200	200	3.8	0,00	1.4	300	900	<0.5	40.5	8.0	90>	8'0	6'0			polycy	t. Kohlenwassers	toffe (PAK)	[cı fa/faı]	0.7						<0.5																																
Kohlerwassers toff-Index [mg/kg TS]		25	<5	6,6	<5	<5	40	12	-5.	55.55	, V	6.5	4.5	7	<50	<50 <50	<50	-SO	<50	<50	<50	<50	<50	<50	<50				Konlerwassers toff-Index	[mg/kg TS]		\$ 60	<50	<100			290	5,4		36	19	36	22	02	<50	96	200	\$2 \$2	<50 <50	<50	<20	24	020	8	<20	0Z)	. 60	8	250	075	<20	<20	52	<20	<20	<20		23	72	7.1
Benzol, Toluol, Ethylbenzol, Xylole (BTEX) [mg/kg TS]	107	<0.1	<0,1	<0,2		00	202	×0.4	102	<0.1	102	40.1	10.	- 01	102	-0.1	<0.1	107	<0.1	<0,1	<0,1	<0.1	<0.1	<0,1	<0,1			Benzol, Toluol,	Ethylbenzol,	Aylole (BTEA) [mg/kg TS]		<02						<0,1			<0,1																Ī													
Glühverlust [M-%]			2	2	2	2 0	7 6	2 6		0 0	1 6	0 60		- c			3	3	3.8	2.8	2	2	1.4	13	3				Glühverlust [M-	Į,								2															2	2			1			7	7	-	2	2	2	2		2	c	-
TOC [mg/kg C				1800	27.40	3130	3330	0107											3110										TOC [mg/kg (2110			1840	1880	7,000	1970	2030	3240	1830	1860		1180	4180	0007	2000	3080	2930	3160	3810	3080	<2500		<500	9590	00707	10400	0007											
Zinn [mg/kg TS]				<5	<5	45	00	0,																					Zinn [mg/kg									<5 <5										<.	?								1													-
Zink [mg/kg TS]	40	61	43	22	105	120	00 30	22	44	3 25	8	8 94	24	5 0	47	48	49	26	29	47	30	42	37	8	49				Zink [mg/kg	_		36.3					ž	39						118	98	2 0	49	42	24	21	46	43	8	88	41	18	86	3 2	5 2	3 :	41	37	44	35	44	48		53	30	00
Silber [mg/kg TS]				<5	€	÷ .	0 4	7																					Silber [mg/kg									\$																			1												Ī	_
Quecksilber [mg/kg TS]	30 OF	<0.05	90'0	90'0	<0.05	<0,05	/0'0	90'0	SO OF	2000	40 05	800	90.05	000	SO OF	50 OS	900	900	600	<0.05	<0.05	0.05	<0.05	<0,05	0.1		FESTGEHALI		Quecksilber			40.1					90'0	<0.05						<0,05	40,05	30'0	90'02	20,03	40.05	<0.05	90'0	<0,05	<0,05	<0,05	0,12	<0,05	. 00	40,05	21,0	40,05	40,US	20'0	<0.05	<0,05	<0,05	<0,05		<0,05	90.00	20,00
Nickel [mg/kg TS]	46	14	25	33	45	51	30	30	32	27	38	33.83	24	- 90	28	30	30	36	40	53	25	25	22	22	39				Nickel [mg/kg	<u>0</u>		18.6					33	17						28	88 78	47	22	23	25	11	23	24	18	19	92	19	. 0	18	100	87	dl.	20	16	18	16	21		22	c	٥
Kupfer [mg/kg TS]	4	~ 60	56	37	25	31	32	33	34	5 %	35	31	16	2 2	33	33 8	9	. K1	22	88	15	25	18	18	32				Kupfer [mg/kg	6		18.8					3/	21					0	28	22 22	72 02	67	23	38 82	10	26	24	13	16	23	83	. 0	18	+2	97	13	13	80 5	13	10	18		22	40	
Cobalt [mg/kg TS]	u	. 49	6	11	16	17	10	10	4	Ξ σ	12	10	2 1-	. 40	40	2 0	10	42	12	6	80	80	000	7	13				Cobalt [mg/kg	ē.		5.8				;	=	5,2						16	11	, ,	- 4	9 α		. \$2	8	8	9	9	80	9	. 0	٥٠	= <	50 10	e i	7	9	9	2	7		7	4	7
Chrom gesamt [mg/kg TS]	16	16	25	34	32	38	31	28	200	32.8	8	42	24	35	8 8	2 8	28	36	33	53	30	27	22	21	34				Chrom gesamt	[e i By/Bm]		32					70	24						20	53	24	31	17	45	13	27	23	27	23	8	22	. 60	52	2	31	RZ :	23	24	¥	22	21		24	42	71
Cadmium [mg/kg TS]	70K	<0.5	<0,5		<0,5	0,63	200	200	40.5	<0.5	40.5	40.5	200	200	40.5	50.5	<0.5	20%	405	<0.5	<0.5	<0.5	<0.5	<0,5	<0,5				Cadmium			<0.5					g'n>	<0,5						<0,5	40,5	200	800	50.5	40.5	<0.5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	400	40,5	0'0	40,5	c'0>	<0,5	<0,5	<0,5	<0,5	<0,5		<0,5	30/	0,00
Blei [mg/kg TS]	4	7 50	6	12	13	15	12	12	40	10	14	13 1	2 1-		Ų.	42	14		18	12	9	6	9	9	10				Blei [mg/kg TS]			6.3					71	6.7						16	0 %	0 1	- 4	7 0	11	: 49	6	6	\$	9	80	7	4	o 9	01	53	₽.	9	₽.	2	\$	9		9	4/	7
Barlum [mg/kg TS]				51	35	543	200	00																					Barium [mg/kg	<u>6</u>								52																			1													-
Arsen [mg/kg TS]	a	0 00	<5		7,3	0 0	9,7	0,0	o u		o «	0 00		44	± 00	c.F.	7	. σ	9	<5>	20	22	101	9	<5				Arsen [mg/kg	<u>6</u>		60					0	<5						11	50 0	42	71	25	? ∝	<5	10	6	ω ;	-0	00	9	-	- 45	2 4	9	20	9	01	8	9	7		9	3/	2
Aluminium [mg/kg TS]				13600	12100	15300	12900	0000							Ì	Ì													Aluminium									16000										13.500	2002								1												İ	

n DSV-Schirm DSV-Schirm DSV-Schirm C Veriadebox Veriadebox Sraver Brauer Brodiger Sand, Steine Sand, 88M 88M Verladebox grauer Sand, werige Steine BRM Verladebox grauer bindiger Sand, RRM Ortsbrust grauer bindiger Sand, Steine BRM 12,3 12,2 280 232 14 17 17
HOS-g6071b
125
2
267
267
Onsbrust grauer bindiger bindiger Sand, Steine 8 8M grauer bindiger Sand, Steine BRM
 unggm. On 5 2115; bitcakkon mittek Tricklorfusethen surKW grinder
 11.55

 ember 2
 21.55

 mS/m
 22
 24.55

 mS/m
 27.79
 146
 54

 mWk 15
 38
 15
 34

 mWk 15
 38
 15
 34
 Einheit 2 Masse-% 2 mg/kgTS 30 Analysen methode ONO RM M 6295 ONO RM M 6608 Chemische Paramter -

										,	wh.												
									Canadana	phanichine	anneur in in					8'0	14,2			0,4	118,7	3,7	
								2un	4		-					2,0	44,4			12,0	208,3	15,4	
								Auswertung		n Minimum						1	22			11	34	3,6	
										Maximum		_				*	89			12,8	899	22	
_	J.P				T	T		×c		c	_	ac.				42	80			35	35	53	
22	2b h05-gb377	1337	q					xx Verladebox		ils grauer	r bindiger	Sand, Steine	BRM			1				11,9	192	15	L
X	NOS-gb366b hOS-gb372b	1324	q					ox Verlade box		ils grauer telb	r bindiger	Sand	BRM			7				12,2	199	14	L
23	52b NOS-gb36	1323	Q				ASO	x Verladebox		sils grauerteils	r bindiger	ine Sand	BRM			₽				12,2	202	18	H
25	POS-gb362b	132.2	Q				vertikale DSV	Verladebox		grauer tells	bindiger	h Sand, Steine	BRM			₽				12,2	202	19	H
51	h05-gb361b	1295	q				/ vertikale DSV	Verladebox			graubraunes	ch Sandkiesgemisch	BRM			7				12,2	253	16	
S	n h05-gb3 50b	1294	q				V vertikale DSV	Verladebox		v	m graues	Sandkiesgemisch	BRM			4				12,2	952	19	
49	NOS-gb349b	1293	a				vertikale DSV	Verladebox		graubraunes s	Sandkiesgem	hsi	BRM			17				12,1	245	18	Ц
48	POS-gb332b	1264	q				vertikale DSV	Verladebox		weofälch graues	klumpiges	Sandliesgemisch	BRM			3				12,1	170	19	
47	h05-gb323b	1263	Q				vertikale DSV	yo qapeµa∧	Sanes	klumpiges	Sandkiesgem	- Fig.	BRM			1				12,1	180	17	
46	h05-gb312b	1208	Q				vertikaleDSV	Verladebox	weißiches	andkiesgemis	ch, hoher	Steinanteil	BRM			41				12,2	154	18	
45	h05-gb311b	1201	q				DSV-Schirm	Verladebox	graues	klumpiges	Sandkiesgemisc	£	BRM			1				12,8	899	44	
44	h05-gb302b	1109	q				DSV-Schirm	Verladebox	Sanes	Sandkiesgemisc	h, Spritzbeton	(<5Vol.%)	BRM				<20			12	499	6	
43	POS-gb310b	1101	q				DSV-Schirm	Verladebox		granes	Sandkiesgemisc	۷	BRM				45			11,4	133	19	
42	HOS-gb283 b	1092	q				DSV-Schirm	Verladebox		grauer und	braunlicher S	Sand, Steine	BRM			41				12,4	217	17	
41	HOS-g52625	1001	q				DSV-Schirm	Verladebox			grauer Sand,	Steine	BRM			1				12,3	181	18	
40	h05-gb2 58b	1056	Q				DSV-Schirm	Verladebox		granes	Sandkiesgemisch,	Spritzbeton (<5 Vol.%)	BRM			1				12,7	477	404	
33	NOS-gb257b	1044	q				DSV-Schirm	Verladebox	graues	Sandkiesgemisc	h, Spritzbeton	(<5Vol.%)	BRM			2				12,7	905	4,7	
88	MO5-gb256b	1054	q				DSV-Schirm	Verladebox		graues Sa	Sandkiesgemisc P	h, wenig Tegel	BRM			1				12,6	353	11	
37	9552q8-504	1001	a				DSV-Schirm	Verladebox	pueBeywon Janeu8	saudiges	grauer sandiger Sandkiesgemisc Sandkiesgemisc	۷	WBB			2				12,5	371	15	
36	9252q8-504	196	a				math8-V80	xoqapeµa\		_	grauersandiger	Kies	MAB			3				12,3	274	18	
35	h05-gb247b	576	Q				DSV-Schirm	Verladebox		_	grauer sandiger	lehmiger Kies	BRM			3		ges Be stimmung:		12	122	19	
88	h05-gb244b	878	q				DSV-Schirm	Verladebox	graues	feuchtes	andkiesgemis	ch, Steine	BRM			3		rethan zur KW		12,2	241	12	
33	MOS-gb241b	998	q				DSV-Schirm	Verladebox			grauer Sand, grauer sandiger Sandkiesgemis	Kies	BRM			*		tels Trichlorfluo		12,3	169	14	
32	h05-gb217b	832	q				DSV-Schirm	Verladebox			grauer Sand, 8	Steine	BRM			*		5; Extraktion mit.		12	147	18	
															Einheit	Masse-%	mg/kg TS	gem. ÖN S 211	Einheit		m/sm	mg/kgTS	mg/kg TS
												entals			Analysen methode	Secon Minimum 6295	ONO RM M 6608	S mit Elautaufbereitung	Analysen methode	DIN 38404 TellS	QNO RM EN 27888	GZS9 W WILDING	000 M MR 608
	Probernr.	Int.Nr.	Bautell	Gleis	Tunnelmeter Gleis 1	Tunnelmeter Gleis 2	DSV-Bereich	Enahmeort				Beschreibung des Ausbruchmaterfals	Qualität	Gesamtgehalt	Parameter	Glühverlust	Koh lenwasserstoff-Index	Eluatgeh alt (Elution ge m. DEV/SS mit Elautaufbereitung ge m. ÖN S 2115; Extraktion mittels Trichlorfluorethan zur KW ges Be stimmung:	Parameter	pH-Wert	Leitfähigkeit	Aluminium (als Al)	Kohlerwasserstoff-Index

