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Introduction

This thesis is about Rauzy fractals, geometric objects arising in the study
of symbolic dynamical systems generated by a particular class of substitutions.
One of the main dynamical problems in this field is translated geometrically to a
tiling problem by Rauzy fractals. We start with an overview of this famous open
problem, giving special emphasis to the geometric interpretation. The second
part describes the principal issues when going beyond the main hypotheses.
This is indeed the main subject of this thesis. The third part sketches the
contributions and advances we have made, which will be described in full detail
in the subsequent chapters.

The Pisot conjecture

Substitutions, dynamical systems and tilings of the line. Substitu-
tions are simple combinatorial objects which replace letters of a finite alphabet
by finite words. They generate infinite words by iteration which can be seen
geometrically as tilings of the line by associating a length with each letter. A
substitution is intrinsically a self-similar object since it inflates each tile and
subdivides it into translates of the original tiles. Given a primitive substitution
σ we can consider the set Xσ of bi-infinite words having the same language as
a bi-infinite periodic point of σ and consider the Z-action of the shift S on Xσ.
The symbolic dynamical system (Xσ, S) is called substitution dynamical system,
or substitutive system. On the other side we can define a tiling metric in which
two tilings of the line are close if they agree up to a small translation in a large
neighbourhood of the origin. Given a tiling T of the line we can consider the
closure with respect to the tiling metric XT = {T − t : t ∈ R}. The R-action by
translations on XT is called the tiling flow, denoted (XT ,R). The symbolic and
tiling points of view are of course related. The substitution dynamical systems
(Xσ, S) are cross-sections of tiling flows. More precisely the system (XT ,R) is
topologically conjugate to the suspension of (Xσ, S) with roof function given
by a vector of lengths associated with the letters, usually chosen to be a left
eigenvector of the incidence matrix Mσ of the substitution associated with the
Perron-Frobenius eigenvalue. One-dimensional substitution dynamical systems
are minimal, uniquely ergodic with zero entropy. Similar considerations hold for
tiling flows. It is natural to investigate further the ergodic behaviour of these
systems.

The spectral type of one-dimensional substitution dynamical systems can
vary from the weakly mixing one to the one with pure discrete spectrum, de-
pending on the substitution. Recall that a measure-preserving dynamical system
(X,T, μ) has pure discrete spectrum if the eigenfunctions span a dense subspace of
L2(X,μ). Dekking [Dek78] analysed the case of substitutions of constant length
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2 INTRODUCTION

and gave a characterization for the discreteness of the spectrum in connection
with a notion of coincidence. For substitutions of non-constant length a result
of [DK78] established that strongly mixing substitutive systems do not exist. It
is a consequence of the work of Host [Hos86] that all eigenfunctions of primi-
tive substitutive dynamical systems are continuous and that the spectrum of a
substitutive system can be split into two parts. The first part is of arithmetic
origin, and depends only on the incidence matrix of the substitution. The second
part has a combinatorial origin, and is related to the return words of the fixed
point of the substitution (see [FMN96]). For a general and detailed overview of
the spectral theory of substitutive systems, we refer to [Fog02, Chapter 7] and
[Que10].

Kronecker systems, i.e. rotations on compact Abelian groups, are the canonical
examples of measure-preserving transformations with discrete spectrum. By a
theorem of Halmos and Von Neumann, a measure-preserving transformation
with discrete spectrum is metrically isomorphic to a Kronecker system (see
[Wal82, CFS82, EW11]).

The conjecture. The following is known as the Pisot conjecture.

Conjecture. Let σ be an irreducible unit Pisot substitution. Then (Xσ, S)
has pure discrete spectrum.

The importance of the hypotheses irreducible, unit and Pisot must be un-
derlined. For definitions see Chapter 1. We will see in the second part of the
introduction what happens when we leave the framework given by the first two
hypotheses.

The same conjecture can be formulated for tiling flows and indeed it is
equivalent to consider substitution dynamical systems or tiling flows since it was
proven in [CS03] that for irreducible Pisot substitutions the tiling flow has pure
discrete spectrum if and only if the substitutive system does. We will privilege
in this thesis the symbolic approach. For more on the topology of tiling spaces
we refer to [Sad08].

Why Pisot? The Pisot assumption in this theory is fundamental. We exhibit
dynamical and geometrical reasons for the importance of this assumption.

The role of Pisot numbers in the study of mathematical quasicrystals was
already pointed out in [BT87]. Lind [Lin84] and Thurston [Thu89] showed that
Perron numbers, that is, algebraic integers λ > 1 whose Galois conjugates are
in modulus strictly less than λ, can be the only expansion factors for self-affine
tilings of R. In [Sol97, Sol07] a complete characterization of the eigenvalues
for tiling flows was carried out. In particular, using this characterization and
the classical theorem of Pisot, it was shown that the tiling flow has non-trivial
eigenvalues, equivalently is not weakly mixing, if and only if the inflation factor
is a Pisot number.

The importance of the Pisot hypothesis is highlighted also by the geometric
representation, which will lead to Rauzy fractals. The action of the incidence
matrix Mσ of an irreducible unit Pisot substitution on Rn, where n is the number
of letters on which σ acts, gives an expanding/contracting (or unstable/stable)
Mσ-invariant decomposition Rn = Ke

β ⊕ Kc
β. The action of Mσ restricted to

Ke
β
∼= R is a dilation by the Pisot number β > 1, while it is a contraction
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on Kc
β
∼= Rn−1 by |β′| < 1 for all β′ Galois conjugates of β. This remarkable

dynamical property of Pisot numbers will be crucial: the contracting space Kc
β

will be suitable to represent geometrically the substitution dynamical system
by a fractal attractor generated by a graph directed iterated function system
with contraction factors given by the Galois conjugates of β. Good references on
fractal geometry are [Fal03, Bar88].

Origins of the geometric interpretation. The geometric theory for the
study of substitution dynamical systems was initiated by Gérard Rauzy in his
seminal work [Rau82]. He succeeded to prove that the substitution dynamical
system (Xσ, S) generated by the Tribonacci substitution σ : 1 �→ 12, 2 �→ 13, 3 �→ 1
is a translation on a two-dimensional torus. The key point was to interpret the
shift as a domain exchange on a fractal domain, later called Rauzy fractal in
his honour, decomposable in three subpieces, or subtiles, which give a suitable
partition for the domain exchange to be coded by (Xσ, S). Another essential
point is that Rauzy showed also that the fractal domain obtained with this
construction can tile periodically the plane where it is represented. Therefore
this domain can be seen as a two-dimensional torus and the domain exchange as
a translation on this torus.

