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Summary

Materials made of alternating thin layers of Al2O3 and TiO2 are of high inter-
est for industry and materials science. Present and potential applications of
such materials include, e.g., optical coatings and multilayer optical windows,
as well as hardness-enhanced multilayer films for high-temperature applications.
Al2O3/TiO2 laminates are even considered as a possible candidate to replace the
SiO2 films for gate dielectric applications in transistors. Despite the effort done to
investigate TiO2/Al2O3 interfaces using experimental methods, there is nothing
reported in the existing body of literature about atomistic modeling of this in-
terface. It is the primary goal of this work, thus, to fill this gap, and to stimulate
further work in the atomistic investigation of TiO2/Al2O3 interfaces, especially
using first principles methods. The methodological basis of this work consists
of density functional theory (DFT) and linear elasticity theory. The former is
the standard method in computational solid-state physics and materials science
for dealing with matter at the level of atoms, that allows to calculate electronic
structure and related properties. The latter is a well established framework for
description of strain, stress, and elasticity of materials at a macroscopic level.
Using experimental data on the phase composition of the film and the epitaxial
relationships of TiO2 deposited on (0001) sapphire, a model of the interface is
established. In order to cope with the lattice misfit between the substrate and
the overlayer, the stress balancing method is introduced, that allows to minimize
the total strain energy of a superlattice using linear elasticity theory. The local
arrangement of atoms in the vicinity of the interface is obtained by atomic relax-
ation. The structural features of the optimized geometries are analyzed by means
of radial- and angular-distribution functions. The values for the work of separa-
tion, for both the static and the relaxed case, are obtained. It is found that the
maximal adhesion strength is achieved, when the stacking sequence that is intrin-
sic for TiO2 along [100] and for Al2O3 along [001] is preserved across the interface.
The electronic properties, including the spatial charge distribution, and the total,
partial, and local densities of electronic states are investigated in detail. In order
to investigate the mechanical properties of the system, the bulk modulus (B), the
Young’s modulus (E[001]), and the shear modulus (G(001)[010]) are calculated.
The numerical values of these moduli are also estimated using the effective elastic
constants within the framework of the Grimsditch-Nizzoli method.
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Zusammenfassung

Materialien, die aus abwechselnden Lagen von Al2O3 und TiO2 bestehen, sind
von großem Interesse für Forschung und Technologie. Derzeitige und potentielle
Anwendungen dieser Materialien umfassen zum Beispiel optische Schichten und
mehrlagigen optische Fenster, sowie mehrlagige Schichten mit erhöhter Härte für
Hochtemperaturanwendungen. Al2O3/TiO2–Laminate gelten sogar als mögliche
Kandidaten als Ersatz für Dünnschichten aus SiO2 die als “Gate-Dielektrika”
in Transistoren verwendet werden. Obwohl große Anstrengungen zur Unter-
suchung von Al2O3/TiO2–Grenzflächen durch experimentelle Methoden unter-
nommen wurden, gibt es in der bestehenden Literatur keine Berichte über die
atomistische Modellierung einer solchen Grenzfläche. Es ist daher das oberste
Ziel dieser Arbeit, diese Lücke zu schließen und weitere Arbeiten im Bereich der
atomistischen Untersuchung von TiO2/Al2O3–Grenzflächen anzuregen.

Die methodologische Grundlage dieser Arbeit bilden die Dichtefunktionaltheorie
(DFT) und die lineare Elastizitätstheorie. Erstere ist die Standardmethode zur
Berechnung der elektronischen Struktur in computerbasierter Festkörperphysik
und Materialwissenschaften. Letztere ist ein etablierter Rahmen für die Beschrei-
bung von Verzerrung, Spannung und Elastizität. Unter Benützung von experi-
mentellen Daten für eine dünne, auf (0001) Saphir aufgewachsene TiO2-Schicht,
wie der Phasenzusammensetzung dieser Schicht und der epitaktischen Beziehun-
gen, wird ein Modell für die Grenzfläche erstellt. Um die Gitterfehlanpassung
zwischen Substrat und Überschicht zu behandeln, wird die Methode des stress bal-
ancing eingeführt, die es erlaubt, die gesamte Verzerrungsenergie des Supergitters
im Rahmen der linearen Elastizitätstheorie zu minimieren. Die lokale Anordnung
der Atome in der Nähe der Grenzfläche wird dabei durch atomare Relaxation bes-
timmt. Die strukturellen Eigenschaften der optimierten Geometrie werden mit
Hilfe radialer und winkelabhängiger Verteilungsfunktionen analysiert. Die Werte
der work of separation werden sowohl für den statischen als auch für den relax-
ierten Fall bestimmt. Es wird gezeigt, dass die stärkste Adhäsion dann erreicht
wird, wenn die intrinsische Stapelfolge für TiO2 entlang [100] und Al2O3 entlang
[001] durch die Grenzfläche hindurch beibehalten wird. Verschiedene elektronis-
che Eigenschaften werden berechnet, darunter die räumliche Ladungsverteilung
und die totale, partielle und lokale elektronische Zustandsdichte. Um die mecha-
nischen Eigenschaften zu untersuchen werden der Kompressionsmodul, der Elas-
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tizitätsmodul (E[001]) und der Schermodul (G(001)[010]) berechnet. Die Größe
dieser Moduln werden auch mit Hilfe der effektiven elastischen Konstanten im
Rahmen der Grimsditch-Nizzoli-Methode abgeschätzt.
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Chapter 1

Introduction

1.1 Oxide-oxide interfaces

Ceramic materials, which are mostly oxides, are among the oldest materials
classes used by mankind. They have been extensively used to produce a variety of
goods ranging from tableware to construction materials. Nowadays, in addition
to the traditional use, the oxide-based materials are employed, e.g., in diverse
protective coatings [1], and composite materials [2–5]. The development of mod-
ern experimental analytical techniques [6], as well as the theoretical advances,
allows us to look at oxide materials from a new perspective. The phenomena
taking place at oxide/oxide interfaces in composite materials have become a hot
topic in research [7]. A range of materials of interest becomes wider and wider
every year. To give an idea about oxide/oxide interfaces described in literature
so far, a short overview is given below.

The structure of the NiO-ZrO2 interface was investigated using electron en-
ergy loss spectroscopy (EELS) and Z-contrast scanning transmission electron mi-
croscopy (STEM) in [8–10]. A theoretical investigation of NiO(111)/(100)ZrO2

is presented in [11]. A lot of work has been done on oxide/MgO interfaces. Sayle
and colleagues [12] reported the results of force-field modelling of CaO/MgO,
BaO/MgO, SrO/MgO interfaces. The results of the experimental and theoret-
ical investigations of the SrTiO3(100)/(100)MgO interface are reported in [13]
and [14], respectively. The Fe3O4(111)/(111)MgO polar oxide interface is exten-
sively studied by a range of experimental methods in [15], as well as theoreti-
cally [16]. The magnetic and electronic properties of NiO(001)/(001)MgO [17]
and Fe2O3(0001)/(111)MgO [18] are calculated from first principles. The struc-
ture of the TiO2/LaAlO3 interface is presented in [19]. Calculations of the
ZrO2/SiO2 interface are described in [20]. The interfaces of the oxide/Fe2O3 type
drew the attention [21–24] of researchers due to their unique electronic and mag-
netic properties. One more favorite system of latest research is LaAlO3/SrTiO3
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2 CHAPTER 1. INTRODUCTION

(LAO/STO), which is investigated in [25–28]. Stengel and Vanderbilt [29] de-
veloped a theory of polar discontinuities at (oxide/oxide) interfaces, and applied
it to LAO/STO. A comprehensive overview of the latest successes in exploring
the rich physics of oxide/oxide interfaces, and the emerging new materials based
on oxide/oxide interfaces is given in [30].

1.2 The TiO2-Al2O3 interface

Nanolaminate materials made of alternating thin layers of Al2O3 and TiO2 are of
high interest. Among the present and the potential applications of such materials
are the production of optical coatings [31] and multilayer optical windows [32],
and hardness-enhanced multilayer films for high-temperature applications [33].
It was also discovered that a Al2O3/TiO2/Al2O3 thin film is a possible candidate
to replace the SiO2 thin films, used as a gate dielectric in transistors [34].

Significant experimental work has been done on materials with TiO2/Al2O3 inter-
faces. Spectroscopic investigations of TiO2/Al2O3 interfaces using x-ray absorp-
tion spectroscopy (XAS) and resonant photoemission spectroscopy (RPES) [35–
37] showed the existence of Ti-O-Al cross-linking bonds, and interface-induced
changes of the electronic structure. Huang and co-workers [38] reported high-
resolution transmission electron microscopy (HR-TEM) results for rutile-TiO2

thin film grown on a (1̄102̄) Al2O3 substrate. A couple of interface features was
noted in [38], important for understanding the interface at the atomic level: 1) a
substantial similarity was discovered in the local atomic patterns of the substrate
and the film; 2) it was found that the TiO2 film had a large lattice misfit, which
led to the generation of structural defects, like twins, misfit dislocations, and
stacking faults. Structural similarities are also noted in [39] as a guiding motive,
that defines the epitaxy of a TiO2 thin film on the r-plane ((11̄02)) of sapphire,
as well as its phase. Despite the effort done to investigate the TiO2/Al2O3 in-
terfaces using experimental methods, there is nothing reported in the existing
body of literature about atomistic modeling of the interface. It is the primary
goal of this work, thus, to fill this gap, and to initiate further work in the atom-
istic investigation of the TiO2/Al2O3 interfaces, using first principles methods.
The properties studied in this work comprise the interface geometry and atomic
stacking, adhesive properties, electronic properties, and mechanical moduli.

1.3 Structure of the thesis

The thesis has the following structure:

• Hard coatings: An introduction to hard coatings is given and some basic
facts about these materials are reported.



1.3. STRUCTURE OF THE THESIS 3

• Theoretical background: The basic facts about tensors are introduced, and
the foundations of the elasticity of solids are described. Further, density–
functional theory, which is our framework for calculating the electronic
structure, together with total energies, forces and stresses, is presented.

• The system: The experimental data of the real system (a TiO2 thin film
grown on (0001) sapphire) used as a prototype for atomistic studies is re-
ported, and the epitaxial relationships and the atomic stacking are dis-
cussed.

• Stress-balancing method: A new general methond to cope with the lat-
tice mismatch problem, derived from the principles of linear elasticity, is
introduced.

• Optimization of the interface structure: An overview of the methods of
optimization used in atomistic modelling is given. Then, the results of the
atomic geometry optimization are presented and analyzed in terms of radial
and angular distribution functions.

• Work of separation: The results of the work of separation obtained in the
work are reported, and the effects of atomic stacking at the interface and
ionic relaxation are discussed.

• Electronic structure: The spatial distribution of charge and the electronic
structure are analyzed, and the influence of the interface is discussed.

• Mechanical moduli: The mechanical moduli for selected directions are eval-
uated. Moreover, a comparison to the moduli obtained using the concept
of effective elasticity as introduced by Grimsditch and Nizzoli [40, 41] is
made.

• Summary and conclusions: The work ends with a summary, conclusions,
and suggestions for further work in the field.
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Chapter 2

Hard coatings

2.1 Introduction

According to Ref. [42], a material, which can be sustainably used in given con-
ditions, i.e., environment is said to be hard to those conditions. Thus, according
to Ref. [42], hard materials can be classified as:

1. Tribologically hard: wear resistant, with low friction.

2. Optically hard: laser, and photonically inert.

3. Radiation hard: with high threshold energies for energetic particles such as
gamma rays, neutrons, and beta particles.

4. Electrically hard: wide bandgap.

In our work the main focus is put on the tribologically or, in a broader sense,
mechanically hard materials, used to coat cutting and forming tools, and, thus,
hereafter such materials are referred to simply as hard materials. When the
hardness of a substance is above 20 GPa it is considered as hard. If a material
has hardness above 40 GPa it is called superhard, and materials with hardness,
which exceeds the value of 80 GPa, are classified as ultra-hard ones [43].

2.2 Important classes of hard materials

One of the classifications of hard materials is based on the chemical bonding
character [44]. In this context, three classes are distinguished: metallic hard
materials (borides, carbides, and nitrides of transition metals), covalent hard
materials (borides, carbides, and nitrides of Al, Si, and B, as well as diamond),
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6 CHAPTER 2. HARD COATINGS

and ionic (ceramic) hard materials (oxides of Al, Zr, Ti, and Be). Some of the
properties of the most important hard materials are summarized in Tables 2.1-
2.3. Comparison of the data allows to identify some qualitative trends, which
relate the bonding type to the properties. For instance, the bulk modulus for ionic
hard materials is the lowest among this three classes. The linear thermal (LTE)
coefficients usually increase from covalent to metallic and to ionic materials.

Table 2.1: Properties of metallic hard materials [44].

Melting Spec.el. Thermal exp.
Density point Hardness E modulus resistivity coeff.

Phase [g/cm3] [oC] [HV] [GPa] [µΩ cm] 10−6 [K−1]

TiB2 4.50 3225 3000 560 7 7.8
TiC 4.93 3067 2800 470 52 8.0-8.6
TiN 5.40 2950 2100 590 25 9.4
ZrB2 6.11 3245 2300 540 6 5.9
ZrC 6.63 3445 2560 400 42 7.0-7.4
ZrN 7.32 2982 1600 510 21 7.2
VB2 5.05 2747 2150 510 13 7.6
VC 5.41 2648 2900 430 59 7.3
VN 6.11 2177 1560 460 85 9.2
NbB2 6.98 3036 2600 630 12 8.0
NbC 7.78 3613 1800 580 19 7.2
NbN 8.43 2204 1400 480 58 10.1
TaB2 12.58 3037 2100 680 14 8.2
TaC 14.48 3985 1550 560 15 7.1
CrB2 5.58 2188 2250 540 18 10.5
Cr3C2 6.68 1810 2150 400 75 11.7
CrN 6.12 1050 1100 400 640 (2.3)
Mo2B5 7.45 2140 2350 670 18 8.6
Mo2C 9.18 2517 1660 540 57 7.8-9.3
W2B5 13.03 2365 2700 770 19 7.8
WC 15.72 2776 2350 720 17 3.8-3.9
LaB6 4.73 2770 2530 (400) 15 6.4
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Table 2.2: Properties of covalent hard materials [44].

Melting Spec.el. Thermal exp.
Density point Hardness E modulus resistivity coeff.

Phase [g/cm3] [oC] [HV] [GPa] [µΩ cm] 10−6 [K−1]

B4C 2.52 2450 3-4000 441 0.5×106 4.5(5.6)
BN(cubic) 3.48 2730 ∼5000 660 1018 -
C(diamond) 3.52 3800 ∼8000 910 1020 1.0
B 2.34 2100 2700 490 1012 8.3
AlB12 2.58 2150 2600 430 2×1012 -
SiC 3.22 2760 2600 480 105 5.3
SiB6 2.43 1900 2300 330 107 5.4
Si3N4 3.19 1900 1720 210 1018 2.5
AlN 3.26 2250 1230 350 1015 5.7

Table 2.3: Properties of ionic (ceramic) hard materials [44].

Melting Spec.el. Thermal exp.
Density point Hardness E modulus resistivity coeff.

Phase [g/cm3] [oC] [HV] [GPa] [µΩ cm] 10−6 [K−1]

Al2O3 3.98 2047 2100 400 1020 8.4
Al2TiO5 3.68 1894 - 13 1016 0.8
TiO2 4.25 1867 1100 205 - 9.0
ZrO2 5.76 2677 1200 190 1016 11(7.6)
HfO2 10.2 2900 780 - - 6.5
ThO2 10.0 3300 950 240 1016 9.3
BeO 3.03 2550 1500 390 1023 9.0
MgO 3.77 2827 750 320 1012 13.0
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2.3 The relationships between structure and prop-

erties

The macroscopic properties of materials are tightly connected to their struc-
ture (electronic, atomic, and microstructure), thus the investigation of struc-
ture/property relationships plays the central role in material science [42]. So, the
hardness of a material is dictated by its intrinsic hardness, i.e., the characteristic
hardness of single-crystal bulk of the material, and by microstructural features
(defects, dislocations, grain boundaries, precipitates, etc.).

The strength of interatomic forces and the crystal structure determine the elastic
properties of a material, and, to a big extent, its intrinsic hardness [42]. It is
also required for intrinsic hardness, that a material can resist to disclocation
generation and propagation [42]. The latter is easiest achieved in materials with
highly directional bonds, i.e., in covalent hard materials. So, diamond, a purely
covalent material, is one of the hardest materials known. Most of materials,
though, have a mixed type of bonding. It is established, that, in general, the
hardness decreases as the fraction of covalent bonding in total material bonding
decreases. It can be illustrated with the three compounds TiC, TiN, and TiO [42].
All of them have the same crystal structure (NaCl type), their lattice parameters
are similar. Yet, the approximate hardness of TiC is 3000 kg·mm−2, for TiN
it is 2000 kg·mm−2, and the hardness of TiO is around 1000 kg·mm−2. Which
is consistent with the decrease of the covalent contribution in bonding, and the
increase of ionic one in the sequence from TiC to TiN to TiO. Thus, getting the
understanding of the bonding between atoms in materials is of vital importance.

Most of the real hard materials used for coatings (thin films on tools) are rarely
sigle-crystals. Usually, they have a complicated microstructure with a lot of grain
boundaries, defects, etc. Microstructure of a material can change its hardness
drastically. In thin metal alloy films, for instance, the decrease of the grain size
in a certain range leads to their hardening, which is described by Hall-Petch
relation

H(d) = H0 + k · d−
1
2 , (2.1)

where H0 is the intrinsic hardness, k is a constant, which depends on material,
and d is grain size.



Chapter 3

Theoretical background

3.1 Elasticity in solids

3.1.1 Introduction

In the present section, a short overview of the most common classes of mathemat-
ical objects used to describe the physics of diverse natural phenomena, including
elasticity of solids, is provided. These classes of objects are scalars, vectors, and
tensors. The latter class is the most general one out of the three, and includes
the former two as sub-classes, thus each of them is seen as an instance of a cer-
tain type of tensors. Among the variety of approches to introduce tensors, we
choose the one based on the description of the transformation laws of the tensor
coordinates upon the change of the basis. The simplest tensors are illustrated by
physical examples. The section is mainly based on the excellent classical text-
book on tensors by J.F. Nye [45], the great collection of mathematical facts by
G.B. Arfken and H.J. Weber [46], and a concise and very clearly written intro-
duction to tensorial analysis by R.A. Sharipov [47]. The section is organized in
the following way: We start with basic remarks on scalars, vectors, and tensors
in order to facilitate the discussion of the rest of the section, which is devoted
to special kinds of tensors, namely, the stress tensor, the strain tensor, and the
elasticity tensor.

