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“Indifference is the revenge the world takes on mediocrities.”

Vera, or the Nihilists; Oscar Wilde
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Abstract

The use of environmentally benign coatings and resist materials has come to attention in the

past decades. Besides established polymeric materials poly(vinyl alcohol) is of major interest,

as this polymer is water soluble and regarded as safe for packaging technologies as well as

for biomedical applications.

New methods for the crosslinking of PVA by radiation were investigated in this work, with

emphasis on non toxicity and biocompatibility of the employed crosslinking agents and

cleavage products. Additionally a number of functionalised particles such as cation

exchanged montmorillonites were prepared and characterised. The aim was to immobilise

functional groups at the surface of inorganic particles that capable of initiating crosslinking

reactions. Furthermore these additives were employed to prepare organic inorganic

composite materials with poly(vinyl alcohol) as matrix polymer.

The distribution of the modified particles was investigated by microscopic methods, while

optical spectroscopy was employed to observe covalent crosslink formation, due to heat

treatment of UV light exposure. Additionally covalent crosslink formation and polymer filler

interactions were investigated by determination of the swelling behaviour in deionised

water.



Kurzfassung

Die Verwendung umweltfreundlicher Beschichtungen und Resistmaterialien ist für zahlreiche

technische Anwendungen relevant. Neben bewährten Polymersystemen ist

Poly(vinylalkohol) aufgrund seiner Wasserlöslichkeit von größtem Interesse. Ein weiterer

Vorteil ist die Biokompatibilität und physiologische Unbedenklichkeit dieses Polymers, das

für Anwendungen im Bereich der Verpackungstechnologien und für medizinische Produkte

zugelassen ist.

In der vorliegenden Arbeit wurden alternative Methoden für die Vernetzung von

Poly(vinylalkohol) durch Strahlung (e Beam, UV) untersucht. Der Schwerpunkt wurde auf die

Unbedenklichkeit der eingesetzen Vernetzungchemikalien und deren Spaltprodukte gelegt.

Zusätzlich wurde eine Vielzahl an funktionalisierten anorganischen Partikeln, wie kationen

getauschte Schichtsilikate, hergestellt und charakterisiert. Das Ziel war die Immobilisierung

funktioneller Gruppen an der Oberfläche von anorganischen Partikeln, um

Vernetzungsreaktionen der Polymermatrix zu initiieren. Zusätzlich wurden die modifizierten

anorganischen Komponenten zur Herstellung von Kompositmaterialien mit

Poly(vinylalkohol) als Matrixpolymer eingesetzt.

Die Verteilung der modifizierten Partikel wurde mittels mikroskopischer Methoden

untersucht, während spektroskopische Methoden zur Untersuchung der Ausbildung von

Vernetzungsstellen (z.B. durch UV Bestrahlung oder thermische Reaktionen) eingesetzt

wurden. Quellversuche in deionisiertem Wasser wurden durchgeführt, um zusätzliche

Informationen über die Wechselwirkungen zwischen Matrix und Polymer, und die

Ausbildung von Vernetzungsstellen zu erhalten.
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Abbreviations

Abbreviation Description

DSC Differential scanning calorimetry

EDX Energy dispersive X ray spectroscopy

EVOH Poly(ethylene co vinyl alcohol)

FTIR spectroscopy Fourier transform infrared spectroscopy

GC MS Gas chromatography – mass spectrometer

GPC Gel permeation chromatography

LOD Limit of detection

LS Light scattering detector

MAXS Medium angle X ray scattering

MMD Molar mass distribution

MMT Montmorillonite

Mn Number average molecular weight

Mw Weight average molecular weight

NMR spectroscopy Nuclear magnetic resonance spectroscopy

PDI Polydispersity index

phr Per hundred parts of rubber

PVA Poly(vinyl alcohol)

RI Refractive index detector (GPC)



Abbreviation Description

RT Room temperature

SEC Size exclusion chromatography

SEM Scanning electron microscope

TGA Thermogravimetric analysis

UV/Vis spectroscopy Ultraviolet/visible light spectroscopy

XNBR Carboxylated nitrile butadiene rubber



Formula symbols

Symbol Unit(s) Meaning

D kGy Radiation dose (e Beam)

Mn gmol 1 Number average molecular weight

Mw gmol 1 Weight average molecular weight

nD Refractive index at sodium D line

PDI Polydispersity index

RT °C Room temperature (23 ± 2°C)

T °C Temperature

wd g, mg Dry sample weight

wi g, mg Initial sample weight

ws g, mg Swollen sample weight

mPas Viscosity

nm, (Å) Wavelength of visible / UV light or (X rays)

cm 1 Wavenumber
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I . INTRODUCTION

In the recent decades environmental compliance became of growing importance in the

packaging industry and for the application of chemical technologies. Hence the critical values

for organic solvents in sewage water and in exhaust air got tighter, production processes

have to be adapted to recirculate solvents and process chemicals. This brought forth

reduced emissions and water contamination.1

As an example, the food packaging industry would benefit from the employment of water

based coating systems. As the guidelines and regulations in the field of packaging regarding

the migration of organic substances (e.g. di isobutyl phthalate) into packaged goods such as

food get more and more tight, the need arises to develop water based coating materials and

barrier films to prevent migration of such substances.2–7Great effort is devoted to the

research in such materials, which have to be environmentally benign and recyclable as well.8