37 38		662,8 667,9	93 92									1															0.000	79670 73000																	2100	1300	1000	1630 1880	15740 16110												TWO TOWN TWO TOWN	9,49 18,44	9,75 18,61	2411 2431	247 597		16490 18500	0.00	818 2310					50	40,2	1 0,59	
35 36 123/2010 SP-N-06 42	625	625,4 641,5	92 92		15		40,5	48	11			188					45				0668	ch	<20	50,05 50,05		40,1	8,9	400,0 442,3	40,1	100	0,3		10,0>	40,1	100	0,2	0,2		6,6	100		40,1		<0,2	<0,002	0400	<10	6370 6600	16300 17200	2,9	80,05		<0,02	<10	<0,01	000	<0,05	40,05	0,112		-	21,57 34		+	9,81		14,5		00				10	78 575	40,2	40,1	
33 34 34 3333/2010 53		618,6 620,3	95 93																								****	300,0 441,0																	0307	0070	0000	7300 5950	15600 15800												v Theray Theray	+	10,5 17,68	+	55.0		<10		QTO				270	14,9	-0,2	<0,1	
31 32 SP-N-05 5323/2010 5	625	612,5 613,5	92 94																								0000	47/70 449/0																	2002	/403	0000	9620 8990	17105 16100												T0/10 V0 37/07	23,13 6	23,32 6,5	2125 2220	9,82		18,3		12,1				100	35,2	40,2	40,1	
30		611,8	88																									433																	0009	300	0.00	2820	15500												70 St 00 T	2,29	2,44	2104	9,94		30,7		14,9					425	40,2	40,1	
28 29		900	91 92																									474 407																	0707	200	0.00	5340 4330	15100 1370												V0 C4 // 0 24	19,4 15	19,6	1168 202	+	780 1180		0 0	31,4 15,	41	Н	Н	+			_	
26 27		9109 6'665	91 92																								400	478 330																	0000	9330	0000	5330 3980	15800 13100												VD 54/70 VD 54/70	2,8 4,8	3 5	1017 1019	270	28100 28880	17200 17350	0 0	40.05	1,5 4	3 3	90'02 40'02	40,7 40,7		_		
25		594,8	93																								400	238																	0127	0790		7710	16000												90000000	7,1	7,4	932	373		16480	0	0.00	1,9	9	40,05	40,7				
23 24 3/2010 SP-N-V04	525	588 591,5	97 94	< 5	13	92	< 0.5	14	0/8	396	< 5	3.0	< \$	50	2 52	10	21	88700	37510	7,4	40.	<0.5	< 20	\$00°	<1	100	8,5	34970	<0,1	0,20	0,40	10,0 >	1000 >	<0,1	<0,1	<0,1	<0.7	<0,1	001	90'0 >	< 0,1	40,1	< 0,1	<0,2	< 0,002	09	< 10	0000 6370	4600 15800	2,4	0,10	< 0,02	< 0,02	25		4001	< 0,05	89'0	6,000		33/07 9/05/2/09	8,32 2,8	8,48 3	902 928	7,81	H	17660 17620	0	133 313	2,5	9	40,05	<0,7	425	0,2	0,1	
22 5323/2010 532		586,3	88																								0 200	0,612																	0003	2000	444	1040	14500												V0 33/07 V0	24,2 2	24,35	668	+	24000	Н	100	204								
21 5323/2010		\$82,9	92																								0.007	4750																	0310	0310	4000	6710	15900												VB 33/07	21,65	21,83	897	7.8		14650	***	168					55	40,2	<0,1	
19 20		5,572 5,79,5	93 91																								4 000	49/,0 30/,0																	0220	0600	9228	7660 7790	16200 16700												ewcowe wecowe	7,4 13,2	7,7 13,5	823 827	239 390	t	16410 19500	0 0	4005 4005	1,5 ₫	3 3	40,05 40,05	+				
17 18		571 574,4	93 92																								0.000	455,0 343,0																	0007	0000	4000	7380 9680	17200 18100												ewicowe washing	2	2,4 2,4	1	575 276	30300 26520	18460 16820	Н	1980 205	H	Н	Н	+				
14 15 16 16 16 16 16 16 16 16 16 16 16 16 16		562,5 562,5 565,9	76 96 97		13		40,5	18 8	V			98 88					9008				30040	3	420	400		40,1		0,9901			0,3		40,01	40,1	1	40,1	300		9 97	Trion		40,1		<0,2	7750 <0,002	0007	<10	25600 8300 22400	19100 15900 19700	3,7	40,05		40,02	95		77 000	40,05	40,05	1700		7 x8 40/08 x8 40/08	6 10	6,2 10,2 15	628 632	2480 258	158860 26300 26240	26450 18140	0 0	0.005 0.005 0.005	P	9 8	<0,05 0,062 <0,05	40,7 40,7		+	_	
12 5323/2010		552,3 557,4	88																								0.000	n'sne n'sso																	7410	007/	00000	16200 16200	18200 17300												23/02	36,8 47,2	22	8	8,19		17090	0000	6720 1210					\perp	<0,2		
10 11 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20		543,8 550,6	8																								0.007	4/90 09/0																	0110	0110	00000	+	15200 18200												WEST TATE OF	40,69 16	40,79	247	8,19		21520 26560	00100	38430 98300						40,1 0,25		
8 9 8		538,7 540,4	8																								4000	454,0																	0000 0000	0000	0000	9530 7910	16300 14600												20/11/07	4,39	4,56	247	1188	00889	22140	44,640	31600 21000					425	40,1	<0,1	
5 6 7 SPA-V03 SPA-03 S323/201		538,5	4 91 99		0 12	2 52	500 51	19	\$ \$	20.00		2 2	2			0	13	200	.30		5720	5	00 <20	500 S0		40,1	8,4	0 01170	1,00,1	11,2	70 07	10	10,0> 10	(1 00,1	700	(1) <0,1	77 77	17	1,0 0,1	90	th.	4.1 40,1		(2 <0,2	2002 <0,002	0000	10 <10	3 423 5600	20100 15200	3 3,3	M 0,13	00	20'05	10	<0,01	000		3 0,56			AND ALAMS WOLANDS		12,85	479	7,65		18490 18830 33100	0000	40 8850 78600					5	H	+	
\$-N02	308	351,5	91	V 100	11 1		0,5 <(0	0 0	8	2	,		•	,	6		410	111	403		5640	cin,	<20	0> 80'0>		40,1	8'6 9'6	100	<0,1 <0,1	+	0,4 0,30	Н	0> 100>	00,1	100	0,1 <(70	>	0,1	0>	>	0,1		<0,2 <(<0,002 <0,	0	<10	3900	16700 15	40,8	0000	0>	40,02	<10 26	1000>	900	H	40,05 0,88	1		y ave work ave	8	9,9	+	7,57	+	17870 184	0	9000	3,2	8	90'0>	40,7		40,1	4	
	180	Ħ	06		16		900	27 8	13			28					21				0 8510	cin	<20	40,03 3 <0,03		40,1	10,4		40,1	500	0,3		1000	40,1	1/0	<0,1	700		0,1			40,1		<0,2	c <0,002		<10	11000	15900	4,2	80,00		2 <0,02	13	1000>	000	Н	2002	+		90 47/08	6,3 2	2,3	301	Т	0 43700	П	Н	9730	t	Н	H	+		Ш		
1 2 SP-N-V01 SP-N-V02	59 131 131 180	95 155,5	86	<5 <5	8 <5	55 17	<0.5	34 28	13 < 5	468 245	<5 <5	7 <5	<\$ <\$	50 00	16 16	20 12	32 15	205300 27850	12580 2300	2,4 1,9	3410 <2501		< 20 < 20	000 × 000 ×	<1 <1	< 0,1 < 0,1	10,3 9,9	800 1790	< 0,1	9,00	0,1 0,1	< 0,01	1000 > 1000 >	< 0,1 < 0,1	0,1	0,1 0,2	<0.2 <0.2	< 0,1 < 0,1	<0,1 <0,1	900 >	< 0,1 < 0,1	c0.1 c0.1	< 0,1 0,1	<0,2 <0,2	<0,002 <0,000 350 <570	10 20	<10 <10	25 < 10 <23 <23	300	× 0,8 × 0,8	000 001	< 0,02 < 0,03	< 0,02	19 < 10		4001 4001	< 0.05	<0,05 <0,05	700 >		VD 45 MP		2,5 6,6	163 221	8.1	580 72820	130	0	46,5 48830	1,4	-3	40,05	40,7				
			W-%	mg/kg TM	mg/kg TM	Mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	M-%	M By/Bu	mg/kg TM.	mg/kg TM	mg/kg 1M	mg/kg TM	m8/v8 1M	***	ms/m mg/gg TM	MT g//gm	mg/kg TM	mg/kg TM	M By/Bu	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/ng IM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/ig TM	mg/kg TM	MI g/gm	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	MT g/gm	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg IM	mg/kg TM	mg/kg TM	M1 9/19						. wyw	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS	mg/kgTS	mg/xg15	mg/kgTS	mg/kgTS	
Ausbruch material Probenbezeichnung:	Station		Trockersu bosting	Silber als Ag	Authorition als At Arsen als As	Barlum als Ba Bervillum als Be	Cadmium als Cd	Chrom-gesant as Cr	Kupler als Cu	Eisen als Pe Margan als Mn	Molybdan als Mo	Nickel als Ni Bletals Po	Antimon als So	Selen als Se	Thallium als TI	Variadium als V	Zink als Zn Oueded berrals Ho	Calcium als Ca	Magnesium als Mg	Giúnverlust 550 °C	TOCals C	20 20 20 20 20 20 20 20 20 20 20 20 20 2	KW-Index	PAR 10-2PA Benzo(a)pyren	Phenole	Flustuntersuchungen	pH-Wert	Abdampfückstand	Silber als Ag	Aluminium als Al	Bartum als Ba	Beryllium ab Be	Cadmium als Cd	Cobalt als Co	Chrom Wals Cr	Kupfer als Cu	Mangan als Mo	Molybdan als Mo	Nickel as Ni	Antimon als So	Selen als Se	Thellism als Ti	Varadium als V	Zirk als Zn	Quecksiberals Hg	Magnesium	Fluorid	Chiorid	Sufat	Ammonium als N	Nitritals N Phosphat als P	Cyanid gesamt	Cyanid, Lf.	TOC	BTEX	P. Acc. (16: EPA)	P hende	anion. Tenside	AUX	Bohrproben	Dolor nov	Teufe von	Teufe bis	Stallon	pH-Wert	Abdampfrückstand	Suffat (als SO42-)	Ammonium (Als N)	Chiorid Ris (Cr.)	Fluorid (als F)	Nitrat (als N)	N krit (als N)	Phosphat (als P.)	Biel (as P0) Ges. organ. Geb. Kohlenstoff, TOC	Kohlerwasserstoffindex	Extraheirbare organ. Geb. Halogene, EOX	

82		839,6	91										T										235													6330	63	13600	73000			I				П
81 81 5323/2010		826	92																				235													6370	3	14000	74000							
80		819,2	8																			_	247													9000	230	13600	13000							
25 20 25 24-21	738	835	16		10		40,5	00 0	n		10			72			14430	-	9 6	<0,03	<0,1		237	40,1	40,1	0'3	100	40,11	40,1	0,1		40,1		40,1	<0,2	6700	<10	H		0,07 <0,05	<0,02	13	10,0>	10,05	10,00	40,3
78 78		6,216,8	93						1												1	-	1 236													0 5440	9	H	Н		\parallel					_
2010 53237		908 909	92 91					H	H			H									H	-	54 254	H				_								6490 603	405	H	Н							H
75 7		96,8	91		l	1		H	H			H		l							H	-	241 25	H												5750 64	225 42									H
74		77,1	8		l				H					l							H		255 2									H				0000	180	H	Н							Ŧ
73		7 20,3	26						l												l		253							Н						9 0825	3									t
72		788,6	8						l												l	-	257							Н						0000	0	14300	14300							+
71		781,8	100																			=	319													7280	1310	16900	70007					Ì		Ŧ
70		780,1	26					Ħ	Ì			Ħ									Ì	-	407	Ħ												6510	4750	15400	13400							T
69 Sp-N-10	192	798	*		12		40,5	0	0		6			52			15610		000	<0,03	<0,1		309	40,1	40,1	0,3	1000	40,1	40,1	0,1		40,1		40,1	<0,2	40,002	c10 2500	42,3	1	0,04	<0,02	cto	1000>	1000	40,05	40,3
68		773,3	86			Ī													I				366													2820	710	14000	0001							
67		771,6	92																				267													2000	770	12400	12400							
99 237,2010		766,5	8																				278							Ш						2970	1120	14900	00047							
65		763.1	8						1												1	-	267													2830	782	14300	14300							ļ
64		3 759,7	92						1												1		257													0595	(65		20/51							ļ
63		2 756,3	92						1												1	-	7 261													2870	909	1 2			\parallel					_
2010 532372		751,	90 91																			-	257 27.													10 5880	1040		200							H
9 09	92	743,5 74;	8		23		40,5	11	7		14			213			18560		400	100	<0,1		H	40,1	0,1	(3	100	40,1	0,1	0,2 <0,2		40,1		40,1	<0,2	200	40	42,3	65	90'02 <0'02	<0,02	10	1000>	100	900	0,1
59 37,2010 SP-		742,7 7.	93				ľ		H					0			38			•	ľ		247 2						Ì					•	ľ	2640	1 (0)	H	Н	0 0			٥	D		, •
58		739,3	91						l												l	-	260							Н						5370	3	13600	73000							+
57		735,9	56						l												l		253							Ш						2640	8	14600	74000							H
56		732,5	8																			-	308													5290	1830	13400	13400							Ť
55		729,1	88																				392													0609	4250	15100	oorer							
54		720,6	97	Ш																			318													6180	0501	0029	Occor							
53		718,9	76	Ш																			336													5910	2,850	1500	1300							
52		712,1	- 26																				316							Ш						2640	3080	₩	Н							
51 30 SPA-08	169	726			35		40,5	11	27		28	1		27			9810		80.8	<0,03	<0,1	***	$^{+}$	40,1	0,2	0,3	1000	40,11	40,1	40,1		40,1		40,1	<0,2	<0,002	+	42.3	Н	40,05	40,02	c10	40,01	10/0>	40,05	40,1
50		708,7	76 24	Ш					1												1		438 333													5110	2690	₩	Н							ļ
48 49		9 703,6	76 96																			-	+													3730	0102	Н	Н				H			H
47 48		6,107 8,969	92	Ш				H	H			H									H	-	416 443	H				_								5420 5980	4400	₩	Н							H
9		693,4 69	24										+									-	385 4													7340 54	1950	+	H		+					H
45 4220,		99 069			\parallel	+	H	H	H			H		\parallel	\parallel	H		H	1	\prod	H		340 3	H		H			H	\parallel	\parallel	\parallel		+		7510 75	3310 36	$^{+}$	Н	\parallel	\parallel			H	H	\parallel
44 45		684,9				+	H	H	H	\parallel	H	H	1		\parallel	\dagger	H		1		H		416	H		\dagger		H	\parallel	\parallel		H		$\frac{1}{1}$		7710	5740	+	Н				H		\parallel	\parallel
42 20/2010 42:		681,5				\dagger	H	H	\dagger	\parallel	H	H	\dagger			H	H	H	t		\dagger		419	H		H	H	H	H	\parallel		\parallel	\parallel	\dagger		7820	0385	Н	Н		\parallel		H		H	\parallel
42 4220/2010 45		678,1	93		Ħ	1	Ħ	Ħ	t		Ħ	Ħ		Ħ		Ħ		Ħ		H	t		468	Ħ	\parallel	Ħ	Ħ	Ħ	Ħ	$\parallel \parallel$			Ħ	\dagger		7910	2500	17740	04//1		\parallel			Ħ	Ħ	\parallel
41 4220/2010		676,4	8			T	Ħ	Ħ	t		Ħ	Ħ						Ħ	Ì		t		345	Ħ	l		Ħ		Ħ			Ħ	Ħ			7550	3640					İ	Ħ	İ	Ħ	Ħ
40 SP-N-07	859	676		Ш	6		40,5	27	0		15			15,0			11500		000	<0,03	<0,1	***	304	<0,1	40,1	0,4	100	40,1	<0,1	0,6		0,1		40,1	<0,2	<0,002	410	-2,3 14800	2,2	<0,05	<0,02	<10	1000	1000	40,05	40,05
39		671,3	91																				344,0													7480	3630	13090	7000							

JE	put	:15		26'0	09/899	37781,62	8261,67		23380,50		0,85		20'0		28,10		0,18	1.48
w.	latt	IW		8,39	486,88	35335,86	14100,00		10839,75		2,39		0,14		44,03		0,28	1,38
nı	upot	w		10,3	3050	164000	33100		98300		*		0,21		82		850	4,3
ını	nin	IW		6,75	6'2	280	14,5		12,1		1,3		0,062		14,9		0,1	0.34
	atre	w		23	44	53	43		42		15		2		3		4	2
KB 56/07	2'6	10	2864		392	25120	15160	0	882	50,05	2,2	9	90'0>	40,7				
KB 56/07	4,8	2	2860		282	24960	19760	47	932	<0,05	2,1	63	90'0>	40,7				
KB 55/07	4	4,2	2800		216	18020	9550	2	1190	<0,05	1,3	63	90'0>	40,7				
KB 32/07	19,29	19,49	2687	7,23	164		11630		201							525	85'0	29'0
KB 32/07	16	16,2	2684	9,1	77,8	5120	2770		419									
KB 31/07	28,05	28,2	2563	8,8	241	22200	12700		743									
KB 31/07	9'9	8'9	2544		218	22700	16400	47	774	<0,05	2,9	63	90'0>	40,7				
KB 30/07	23,4	23,5	2513	10,3	53,6	2880	375		595									
KB 29/07	32,7	32,08	2443	8,35	278	25800	13900		1260									