3.1.2 Scalars, vectors, and tensors

Scalars

Physical quantities which can be completely specified by giving a single number
are called scalars. The temperature of a body, its macroscopic density or mass
all have no directional dependence, and are examples of scalar quantities. For

9
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scalars have no directional dependence, they are invariant under the change of
the coordinate system (basis), i.e.

s′ = s, (3.1)

where s and s′ are the values of a scalar in coordinate systems OX1X2X3 and
OX ′1X

′
2X
′
3, respectively. Scalars are said to be rank-0 tensors for a reason to be

explained later on.

Vectors

As opposed to scalars there are physical quantities which can only be specified
by reference to directions. These physical quantities are called vectors. Velocity,
acceleration, or mechanical force are examples of vectors. In order to specify a
force acting at a point, one needs to provide both the magnitude of the force and
its direction. If we choose three mutually perpendicular axes with unit lenght e1,
e2, e3 (they form a cartesian basis in R3), we can uniquely represent a vector v
as

v = v1e1 + v2e2 + v3e3 =
3∑
i=1

viei = viei, (3.2)

where v1, v2, and v3 are the projections of v on e1, e2, and e2, respectively. In
the very latest equality the Einstein’s summation rule is used.

Suppose we change the basis, so that the new basis (e′1, e′2, and e′3) is connected
to the old one (e1, e2, and e3) by the relations

e′i = Sji ej, (3.3)

ei = T ji e
′
j, (3.4)

where Sji is a projection of e′i on ej, whereas T ji is a projection of ei on e′j. The
numbers Sji form the direct transition matrix S:

S =

 S1
1 S1

2 S1
3

S2
1 S2

2 S2
3

S3
1 S3

2 S3
3

 . (3.5)

The inverse transition matrix is made of T ji as follows

T =

 T 1
1 T 1

2 T 1
3

T 2
1 T 2

2 T 2
3

T 3
1 T 3

2 T 3
3

 . (3.6)

These two transition matrices are related to each other by the formula

S ·T = I, (3.7)
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where I is the identity matrix. The components of a vector v in the new basis
can be found from the relation

v = viei = viT ji e
′
j =

(
T ji v

i
)
e′j = v′je′j, (3.8)

therefore

v′j = T ji v
i or v′i = T ijv

j. (3.9)

A mathematical object dual to vector is called a co-vector. Its transformation
law is very similar to the one of vector, and is given by the expression

v = vie
i = viS

i
je
′j =

(
Sijvi

)
e′
j

= v′je
′j, (3.10)

therefore

v′j = Sijv
i or v′i = Sji vj. (3.11)

Vectors along with co-vectors are the instances of rank-1 tensors.

Tensors

When dealing with diverse properties of solids, it might happen that scalars
and vectors are not sufficient. The classical illustration of this phenomenon is
conductivity. Consider a conductor exposed to the electric field given by the
vector E. The current density j, i.e., current per unit cross-section normal to
the current, depends on the degree of isotropy of the conductor. In case of an

Figure 3.1: The relation between the electric current density j and the electric field
E in (a) an isotropic conductor and (b) an anisotropic conductor.

isotropic conductor which obeys Ohm’s law, j is parallel and proportional to E
(Fig. 3.1a)

j = σE or j1 = σE1, j2 = σE2, j3 = σE3, (3.12)

where σ is the conductivity. If the conductor is anisotropic, then the connection
between the electric field and the current density is more complicated. For a
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general anisotropic solid every component of j is linearly related to all components
of E (Fig. 3.1b):

j1 = σ11E1 + σ12E2 + σ13E3

j2 = σ21E1 + σ22E2 + σ23E3

j3 = σ31E1 + σ32E2 + σ33E3 (3.13)

where σ11, σ12, ..., σ33 are constants. The σij’s have the physical meaning of
a proportionality coefficient between the current density induced along the i-th
axis, while the electric field is applied along the j-th axis. Thus, in order to specify
the conductivity of a crystal, one has to specify 9 numbers σij (i, j = 1..3). These
numbers can be compiled in a square 3-by-3 matrix: σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .
This matrix is the coordinate representation of the conductivity tensor, where
σij’s are the components of the tensor. The conductivity tensor is an example
of a rank-2 tensor. Table 3.1 contains more examples of second-rank tensor
properties. In general, if a property T relates two vectors p and q in such a way

Table 3.1: Some examples of second-rank tensors relating two vectors [45].

Tensor property Vector given or applied Vector resulting or induced
Electrical conductivity electric field electric current density
Thermal conductivity temperature gradient heat flow density
Permittivity electric field dielectric displacement
Dielectric susceptibility electric field dielectric polarization
Permeability magnetic field magnetic induction
Magnetic susceptibility magnetic field intensity of magnetization

that
p1 = T11q1 + T12q2 + T13q3

p2 = T21q1 + T22q2 + T23q3

p3 = T31q1 + T32q2 + T33q3

where Tij’s are constants, T is said to be a rank-2 tensor with the components: T11 T12 T13

T21 T22 T23

T31 T32 T33

 .
It is useful now to compare the properties of the considered quantities (in three-
dimensional space) with the emphasis on transformation laws of their coordinate



3.1. ELASTICITY IN SOLIDS 13

Table 3.2: Transformation laws for tensors [45]

Name Rank of tensor Transformation law
New in terms of old Old in terms of new

Scalar 0 φ′ = φ φ = φ′

Vector 1 p′i = aijpj pi = ajip
′
j

- 2 T ′ij = aikajlTkl Tij = akialjT
′
kl

- 3 T ′ijk = ailajmaknTlmn Tijk = aliamjankT
′
lmn

- 4 T ′ijkl = aimajnakoalpTmnop Tijkl = amianjaokaplT
′
mnop

representations given in Table 3.2: 1) a rank-0 tensor, also known as a scalar, is
specified by a single number unrelated to any axes of reference;
2) a rank-1 tensor (a vector or a co-vector) is specified by 3 components, each of
which is associated with one of the axes of reference;
3) a rank-2 tensor is specified by 9 components, each of which is associated with
a pair of axes (taken in a particular order).

Generally, a rank-N tensor is specified by 3N components, each of which is asso-
ciated with N axes, taken in a particular order.

It is important to distinguish between the tensor itself and its coordinate rep-
resentation in a particular coordinate system. When a coordinate system is ro-
tated, the coordinates of a tensor, generally, change, while the tensor remains
unchanged.

3.1.3 Stress tensor

In order to introduce the notion of stress, we give here a definition of Nye [45]:
”A body which is acted on by external forces, or, more generally, a body in
which one part exerts a force on neighbouring parts, is said to be in a state of
stress. If we consider a volume element situated within a stressed body, we may
recognize two kinds of forces acting upon it. First of all, there are body forces,
such as gravity, which act troughout the body on all its elements and whose
magnitudes are proportional to the volume of the element. Secondly, there are
forces exerted on the surface of the element by material surrounding it. These
forces are proportional to the area of the surface of the element, and the force
per unit area is called ’stress’.”

Stress can be homogeneous or inhomogeneous. The homogeneous stress is the
one for which the forces acting on the surface of an element of fixed shape and
orientation are independent of the position of the element in the body, otherwise
the stress is inhomogeneous.
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We consider only homogeneously stressed bodies, when all parts of the body
are in statical equilibrium, with no body-forces or body-torques present. In the
further discription a unit cube within the body (Fig. 3.2) is considered, whose
edges are parallel to the cartesian axes. A stress acts upon each face of the

Figure 3.2: The forces on the faces of a unit cube in a homogeneously stressed body.

cube, exerted by the material outside the cube. The stress across each face can
be expressed by three components. The stress notation is the following: σij
denotes the component of stress in the +Oxi direction transmitted across the
cube face which is perpendicular to Oxj. σ11, σ22, σ33 are the normal components
of stress, while σ12, σ21, σ23 etc. are the shear components. The stress is a tensorial
property, and is described by a rank-2 tensor. σij’s are the components of the
stress-tensor in the fixed cartesian basis Ox1x2x3. A positive value of σ11, σ22

or σ33 corresponds to tensile stress, while a negative value is an indication of
compressive stress. Additional information on the stress-tensor, including strict
derivations and proofs can be found somewhere else [45].

3.1.4 Strain tensor

The problem of specifying the state of deformation of a solid body, which we
take up in this chapter, may be approached by considering first the simpler one-
dimensional and two-dimensional cases.

1D-strain

Fig. 3.3a shows an elastic string, it is fixed at the origin 0. After stretching
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Figure 3.3: The deformation of an extendible string: (a) unstretched, (b) stretched.

(Fig. 3.3b), two arbitrary points P and Q on the string move to P ′ and Q′,
respectively. Let

P = x and P ′ = x+ u,

Q = x+ ∆x and Q′ = x+ u+ ∆x+ ∆u,

PQ = ∆x and P ′Q′ = ∆x+ ∆u.

When considering strain, we are interested in the relative changes only, thus the
strain of the section PQ is defined as:

P ′Q′ − PQ
PQ

=
∆u

∆x
.

Making a limiting transition we come up with the strict definition of the strain:

e = lim
∆x→0

∆u

∆x
=
du

dx
.

The variation of the displacement u with x is shown in Figs. 3.4 a and b. If u is

Figure 3.4: The displacement u as a function of x in an extended string; (a) homo-
geneous stretching, (b) inhomogeneous stretching.

a linear functiuon of x (Fig. 3.4a), then the string is stretched homogeneously. A
more general case of inhomogeneous stretching is shown in Fig. 3.4b.
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2D-strain

Let us now consider how to specify the deformation of an elastic plane sheet.
As for the 1D-case, we choose a Cartesian basis, and study how the displace-
ment of the points of the sheet changes with their coordinates. Hereafter only
small displacements are considered. Assume the section PQ (Fig. 3.5), where

Figure 3.5: Two-dimensional strain.

P = (x1, x2) and Q = P + ∆x = (x1 + ∆x1, x2 + ∆x2), maps to P ′Q′ upon de-
formation, with P ′ = P +u andQ′ = Q+u+∆u. It is evident that PQ = ∆x,
P ′Q′ = ∆x + ∆u, thus the relative deformation is P ′Q′ − PQ = ∆u. As
u = u (x1, x2), i.e., it is a function of x1 and x2, one can write its differential
∆u = (∆u1,∆u2):

∆u1 = e11∆x1 + e12∆x2, (3.14)

∆u2 = e21∆x1 + e22∆x2, (3.15)

where eij = ∂ui
∂xj

(i, j = 1, 2). Written in a compact way it turns:

∆ui =
∂ui
∂xj

∆xj = eij∆xj.

As far as the set of eij connects two vectors, the ∆ui and the ∆xj, it is a coordinate
representation of a rank-2 tensor. Any second-rank tensor can be decomposed
into the sum of a symmetrical and an antisymmetrical tensor. In case of [eij] we
write:

eij = εij +$ij,

where εij = 1
2

(eij + eji), and $ij = 1
2

(eij − eji). This division of [eij] into two
parts is illustrated in Fig. 3.6. It is clear, that [εij] describes the very strain, and
is a symmetrical tensor, for

εij =
1

2
(eji + eij) = εji.
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Figure 3.6: A two-dimensional illustration of the proposition: a general deforma-
tion (left-hand diagram) equals a strain (central diagram) plus a rotation (right-hand
diagram).

Instead [$ij] describes a rigid rotation, and is an antisymmetrical tensor, for

$ij = −1

2
(eji − eij) = −$ji.

Finally, we can compile the components of the strain tensor in the matrix form:[
ε11 ε12

ε21 ε22

]
=

[
e11

1
2

(e12 + e21)
1
2

(e12 + e21) e22

]
.

The diagonal components of [εij] are the extensions per unit length parallel to
Ox1 and Ox2, whereas ε12 measures the shear strain.

3D-strain

Specifying the strain in the three-dimensional case is just a straightforward ex-
tension of the two former cases. Again, the variation of the displacement ui as a
function of xi is used to define nine tensor components:

eij =
∂ui
∂xj

(i, j = 1, 2, 3).

The strain tensor [εij] is defined as the symmetrical part of [eij]:

εij =
1

2
(eij + eji) .

The components of strain tensor εij can be put in a matrix: ε11 ε12 ε31

ε12 ε22 ε23

ε31 ε23 ε33

 =

 e11
1
2

(e12 + e21) 1
2

(e13 + e31)
1
2

(e12 + e21) e22
1
2

(e23 + e32)
1
2

(e13 + e31) 1
2

(e23 + e32) e33

 .



18 CHAPTER 3. THEORETICAL BACKGROUND

As for the two-dimensional case, the diagonal components of εij are the stretches
or tensile strains along the corresponding axes. While the other components
indicate the shear strains.

3.1.5 Elasticity tensor

Hooke’s law

If a solid body is exposed to a stress its volume and shape change. When the stress
is below a certain limit, which is individual for each material, the body recovers
its initial state after the stress is removed. This is called elastic deformation.
It might happen that the applied stress is above the elastic limit, and the body
deforms irreversibly, or plastically. It was established that in the case of a small
enough stress, the strain ε can be calculated as a linear function of the stress σ.
Hooke’s law for an isotropic solid is:

ε = sσ,

where s is a constant, which is called the elastic compliance constant or the
compliance. The inverse of the formula is:

σ = cε, c = 1/s,

where c is the elastic stiffness constant, or the stiffness (also known as Young’s
Modulus). In the general case of an anisotropic solid, homogeneous stress and
strain are described as rank-2 tensors. Therefore, the generalized form of Hooke’s
law may be written as:

εij = sijklσkl, (i, j, k, l = 1, 2, 3) ,

where sijkl are the compliances of the crystal. When written in the inverse form
one gets:

σij = cijklεkl,

where the cijkl are the stiffness constants of the crystal.

If two rank-2 tensors Aij and Bkl are related by the equation

Aij = CijklBkl,

the quantities Cijkl form a rank-4 tensor. It follows, therefore, that the elastic
compliance sijkl and stiffness constants cijkl form rank-4 tensors. There are in
total 34 = 81 components of a general elastic compliance or stiffnes tensor, yet
not all of them are independent. As stress tensor σij and strain tensor εkl are
symmetric, each of them has just 6 independent components instead of 9. It
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follows then that, for example, the elastic stiffness tensor gives the connection
between 6 independent components of stress and 6 independent components of
strain, leading to the conclusion that there are only 6 × 6 = 36 independent
components of the elastic stiffness tensor instead of 81. The same is valid for the
components of elastic compliance tensor. When thermodynamics (see 3.1.5) and
the symmetry (see Appendix A) of a crystal are taken into consideration, the
number of independent components might be reduced even further.

The matrix notation

The symmetry of sijkl and cijkl in the first two and the last two suffixes makes
it possible to use the so-called matrix notation. The stress components and the
strain components are written in this notation with a single suffix running from
1 to 6:  σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33

→
 σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 ,
 ε11 ε12 ε31

ε12 ε22 ε23

ε31 ε23 ε33

→
 ε1

1
2
ε6

1
2
ε5

1
2
ε6 ε2

1
2
ε4

1
2
ε5

1
2
ε4 ε3

 .
The factor 1

2
is introduced to make the further equations compact. In the elastic

compliance sijkl and the elastic stiffness cijkl the first and the last pair of indices
are abbreviated into a single one running from 1 to 6 according to Table 3.3.
At the same time, for the sake of compactness of equations in matrix notation,

Table 3.3: Relationships between tensor and matrix indices.

tensor notation 11 22 33 23, 32 31, 13 12, 21
matrix notation 1 2 3 4 5 6

factors of 2 and 4 are introduced for compliances as follows:

sijkl = smn when m and n are 1, 2 or 3,
2sijkl = smn when either m or n are 4, 5 or 6,
4sijkl = smn when both m and n are 4, 5 or 6.

Using the matrix notation, the tensor equation

εij = sijklσkj (i, j, k, l = 1, 2, 3)

turns into
εi = sijσj (i, j = 1, 2, ..., 6) .
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For the cijkl there is no need to introduce factors of 2 or 4. It is enough to
introduce them in one of the sij or cij, the standard convention is to put factors
into sij. Thus:

cijkl = cmn (i, j, k, l = 1, 2, 3;m,n = 1, ..., 6)

The generalized Hooke’s law is written then as:

σi = cijεj (i, j = 1, 2, ..., 6) .

The arrays of sij and cij written out as 6× 6 matrices are:
s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66

 and


c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66


It is important to emphasize, that, though both cij and sij have two suffixes, they
are not the components of a rank-2 tensor, thus the transormation law of rank-2
tensors is not applicable to cij or sij.

The energy of a strained crystal

Imagine a unit cubic crystal subjected to a moderate homogeneous strain εi. If
the strain components are sligntly changed to εi + dεi, then it can be shown [45]
that the work done by the stress components σi, acting on the cube faces reads

dW = σidεi (i = 1, 2, ..., 6) .

If the deformation process is isothermal and reversible the work done is equal to
the increase in the free energy dΨ, per unit volume,

dΨ = dW = σidεi.

Provided Hooke’s law is obeyed the increase of the free energy turns into

dΨ = cijεjdεi.

Thus,
∂Ψ

∂εi
= cijεj.

After differentiating both sides of this equation with respect to εj we get

∂

∂εj

(
∂Ψ

∂εi

)
= cij.
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As Ψ is a function of the state of the body [45], which depends on the strain
components, the order of differentiation makes no difference, i.e.

∂2Ψ

∂εi∂εj
=

∂2Ψ

∂εj∂εi
.

Hence,
cij = cji,

and
sij = sji.

The symmetry of the (cij) and (sij) matrices further reduces the number of in-
dependent elastic constants from 36 to 21.

Integrating equation (18) and using (19) we find that the work necessary to
produce a strain εi, called the strain energy, is

1

2
cijεiεj

per unit volume of the crystal.