Moreover, water based coatings and resist materials may find application in the field of

printed circuit boards. Furthermore the preparation of photoresist materials that are water

soluble and therefore can be developed by water could provide an alternative to common

resist technologies for the preparation of flexible polymer waveguides and holographic

recording materials.9–11

The immobilisation of functional groups onto inorganic surfaces (e.g. silicon dioxide) bearing

hydroxyl groups, provides a way to prevent leaching out of the active substances of organic

inorganic composite materials. This also provides the possibility to employ new classes of

materials in the field of biomedical technologies and water purification (e.g. removal of

heavy metal cations and dyes).4,12,13

The substitution of established processes and chemicals by water based systems would pose

alternatives that are environmentally benign as well as lead to cost reduction after

implementation. Hence no additional safety measures and closed loop process conduction

have to be employed.

The major goals of this work are the investigation of alternative ways for the crosslinking of

poly(vinyl alcohol) by the employment of radiation and thermally induced methods. On the
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other hand, new classes of functionalised filler materials have been envisaged, by either

cation exchange reactions to obtain modified layered clays as well as surface modification of

inorganic particles such as silica. These particles have been assessed as functional additives

for both covalent and physical crosslinking of organic inorganic composite materials with

PVA as matrix polymer.
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employed for the preparation of particles bearing photoactive groups such as azides115 or for

grafting of polymeric shells from the surface of silica particles.116 Griesser et al. describe the

self assembly of photoactive monolayers with tuneable surface polarity onto silicate

substrates which can be applied in the field of organic electronic devices.117,118

4. ORGANIC INORGANIC COMPOSITE MATERIALS

As this work is focused on preparation and investigation of water based polymer solutions,

particle suspensions and composite dispersions, the emphasis of this section of the literature

review is set on composites comprising poly(vinyl alcohol), silica particles and layered platy

clay minerals and the applications of such materials.

The incorporation of inorganic particles into a polymer matrix is employed to modify various

properties of polymers such as flammability119, solvent resistance11, gas barrier properties

and mechanical properties such as stiffness and heat deflection temperature.72,99 In order to

enhance the compatibility between the matrix and the inorganic particles, thus improving

the modifying effect on the composite, additional modification steps can be performed on

the additive surface.70,71

PVA silica composite materials are conveniently prepared by the sol gel technique from

aqueous solutions of PVA and tetraalkoxysilanes by acid catalysed condensation, which also

leads to covalent bonding of the inorganic phase onto the polymer backbone as depicted in

Fig. 1 as well as to formation of an inorganic silicon dioxide phase.31,120,121 This leads to

increased solvent stability and an increase of barrier properties against non polar substances

has been reported by Nishiuara.31,35,122,123
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investigate condensation reactions between the matrix polymer and the filler material, a

heat treatment was employed and the formation of covalent crosslinks between the

polymer and the carboxylic moieties of the modification reagents was investigated. The main

objective was to improve the swelling stability of PVA for the preparation of barrier

materials for biomedical applications. Furthermore the preparation of composites was

performed from solution, thus employing high speed dispersion tools.

Composite materials comprising PVA and surface modified particles. Here, the main aim

was the determination of the UV instigated changes of the swelling behaviour due to the

employment of photoreactive azosulphonate particles as functional additives. The particles

should act as photoinitiator, thus facilitating radical photo crosslinking. Another aim was the

immobilisation of the photoactive species on the particles to prevent leaching and migration,

which would be pivotal for a variety of applications. Furthermore the photo cleavage

mechanism of the immobilised dyes had to be investigated by spectroscopic methods.

Electron beam crosslinking of organic inorganic composites. The first objective was the

preparation of PVA composites containing commercially available vinyl terminated silica

particles. Under electron beam irradiation covalent crosslinks between the particles and the

PVA matrix are expected to be formed. The second goal was the improvement of the

swelling behaviour of the PVA composite and complete conversion of the vinyl double bonds

at the particle surface.

XNBR Zn2+/Mn2+ MMT composites. The main aim was the substitution of zinc oxide as

crosslinking aid for XNBR by cation exchanged montmorillonites (Zn2+/Mn2+) and the

investigation of the influence on the swelling stability against chloroform and crude oil and

the mechanical properties. Additionally the influence of subsequent UV crosslinking via the

thiol ene reaction on the material behaviour was investigated.89. The suitability of the

prepared XNBR composites as sealants or protective coatings for applications concerning

crude oil resistance was evaluated.
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2. EQUIPMENT

Table 2: Laboratory equipment

Device Description

Analytical
balances

Kern (Kern und Sohn GmbH, Balingen Frommern, Germany)
770 13; weighing range: 0–220 g; weighing resolution: 0.1 mg;
weighing accuracy; 0.1 mg; calibration: external weight.

Kern ABT220 4M; weighing range: 0.01–220 g; weighing
resolution: 0.1 mg; weighing accuracy; calibration: internal

High speed
dispersion
equipment

IKA (IKA GmbH, Staufen im Breisgau, Germany) UltraTurrax T18
equipped with S18N 19G steel dispersing element; dispersing
speed range: 3000–25000 rpm; viscosity range: up to 5000 mPas.