Figure 1. Domain exchange and periodic tiling for the Rauzy
fractal associated with the Tribonacci substitution.

Rauzy’s original idea was to use a special kind of numeration with admissibility
governed by a graph associated with the substitution to obtain the fractal domain
as geometrical representation of the substitutive system. We will see in Chapter 1
how substitutions and numeration are intimately related.

Beta-numeration is a particular case of the substitutive one and there is
an extensive and independent study focused on it. The investigation of tilings
generated by beta-numeration began with the groundwork of Thurston [Thu89]
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who, inspired by Rauzy, produced Euclidean self-similar tilings as geometrical
picture of the expansion of numbers in a Pisot unit base β. Rauzy fractals were
obtained by embedding the beta-integers, i.e. the elements whose β-expansions
have only non-negative powers of β, via a Minkowski embedding into Kc

β .
We will see in the sequel that Rauzy fractals can be defined in several

equivalent ways besides the numeration system style. However, numeration
associated with substitutions and beta-numeration will be our main point of view
in Chapter 2 and Chapter 3.

A quest of tilings. Rauzy’s construction was extended in [AI01, CS01b]
to every irreducible unit Pisot substitution satisfying a certain combinatorial
property, called the strong coincidence condition. This condition, which is true
for substitutions on two letters [BD02] and is conjectured to be true for every
irreducible Pisot substitution, is sufficient to get the measure-disjointness of the
subpieces of the Rauzy fractal and thus allows to define a domain exchange on it.
It turns out that the shift on the substitutive system is measurably conjugate to
the domain exchange and it is semi-conjugate and almost everywhere m-to-one
to a toral translation, with m constant. This last observation is motivated by the
fact that the Rauzy fractals induce a periodic multiple tiling with covering degree
m when translated by a suitable lattice associated with the domain exchange
transformation. The main point is to get a perfect tiling (m = 1). Then the
substitutive system is conjugate to a toral translation, which implies the pure
discreteness of the spectrum. In this way the Pisot conjecture has been translated
to a tiling problem.

[AI01] and [SW02] established many elementary properties of Rauzy fractals,
among them the important fact that they satisfy a set equation governed by the
so-called prefix-suffix graph of the substitution. Basic topological properties for
Rauzy fractals read as follows (see e.g. [BST10]):

(1) They are compact sets with non-empty interior.
(2) They are the closure of their interior.
(3) Their fractal boundary has measure zero.

More topological properties like connectedness, homeomorphy to a disk [ST09]
and considerations on the fundamental group [JLL13] were recently studied.

A major breakthrough was made in [AI01] with the introduction of geometric
realizations of substitutions and their duals. Fixed points of substitutions over
the alphabet A = {1, 2, . . . , n} can be seen geometrically as “broken lines” in Rn

made of translates of segments parallel to the basis vectors ea, a ∈ A. Rauzy
fractals can be seen as the closure of the projection of the vertices of the broken
line into the contracting space Kc

β along the expanding direction Ke
β. A certain

operator E1(σ) is the geometric realization of the substitution on segments and
broken lines. We can consider the dual map E∗

1(σ) and interpret it as a map on
faces of codimension one. Duals of substitutions have been used in connection to
stepped surfaces, which play a central role in [AI01] in the context of irreducible
substitutions.

Stepped surfaces were first defined in [Rev91] and used as arithmetic discrete
models for hyperplanes for example in [IO93, IO94]. A stepped surface is seen in
[AI01] as the set of nearest coloured points of Zn above the contracting space
Kc

β of the substitution σ (see also [IR06] for a good detailed description). The
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Figure 2. Patch of the self-replicating tiling made of Rauzy
fractals for the Tribonacci substitution.

projection of these points into Kc
β forms a discrete aperiodic set, in particular

a Delone set. To any coloured point of the stepped surface one can associate a
hypercube face of a certain type. The union of faces approximating the contracting
representation space of the substitution is called a geometrical representation of
the stepped surface and it is invariant under the dual E∗

1(σ). The projection of
the stepped surface into Kc

β is a polygonal tiling. If we replace these polygons by
Rauzy fractals we obtain a self-replicating multiple tiling, in the sense that the
E∗

1(σ)-invariance gives the self-replicating property defined by Kenyon [Ken92].
Furthermore using the dual formalism we can define Rauzy fractals as Hausdorff
limits of renormalized iterations under the dual geometric substitution E∗

1(σ) of
faces.

Aperiodic tilings (among which we mention the celebrated Penrose tiling) serve
as mathematical models of atomic configurations for quasicrystals [Sen95, BG13].
Physical quasicrystals are metallic alloys which exhibit sharp bright spots, called
Bragg peaks, as point-like as those of crystals in their X-ray diffraction pattern,
but have aperiodic structure, usually manifested by the presence of a non-
crystallographic symmetry. They were discovered in 1982 by Dan Shechtman,
who subsequently won the Nobel prize in 2011, and they revolutionised this
field since lattice symmetry, crystal structure, and pure point diffraction were
considered as synonymous. A strong motivation for questions on pure discrete
spectrum of tiling flows and substitution dynamical systems comes from the
equivalence with pure point diffractivity of atomic structures [LMS02].

Rauzy fractals induce a third kind of tiling related to Markov partitions for
hyperbolic toral automorphisms. A partition of the underlying set of a dynamical
system induces a coding of the orbits and hence a semiconjugacy with a subshift.
Markov partitions are a special class of partitions for which the target is a subshift
of finite type. For more details see e.g. [LM95, KH95, Adl98, BS02]. Markov
partitions exist for every hyperbolic toral automorphism [Sin68, Bow70] and they
can be constructed explicitly with two rectangles for square matrices of size
two [AW70]. In higher dimensions no explicit construction is known and by a
result of Bowen [Bow78] such partitions must have fractal boundary. We can
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suspend the subtiles of a Rauzy fractal with intervals of different lengths along
the expanding direction and translate this suspended domain by Zn. In this
way we obtain an explicit geometrical construction of a Markov partition for the
Pisot toral automorphism Mσ associated with the substitution, provided that the
suspended Rauzy fractal tiles Rn periodically. This was done in the irreducible
unit case in [Pra99]. Purely periodic beta-expansions were characterized using
this domain in [HI97, IR05, BS07]. Another approach based on homoclinic points
appears in [ES97, Sch00] and one based on generalised radix representations with
a matrix as base in [LB95]. We mention [KV98] for an arithmetic construction
of sofic partitions of hyperbolic toral automorphisms beyond the Pisot case,
and [AFHI11] for a Rauzy fractals construction of a Markov partition for a free
group automorphism associated with a complex Pisot root. See also [LS05] for a
treatment on non-expansive group automorphisms and the study of a two-sided
beta-shift arising from a Salem number.