3.2 Density functional theory

A rigorous quantum mechanical treatment of atoms, molecules, or solids requires
solving the many-body Schrödinger equation. In its time-independent formula-
tion it takes the form

Ĥn,e|Φ〉 = En,e|Φ〉, (3.16)

where
Ĥn,e = T̂n + T̂e + Ûn−n + Ûn−e + Ûe−e. (3.17)

Here, Ĥn,e is a many-body Hamiltonian that embodies the kinetic energy and
all interactions in the system composed of the nuclei and the electrons. En,e is
the spectrum of the Hamiltonian, |Φ〉 represents the eigenstates of the Hamil-
tonian, T̂n is the kinetic energy operator of the nuclei, T̂e is the kinetic energy
operator of the electrons, Ûn−n is the potential energy operator of the nucleus-
nucleus interaction, Ûn−e is the potential energy operator of the nucleus-electron
interaction, and Ûe−e is the potential energy operator of the electron-electron
interaction. Due to a significant difference in the masses of nuclei and electrons
– nuclei are 103–104 times heavier than electrons – electrons adjust to a change
of the position of nuclei almost instantaneously, and thus, it is a common prac-
tice to separate the electronic and the nuclear degrees of freedom. That is, the
problem of interacting nuclei and electrons reduces to that of interacting elec-
trons in a constant Coulomb potential V of steady nuclei. This simplification is
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known as Born-Oppenheimer approximation. Ommiting nuclear kinetic energy
and nucleus-nucleus interaction operators, equations 3.16 and 3.17 turn into

Ĥ|Ψ〉 = E|Ψ〉, (3.18)

where
Ĥ = T̂ + V̂ + Û , (3.19)

and

T̂ = T̂e, (3.20)

V̂ = Ûn−e, (3.21)

Û = Ûe−e. (3.22)

Here, |Ψ〉 symbolizes the eigenstates of Ĥ. |Ψ〉 can be represented in the po-
sition basis as Ψ(r1, r2, ..) – a many-body wavefunction of interacting electrons
in an external potential of nuclei. It is possible to solve Eq. 3.18 for systems
composed of few electrons, i.e., to find the many-body wavefunction. Despite a
certain success of this approach in describing small molecules, its computational
demands rapidly become prohibitive as the number of the considered electrons
increases. This problem is known as Van Vleck catastrophe or the exponential
wall problem [48].

To cope with systems of many electrons, an elegant idea was proposed by Hohen-
berg and Kohn [49] in 1964, that can be described by the two following theorems:

1. The full many-particle ground state is a unique functional of the ground
state electronic density [49], i.e.,

Ψ0(r1, r2, .., rN) = Ψ0[n0(r)], (3.23)

where Ψ0 is the ground state wavefunction of N interacting electrons in
the external potential V (r), ri are the positions of electrons, and n0(r) is
the ground state electronic density – a function of three spatial coordinates
given by a vector r.

2. The ground state electronic density n0(r) minimizes the energy functional
E[n(r)], i.e.,

E[n0(r)] ≤ E[n(r)], (3.24)

where

E[n(r)] = 〈Ψ[n(r)]|Ĥ|Ψ[n(r)]〉 = (3.25)

= 〈Ψ[n(r)]|T̂ + Û + V̂ |Ψ[n(r)]〉 = (3.26)

= 〈Ψ[n(r)]|T̂ + Û |Ψ[n(r)]〉+ 〈Ψ[n(r)]|V̂ |Ψ[n(r)]〉 = (3.27)

= F [n(r)] +

∫
V (r)n(r)dr. (3.28)
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Here, F [n(r)] is a universal functional of the electronic density n(r), which
desribes the kinetic and potential energies of interacting electrons.

The exact form of F [n(r)] is not known; however, Kohn and Sham [50] wrote it
as

F [n(r)] = Ts[n(r)] +
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)], (3.29)

where Ts[n(r)] is the kinetic energy functional for non-interacting electrons, the
second term is the Hartree energy, and Exc[n(r)] is referred to as the exchange-
correlation energy functional. Taking into account 3.29, Kohn and Sham con-
cluded that the ground state density can be obtained by solving the single-particle
equation [48] (

−1

2
∇2 + veff (r)

)
φj(r) = εjφj(r), (3.30)

where the effective potential veff (r) is defined as

veff (r) = V (r) +

∫
n(r′)

|r − r′|
dr′ + vxc(r), (3.31)

and the total electronic density is given by

n(r) =
N∑
j=1

|φj(r)|2. (3.32)

The last term in Eq. 3.31, i.e., vxc(r) is called the exchange-correlation poten-
tial and is defined as functional derivative of the exchange-correlation energy
functional

vxc(r) =
δ

δñ(r)
Exc[ñ(r)]|ñ(r)=n(r). (3.33)

Equations 3.30–3.32 are known as Kohn-Sham (KS) equations. After solving
them self-consistently, the ground state energy is given by

E =
N∑
j=1

εj + Exc[n(r)]−
∫
vxc(r)n(r)dr − 1

2

∫
n(r)n(r′)

|r − r′|
drdr′. (3.34)

Unfortunately, the exact expressions for Exc[n(r)], and thus for vxc(r), are not
known. Therefore, the crucial point for practical applications of the KS equations
is to find a good approximation to the exchange-correlation functional.



24 CHAPTER 3. THEORETICAL BACKGROUND

3.2.1 Approximations for Exc

Historically, the first and simplest approximation for the exchange-correlation
functional is the local-density approximation (LDA), that assumes Exc to be
locally equal to that of the homogeneous electron gas of density n(r):

ELDA
xc [n(r)] =

∫
εhom
xc (n(r))n(r)dr. (3.35)

Here εhom
xc (n(r)) is the exchange-correlation energy per electron of the homo-

geneous electron gas [50–52]. Despite the clearly unrealistic assumption of the
homogeneity, LDA gives a reasonable agreement with experimental values of stuc-
tural parameters of molecules and solids, typically, underestimating them by a
few percent. Binding energies, however, are overestimated by as much as 10-20%.

The next step in search for an approximation to Exc[n(r)] that would perform
better than LDA, was to incorporate the explicit dependence on the density
gradient in the exchange-correlation functional

EGGA
xc [n(r)] =

∫
f(n(r), |∇n(r)|)n(r)dr, (3.36)

giving rise to a family of generalized gradient approximations (GGAs) [53]. Most
popular formulations of GGA are the Perdew-Wang functional (PW91) [54], the
Perdew-Burke-Ernzerhof functional (PBE) [55] and its improved version PBEsol [56],
revPBE [57], and RPBE [58]. GGAs give much better results for atomisation en-
ergies and enthalpies of formation, compared to LDA [53–55, 59–62]. However,
in contrast to LDA, GGAs tend to overestimate the lattice parameters and, thus,
may give incorrect results for related properties, like elasticity, phonons, etc. [63].

Even more complex approximations to Exc[n(r)] which are aiming at improving
over LDA and GGA, comprise meta-GGA’s [64, 65], for which the dependence
on the kinetic energy density is included, and hybrid functionals [66–68], which
use an admixture of exact exchange via the Hartree-Fock formalism.

We use the Perdew-Burke-Ernzerhof functional (PBE96) in this work.



Chapter 4

The TiO2-Al2O3 system

4.1 Introduction

One of the purposes of this chapter is to introduce the experimentally known
facts about the TiO2-Al2O3 interface in thin films used as a prototype material
for this study. These films were produced at [69, 70] by sputter deposition and
analyzed by X-ray diffraction (XRD) and X-ray pole figures methods at [71, 72]
as described in [73]. Another aim of this chapter is calculating structural and
elastic properties of bulk Al2O3 and TiO2, and comparing them to experimental
and theoretical results from literature. At the end of the chapter, results on the
atomic stacking at the interface are presented, and a preliminary model of the
interface is described.

4.2 Experimental data

It is found in [73] that the only phase of the TiO2 film deposited on α-Al2O3

(0001) substrate is rutile. Moreover, the [100] axis of rutile-TiO2 coincides with
the [001] axis of α-Al2O3 [73]. The epitaxial relationships established in [73]
are [010]TiO2 || [010]Al2O3 and [001]TiO2 || [210]Al2O3. It is noticeable, that the
found crystallographic relations allow for a simple geometrical explanation. The
graphical representation, obtained using XCrySDen [74], is given in Fig. 4.1. The
symmetries of the two lattices are very close to each other. Both of them exhibit
hexagon-like patterns of the oxygen and metal (Al, Ti) sub-lattices. Topologi-
cally, the coincidence is achieved by placing the rutile-TiO2 (100) [003] × [010]
supercell [75] on the Al2O3 (001) [210] × [010] one. This leads to the following
interface crystallography (adopting the notation by Ashcroft and Mermin [76]):
(100) TiO2 || (001) Al2O3, with [001] TiO2 || 〈210〉 Al2O3 and [010] TiO2 || 〈010〉
Al2O3. Since aluminum oxide possesses a three-fold symmetry axis along [001],
there are three equivalent ways of matching at this interface.
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Figure 4.1: Epitaxy of rutile on sapphire. Ball-stick models of α−Al2O3 (left) and
rutile-type TiO2 (right) crystal structures, viewed along the [001] and [100] axis, respec-
tively. Magenta, red, and gray circles correspond to aluminum, oxygen, and titanium
atoms, respectively. The blue frames represent unit-cell borders. The yellow areas
denote the units, which allow for coincidence. Reproduced from [73].

4.3 Bulk materials

4.3.1 Computational parameters

The calculations are carried out in the framework of density functional theory
(DFT), using the plane-wave ultra-soft pseudopotentials as implemented in the
Quantum ESPRESSO [77] code. The PBE GGA [78] exchange-correlation func-
tional is used to account for exchange-correlation effects. The partitioning of
electronic shells into pseudo-core/valence is done in the following way: In Ti,
3s23p64s23d2 are treated as valence electrons, using the Vanderbilt pseudoiza-
tion scheme; in Al, the 3s23p1 shells are considered as valence states, and the
Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) [79, 80] pseudoization scheme with
non-linear core corrections is applied; in O, 2s22p4 are dealt with as valence elec-
trons, using the RRKJ pseudoization, again. Other computational parameters
are compiled in Table 4.1.

Table 4.1: Computational parameters.

Compound PW cut-off [Ry] Density cut-off [Ry] Monkhorst-Pack mesh
Al2O3 35 350 4x4x4 (shifted)
TiO2 50 500 6x6x9 (shifted)
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4.3.2 Al2O3

Crystallographic data of the most studied phases of Al2O3 is collected in Table 4.2.
In addition, there is evindence for the existence of more exotic phases, like β, γ’,
δ, ε, η, κ, κ’, µ, and ν [81]. As the substrate used in the process of TiO2 film

Table 4.2: Phases of alumina (Al2O3) together with the corresponding lattice param-
eters [81].

Phase Spacegroup a, b, c [Å] c/a α, β, γ

α R3̄c a=4.7589 2.730
D6

3d c=12.991

γ Fd3m a=7.911
O7
h

θ C2/m a=11.83 β=104.0
C3

2h b=2.92
c=5.64

λ Pbmm a=7.63
D5

2h b=7.63
c=2.89

growth was α-Al2O3, only this phase is considered in further calculations. The
crystal structure of α-Al2O3 is shown in Fig. 4.2. Wyckoff positions of aluminum
and oxygen atoms in the primitive unit-cell of α-Al2O3 are given in Table 4.3.

The calculated lattice parameters of α-Al2O3 are summarized in Table 4.4. Except
a slight overestimation of the unit-cell volume, which is typical for GGA, a good
agreement with experimental values is found.

Following Ref. [86] we have calculated elastic constants of α-Al2O3, which are
given in Table 4.5. The deviation from experimental elastic constants is about
10%. One detail has to be mentioned here: the sign of C14 was long believed to
be negative, but it was recently proved by Gladden et al.[89] to be positive . The
value of C14 from Ref. [87] is highlighted using bold digits, since in this work a
non-standard setup was used, leading to a negative sign.
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Figure 4.2: Top view (a) and side-view (b) of the unit-cell of α-Al2O3.

4.3.3 TiO2

The most known phases of titanium dioxide are described in Table 4.6. The only
phase of TiO2 found in the thin film is the rutile-phase, thus further calculations
are restricted to rutile-TiO2. Its crystal structure is shown in Fig. 4.3. The Wyck-

Figure 4.3: Top view (a) and side-view (b) of the unit-cell of rutile-TiO2.

off positions of the Ti and the O atoms in the primitive unit-cell of rutile-type
TiO2 are presented in Table 4.7, while the corresponding bulk lattice parameters
are presented in Table 4.8. The agreement of the lattice parameters calculated in
this work with both, experimental and theoretical results present in literature, is
again very good, as shown in Table 4.8. Also, the elastic constants of rutile-TiO2,
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Table 4.3: Wyckoff positions of atoms in the primitive (rhomobohedral) unit-cell of α-
Al2O3 (spacegroup #167) [82]. The values of x obtained in this work are the following:
xAl=0.35212, and xO=0.94382.

Atom Wyckoff position Multiplicity Coordinates
Al c 4 (x, x, x)

(-x+1/2, -x+1/2, -x+1/2)
(-x, -x, -x)

(x+1/2, x+1/2, x+1/2)
O e 6 (x, -x+1/2, 1/4)

(1/4, x, -x+1/2)
(-x+1/2, 1/4, x)
(-x, x+1/2, 3/4)
(3/4, -x, x+1/2)
(x+1/2, 3/4, -x)

Table 4.4: Lattice parameters of bulk α-Al2O3 in Å. Subscripts hex and rho cor-
respond to hexagonal (conventional) and rhombohedral (primitive) unit cells, respec-
tively.

Source ahex chex arho αrho

Expt. [83] 4.760 12.993 5.129 55.290◦

Expt. [84] 4.758 12.990 5.128 55.286◦

This work (PBE) 4.782 13.056 5.154 55.281◦

Ref. [85] (PBE) 4.800 13.065 5.165 55.433◦

which are presented in Table 4.9, are in good agreement with those provided in
literature.

4.4 Interface model

To identify possible stackings at the interface, we analyze the atomic-layer stack-
ing of bulk sapphire and rutile. The cross-sections of both oxides are given in
Fig. 4.4. The repeat unit of the α-Al2O3 stacking along [001] is an -[Al-O-Al]-
block. Thus, there are three different terminations possible, when cleaved along
(001). For convenience, hereafter they are refered to as A1, A2, and A3, each one
corresponding to the crystal below one of the dashed lines in Fig. 4.4. The A1 or
single-Al termination is the stoichiometric one, whereas A2 (O-termination) and
A3 (double-Al termination) break stoichiometry. The sequence -[O-Ti-O]- is the
stacking repeat unit of rutile TiO2 along [100]. Similar to sapphire, it allows for
three possible terminations, upon cleavage along (100). Later we refer to them
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Table 4.5: Elastic constants of bulk α-Al2O3 in GPa. The boldfaced value is negative
due the non-standard setup used in the corresponding reference.

Source C11 C12 C13 C14 C33 C44

Expt. [87] 495 160 115 -23 497 146
Expt. [88] 512 178 149 21 525 146
This work (GGA) 462 144 104 20 466 137
DFT (GGA) [87] 437 144 101 21 443 125

Table 4.6: Phases of titania (TiO2) together with the corresponding lattice parame-
ters [90].

Phase Spacegroup a, b, c [Å] c/a

Brookite Pbca a=9.1819
D15

2h b=5.4558
c=5.1429

Anatase I41/amd a=3.7852 2.5134
D19

4h c=9.5139

Rutile P42/mnm a=4.593659 0.644080
D14

4h c=2.958682

Table 4.7: Wyckoff positions of atoms in the primitive unit-cell of rutile-TiO2 (space-
group #136) [91]. The value of x obtained in this work is 0.30505.

Atom Wyckoff position Multiplicity Coordinates
Ti a 2 (0, 0, 0)

(1/2, 1/2, 1/2)
O f 4 (x, x, 0)

(-x, -x, 0)
(-x+1/2, x+1/2, 1/2)
(x+1/2, -x+1/2, 1/2)
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Table 4.8: Lattice parameters of bulk TiO2 (rutile) in Å.

Source a c c/a
Expt. [92] 4.582 2.953 0.644
Expt. [93] 4.634 2.991 0.645
This work (PBE) 4.633 2.960 0.638
Ref. [94] 4.639 2.983 0.643

Table 4.9: Elastic constants of bulk rutile-TiO2 in GPa.

Source C11 C12 C13 C33 C44 C66

Expt. [95] 267 180 146 479 123 189
Expt. [87] 269 177 146 480 124 192
This work (GGA) 259 170 148 474 115 213
DFT (GGA) [87] 270 172 147 467 115 216

Figure 4.4: Atomic layer stacking in α−Al2O3 (left) projected onto (210), and in
rutile-type TiO2 (right) projected onto (001). The minimal repeat units are highlighted.
Dashed lines indicate possible cleavage planes. Reproduced from [73].
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as single-O temination or T1, Ti-termination or T2, and double-O termination or
T3. The T1 maintains stoichiometry, but the latter two are non-stoichiometric.
Since each termination of Al2O3 can in principle be combined with any termina-
tion of TiO2, there are 9 possible variants of stacking at the interface. However,
due to the variance of atomic densities at different planes, some ways of stack-
ing could be selected as more stable a priori, because they reveal better atomic
coordination at the interface. This observation, based on the crystal chemistry
method by Andeen et al. [96] allows to reduce the range of considered structures
to four sequences, namely, A2-T2, A2-T3, A3-T2, and A3-T3. Two atomic-layer
arrangements, A2-T2 (-Al-Al-O-|-Ti-O-O-) and A3-T3 (-O-Al-Al-|-O-O-Ti-), have
similar structure, both having bulk-like metal-oxygen-metal stacking, and there-
fore should have similar properties. The A2-T3 (-Al-Al-O-|-O-O-Ti-) stacking is
very unfavorable, as it leads to an oxygen aggregate surrounded by metal atoms,
which is unlikely due to the highly reactive nature of oxygen. And, finally, A3-T2

(-O-Al-Al-|-Ti-O-O-) represents oxygen-poor stacking with loose coordination.

In order to study the different interface structures we use the supercell ap-
proach [75]. The supercells are constructed by repeating layers of TiO2 and
Al2O3 periodically, thus forming sandwich-like super-lattices, i.e., no vacuum is
included. Special care is taken to keep inversion symmetry, since this decreases
computation time, allows to avoid dipoles (and therefore dipole corrections), and
leads to only one single interface type in the supercell.

The difference between the lattice parameters of the materials forming the inter-
face, also known as the lattice misfit problem, is a source of complications, as we
have to construct a supercell, which contains both materials, and fulfills periodic
boundary conditions at the same time. The treatment of this problem highly
depends on how large the misfit is. Small misfits are commonly considered in the
framework of pseudomorphic growth, i.e., the over-layer is supposed to accept
the substrate lattice parameters. The supercell of a system with a large misfit, in
turn, is constructed by using multiple unit-cells of both counterparts in an appro-
priate ratio [97]. As to moderate misfits, there is no general approach available so
far. In Chapter 5 we introduce an approach, named ”stress balancing”, to cope
with the problem. The idea behind the method is to extend the pseudomorphic
growth model by taking into account linear elasticity in the most general, i.e.,
tensorial, description.