124 125 126 1 SP-M17 6411/2010 6411/2010	1084 1086,2 1089,6	98 93 98		11		40.5	13			27				19	***************************************			17100		8 8	40,03	40.1	9,3 305 200 245	<0,1	0,31	0,28		40,01	40,1	100	0,11	700	97	<0,1		40,1		-0,002	6500 6290 6460	400	447 110 37	13600 14600 14600	1,5	<0,5	20'0>		400	D	40,0032	40,5	40,1
121 122 123 411/2010 6411/2010	1049,2 1056 1059,4	8																					306 312 263																6960 7080 5180		46 406	12200 16200 11300									-
320 SPA-16	1048	8		12		40,5	0 0		İ	13				26	200			13000		88	<0,3	40,1	7,7	<0,1	40,1	0,2		10,0>	00,1	700	2'0	700	<0.1	<0,1		40,1		40,002	6380	<10	25	13900	2,6	<0,05	<0,02		0 000	100	40,01	40,05	0,1
119 SP-N-15	975 1013 994	8		15		40,5	19			23				20	2000			11800		900	<0,3	40,1	9,2	<0,1	0.3	0,2		10,0>	00,1	700	0,2	707	<0.1	<0,1		40,1	***	40,002	7110	40	3.6	15000	4,4	5,0>	40,05	ŀ	50,05	41	40,0032	97'0	40,1
118 5692/2010	974,5	8																					360																7420	9000	3330	17000									Ī
117 5692/2010	971,5	86																					372																7530	9000	3710	17500									
116 5692/2010	2967	88																					\$15																0/9/	0.000	7910	19200									
115 5692/2010	964	8																					382																0859	0000	4230	16500									
114 5692/2010	1,959,1	8																					370																0830	0220	3000	17200									
113 5692/2010	957,4	86																					569																6730	orne	2710	16900									
112 SP-N-14	975	8		15		900	17			27				20	1000			10000		900	<0,03	<0,1	372	40,1	0,1	0,3		10,0>	40,1	100	<0,1	700	<0.1	<0,1		40,1	**	40,002	6250	<10	3.1	16100	4,1	<0,05	<0,02		40,05	100	40,05	40,05	40,3
111 5692/2010	97056	26																					472																6820	07.00	7340	17800									
110	948,9	8																					382																5180	0.00	2730	13900									
109	943,8	88																					810																6710	-	9830	16900									
108	942,1	8																					474																2550	0250	7160	14800									
107	937,2	8																					878																2050	00000	10500	18400									
106	934,2	8																					366																7210		921	17500									
105	929,7	92																					224																0609	107	002	15100									
104	928,2	8																					256																2230		452	14100									
103	925,2	16																					250																2930		321	14600									_
102	922,1	8																					257																6320		134	15600									
101 39-N-13	Ш	92		14		40,5	22 25			200				28	-			8400		88	<0,03	<0,1	252	<0,1	903	0,3		10,0>	00,1	700	<0,1	86	<0.1	<0,1		40,1		<0,002	H	C10	T	15200	2,6	<0,05	<0,02		40,01	1000	40,05	<0,05	Q/3
100 2692/20	5,216	93																					245																2100	H	+	12200									1
99 2 2692/2010	5 913,7	8				1							1								_	-	285					L										+	308	H	+	1130					l				1
200 SP-N-12		8		17		40,5	312	1	-	31		-		36	0,440		4	500		900	000>	40,1		<0,1	0.8	0,3		O(0)	40,1	40,1	<0,1	707	40.1	<0,1		40,1		40,002	Ш	H	$^{+}$	14200	3,6	10'0>	<0,02		40,01	100	900	0,76	40,0
97	7 904,7	86				1							1									-	30,4 53,8																314 720		19	2040					-				1
96 010	7 898,7	8					H	H				-		H									33,4 30,4																412 314	H	+	441									1
94 95	2 895,7	8				1							1									-	H		1													1	Ш	H	+	166					-				1
9	7 891,2	8	H																				35,3																330 653	H	+	954									1
93 93 93 93 93 93 93 93 93 93 93 93 93 9	2 886,7	8	H																				24																514 330	H	36	0 257									1
91 92	.2 882,2	8	\mathbb{H}			1				1			1					1		1		1	68,2 36,5		1								1			1			1150 51	H	33	1210					1				1
010	,2 879,2	8							1			-											ĦŦ															+	H	H	32 39	0 2540									1
9 90 V/VS \$323/20	94 11 873,2	8	<0,088	7	2	572		120	986	0	80	11	0 *	2	88	98 9	9	8 5	5'0	0.00	03	100	2 61,2	0,1	67	60	100	01	277	50		277	22	170	1.0	22	0,1	+	96	H	+	00 2130	2 72	5'0	50	275	005	1	032	3,5	9
88 89 323/2010 SP-N-VOS	308,5 87	8	70>	17	67	200	17	222	380 < 0'088	8 8	°0,	100>	1 1	32	795	320	, S	100	3>	7	<0>	c0,1	2,9 326)>	200	0,29	1>	(0)	< 0,1	100	100	<0,1	0	200	۷	00	7>	$^{+}$	807 5950		+	2000 13900	3,	3>	2002)>	10>	> 00	707	J.	ď
010	+	8	\parallel		\parallel	+	H	\parallel	+	+	H	+	+		H	+	H	+		1		+	675		+			H	+				+	\parallel	H	+	H	_	2870 80		$^{+}$	13600 200	+		+		+	H		H	1
78 87	858,3 865,1	28	\parallel	H	$\frac{\parallel}{\parallel}$	+	H	\parallel	+	+	H	H	+	H				1		1		+	236 199		1		H			1			+	\parallel	H	+	H		6080 587	Н	82 63	13500 136	+	\parallel	+		+		1	H	$\frac{1}{2}$
85 86 5323/2010 5323/20	851,5 858	18 97	\parallel		\parallel	+	H	\parallel	H	+			+			1		+		+		+	242 23		1				1	+			+	H		+		\perp	909 0569		193 82	14500 135	1		+		+				-
98	848,1 851	90 93	\parallel		\parallel	+	H	\parallel	+	+	H	+	+		H	+	H	+		1		+	239 24		+			H	+				+	\parallel	H	+	H		6360 635	H	143 19	14300 145	+		+		+	H		H	-
83 84 5323/2010 5323/2	841,3 848	91																					234 23																2380 636	H	02 14	13300 143									

stebnebness	-	5,49 3,22		-	64,43 24,24	00'0 09'0	9,67 3,38	4,63 8,12	18243,57 9681,01		17,88 6,57	4,43		12.00	3,59	28,04 13,92	840,00 116590,00	18,57 12918,67	06 2.43	9937,89 4410,76						. }	296,89 183,79	10204,63	1,50 2,54	+	H	1,60 0,60	H	0,10 0,00	+	0,70 0,77					+	0,10 0,00	+	4911,90 2591,73	$^{+}$	3300,20 4291,03	9	2,89 1,21	0000 000		21.78 13.18	Н	0,04 0,02	H	0,15 0,04
unujxey	+	100	Ħ	35 17	Н	+	H	36	$^{+}$	+	31 1	t		+	Т	72 27	Т	П	Т	66 09581						· ŀ	+	t	11,2	H		2,2		0,1	+	2,4 0					t	0,1	+	7930 49	+	$^{+}$	20100 121	+	H		5	H	90'0	H	0,25
muminik	u	06	H	7	+	H	H	0 10	+	H	7	0		0	H	13	+	Н	+								H	-	0,1	H	H	1	H	0,1	+	0,2					+	0,1	t	99	+	$^{+}$	18 2	$^{+}$	H		10	OT .	002	H	0,1
Merte	٨	154		7 24	7	H	18	H	L 00		25	17			H	24	t	7	- 00	19	1						154	+	H	97		2		1	16	9					3	1	+	146		+	154	+			0	6	2		0 1
154 2720 2720 2818	60/7	8	< 5	12	8 (<0.5	17	3.62	222	s s	31	s s	<5>	9 9	15	< 10			t	< 2500	< 0.5	< 20	50>	< 0,03	< 0,1		201	< 0,1	1,33	0,37	< 0,01	000	< 0,1	< 0,1	< 0,1	< 0,2	< 0,1	< 0,1	> 000	< 0,1	0,12	< 0,1	< 0,002	3860	< 10	934	0986	1,9	\$0°0 >	< 0,02	0.10	< 0,01	¢0,01	\$0,05	00,1
153 29-N-29 2548 2720	+507	100		10		<0,5	11	9			36	,		l		000	000			3100	<0,5	420	5'0>	40,03	<0,1		180	<0,1	0,13	t		1000	40,1	40,1	0,33	<0,2		40,1	Ħ	100	Т	***	<0,002	3690	40	673	10100	2,8	<0,05	<0,02	9	40,01	40,01	50,05	40,1
152 3495/2011	6,330,0	8												l													69,2					l												69,2		808	883				Ī		Ī		T
151 SP-N-NO7 2254 2818 2818	0507	8	9	14940	79	90,5	11	12	24890	9	22	s s	< 5	\$ 50	18	21	80310	25740	3.4	3200	40,5	900	5'0>	40,03	40,1		220,9	<0,1	0,48	0,34	<0,01	2,2	<0,1	<0,1	<0,1	<0,2	<0,1	<0,1	<0,00	<0,1	<0,1	<0,1	< 0,002	3380	< 10	716	11800	4,3	50,05	<0,02	<10	W .	<0,01	<0,05	0,14
150	5,0552	8												l					Ì					Ì			251					l		Ī										251		292	16400				Ī	T	Ī		T
3495/2011	1/0267	66			Ī	Ì	Ī												Ì					Ì	Ī		٤												Ì					02		913	909			Ì	Ī	Ħ	Ī		Ī
148	6,505,3	86												l					Ì								5,80					l		Ī										- 11		629	353		Ħ		Ī	Ħ	Ī		T
247 2458 2458 2548	5067	86												l					Ì					Ì			315					l		Ī										5270		750	16500				Ī	T	Ī		T
146 3495/2011	0.007	86												l					Ì								27,72					l		Ī										309		623	884		Ħ		Ī	Ħ	Ī		T
145	0,1012	88			Ì	Ì	Ī							Ī					Ì						İ		5/89					Ī							Ì					129		757	256			Ì	Ť	Ħ	Ť		T
144	1017	88												l					Ì								2/2					l		Ī										187		98	820		Ħ		Ī	Ħ	Ī		T
143	6,609,3	86												l					Ì								82,2					l		Ī										108		1050	372		Ħ		Ī	T	Ī		T
3495/2011	4/704/7	8												l					Ì								220					l		Ī										3200		200	14300		Ħ		Ī	T	Ī		T
25-N-27 2254 2458 2458	0007	66		v		40,5	6	21			18	9		l		23			Ì	<2500	9,5	<20	40,5	40,03	40,1		192	<0,1	76'0	0,4		100	40,1	40,1	<0,1	0,3		40,1	10	107	AV/A		40,002	4190	<10	273	14200	1,5	50'0>	<0,02	~10	770	₽	90	0.25
29 N-26 2197 2254 2775 c.	5,522	56				Ì	Ì																				12,2												Ì					125		¢10	191			Ì	Ť		Ť		T
139 SPA-25 2165 2197	1017	96												l					Ì					Ì			40,4					l		Ī										282		<10	127				Ī	T	Ī		T
138 SP-N-24 2130 2165	57417	86		7		<0,5	9	0 0			9	/7		l		51	1000		Ì		<0,5	970	50>	40,03	<0,1		27		-001	w Adam		1000		40,1	40,1			40,1	100				<0,002	172	<10	13	888	0.00			Ī	T	Q		1,00
137 SPA-23 2103 2130	c'0117	100			Ī	Ì	Ī												Ì					Ì	Ī		12,1												Ì					186		10	22			Ì	Ī	Ħ	Ī		Ī
136 SP-N-22 1872 2103	130/12	100		8	Ī	40,5	,	0 0			9 9	3				28			Ì		40,5	970	90,5	40,03	40,1		3,6		101	1		100		40,1	0,3			0,1	1/0				<0,002	94		11	242	2,5		Ì	Ī	T	D		0,16
135 Sp.N-21 1672 1872	7/17	100		v		<0,5	9	0 0			9	2		l		<10	10000		Ì	<2500	<0,5	970	50>	40,03	<0,1		13	<0,1	3,34	40,1		1000	40,1	40,1	0,26	5'0		40,1	207	107	4/4		<0,002	93	<10	15	56	D 00	505	<0,05	-10	40,05 40,05	<0,0032	40,05	40,1
134 SP-M-20 1472 1672	7/57	100		v		<0,5		0 0			9	9		l		<10	100/0		Ì		<0,5	<20	5,0>	40,03	<0,1		9,6		-0.1	1		1000		40,1	<0,1			40,1	10,1				<0,002	99		15	18	1700			Ī	Ī	₽		0,15
133 SP-N-19 1272 1472	t	100		ъ		<0,5		0 0			9	2		l		<10	10000		Ì		<0,5	<20	5'0>	40,03	<0,1		7,4		100	1/0		1000		40,1	0,14			40,1	100			**	<0,002	$^{+}$	$^{+}$	410	39	8'00'			Ī	Ī	D		40,1
132 6425/2010		66												l					Ì					Ì			11,3					l		Ī										186		<10	7.1				Ī	T	Ī		T
131 6425/2010 (8			Ì	Ì	Ī							Ī					Ì						İ		18,3					Ī							Ì				+	223	Ħ	+	217			Ì	Ť	Ħ	Ť		T
130 6411/2010 6	7/2007	8			Ì	Ì	Ī							Ī					Ì						İ		242					Ī							Ì					2920	Ħ	_	13700			Ì	Ť	Ħ	Ť		T
129	10/2/2	66			Ħ	t	Ħ		T		Ħ	İ		İ	İ	Ħ		İ	İ		1			İ	Ħ	l	53,8	İ	İ			İ		1			l	Ħ	t	ı		Ħ		863		14	1140	T	Ħ	t	t	Ħ	Ť	Ħ	Ħ
128 SP-N-18 1084 1272	11/0	100	<5	45	<5	< 0.5	<5	\$ \$	125	<5>	<5	c s	<5>	900	<\$	<10	407670	17920	0.3	<2500	< 0.5	<20	<0.5	(0)	< 0,1		9,6	< 0,1	3,49	91'0	<0,01	<0.01	< 0,1	< 0,1	0,3	< 0,2	< 0,1	< 0,1	90'0>	<0,1	< 0,1	< 0,1	<0,002	83	<10	<10	40	<1	\$0 ×	< 0,02	<0,2	240	<0.0032	< 0.00	c 0,1
127 6411/2010		8				l																					41,3												l				т	922	П	28	1110			l	1		İ		