(a) Periodic tiling induced by the
Markov partition for the Fibonacci au-
tomorphism ( 1 1

1 0 ).

(b) Markov partition for the Tribonacci

automorphism
(

1 1 1
1 0 0
0 1 0

)
.

So far we have seen that an irreducible unit Pisot substitution induces the
following multiple tilings:

• Periodic associated with a domain exchange.
• Aperiodic self-replicating associated with a stepped surface.
• Periodic related to a Markov partition for Mσ.

An important result of [IR06] asserts that these three collections are simultane-
ously tilings provided one of them is a tiling.

Rauzy fractals have become an extremely important tool in the study of
one-dimensional substitutive systems and of the Pisot conjecture. Furthermore a
vast literature on their combinatorial, topological, dynamical, arithmetical and
number-theoretical properties, besides the applications involving them in discrete
geometry, automata, tilings and quasicrystals theory, has been flourishing.

State of the art. We present a non-exhaustive list of results, sufficient and
necessary conditions for the Pisot conjecture.

• The Pisot conjecture is true for any substitution over two letters (see
[HS03]).
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• Property (F) was first introduced for beta-numeration in [FS92] and asserts
that every non-negative element of Z[β−1] has a finite beta-expansion. It
is equivalent to the topological property that 0 is an exclusive inner point
of the central tile. Thus it is a sufficient (but not necessary) condition for
the tiling property. It can be stated geometrically by saying that iterating
E∗

1(σ) on the initial patch of faces centred at 0 we obtain the whole stepped
surface. It will be considered in Chapter 2.

• Property (W) is an arithmetical property introduced in the context of
beta-numeration (see e.g. [Aki02, ARS04] and Chapter 3 for a precise
definition and for classes of Pisot numbers satisfying it). It is equivalent
to the tiling property.

• The super coincidence condition is a purely combinatorial condition intro-
duced in [IR06] equivalent to the tiling property. Two segments have the
same height if the intersection of the interiors of their projections on the
expanding line is non-empty. They have coincidence if a positive iterate of
E1(σ) on the two segments has at least one segment in common. The super
coincidence condition asserts that any two segments have a coincidence
whenever they have the same height.

• The geometric coincidence condition was introduced in [BK06] and it is the
analogous of the super coincidence condition in the tiling flow setting. The
continuous map factoring the tiling flow onto its maximal equicontinuous
factor, i.e. the Kronecker flow on a torus, is often called in the literature
geometric realization. The geometric realization is non-trivial if and only
if the substitution associated with the tiling flow is Pisot, and in this
case it is almost everywhere m-to-1 for some positive integer m called
coincidence rank. It is almost everywhere one-to-one if and only if the
geometric coincidence condition holds, which is equivalent to the pure
discreteness of the spectrum.

• Boundary and contact graphs conditions. The boundary graph describes
the neighbouring tiles of an arbitrary tile in the self-replicating or in the
periodic multiple tiling. The contact graph, introduced in the substitution
settings in [Thu06], is based on polyhedral approximations of the Rauzy
fractals and has a simpler construction and shape than the boundary graph
(indeed it is the easier to compute). The tiling property is equivalent to
the condition that the spectral radius of these graphs is less than the Pisot
number β. The spectral condition on the boundary graph will be treated
in Chapter 3.

• The balanced pair algorithm (known in another context as overlap coin-
cidence) was introduced by Livshits [Liv87, Liv92] and is a purely combi-
natorial process which describes the growth of gaps between coincidence
overlaps and checks whether these gaps are uniformly bounded. It termi-
nates whenever the tiling property is satisfied (see [SS02] and [AL11] for
advances).

In a very recent work [Bar14] it is shown that all beta-substitutions for β a Pisot
simple Parry number have tiling flows with pure discrete spectrum, as do the
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Pisot systems arising, for example, from the Jacobi-Perron and Brun continued
fraction expansions. For the latter see also [BBJS14].

Good surveys on Rauzy fractals and the Pisot conjecture are [BS05, BST10,
ABB+14].

Beyond unimodularity and irreducibility

We have seen that in the irreducible unit setting we can interpret the sub-
stitutive system geometrically as a domain exchange on the associated Rauzy
fractal, which is represented in this case in a Euclidean space. The unimodularity
and irreducibility assumptions play a prominent role.

When the Pisot number β is non-unit, i.e.N(β) �= ±1, the guiding philosophy
is to enlarge algebraically the representation space in order to make β a unit.
This was conjectured already by Rauzy [Rau88] and requires to extend the
representation space by certain p-adic factors. Precisely, we consider the locally
compact subring

Kβ = K∞ ×
∏
p|(β)

Kp

of the adèle ring AQ(β), consisting in the product K∞ of the Archimedean
completions of the number field K = Q(β) associated with the Galois embeddings
together with the product of the non-Archimedean (or p-adic) completions Kp

determined by the prime divisors of the principal ideal (β) of the ring of integers
O of K. By the product formula

∏
p |β|p = 1 we have thus that β is a unit

in Kβ. The representation space Kβ has a hyperbolic decomposition into an
expanding and a contracting space Ke

β ×Kc
β , where Ke

β
∼= R is the Archimedean

completion associated with the identical Galois embedding. Indeed we call Kc
β the

contracting space because |β|p < 1 for every place p occurring in Kβ different from
the identical Galois embedding. Furthermore multiplication by β is a uniform
contraction in measure μc(βA) = β−1μc(A), for A measurable set, μc Haar
measure on Kc

β. The Rauzy fractals will be represented in Kc
β. See Section 1.3

for a complete exposition on representation spaces.
Observe that in the non-unit case we have Mσ /∈ GLn(Z). The inverse of Mσ

plays an important role in the definition of E∗
1(σ) and amounts to the inflation

action in Kc
β . If we considered the same purely Euclidean contracting space as in

the unit case we would not be able to make geometric considerations because
the Rauzy fractals would overlap in measure: the action of M−1

σ on the stepped
surface would not be invariant and would generate too many points. The choice
of an enlarged representation space with p-adic factors permits to distribute the
points of the stepped surface according to their p-adic height and to get finally
again a discrete translation set.