Laboratory
balance

AND EK2000i (A&D Company Ltd., Tokyo, Japan), weighing
range: 0.1–2000 g; weighing accuracy: ± 0.1 g.

Magnetic stirrers IKAMAG (IKA GmbH, Staufen im Breisgau, Germany) RCT
Standard equipped with a PT1000 temperature probe; stirring
speed range: 0–2000 rpm; Heat output 600 W; Heating range: 0–
310 °C.

Convection oven Binder (Binder GmbH, Tuttlingen, Germany) FD115;
Temperature range: (RT + 5)–300 °C; Volume 158 l; Air changes
per hour:
26–32; actual power output: 1600 W.

pH
measurement

Thermo (ThermoFisher Scientific, Waltham, USA) Orion* 3 Star
pH Benchtop meter equipped with an Orion* 9157BNMD
Triode* 3 in 1 pH/ATC Probe; pH range: 2.000–19.000; pH
resolution: 0.01; accuracy ± 0.002 pH; Calibration: 3 point
calibration with DIN buffer solutions.

Stirring Heidolph (Heidolph Instruments GmbH & Co. KG, Schwabach,
Germany) RZR 2041 with radial flow impeller (d = 50 mm);
stirring speed range: 40–2000 rpm; viscosity range: up to 100
000 mPas.

Sonification Bandelin (Bandelin electronic GmbH & Co. KG, Berlin, Germany)
Sonorex Digitec DT 102 H RC; ultrasound peak performance: 480
W; temperature range: 20–80 °C.
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Table 3: Irradiation devices and spectrograph

Device Description

E beam IBA (IBA Industrial, Louvain La Neuve, Belgium) Rhodotron®
TT100 10MeV 35kW electron accelerator; scanning horn size:
100 cm; beam energy: 10 MeV (+ 0 KeV 250 KeV).

Spectroradiometer Solatell (Solatell Inc., Croydon, UK) SolaScope 2000: single
grating spectrograph optimised for UV with 512 pixel UV
enhanced detector array; Diffuser: Cosine response UV diffuser,
d = 10 mm; wavelength range: 235–470 nm; spectral sampling:
0.5 nm; bandwidth 1nm (+ 0.5 nm / 0 nm); sensitivity: <
10nWcm 2nm 1.

Flood exposure FusionUV (Fusion UV Systems Inc., Maryland, USA) Light
Hammer 6 conveyor belt irradiation device; light source(s):
medium pressure mercury vapour lamp (no dopant, Ga or Fe
doped); power output: variable; conveyor belt speed: 0.1–75
m/min.

Photolithographic
patterning

Süss (Süss Microtec GmbH, Garching, Germany) MJB4 Mask
Aligner; light source: medium pressure mercury vapour lamp
with filters; wavelength range: 280–350 nm; intensity: 25
mWcm ².

Spot curing Lumen Dynamics (Lumen Dynamics Group Inc., Mississauga,
USA) OmniCure S1000 equipped with a flexible light guide;
Light source: High Pressure 100 Watt Mercury Vapor Short Arc;
no filters fitted; emitted wavelength: 250–500 nm.

Table 4: Spectroscopic and microscopic equipment

Device Description

FTIR
spectrometer

PerkinElmer (PerkinElmer Inc., Waltham, USA) Spectrum One;
wavelength range: 7800–350 cm 1; resolution: 0.5–64 cm 1;
wavelength accuracy: 0.1–1600 cm 1.

MAXS Hecus (HECUS X Ray Systems GmbH, Graz, Austria) equipped
with S3 Micro camera, Xenocs source (G 09) and FOX3D optics;
X rays: Cu K ( =1.54 Å); detector: 2D Pilatus 100 K; power: 50
kV, 0.6 mA (30 W).
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Device Description

NMR
spectrometer
400 MHz

Agilent (Agilent Technologies, Santa Clara, USA) NMR 400MHz
resonance frequency; methods: 1H / 13C; various solvents.

Optical
microscope

Olympus (Olympus Corp., Tokyo, Japan) BX 51, equipped with a
CCD Camera; magnification: 10x, 20x, 50x 100x; phase contrast
optics and polarisation filters.

Refractometer Atago (Atago CO Ltd., Tokyo, Japan) Nar1T; light source: sodium
D Line ( = 589 nm); measurement range: nD = 1.3000 to
1.7000; accuracy: nD ± 0.0002; temperature range: 0–50 °C.

SEM/EDX Zeiss (Carl Zeiss GmbH, Oberkochen, Germany) Auriga 60
crossbeam workstation; accelerator voltage: 0.1–30 kV;
detector system: InLens, CZ BSD.

UV/Vis
spectrometer

Agilent (Agilent Technologies, Santa Clara, USA) Cary 50;
wavelength range: 190–1100 nm; scanning speed: up to 24 000
nmmin 1; optical system: dual beam; light source: Xenon flash
lamp.

Table 5: Thermal analysis

Device Description

Thermogravimetric
analysis (TGA)

PerkinElmer (PerkinElmer Inc., Waltham, USA) Pyris 7;
temperature range: RT–1000 °C; temperature precision: ±2 °C;
balance accuracy: 0.02 %; balance sensitivity: 0.1 g; sample pan:
platinum.