4.5 Conclusions

It is established experimentally, that TiO2 grows as rutile-phase on (001) α-Al2O3

substrate. The epitaxial relationships obtained by XRD, and lattice symmetry
analysis are the following: (100) TiO2 || (001) Al2O3, with [001] TiO2 || 〈210〉
Al2O3 and [010] TiO2 || 〈010〉 Al2O3.



4.5. CONCLUSIONS 33

Structural parameters and elastic conststants of bulk Al2O3 and TiO2 obtained
in this work, have shown a good performance of the pseudo-potentials evidenced
by reasonable correspondence to available experimental and theoretical results.

Finally, a model of the interface stacking is proposed, that is further used in the
following chapters to construct superlattices containing a range of TiO2-Al2O3

interfaces with different atomic stacking. These superlattices are used then to
study their thermodynamic, electronic, and mechanic properties.
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Chapter 5

Stress balancing method

5.1 Introduction

Lattice misfit plays an important role in film growth. A moderate misfit leads
to pseudomorphic growth mode up to a certain critical film thickness, after that
misfit dislocations appear [98–100]. Accomodation of high misfit is more com-
plicated. For instance, Erwin and colleagues [101] observed experimentally and
explained theoretically a tilt mechanism allowing for an epitaxial interface be-
tween materials with strong lattice misfit. The problem of misfit accomodation
in atomistic modeling is an issue, especially for superlattices. There is a universal
approach [102], that is based on combining multiples of unit-cells of both materi-
als forming the superlattice along each misfit direction such that the misfit strain
is minimized. While this method is computationally effective for huge misfits, it
becomes prohibitively inefficient for ab initio modeling of systems with moderate
misfit. Moveover, for some combinations of materials there is no coincidence-site
lattice (CSL); therefore, for such systems, any supercell leads to misfit strain. In
such cases, an optimal supercell must be constructed in a way, that leads to a
minimum of elastic strain energy. Such a method, based on linear elasticity, was
proposed for cube-on-cube epitaxy by Van de Walle and Martin [103]. Here, we
propose a general approach – termed stress balancing – that extends the method
of Van de Walle and Martin to any type of epitaxy.

The chapter is organized in the following way: First, a brief explanation of the
core idea of the method is given using a one-dimensional mechanical model. Then,
the approach is illustrated in three dimensions. After that, the results for TiO2-
Al2O3 are presented, and the chapter is concluded.
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5.2 One-dimensional case

The easiest way to illustrate the method is to consider the 1D case. Imagine two
springs, each with different force constants and lengths, attached to a fixed wall
on one side, and to a second wall on the other, movable only in the direction
parallel to the springs, as depicted in Fig. 5.1. The equilibrium configuration

Figure 5.1: One-dimensional illustration of the stress balancing approach. Two
springs are mounted to a steady wall (left box), and to a movable one (right box).
The two springs possess the different force constants k1 and k2 (to model different elas-
ticity), and equilibrium lengths L1 and L2 (to model a misfit). Reproduced from [73].

of the system, i.e., the optimal distance, is defined by the minimum of elastic
deformation energy, or, equivalently, by zero net-force (stress). Symbolically it
can be represented as follows. The potential energy is

U(x) = U1(x) + U2(x) =
k1

2
(x− L1)2 +

k2

2
(x− L2)2. (5.1)

Here, k1 and k2 are the force constants of the first and the second spring, while
L1 and L2 are their equilibrium lengths (see Fig. 5.1). The net-force reads

F = −dU
dx

= −dU1

dx
− dU2

dx
= F1 + F2 =

= k1(L1 − x) + k2(L2 − x). (5.2)

The equilibrium conditions are

U(x0) = minU(x), (5.3)

and, equivalently,
F = F1 + F2 = 0. (5.4)

The latter condition, i.e., balance of forces (or stresses in the higher-dimensional
cases) gives rise to the name of the method. The extension of the method to the
3-dimensional case demands to take the anisotropic nature of elasticity in matter
into account. This leads to a slightly more complicated algebra, while, formally,
the basic equations of stress balancing remain the same and will be described in
the following.
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5.3 Three-dimensional case: slabs of equal thick-

ness

In three dimensions, we derive equations for a particular type of epitaxy –
rectangle-on-rectangle – that is inspired by the TiO2-Al2O3 interface. The method,
however, is general and can be applied to any kind of epitaxy. The illustration
of the geometrical setup for the stress balancing is given in Fig. 5.2. A three-

Figure 5.2: Geometrical setup for the illustration of the stress balancing method.
The left panel contains a three-dimensional sketch of the supercell. On the right, there
is an in-plane scheme of the interface with undistorted surfaces of the substrate (blue
rectangle) with its vertex coordinates (as1; as2), the overlayer (red rectangle) with vertex
coordinates (ao1; ao2), and the frame (dashed line) with coordinates (A1;A2) to which
both rectangles have to adjust in order to achieve coincidence. Reproduced from [73].

dimensional sketch of the supercell, that contains two parallel slabs in registry to
each other is shown in the left panel of Fig. 5.2. In the right panel of Fig. 5.2,
there is a scheme of the overlayer and the substrate surfaces projected onto x1x2-
plane, that are depicted as overlayed rectangles. The coherency strains have not
been imposed on them yet. These rectangles are completely described in a given
cartesian frame by the coordinates of their top right vertices. The dashed line
indicates the frame to which both rectangles have to adjust in order to achieve co-
incidence. Geometrically, the frame is also fully described by its vertex A(A1,A2).
The directions x1, x2, and x3 in Fig. 5.2 correspond to [001] TiO2 // 〈210〉 Al2O3,
[010] TiO2 // 〈010〉 Al2O3, and [100] TiO2 // [001] Al2O3, respectively.

First, consider the in-plane relations. Since the deformed lattices of substrate and
over-layer have to match, it is convenient to write strain equations introducing
the two parameters P1 and P2, so that A1 = as

1+P1(ao
1−as

1), A2 = ao
2+P2(as

2−ao
2).

Here, A1 and A2 are the in-plane lattice constants of the combined system, and
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0 ≤ Pi ≤ 1. Defining the lattice misfits µ1 and µ2 as

µ1 =
ao

1 − as
1

as
1

, (5.5)

µ2 =
ao

2 − as
2

as
2

, (5.6)

(5.7)

we write down the in-plane strain components for the substrate as follows:

es
1 =

A1

as
1

− 1 =
as

1 + P1(ao
1 − as

1)

as
1

− 1 =

=
ao

1 − as
1

as
1

P1 = µ1P1 (5.8)

es
2 =

A2

as
2

− 1 =
ao

2 + P2(as
2 − ao

2)

as
2

− 1 =

=
ao

2

as
2

− P2
ao

2 − as
2

as
2

− 1 = µ2 + 1− P2µ2 − 1 =

= µ2 − µ2P2 = µ2(1− P2). (5.9)

The corresponding components of the overlayer are:

eo
1 =

A1

ao
1

− 1 =
as

1 + P1(ao
1 − as

1)

ao
1

− 1 =

=
as

1

ao
1

(
1 + P1

ao
1 − as

1

as
1

)
− 1 =

=

(
1

1 + µ1

)
· (1 + P1µ1)− 1 =

µ1

1 + µ1

(P1 − 1) (5.10)

eo
2 =

A2

ao
2

− 1 =
ao

2 + P2(as
2 − ao

2)

ao
2

− 1 =

= P2
as

2 − ao
2

ao
2

= −a
s
2

ao
2

· a
o
2 − as

2

as
2

P2 = − µ2

1 + µ2

P2. (5.11)

The strain components es
3 and eo

3 (normal to the interface) are not directly cou-
pled to each other. As to the shear strain components (e4, e5, and e6) of both
slabs, they are equal to the supercell shear strain by construction. Applying
Hooke’s law, all stress components are expressed as follows:

σs = Cs · es (5.12)

es = [es
1 es

2 es
3 e4 e5 e6] (5.13)

σo = Co · eo (5.14)

eo = [eo
1 eo

2 eo
3 e4 e5 e6] (5.15)



5.4. THREE-DIMENSIONAL CASE: SLABS OF DIFFERENT THICKNESS39

where es (eo) and Cs (Co) are the substrate (over-layer) strain-vector and elastic-
ity matrix, respectively. The equilibrium condition for the supercell is the same
as in the 1D case:

σs + σo = 0 (5.16)

In coordinate form, the equation turns to the following set of equations:

σs
1 + σo

1 = 0, (5.17)

σs
2 + σo

2 = 0, (5.18)

σs
3 = 0, (5.19)

σo
3 = 0, (5.20)

σs
4 + σo

4 = 0, (5.21)

σs
5 + σo

5 = 0, (5.22)

σs
6 + σo

6 = 0. (5.23)

The different form of equations 5.19 and 5.20 as compared to the rest of equations
is the consequence of the geometrical setup – the relaxation along x3 is not
restricted due to the presence of a gap between the slabs. The analysis of the
set of equations 5.17 – 5.23 shows that there are 7 variables, namely: P1, P2, es

3,
eo

3, e4, e5, e6, and 7 equations. Therefore, the problem is reduced to a 7th order
linear system, and it possesses just one solution.

5.4 Three-dimensional case: slabs of different

thickness

Equations 5.17 – 5.23 use the assumption of equal thickness of the two slabs
forming the superlattice. In the case of different thickness, for instance ds for the
substrate and do for the overlayer, these equations have to be rewritten in the
following way

ws · σs
1 + wo · σo

1 = 0, (5.24)

ws · σs
2 + wo · σo

2 = 0, (5.25)

σs
3 = 0, (5.26)

σo
3 = 0, (5.27)

ws · σs
4 + wo · σo

4 = 0, (5.28)

ws · σs
5 + wo · σo

5 = 0, (5.29)

ws · σs
6 + wo · σo

6 = 0, (5.30)
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where ws and wo are the weight factors defined by the relationships

ws =
ds

ds + do

, (5.31)

wo =
do

ds + do

. (5.32)

5.5 Results

Based on the bulk lattice parameters from Section 4.3 and epitaxial relationships
discussed in Section 4.2, we determine the lattice misfits of the TiO2-Al2O3 inter-
face. Their values are summarized in Table 5.1. As a next step, we are looking
for the supercell geometry with minimum elastic strain energy, by using the bulk
elastic properties of substrate and overlayer. The latter relate the stresses to
the strains via Hooke’s law. In order to express these relations numerically, we
transform the bulk elastic tensors to the common coordinate system given by the
supercell geometry, applying the following transformation [45]:

C̃ijkl = Spi S
q
jS

r
kS

s
l Cpqrs. (5.33)

Here, C and C̃ are the bulk and slab elastic tensors, respectively, and S is the
mapping matrix from the standard bulk to the slab Cartesian coordinate system.
Every index (i, j, k, l, p, q, r, s) runs from 1 to 3. The mapping matrices are:

SAl2O3 =


√

3
2
−1

2
0

1
2

√
3

2
0

0 0 1

 STiO2 =

 0 1 0
0 0 1
1 0 0

 .
Interface structure, bulk lattice parameters, and elastic tensors are the only quan-
tities required as input for the stress balancing method. In principle, whenever
possible one has to use the flavor of the method that allows to take into account
the ratio between the thicknesses of slab of the overlayer and the substrate as
described in Section 5.4. However, here the modification of the method is used,
that assumes equally thick slabs of the overlayer and the substrate, employing
derivations from Section 5.3. It is done this way in order to ensure a common
framework (fixed in-plane lattice parameters) for the convergence studies of the
work of separation as a function of slab thickness. The numerical values as re-
sulting from the method are provided in Table 5.2.

5.6 Conclusions

In this chapter, an approach named stress balancing was introduced to cope with
the problem of the lattice misfit. The method was applied to construct a TiO2-
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Table 5.1: The lattice misfit along the ith direction (i = 1, 2), µi = (ao
i − as

i) /a
s
i ,

where superscripts “s” and “o” correspond to the lattice parameters of substrate and
overlayer, respectively. For Al2O3 the lattice parameters of the conventional (hexago-
nal) unit cell are used.

Direction i 1 2
[001]TiO2 || 〈210〉Al2O3 [010]TiO2 || 〈010〉Al2O3

asi
√

3× aAl2O3 aAl2O3

aoi 3× cTiO2 aTiO2

µi [%] 7.2 -3.1

Table 5.2: Supercell parameters leading to minimal strain energy according to the
stress balancing model. The symbols es3 and eo3 are used for the strain components
normal to the interface of substrate and over-layer slabs, respectively.

a [Bohr] b [Bohr] es
3 eo

3 α β γ
16.171 8.930 0.9952 1.0075 89.85o 90.00o 90.00o

Al2O3 superlattice, which is a prototype model for studying the properties of the
TiO2(100)-Al2O3(001) interface.

Before starting with the evaluation of the work of separation, the electronic, and
the mechanical properties, the atoms of the constructed superlattice should be
relaxed, and the optimal interslab spacing should be defined. The results of
relaxation are presented in the next chapter.
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Chapter 6

Optimization of the interface
structure

6.1 Introduction

Before computing and evaluating interface properties, the equilibrium structure
has to be obtained by minimizing the forces that act on the atoms within the
considered supercell. The results of such relaxation are presented and discsussed
in this chapter. The optimal structures are characterized in terms of radial and
angular distributions of atoms. The chapter ends with concluding remarks.

6.2 Results

After obtaining the equilibrium supercell geometry from stress balancing, the
inter-slab separation, i.e., the distance between two slabs, is optimized for each
considered stacking using two approaches – static and relaxed – which give us the
static separation and the relaxed separation, respectively. The static separation

Table 6.1: Optimal inter-slab separations (∆) for different stacking.

Stacking A2-T2 A2-T3 A3-T2 A3-T3

∆ (static) [bohr] 2.47 2.86 4.49 1.49
∆ (relaxed) [bohr] 2.49 2.65 3.96 1.39

is found, when all atoms of each slab are kept fixed to maintain the structural
arrangement of the bulk materials, i.e., only the distance itself is varied. The
relaxed separation is obtained allowing four atomic layers from each side of both
slabs to relax. To optimize the atomic positions, we use the BFGS method [104].
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The value of the inter-slab separation that minimizes the total energy is called
optimal. The optimal values of inter-slab separation are shown in Table 6.1. The
results of atomic relaxation are presented and discussed in the next sections.

6.2.1 A first view

The relaxed interface structures are presented in Fig. 6.1. As predicted in Sec-

Figure 6.1: Relaxation of the A2-T2 (a), A2-T3 (b), A3-T3 (c), and A3-T2 (d) struc-
tures from 2 different projections. The structure in the background (foreground) corre-
sponds to the initial (optimized) geometry. Atomic species are shown in different color:
Al(magenta), Ti(grey), and O(red). Reproduced from [73].

tion 4.4, two ways of stacking (A2-T3 and A3-T2) that lead to an under-coordination
of interface atoms reveal strong relaxation. It is interesting to note a few features
of A2-T3 and A3-T2: 1) In the course of relaxation, the double-O-terminated
titanium dioxide slab of A2-T3 becomes almost a single-O-terminated one, as
shown in Fig. 6.1b. 2) According to Fig. 6.1d, the metal-to-metal stacked A3-T2

demonstrates a repulsion of Ti atoms from the double-Al-terminated Al2O3 slab,
so to maintain an average bond-length of approximately 5.0 Bohr. 3) Even after
relaxation both structures possess poor coordination, and therefore weak binding.
A2-T2 and A3-T3 relax in a similar manner, that differs from the manner of A2-
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T3 and A3-T2. Here, the Ti-layer closest to the interface experiences a wave-like
relaxation, at the same time the Al double-layer is affected at most locally.

6.2.2 Relaxation profiles

Visual inspection of the results of relaxation gives us an idea about the most
prominent stacking at the interface, i.e., the one, which leads to the best coor-
dination and, thus, compact arrangement of atoms. There are 2 favorites iden-
tified, namely, A2-T2 and A3-T3. The next step is to quantify the relaxation.
The simplest property to look at is the atomic displacement. For an atom α the
displacement is defined as

δα = [δαx , δ
α
y , δ

α
z ] = [xαopt − xα0 , yαopt − yα0 , zαopt − zα0 ] = rαopt − rα0 ,

where rα0 and rαopt are the initial and the optimized positions of the considered
atom. We can investigate the displacements of any single atom within the cell
using δ’s; however, they are not convenient to quantize the relaxation of all atoms
at once, i.e., to see the whole picture of relaxation. Instead, we can use these
values to calculate the net relaxation profile (a vectorial function)

∆(z) = [∆x(z) , ∆y(z) , ∆z(z)] =
1

Nz

Nz∑
i

δαi , zαi
0 = z,

where Nz is the number of atoms in the cell, whose z-component of the initial
position, i.e., z0 is equal to z (argument of the function). The norm, or the
length of ∆(z), i.e., ||∆(z)|| describes the average net relaxation as a function
of z (the direction perpendicular to the interface). The components of ∆(z),
i.e., ∆x(z), ∆y(z), and ∆z(z) show the average net displacements of atoms along
the corresponding axis (x, y, or z). Another useful function is the net absolute
relaxation profile (a scalar function)

|∆|(z) =
1

Nz

Nz∑
i

||δαi||, zαi
0 = z,

which is defined in almost the same way as ∆(z), except that the δ’s are sub-
stituted by their norm, i.e., by ||δ||. The net absolute relaxation profile show us
how much relaxation happens at every atomic layer, i.e., how far the atoms move
from their initial positions in average.

The relaxation profile of A2-T2 is given in Fig. 6.2. |∆|(z) is confined by the
fixed atomic layers from both sides of the interface, it rises when approaching
the IF and is slightly above 0.2 Å for oxygen atoms situated right at the IF.
The components of ∆(z) evolve differently. There are just slight changes in the
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x-component of atoms across the interfacial region. In contrast, the y- and z-
components change significantly, though the shape of the y-component is similar
to the shape of sinc(z) = sin(z)/z, while the the shape of the z-component is
sawtooth-like.