In the non-unit realm the matrix Mσ can be seen as a Pisot solenoidal
automorphism. A solenoid is a continuum, i.e. a compact connected topological
space, that may be obtained as the inverse limit of continuous homomorphisms
of topological groups. For example, given (R/Z, T2), where T2 : x �→ 2x mod 1 is
the circle-doubling map, the dyadic solenoid can be defined equivalently as

lim←−(R/Z, T2)
∼= (R×Q2)/δ(Z[

1
2 ])
∼= Ẑ[12 ],
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Figure 4. Dyadic solenoid seen as an attractor.

where δ is the diagonal embedding in R×Q2 and Ẑ[12 ] is the Pontryagin dual,

that is, the group of continuous characters of Z[12 ]. In general the dual group
of a solenoid is a subgroup of Qm, for some m ≥ 1. For more on solenoids and
applications in dynamical systems see e.g. [Sma67, Wil74, LW88, CEW97, VS08].

In analogy with the example above we call Kβ/δ(Z[β
−1]) a beta-solenoid

and we consider the dynamical system ([0, 1), Tβ), where Tβ : x �→ βx mod 1
is the (greedy) beta-transformation. We will construct in Chapter 3 a natural
extension for Pisot beta-numeration using Rauzy fractals. When the natural
extension domain tiles periodically the representation space Kβ modulo the lattice
δ(Z[β−1]) then it is a beta-solenoid and can be considered as a Markov partition
for the Pisot solenoidal automorphism given by the incidence matrix Mσ of a
beta-substitution.

Siegel [Sie03] defined for the first time Rauzy fractals for Pisot substitutions
that are not necessarily unit. In his Ph.D. thesis, Sing [Sin06b] studied various
properties of non-unit Rauzy fractals in the context of model sets. An upper and
lower bound for the Hausdorff dimension of the boundary of these sets was given
in [Sin06a]. In [BS07] real numbers having a purely periodic beta-expansion in a
non-unit Pisot base β have been characterized using Rauzy fractals, and recently
Akiyama et al. [ABBS08] investigated properties of non-unit Rauzy fractals in
the context of beta-numeration, with special regard to the boundary graph and
to the gamma function, a certain number-theoretical function related to purely
periodic beta-expansions.

If the substitution is reducible we have an Mσ-invariant decomposition of
Rn consisting in a hyperbolic space with related expanding/contracting splitting
Ke

β ×Kc
β of dimension d = deg(β) (as in the irreducible case) and an additional

supplementary (or neutral) space Hs. The standard procedure to obtain Rauzy
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fractals in this setting is to project the vertices of the broken line associated with
the fixed point of the substitution into Kc

β along Ke
β ⊕Hs.

Many difficulties arise in the reducible case because the number of colours,
and therefore the number of types of faces, is n = #A, which is greater than the
dimension d = deg(β) of the representation space Kβ . As pointed out in [EIR06],
one of the major problems is that the existence of a geometrical representation
for stepped surfaces is unclear. In [EIR06] an abstract stepped surface is defined
similarly as in the irreducible case as set of “nearest” coloured points and its
invariance under the dual substitution E∗

1(σ) is shown. However no general
concrete polygonal construction is given. A self-replicating collection made of
Rauzy fractals and one related to Markov partitions of toral automorphisms are
studied.

Figure 5. A projected patch of a stepped surface associated with
a reducible substitution (see Chapter 4).

In [EI05] the authors found an ad hoc construction for a geometrical repre-
sentation of the stepped surface of the Hokkaido substitution σ : 1 �→ 12, 2 �→
3, 3 �→ 4, 4 �→ 5, 5 �→ 1 related to the minimal Pisot number. Furthermore
they proved that the substitution dynamical system (Xσ, S) is conjugate to a
domain exchange on the Rauzy fractal but this cannot tile periodically. This
curious phenomenon occurs in the reducible case and it is a significant difference
compared to the irreducible setting. Further advances have been done in [ST09]
where a quotient mapping condition is defined in order to have a periodic multiple
tiling even in the reducible case. Nevertheless it is shown in [EI05] that for the
Hokkaido substitution an extended domain satisfies the tiling property. This can
be generally explained with the results of [BBK06]. They observed that for a
wide class of beta-substitutions the domain exchange on the Rauzy fractal is
the first return of a minimal toral translation on it. The extended fundamental
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domain is explained by taking into account the original Rauzy fractal plus the
pieces prior to their first return.

The Pisot conjecture is not true for reducible Pisot substitutions. The Thue-
Morse substitution 1 �→ 12, 2 �→ 21 is a simple example of (constant length)
reducible non-unit Pisot substitution. The associated substitution dynamical
system is the coding of a skew-product of a dyadic rotation by Z/2Z and has
a non-discrete simple spectrum (see [Fog02, Chapter 5]). Combinatorially this
substitution does not satisfy the strong coincidence condition, and geometrically
one can see that the subtiles are overlapping in measure. Other counterexamples
with non-constant length are provided e.g. in [BBK06]. It is not clear for which
reducible substitutions the conjecture holds. We mention that no example of a
beta-substitution failing the Pisot conjecture is known. Even the relation between
the spectra of the substitutive system and of the tiling flow is not well understood.
If the former has pure discrete spectrum then the latter does, but the opposite
implication typically fails.

Recently irreducibility has been criticized as a natural assumption. Indeed
one can take an irreducible Pisot substitution and rewrite it to obtain another
substitution that is not irreducible but has topologically conjugate dynamics.
In [BBJS12] a topological condition on the substitution is introduced: a Pisot
substitution with Pisot number of degree d is called homological Pisot if the
dimension of the first rational Čech cohomology of the tiling space is d. Recently
reducible non-unit Pisot substitutions have gained importance because of the co-
incidence rank conjecture: if σ is a homological Pisot substitution with expansion
β then the coincidence rank of σ divides N(β). Advances in this direction have
been obtained in [Bar13].

Contribution of this thesis

The aim of this thesis is to generalize to the non-unit, reducible case sev-
eral dynamical, topological and arithmetical properties for the Rauzy fractals,
including the tiling properties, and to investigate the main differences with the
well-studied irreducible unit case. We extend to the non-unit case some important
tiling conditions and equivalences, working with several different concepts of
Rauzy fractals. We use new combinatorial and geometrical techniques to tackle
the difficulties of the reducible case and we set up a new theory of Rauzy fractals
generated by higher dimensional duals to better understand the dynamics of
reducible Pisot substitutions.