Chemische Paramter - Tunnel projekt 13

7 38 72011 1041/2011	83,9 1050,9	66 00						I														13 107														0.000	80 2050	3 <10	10 5360						I			A107 WB 3 A107	25,5 35,5	56 3147	9,45	35,2	1480	<10		4	
36 37 P-S-V03 1041/2 904	1031 103	99 10	<5 14100	13	55	7	7	303	45	5 5	\$ \$	\$ \$	17	<0,05	13810	1,8	20,5	420	40,03	41		166 70	14160	1 0,1	0,3	1	40,01	40,1	40,1	40,1	40,1	<0,1	40,1	40,1	40,1	<0,002	3640 11	<10 < 300 6	<2,3	6'0	40,05	40,02	<1 15	₹	40,01	40,05		0 34/07	5	3165 31	17 0717					10,5	
35 1041/2011 5	1023,7	66																				198														Vivra	2620	154	13.400									VB 24/07	10,15	3167	80'6	10,1	180	49,1			425
34 1041/2011	1008,4	98																				130														1000	1990	382	5360										3,76	3172	8,41	22	816	12			<25
2 33 2011 SP-S-05 904	1002	00		16	8	10	28		00	2,00			24	<0,05		00207	2,05	<20	40,03			9,1	1,0>	1,8	6'0		40,01	<0,1	0,1	2'0	40,1	40,1		40,1	40.2	<0,002	06	<10 <10 300	<2,3	8,0%	40,05	<0,02	18	1>		40,05			29 3	3314 3173	0777					8 22,9	
31 3	981,2 99,	100 10																				96 299												+		000	809 12	325 47	2300 43				+						26,16 2		9,42	80 80	105	17,5		1	<25
30 1041/2011 10	8693	88																				8'26														1000	1880	264	2050									VB 35,07	18,5	3325	7300					25,1	
29	959,1	100																				45,2														000	009	40	1520									VB 35 A77	14,7	3328	9,35	400	243	<10			
7 28	3,7 945,5	100																				7, 92,6												_		400	1810	100	40 4750									5.07 VB 35.00	12,15 12	32 3332	1301	_	σį			71,5	55.55
26 2	928,5 936	99 10																				278 91														0101	5210 17.	1350 17	12300 46										5	3397 3332	Н		214 97,9	<10 13			<25
25 1041/2011 106	918,3	66	\parallel			H		\mid	\parallel	H				\parallel	H	H						147			H		t		H	\parallel			H	H		Villa	2750	867	7210		H		t		\mid				0,7	3464	6707	2840	1500	40,05	<3 <0,05	7,0>	\parallel
24 1041/2011	904,8	100										I										39		1												100	281	259	875										4 4	3467	0.707	-	3090	40,05	<3 <0,05	7,0>	
155	3 822	100		80	8	9	<5 <5		23	43			14	<0,05		0100	5,0>	27	<0,0>	6		159	40,1	0,0	0,2		10,0>	<0,1	1,0	200	40,1	<0,1		40,1	<0.2	<0,002	0	410	<2,3	1,3	<0,05	<0,02	<10	40,01	40,05	40,05		- 1	4	3578	Ħ	+	3710	174			425
21 22 P-S-V02 5992/2010 540	22 729	10												300								63 10														100	141	75	373								-	-	2,5 21,2	3588 358	9,25	+	7 1650	194 77, <0,05	30,05	2'(
20 5992/2010 SP-3	717,4 7	100												43								51,3														100	477	393 16	1530 12				H						2,1 2		Ш	9000	+	+		0,7	
19 5992/2010 599	708,9	100																				46,8														000	209	202	1570				l					20,00	22,39	3858	8,39	+	405	. 19			<25 0.2
18 5992/2010 5	698,7	100																				38,6														200	327	112	1250										6	3820	7424	1060	77,8	22,7	0,1	<0'>	
17 592/2010	8'989	100																				25,7														210	212	69	574									00/03 gA	3,8	3927	0007	12480	9180	469	<3	<0,7	
16 5992/2010	674,9	100																				31,9														300	295	25	963										22,17			263	17920	684			<25
15 10 5992/2010	664,7	100																				79,3														1300	1290	23	3440									70,00 av	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4054	1533	+	+	305		7,0>	
14 010 5992/2010		100																				57,5														Visit	270	256	0 1780									V D 61	31,3	4261	renr	181	13260	310	43	7,00	
2 13 22010 5992/2010	634,9 642,6	100																				1,4 55,5														100	17 487	395	90 149									1700 VB 61	4,3 13	69 426	70Y 62	540 1008	7 <7	409 458	3 <3	(0) 40,7	
11 12 5992/2010 5992/20	625,6 63	100																				107 90														· ·	720	554 6	1630 27									20,002 va.e.	11 4	1448 42	8,9	120 2	830 15	292 40	0 0	V	
10 5992/2010 599	618,8 6	100																				71,2															9692	029	1870									B 40,007	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4456 4	7,34	198,7	_	719			<25
9 2592/2010 55	60909	100																				72,2														246	726	829	2290									v 00/03/04	3,3 1,7 5	4565	07/	1980	415	999	<3 <0,05	7,0>	
8 5992/2010	598,4	100																				111														4440	1440	709	3770									VB 63/00	3,3	4735	0000	4200	2330	40,05	<3 <0,05	7,0>	
7 5992/2010	586,5	100																				110														0181	1510	620	3850									WB 6.4700	2,7 30	4777	OTC	3200	1740	234	43	<0,7	
6 5992/2010	579,7	100																				109														0.00	1850	574	4780									W 65.00	2,7	4895	230	1840	47	94,8	<3 <0,05	H	
5 010 5992/2010	259,3	100																			-	92,9		1			\downarrow								+	4000	1050	655	2970				+					7 88 41 407	19,8 2,4	4958	8	9260	2530	3600	\$ 0,0		
3 4 SP-S-02 5992/2010 540	7,5 549,1	9 100		-	u		20			0 10		$\frac{\parallel}{\parallel}$	0	32		s	3 5	0	40,03		-	5,99 6,5	1	7			10 1	Ţ.	1	94	1	Ţ		3	2	102	634	.0 628	.3 2060	4	35	32				1		O 41 AU	64 19,8 15 20	72 4973	77	28120	340 1965C <7	0 1110 <0,05	<3 <0,05	Ш	50 50
2 3 SP-5-V01 SP-5 131 33		6		11	8	6	7 7	$\frac{1}{1}$	36	7			₽	7300 0,05		703	2,05	0	8 8			113 139,9	<0>	2 8	0,3	1	<0,01 40,1	Ø	0,1	1	8	1,0>		b.	8	000	1670	48	<2,3	1,	<0,05	<0,02	19	V	$\frac{1}{1}$	<0,05		W 0 N 0 W	33,7 29,64	5159 49:	7,4	4380 2:	16780 14640 <7	16,9 650	30,05	H	<25
-	233 3	66		40	5 0	12	45	-	21	9			<10	<0,05		0033	40,5	<20	<0,5			10,5	<0,1	7,1	40,1	100	40,01	<0,1	40,1	40,1	<0,1	40.06	40,1	40,1	40,1	<0,002	1	<10	<2,3	8,0	40,05	<0,02	<10	17	-	0,1		0.7 007 35 0		5198 5	00	160 2	136	<10 <0,05	<3 <0,05		
NON AN	Mitte	M-%	mg/kg TM mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM me/ke TM	mg/kg TM	M-%	mg/kg TM	mg/kgTM mg/kgTM	mg/kg TM mg/kg TM	mg/kg TM	2	m/S/m	mg/kgTM mg/kgTM	mg/kg TM mg/kg TM	mg/kg TM	mg/kg TM			mg/kg TM	mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM mg/kg TM	mg/kgTM	mg/kgTM mg/kgTM	mg/kg TM mg/kg TM	mg/kg TM ms/ks TM	mg/kg TM	mg/kg TM		mg/kg TM mg/kg TM	mg/kg TM mg/kg TM	mg/kg TM mg/kg TM	mg/kgTM mg/kgTM		ľ		Ħ		mS/m mg/kg TS	mg/kg TS mg/kg TS	mg/kg TS mg/kg TS	mg/kg TS	mg/kg TS mg/kg TS	mg/kg TS mg/ke TS
Ausbruchmaterial Probenbezeichnung: Station			Silber als Ag Al uminium als Al			l	5								Magnesium als Mg Bor als B						atuntersuchungen		Abdampfrückstand Silber als Ag				admium als Cd obalt als Co							n ais Sn Illium als TI		als Hg					hosphat als P					enside				Yord	H-Wert	ertfahig keit frückstand	un (Als N)	Als (CI-) eicht freisetzbar	Nitrat (als N) mg/kg TS <3 Nitrit (als N) mg/kg TS <0,05	nt (als P)	asserstoffindex
Ausbruc Probenbs Station		Trockens	Silber als	Arsen al: Barium a	Berylliun	Cobalt at	Kupfer al	Eisen als Mangan a	Molybda	Blei als P.	Selen als	Zinn als Sn Thallium als TI	Vanadlu Zink als Z	Quecksill	Magnesia Bor als B	Glühverh	BTEX	KW-Inde	PAK 16-EPA Benzolalpyren	Phenole	Eluatunt	Leitähig.	Abdamp Silber als	Aluminiu	Barium a	Bor als B	Cobalt ale	Chrom-g	Kupferal	Mangan,	Molybda Nickel als	Blei als P.	Selen als	Thallium	Vanadiur Zink als Z	Quecksill	Magnesium	Fluorid	Nitrat als Sulfat	Ammonit	Phospha:	Cyanid g	Sulfid	BTEX KW Index	PAK (16- Phenole	AOX	Bohrproben	. gopuna	Teufe von	Station	pH-Wert	Abdampl	Sulfat (ai	Chlorid A	Nitrat (a)	Phospha Blei (als F	Ges. orga

Tunnelprojekt 13	
Paramter -	
Chemische	

799 80 81 22065 1148/2011 1148/2011 22065 2100 22085 2086,2 2089,2 98 99 99														8 228 152															3210 5400 3870	22	Н	10700 13600 13300								
77 78 1150/2011 1148/2011 3 2061,3 2072,2 99 99														190 20,3 188														+	190 5380 32	00 13	10	10500 13600 107								
74 75 76 11150/2011 50:95 1150/2011 20:95 20:35,4 20:42 20:53,8 97 94 97	=		5,0	8 9	8 6		40		5'0>	<20	9,5	6	1/0	316 174 144		6	w/ou		40,01	<0,1	0,1		-	0,1			ç	<0,002	316 4300 144	22 03	<2	13000 11000 7370	0,18				<1		6	win
50/2011 1150/2011 1150/2011 1150/2011 1050/201														20,8 53,5 187															220 936 4800	017	OT.	476 2520 12100 1								
69 70 87 115 87 115 115 115 115 115 115 115 115 115 11	5	H	<0,5 <0,5	11 7	17 14		26 24 <0,001 <0,001	4000	<0,5 <0,5	<20 <20	1 <0,5	Н	4	8,4 9,1 69 25	<0,1	1,72	Н	+	40,01 40,01	<0,1 <0,1	<0,1 0,31	+	H	<0,1 <0,1		<0,1	507	+	973 212	<10 <10	Н	+	0,82 <0,03	200	<0,05	×10	41 41	<0,0032	<0.5	win. win.
67 68 5799/2010 SP-5-10 1460 1459,6 1558,5 100 100	00	,	5(0>	II 8	17 6		25		<0,5	<20	<0,5	Ħ	1	21,3 63	<0,1	0,92	0,16		<0,01	<0,1	99'0	\top		<0,1		<0,1	000	+	94 712	<10		173 2010	0,23	CO.	<0,02	<10	₽		<0,5	w fac.
65 66 5799/2010 5799/2010 57 1447/6 1449,6														82,7 64,6														+	1360 904	401		3660 2570								
63 64 6274/2010 579 1421,6 1433,6 1- 99 100														171 68,2															3060 873	220		7630 2370								-
62 SP·S·09 1360 1460 1410	4		<0,5	9 62	10		<10 <0.05		13000	<20	<0,5			8,4	<0,1	1,7	0,2		<0,01	<0,1	<0,1	<0,2		<0,1		<0,1	607	<0,002	2590		<2,3	6500	0,03	coons	<0,02	8	₽		<0,05	w fac.
60 61 6274/2010 6274/2010 1397,6 1409,6 100 100														11,3 51,8														+	83 702	27		46 1940								
58 59 274/2010 6274/2010 1367,6 1383,6 100 100														22,1 71,8															009 29	300 030	H	247 2860								=
56 57 58 1382/2010 28-58 6274/2010 1380 1380 2 1258,2 1310 1387,6 100 100 100	0		<0,5	∞ V	10		<10 <005	4	3,200	<20	<0,5	Today.		9,3	<0,1	2,8	0,2		<0,01	<0,1	0,1	<0,2		<0,1		<0,1	600		54 2130 960	63	Н	2720	<0,03	com	<0,02	<10	12	<0,01	0,45	760.
53 54 55 5382/2010 5382/2010 5382/2010 12162 12302 1248.2 100 100 100														64,5 27,4 26,2															932 175 54	33 (3	6	2790 716 327								-
50 51 52 58 5882/2010 5892/2010 1158 1158 1158,2 1202,2 1209 12 100 99 99 1	<5		40,5	<5	9 <5		<10 < 0,05	44.00	<0,5	<20	40.03	Toda:		60,6 135 143 6	40,1	12,5	2'0		10/0>	40,1	40,1	2,4	5	40,1		40,1	ç	<0,002	730 2900 2930 9	410	42,3	+	0,04		<0,02	<10	<1		50,05	of ac
48 49 49 5382/2010 5382 1163,2 1174,2 11 100 100 1														120 66,4 6															2330 747 7	300	OC.	5960 2250 20								-
46 47 1041/2011 1041/2011 1135,9 1149,5 99 100														196 73,3					1										3440 981	020	0	3 8680 2640			2					
42 43 44 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47			<0,5	8 5	21 8		<10	1	2,000	<20	<0,5	100	Thy	80 65,2 131	<0,1	1,3	0,2		<0,01	<0,1	<0,1	<0,2		<0,1		<0,1	0		133 854 2400	<102 221 200	107	740 2540 6400	<0003	n'n	<0,02	10	₽		<0,05	
190 440 441 442 440 441 442 440														0 41,7 65,4											1				90 436 968	00	00	40 1300 2770								
39 40 1041/2011 1041/ 1061,1 106:														201 110															3620 1590	611	+	10500 4340								

эkq	spui	612			92'0	95,59	8636,25	6774,76	639,60	2,24	0,02	58,35		0,54	0,14
ЭW	(- 11	iM			8,72	107,84	8863,60	6285,35	358,74	2,76	0,07	54,17		0,70	0,38
unu	nioce	εM			10,5	290	28120	19650	3600	6	0,1	177		1,6	0,55
uni	min	iM			7,34	2,7	160	77,8	12	1,1	90'0	10,5		0,2	0,21
		u			18	36	52	36	32	13	3	9		4	2
KB 33/07	0,4	0,5	3019	2274	10,5	225	22200	14100	25,2						
KB 33/07	9,28	9,5	3024	2269	8,2	273		19160	27,6				<25	<0,1	0,43
KB 33/07	21	21,2	3030	2263	8,26	268		17910	26,3				<25	<0,1	<0,1
KB 33/07	32,6	32,7	3036	2257	6	215	21600	13900	31,3						

110 121	5.840
	(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0
1000	0 8 9 X
23167/2011 22169 95 95	0 2000
8877 (2011) (2012) (80) (81) (81) (81) (81) (82) (83)	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 2300 90 90 91 91 91 91 91 91 91	1070
2211.01 2211.02 22 22 22 22 22 22 22 22 22 22 22 22 22	859
5.2200 2.200 8 8	980
113.772011 22.772011 12.772011	448
11.2 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27	8 2 8
2807.3	215
98 8 197/2011 2204.1	315
2001.2 2201.2 89	\$820 < 10 1.4800
100/2/00/2	6270
1 18-107 2 10-007 2 10-007 2 10-007 2 10-007 2 10-007 3 10-007 3 10-007 4 10-0	(40,00) (40,00
200 200 200 200 200 200 200 200 200 200	98 1800
100 2178/8 100 100	0.000 K
2189/2011 21884 1000 1000 223	0000 13.8300
2163.4	8310 13 20 13 13 13 13 13 13 13 13 13 13 13 13 13
96 91.8	38 88 89 89 89 89 89 89 89 89 89 89 89 89
101 2 1854 A 90 90	6-800 < 4D 7 2-800
21.55.4 21.55.4 21.55.4 21.55.4	733
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0028
11 \$519.47.0011 21.07.4 93 93 14.7	18 40
1 \$10.07(201) 2 2 144.4 82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2117
2101.07/2/011 210.07/2/011 210.07/2/011	146
23 86 A S S S S S S S S S S S S S S S S S S	1130
11 1146/701 99 99 99 99 99 99 99 99 99 99 99 99 99	80 191
90 11100 90 2131A A 90 11100 90 2131A A 90 11100	217
15 (2) (1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	8
	1000 734 520 16 16 16 16 16 16 16 16 16 16 16 16 16
2329 118 90 118 70 118	5 750 100 100 20 20 100 20 20 100 20 20 100 20 20 20 20 20 20 20 20 20 20 20 20 20 2
90 50 51 11 10 50 50 50 50 50 50 50 50 50 50 50 50 50	S S S S S S S S S S S S S S S S S S S
2 114.4 (2011 S 2 114.4 S 2 114.4 S 2 114.4 S 2 114.4 S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.180 1.280
88 1146(700110.2 88 2677	0 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
885 87011 124	2470
1 11.48(-2011) 1 11.48(-2011) 2.007.2 9.8 2.10	50 10 107 14.20
Superviser Parameter - Tunnelle quest 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18	\$24 410 2110
Schenists 8) 1	2.1.2.9720

rdebn	nupre	3,20		6628,50 8,22	83	16	91	2,00	1,46	75	77			00	8	35,30	00	100		8	8			29	66	800	15	15	01	OT.	0,00		8 8					00		6,26	90	3,92	0,96	34	00		95			8	8 8
		Ш	1 1	- 1 - 1	0 80,8	3	4,5	0 713	7 113	9''	4			3,0	000	00 6539	20,00	331		0.0	000			90	9 92,		3,0	0.0	Ċ	ń			0 0				+	00		55 2548	6 (1 263	32 5370	0,0	00		3,5		ŀ		0,0
Mert	Mittel	98,26		14,67			11,69			16,86	00'6		ш	12,00		35795,00		1,90	\vdash	27.00	1,00				137,19		2,66	Ш	1	1,110	0,10	ш	0,21					0,12		2851,65	-	+	•	1,26	Н		14,00				0,15
wn	nixeM	100	Н	14100	185	17	23	\perp	Н	31	21			+	Н	* 1	\perp	13600		27	-			_	504	\perp	12,5	Н	12	7.7	0,1	Н	2.4	H				0,12		8010	+	1600	+	1,9	+		19				0,19
un	n miniM	144 82	\square	2 843	\bot	90	13 6	2 1836	3 108	9 9	00			2 9	2 0,05	7300	2 21	2 1,8		1 27	1				146 9,1	4	6 0,35	13 0,1	-	7	1 0,1		7 0,1					1 0,12		142 54	ш	128 10	3 3	8 0,8	1 0,05		9		ŀ	1 0 45	2 0,1
146 SP-D 2545	25.76	99	5 >	12	+	<0,5	++	30	37.7	31	9 5	5 2	< 2	15	<0,05			< 2500	<0,5	< 20	<0,5	< 0,03	< 0,1	9'8	_	<0,1	1,33	Н	<0,01	<0,01	<0,1		<0,1	<0,1	<0,1	<0,0>	<0,1 <0,1	0,12	<0,2	3860 1	01 >	934	9860	1,9	<0,05	< 0,02	v 10	<0,01	<0,01	20'0>	× 0,1
145	2537,6	100																						ľ	285															8010		36	0986								Ħ
3877/2011 3	2527,6	100																						ľ	272															6850		63	16800								Ħ
143	2515,6	100											Ì								Ħ				303			h		Ì		Ħ								7660		506	9590	Ì						Ì	Ħ
142	2505,6	100																						F	270											T				7630		46	9270	T						T	Ħ
141	2493,6	100																							289															7840		99	9760								Ħ
135 136 137 138 139 140 141 142 148 158 189 159 150 151 151 152 153 155 155 155 155 155 155 155 155 155	2481,6	100																							274															7580		58	9110								Ħ
139	2473,6	100																							254															7140		13	8580								Ħ
138	2461,6	100																							268															2600		24	9160								Ħ
137	2449,6	100																							281															07.77		32	0996								П
136	2439,6	100																							235															2660		35	13500								П
135	2429,6	100																							226															5730		47	13700								П
134	2419,6	100																							240															5990		104	14100								П
132 133 SP-S-19 3877/2011 2275	2411,6	100																							261															5870		38	13800								П
132 SP-S-19 2275	2545	88		Ø		<0,5	9	0		ν:	10			16	<0,0>			<2500	<0,5	<20	<0,5	<0,03	<0,1	8,4	229	<0,1	0,35	0,17		<0,01	<0,1		<0,1		<0,1	<0,1	<0.1		<0,2	<0,002 6540	<10	22.	15500	<0,8	40,05	<0,02	11	10,01	40,01	40,05	<0,1
131	2401,6	100																							240															6090		28	14300								П
130	2391,6	100	Ħ																						245															2800		48	13800								Ħ
3877/2011 3877/2011 3877/2011	2383,6	100																							236															5360		28	12900								Ħ
3877/2011 3	2371,6	100																							248											T				6150		45	14400								H
3877/2011 38	2361,6	100					H																	F	252									H			+			6110		09	14400		H						H
011 3877	++	+																						F																+			+								H
125 126 3877/2011 3877/2011	5 2351,6	100					Н											1		1		1			258															6120		72	14400	1	H					1	H
	2341,6	100	Ц					L		\coprod													Ц	L	252										Ц					0999		31	15600		Ц						Ц
124 3877/2011	2333,6	100																						L	254															6610		44	15700								Ш
123 3877/2011	2325,1	100																							246															6350		32	15000								