Thermogravimetric
analysis /

Differential
scanning
calorimetry
(TGA/DSC)

Mettler Toledo (Mettler Toledo AG, Greiffensee, Switzerland);
TGA/DSC StarE System; temperature range: RT–1100 °C;
temperature precision: 0.15 °C; temperature accuracy: 0.25 °C;
sample pan: aluminium oxide.
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3.4.1.1.1 Characterisation of H+ montmorillonite

FTIR spectroscopy. Thin layers of activated MMT were cast onto CaF2 platelets and dried

under constant air flow. Transmission spectra in wavelength range of 4000–850 cm 1 were

recorded with a resolution of 2 cm 1.

EDX spectroscopy. Energy dispersive X ray spectroscopy proved to be a versatile tool to

determine the metal cation exchange. Changes of the sodium K line at 1.04 keV were

monitored. Limit of detection: 0.1 wt. % or elements with atomic number < 10.

XRF spectroscopy. X ray fluorescence spectroscopy on powdered montmorillonite samples

was performed to investigate changes of the elemental composition due to the activation

step as well as to investigate leaching of the interlayer sodium cations. The measurements

were performed at the Department of General, Analytical and Physical Chemistry at the

University of Leoben (Leoben, Austria).

MAXS experiments. The activated MMT was dried at 80 °C, ground to a fine power and filled

into 1 mm glass capillaries prior to the X ray scattering measurements. The detector was

calibrated with Ag stearate (d = 48.68 Å) and Cu K ( =1.54 Å) radiation was employed for

exposure times of 900 s. Scattering patterns between q values of 0.04 < q < 1.06 Å 1 were

recorded and the d001 spacing of the montmorillonite was calculated out of the detected

peak values.

Thermogravimetry. TGA measurements of dried and ground MMT powder samples were

performed to investigate changes of interlayer water content and acid induced phenomena.

A heating rate of 20 Kmin 1 was employed and nitrogen was used as purge gas with a flow

rate of 30 mLmin 1. The samples were heated from 25 to 900 °C and the mass loss was

evaluated (wt. %) with regard to the initial mass.

These methods and the appropriate evaluation of the obtained data have been employed

for all metal cation exchanged montmorillonites, except the MAXS measurements, which are

more relevant for the investigation on changes of the basal spacing of organo modified

MMTs.
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crosslinking agent. ATR FTIR data leads to the conclusion that the crosslinks and the polymer

chains are cleaved upon further irradiation. This is confirmed by swelling measurements.

The resistance against water is deteriorated by e beam exposure, also in the presence of the

crosslinking agent. The TAIC molecules may disturb the formation of hydrogen bonds

between the PVA molecules; therefore the crystallinity is decreased, which leads to a

decrease of the gel content. Furthermore non converted TAIC tends to migrate out of the

matrix, thus giving an oily film surface. Desorption of the crosslinking agent takes place,

which is potentially noxious and hazardous to water organisms. These effects as well as the

chain scission caused by the ionising radiation do not lead to improved solvent stability of

the prepared PVA specimens.

On the other hand, doping of PVA with FeCl3, gives a photocurable system, which exhibits

decisive changes of its optical properties by exposure due to photoreduction of Fe3+ to Fe2+.

This leads to oxidation of the polymer backbone, forming main chain keto groups as well as

strong changes in the optical absorption and the refractive index.10,46,49,97

These changes in the optical properties are accompanied by a photobleaching effect that is

caused by the reduction of the iron ions. Photolithographic patterning gives excellent

pattern contrast after development with topographical features that contribute to the

contrast pattern. These results and the findings of Schauberger et al. lead to the conclusion

that PVA:FeCl3 would be suitable for water soluble and water developable photoresist

materials for rapid curing applications employing high UV irradiation intensities.9 The

combination of both an environmentally benign polymer and the non organic photoactive

reagent provides suitability for food packaging and medical products. Moreover, the

application as base material for flexible polymer waveguides, high temperature coatings or

electrochromics has to be considered.10,42,43,146,152,153
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The protons of the aromatic ring of AZOII can be assigned to the peaks at 8.6 and 8.5 ppm,

which are marked blue and are assigned to the meta position. The remaining hydrogen atom

is therefore related to the peak at 7.6 ppm. The peak at 4.6 ppm is attributed to the solvent

D2O (see Fig. 48a).

As additional chemical shifts between 7.6 and 8.5 ppm are detected, it is assumed that the

obtained azo dye is contaminated with byproducts of the synthesis, although the product

had been purified by recrystallisation and precipitation. Spectral simulation using

ChemBioDraw reveals that these additional peaks are a result of partial deprotonation of the

carboxylic moieties, by changing the dipole moment of the molecules (compare Fig. 48a with

Fig. 49a/b).61,137 As the simulation and the measurement concur, it is therefore concluded,

that the carboxylic moieties of AZOII are almost completely deprotonated upon dissolution

in D2O.