Articles included in this thesis

[MT14]: The geometry of non-unit Pisot substitutions, with Jörg
Thuswaldner, to appear in Annales de l’Institut Fourier (Greno-
ble), 64 (2014).

[MS14]: Tilings for Pisot beta-numeration, with Wolfgang Steiner, to
appear in Indagationes Mathematicae (2014).

[Min14]: Dynamics of reducible Pisot substitutions, preprint.



12 INTRODUCTION

In Chapter 1 we present all the necessary background notions that will be
used throughout the thesis.

Chapter 2 is devoted to the results of [MT14]. We start defining the main
objects of this thesis: Rauzy fractals. The beauty of these objects is that they
appear naturally in various contexts. We present in Section 2.1 and 2.2 the
following approaches:

(1) We review Dumont-Thomas numeration, which is a generalization of the
well-known notion of beta-numeration, and view Rauzy fractals as the
natural geometric objects related to this kind of numeration. This will be
our main approach.

(2) We conceive the Rauzy fractals by projecting vertices of broken lines.

(3) We obtain the Rauzy fractals via a projective limit construction.

(4) We extend the geometric realization of a substitution and its dual studied
in [AI01] to the non-unit case and define Rauzy fractals as renormalized
pieces of stepped hypersurfaces with p-adic factors.

(5) We present Sing’s [Sin06b] construction of Rauzy fractals via cut and
project schemes and define them in terms of a graph directed iterated
function system. In this framework Rauzy fractals occur as the dual
prototiles of the multi-component model set associated with this cut and
project scheme.

We show how these different approaches are related, provide conjugacies of the
underlying mappings, and prove that they are all equivalent ways to view Rauzy
fractals.

Particular importance is given to stepped surfaces, that is, coloured points of
a certain lattice which are near in some sense to the contracting representation
space Kc

β . The projection of these points into Kc
β forms a Delone set which is a

natural translation set for the Rauzy fractals. One of the main difficulties in the
non-unit case was to give a geometrical representation to stepped surfaces and to
see the Rauzy fractals as renormalized polygons under the dual of the geometric
realization of the substitution. With our equivalent approaches we manage to
give a concrete “shape” to the stepped surface and view the Rauzy fractals with
this desired construction (see also [Sin06b]).

We establish geometric and topological properties of (non-unit) Rauzy fractals,
some of which occur in Sing’s thesis [Sin06b] in the context of model sets, some
of them are new. In particular we prove that Rauzy fractals can be regarded
as the solution of a graph directed set equation governed by the prefix graph of
the substitution. This set equation provides a natural subdivision of the subtiles
of a Rauzy fractal and highlights its self-affine structure that is inherited from
the underlying substitution. We prove also basic topological properties like the
equality to the closure of the interior and the zero measure for the boundary.
These are the contents of Theorem 2.19. In Proposition 2.21 we discuss how Rauzy
fractals are related to certain subshifts defined in terms of periodic points of the
substitution σ and relate adic transformations to domain exchanges of subpieces
of Rauzy fractals. In Theorem 2.23 we show that non-unit Rauzy fractals always
admit a multiple tiling of the representation space Kc

β. Moreover, extending

results of [ABBS08] on non-unit beta-numeration we prove a tiling criterion for
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Rauzy fractals. In particular, we show in Theorem 2.29 that Rauzy fractals
admit a tiling of the representation space provided that the representations of
the underlying Dumont-Thomas numeration obey a certain finiteness condition
which is an extension of the well-known property (F) of beta-numeration (see
[FS92]).

The results of [MS14] are presented in detail in Chapter 3, where the frame-
work is Pisot beta-numeration, highlighting that we do not require the Pisot
base to be a unit. We give an overview of this kind of numeration and the
connection with Dumont-Thomas numeration in Section 1.2.2. Beta-numeration
can be described by means of substitutions, precisely a particular class of them,
called beta-substitutions. These have a fixed combinatorial structure and their
incidence matrices correspond to the companion matrices of the polynomials
associated with the substitutions. We note also that every beta-substitution
satisfies the strong coincidence condition. Observe that beta-substitutions can
be reducible and it is remarkable that no example of a beta-substitution failing
the Pisot conjecture is known.

We discuss several objects: Rauzy fractals, natural extensions, and integral
beta-tiles. We recall in Theorem 3.1 some of the main properties of Rauzy
fractals associated with beta-numeration. It is well-known that they induce
an aperiodic multiple tiling of their representation space, and there are several
topological, combinatorial, and arithmetical conditions that imply the tiling
property. In the irreducible unit context, having an aperiodic tiling is equivalent
to having a periodic one [IR06]. The situation is different when we switch to
the reducible and non-unit cases. In order to have a periodic tiling, a certain
algebraic hypothesis (QM), first introduced in [ST09] for substitutions, must hold,
and, when dealing with the non-unit case, our attention is naturally restricted to
a certain stripe space, a subset of Kc

β consisting of those (zp) such that |zp|p ≤ 1

for the finite places p | (β).
Another big role in [MS14] is played by the natural extension of the beta-shift.

Recall that the natural extension of a (non-invertible) dynamical system is an
invertible dynamical system that contains the original dynamics as a subsystem
and that is minimal with this property in a measure theoretical sense; it is
unique up to metric isomorphism. If β is a Pisot number, then we obtain a
geometric version of the natural extension of the beta-shift by suspending the
Rauzy fractals; see Theorem 3.2. This natural extension domain characterises
purely periodic beta-expansions [HI97, IR05, BS07] and forms (in the unit case)
a Markov partition for the associated hyperbolic toral automorphism [Pra99],
provided that it tiles the representation space periodically. The Pisot conjecture
for beta-numeration can be stated as follows: the natural extension of the
beta-shift is isomorphic to an automorphism of a compact group.

In the non-unit case, a third kind of compact sets, studied in [BSS+11] in the
context of shift radix systems and similar to the intersective tiles in [ST13], turns
out to be interesting. Integral beta-tiles are the Euclidean counterpart and can be
seen as p-adic “slices” of Rauzy fractals. In Theorem 3.3, we provide some of their
properties. In particular, we show that the boundary of these tiles has Lebesgue
measure zero; this was conjectured in [BSS+11, Conjecture 7.1]. Furthermore
they are intervals in the quadratic case and tile R. This gives another proof of
the well-known fact that the Pisot conjecture for two-letters substitutions is true.
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One of the main results of [MS14] is the equivalence of the tiling property
for all our collections of tiles. We extend the results from [IR06] to the beta-
numeration case (where the associated substitution need not be irreducible or
unit), with the restriction that the quotient mapping condition (QM) is needed
for a periodic tiling with Rauzy fractals. Our series of equivalent tiling properties
also contains that for the collection of integral beta-tiles. We complete then our
Theorem 3.4 by proving the equivalence of these tiling properties with the weak
finiteness property (W), and with a spectral criterion concerning the so-called
boundary graph.