There are similarities to A2-T2 in the character of relaxations exhibited by A3-T3

as shown in Fig. 6.2. Here, the biggest peaks of |∆|(z) appear in the layers a bit
away from the interface itself. In TiO2, the largest peak is on the oxygen layer
next to the interface. In Al2O3, the biggest relaxations are observed in the second
aluminum layer away from the interface. Despite the fact that the x-component
of ∆(z) hardly differs from zero as for A2-T2, it should be noted that the shapes
of the y- and z-components are different. As compared to A2-T2, the relaxation
of A3-T3 in the y- and z-direction is more pronounced in the titanium dioxide
part.
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Figure 6.2: Relaxation profiles of the A2-T2 (left) and the A3-T3 (right) structures.
The sketch of A3-T3 (top right) is intentionally compressed along the vertical axis to
make the whole figure compact.
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6.2.3 Radial distribution functions

The analysis of relaxation profiles demonstrated a complex relaxation behavior,
which occurs in the vicinity of the interface. It is quite natural, then, to ask
the following question: How does the relaxation affect the local geometry? To
to answer this question, we investigate the first coordination polyhedra. Here,
we define the first coordination polyhedron as the group of atoms surrounding
the selected one, provided all these atoms are enclosed in a sphere of a certain
radius. This radius is characteristic for every substance. A few notes have to be
given here. First of all, according to the definition, a coordination polyhedron
can be formed by a few smallest coordination spheres, as depicted in Fig 6.3. To

Figure 6.3: Two-dimensional sketch of a coordination polyhedron; its border is
marked by the closed green line. First three coordination spheres are shown as concen-
tric dashed circles. Each of the spheres hosts two red atoms, while the whole polyhedron
is built of the central blue atom surrounded by six red atoms.

remind, a coordination sphere is a group of atoms situated sharply at a certain
distance from the central atom. The second note follows from the first one – the
definition of the coordination number of a coordination polyhedron used in this
work is different from the definition of the coordination number of a coordination
sphere. Indeed, the coordination number of the first coordination polyhedron is
the sum of the coordination numbers of the coordination spheres enclosed in this
polyhedron.

The building blocks of both oxides forming the interface are distorted O-M-O
octahedra, where M=Al,Ti, as depicted in Fig. 6.4. The distances between the
metal atom in the center and the surrounding oxygen atoms can be analyzed
using the radial distribution function (RDF)

g(r) =
1

ρn

dn(r)

dV (r)
, (6.1)

where ρn is the average particle density, i.e., the number of particles per unit-
volume, dn(r) is the differential of the number of particles in a spherical shell
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Figure 6.4: Three-dimensional view of oxygen-metal-oxygen octahedra, forming TiO2

(left) and Al2O3 (right).

of radius r, and dV (r) = 4πr2dr is the differential of the corresponding vol-
ume. In order to clarify the physical meaning of g(r), it is convenient to rewrite
equation 6.1 in the following form:

dn(r) = ρng(r)dV (r). (6.2)

If we integrate this equation from r = r0 to r = r0 + ∆r, where ∆r is an
infinitesimal increment of r, we get:∫ r0+∆r

r0

dn(r) = ρn

∫ r0+∆r

r0

g(r)dV (r). (6.3)

The left part of the equation turns simply to:

n(r0 + ∆r)− n(r0) = ∆n(r0). (6.4)

For the right part, we get:

ρn

∫ r0+∆r

r0

g(r)dV (r) = ρng(ζ)

∫ r0+∆r

r0

dV (r) = (6.5)

= ρng(ζ) [V (r0 + ∆r0)− V (r0)] = ρng(ζ)Vshell = (6.6)

= g(ζ) (ρn · Vshell) = g(ζ)Nshell, (6.7)

where r0 ≤ ζ ≤ r0 + ∆r, Vshell is the volume of the spherical shell ranging from
r0 to r0 + ∆r, and Nshell is the number of particles, which would be enclosed in
the volume Vshell of a media with the constant average particle density ρn. Now,
we put both parts together:

∆n(r0) = g(ζ)Nshell, (6.8)

g(ζ) =
∆n(r0)

Nshell

, (6.9)
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or, approximately:

g(r0) ≈ ∆n(r0)

Nshell

. (6.10)

Thus, the radial distribution function acts as an enhancement factor – it defines
the ratio between the true number of particles in a spherical shell as shown in
Fig. 6.5 and the number of particles within the same shell in uniform and con-
tinuous media with the average particle density ρn. The shape of g(r) reflects

Figure 6.5: Illustration of calculation of radial distribution function in 2-dimensions.
The central atom (blue) is considered as origin; it is surrounded by a circular shell
(from r to r+ ∆r), highlighted in yellow. An atom is colored red, if its center falls into
the yellow shell.

the spatial ordering in the substances. For instance, the RDF of an ideal lattice
would look like a sum of sharp peaks at the radii of coordination spheres. The
RDF is widely used for structural analysis of amorphous materials, like glasses
or liquids, in order to invesigate short-range order and clustering. If for a multi-
component system only 2 kinds of particles are considered, e.g., the distribution
of atoms of type A around atoms of type B, then the so calculated RDF is called
partial RDF. We use the RDF in order to study the changes of the radial distri-
bution of oxygen-atoms in the first coordination polyhedra in both oxides. It is
convenient for our purposes to analyze ∆n(r) instead of g(r) itself, as it makes
the calculation of coordination numbers straightforward. ∆n(rM−O) is evaluated
in the range of 1.6-2.6 Å (the metal-oxygen bond-length in the bulk oxides is
1.8-2.0 Å), with a resolution of ∆r = 0.1 Å. In order to investigate the depen-
dence of the parameters of the polyhedra on the distance from the IF, for each
M-atom in a layer we calculate ∆n(rMi−O), then average over all (4 for Al-layers,
3 for Ti-layers) polyhedra of the considered layer, yielding 〈∆n(rM−O)〉Lj

. These
layers are denoted as follows: L1 corresponds to the M-layer closest to the IF, L2

refers to the second-closest one, and L3 to the third-closest M-layer.

The layer-averaged radial distributions for the Al2O3 part of the IF are given in
Fig. 6.6. 〈∆n(rAl−O)〉L3

of both the A2-T2 and the A3-T3 structures are exactly
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Figure 6.6: Layer-averaged radial distribution of O atoms around Al (left) and Ti
(right) atoms. Reproduced from [73].

the same, they represent the strained-bulk state of Al2O3. The natural splitting
between the first and the second coordination spheres, forming the deformed
octahedra (6 O atoms around the Al), is enhanced by the strain imposed by the
stress balancing. Coming closer to the IF results in a redistribution of O atoms
between the first two coordination spheres in favor of the second one, i.e., the
coordiantion polyhedra are getting stretched, which is reflected in the value of
〈∆n(rAl−O)〉L2

. The polyhedra situated next to the IF experience the strongest
deformation as indicated by 〈∆n(rAl−O)〉L1

. Some of the M-O bonds have length

of 2.2-2.4 Å (A2-T2) or even 2.3-2.5 Å (A3-T3). The coordination number for
A2-T2 remains the same as for the bulk, i.e. 6. On the contrary, the coordination
number for A3-T3 is 5.75, which is an indication of a less compact structure.

The layer-averaged radial distributions for the TiO2 part of the IF are given
in Fig. 6.6. As for aluminum oxide, L3 represents the distribution of O atoms
in the strained bulk of TiO2. The splitting between the first two coordination
spheres, also forming the deformed octahedra (6 O atoms around the Ti), in TiO2

is smaller than in Al2O3. Even though altered by the strain, it is not resolved
with the applied resolution, such that there is just one peak at 1.9-2.0 Å. As
for A3-T3 the Ti atoms and their closest neighbors in L2 were fixed during the
relaxation, the distrubution function remains the same as for L3. 〈∆n(rT i−O)〉L2

of the A2-T2 shows a splitting around the main peak, i.e., some of the M-O
bonds became shorter (1.7-1.8 Å), some of them turned longer (2.1-2.2 Å). In the
vicinity of the IF, i.e., in L1, 〈∆n(rT i−O)〉L1

of both A2-T2 and A3-T3 demonstrate
significant redistribution of M-O bondlengths, which is more pronounced in the
case of A2-T2.
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6.2.4 Angular distribution functions

The second property we analyze is the distribution of the oxygen-metal-xygen
valence angles in the first coordination polyhedra. An example of such angles is
shown in Fig. 6.7.

Figure 6.7: Illustration of oxygen-metal-oxygen valence angles in the first coordination
polyhedra of Al2O3. The angles are indicated with colored arcs.

Like for radial distribution functions analysis, here we analyze only the most
prominent structures, i.e A2-T2 and A3-T3, in the range of 70o to 110o. The
emphasis of the analysis is, especially, put on the development of the O-M-O
distributions as functions of the distance to the interface. Consider the O-Al-O
distributions, which are presented in Fig. 6.8. First, comparing unstrained bulk
Al2O3 and aluminum oxide in L3, the changes brought by the stress balancing
have to be noted. Due to introduced strain a splitting takes place about the
position of unstrained-bulk peaks. Second, further splitting happens in L2 of A2-
T2 and A3-T3, which is caused here not only by the imposed strain, but it is also
a consequence of structure relaxation. Third, in the interface region, i.e., in L1,
one can see the biggest variety of O-Al-O angles, which is more pronounced in
the case of A3-T3. It supports the hypothesis of the less compact structure at the
interface region of A3-T3 as compared to A2-T2. Further, we look at the O-Ti-O
distributions depicted in Fig. 6.9. Again, the effect of strain imposed by the stress
balancing can be seen, when comparing the distributions in unstrained-bulk TiO2

and L3. It is remarkable, that this strain drives polyhedra in titanium dioxide of
L3 closer to ideal octahedra, i.e, O-Ti-O angles are shifted towards 90o. There
is a quite big difference in the shapes of distributions in L2 between A2-T2 and
A3-T3, especially in the intensities of peaks. This difference arises, most likely,
from the fact that in case of A2-T2 less atoms around and in L2 were fixed in
the course of relaxation as compared to A3-T3. As for Al2O3 the biggest spread
of O-Ti-O angles is detected in L1. The intensities of peaks in the case of A3-T3

are higher, than in A2-T2 due to the same reason as for L2. The range of O-Ti-O
angles is wider for A3-T3, which is yet another indication that this structure is
less compact in the interface region than A2-T2.
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Figure 6.8: Distribution of O-Al-O valence angles in A2-T2 (left) and A3-T3 (right).
The bottom panels depict the unstrained bulk (as optimized in this work).

Figure 6.9: Distribution of O-Ti-O valence angles in A2-T2 (left) and A3-T3 (right).
The bottom panels depict the unstrained bulk (as optimized in this work).
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Now, we consider the individual polyhedra in each M-layer, and restrict the
analysis to the smallest and the largest angles. These angular distributions are
presented in Fig. 6.10. In L3 of both oxides the splitting between the maximal and
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Figure 6.10: Distributions of minimal (below 90o) and maximal (above 90o) O-M-
O (M=Al,Ti) angles in the first coordination polyhedra. The solid lines provide the
layer-averaged values. The filled blue circles and lines represent A2-T2, the empty red
diamonds and lines A3-T3. Reproduced from [73].

the minimal angles reflects the structural properties of the strained bulk oxides.
In L2 a spread of 3-5o is found about the angles in L3. In the vicinity of the IF,
there is a broad variety of angles, which is more pronounced in the Al2O3 slab.
In general, the difference between the distributions in the A2-T2 and the A3-T3

strucutres is minor, except the range of the maximal angles in the first M-layer of
TiO2, which is larger in the case of A3-T3. Comparing the layer-averaged trends
in the IF counterparts, we note two features. First, approaching the IF, both lines
are getting close to each other, so that the total line looks smooth across the IF.
Second, the values of the lines in L1 are quite close to those of the unstrained
bulk oxides, which may be a sign of strain-relief at the IF.

6.3 Conclusions

The optimal static and relaxed interslab separations are found for all considered
atomic stacking (shown in Table 6.1). Also, the relaxed atomic structures are
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obtained and the most compact ones are identified (A2-T2 and A3-T3). These
structures are analyzed in terms of relaxation profiles, partial radial- and angular-
distribution functions of O atoms in the first coordination polyhedra around the
Al and Ti atoms.

According to the relaxation profile analysis most of the atomic rearrangement
happens in the atomic layers situated right at the interface. The atoms here
move from their bulk position in average by about 0.20-0.27 Å.

The analysis of partial radial distribution functions reveals a variety of bondlengths
at the interface. Bonds that are both shorter and longer than in the bulk oxides
are found. It is identified, also, that the average coordination numbers of the
Al and Ti atoms at the interface are 6 for A2-T2 (the same as for bulk), 5.75
(for Al) and 6 (for Ti) for A3-T3. Thus, the stacking of A2-T2 leads to the most
compact structure among all considered stacking sequences, which is supported
by the analysis of the angular distribution functions.

Relaxation of superlattices with A2-T2, A2-T3, A3-T2, and A3-T3 stacking and
the consequent structural analysis allows for identifying the A2-T2 stacking as
the structurally most stable one. It leads to the most compact structure, that
maintains the metal-oxygen-metal stacking natural for both oxides, as well as
the coordination number (6) of the O atoms around the Al an Ti atoms. The
relaxed superlattice structures are used in the next chapters to evaluate a range
of interface-related properties.



Chapter 7

The work of separation

7.1 Introduction

The work of separation is a measure of bonding strength at the interface. Even
though it is a zero-Kelvin property, it can be used as an ingredient for eval-
uating the interface energy at finite temperature and in different of chemical
environments, following the approach proposed by Finnis and co-workers [105].
In first-principles calculations, the work of separation can be obtained by the
formula

Wsep =
1

2A
[Ess

tot + Eol
tot − Esc

tot], (7.1)

where A is the interface area, and Ess
tot, E

ol
tot, and Esc

tot are the total energies of
the substrate, the overlayer, and the entire super-cell comprising the interface,
respectively. In our case, the substrate is the aluminum oxide slab, and the
overlayer is the titanium oxide slab.

7.2 Computation method

The work of separation was calculated here in two ways. The first one, which
we call static, was performed using the optimal slab separation for frozen atomic
positions of the superlattice. Accordingly, no relaxation was allowed for individ-
ual slabs. The second method, which we call relaxed, uses the optimal interface
separation, while a constrained atomic relaxation of the superlattice was allowed.
Each of the slabs was relaxed with the analogous constraints (4 outermost atomic
layers from each side of a slab).

In order to avoid computational artefacts when calculating the energies of the
isolated slabs, we always keep the unit cell parameters of the full superlattice,
removing all the atoms that do not belong to the considered slab.

55
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7.3 Results

The values of the work of separation calculated in this work are presented in
Table 7.1. All of them are obtained using a cut-off energy of 30 Ry and a shifted
2x4x1 mesh of points in the Brillouin zone (4 points in the IBZ). The results of
a convergence study are presented in Section 7.4.

Table 7.1: The ideal work of separation. The superscripts “static” and “relax” corre-
spond to the work of separation of unrelaxed and relaxed structure, respectively. The
error bar is ∼60 mJ/m2.

Interface Stacking W static
sep [J/m2] W relax

sep [J/m2]

A2-T2 -Al-Al-O-|-Ti-O-O- 10.15 9.31
A2-T3 -Al-Al-O-|-O-O-Ti- 0.35 0.45
A3-T2 -O-Al-Al-|-Ti-O-O- 2.26 1.58
A3-T3 -O-Al-Al-|-O-O-Ti- 10.33 8.84

As expected from their structural similarity, the works of separation of A2-T2 and
A3-T3 are close to each other, slightly favoring A2-T2. The work of separation
of oxygen-rich A2-T3 is one order of magnitude smaller, compared to the previ-
ous structures, but still positive. The metal-to-metal interface, A3-T2, reveals a
relatively weak bonding, though much stronger than the oxygen-rich one.

7.4 Convergence studies

One of the most important questions, when dealing with numerical methods, is
the question of reliability of the obtained results. To see what can affect the
precision of our results, let us recall Eq. 7.1. It is clear, that the precision of
Wsep is limited by the precision of the total energies of substrate, overlayer, and
superlattice, or, to be more precise, it depends on the precision of their linear
combination. Such a linear combination usually converges faster than any of its
components. Numerical evaluation of total energies relies upon many technical
aspects, and there are two most critical among them. The first one is the use of
a truncated series for the wavefunction expansion, which is controlled by cut-off
energy. The second one, is the substitution of integrals over the Brillouin zone
by weighted sums over special points within the Brillouin zone.

The work of separation as defined by equation 7.1 can be calculated using slabs
of different thickness. Therefore, for each combination of substrate and overlayer
slab thickness, we will get a different work of separation, unless both of the slabs
are thick enough. This value of the work of separation is our target. Equation 7.1
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can be formally rewritten into a system of equations

Wsep(n,m) =
1

2A
[Ess

tot(m) + Eol
tot(n)− Esc

tot(m+ n)], (7.2)

Wsep = lim
n→∞
m→∞

Wsep(m,n), (7.3)

where the numbers m and n quantify the thickness of the slabs, i.e., they are
connected to the number of atomic layers within each slab. It turns out that
reasonable convergence is achieved at rather small finite thickness.

Overall, we have to investigate the convergence of Wsep with respect to:

• BZ-sampling

• Cut-off energy

• Slab thickness

To this end, we make convergence tests of the unrelaxed Wsep of A3-T3 using ∆,
i.e., an inter-slab spacing, of 1.39 bohr. As the considered interfaces differ mainly
in atomic stacking at the interfacial region, it seems reasonable to presume, that
once the parameters leading to the desired accuracy are found for one particular
stacking, e.g., A3-T3, they can be used for the rest of stacking variants, too.

7.4.1 Brillouin zone sampling

To test the convergence of Wsep of A3-T3 with respect to the BZ-sampling, a
superlattice built of an A3 slab with 14 atomic-layers and a T3 slab of 17 atomic-
layers was employed. The uniform sampling of the Brillouin Zone was performed
using the standard approach of Monkhorst and Pack [106]. All used meshes were
shifted. One can see in Fig. 7.1 that Wsep calculated using a 2x4x1 mesh differs
from the one obtained using a 3x6x2 mesh by ∼60 mJ/m2, i.e., by approximately
0.6%. The 2x4x1 mesh is a computationally reasonable choice, since it requires
almost 5 times less resources, than the 3x6x2 mesh. The accuracy using the
2x4x1 mesh is sufficient for a reliable distinction among the values of the work of
separation, except the case of weakly-bound A2-T3. The latter, however, is not
a problem as we are interested in the structures with the highest adhesion.

7.4.2 Wavefunction expansion

According to Bloch’s theorem [76], solutions of the Schrödinger equation for a
periodic system can be written in a form of an infinite series (plane-wave expan-
sion)

ψk(r) =
∑
G

Ck+Ge
−i(k+G)·r, (7.4)
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Figure 7.1: Convergence of the work of separation with respect to the number of
k-points.

where k is a vector in the first Brillouin zone, and the vectors G belong to the
reciprocal lattice. Each of the plane-waves in equation 7.4 corresponds to the
kinetic energy

E =
h2

2me

|k+G|2.

It is reasonable to assume that the contributions with low-energy are physically
the most important [107]. Thus, in practical calculations a cut-off energy is used
to truncate this expansion from above

Ecut−off =
h2

2me

G2
max, (7.5)

⇒ Gmax =

√
2meEcut−off

h2
. (7.6)

After truncation equation 7.4 turns into

ψk(r) =
∑

|k+G|≤Gmax

Ck+Ge
−i(k+G)·r.