The 13C NMR spectrum of AZOII is not affected by the deprotonation, each of the carbon

atoms can be assigned to a specific peak. The carboxylic acid groups can be attributed to the

peak at 169 ppm, while the C N=N SO3 shift is detected at 150 ppm. The remaining five

carbon atoms of the aromatic ring can be assigned to the chemical shifts between 134 and

118 ppm and are colour coded in Fig. 48b.
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Polarised light imaging shows the sharp boundaries of the imprinted features in PAII.3, which

persist the development in deionised water very well (see Fig. 66e/f). PAII.4 exhibits distinct

topographical features after development, as well as an increased surface roughness. Films

comprising 20 wt. % of azosulphonate show good patterned contrast, however they seem to

be grainy. It is evident, that upon development gas bubbles lead to surface cracking of the

swollen polymer matrix (Fig. 68a) and leaching out of non coupled azo dye occurs, resulting

in the rough surface areas.
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Although PVA films containing the carboxylic acid AZOIII exhibit a deterioration of the

swelling behaviour compared to the difunctional dye, the photoactivity of the material leads

to outstanding contrast behaviour of the patterned samples. It is evident that with

increasing dye content the number of surface defects increases after development, which is

caused by outgassing of cleavage products (nitrogen gas) and leaching out of non coupled

azosulphonate (see Fig. 67b/d/f/h/j).

The addition of comparatively small amounts of AZOIII (2.5 wt. %) leads to well resolved

linear patterns with sharp boundaries, which give topographical features after development

(Fig. 67a/b). Samples comprising 20 wt. % of photoactive species, seem to be grainy, which

may be caused by phase separation during the drying step (Fig. 67i). During development of

such samples (PAIII.5) extensive gas bubble formation occurs after short time in deionised

water (see Fig. 68b).
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azosulphonate is required to detect the formation of ester groups unambiguously by the

means of FTIR and 13C NMR spectroscopy.

These concentration limits also pose a problem for the investigation of the photoactivity by

FTIR spectroscopy. Therefore UV Vis spectroscopy has been employed due to the enhanced

sensitivity to visualise UV induced changes for the prepared materials. As neat PVA exhibits

no UV absorption, changes in the absorption spectra result from photolytic cleavage of the

azosulphonate units, which can be attributed to the * transition, whereas the n *

transition is not discernible due to the low absorption coefficient.

While a heat treatment leads to crystallisation of neat PVA and therefore increased stability

against dissolution in deionised water, additional condensation of the azo dyes onto the

polymer backbone occurs.16 Annealing of PVA films containing AZOII, results in the formation

of additional crosslinks, thus leading to a decrease of swelling, compared to the neat

polymer. In contrast to this, the monofunctional carboxylic acid AZOIII increases the distance

between the polymer molecules, thus diminishing the density of the hydrogen bonding

network and therefore resulting in increased solubility. Additionally the non coupled

azosulphonates are leached out of the polymer matrix by the immersion fluid (deionised

water).

These novel UV reactive materials exhibit outstanding contrast behaviour after

photolithographic patterning, which can be visualised by polarised light and phase contrast

imaging (see Fig. 66and Fig. 67). This leads to the conclusion, that changes of the optical

contrast of the thin films are a result of the cleavage of the azosulphonate groups. Strong gas

bubble formation of irradiated samples is observed during the development step (see

Fig. 68).

As leaching of the photoactive species occurs, the obtained materials may not be feasible for

biomedical applications; hence the azo dyes are not evaluated for their biocompatibility and

cytotoxicity. The decomposition products of the synthesised azosulphonates may comprise

benzoic acid (E210) or isophthalic acid for radical cleavage, and m hydroxybenzoic acid or 5

hydroxyisophthalic acid for the ionic splitting mechanism.
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In region I a total free water content for Na+ MMT and H+ MMT ranging between 11.5 and

12.4 wt. % is determined (see Fig. 73). As no organic intercalates are used, the weight loss in

region II is marginal for sodium MMT, whereas activated clay exhibits a weight loss of

4.5 wt. %. This may be caused by decomposition of aluminium chloride, which is formed as

byproduct of the activation by hydrochloric acid. In the temperature range of 500 to 800 °C

structural hydroxyl groups are dehydrated. Additionally Xie et al. describe the formation of

carbon dioxide in this region by a combination of TGA FTIR measurements.101,162,163,166 The

shoulder at 700 °C is flattened out for acid activated MMT, which is caused by the

decomposition of carbonates and organic matter.

Medium angle X ray scattering (MAXS). The X ray scattering patterns of dried and

powdered samples, as depicted in Fig. 74, exhibit 001 reflections that can be assigned to

basal spacings of 12.0 Å for pristine sodium MMT. Due to Na+ cation exchange by protons

during the acid treatment, the d001 spacing is reduced by 0.8 Å, which has also been found by

Kwon et al. using a differing method of activation.77 As the scattering peak does not change

its form significantly it is assumed that the triple layer structure of the silicate platelets is

preserved as well as the orientation of the platelets.
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Table 16: Weight loss in the identified decomposition regions of pristine and amino acid
modified montmorillonite clays according to Xie et al.163

sample region I region II region III region IV

T < 200 °C
(wt. %)

200 – 500 °C
(wt. %)

500 – 800 °C
(wt. %)

800 – 900 °C
(wt. %)