Chemische Parameter - Tunnelprojekt 14 Ausbruchmaterial

Herkunft	Einheit	Norm							
Prüfaktnr.					TB-612	-H3-4-EB-01-1	1-Rev.2		
Probenahmezeitraum			FP12	FP13	FP14	FP15	FP16	FP17	FP18
Menge	[t]								
Entnahmestelle					7:	wischendenon	ie		

Eluat										Minimum	Maximum	Durchschnitt	Standardabw eichung
pH		DIN 38404-C5	9,1	9,3	9,2	9,2	9,2	9,1	9,1	9,1	9,3	9,17	0,07
elektr. Leitfähigkeit	mS/m	ÖN EN 27888	5,4	5	5,1	5	5	4,3	4	4	5,4	4,83	0,46
Abdampfrückstand	mg/kg TS	DIN 38409-H1-1	<2000	<2000	<2000	<2000	<2000	<2000	<2000				
Aluminium (als Al)	mg/kg TS	ÖN EN ISO 11885	<1	<1	<1	<1	<1	<1	<1				
Antimon (als Sb)	mg/kg TS	ÖN EN ISO 11885	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02				
Arsen (als As)	mg/kg TS	ÖN EN ISO 11885	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05				
Barium (als Ba)	mg/kg TS	ÖN EN ISO 11885	0,02	0,01	0,02	0,01	0,01	0,03	0,02	0,01	0,03	0,02	0,01
Beryllium (als Be)	mg/kg TS	ÖN EN ISO 11885	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01				1
Blei (als Pb)	mg/kg TS	ÖN EN ISO 11885	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05				1
Bor (als B)	mg/kg TS	ÖN EN ISO 11885	<1	<1	<1	<1	<1	<1	<1				
Cadmium (als Cd)	mg/kg TS	ÖN EN ISO 11885	<0,002	<0,002	<0,002	<0,002	< 0.002	<0,002	<0,002				1
Calcium (als Ca)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-				
Chrom gesamt (als Cr)	mg/kg TS	ÖN EN ISO 11885	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1				1
Chrom (VI) (als Cr)	mg/kg TS	DIN 38405-D24	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01				+
Eisen (als Fe)	mg/kg TS	ÖN EN ISO 11885	0,4	1	1	0,5	1	0,2	1	0,2	1	0,73	0,32
Kobalt (als Co)	mg/kg TS	ÖN EN ISO 11885	<0,1	<0.1	<0,1	<0,1	<0,1	<0,1	<0,1			-, -	+
Kupfer (als Cu)	mg/kg TS	ÖN EN ISO 11885	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05				+
Magnesium (als Mg)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-				+
Mangan (als Mn)	mg/kg TS	ÖN EN ISO 11885	<0.1	<0.1	<0,1	<0,1	<0.1	<0.1	<0,1				
Molybden (als Mo)	mg/kg TS	ÖN EN ISO 11885			-	-	-	-					+
Nickel (als Ni)	mg/kg TS	ÖN EN ISO 11885	<0.05	< 0.05	<0,05	< 0.05	< 0.05	< 0.05	< 0.05				
Quecksilber (als Hg)	mg/kg TS	ÖN EN 1483	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001				+
Selen (als Se)	mg/kg TS	ÖN EN ISO 11885	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01				+
Silber (als Ag)	mg/kg TS	ÖN EN ISO 11885	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0,1				+
Thallium (als TI)	mg/kg TS	DIN 38406-E26	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01				+
Vanadium (als V)	mg/kg TS	ÖN EN ISO 11885	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1				+
Zink (als Zn)	mg/kg TS	ÖN EN ISO 11885	<1	<1	<1	<1	<1	<1	<1				+
Zinn (als Sn)	mg/kg TS	ÖN EN ISO 11885	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2				+
Ammonium (als N)	mg/kg TS	DIN 38406-E5-5	0.1	0.2	0.1	0.1	0.2	0.3	0.1	0.1	0.3	0.16	0.07
Chlorid (als Cl)	mg/kg TS	ÖN EN ISO 10304	121	22	59	100	66	32	23	22	121	60.43	35,76
Cvanid (als CN)	mg/kg TS	DIN EN ISO 14403 (UIN)	- 121	-	-	-	-	-	-	22	121	00,43	33,70
Cvanid leicht freisetzbar	mg/kg TS	DIN EN ISO 14403 (UIN)	<0,01	<0.01	<0,01	<0,01	<0.01	<0,01	<0,01				+
Fluorid (als F)	mg/kg TS	ÖN EN ISO 10304	<1	<1	<1	<1	<1	<1	<1				+
Nitrat (als N)	mg/kg TS	ÖN EN ISO 10304	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1				+
Nitrit (als N)	mg/kg TS	ÖN EN ISO 10304	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0,1				+
Phosphat (als P)	mg/kg TS	ÖN EN ISO 10304	<0,1	<0,1	<0,1	<0,1	<0.1	<0,1	<0,1				+
Sulfat (als SO4)	mg/kg TS	ÖN EN ISO 10304	11	14	13	16	19	19	25	11	25	16.71	4,37
Sulfid (als S)	mg/kg TS	DIN 38405-D26		- 14	-	-	-	-	-	- 11	23	10,71	4,57
TOC (als C)	mg/kg TS	ÖN EN 1484	<10	<10	<10	<10	<10	<10	<10				+
Glühverlust	Masse%	ON EN 1404	- 10	- 10	- 10	- 10	- 10	-	- 10				+
BTEX	mg/kg TS	DIN 38407-F9	<0,01	<0.01	<0,01	<0,01	<0.01	<0,01	<0,01				+
EOX	mg/kg TS	DIN 38409-H8	<1	<1	<1	<1	<1	<1	<1				+
POX	mg/kg TS	DIN 38409-H14	- <1	- <1	- 41	<1	- 1	- <1	- <1	l			+
Kohhelwasserstoff-Index	mg/kg TS	ÖN EN 14039	<1	<1	<1	<1	<1	<1	<1				+
Summe PAK	111g/ kg 13	ÖN L 1200	<0.01	<0.01	<0,01	<0.01	<0,01	<0.01	<0.01	l			+
davon Benzo(a)pyren	mg/kg TS	VDLUFA VII. 3.3.3.1	<0,0005	<0.0005	<0,005	<0,005	<0.0005	<0.0005	<0.0005				+
Phenole (als Index)	mg/kg TS	DIN 38409-H18	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005				+
PCP	mg/kg TS mg/kg TS	ÖN EN 12766	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	 			+
-		UN EN 12/00								1		1.00	0.00
Anionenaktive Tenside (MBAS)	mg/kg TS		1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	1	1	1,00	0,00

Festgehalt										Minimum	Maximum	Durchschnitt	Standardabw eichung
pH		DIN 38404-C5	-	_	-	-		-	-				eichung
elektr. Leitfähigkeit	mS/m	ÖN EN 27888	-	-		-		-	-				
Abdampfrückstand	mg/kg TS	DIN 38409-H1-1	-	_	-	-	-	-	-				
Aluminium (als Al)	mg/kg TS	ÖN EN ISO 11885		_	-	-	-	-	-				
Antimon (als Sb)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-				
Arsen (als As)	mg/kg TS	ÖN EN ISO 11885	3	6	6	4	4	5	4	3	6	4,57	1.05
Barium (als Ba)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-			4,57	1,03
Beryllium (als Be)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-				
Blei (als Pb)	mg/kg TS	ÖN EN ISO 11885	9	8	9	14	5	6	6	5	14	8.14	2.80
Bor (als B)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-	,	14	0,14	2,00
Cadmium (als Cd)	mg/kg TS	ÖN EN ISO 11885	<0.3	<0.3	<0,3	<0,3	<0.3	<0.3	<0,3				
Calcium (als Ca)	mg/kg TS	ÖN EN ISO 11885											
Chrom gesamt (als Cr)	mg/kg TS	ÖN EN ISO 11885	13	14	16	14	11	11	10	10	16	12,71	1,98
Chrom (VI) (als Cr)	mg/kg TS	DIN 38405-D24	-		-	- 14	-		-	10	10	12,71	1,50
Eisen (als Fe)	mg/kg TS	ÖN EN ISO 11885	-	_		_			_				
Kobalt (als Co)	mg/kg TS	ÖN EN ISO 11885	4	4,3	3,9	4	3,4	3,9	4	3,4	4,3	3,93	0,25
Kupfer (als Cu)	mg/kg TS	ÖN EN ISO 11885	7	9	8	10	6	8	7	6	10	7.86	1,25
Magnesium (als Mg)	mg/kg TS	ÖN EN ISO 11885	-	-	-	-	-	-	-	0	10	7,00	1,23
Mangan (als Mn)	mg/kg TS	ÖN EN ISO 11885		_	-	_	-		_				
Molybden (als Mo)	mg/kg TS	ÖN EN ISO 11885			-								
Nickel (als Ni)	mg/kg TS	ÖN EN ISO 11885	8	10	11	10	8	9	9	8	11	9.29	1.03
Quecksilber (als Hg)		ÖN EN 1483	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1		11	3,23	1,03
	mg/kg TS					-	_		-				
Selen (als Se) Silber (als Ag)	mg/kg TS	ÖN EN ISO 11885 ÖN EN ISO 11885		-	-	-	-	-	-				
Thallium (als TI)	mg/kg TS	DIN 38406-E26		-	-	-	-	-	-				
	mg/kg TS												
Vanadium (als V) Zink (als Zn)	mg/kg TS	ÖN EN ISO 11885 ÖN EN ISO 11885	28	25	29	- 28	18	19	22	10	29	24.14	4.10
	mg/kg TS				- 29	28		- 19	22	18	29	24,14	4,19
Zinn (als Sn)	mg/kg TS	ÖN EN ISO 11885 DIN 38406-E5-5	-	-		-	-		-				
Ammonium (als N)	mg/kg TS		-	-	-	-	-	-	-				
Chlorid (als CI)	mg/kg TS	ÖN EN ISO 10304		-	-	-			-				
Cyanid (als CN)	mg/kg TS	DIN EN ISO 14403 (UIN)	-	-	-	-	-	-	-				
Cyanid leicht freisetzbar	mg/kg TS	DIN EN ISO 14403 (UIN)	-	-	-	-	-	-	-				
Fluorid (als F)	mg/kg TS	ÖN EN ISO 10304	-	-	-	-	-	-	-				
Nitrat (als N)	mg/kg TS	ÖN EN ISO 10304	-	-	-	-	-	-	-				
Nitrit (als N)	mg/kg TS	ÖN EN ISO 10304	-	-	-	-	-	-	-				
Phosphat (als P)	mg/kg TS	ÖN EN ISO 10304	-	-	-	-	-	-	-				
Sulfat (als SO4)	mg/kg TS	ÖN EN ISO 10304	-	-	-	-	-	-	-				
Sulfid (als S)	mg/kg TS	DIN 38405-D26	-	-	-	-	-	-	-				
TOC (als C)	mg/kg TS	ÖN EN 1484	<5000	<5000	<5000	<5000	<5000	<5000	<5000				
Glühverlust	Masse%		-	-	-	-	-	-	-				
BTEX	mg/kg TS	DIN 38407-F9	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5				
EOX	mg/kg TS	DIN 38409-H8	-	-	-	-	-	-	-				
POX	mg/kg TS	DIN 38409-H14	-	-	-	-	-	-	-				
Kohhelwasserstoff-Index	mg/kg TS	ÖN EN 14039	<20	<20	<20	<20	<20	<20	<20				
Summe PAK		ÖN L 1200	<1	<1	<1	<1	<1	<1	<1				
davon Benzo(a)pyren	mg/kg TS	VDLUFA VII, 3.3.3.1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05				
Phenole (als Index)	mg/kg TS	DIN 38409-H18	-	-	-	-	-	-	-				
PCP	mg/kg TS	ÖN EN 12766	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01				
Anionenaktive Tenside (MBAS)	mg/kg TS		-	-	-	-	-	-	-				

Chemische Parameter - Tunnelprojekt 14 Bohrproben

3	
-	
_	
υ	
-	
Ē	
=	
σ	
Ū	
1	
1)	9
Ē	- 2
2	7
2	- 5
	2
E	-
₽.	÷
	٠,

	Minimum Durchschnitt Standardab- Standardab- Meichung	13 25,06 14,68		3,4 6,85 2,26	27 34,63 5,64	3,1 5,28 1,06		13 20,63 7,68	3,4 6,04 1,21	9,5 13,47 1,69	12 16,63 3,50			26 34,13 8,05		8,84 9,22 0,15	52 72,88 41,09	
	mumixeM	62 1		13 3	46 2	6,8		37 1	8,5 3	16 9	25 1			61 2		9,43 8,	224 5	
25387	Bodenprobe F-KB 19/99 18,0-26,0m	20		6'9	46	5,2	<0,5	36	7,1	14	22	<0,1	<0,1	36		9,26	63	
25386	Bodenprobe F-KB	70		5,2	38	4,6	<0,5	18	6,3	14	18	<0,1	<0,1	28		9,37	55	
25385	Bodenprobe E-KB 6/95 18,0-31,0m	14		4,4	30	4,7	<0'>	15	5,8	12	15	<0,1	<0,1	27		62'6	28	
25384	80denprobe E-KB	18		6,5	35	8'9	<0'2	17	6,7	15	17	<0,1	<0,1	37		9,27	91	
25383	Bodenprobe E-KB 36/98 14,0-30,0m	17		7,1	31	5,8	<0'2	17	2,6	12	16	<0,1	<0,1	30		6,3	57	
25382	Bodenprobe E-KB 10/95 12,0-25,0m	20		8,3	34	9'9	<0'2	15	6,1	16	17	<0,1	<0,1	36		9,29	52	
25381	Bodenprobe E-KB 33/98 21,0-24,0m	17		8'9	28	5,7	<0'2	15	7,3	12	16	<0,1	<0,1	36		9,2	55	
25380	Bodenprobe E-KB 37/98 15,0-28,0m	20		13	43	2,7	<0'2	16	7,2	15	18	<0,1	<0,1	38		9,37	61	
25379	Bodenprobe E-KB 31/98 15,0-28,0m	13		9'6	42	2	<0'2	18	8,5	13	17	<0,1	<0,1	36		9,43	54	
25378	Bodenprobe E-KB 38/99 13,0-26,0m	16		8'8	31	5,9	<0'2	23	8'9	15	20	<0,1	<0,1	35		9,24	55	
25377	Bodenprobe F-KB 13/98 20,0-30,0m	19		9′9	41	9	<0'2	37	4,8	14	25	<0,1	<0,1	27		8,84	224	
25376	Bodenprobe F-KB 10/98 34,0-40,0m	25		4,2	35	3,1	2′0>	31	4,4	5'6	13	<0,1	<0,1	32		9,16	79	
25375	Bodenprobe F-KB 22/99 40,0-53,0m	29		3,4	33	3,4	5'0>	87	5'5	11	16	<0,1	<0,1	87		9,14	61	
25374	Bodenprobe F-KB 05/95 20,0-30,0m	43		5,4	32	6,3	2′0>	13	5,4	14	12	<0,1	<0,1	30		9,12	52	
25373	Bodenprobe F-KB 06/95 11,0-14,0m	17		7,2	28	5,7	<0,5	14	5,8	15	12	<0,1	<0,1	61		9,22	94	
25372	Bodenprobe F-KB 23/99 31,0-42,0m	28		6,2	27	3,9	<0'>	17	3,4	14	12	<0,1	<0,1	56		66'8	55	
Norm		ÖN EN 14039		EN ISO 11885	EN ISO 11885	EN ISO 11885	EN ISO 11885	EN ISO 11885	EN ISO 11885	EN ISO 11885	EN ISO 11885	DIN EN 1483	EN ISO 11885	EN ISO 11885		ISO 10523	DIN EN 27888	
Einheit		mg/kg TM		mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM			mg/kg TM	
	Probenbezeichnung	Kohlenwasserstoff-Index	Königswasser Aufschluß	Arsen (ICP)	Barium (ICP)	Blei (ICP)	Cadmium (ICP)	Chrom (ICP)	Cobalt (ICP)	Kupfer (ICP)	Nickel (ICP)	Quecksilber (KD-AAS)	silber (ICP)	Zink (ICP)	Eluat nach Önorm EN 12457-4	Н	Leitfähigkeit (25°C)	