In order to study the convergence of the work of separation with respect to
the cut-off energy, the superlattice used in Subsection 7.4.1 was employed. The
convergence of Wsep with respect to the cut-off energy is shown in Fig. 7.2. It
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Figure 7.2: Convergence of the work of separation with respect to the cut-off energy.

is evident, that at a cut-off value of 25-30 Ry the work of separation is already
converged, and its absolute error is about 10-20 mJ/m2, i.e., approximately 0.1-
0.2%. Such precision is beyond the one we need to compare reliably, however,
taking into account the necessity to relax the structures, low cut-offs should be
avoided to decrease the error of atomic forces. So, a cut-off energy of 30 Ry is a
reasonable and computationally efficient choice.

7.4.3 Thickness of slabs

Since the interface structures are modeled using sapphire and rutile slabs stacked
into multi-layers the question of sufficient slab thickness has to be investigated.
On the one hand, the slabs have to be thick enough to exclude interactions
between atoms from its opposite surfaces and other finite size effects. On the other
hand, since computational demand increases rapidly with the number of atoms
considered, it is practical to use the lowest possible slab thickness. An additional
source of numerical errors of the work of separation are slight oscillations due
to the inevitable inconsistency in basis sets, which originates from the difference
of super-cell size in the direction normal to the interface. In this work the slab
thickness is quantitatively described by the number of layers. The definition of
the term layer for A3-T3 is the following. An N -layer slab of Al2O3 consists of
N [-Al-O-Al-] triplets of atomic planes stacked into one sequence, and capped
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by Al atomic planes from each side. An N -layer slab of TiO2 consists of N [-O-
Ti-O-] tiplets of atomic planes stacked into one sequence, and capped by oxygen
planes from each side. Formally, both of these slabs can be described by following
formuli Al-[Al-O-Al]N -Al and O-[O-Ti-O]N -O, leading to 3N + 2 atomic layers in
each slab, where N is a natural number.

First, we investigate the static case, where the slabs are fixed before and after
cleavage. The results are summarized in Table 7.2. The deviation from the

Table 7.2: The static work of separation as a function of slab thickness. The number
of layers in each slab is indicated by N s(substrate) and No(over-layer). E stands for
the total energy of the supercell (SL), the Al2O3 slab (AS), and the TiO2 slab (TS).

N s No E(SL)[Ry] E(AS)[Ry] E(TS)[Ry] W static
sep [J/m2]

2 3 -2354.4279 -534.2583 -1816.3523 10.29
4 3 -2839.7196 -1019.5481 -1816.3522 10.29
4 5 -3924.6995 -1019.5478 -2901.3210 10.33
4 7 -5009.6632 -1019.5478 -3986.2915 10.31
6 3 -3325.0115 -1504.8403 -1816.3521 10.29
6 5 -4409.9914 -1504.8398 -2901.3209 10.32
6 7 -5494.9550 -1504.8395 -3986.2916 10.31
6 9 -6579.9346 -1504.8393 -5071.2645 10.33
8 9 -7065.2263 -1990.1308 -5071.2646 10.33

converged value of 10.33±0.01[J/m2] is negligible (< 0.4%) already at the minimal
thickness.

The next step is to consider atomic relaxation in the vicinity of the interface and,
after cleavage, at the free surfaces. In the course of relaxation we allow the 4
outermost atomic layers from each side of a slab to be fully relaxed, whereas the
central parts were kept fixed to emulate the bulk-like environment. The inter-
slab separation was varied, allowing atoms to relax according to the methodology
described above. The optimal separation, i.e., the one giving the lowest total en-
ergy, was selected for the evaluation of the work of separation. Table 7.3 presents
the so obtained values. The most striking difference to the static case is the
appearance of very pronounced oscillations, such that no apparent convergence
trend could be identified for the considered thicknesses. To shed light on this
phenomenon, we partition the change in work of separation due to relaxations
into its components, and analyze them. For that, we, first, write the equation for
the ”quasi-static” work of separation, i.e., the work of separation for fixed atomic
positions, but using the relaxed inter-slab distance:

2A× W̃ stat
sep = Ẽ(AS)stat + Ẽ(TS)stat − Ẽ(SL)stat (7.7)

Then, the equation for the work of separation is:

2A×W rlx
sep = E(AS)rlx + E(TS)rlx − E(SL)rlx (7.8)
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Table 7.3: The work of separation as a function of slab thickness. The number of
layers in each slab is indicated by N s(substrate) and No(over-layer). E stands for the
total energy of the supercell (SL), the Al2O3 slab (AS), and the TiO2 slab (TS).

N s No E(SL)[Ry] E(AS)[Ry] E(TS)[Ry] W relax
sep [J/m2]

2 3 -2355.0468 -534.2858 -1817.3400 9.22
4 3 -2840.3234 -1019.5757 -1817.3946 9.04
4 5 -3925.2988 -1019.5753 -2902.4423 8.84
4 7 -5010.2691 -1019.5755 -3987.4151 8.84
6 3 -3325.6154 -1504.8676 -1817.3947 9.04
6 5 -4410.5909 -1504.8673 -2902.3731 9.03
6 7 -5495.5599 -1504.8668 -3987.2567 9.26
6 9 -6580.5346 -1504.8669 -5072.3209 9.02
8 9 -7065.8262 -1990.1587 -5072.2287 9.27

Subtraction of equation 7.7 from equation 7.8 gives the required decomposition:

Erlx = 2A× (W rlx
sep − W̃ stat

sep ) = [
E(AS)rlx − Ẽ(AS)stat

]
+[

E(TS)rlx − Ẽ(TS)stat
]
−[

E(SL)rlx − Ẽ(SL)stat
]

=

∆E(AS) + ∆E(TS)−∆E(SL)

Here, ∆E(AS), ∆E(TS), and ∆E(SL) are the relaxation energies of the sapphire
slab, rutile slab, and superlattice, respectively. Their numerical values are com-
piled in Table 7.4. The contributions from the α-Al2O3 slabs are very similar to
each other starting from 2 layers. The relaxation energies reveal a minor extent
of reconstructions. In turn, there are discrepancies in the relaxation energies of
TiO2 (∼ 0.1 Ry), and they reproduce an oscillation pattern of the work of sep-
aration (see Fig. 7.3). Therefore, we conclude that the relaxation of rutile slabs
is the main source of the deviations. The energy of relaxation is much higher
compared to the sapphire surface, which is a sign of massive reconstructions. It
is also interesting to notice that the relaxation energies can be divided into 3
groups: approximately, -1.12, -1.05, and -0.97 Ry per unit cell. This gives rise to
the following hypothesis: the oscillations in the relaxation energy are, probably,
due to the existence of local minima on the potential energy surface (PES), so
that sometimes the system is being trapped, leading to higher total energies and,
consequently, to higher works of separation.

To verify the hypothesis, we address the geometries with the relaxed surface
atoms presented in Fig. 7.4. An analysis allows for dividing them into three
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Table 7.4: The relaxation energies as a function of slab thickness. The number of
layers in each slab is indicated by N s(substrate) and No(over-layer). The symbol A
stands for the interface area. The energies are given in Rydberg units.

N s No −∆E(SL) ∆E(AS) ∆E(TS) Erlx

2 3 0.636 -0.028 -0.988 -0.380
4 3 0.611 -0.028 -1.043 -0.460
4 5 0.606 -0.027 -1.122 -0.543
4 7 0.613 -0.028 -1.124 -0.539
6 3 0.611 -0.028 -1.043 -0.459
6 5 0.606 -0.027 -1.052 -0.474
6 7 0.612 -0.027 -0.967 -0.382
6 9 0.606 -0.027 -1.057 -0.479
8 9 0.606 -0.027 -0.966 -0.387

Figure 7.3: The relaxation energy (blue, circles) and its components: surface relax-
ation of sapphire slab (red, diamonds), rutile slab surface relaxation (green, squares),
and interface relaxation (black, triangles) as a function of sapphire and rutile slab
thicknesses. The data is ordered by ascending thickness of the sapphire (left) or rutile
(right) slab, respectively. Reproduced from [73].
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Figure 7.4: Surface geometries of relaxed double-oxygen terminated (T3) rutile: a)
”Dangling oxygen” type, represented by the final pattern for 2L-3L (left), 6L-7L, and
8L-9L (right); b) ”desorbed oxygen” type, consisting of 4L-3L (left), 6L-3L, and 6L-9L
(right); c) ”O3-bridge” type, exhibited by the systems 4L-5L and 4L-7L (left), and
6L-5L (right). 6L-5L has a somewhat smaller relaxation energy, which is actually
close to the one of the ”desorbed oxygen” type. Structurally, this energetic difference
originates from the different position of one of the oxygen atoms at the surface (see
encircled areas). It can be matched to the position in the left structure by moving the
atom along the arrow indicated in the figure. Reproduced from [73].
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distinct groups. The first one, a ”dangling oxygen” pattern, leads to the smallest
relaxation effects, and is discovered for 2L-3L (2 layers of sapphire, 3 layers of
rutile), 6L-7L, and 8L-9L. The second pattern, which we name ”desorbed oxygen”
type, gives rise to intermediate relaxation energies, and is found for 4L-3L, 6L-3L,
and 6L-9L. An ”O3-bridge” pattern is encountered for 4L-5L, 4L-7L, and 6L-5L.
While 4L-5L and 4L-7L exhibit the lowest relaxation energy and exactly the
same geometry, the 6L-5L system has a relaxation energy closer to the one of the
”desorbed oxygen” group. Yet, its geometry is much closer to ”O3-bridge” type,
except one oxygen atom (see the encircled area). Being moved as it is depicted in
Fig. 7.4a, this oxygen atom would allow to match the optimal surface geometry.
Manual correction of the 6L-5L structure with subsequent relaxation leads to
exactly the same geometry and energy as for the 4L-5L and 4L-7L. Motivated
by this finding, we tried to apply the same correction to the other thicknesses by
manually imposing the ”O3-bridge” surface geometry as a starting point. And,
indeed, this led to significantly larger relaxation energies and, thus, to a great
improvement of the convergence, as shown in Fig. 7.5. This way, it was confirmed

Figure 7.5: The improvement of the work of separation convergence with respect
to slab thickness, when the manual correction is applied (see the text). Reproduced
from [73].

that the 5-layer T3 slab is thick enough to obtain the relaxed work of separation,
converged to about 10-20 mJ/m2. At the same time, the presence of local minima
becomes evident, and therefore more robust methods capable of avoiding local
minima would be preferable.
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7.5 Conclusions

In this chapter, the work of separation for all considered atomic stacking variants
were presented (see Table 7.1). It turned out, that the stacking sequence A2-T2,
that was found to be the most compact structure in the previous chapter, has,
at the same time, the highest work of separation (9.31 J/m2). Next to it there is
the A3-T3 structure (8.84 J/m2), that also has an oxygen-metal-oxygen stacking,
but a somewhat lower coordinaton at the interface. The metal-to-metal stacked
A3-T2 superlattice has a significantly smaller work of separation (1.58 J/m2) as
compared to the former two. And the least bound superlattice (0.45 J/m2) is the
one with the A2-T3 stacking (oxygen-to-oxygen).

A thorough convergence testing was performed for one of the stacking sequences
(A3-T3) with respect to the Brillouin zone sampling, wavefunction expansion
cut-off, and slab thickness. These tests allowed to define the computational pa-
rameters, that, on the one hand, give reasonable precision, and, on the other
hand, do not make the calculations excessively or even prohibitively demanding.
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Chapter 8

Electronic structure

8.1 Introduction

Properties of materials are tightly connected to their electronic structure. Thus,
in this chapter the electronic structure of the considered interfaces is presented.
The chapter is organized in the following way. First, an analysis of the plane-
averaged charge (PAC) distributions is presented for all considered interface struc-
tures. The connection between integral charge transfer (ICT) and work of sep-
aration (Wsep) is revealed and discussed. Second, densities of states (DOS) of
the valence electrons are analyzed with emphasis on the comparison among the
considered interface structures. Further, each total DOS is decomposed into the
corresponding partial densities of states (PDOS), and the the role of the major
contributions is studied. After this brief comparison of all considered interface
structures, the the most prominent structure, i.e., A2-T2, is analyzed in detail.
First, the local densities of electronic states (LDOS) are shown. Among many
interface-induced features, the presence of an interface-induced electronic state is
discovered and visualized. In the next section, the findings ot the Löwdin-charge
analysis are presented. Further, we shortly discuss the issues of modeling TiO2

using LDA and GGA, and how they can affect the results presented in this work.
At the end, conclusions for the whole chapter are drawn.

8.2 Plane-averaged charge

In Fig. 8.1 we provide the plane-averaged charge (PAC) of A2-T2, A2-T3, A3-T2,
and A3-T3. The PAC characterizes the spatial distribution of electronic charge
and its rearrangement upon interface formation along some direction. As we
are primarily interested in the charge distribution across the interface and in its
vicinity, we choose the direction along the normal to the interface plane (c, in

67
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Figure 8.1: Plane-averaged charge (PAC) of the relaxed structures. ∆ stands for the
difference between the PAC of the super-lattice and the sum of PACS of the individual
aluminum oxide and titanium oxide slabs. The values of ∆ are scaled by the same
factor across all panels. Each graph is supplemented with the structure of one half
of the super-lattice supercell (the second half is identical due to inversion symmetry),
where Al, Ti, and O atoms are represented by the white, gray, and dark gray solid
circles, respectively. Reproduced from [73].
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the geometric setup used here). We calculate PACs of the whole sandwich-like
supercell, and of its constituents (individual slabs), obtained after the removal of
one or the other part. Each slab has free surfaces, and their presence results in
a perturbation of the electronic density close to the surface. This effect with no
doubt affects the PAC, and, especially, the difference (∆) between the PAC of
the whole structure and the sum of PACs of the constituents, leading to artificial
features. Therefore, ∆’s have to be considered with care. Looking at the PAC
of the relaxed A2-T2 structure, we note the first glaring feature of the charge
distribution across the interface – its strong inhomogeneity in the aluminum oxide
slab as compared to the titanium oxide slab. Another prominent feature is a quite
significant charge rearrangement (∆–curve) in the ∼6 Å thick region around the
interface. The charge distribution of the whole structure of the relaxed A2-T3

structure is almost a superposition of charge distributions of the individual slabs.
Due to weak interface bonding, the PAC difference is much smaller as compared
to A2-T2, overall, the region affected by the interface is also approximately 6 Å
in thickness. Far from the interface, the metal-to-metal stacked A3-T2 structure
demonstrates a charge distribution close to previously considered structures. The
charge rearrangement at the interface is moderate, and happens mostly in a ∼7
Å thick region around the interface. The spatial charge distribution in the A3-
T3 structure is quite similar to the one of A2-T2. While the PAC difference
also resembles the pattern of the A2-T2 structure, its amplitude is smaller. The
main feature is a charge accumulation in the oxygen layer sandwiched between
an aluminum layer from one side and a titanium layer from the other.

To summarize, the PACs of the considered structures reveal a different extent
of charge rearrangement, depending on the stacking. The modification of the
electronic density mostly happens in a 6-7 Å thick region in the vicinity of the
interface. The bonding strength at the interface measured by the work of sep-
aration is clearly correlated with the amplitude of the difference in PACs. This

Figure 8.2: Work of separation as a function of integral charge transfer.

correlation becomes even more obvious, when the work of separation is plotted
as a function of integral charge transfer (ICT) (Fig. 8.2). The latter is obtained
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by integrating the absolute value of the PACs difference along the c-axis over
the unit-cell. ICT is an indirect measure of the local charge transfer due to
bonding. The clearly non-stoichiometric interfaces A2-T3 and A3-T2 show rather
small charge transfer, and their work of separation is below 2 J/m2. In contrast,
the more stoichiometric systems A2-T2 and A3-T3 exhibit a significantly larger
charge transfer, and works of separation of about 9 J/m2.

8.3 Density of states

Here, we calculate the total density of states (DOS), and analyze the contributions
of particular kinds of atoms. The result is shown in Fig. 8.3. Only the major

Figure 8.3: Total electronic density of states (DOS) plots, supplemented with the
major contributions of the projected densities of states (PDOS). The oxygen contri-
butions originating from the aluminum oxide slab (AS, blue lines) and the titanium
oxide slabs (TS, green lines) are provided separately. The contributions from the Ti 3d
states are shown as red lines. The dashed line indicates the Fermi level. Reproduced
from [73].

PDOS contributions are depicted. The Fermi level of the metallic interface (A3-
T2) is set to zero. In case of the insulating interfaces the Fermi level is set to
the bottom of the conduction bands. The valence band is mainly composed of
O 2p states with an admixture of Ti 3d states for all considered interfaces. The
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conduction bands are dominated by Ti 3d states. The DOS of the structurally
similar interfaces A2-T2 and A3-T3 are, naturally, very close to each other, both
exhibiting a 1.9-2.0 eV Kohn-Sham band gap. Poor coordination of oxygen atoms
at the interface region in A2-T3 leads to the appearance of defect-like states above
the top of the valence band (around -1.9 eV), which decreases the Kohn-Sham
band gap to 1.6-1.7 eV. An even more drastic change of the electronic structure
happens when there is a metal-to-metal stacking at the interface, i.e., for A3-T2,
leading to a complete closure of the gap.

The local densities of states (LDOSs) of the A2-T2 are presented in Fig. 8.4.
Several features become evident, when going across the interface, indicative of
the changes in the bonding character. First of all, the LDOS of oxygen-layers
changes from the characteristic of Al2O3 to TiO2 type, when going from bottom
to top in Fig. 8.4. The O 2p peaks in TiO2 at 0-2 eV and 3-4 eV decay in Al2O3.
The shape of the Ti 3d peak at -8 to -2 eV smoothens, when approaching the IF.
The sharp peak at -5.6 eV is not so pronounced in the Ti-layer next to the IF. The
same smoothing happens to the Al 3p states. In contrast, a distinquished peak of
Al 3s appears in the LDOS of the Al-layer next to the IF. Another feature is the
appearance of rather sharp peaks at -2.5 to -2.0 eV (the top of the valence zone)
in the LDOS of the oxygen-layer situated right at the IF and the Ti-layer nearby.
These peaks are consistent with the presence of a localized interface electronic
state. Visualizing the contribution of the Kohn-Sham states located in the energy
window from -2.5 to -1.5 eV (Fig. 8.5), the presence of an interface state becomes
evident. One can see that the interface state has the dumbbell shape typical for
p states, and that it is more strongly pronounced for the interfacial oxygen atoms
closer to Al.