Na+ MMT 12.4 1.1 3.2 0.8
Na+ MMT_C 6.3 7.8 4.7 0.5
Na+ MMT_G 7.3 3.1 4.4 0.6
Na+ MMT_T 9.1 4.2 3.7 0.6
H+ MMT 11.5 4.5 3.1 0.8
H+ MMT_C 5.4 10.9 5.1 0.5
H+ MMT_G 3.5 15.5 6.5 0.8
H+ MMT_T 7.2 12.2 4.9 0.6

MAXS measurements. Fig. 83 shows the MAXS patterns of pristine sodium montmorillonite,

activated MMT and amino acid intercalated H+ MMTs. Clays that are prepared by the one

step process from sodium MMT are not evaluated, due to their comparatively low organic

content. According to Khan et al. the basal spacing of organomodified montmorillonite is

depending on the chain length of the intercalates and their orientation. They may be

arranged as monolayer or bilayers.104,167,168

The obtained patterns provide evidence that the d001 spacing is altered by either the

activation step (Fig. 83a/b) as well as the intercalation reaction of organic cations (Fig.

83c/d/e). The decrease of the basal spacing by exchange of sodium by protons during the

activation step is described in chapter 3.1.1. The intercalation of amino acids into the

interlayer galleries leads to an increase of the layer to layer distance. Cysteine intercalated

MMT exhibits a layer to layer distance of 13.7 Å, while glycine modified MMT shows a

spacing of 12.6 Å.

The intercalation of taurine leads to a remarkable scattering profile, which is depicted in

Fig. 83e. A broad peak with maxima at q values of 3.8 Å 1 and 4.8 Å 1 arises, which suggests

the existence of monolayers and bilayers of the aminosulphonic acid clay compound.167,168

These peaks can be attributed to d001 spacings of 17.2 Å and 13.0 Å, which corresponds to

the findings of Lagaly, concerning mono and bilayers of alkyl ammonium ions that are

bound onto the clay surface.168
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at elevated temperature. The measurements have been performed with special emphasis on

the carbonyl region, but it has to be stated that it is difficult to discern the formation of ester

groups. Hence the main portion of the organic content of the modified MMTs is located in

the interlayer galleries, only a low number of carboxylic or sulphonic acid groups are

accessible for heat induced condensation with the PVA. As the organic content of the

layered silicates results only in very weak absorptions (see Fig. 81), these are obscured by

the absorption bands of the PVA matrix.

On the other hand, slight changes of the FTIR spectra are detected, which may be a result of

esterification reactions of a fraction of the carboxylic acid groups. This is exemplarily

depicted in Fig. 101 for a composite containing of 10 wt. % of cysteine intercalated H+ MMT.

As the intermolecular water is evaporated, the H O H bending vibration at 1650 cm 1

diminishes rapidly, while the residual absorption can be assigned to protonated amino

groups.137,144

Furthermore the shape of the carbonyl absorption exhibits a shoulder at 1732 cm 1, which

can be attributed to aliphatic ester formation, while still carboxylic acid moieties are present

leading to the absorption maximum at 1700 cm 1. Besides the strong and broad peak of the

structural C O H absorption of the polymer backbone, a new C O C absorption band at

1143 cm 1 arises, as a result of heat induced condensation reactions.
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The incorporation of amino acid modified Na+ MMT into PVA leads to gel contents (prior to

annealing) in the range of 34 to 45 wt. %, and reaches values higher than 70 wt. % for

5 wt. % of MMT, and 81 wt. % for 10 wt. % of the modified filler material due to heat

treatment. As a result of organic modification the active surface area of MMT is increased,

which leads to stronger interactions between the polymer and the filler material, thus

improving the swelling behaviour. It is evident that a higher amount of montmorillonite

content leads to a significant increase of the gel contents compared to composites

comprising 5 wt. % of MMT, except for neat Na+ MMT.

Table 22: Gel content of PVA MMT composites comprising organomodified sodium
montmorillonite

Exemplarily the change of the gel content of PVA MMT composites due to heat treatment is

depicted Fig. 103a for a composite comprising of Na+ MMT_C. This increase of the insoluble

fraction is a further hint that condensation reactions between the matrix and a portion of

the intercalated amino acids occur.

gel content (wt. %)

5 wt. % MMT 10 wt. % MMT

annealing time annealing time

0 min 40 min 0 min 40 min

Na+ MMT 35.0 73.4 35.4 71.1

Na+ MMT_C 40.2 76.0 44.0 81.0

Na+ MMT_G 37.6 72.2 44.8 81.5

Na+ MMT_T 34.0 71.4 44.2 80.6
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strain and stress at break. Subsequent UV crosslinking leads to a slight improvement of the

failure stress; however, the strain at break is further deteriorated.

The main aim, to improve the solvent resistance, especially crude oil, has been achieved.

This would be pivotal for the preparation of novel sealant or protective coating materials in

contact with crude oil. Compared to conventional crosslinked XNBR, the montmorillonite

crosslinked composites exhibit improved swelling behaviour in crude oil and chloroform.

Subsequent UV exposure leads to further diminishing of the degree of swelling for

composites comprising 2 wt. % Zn2+ or Mn2+ MMT, while a composite containing 5 wt. %

Mn2+ MMT shows deterioration of the swelling properties due to formation of surface

cracking. Therefore it is concluded that the optimum amount of Mn2+ MMT is in between

2 and 5 wt. %.