Klassfrzierung
A2 = Klasse A2 gem. BAWP (ohne A2-G)
A1 = Klasse A1 gem. BAWP
BRM = Baurestmassendeponie
rot: verantwortlich für Klassffzierung

MINE STATE TO THE STATE OF THE	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	100 100 100 100 100 100 100 100 100 100		4 4	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		78 %	4 9 0 0	00 4.N	2 2 2	9 9 9	10 du	20 20			9000	100		120	40,5	50'0> 50'0>		
552 Turing 4M 552 Turing 4M 552 Turing 4M 552 Turing 4M 553 Turing 4M 553 Turing 4M 554 Turing 4M 554 Turing 4M 555 Tu	102 103 104 105 105 105 105 105 105 105 105 105 105	70 100 100 100 100 100 100 100 100 100 1	401 401 401 401 401 401 401 401 401 401	4 4 4	100 1000 100 1000 1000 1000 1000 1000 1000 1000 1000 1000		26 80	2 5 2 14 14 14 14 14 14 14 14 14 14 14 14 14	6.46 8.00 0.42 8.00	3. 3. 3.	11.2 16. 11. 17. 17.	710	304 35			0000	0 10		╀	0> 500	10> 970-		
423 2000/0134 423 2000/0134 00 000/0134 00 000/0134 150 000/0134	20.0 11.8 47.0 47.0 40.0 40.0 40.0 40.0 40.0 40.0	1000 1000 1000 1000 1000 1000 1000 100	400 400 400 400 400 400 400 400 400 400	4 2 4	4 4 4001 41 4001 4001 4000 4000 4000 4010		99.8	4 a 142	277	2 2	166 166 191	4017	310	- -		4000	13		╫	50 500	90'0- 1		٥
502 Turning was 200 Miles and	151. 153. 153. 154. 155. 155. 155. 155. 155. 155. 155	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	433 64	1 1 d -11 d -11 d -1000 e0001 -0000 e0000 -00000 e0000 -00000 -00000 -00000 -00000 -00000 -00000		97.9	6 d 71,0	200 200 200 200 200 200	6.76 ED	16.3 U.) 16.3 U.) 16.3 U.)	40 T	33.1 29.5			000	100			500 405	400 400		-
(12 hun2 4M VOR 10 10 10 10 10 10 10 10 10 10 10 10 10	11 52 53 54 600 600 600 601 601	4001 400 400 401 401 401 401 400 400	40 40 40 40 40 40 40 40 40 40	58.6	4 41 40,001 40,00 40 40,00 40,00 40 40,00 40,00 40,00 40 40 40 40 40 40 40 40 40 40 40 40 4		1863	a d	9,02	201	261 151	0.17 2 2 5 1	17			W.F.	101		101	\$00	90'0-		_
212 Not 212 No	111 1111 1111 1111 1111 1111 1111 1111 1111	1000 1000 1000 1000 1000 1000 1000 100	400 400 400 400 400 400 400 400 400 400	179 q	4 -4001 -4001 -4000 -4000 -4000 -4000 -4010 -4010			a 0,00	4 698 8 8 400.0	207	902	4017 8	25.7			00.0	19		SID	500>	90'0>		
512 hurbaren 200 510 100 100 100 100 100 100 100 100 1	8 8 919 8 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 919 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000 000 000 000 000 000 000 000 000 00	00 00 00 00 00 00 00 00 00 00 00 00 00	4 84,1 84,1 61,1 61,1 61,1 61,1 61,1 61,1 61,1 6	10 100 100 100 100 100 100 100 100 100		V 65 637	4 000 000	56 263 M2 cq.d2	10 U.S.	11 12 12 12 12 12 12 12 12 12 12 12 12 1	117 49.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 17				10			\$00 sto	40.05 40.05		_
22 Turk 2 44 200 200 200 200 200 200 200 200 20	10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1000 000 000 000 000 000 000 000 000 00	101 00 00 00 00 00 00 00 00 00 00 00 00	99 99 9	0 100 00 100 00 000 00 000 00 000 00 000 00 000 00 000 00 000		66	4 4 6 6 6	277 65 2 5 2 642 49	145 21	115 12	410	191 20				9 -			50.00	0 970		_
202 hunta en 1	1000 1000 1000 9000 900 900 900 900	1000 1000 1000 1000 1000 1000 1000 100	# 100 100 100 100 100 100 100 100 100 100	4 10 4	100 to 10		276	e 0 8	2.55 2.55 4.00.43	3.8	18.8 10.0 10.0	40,17 a a a	38.6			ons	179		17.4	500>	970>		L
2000, West 120 and 120	ξ.69 4.7 4.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	2005 2005 2005 2005 2005 2005 2005 2005	100 100 100 100 100 100 100 100 100 100	8 8 8 100 q	100/0- 100/0- 100/0- 100/0- 100/0- 100/0- 100/0- 100/0-		808	4 d by	2)(8) 2) 3)	3.00	20.2 20.2 15	101	31.8	- -		948	3 -		+	\$0.00	900>		٥
MODEL AND SCHOOL STATE OF SCHOOL STATE OF SCHOOL STATE OF SCHOOL STATE OF SCHOOL SCHOO	2 84 84 84 84 84 84 84 84 84 84 84 84 84	000 0000 0000 0000 0000 0000 0000 0000 0000	44 49 49 19 19 49 19 19 19 19 19 19 19 19 19 19 19 19 19	41 287 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 941	* 4 101	42 0,42	11 411	107 167 107 107 10 10 107	2 2 2	28			0000	10, 4	-		50> 500	50'0- 50'0-		
200 Mark 123 200 M	517 7,6 7,6 7,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	200 000 000 000 000 000 000 000 000 000		0110	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		96.1	4 th	200	2 2	869 1 b b	φ 101 102 103 103 103 103 103 103 103 103 103 103	200			900	10			\$ \$0	9 900		_
2000 Thurst and 2000 Thurst an	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	100 100 100 100 100 100 100 100 100 100	100 110 110 110 110 110 110 110 110 110	1991 1911 1911	100 100 100 100 100 100 100 100 100 100	Ш	1963	95'6	1000 1000	34.4	203 203 19,2	100 a a a	17.7	- -	Ш	9000	10.		9	\$00-	90.01		#
200 200 200 200 200 200 200 200 200 200	8.17 8.7 2.43 0.05 0.05 0.01 0.01	6001 6001 6011 6011 6011 6010 6000 6000	101 101 101 101 101 101 101 101 101 101	251 151 4	100 2000 2000 2000 2000 2000 2000 2000		926	- 48	1,67	18.7	168 101	0117	33.4	- -		0000	10,			\$0>	90'0-		۰
227 and 2 40 40 40 40 40 40 40 40 40 40 40 40 40	\$ 853 \$ 60 \$ 133 \$ 60	100 100 100 100 100 100 100 100 100 100	20 100 001 001 001 001 001 001 001 001 0	01 443 a	100 b 100/0 p p p p p p p p p p p p p p p p p p		Y45 86	4 0 00 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0	20 896 20 436 20 4043	2 2 2	4.3 (15.2) b b b	20 40 10 10 10 10 10 10 10 10 10 10 10 10 10	5.0			900	10 -			\$00 500	\$0°0> \$0°0>		ه ا
2007-100-100-100-100-100-100-100-100-100-	853 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	(00) (01) (01) (01) (01) (01) (02) (03) (03) (03) (03)	(1) (1) (1) (1) (1) (2) (2) (3) (4)	4 5 10 q	100 000		1884	4 d sits	SAT SAT A SAT	16.5	12 12 b	4444	19.2			900	10		+	500	9/0		_
2007/1013 2007/1013 2007/1013 3100 3100 3100 3100 3100 3100 3100	619 619 619 610 600 600 600 600 600 600 600 600 600	2011 2012 2013 2013 2013 2013 2013 2013	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 4 4 4	4 		56.7	e 4 90°	6,17 6,42 6,42	314	15.2 b 17.6	() A = 4 -	17.9			wa	100		. Sp	\$00	970-		ļ
23 2000/042 a 2000/042	512 52 52 52 52 52 52 52 52 52 52 52 52 52	1000 1000 1000 1000 1000 1000 1000 100	400 410 410 410 410 410 410 410 410 410	28 20 4	4 d		198	* 0 21 *	8.00 8.00 8.00,42	3.0	0 P	40,17 6 a a a	100	- -		1001	10 -		#	9270>	90'0>		_
20 SCOUNTS 20 SCOUNTS	19 7 7 85 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	201 201 201 201 201 201 201 201 201 201	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	51 67 67 67 67 67 67 67 67 67 67 67 67 67	10 100 100 100 100 100 100 100 100 100		95 06.5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	102 9,13 103 9,13 1042 cq.0	28.6	65 174 174 179 179 179 179 179 179 179 179 179 179	0,077 cq.07 b b b b	19.5 20.2			-	10		#	\$00 \$00	900 900		٥
25 SECOND 1200 25 SECOND 1200 15 SECOND 1200	\$446 7.8 9.1531 9.055 9.05 9.01 9.01 9.01	100 100 100 100 100 100 100 100 100 100	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 to 4	11 cq 001		103	a 0 55	611	3 411	203 203 14.5	4017 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	242	- -		wa	100		+	\$00	970		_
200,000.0 200,000.0 200,000.0 200,000.0 200,000.0	53 74 74 74 74 603 603 603 603 603	100 100 100 100 100 100 100 100 100 100	\$ \$300 \$ 6 \$ \$\$\$\$	10 0	4 b		976	5 d	879	3.5	200 MA	ου 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	NZ	- -		98	10		- 30	\$00	90'0>		ļ.
22 TANAN E. 1. STA	52 53 53 53 53 53 53 53 53 53 53 53 53 53	2000 2000 2000 2000 2000 2000 2000 200	40.00	1 401 I	2 CO CO CO CO CO CO CO CO CO CO CO CO CO		4 8.8	4 4 60	9 669	3 2 3	2 20 20 20 20 20 20 20 20 20 20 20 20 20	100	33	- -		9001-	10		. 6	s q878 6 <q0< td=""><td>900> 9</td><td></td><td>_</td></q0<>	900> 9		_
20 STANDS 20 STA	843 7.4 17.4 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 00 00 00 00 00 00 00 00 00 00 00 00	456 23 400 401 401 401 401 401 401 401 401 401	4 4 c1 c1 c1 c1 c2 c2 c2 c2 c2 c2 c2 c3 c2 c2 c2 c2 c2 c2 c4 c2 c2 c2 c2 c2 c2 c4 c2 c2 c2 c2 c2 c4 c2 c2 c2 c2 c2 c4 c2 c2 c2 c2 c2 c4 c2 c2 c2 c2 c4 c2 c2 c2 c2 c4 c2 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2 c2 c4 c2		86	4 d 55	2041 00-0	2 2 2	114 12 10 0 10 10 10	017	166 11			w-	9 -		90	\$00 900	500> 50'0-		
22000000000000000000000000000000000000	\$40 5,0 5,0 4,13 4,13 4,13 4,13 4,13 4,13 4,13 4,13	1000 1000 1000 1000 1000 1000 1000 100	40 000 000 000 000 000 000 000 000 000	70 0	4 40 001		7.00	e 9 00 0	1,0 1,0 1,0 1,0	6.20	B.1 b	40,17 2 2	D.2	- -		900	9 -		- 50	\$70>	90'0>		-
200 anout and 200 anout and 200 anout and 200 anout and 200 anout and 200 anout anou	2009 2009 2009 2009 2009 2009 2009 2009	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100				503	e 90'6	12.6 12.6 10.00	45,7	20.4 24.2	40T	19.5	- -									
800C 8 0 E	108 512 23.6 831 109 201 100 201 100 201 100 10	000 000 000 000 000 000 000 000 000 00	40 40 40 40 40 40 40 40 40 40 40 40 40 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 c1 c1 c2 c1 c1 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2		658 91	a d C 11	2 8.05 42 a 4.04 42 a 4.04	2 2	1 105	417	18	- -			100		#	50> 500	970- 970-		_
8005.C05 800.000.000.000.000.000.000.000.000.000	9.24 3.1 9.24 3.1 9.00 3.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0	000 000	(9) (9) (10) (10) (10) (10) (10) (10) (10) (10	5,48	4		81.5	s d 5,97	7,48 6,	3 56	14.2 %	0 P P P P P P P P P P P P P P P P P P P	192 2			0000	10,	-	#	9 500	0 970		_
2 months the months th	922 80 807 5,10 6,00 6,00 0,00 0,00 0,00	100 100 100 100 100 100 100 100 100 100	40) 40) 40) 40) 40) 40) 40) 40 40 41)	17.1	2		898	4 3,33	7,15	2 2	101 101	4 P	19			0000	100		+	\$0.0	90'0		
SOOC 2 SC (NOV 1962) 454 (NOV 1962) 4 SC (NOV	924 929 831 931 931 931 931 931 931 931 931 931 9	(10) (10) (10) (10) (10) (10) (10) (10)	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 578 578 4 105 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		866 866	4 d s s s s s s s s s s s s s s s s s s	9,15 9,15 1,15 9,15 1,10 0,02 0,03 0,02	161 161	15.8 15.8 15.8 15.8 16.0 b	0.07 b b b b	23.8			2000	100		+	\$00 \$00	870> 970		ه ا
SCOL 2. 15 500 C 2. 15 500 C 2. 15 500 C 3. 15 500 C	\$50 7,2 2,66 3,66 4,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0	1000 1000 1000 1000 1000 1000 1000 100	403 403 403 403 403 404 404 614	- 4 10 v	\$0000 \$0000 \$0000 \$0000 \$0000 \$0000 \$0000		Y 66	4 28 4	4.02	17.0	6 H	4017	25.6			900	10 -		- 50	500>	90'0>		_
22 mov said fair 800L a st 800C a st	248 248 248 240 200 200 200 200 200 200 200 200 200	100 100 100 100 100 100 100 100 100 100	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	4 13 4	4 -0,001 -0,001 -0,003		766	957	200 200 200	9.5	8.6 b	100 A 4 4	20.7	- -		00012	10		-	40.5	100>		
20 mou said that 20 miles and 2	200 201 201 101 101 101 101 101 101 101	000 000 000 000 000 000 000 000 000 00		4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Н	100 200	e q 60°	6.17 5.10 2 2 2 9.00 c0.42	2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 COUT	17.4 20.8	- -		1000	10 -		+	\$00 \$000 \$000	\$0'0> 90'0>		0
00 mou and 646 00 00 00 00 00 00 00 00 00 00 00 00 00	5.17 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.	1000 1000 1000 1000 1000 1000 1000 100	401 401 401 400 400 400 400 400 400 400	5 × 9 10 4	4 4000 40 4000 40 4000		994	e 0 %	5.00		834 9	0.17 2 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DA	- -		1000	130		-	\$00	5000		+
8005.5.2	2.13 9.26 2.3 46 2.4 66 2.4	200 000 000 000 000 000 000 000 000 000	20 00 00 00 00 00 00 00 00 00 00 00 00 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Н	6 66 Y6	2 pp	2 5,97 2 5,97 2 6,42	2 2	77 7,11 b b	011A	18	. T.		0000	10- 10-	+	+	405 405	5070- 5010-		
2000.12 2000.00 2000.0	9 8 9 18 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 - 100 000 000 000 000 000 000 000 00	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4	4 d 0001 cq.0001 cq.0001 cq.0001		98	4 d III	166 53	23 62	1 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4017 d	11.7			1000	10		4	0 so	300 9000		_
20 00 00 00 00 00 00 00 00 00 00 00 00 0	94.14.1 94.14.1 10.000000000000000000000000000000000	100 1885 0,01	00.1865 cq1 00.1865 cq1 00.1865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1 20.001865 cq1	DN 244076 12.5 DN 244076 12.5 DN 244076 10.1	00 1130 6,000 00 00 00 00 00 00 00 00 00 00 00 00	EASE 3	104.54.2 506.3 104.04.5 1,271.00	20 1885 a 20 1885 b 20 1885 6,19	50 1865 a 50 1865 a,17 50 1865 a 50 1865 co./2	90 1985 114 90 1985 a	00.1885 10.7 00.1885 b	N183 40,17 00.12855 b 00.12855 a 20.1285 a	00 1885 105 90 1885	20 1266 s 20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 20104.1 10 20104.1 100777	20 E)(d-1	ON 84076 401	+		ON L1200 <0,5	SALIZO 40.05	8 2	MN ON BESSEL D
SPANE IN	MS (00 B) red/s (00 B) red/s (00 B) red/s (00 B) red/s (00 B) red/s (00 B) red/s (00 B) red/s (00 B) red/s (00 B)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10 10 10 10 10 10 10 10	04 (A13) 04 (A13) 04 (A13) 04 (A13)	100 (100 (100 (100 (100 (100 (100 (100	MS 08	MX, ON 3 ON 3 rd/n ON Dr	700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	740/475 GABRE 740/475 GABRE 740/475 GABRE	100 0 1100 0 100 0	78/413 OF DE 78/413 OF DE 78/413 OF DE 78/413 OF DE 78/413 OF DE	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	140 111 ON DI 140 111 ON DI 140 111 ON DI	700 21 20 20 20 20 20 20 20 20 20 20 20 20 20	rughgits ONEN!	MTOC TANATS ON S	right 15	100/473	MAN TO	08/475	ieten nghgTS CH38	065gTS 065gTS	MN, ON
Herbert Victorian Weiger Victorian Weiger School Freedalts School Freedalts School Freedalts School Freedalts	For the second of the second o	Address to the control of the contro	Catalon (18) And Catalo	trant paracol Sulficial S Gran Org. (th. Nobleradol TOC March Starre (throst), Total Starre (through sulfill S) ear sherter congression (thursdock Augure (CO))	above og avlad redered flogered revesserabet be retered og greg	Wolkelin Sichwhaz	frechendozas of eletr. Lezibigiak	Modernoft to be and Musting the fight Arcting the Alphana Arcen (the Alphana)	Bergham tak tak Berjak (Ro) Berjak (Ro) Cadhium jah Co)	Chron gesant (4 s C) Chron (h) (4 s C) Chron (h) (c)	Control on Co Dafer (bbCo) Magnetical (damp) Magnetical (damp)	Scott silver (ab hg) Schor (ab shg) Silver (ab shg) Thuilture (ab Til)	Enhance (A) No. (Calculated B)	Christology Americales (41 Nb Christology (41 CDb Christology (41 CDb Christology (41 CDb Christology (41 CDb Christology (41 CDb Christology (41 CDb Christology (41 CDb Christology (41 CDb)	Neat (BN) West (BN) West (BN)	Sufficiels SQ 4) Sufficiels SQ G es. org. geb. Norhwellok	Survine Bread, Tduck, Ethybereck Syde(BES) estrablerbarecepproleth	Education Hogers (CDC)	Coloradores dogene il	son de cerpo you experi son dischen (cohervasierskife (36 PAR) hers dispyren	Phanole (ph Index) Sunne der pd ythleriet (sphanyle (PQ))	anionenalithe Tensi dk (als 180) AOX jals Cli	Modelin Silverior