8.4 Löwdin charges

Although there is no unique method to assign charges to atoms incorporated
in molecules or solids, partitioning schemes provide useful information. Löwdin
charge analysis [108] is one of the methods, along with the Mulliken scheme [109],
the Bader approach [110], and many others, to assign charges to atoms in molecules
or solids. It gives a semi-quantitative description of charge-distribution-sensitive
properties in many systems, and performs, generally, better than Mulliken analy-
sis [111]. Our purpose is to see how the occupancy of atomic-like orbitals change
as a function of distance from the interface. It has to be stressed, that we are
mainly interested in the development of the Löwdin charges across the interface,
rather than in their absolute values.

The layer-averaged values of Löwdin charges on atoms and their orbital decom-
position are shown in Fig. 8.6. The total Löwdin charges of Ti (Qt(Ti)) show
that titanium atoms lose in average about 1.6 electrons/atom as compared to
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Figure 8.4: Local densities of states for the A2-T2 interface. Each panel corresponds
to one kind of atoms in a specific layer specified as Li, where the index i counts the
layers from the interface. Dashed lines indicate the top of the valence band. Reproduced
from [73].
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Figure 8.5: A detail of the A2-T2 structure containing the interface. The interface
electronic state is shown as yellow isosurface. Reproduced from [73].

the isolated atom (3s23p64s23d2 with 12 valence electrons in total). Ti atoms
residing next to the interface lose a bit more electrons than the bulk-like atoms.
In contrast, the Ti atoms in the second layer from the IF attain less charge as
compared to bulk-like layers. The orbital decomposition of Qt(Ti) shows that the
3p-states remain almost untouched, and thus are not shown in Fig. 8.6. The main
changes upon interface formation happen in the s- and d-states with the trends
opposite to each other. The net-population of the s-orbitals (3s+4s) decreases by
0.04 electrons/atom, whereas that of the d-orbitals rises by 0.03 electrons/atom,
approaching the IF. The major charge loss happens in the s-states, most likely
in the 4s.

The total charge on Al atoms is 1.20-1.24 electrons/atom lower than in the iso-
lated configuration (3s23p1, 3 valence electrons). When approaching the interface,
Al atoms gain about 0.04 electrons/atom, and most of it goes to the 3p-orbitals.

The charge on the oxygen atoms, as represented by Qt(O), is 0.74-0.76 elec-
trons/atom higher than in the atomic configuration (2s22p4 with 6 valence elec-
trons), with slightly higher values in the Al2O3 part. A slight decrease of 0.02
electrons/atom occurs in the interfacial layer and in the first oxygen layer of
TiO2. It is, probably, connected to the increase of charges of Ti d-states and Al
p-states in the vicinity of the IF. There are similarities and differences in occu-
pancies of the s- and p-states of oxygen in the TiO2 and Al2O3 parts. In both
oxides the s-states are depopulated, and the p-states are overpopulated as com-
pared to the reference of an isolated O atom. Hovewer, the charge deficiency of
the 2s-orbitals of O deep in TiO2 is 0.20 electrons/atoms, whereas in bulk-like
Al2O3 it is 0.20 electrons/atom higher, i.e., 0.40 electrons/atom. A completely
opposite trend is seen in the case of the p-orbitals, so in TiO2 the charge gain
is 0.95 electrons/atom, while in Al2O3 it is 1.15 electrons/atom, i.e. 0.20 elec-
trons/atom higher than in titanium dioxide. As for the O atoms situated right at
the interface, the occupancies of their s- and the p-states show a mixed character,
which appears to be a superposition of the respective states of pure oxides.
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Figure 8.6: Layer-averaged Löwdin charges (Q) of A2-T2. Subscript “t” corresponds
to the total charge. Red lines represent the charges obtained within the DFT+U
framework (U(Ti)=3.25eV). Only the orbital contributions whose change across the
interface is >0.01 electrons/atom, are shown.
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8.5 The effect of Hubbard U

It is known that conventional exchange-correlation functionals like LDA or GGA
cannot correctly reproduce the electronic structure of titanium dioxide due to
self-interaction errors, especially when defects or surfaces are studied. One of
the ways to cope with this problem is to mimic stronger correlations through the
DFT+U [112–117] method. The purpose of this section is to examine briefly how
DFT+U affects the electronic structure of A2-T2. Here, we use the simplified ro-
tationally invariand flavor of DFT+U implemented in the Quantum ESPRESSO
code, and described elsewhere [118].

The choice of an appropriate value for U is a delicate matter. Usually, a set of
calculations with different values of U is performed, and the U which leads to the
best agreement to experiment is selected. Arroyo-de Dompablo et al. [119] using
U≈5 eV find good agreement between their theoretical studies and experimental
data on geometry, electronic structure, and relative phase stability of titanium
dioxide polymorphs at equilibrium and under high pressure. A more consistent
approach is proposed by Cococcioni and de Gironcoli [118], where the authors
introduce a method, which relies upon evaluation of the Hubbard U via a linear
response approach. When it comes to the study of defects and surfaces of TiO2,
a variety of values of U can be found in literature, ranging from 2.5 eV to 4.2
eV [120–122].

For systems like A2-T2, in principle, different values of U should be used for Ti
atoms, as the value of U may change across the interface. Here, however, we
adopt the same value of U=3.25 eV from [121] for all Ti atoms in the cell, for
the purpose of an estimation of the effect.

The effect of Hubbard U on the density of electronic states is presented in Fig. 8.7.
The shapes of both, valence and conduction zones, are slightly changed; in par-
ticular, the the conduction band width decreases. The Kohn-Sham band-gap
increases from 2.24 eV to 2.50 eV, i.e., by 0.26 eV. The peak in Ti 3d around -5
eV gets slightly more pronounced.

The influence of Hubbard U on the Löwdin charges is shown in Fig. 8.6. The total
charge on Ti atoms decreases by 0.09 electrons/atom, which is almost completely
due to depopulation of d-states, while there are just minor changes on Al atoms.

The total charge of oxygen in TiO2 increases by 0.04-0.05 electrons/atom and,
thus, the oxygen charge in TiO2 becomes larger than in Al2O3, which is opposite
to the uncorrected results. Most of this gain in charge leads to an increase in
population of the p-states, while the s-states stay almost unchanged.
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Figure 8.7: Total densities of electronic states (DOS) with U=0 eV (top panel), and
with U=3.25 eV (bottom panel). The main contributions from partial densities of
states (PDOS) are also provided. The Fermi level is set in the middle of Kohn-Sham
gap, and marked with a red dashed line.

8.6 Conclusions

The spatial charge distribution and its rearrangement due to the presence of the
interface were analyzed evaluating the plane-averaged charge distribution (PAC).
It was found that most of the charge relocation happens in a 6-7 Å thick region
around the interface. The most profound charge rearrangement was observed in
the superlattices with the strongest adhesion, i.e., in A2-T2 and A3-T3, whereas
the weakly bound interfaces A2-T3 and A3-T2 exhibited significantly smaller re-
arrangements. That way, a correlation was found between the integrated charge
transfer and the values of the work of separation.

The electronic structure of the superlattices was studied using total and partial
DOS. It was found that the valence bands of all superlattices are formed mostly
by O 2p and Ti 3d states, whereas the main contribution to the conduction band
has Ti 3d character. The obtained values of the Kohn-Sham band gaps are 1.9-2.0
eV for A2-T2 and A3-T3, and 1.6-1.7 eV for A2-T3. The A3-T2 structure turned
out to be metallic.

The LDOS of A2-T2 revealed the evolution of the electronic structure across
the interface. The most notable feature of A2-T2 is the presence of a localized
interface state.

In order to see how the interface affects the orbital populations, the electronic
density was decomposed by means of a Löwdin charge analysis. It was found
for the Ti atoms, that the population of the s-orbitals slightly decreases, when
approaching the interface, whereas the population of the d-states becomes a little
bit higher. The p-states of Ti remain almost untouched. The Al p-orbitals become
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a bit more populated close to interface. The oxygen charges are different in each
slab. The population of the 2s-orbitals in the TiO2 part of the superlattice is
higher, than in the the Al2O3 one; whereas, the trend is opposite for the 2p-states.
In the vicinity of interface, the charges are of mixed character, corresponding to
an average of the populations found for each oxide.

A short test was performed in order to see the effect the DFT+U method on the
electronic structure of A2-T2, represented by the DOS and the orbital populations.
The value of U (3.25 eV) used for the calculation is taken from literature [121]. Is
was found that the inclusion of Hubbard U slightly changed the shape of the DOS.
The value of the Kohn-Sham band gap increases by 0.26 eV, and became 2.50
eV. The orbital populations also altered a bit. The d-orbitals of the Ti atoms
become depopulated by about 0.09 electrons/atom. A gain in population was
detected for O p-orbitals in the TiO2 part of the superlattice. The occupation
of the Al-orbitals were hardly affected. Overall, the changes of the electronic
structure are minor, applying the DFT+U to the A2-T2 structure. This assures
us that the results, we have presented in the previous chapters, would not change
significantly, if we recalculate them in the DFT+U framework.
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Chapter 9

Mechanical moduli

9.1 Introduction

In this chapter, the mechanical moduli of the A2-T2 superlattice are examined.
To this end, the structure which was used to study the work of separation and
electronic properties, is further relaxed allowing the complete cell-shape, i.e., the
lattice parameters a, b, and c, and angles α, β, and γ, to change too. To remind,
so far the in-plane lattice parameters and angles were fixed to the values obtained
from the stress balancing, whereas the supercell was allowed to relax along the
direction normal to the interface. Here, however, the full cell-shape relaxation is
allowed. This relaxation leads to minor changes of the supercell parameters (not
more than 1%), which demostrates the usefulness of the stress balancing method.
After that, the bulk modulus, the Young’s modulus along the [001]-axis, and the
shear modulus of a (001)-plane shear distortion along the [010]-axis are calculated
and compared to the effective elastic moduli, obtained from the elastic constants
of the individual bulk oxides. Particular attention is devoted to the technical
details of the calculations, such as data fitting and convergence analysis. The
chapter ends with concluding remarks.

9.2 Effective elastic constants of the superlat-

tice

The idea of getting effective elastic properties [40, 41] of complex materials, like
superlattices, from the elastic properties of the bulk constituents looks very fasci-
nating. One of the methods proposed for calculating effective elastic constants of
superlattices is the method of Grimsditch and Nizzoli (GN) [40, 41]. This method
was mostly applied to metallic superlattices [123–127], hovewer, there is also some
work on semiconducting materials [128, 129]. In some cases [124, 128, 129] the

79
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GN-approach gives results close to experimental findings, obtained by measuring
sound velocities in superlattices. In other cases, the method fails to reproduce the
experimental data – most notable examples are systems, where the so-called su-
permodulus effect [123, 125, 130] or shear softening [127] are observed. Naturally,
the failures of the method of Grimsditch and Nizzoli happen, when the assump-
tions made in the formulation of the method are not fulfilled by a system. For
instance, the method does not take into account any effects of coherency strain,
nor possible phenomena connected to the presence of interfaces in superlattices.
The intent of this chapter is to test the applicability of the GN-method to the
A2-T2 interface system.

The ingredients we need to calculate the estimate of the elastic matrix of A2-T2

via the Grimsditch-Nizzoli approach are the elastic matrices of bulk Al2O3 and
TiO2 given in the same cartesian system as for the superlattice, and the ratio
between the thicknesses of the constituent slabs. Taking into account that the
elastic matrix of unstrained Al2O3 is

C(Al2O3) =


462 144 104 −20 0 0
144 462 104 20 0 0
104 104 466 0 0 0
−20 20 0 137 0 0

0 0 0 0 137 −20
0 0 0 0 −20 159

 , (9.1)

the elastic matrix of unstrained TiO2 is

C(TiO2) =


474 148 148 0 0 0
148 259 170 0 0 0
148 170 259 0 0 0
0 0 0 213 0 0
0 0 0 0 115 0
0 0 0 0 0 115

 , (9.2)

and the thickness ratio is
d(Al2O3)

dTiO2

≈ 2

3
,

the estimate for the effective elastic matrix of the superlattice is

CGN(SL) =


467 145 136 −10 0 0
145 336 152 10 0 0
136 152 314 0 0 0
−10 10 0 174 0 0

0 0 0 0 122 −7
0 0 0 0 −7 131

 . (9.3)

This matrix will be used in order to estimate the effective elastic moduli in the
following sections.
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9.3 Polynomial fitting procedure

The common way of obtaining elastic constansts or moduli consists of imposing
a certain strain on a crystal, and looking, then, at the crystal’s response, i.e., the
change of energy, pressure, or stress. As an outcome of such a procedure we get a
set of ”strain-response” couples. It is important to note, that both the strain and
the response are prone to computational errors. The strain is defined with respect
to the best guess of the equilibrium parameters, whereas the true equilibrium is
almost never reached. The response of a crystal is also calculated with finite
precision. The property of interest for us is the value of the first derivative of the
strain-response curve at equilibrium. One of the ways to obtain this derivative
is to use numerical differentiation; another approach is to fit the ab initio data
with an analytical function, and find its derivative analytically. Here, we use the
second method, which is, more specifically, the fitting of polynomials to data by
means of the least-squares method.

For each of the considered moduli, i.e., the bulk modulus, Young’s modulus along
[001] (normal to the interface), and the shear modulus of (001) along [010], 20
datapoints are obtained on evenly spaced meshes. These points are partitioned
into 10 ranges, so that each range consists of an even number of points centered
around the equilibrium. For instance, range1 contains two points around equilib-
rium, i.e., one point from each side, range2 comprises four points, and so on, as
illustrated in Fig 9.1. For the points in each range a series of fits using polynomi-
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Figure 9.1: Dummy strain-response curve showing the hierarchy of ranges used for
polynomial fitting.
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als with degrees from 1 to N -1 is performed, where N is the number of points in
the range. The so obtained polynomials allow to identify their exact equilibrium
parameters, i.e., roots, and analytical first derivatives. This approach is close in
spirit to the one described in [131]. It has to be noted here, that the procedure
described above favors lower degrees of polynomials in a sense that they are used
for fitting more times, than the higher degree polynomials. Ultimately, this fact
can be illustrated by the following example: the polynomial of the first degree (a
straight line) is used here for fitting in all 10 ranges, i.e., 10 times, whereas the
polynomial of the nineteenth degree is used just once – in range10, that includes
all 20 datapoints.

Assume, we obtained the values of the first derivatives from fits. To get these
numbers, we used different ranges (subsets) of the initial data and different de-
grees of fitting polynomials. It can happen that some values are quite far from
the ”true” value due to a number of reasons. For instance, if we try to fit a
straight line to a dataset whose character is essentially non-linear, and then use
its slope as an estimate for the slope of the curve correctly describing the dataset,
we risk to introduce huge errors. Yet another source of inaccuracies is the prob-
lem of overfitting, which is neatly illustrated by a phrase attributed to John von
Neumann:”With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk”. To treat both of these deficiencies, a regularization-like
technique is applied. That is, some additional requirements concerning the range
of the allowed values of the first derivative are introduced, so that all the values
out of the range are, simply, disregarded.

After applying the regularization conditions, we still have a scatter of values of
the first derivative. The questions arise: Which of the values is ”the best”, i.e.,
converged, and what is the error bar? To answer these questions, a visual inspec-
tion or cross-validation [132, 133] can be used as it is done in [134]. However, here
we study the distribution of values by calculating histograms and analyzing them.
When dealing with histograms, it is important to choose the optimal number of
bins, which is connected to resolution and precision. On the one hand, we want
to get the most precise results, and therefore would tend to use as many bins as
possible. On the other hand, the use of too many bins will ultimately lead to
isolating individual datapoints, and, thus, will not allow us to locate the regions
of their congestion.

To summarize, the procedure of fitting used in the next sections consists of the
following steps:

1. Perform a polynomial fit of the ab initio dataset using ranges.

2. Discard the values, that do not fulfill the regularization conditions.

3. Use histograms to analyze the values which passed the previous step.
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9.4 Bulk modulus

The bulk modulus describes the elastic response of a material to hydrostatic stress
as depicted in Fig. 9.2. It can be calculated from the volume-pressure relationship

Figure 9.2: An illustration of hydrostatic stress acting on a cube.

via the formula

B0 = −V0 ·
dP

dV
(V0) =

1

k
, (9.4)

where V0 is the equilibrium volume, P is the pressure, and k is the compressibility.
For single crystals, the latter can be written as

k = s11 + s22 + s33 + 2(s12 + s13 + s23), (9.5)

where sij are the components of the compliance matrix.

Once the equilibrium volume V0 and bulk modulus B0 are known, Eq. 9.4 can be
rewritten in a convenient form:

P = B0 · (1− V/V0) . (9.6)

9.4.1 Computational procedure

The volume-pressure curve is calculated using the variable cell-shape optimization
by Wentzcovitch [135], which simulates hydrostatic stress. In fact, it is the target
pressure which is pursued in the process of relaxation. Once this pre-defined
pressure is achieved, the corresponding volume is known. This way, a dataset of
V-P pairs is obtained. The V-P dataset obtained for A2-T2 is shown in Fig. 9.3.

9.4.2 Fitting the ab initio dataset

The fitting is performed according to the procedure described in 9.3. The work-
flow related, specifically, to the bulk modulus is as follows:
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Figure 9.3: Volume-pressure dependency calculated for A2-T2.

• First, tha dataset {Vi, pi} is fitted by polynomials using the sequence of
ranges as described in 9.3.

• We know the following about the superlattice used to obtain the ab initio
dataset. On the one hand, the superlattice is unlikely in the true equilib-
rium, hovewer, it must be very close to the true equilibrium as the super-
lattice is relaxed. Therefore, for every fitting polynomial the roots (V0’s)
are identified. Then, those roots, which are closest to the “equilibrium vol-
ume” are selected as the true equilibrium. More specifically, the roots must
satisfy V0 ∈ [1103; 1109] Å3. This region is estimated using the result of
cell-shape relaxation, 1107.7 Å3.

• Then, the analytical derivatives of the fitting polynomials are evaluated at
the corresponding true equilibrium volumes, i.e., at V0’s, and the values
of B0 are calculated. After that, the B0’s are sifted, so that only those
B0’s are left, that fulfill the condition B0 ∈ [150; 250] GPa. The range of
allowed values of the bulk modulus of the superlattice is estimated from
the value of the effective bulk modulus obtained by the GN-approach. The
GN-estimate of the bulk modulus is 216 GPa, so the the selected range is
200±25% GPa, i.e., [150; 250] GPa.