The use of functionalised montmorillonites as alternative crosslinking agents for XNBR may

find application for solvent resistant protective coatings for metals or sealants in contact

with seawater and crude oil. As crosslinking agents are immobilised in the interlayer galleries

of the MMT, no leaching due to swelling can take place.
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VI. OVERALL CONCLUSIONS

1. ALTERNATIVE METHODS OF PVA CROSSLINKING

Three different concepts of crosslinking of poly(vinyl alcohol) (PVA) have been investigated

with emphasis on the determination of crosslinking mechanisms and the reduction of

solubility/swelling behaviour in deionised water as testing fluid.

E beam crosslinking of PVA. Doping of PVA with triallyl isocyanurate (TAIC), however, did

not work out as intended, because the crosslinking aid tends to bleed out of the matrix. As

the crosslinking aid TAIC is considered noxious and harmful to water organisms and the

swelling properties of PVA composites are not significantly improved, the employed electron

beam crosslinking concept has not been further pursued.

UV crosslinking of PVA. Upon doping of PVA with FeCl3 a photoreactive polymeric material

has been obtained, which exhibits (1) strong changes of the refractive index, (2) changes in

optical absorption and (3) a significant improvement of the swelling behaviour of PVA in

deionised water after UV irradiation. It is found that the mechanism of crosslinking is based

on a photoreduction of Fe3+ to Fe2+, which results in photobleaching as well as the formation

of macroradicals that recombine, thus forming crosslinks in PVA. Photolithographic

patterning results in topographical features (after development in deionised water) and

outstanding contrast behaviour, which is achieved by UV induced modulation of the

refractive index and the photobleaching effect.

Azosulphonate doped PVA. Doping of PVA with aryl azosulphonate dyes has been used to

prepare a new photoreactive and water based resist material, with the possibility to tune

the polarity and the optical contrast behaviour of the material by UV light. Heat treatment is

employed to immobilise the photoactive dyes, which leads to a strong improvement of the

swelling behaviour for materials containing the dicarboxylic acid AZOII. The UV initiated

decomposition of the dyes has no influence on the swelling behaviour in deionised water.

Spectroscopic analysis revealed that an ionic decomposition mechanism of the

azosulphonate dopant is prevalent. The obtained resist materials are applicable for

photolithographic patterning. They exhibit excellent contrast behaviour as a result of UV

induced cleavage of the chromophore, which can be visualised by phase contrast imaging. As
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the azosulphonate moieties exhibit high thermal stability, so the applicability in high

temperature environments is given. As nitrogen gas evolves upon UV exposure due to the

cleavage of the azo groups, microcellular foaming applications with the possibility to prepare

patterned foamed areas may be considered.

2. FUNCTIONALISED INORGANIC PARTICLES

A number of concepts have been pursued to prepare modified inorganic particles ranging

from metal cation exchanged montmorillonites (MMT) to photoactive particles, bearing aryl

azosulphonate moieties on their surface.

Metal cation exchanged montmorillonite. Transition metal cation exchanged

montmorillonites have been prepared for the application as ion donor materials for

crosslinking reactions, with emphasis on crosslinking XNBR latex to either substitute

commercial crosslinking agents and to enhance the solvent stability of latex films.

Additionally, a Fe3+ cation exchanged montmorillonite has been prepared in a similar

manner, until no more iron ions are leached out. The major aim of the intercalation of Fe3+

ions was the immobilisation of the UV reactive species aiming at the photochemical

crosslinking of polymers. This has been demonstrated for PVA, which can be crosslinked by

UV light, when loaded with the modified montmorillonite.

Amino acid intercalated montmorillonite. Cation exchange reactions have been employed

to immobilise amino compounds with functional groups, such as carboxylic, mercapto or

sulphonic acid moieties, into the interlayer galleries of montmorillonite. Whilst the

absorption of glycine and L cysteine has been well studied and documented by a number of

authors, the immobilisation of taurine to introduce sulphonic acid groups has not been

reported yet.

The prevalent acid treatment of MMT leads to increased delamination of the clay mineral as

well as to an increased organophilicity, which results in a higher intercalated organic

content. MAXS patterns suggest that the d001 spacing is increased due to intercalation of the

amino compounds, and mono and bilayer formation can be determined for taurine

intercalated MMT. The new two step process of acid activation and amino acid intercalation
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for the preparation of enhanced clay minerals leads to increased organic content as well as

repulsion of interlayer water.

Surface functionalised particles. Photoreactive silica and montmorillonite particles with

immobilised aryl azosulphonate moieties were obtained by surface silanisation followed by

diazotisation reactions. Photolysis experiments of aqueous particle suspensions have been

conducted, showing that the surface modified particles exhibit the photolytic behaviour of

aryl azosulphonates. Moreover, a photoinduced destabilisation of the particle dispersions

has been observed. Thermogravimetric measurements reveal high weight losses, which

contribute to the successful immobilisation of organic substance.

3. ORGANIC INORGANIC COMPOSITE MATERIALS

A variety of organic inorganic composite materials, most of them comprising poly(vinyl

alcohol) as matrix polymer, have been prepared and the resistance against dissolution in

deionised water as well as the particular mechanism of crosslinking and the particle

distribution has been investigated.