gi grunelinologi burto 4 bries 8006 z z. 61 - 00	2 100/014 11,11200 1700 50uf	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	170 170 170 170 170 170 170 170 170 170	5	4 10 a 4	0000 0000 0000 0000 0000 0000 0000 0000 0000	4 D	9,846 a a a a a a a a a a a a a a a a a a a	4017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	900 4 4 5	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00
purs 8000 11 6-9 Bunvesorptis prisos 4	2 2000/00-7 200 300/1	871 34 48 48 542 603 603 603 603 603 603 603 603 603	100 100 100 100 100 100 100 100 100 100	400 400 400 400 400 400 400 400 400 400	* 100 d * 1	00/00	25.55 2 3	5,550 2 2 3,19 10,2 10,2 2 3 2 4 2 4 10,5 10,	40 F	-	4000	90 to 8 90 to 90 to
2, graveinolazz huroz 4 8005.5z.2z-02	(A) (A)	926 174 176 176 176 176 176 177 177 177 177 177	00000000000000000000000000000000000000	401 0020 0020 000 001 000 001 001 001 001	4 17 4 4 17 8 17 8 17 8 17 8 17 8 17 8 1	11 co.000 12 co.000 13 co.000 14 co.000 15 co.000 16 co.000 17 co.000 18 co.000 19 co.000 10 co.0000 10 co.0000 10 co.0000	8 p q	104 2 4 4,46 4,46 3,14 3,	0300	-	4 4 4	5000
8 8005.11.05.41 Sunvenoist2 huro2 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1		3 33933 5 8 6 333	100 0	100 1000 1000 000 1000 0000 1000 000 1	7,00	200 200 200 200 200 200 200 200 200 200	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		000 000	405 405 4008 4009
g Branscotts hand 4	2 200/24637 200 10.112006 10 500 5	9,001 17,2 17,5 17,5 17,5 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10	000 001 001 001 001 001 001 001 001 001	400 400 400 400 400 400 400 400 400 400	4 11 10 d 4 4	0,000	265 4	433 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 F	-	80 75 - 19	900s
g 9005.11.5111 g 9005.11.5111	2 XC6V7427 1111.XC6 1750 50-cf	1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	401 401 401 401 401 401 400 400 401 401	400 401 401 401 401 401 401 401 401 401	2 13.6 401	40001 40001 4000 4000 400 405	656 g	11.7 2 2 4.74 4.74 1.75 1.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0343 0 0 0 0 2356	-	401	500
g graverostris huros 4	2 100,0327 06,13300 7200 50 orf	8.88 (4.8 1164 1164 20,05 20,05 20,01 20,01 40,1 40,1 40,1 40,1 40,1 40,1 40,1	100 100 100 100 100 100 100 100 100 100	200 2010 2010 2010 2010 2010 2010 2010	232	100 to 10	900 e q	6.85 2.85 8.21 8.21 8.00 8.00 8.00 8.00 10.40 10.	0,193 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	900	\$000
B Brownings props 4	2 2000/2012 Xe 0311200 700 1 3047	212 212 213 214 215 215 215 215 215 215 215 215 215 215	100 100 100 100 100 100 100 100 100 100	600000000000000000000000000000000000000	8 8 9 100 q q	4 (1000) 4 (90,0	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0130 8 8 8 8 871	-	907	\$000
p gravesions hurb? 9 bud 8006 zz. 6-0z.z g 06-0 hurb2 944	07426 XC6V06 1,006 34,00,10 1,006 34,00,10 1,007 34,00	20 240 251 251 251 251 251 251 251 251 251 251	200 000 000 000 000 000 000 000 000 000	40 40 40 40 40 40 40 40 40 40 40 40 40 4	24 39.7	0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	111 320 2 4 4 5 2 2 4 4 5 2 2 4 4 5 2 2 4 7 6 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	117 4017 0	-	8 8 8 8	400 400 400 400 400 400 400 400 400 400
Prints BODG OT DE-TI	RIO I	2.27 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	0000 0000 0000 0000 0000 0000 0000 0000	403 404 407 407 407 407 408 408 408 408 408 408 408 408	- 2 5 0 -	40001 cc cq0001 cc cq0005 cd cq0005 cd cq0005 cd	1967 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 M S S S S S S S S S S S S S S S S S S	4007 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	~	000	\$000
Burvelooks hurbs 9	2 // 2000/2006 2 10 20 2000 1	103 103 114 114 103 103 103 103 103 103 103 103	100 100 100 100 100 100 100 100 100 100	20 00 00 00 00 00 00 00 00 00 00 00 00 0	* * 10 0 *	0,001 0,001 0,005 0,005 0,005 0,005	87.6 a	8,00 2,0 2,50 3,00 15 3,00 4,00 10,	40 T	-	98 73 - 19	\$0.00
gravenotats huroz 4 breas 8000 e.es. str	×	193 131 131 131 130 130 130 130 130 130 13	000 000 000 001 001 000 000 000 000	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 \$ 10 0 4	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	8653	95 2 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.77 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	8 to a 1 to 1 to 1 to 1 to 1 to 1 to 1 to	\$000
2 processors process	20 20 20 20 20 20 20 20 20 20 20 20 20 2	117 Xel 117 Xe	2000 2000 2000 2000 2000 2000 2000 200	400 000 000 000 000 000 000 000 000 000	* \$ 20 0 4	11 coppi 11 coppi 12 coppi 13 coppi 14 coppi 15 coppi 16 coppi 17 coppi 18 coppi 18 coppi 19 coppi 10	78	111 6,00 100 100 100 101	100 o a a a x			5000
5 2 gaureinolas Paulo 2 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 100	25 25 25 25 25 25 25 25 25 25 25 25 25 2		100 000 000 000 000 000 000 000 000 000	27.12	41 d 4001 cq001 40001 cq001 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq000 4000 cq00	798	200 000 000 000 000 000 000 000 000 000	100 a a a a a a a a a a a a a a a a a a		1000 4000	405 405 405 405 405 405
8 8000 11 C-01 10 Brownings process	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.3.5.1.1.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	401 401 401 401 401 401 401 401	403 403 400 400 400 400 400 400 400 400	4 600	00 00000 00 00000 00 00000 00 00000 00	90 * 0	7/67 9 2 2 2 3 2 4 3 4 3 4 433 6 107 8 6	0,17 0 1 1 1 1 1 1	-	001	5 500
Bunvelookas huroz 4	2 2000/01/6 10.00.200 15.00 15	25.5 25.6 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0		400 1114 1114 410 400 400 401 1114 1114	4 10 10 a	40 001 0000 0000 0000 0000 0000 0000 00	03 4.0	9,38 6,52 8,53 1,53 1,53 1,53 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,6	0 p p p p p p p p p p p p p p p p p p p	-	900	9000
N Boos or 25 harbe	2 20000036 35 0200 50ut	20.1 1.16 1.16 1.00 1.00 1.00 1.00 1.00 1	100 100 100 100 100 100 100 100 100 100	403 604 80 604 80 601 601 601 601 601 601 601 601 601 60	* \$ 179 4	(000) (000) (000) (000)	00 a 0	6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	40 D	-	400	90 b) (4 (5) b)
90018.26.11 90018.26.11	2 200/2163 206 010300 7 500 7	101 101 101 100 100 100 100 100 100 100	20000000000000000000000000000000000000	400 400 400 400 400 400 400 400 400 400	* \$ 10 0 *	0000	900	9.05 2 2 2 4.79 4.79 6.612 1.11 1.11 2.15	10). 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	-	8 7 7 8	5000
Burnesotas huras 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	260 983 983 983 983 983 983 983 983 983 983	000 000 000 000 000 000 000 000 000 00	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 4 4	100 (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	90.2 90.3 9 8 8	25 273 273 273 273 273 273 273 273 273 273	0,177 - 0,137	-	00 10 4 60	(0) (0) (0) (0) (0) (0)
Burnelooks huroz e	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.94 (40 124 124 124 100 100 100 100 100 100 100 100 100 10	1000 1000	202 202 202 202 202 202 202 202 202 202	23 20 0 4	0 0000 0 0 0000 0 0 0 0 0 0 0 0 0 0 0	200 a O	4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 %	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-	8 3 3	400
E Brownings process	2 2000/Nut-6 2009/2000 5-000 1	9,16 136 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 14,	100 100 100 100 100 100 100 100 100 100	\$ 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 751 4 6)1	0000 0000 0000 0000 0000	\$965 a	7.2 8.651 8.	4017 6 6 7 1866	~	080 73 ~ 4 19	5000
E Booses-1 Bonoecopts proces	2 XC6V746 5.59 XC6 750 71 50-c7	924 63 157 0.05 0.05 0.05 0.05 0.01 0.01 0.01	0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00	40 0.07 0.07 0.07 0.07 0.07 0.01 0.01	4 4 4	(000) (000) (000) (000) (000)	949	6,000 2 2 4,005 1 0,012 2,023 2,033 6,	407 2 2 3 3 3 3	-	4 4 4	\$000
E MAINTENNES CON	1 10	8 8 90 8 90 90 90 90 90 90 90 90 90 90 90 90 90	(0.2) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0)	40 40 607 607 607 601 601 601	4 8 10 0 a	40001 40001 40000 40000 40000 40000 40000 40000 40000	85 a d	4 (5) 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.0	-	8 5 2	\$000 \$000
R silvez 100 z/8z µmurs cent	200/2103- 1001200 750-0 237-210	5.88 1.45 451 451 2.78 6.05 6.05 6.01 6.01 6.01 6.01 6.01	100 100 100 100 100 100 100 100 100 100	403 00317 010 010 010 010 010 010 010 010 010 0	* 8 10 0 *	1000) 1000) 1000)	798 4 0	2/2 2/4 4/0 4/0 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4	617	-	900	\$000
S tilez na tilez amuro co	12 3000/01	8 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	100 100 100 100 100 100 100 100 100 100	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	# 15 d a	0,000 0 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0	995,1 a	227 2 2 3,18 3,18 22,2 22,2 2 2 2 4 2 4 2 4 2 4 2 4 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	A70;	-	90 77 4 93	\$000
S elsenecheumus co	2006/718-4 207.006 700 1 Shart2V1-21-7	8.8 8.6 3,75 0,05 0,05 0,05 0,01 0,01 0,01 0,01 0,0	100 100 100 100 100 100 100 100 100 100	40,0 0,0 to 0,0	101 d d	100/0- 100/0- 100/0- 100/0- 100/0- 100/0- 100/0- 100/0-	765	2,00 2,1 2,1 3,1 3,2 14,3 14,3 11,3 11,3 10,0 10,0 10,0 10,0 10,0 10	12.6	-	900	90b
ls sitezon sitzamus en	2 XXX,038 10,0320 10,0320 1300 1401,2371	103 103 103 105 105 105 105 100 101 101 101 101 101	400 400 400 400 400 400 400 400 400 400	403 403 403 403 403 403 403 403 403 403	4 00 10 a	0000 0000 0000 0000 0000 0000 0000	2 0	4,70 4,20 4,20 1,20 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	0,17 0 a a a 1,264		901	\$000 \$000 \$000
8 CI-CINUMISSION	10070013 10080013 100100 200 200 200 200 200 200 200 200	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	200 000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00	100 110	40 d d	4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3	723 723 723 723 723 723 723 723 723 723	23.7 - 60.17 1.0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		901 901	\$00 \$000 \$000 \$000
8 FINANCSIAN	200/0432 2008 2000 500 2000 5	9.41 8.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00	403 403 403 403 403 403 403 403	* 70 70 4 *	50 100 to to to to to to to to to to to to to	65 a 0	A.E	10,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	80 75 - 15	5000
3 cas hunos ew	2006/2012.00 50 07 200 50 00 15 00	22. 22. 22. 21. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40	600 600 600 600 600 600 600 600 600 600	60.1 60.0 60.0 60.0 60.0 60.0 60.0 60.0	1165 100 0 1	100/0 100/0 100/0 100/0 100/0 100/0	97.65	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0 m = 1 m =	-	0000	\$000 \$000 \$000
3 995 MINOS dW	2006/0742-1 0.00/2006 5000 5000 1	6.8 1.18 2.38 2.18 0.05 0.05 0.01 0.01 0.01 0.01	401 401 401 401 401 401 401 401 401 401	405 400 401 400 401 401 401 401 401 401 401	6 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	0000 0000 0000 0000 000 000 000	4 4 b	16.6 2.6 2.6 3.0 3.0 3.0 4.13 17.3 17.3	0,17	-	4 4 4	\$000
S 595 JPN-05-dW	000 0500000 000 0500000 00 1300 942 5641941	1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	0000 0000 0000 0000 0000 0000 0000 0000 0000	40 40 40 40 40 40 40 40 40 40 40 40 40 4	6.38 6.38 6.01 6	105 (105) (105) (105) (105) (105) (105) (105) (105) (105) (105) (105) (105) (105) (105) (105)	2 2	147 147 149 149 149 149 149 149 149 149	7 - 6,17			405 cq5
8 235 JPN 05 4W	1006/0423 1006/0323 500 1006 04 1200 500 1006 1200 500 1006 1006 100	5.75 6.87 5.34 7.7 6.63 6.1 6.1 0.0 6.00 6.00 6.00 6.01 6.00 6.00 6.1 6.00 6.00 6.1 6.00 6.00	**************************************		502 d s s s s s s s s s s s s s s s s s s	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	8	1000 1100 110 110 110 110 110 110 110 1	23.4 60.0		900 400 61 61 61 1	405 405 408 405 408 405 408 405
S cos umos an	1000/01/01 200 00.013/00 04 17:00 17:00 17:00 18:00	505 446 446 447 447 447 447 447 447 447 447	001 001 001 001 001 001 000 000 000 001 001	40 40 40 40 40 40 40 40 40 40 40 40 40 4	4 5 10 4 4	100 0000 0000 0000 0000	975 2 9	2011 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	617		98 7 - 4	500
\$ 813 huros 4M	20000331 0603200 720 5404538	5.07 11.6 11.6 11.6 10.05 0.05 0.05 0.01 0.01 0.01 0.01	200 200 200 200 200 200 200 200 200 200	400 400 400 400 400 400 400 400 400 400	. 4 2 0 .	4001 4001 4005 4005 4005 4005	27.6 2	9,27 2,29 2,29 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0		-	901	500
8 65 PP05 6N	200(003) 000200 720 5040137	8.8 84.8 84.6 94.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0	200 200 200 200 200 200 200 200 200 200	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	* 4 2 0 4	(000) (000) (000) (000)	(%) r q	2,000 6,1 6,1 6,1 0,01 0,01 0,01 0,00 0,00	100 d a a a a a a a a a a a a a a a a a a	-	8 7 - 7	\$(0)
\$ 962 hunted 4W	42-1 JUN-170-170-170-170-170-170-170-170-170-170	\$7.00 100 100 100 100 100 100 100 100 100	000 000 000 000 000 000 000 000 000 00	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	4 4 4	23 0,000 24 0,000 25 0,000 26 0,000 27 0,000 28 0,000 29 0,000	6 4 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 40 U		8 7 7 7 8	\$000 cd 6
2 823 hunos ew	22103 200720-1 22103 007700-1 200 750 750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124 92 174 195 174 195 174 174 174 174 174 174 174 174 174 174		20 00 00 00 00 00 00 00 00 00 00 00 00 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4001 (4001 (4001) (4000 (400) (4000 (400) (4000 (400) (4000 (400) (4000 (400) (4000 (400) (4000 (400) (4000 (400) (400)	1,00 4,00 6 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0017 0		61 c 01 61 c 01 6 c c c c c c c c c c c c c c c c c c c	40,5 cq.5 cq.5 cq.5 cq.5 cq.5 cq.5 cq.5 cq.
D) 652 hurbs 4W	2100,70431 200, 2007,200 (90,00,00,00,00,00,00,00,00,00,00,00,00,0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	100 00 00 00 00 00 00 00 00 00 00 00 00	401 401 401 401 401 401 401 401 401 401	* * * * * * *	D 1000 00 5000	0 m a	943 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000 170 180	500
g cosumos aw	200,720,120 201,100 500 500 1	61 100 100 100 100 100 100 100 100 100 1	60 00 00 00 00 00 00 00 00 00 00 00 00 0	40) 40) 40) 40) 40) 41) 41) 61) 61)	- 5 G	0,000 0 0,000 0 0,000 0,000 0,000 0,000 0 0,000 0,000 0 0 0 0 0 0 0 0 0	979 p	6,63 6,48 6,43 16,1 16,1 19 19 11,0	4017	-	901 4 4 4	400
8 622 hunts 4M	1 XCGV74.4 1 XAT XCG 75.00 15.00 1 50 at 73.1	23 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20	101 101 101 101 101 1000 1000 1000 100	401 401 400 400 400 400 400 400 400 400	6,06 6,06 6 6	4000 40000 40000 4000 4000 400	4.0	11.5 a a a a a a a a a a a a a a a a a a a	4017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	++++	500
	1006 (ART 200) 20 7200 20 7200 528 54xf 529	7 488 7 100 110 100 100 100 100 100 100 100 100	200 000 000 000 000 000 000 000 000 000	2 000 000 000 000 000 000 000 000 000 0	4 4 4 4	01 cq001 02 cq001 03 cq001 04 cq001 05 cq005 07 cq001	1 8 P. P. P. P. P. P. P. P. P. P. P. P. P.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1117 c0,117		1000	\$ 405 400 800 800 800 800 800 800 800 800 800
Openitor of Page 2 Age 2	300 300 300 300 300 300 300 300 300 300	전보를 받음 음을 음을 하고 있다.	T 마 마 마 마 마 마 마 마 마 마 마 마 마 마 마 마 마 마 마	8 4946 £ 64965	* \$ \$ 4 *	100/0 100/0 500/0 500/0 500/0 500/0 500/0	5 0	11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0 1 1 1 1 1 1		70, 4 4 4	90 (t) 9 (t)