As an outcome of the fitting we get a set of {V0, B0} as shown in Fig. 9.4.
Convergence analysis using histograms gives a value of 1106.45 Å3 for the (true)
equilibrium volume (V0), and a value of 183 GPa for B0. Both of these values
are indicated by red dashed lines in Fig. 9.4.

The dependence of B0 on the degree of the fitting polynomial is given in Fig. 9.5.
It is evident that for this particular case most of the polynomials of degree higher
than 8 fail to give B0 within the allowed range (in the framework describeGoled
above). It can also be seen, that for smaller ranges of deformations the polyno-
mials of lower degree give the best result, whereas for large deformations higher
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Figure 9.4: Scatter plot of {V0, B0} points obtained after fitting. The resolutions of
V0- and B0-histograms are 0.1 Å3 and 2 GPa, respectively.
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Figure 9.5: Dependence of B0 on the degree of the fitting polynomial (left), and
histogram showing the distribution of B0 (right). Each curve corresponds to one fitting
region; indices of regions are coded by color as shown in the legend.
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degree polynomials are required to obtain the converged value of B0, which is
consistent with [134].

9.4.3 Results and analysis

The result of fitting and convergence analysis is shown in Fig. 9.6. The converged

-0.03 -0.02 -0.01 0.00 0.01 0.02

1-V/V
0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

P
 [

G
P

a
]

Ab initio
Fit

-0.005 0 0.005

-1.0

0.0

1.0

Figure 9.6: The result of fitting V-P ab initio data. The inset shows the region
around zero with higher magnification.

value of V0 is very close (the deviation is less than 0.1%) to the initial equilib-
rium volume of the A2-T2 superlattice (the volume obtained after relaxation).
According to the histogram at the right-hand side in Fig. 9.4, the value of B0 has
a spread of about ±5 GPa around the highest peak, thus giving an upper esti-
mate of the error. Therefore, the final estimate of B0 is 183±5 GPa. Comparing
this number to the prediction of the Grimsdich-Nizzoli method (216 GPa), we
can see that there is a discrepancy of about 15-20%, and that the GN-approach
overestimates the bulk modulus of A2-T2.

9.5 Young’s modulus

Young’s modulus describes the mechanical response of a material to tensile load
(stress) as shown in Fig. 9.7. It is defined as the strain-stress dependence by the
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Figure 9.7: An illustration of tensile stress acting on a cube.

formula
E =

σt
εt
, (9.7)

where εt is the tensile strain, σt is the tensile stress. For single-crystals we have

E =
1

s̃
, (9.8)

where s̃ is the compliance of the crystal along the direction of the applied stress.

9.5.1 Computational procedure

In order to get the value of E0 along the direction perpendicular to the plane of
the interface, i.e., along [001], the following method is used. A series of tensile
deformations of the equilibrium structure of A2-T2 along the z-axis is made (the
z-axis is almost indistiguishable from the [001] axis), then a constrained relaxation
of the cell-shape and an ionic relaxation of the deformed superlattice is performed,
allowing the cell to relax only in the xy-plane. The result of this procedure is
shown in Fig. 9.8. It can be seen in the bottom panel, that the σ11 and the σ22

curves have a jaggy character, which is likely due to numerical noise. The clear
depencence of the shear components on the amount of strain is the result of a
slight misalignment of the supercell’s Bravais vectors with respect to the cartesian
frame due to finite precision of the cell-shape relaxation.

9.5.2 Fitting the ab initio dataset

The fitting is performed according to the procedure described in 9.3. The work-
flow related, specifically, to the Young’s modulus is as follows:

• First, the ab initio dataset consisting of {εi, σ33(εi)} couples is used for
polynomial fitting using ranges as prescribed in 9.3.
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Figure 9.8: Stress-components as functions of tensile strain. The bottom panel is a
magnification of the top one.



9.5. YOUNG’S MODULUS 89

• Then for each fitting polynomial the roots are looked for in the region of
[-0.0025;0.0025] (defined by visual inspection).

• Next, the E0 is calculated for the found root, and checked if it complies with
the allowance range of [160;300] GPa. The range is again defined with the
help of the GN-estimate. According to the method, the Young’s modulus
of A2-T2 along the [001] axis is 234 GPa. Thus, a range of allowed values
of 230±30% GPa is selected, that contains the GN-estimate inside.

The output of this procedure is shown in Fig. 9.9. The converged values of the
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Figure 9.9: Scatter plot of {ε0, E0} data obtained by fitting. The resolutions of ε0-
and E0-histograms are 0.0005 and 5 GPa, respectively.

strain-correction (ε0) is -0.00075. Young’s modulus along [001] (E0) is found to
be 217.5 GPa. The converged values of ε0 and E0 are shown in Fig. 9.9 as red
dashed lines. The tail-like group of points at the right side of the central con-
gestion of the points is formed by linear fits of the ranges with high index. The
dependence of E0 on the degree of the fitting polynomial is given in Fig. 9.10.
Unlike the case of the bulk modulus, here all degrees of polynomials give rea-
sonable results, however, higher degrees of polynomials and, thus (remember the
procedure, described in 9.3), larger amplitudes of strain tend to give higher values
of E0.

9.5.3 Results and analysis

The result of fitting and convergence analysis is shown in Fig. 9.11. The behavior
of the superlattice in the range of the considered distortions is asymmetric. Upon
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Figure 9.10: Dependence of the Young’s modulus on the degree of a fitting polynomial
(left), and the distribution histogram of E0[001] (right). Each curve corresponds to one
fitting region; indices of regions are coded by color as shown in the legend.
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compressive uniaxial strain the superlattice responds almost linearly up to the
maximal distortion of ≈5%. In contrast, upon tensile strain the response of A2-T2

starts to deviate considerably from a linear law at ≈2-3%.

According to the histogram on the right panel in Fig. 9.10, there is a spread
of ±12.5 GPa around the center of the main peak (E0=217.5 GPa), thus the
upper estimate of the error is ±12.5 GPa. This leads us to an estimate of the
Young’s modulus of A2-T2 along [001] of E0 = 217.5±12.5 GPa. Compared to
the GN-estimate of 234 GPa, it shows that again, the Grimsditch-Nizzoli method
overestimates the value of the mechanical modulus. Though, the relative error in
this case is marginally lower than the one for the bulk modulus, it is of the order
of 2 to 14%.

9.6 Shear modulus

The shear modulus describes the mechanical response of a material to shear
strain, as depicted in Fig. 9.12. It is defined as

G =
σs
εs
, (9.9)

where εs is the shear strain, and σs is the shear stress. For single-crystals G can
be calculated as

G =
1

s̃
, (9.10)

where s̃ is the corresponding shear compliance of the crystal.

Figure 9.12: An illustration of shear stress acting on a cube.

9.6.1 Computational procedure

To obtain one specific shear modulus, namely, the one, which corresponds to the
shear of the (001) plane along [010], a series of shear deformations of the A2-T2

supercell is performed. After deformation, atoms within the cell are relaxed, and
at the same time the shape of the cell is allowed to relax along all the cartesian
axes, i.e., x, y, and z. The result of this procedure is shown in Fig. 9.13. It can
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be seen in the bottom panel, that the σ11, the σ22, and the σ33 curves have a
jaggy character, which is likely due to numerical noise. The reason why σ12 and
σ13 are not equal to zero is the same as given in 9.5.1.

Figure 9.13: Stress-components as functions of shear strain. The bottom panel is a
magnification of the top one.

9.6.2 Fitting the ab initio dataset

The fitting procedure is performed according to the procedure described in 9.3.
The workflow related, specifically, to the shear modulus is done in the same way
as for Young’s modulus in 9.5.2, and described below:
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• First, the ab initio dataset consisting of {εi, σ23(εi)} couples is used for
polynomial fitting using ranges as prescribed in 9.3.

• Then for each fitting polynomial, the root in the region of [-0.0025;0.0025]
(defined upon visual inspection) is looked for.

• Next, G0 is calculated for the found root, and checked if it complies with
the allowance range. The range is again defined with the help of the GN-
estimate, however, in a trickier way. According to the method, the shear
modulus of A2-T2 is 173 GPa. So, at first, a range of values of 170±30%
GPa, i.e, [120;220] GPa was selected. It turned out, from the distribution
of the obtained values of G0, however, that they are only few and they are
all concentrated at the lower boundary of the allowed range. Therefore, the
range of allowed values of G0 was adjusted, taking also into account the
overestimation of the bulk and the Young’s moduli by the GN-approach,
described in 9.4 and 9.5, respectively. So, a new range of [70;170] GPa
centered at about 120 GPa was selected, i.e., the allowed range was shifted
down to account for the overestimation.

The outcome of the fitting is presented in Fig. 9.14. The converged value of
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Figure 9.14: Scatter plot of {ε0, G0} data obtained by fitting. The resolution of
the ε0- and G0-histogram is 0.0005 and 5 GPa, respectively. Horizontal dashed lines
indicate the two main peaks in the G0-histogram, at 107.5 GPa (green) and at 117.5
GPa (red).

the strain-correction (ε0) is -0.00075. The distribution of the values of G0 has a
bimodal character with two centers of congestion at 107.5 GPa and 117.5 GPa,
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which are indicated by green and red horizontal dashed lines in Fig. 9.14, respec-
tively. The tail-like structure on the left is formed by linear fits, as in the case of
the Young’s modulus.

The dependence of the shear modulus on the degree of the fitting polynomial is
shown in Fig. 9.15. Similar to the case of the Young’s modulus, higher degrees
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Figure 9.15: Dependence of G0 on the degree of the fitting polynomial (left), and the
distribution histogram of G0(001)[010] (right). Each curve corresponds to one fitting
region; indices of regions are coded by color as shown in the legend. Horizontal dashed
lines indicate the two main peaks in the G0-histogram, at 107.5 GPa (green) and at
117.5 GPa (red).

of polynomials, in average, result in higher values of the modulus.

9.6.3 Results and analysis

The result of fitting is shown in Fig. 9.16. It is evident that the superlattice
responds asymmetrically in the considered range of strains. The superlattice
softens, i.e., declines from linearity quite early under shear strain. Therefore,
in order to obtain a higher precision of the shear modulus a narrower range of
strains should be used.

Due to the bimodality of the G0-histogram, two possible values of G0 are found,
namely, 107.5 GPa and 117.5 GPa. One can see in Fig. 9.16 that G0=107.5 GPa
gives the best overall description of the ab initio data, whereas G0=117.5 GPa
seems to better reproduce the slope of the strain-stress curve at zero. Therefore,
the value of 117.5 GPa is selected as the value of G0. The uppermost estimate of
the error is defined from the spread around the peak of 117.5 GPa. Disregarding
the clearly pathologic tail-like group of points, we get a spread of ±17 GPa.
So, the final estimate of the shear modulus of A2-T2 (G0(001)[010]) is equal
to 117.5±17 GPa. The discrepancy to the estimate from Grismditch-Nizzoli’s
method is of the order of 34 to 63%. Again, here the stiffness of A2-T2 calculated
from ab initio data is lower than the one obtained using the GN-method.
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Figure 9.16: Results of fitting the ab initio data. The inset shows the region around
zero with higher magnification.

9.7 Conclusions

The purpose of this chapter was to calculate selected mechanical moduli of the
A2-T2 superlattice and to examine the applicability of the Grimsditch-Nizzoli
approach.

A polynomial fitting procedure was used to fit the ab initio data. In order to
study the reliability of the calculated numbers and to estimate computational
errors, a convergence analysis based on histograms was introduced.

The converged value of the bulk modulus obtained in this work is 183±5 GPa.
This value is 15-20% lower than the effective modulus. A rather small range of
distortions allowed to achieve good precision.

The value of Young’s modulus along the [001]-axis (normal to the interface plane)
is 217.5±12.5 GPa, which is rather close to the GN-estimate (the relative error is
2-14%). The behavior of the superlattice in the range of considered distortions is
asymmetric. Upon compressive uniaxial strain the superlattice responds almost
linearly up to the maximal distortion of ≈5%, while, upon tensile strain the
response of A2-T2 starts to deviate considerably from a linear law at ≈2-3%.

The estimate of the shear modulus corresponding to a shear deformation of the
(001)-plane along the [010]-axis is 117±17 GPa. The deviation of the GN-estimate
is the largest among the calculated moduli (the error is 34-63%). The superlattice
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Table 9.1: Comparison of elastic moduli of the A2-T2 superlattice calculated ab initio,
and through Grimsditch-Nizzoli estimate. Deviation is defined as (MGN−M)/M , where
MGN is a modulus by GN-approach, and M is ab initio one.

Quantity [GPa]
Al2O3 TiO2 Superlattice

Deviation [%]
bulk bulk GN-estimate Ab initio

B0 232 203 216 183±5 15-20
E[001] 430 141 234 217.5±12.5 2-14
G(001)[010] 134 213 173 117.5±17 34-63

softens, i.e., declines from linearity quite early under shear strain. The softening
occurs most noticeably for negative strain. In order to obtain a higher precision
of the shear modulus, a narrower range of strains should be used.

The obtained data is compiled in Table 9.1. For convenience, the values of the
corresponding moduli of bulk Al2O3 and TiO2, as calculated from the elastic
matrices 9.1 and 9.2, are given too. The GN-moduli are calculated from the
elastic matrix 9.3.

In conclusion, it is evident that the approach of Grimsditch and Nizzoli overesti-
mates the moduli of the considered superlattice and cannot substitute the direct
evaluation using ab initio methods.

What to do in order to ensure reliable results? First of all, the range of dis-
tortions must be chosen with care in order to avoid the simultaneous presence
of regions with significantly different behavior. Second, one has to calculate as
many datapoints as possible to reduce the influence of numerical noise. And,
finally, increasing the precision of the calculated stress or energy at each data
point decreases the numerical noise itself.



Chapter 10

Summary and conclusions

In this thesis, the results of the first ab initio investigation of the TiO2(100) || (0001)
Al2O3 interface were presented. The present study relies upon the experimental
data for a real thin film of TiO2 deposited on (0001) sapphire, that was produced
and analyzed in the group of Prof. Mitterer [69, 70]. The above mentioned thin
film has been used as a prototype system with well-defined parameters. In par-
ticular, the phase composition of the film (rutile), and the epitaxial relationships
served as a starting point to create a model of the interface. Possible arrange-
ments of atoms at the interface have been identified in this work by means of an
atomic-stacking analysis.

In order to cope with lattice misfit between the substrate and the overlayer, we
introduced the stress balancing method. The stress balancing method allows to
minimize the total strain energy of a superlattice using linear elasticity theory in
the most general, i.e., tensorial form.

The local arrangement of atoms in the vicinity of the interface was obtained
by atomic relaxation. The structural features of the optimized geometries were
analyzed by means of radial- and angular-distribution functions.

A range of properties was calculated for a series of superlattices, differing in their
atomic stacking at the interface:

First, values for the work of separation were obtained, which allowed to identify a
structure-adhesion relationship for the considered interfaces. It was established,
that the maximal adhesion strength is achieved, when the metal-oxygen-metal
stacking sequence, that is intrinsic for TiO2 along [100] and for Al2O3 along
[001], is preserved across the interface.

Second, diverse electronic properties were calculated, including the spatial charge
distribution, and the total, partial, and local densities of electronic states. A
variety of phenomena was discovered in the studied superlattices. For instance,
it was found that the metal-to-metal stacked superlattice has no Kohn-Sham gap,
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whereas bulk TiO2 and Al2O3 have wide KS band gaps. It was shown, that the
superlattices with bulk-like atomic stacking preserve the KS band gap. Hovewer,
for the structure with the highest adhesion a localized interface-induced electronic
state was found. A connection between the interfacial adhesion strength and the
integral spatial relocation of the charge density caused by the formation of the
interface was found.

The last group of properties, evaluated for the superlattice with the highest ad-
hesion, consists of various elastic moduli. The set of moduli comprises the bulk
modulus (B), Young’s modulus (E[001]), and the shear modulus (G(001)[010]).
The numerical values of these moduli were esmimated using the effective elas-
tic constans within the framework of the Grimsditch-Nizzoli method. The GN-
esmitates were cross-checked by direct ab initio evaluation. It was revealed for
the investigated superlattice, that the GN-approach based on the effective elastic
moduli can lead to the errors as big as 70%. The latter accentuates the impor-
tance of ab initio methods.

The present work also established the foundation for further investigations of
TiO2-Al2O3 interfaces. One of the directions of such a work could be the experi-
mental verification of the predicted atomic geometry by the high-resolution TEM
analysis. The electronic structure of the superlattice can be further studied by,
for instance, careful testing the effects of the Hubbard U correction, which was
just touched in this work. And, of course, the stress balancing method introduced
in the thesis requires more testing, and can potentially serve to provide a good
starting point for modelling systems with moderate lattice misfit.



Appendix A

Elastic constants and crystal
symmetry

A.1 General remark

Considering the mechanical stability and thermodynamics of a crystal, it is shown,
for instance in [45], that a general elastic tensor has 21 independent components.
The latter number, however, can be reduced if the symmetry of the crystal is taken
into account. Such an analysis can be performed using several methods described
in [45]. The most general one is the method of direct inspection. According to
this method, one has to perform the following three steps for each symmetry
operation (SymOp) from the spacegroup of the crystal:

1. Derive the mapping matrix (aij) from (x′1, x
′
2, x
′
3) = SymOp((x1, x2, x3));

2. Calculate C̃ijkl = aimajnakoalpCmnop;

3. Solve C̃ijkl = Cijkl.

The second step can be simplified by utilization of the fact, that the transforma-
tion law for the components of a tensor of rank n (Ti1i2...in) are the same as for the
products of of type xi1xi2 ...xin . Applying the method of direct inspection, one
can identify the independent components for all crystal systems. These results
are presented in the following section, that is completely adopted from [45].
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A.2 Results for all crystal systems

KEY TO NOTATION

zero component

non-zero component

equal components

components numerically equal, but opposite in sign

For s twice the numerical equal of the heavy dot component to
which it is joined

For c the numerical equal of the heavy dot component to which it
is joined

For s 2 (s11 − s12)

For c 1
2
(c11 − c12)

All the matrices are symmetrical about the leading diagonal.

Crystal system Class Components Diagram

Triclinic Both classes 21
Monoclinic All classes 13 Diad ‖ x2 (standard)

Diad ‖ x3



A.2. RESULTS FOR ALL CRYSTAL SYSTEMS 101

Crystal system Class Components Diagram

Orthorombic All classes 9
Tetragonal Classes 4, 4̄, 4/m 7

Classes 4mm, 4̄2m, 6

422, 4/mmm
Trigonal Classes 3, 3̄ 7

Classes 32, 3̄m, 3m 6

Hexagonal All classes 5

Cubic All classes 3
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Crystal system Class Components Diagram

Isotropic 2
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