UV reactive PVA Fe3+ MMT nanocomposites. Fe3+ cation exchanged montmorillonite has

been employed as iron ion donor for photochemical crosslinking of PVA. Besides very strong

polymer filler interactions, covalent crosslinks are formed, which result in significant

improvement of the stability of the composites against water uptake. Due to the

photobleaching caused by reduction of photoactive Fe3+ to Fe2+, the crosslinking of

comparatively thick substrates is feasible. The montmorillonite platelets are distributed

evenly alongside the cross section of prepared samples with an almost parallel orientation.

Also delamination of the platelets is observed, resulting in particle sizes ranging from 15 to

100 nm.

Composite materials comprising PVA and organo modified montmorillonite. The utilisation

of amino acid intercalated montmorillonites as functional filler materials for PVA has led to

some not anticipated results, such as the vanishing of the melting point during DSC

measurements for activated MMT. Furthermore it has been found that the use of acid

activated and organo modified MMT leads to an improved water resistance compared to

sodium MMT.
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Employment of UV reactive particles for crosslinking of PVA. The introduction of

photoreactive inorganic particles (SiO2 and montmorillonites), bearing azo sulphonate

moieties on their surface, in poly(vinyl alcohol) makes a photoassisted tuning of material

properties feasible. Dual crosslinking by heat treatment, followed by subsequent UV

exposure leads to outstanding water resistance for composite materials comprising

montmorillonite. This leads to highly crosslinked systems, which may be employed for

protective coatings or barrier materials with phototuneable properties. As the

decomposition of the immobilised dyes leads to the formation of nitrogen gas, micropores

may be formed. The UV induced cleavage of the chromophore leads to the formation of

hydroxyphenyl ( C6H5OH) or phenyl ( C6H5) groups, which remain on the particle surface.

Vinyl modified particles for e beam crosslinking of PVA. The electron beam exposure of

PVA composites comprising silica particles with vinyl groups on their surface does not lead to

highly crosslinked samples, hence the reactivity of the double bonds is not given and the

matrix polymer undergoes chain scission caused by the ionising radiation.

Improvement of solvent resistance of XNBR. It has been demonstrated that transition metal

cation exchanged montmorillonites (Zn2+/Mn2+) can be applied as crosslinking agents for

XNBR latex, instead of conventional crosslinking using zinc oxide. To enhance the solvent

stability further, additional crosslinking chemicals are used, thus attaining a dual crosslinking

mechanism by physical interactions with the filler particles and covalent crosslinks, which

are formed by the UV induced thiol ene reaction. Experimental data clearly show that

composites comprising manganese cation exchanged MMT exhibit better swelling stability in

both crude oil and chloroform compared to the ZnO crosslinked samples. However, it has to

be stated that the employment of MMT as functional filler leads to deterioration of the

mechanical properties, mainly by embrittlement of the obtained samples.

4. OUTLOOK

As an overview on possible fields of application of water based and environmentally benign

materials (UV reactive PVA, montmorillonites and their composites) is presented in the

concluding section, the possible future progress in these fields of work is discussed in this

section of the thesis.
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The preparation of flexible polymer waveguides employing PVA:FeCl3 as well as

azosulphonate doped PVA, by the means of photolithographic patterning should be

highlighted. As these new photoreactive materials are water based and can be developed

with water after patterning, this would be an environmentally benign alternative to common

resist materials. Furthermore, the barrier properties of the UV curable system PVA:FeCl3

against non polar organic solvents and fatty acids at different humidity levels would be of

great interest for the application as biomedical products and coatings intended for food

packaging.

In order to prevent leaching of azosulphonate compounds, the coupling reaction as well as

the composition of the composite should be further optimised to allow for almost complete

conversion of the carboxylic moieties, which should result in full immobilisation.

Investigations concerning changes of the polarity of the composites due to decomposition of

the photoactive species, as well as changes of permeability should be investigated in further

work.

The activation and organic modification of layered platy alumosilicates such as

montmorillonites provides a wide field of possible applications, ranging from solid state

catalysts to fillers for polymers or as carrier materials of functional groups by immobilisation

in the interlayer galleries or onto the surface.

Additional attempts to activate montmorillonite by the employment of mineral acids (e.g.

HNO3, H3PO4, H2SO4) may lead to changes of the morphology of the platy clay and increase

the dispersibility of the particles as well. These activated MMTs may be employed for further

modification steps or as catalytic materials.

As the organic modification of activated clays leads to an increase of the intercalated organic

content, the intercalation of a number of amino compounds could be employed to

immobilise functional moieties in the interlayer galleries of the montmorillonite. These clay

minerals may be employed as stationary phases in the field of chromatography, for the

removal of dyes out of water or as sequestrant for heavy metal ions.

As neat PVA exhibits outstanding barrier properties against non polar organic compounds,

the determination of barrier properties for organic inorganic PVA composite materials under
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different environmental conditions may be of interest. The investigation of the influence of

aerial humidity on the diffusion of volatile compounds through crosslinked composite

membranes is pivotal for the preparation of barrier layers. As some of the obtained

composite samples can be employed for hydrogels for biomedical applications, the

determination of cytotoxicity and further investigations concerning leaching out of

crosslinking aids would be crucial.
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