Finally, we make a thorough analysis of the properties of the number-
theoretical function γ(β) concerning the purely periodic beta-expansions. This
function was defined in [Aki98] and is still not well understood; see [AFSS10], but
note that the definition therein differs from ours for non-unit algebraic numbers.
We improve in Theorem 3.5 some results of [ABBS08] and answer in Theorem 3.6
some of their posed questions for quadratic Pisot numbers.

Chapter 4 is based on [Min14], where we set up a geometrical theory for
the dynamics of reducible Pisot substitutions. The main tools are the duals
of higher dimensional extensions of substitutions, first introduced in [SAI01].
Generally we have that the number of letters (denoted by n) of the substitution
is greater or equal than the degree d of the Pisot number, which is the dimension
of the hyperbolic space Kβ of the substitution. In particular, since we want to
give a fractal geometric representation in the contracting space Kc

β, we want

to work with (d − 1)-dimensional faces in Rn, thus it turns out that the dual
substitution E∗

n−d+1(σ), and its concrete geometric realization Ed−1(σ) defined
as its conjugate by a sort of Poincaré duality map, will be suitable for this task.

Our main objects will be the Rauzy fractals defined as Hausdorff limits of
renormalized patches of polygons generated by iterations of the dual substitution
Ed−1(σ). Inspired by some ideas of [AFHI11] for the study of a free group
automorphism associated with a complex Pisot root, we introduce some important
geometrical conditions which are required in order to develop a tiling theory with
these objects: regularity of the substitution guarantees that projecting Ed−1(σ)-
iterates of patches of (d− 1)-dimensional faces behaves well without producing
overlaps; the geometric finiteness property will ensure the covering property;
finally an algebraic condition on the neutral polynomial of the substitution will
imply nice topological properties, among which the measure disjointness in the
set equations, for the Rauzy fractals. With these ingredients, iterating Ed−1(σ)
on increasing patches of faces we succeed to produce geometrical representations
for stepped surfaces whose projections onto the contracting space are polygonal
tilings. These are the contents of Theorem 4.11. Under the same conditions
we show in Theorem 4.20 that our Rauzy fractals form aperiodic self-replicating
tilings, by just replacing the polygons in the polygonal tiling induced by a stepped
surface. Furthermore, starting with patches of polygons P whose projections
tile periodically Kc

β and operating with a Hausdorff limit process as described
above, we get in Theorem 4.24 natural periodic tilings by Rauzy fractals RP
whenever the boundaries of the approximations converge to the real boundary.
We emphasise that explicit general constructions of periodic tilings were missing
in the previous works on reducible substitutions.
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Under a slight generalization of the strong coincidence condition it is possible
to define a domain exchange transformation on our new Rauzy fractals, and
we are interested in codings of orbits of points under this domain exchange.
Furthermore, our new fractals turn out to be exactly those extended domains
considered in [EI05, BBK06] obtained by taking into account the pieces prior to
the first return of a domain exchange on the classical Rauzy fractal, with the
advantage that they are generated explicitly in a systematic way by the dual
substitution Ed−1(σ).

We present a new approach based on broken lines, trying to pursue the
direction of turning a reducible substitution into an irreducible one. It is well
known that the Rauzy fractal can be defined as the closure of the projections
of vertices of a broken line which represents geometrically the fixed point of the
substitution. By applying a code we can change combinatorially the broken line
into another one where only some specific letters are used. This code is the
combinatorial interpretation of some linear dependencies arising in the reducible
case. Thus, applying this code turns in some sense the broken line into an
irreducible one, where only the letters associated with the linearly independent
basis vectors are used. Projecting the vertices of the new broken line we get
a bigger domain, which turns out to be exactly one of our Rauzy fractals RP
generated by the dual Ed−1(σ) and inducing a periodic tiling. This code explains
combinatorially also the first return of the pieces. We will see in Theorem 4.39
that the symbolic dynamical system image of (Xσ, S) by this code is measurably
conjugate to the domain exchange on RP .

We apply our techniques to a family of reducible Pisot substitutions (including
the Hokkaido substitution) satisfying the geometrical conditions required to get
the tiling properties, and we show also some non-regular examples.





CHAPTER 1

Preliminaries

1.1. Substitutions

Let A = {1, 2, . . . , n} be a finite alphabet, and denote by A∗ the set of finite
words over A. The set A∗ endowed with the concatenation of words is a free
monoid with the empty word ε as identity element. Given w ∈ A∗ and a ∈ A,
let |w| be the length of the finite word w, |w|a be the number of occurrences
of a in w. We denote by Aω the set of right-infinite words and by ωA the set
of left-infinite words over A. The topology on Aω is the product topology of
the discrete topology on A. This implies that Aω is a compact Cantor set. A
bi-infinite word over A is a two-sided sequence in AZ. We can equip AZ with a
topology in an analogous way as we did for Aω. A right or bi-infinite word u is
purely periodic if there exists v ∈ A∗ \ {ε} such that u = vω. The language of an
infinite or bi-infinite word u is the set of all its finite subwords. Recall that u is
uniformly recurrent if every word occurring in u occurs in an infinite number of
positions with bounded gaps.

A substitution is an endomorphism of the free monoid A∗ with the condition
that the image of each letter is non-empty and, for at least one letter a ∈ A,
|σk(a)| → ∞. A substitution naturally extends to the set of infinite and bi-infinite
sequences. A one-sided (two-sided) periodic point of σ is an infinite (bi-infinite)
word u that satisfies σk(u) = u, for some k > 0. If k = 1, then u is called fixed
point of σ.