Burlowedstatos	2000 2000 2000 2000	100000000000000000000000000000000000000	
150/Co/Cried	13.00	1100 1100 1100 1100 1100 1100 1100 110	1
sumayeoy.	11.6 1.00 10	2004 2007 2007 2007 2007 2007 2007 2007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
municipa	745 3.8 1.1 1.00 0.01 3.00 3.00	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1
veb self-ing excisological Self-incregate-MA	N N N O O S S O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
- 1-0.1 15 garmánosas2 4M 20 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	100 (100 (100 (100 (100 (100 (100 (100	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
30 01 gransinoste 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20.35 gransinoses2 4th \$2.5 gr 72 m to acc acc act ac acc act acc acc acc acc	10.0 x 0.0 x	(10) (10) (10) (10) (10) (10) (10) (10)	2
D -50.51 gruninoisti2 4M 50.51 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	410 410 600 600 600 600 600 600 600 600 600 6	(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)	X
- 1000 gunninoses (N 000) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 1400 1400 1400 1400 1400 1400 1400	0 0 0 0 0 0 0 0 0 0	
2 -30.11 gravisioning MV 2 1 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3
D -30.20 provisional 44 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	910 900 900 900 900 900 900 900	(10) (10) (10) (10) (10) (10) (10) (10)	
D -50.52 gransioosis2 4M 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100 100 100	(10) (10) (10) (10) (10) (10) (10) (10)	E
2 - 0.01 2 parameters W = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(100 pt 1	100 (100 (100 (100 (100 (100 (100 (100	3
50 - 50.00 gravisioste 2 4M	410 410 410 410 410 410 410 410 410 410	100 100 100 100 100 100 100 100 100 100	
-50.80 grandoszcz 4w 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100	10.0 10.0	1
- 50.05 grandinoses 94A 9 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 100 100 100 100 100 100 100 100 100	40.00 (40	333 2 3 2 3 3 2 3
	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000000000000000000000000000000000000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	\$11,0 \$1,0	103 (103 (103 (103 (103 (103 (103 (103 (
-50.80 grandoses2 9M 52 57 75 80 50 50 50 50 50 50 50 50 50 50 50 50 50	417 100 100 100 100 100 100 100 1	101 101 101 101 101 101 101 101	E
- 10.15 gameloote2 9th 00.00 1	173 173 173 173 173 173 173 173 173 173	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
23 beed 6000 about 2000 25 25 25 25 25 25 25 25 25 25 25 25 25	149 100 100 100 100 100 100 100 10	10.0 10.0	
CI 6005.50.21 20.00 N N N N N N N N N N N N N N N N N N	9.17 1.07 1.00	0.0186 0.0186 0.0176 0.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
E -50.50 gameleosez-ten 900 (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	9.4.1 1.5.2 1.5.2 1.5.2 1.5.2 1.5.2 1.5.3 1.	101 101 101 101 101 101 101 101	1
- 50 at punisosat2 4M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.95 161 161 161 161 161 161 161 16	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
6001.00.12 8 8001.00.12 8 1001.00.12 1001.00	9.1.9 3.4.1 	1000 1000	
8 -50.55 grandinoste2-20.5 grandinoste3-20.5 gra	927 90 90 90 90 90 90 90 90 90 90	101 101 101 101 101 101 101 101 101 101	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
6005 SOLE Summission Rev 20 12 17 17 17 17 17 17 17 17 17 17 17 17 17	179 170 170 170 170 170 170 170 170	100 00 00 00 00 00 00 00 00 00 00 00 00	B
20 + 0005 50 At 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 6.00	0.00 (
6005 50.80 purminoses 94/ 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	(4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	103 (103 (103 (103 (103 (103 (103 (103 (
H -2005 purvelocitati 4M 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	921 173 174 175 176 176 176 176 176 176 176 176 176 176	100 100 100 100 100 100 100 100	4
S -00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra? NA 00.25 gaunemostra.	\$11 111 111 111 111 111 111 111 111 111	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20 Summinostati 55-51 tah	100 100 100 100 100 100 100 100 100 100		
2. And provision to 2.1.5 (And	24.7 11.4 6.17		8 7 - 5 - 5 3 2 - 5 3 4 5 6 2 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 8 8
000-0179	9.00 6.00	0.001 0.	
9 Share 800c 51.9-11.25 (\$0.00)	100 100 100 100 100 100 100 100 100 100	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
S Brondonts hurb 44			

			28231	28232	28233	28234	28235 2	28236 28	28237 282	28238 28239	39 28240	10 28241	28242	28243	28244	28245	28246	42	28248 2	28249 28	28250	787	28446	28446	28446
			G-KB 07/95; 14,00-18,00m	G-KB 57/98; 15,00-30,00m	е-кв 89/05; то'00-52'00ш	Q-KB 94/05; 10,00-25,00m	C-KB 2e\98\; 72'00-30'00m	e-kB 93/05; 72'00-30'00m	e-kB 88/05; 72'00-30'00m	е-кв 11/92 ³ 0'00-12'00ш е-кв 92/05 ³ 2'00-50'00ш	е-кв 09/92; 20'00-26'00ш	С-КВ 05/95; 26,00-30,00m	G-KB 06/95; 18,00-28,00m	е-кв 97/02; 0,00-10,00m	C-KB 28\68 ¹ : 0'00-70'00 ¹	е-кв т03\02': 0'00-т0'00ш	С-кв 103/02; 10'00-50'00ш	e-KB 103\02\ 50\00-30\00	e-kB 10e\02' 0'00-2'00w	C-KB T0E\02' 2'00-E'20w	G-KB T06/02; 6,50-8,00m		Ergebnisse größer der	Ergebnisse größer der Messgenauigkeit muminiM	Messgenauigkeit
Kohlenwasserstoff-Index mg/k	mg/kg TM C	ÖN EN 14039	17	10	<10	<10	<10	<10 <	<10 <10	01> <10	0 <10	<10	<10	<10	<10	15	<10	11	46	15 1	12 9		8 8,6		∞
Konigswasser Aufschlus																									
Arsen (ICP) mg/k	mg/kg TM E	EN ISO 11885	4,3	4,1	7,2	4,2	6,2	5,5	7,1 4	4 6,7	7 4,2	6,4	7,5	9	7,4	59	7	2,7	6	15 6,	,2 6,	9	21	21 2,7	
Barium (ICP) mg/k	mg/kg TM E	EN ISO 11885	18	17	30	54	38	23	59 24	4 29	3 27	23	46	36	230	88	54	19	35	99	18 29	6	21	21 17	
Blei (ICP) mg/k	mg/kg TM E	EN ISO 11885	2,9	6,2	5,2	3,2	8	8,2 7	7,3 4,	4,3 12	3,7	4	13	10	7,7	160	9'9	3,3	23	11 4	4,6 24	4	21	21 2,9	
Cadmium (ICP) mg/k		EN ISO 11885	<0,5	<0,50	<0,50	<0,50	> 05'0>	0> 05'0>	.50 <0	5'0> 05'	2'0> 05'	2 <0,50	<0>5	05'0>	05'0>	05'0>	05'0>	> 05'0>	0> 05'0>	0> 05'0	0> 05'	20	0	0	0
Chrom (ICP) mg/k	mg/kg TM E	EN ISO 11885	11	13	15	15	20	20	22 17	7 35	5 17	12	32	33	27	21	7,4	9,1	5,5	35 4	47 13	3	21	21 5,5	
Cobalt (ICP) mg/k	mg/kg TM E	EN ISO 11885	3,1	3,6	2,7	4,5	38	3,5	8 3,	3,6 5,8	8 3,9	4,7	7,1	6'9	9	31	4,5	4,5	1,6	13	5 4,6	9	21	21 1,6	1
Kupfer (ICP) mg/k	mg/kg TM E	EN ISO 11885	14	13	14	13	280	12	20 12	2 16	5 13	14	24	24	15	100	13	11	24	29 1	15 21	1	21	21 11	
Nickel (ICP) mg/k	mg/kg TM E	EN ISO 11885	6,5	11	14	16	61	14	13 13	3 23	3 11	12	22	20	19	13	8,5	7	5,1	32	38 12	2	21	21 5,1	
Quecksilber (KD-AAS) mg/k	mg/kg TM	DIN EN 1483	<0,10	0,13	0,29	<0,10	<0,10 <	<0,10 <0,	0,10 <0,10	10 <0,1	10 <0,10	10 <0,10	0,14	0,1	<0,10	0,22	<0,10	<0,10	0,42 (0,19 <0,	01,10	61	∞	8 0,1	
Silber (ICP) mg/k	mg/kg TM E	EN ISO 11885	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0 <	<1,0 <1,	,1> 0,	0 <1,0	0,1> 0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	> 0,1>	<1,0 <1,	1,0 <1,	0.	0	0	0
Zink (ICP) mg/k	mg/kg TM E	EN ISO 11885	18	20	22	70	240	18	47 20	69 0	3 22	22	44	41	42	490	20	15	40	2 09	23 43		21	21 15	-
Eluat nach ONORM EN 12457-4																									
		ISO 10523	9,39	9,42	9,27	9,38	9,42	9,4 9,	34 8,	42 8,45	5 8,6	8,59	8,61	8,23	8,47	8,15	8,5	8,55	8,26	,84 8,	3 8,	93	21	21 7,84	7,
Leitfahigkeit (25،C) µS,	mS/cm D	DIN EN 27888	59,4	6'95	67,1	55,8	62,8	59 7	6'9 29	,6 57,	7,72 6,	7 55,5	70	28	64,5	76,1	57,4	9,69	9'001	95,6 11	111,3 88		21	21 55,5	25
Answer de la constitución de la					۷,		<	2	14				5	5	5	< 0				٧١	C V				

Klasifizierung
A2 = Klasse A2 gem. BAWP (ohne A2-G)
A1 = Klasse A1 gem. BAWP
BA = Bodenaushub gem OeyVO
rot: verantwortlich für Klassifizierung