We can naturally associate with a substitution σ an incidence matrix Mσ

with entries (Mσ)a,b = |σ(b)|a, for all a, b ∈ A. The map l : A∗ → Nn, w �→
(|w|1, . . . , |w|n)t is called the abelianisation map. Obviously, we haveMσ ◦l = l◦σ.
A substitution is primitive if Mσ is a primitive matrix, i.e. ∃ k such that Mk

σ > 0.
Every primitive substitution σ has at least one periodic point and without loss
of generality we can assume that σ has at least one fixed point. Indeed, if k is
the period length then we may just work with σk instead of σ. According to
the Perron-Frobenius Theorem, if σ is primitive then Mσ has a simple positive
eigenvalue, which we call the Perron-Frobenius eigenvalue, which is larger than the
absolute value of all other eigenvalues. Furthermore, there exists an eigenvector
with positive entries associated with the Perron-Frobenius eigenvalue.

The prefix-suffix graph associated with the substitution σ is the directed graph

with set of vertices A and set of labelled edges a
(p,s)−−−→ b if there exist p, s ∈ A∗

such that σ(a) = pbs. The prefix and suffix graph are those with labelled edges

a
p−→ b and a

s−→ b respectively.
We are interested in the class of Pisot substitutions. We introduce now all

the necessary definitions.

17



18 1. PRELIMINARIES

Definition 1.1. An algebraic integer β > 1 is a Pisot number if all its
algebraic conjugates β′ other than β itself satisfy |β′| < 1.

Definition 1.2. Let σ be a (primitive) substitution with β dominant eigen-
value of Mσ. We say that σ is

• Pisot if β is a Pisot number.
• irreducible if the characteristic polynomial of Mσ is irreducible over Q,
otherwise we call it reducible.

• unit if β is a unit, i.e. N(β) = ±1, otherwise we call it non-unit.

Given a Pisot substitution σ suppose that the characteristic polynomial of Mσ

decomposes over Q into irreducible factors as

det(xI −Mσ) = f(x)g1(x)
m1 · · · gk(x)mk ,

where f(x) is the minimal polynomial of degree d of the Pisot root β. We call f(x)
the Pisot polynomial and g(x) := g1(x)

m1 · · · gk(x)mk the neutral polynomial .

Each irreducible Pisot substitution is primitive (see e.g. [CS01b]). We intro-
duce the following important combinatorial condition on substitutions introduced
in [AI01].

Definition 1.3. A substitution σ over the alphabet A satisfies the strong
coincidence condition if for every pair (b1, b2) ∈ A2, there exists k ∈ N and a ∈ A
such that σk(b1) = p1as1 and σk(b2) = p2as2 with l(p1) = l(p2) or l(s1) = l(s2).

Every Pisot substitution on two letters satisfies the strong coincidence condi-
tion (see [BD02]).

1.1.1. Substitution dynamical systems. For standard terminology and
concepts about topological and measure-theoretical dynamical systems we refer
to [Wal82, CFS82, EW11]. We recall some background notions of symbolic
dynamical systems (for more details see [LM95]). The two-sided shift S : AZ →
AZ is defined by S(xi)i∈Z = (xi+1)i∈Z, and is a homeomorphism on AZ. A
subshift , or shift space, is a dynamical system (X,S) where X ⊆ AZ is a closed
S-invariant set. Equivalently, there exists a set of forbidden words F such that
X is the set of infinite sequences which do not contain any forbidden word in F .
A subshift is of finite type if the set of forbidden words F is finite. A subshift is
sofic if its language is recognized by a deterministic finite automaton. Note that
every subshift of finite type is sofic.

Definition 1.4. Let σ be a primitive substitution. The symbolic dynamical
system generated by σ is the shift space (Xσ, S) where

Xσ = {Sku : k ∈ Z},
and u ∈ AZ is a fixed point of σ.

Observe that (Xσ, S) is made of all the two-sided sequences whose language
coincides with the language of u, which does not depend on the choice of u by
primitivity, since all σ-periodic words are uniformly recurrent and thus have the
same language. We know that (Xσ, S) is minimal (every orbit is dense), uniquely
ergodic (there is a unique ergodic shift-invariant Borel probability measure on
Xσ) with zero entropy (the subword complexity of sequences in Xσ is linear). For
more details see [Fog02, Que10].
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We will need especially in Section 2.3.2 the following desubstitution theory
[Mos92]. Every word in Xσ has a unique decomposition w = Sk(σ(v)), with
v ∈ Xσ and 0 ≤ k < |σ(v0)|. This means that any word in Xσ can be uniquely
written in the form

w = · · · | · · ·︸︷︷︸
σ(v−1)

| w−k · · ·w−1.w0 · · ·wl︸ ︷︷ ︸
σ(v0)

| · · ·︸︷︷︸
σ(v1)

| · · ·︸︷︷︸
σ(v2)

| · · ·

with · · · v−1v0v1 · · · ∈ Xσ. Let p = w−k · · ·w−1 the prefix of σ(v0) of length k
and let s = w1 · · ·wl its suffix. The word w is completely defined by the word v
and the decomposition of σ(v0) of the form pw0s. Let P be the finite set of all
such decompositions, i.e.,

(1.1) P = {(p, a, s) ∈ A∗ ×A×A∗ : ∃ b ∈ A, σ(b) = pas}.
We can define a desubstitution map ϑ on Xσ (which sends w to v), and a

partition map ρ from Xσ to P, corresponding to the decomposition of σ(v0):

ϑ : Xσ → Xσ, w �→ v such that w = Skσ(v) and 0 ≤ k < |σ(v0)|,
ρ : Xσ → P, w �→ (p, w0, s) such that σ(v0) = pw0s and k = |p|.

Let X l
P be the set of left-infinite sequences

(pi, ai, si)i≥0 = · · · (p1, a1, s1)(p0, a0, s0) ∈ ωP
such that σ(ai+1) = piaisi, for all i ≥ 0. If we project each of the (pi, ai, si)
of an element of X l

P on the first component we obtain the labels of a left-

infinite walk in the prefix graph of the substitution σ. The subshift X l
P is

sofic. The prefix-suffix development is the map ψP : Xσ → X l
P defined by

ψP(w) = (ρ(ϑi(w)))i≥0 = (pi, ai, si)i≥0. If an infinite number of prefixes and
suffixes are non-empty then we have the combinatorial expansion

(1.2) w = lim
k→∞

σk(pk) · · ·σ(p1)p0.w0s0σ(s1) · · ·σk(sk),

where the triples (pi, ai, si) play the role of digits. It is shown in [CS01a] that
the map ψP is continuous and onto X l

P , and it is one-to-one except on the orbit
of periodic points of σ, where it is k-to-one with k > 1.

1.2. Numeration

Fractals and numeration systems are closely related. Bear in mind that
the Cantor set is the set of elements

∑
i≥1 di3

−i with di ∈ {0, 2}. A more

sophisticated example is given by Knuth’s numeration system [Knu98]. Every
element of the ring of integers Z[i] of the field of Gaussian numbers Q(i) can be
uniquely represented as

∑m
k=0 dk(−1 + i)k, with dk ∈ {0, 1}. Precisely we say

that (−1 + i, {0, 1}) is a canonical number system for Z[i]. The set of “fractional
parts” of this numeration system

T =

{∑
k≥1

dk(−1 + i)−k ∈ C : dk ∈ {0, 1}
}

is a well-known fractal, called the twin dragon. It has nice properties like
compactness, it is the closure of its interior, its boundary is a fractal set with
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Figure 1.1. Periodic tiling induced by the twin dragon.

measure zero, and it is a self-similar set since directly from the definition we can
see that it satisfies the set equation

T = b−1T ∪ b−1(T + 1) (b = −1 + i).

Furthermore it induces a lattice tiling of C in the sense that⋃
z∈Z[i]

T + z = C,

and (T + z1) ∩ (T + z2) has zero Lebesgue measure if z1 �= z2.
We will introduce in the next sections two numeration systems: Dumont-

Thomas numeration and beta-numeration. We will see in the sequel that we
can associate with these numeration systems a geometrical representation, more
precisely some fractal tiles, which will have similar properties as the twin dragon.

1.2.1. Dumont-Thomas numeration. Dumont and Thomas [DT89] stud-
ied numeration systems associated with a primitive substitution σ.

Every finite prefix of a one-sided fixed point u of σ can be uniquely expanded
as

(1.3) σk(pk)σ
k−1(pk−1) · · ·σ(p1)p0,

where (pi)
k
i=0, pk �= ε, is a walk in the prefix graph of σ starting from u0, that

is σ(u0) = pkaksk, σ(ai) = pi−1ai−1si−1 for all 1 ≤ i ≤ k. Thus we recover
numeration defined on N by expanding the length N of a finite prefix of u as
N = |σk(pk)|+ · · ·+ |p0|.

This notion of numeration allows to expand real numbers with respect to a
real base β > 1, which is the Perron-Frobenius eigenvalue of the substitution.
Dumont-Thomas expansions depend on the prefix graph of the substitution and
on the left eigenvector vβ associated with β. The digit set for the expansions is
D = {vp : (p, a, s) ∈ P}, where P is defined in (1.1) and vp denotes 〈l(p),vβ〉.

A sequence (vpi)i≥1 ∈ Dω is called (σ, a)-admissible if there exists a walk
in the prefix graph labelled by (pi)i≥1 starting from a with infinitely many
non-empty suffixes.
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Proposition 1.5 ([DT89]). Let σ be a primitive substitution on the alphabet
A and fix a ∈ A. For every x ∈ [0, va), there exists a unique (σ, a)-admissible
sequence (vpi)i≥1 ∈ Dω such that

(1.4) x =
∑
i≥1

vpiβ
−i.

We will call an expansion of this form a (σ, a)-expansion and we will denote
its sequence of digits by (x)σ,a.

Set X =
⋃

a∈A
(
[0, va)× {a}

)
and define the map

Tσ : X → X, (y, b) �→
(
βy − vp, a

)
,

where a ∈ A and p ∈ A∗ are uniquely determined by σ(b) = pas and βy − vp ∈
[0, va). Given any (y, b) ∈ X we get its (σ, b)-expansion by computing its Tσ-orbit.
Dumont-Thomas numeration is an example of fibred numeration system (for more
details see [BBLT06, Section 4.1]).

Notice that Tσ is not injective and the pre-image has the form

(1.5) T−1
σ (x, a) =

⋃
b

p−→a

{(β−1(x+ vp), b)}, for (x, a) ∈ X.

It is easy to see from this identity that for (x, a) ∈ X we have

(1.6) βmT−m
σ (x, a) = x+ βmT−m

σ (0, a), ∀m ∈ N,

where x+ (z, a) = (x+ z, a) is used.
We will be interested in “integers” and “fractional parts” obtained from

the Dumont-Thomas numeration system generated by the substitution σ, i.e., all
those x ∈ R+ such that only non-negative (respectively negative) powers of β
occur in their (σ, a)-expansions, for some a ∈ A.

We introduce topological limits (see e.g. [Kur66, §29]).
Definition 1.6. Let (An) be a collection of sets in a topological space. A

point z belongs to the lower limit LimAn if every neighbourhood of z intersects
all the An for n sufficiently large. A point z belongs to the upper limit LimAn

if every neighbourhood of z intersects An for infinitely many values of n. If
A = LimAn = LimAn, we call A = LimAn the topological limit of (An).

Let Z
(k)
σ,a = βk T−k

σ (0, a) ⊂ R be the set of real numbers corresponding to
all finite walks of length k in the prefix graph ending at state a, i.e. the sums∑k−1

i=0 vpiβ
i, where ak

pk−1−→ · · · p1−→ a1
p0−→ a. To such an element we associate

the left-sequence of digits vpk−1
· · · vp1vp0 . ∈ ∗D. Observe that these sets are not

nested (see Example 1.12).

Definition 1.7. The set of (σ, a)-integers is the topological limit

(1.7) Zσ,a = Lim
k→∞

Z(k)
σ,a.

We call the union
⋃

a∈A Zσ,a the σ-integers and denote it by Zσ.

The topological limit in the definition exists since for every interval [0, �] ⊂ R+

there exists k0 ∈ N such that Limk→∞ Z
(k)
σ,a ∩ [0, �] = Z

(k)
σ,a ∩ [0, �], for each k ≥ k0.

Notice that the set of σ-integers is discrete and closed. The set Zσ,a is the

set of those finite sums
∑k−1

i=0 vpiβ
i ∈ Z

(k)
σ,a, k ∈ N, whose associated sequence of
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digits can be left-padded by zeros. In particular, Zσ,a �
⋃

k≥0 Z
(k)
σ,a, that is, not

every truncation is a (σ, a)-integer.

Definition 1.8. Let vβ = (v1, . . . , vn) be a left eigenvector of Mσ associated
with β, and assume that vβ is scaled in a way such that each vi ∈ q−1Z[β] for
some q ∈ Z. We denote the Z-module generated by the vi by

(1.8) VZ = 〈v1, . . . , vn〉Z ⊆ q−1Z[β].

Note that the σ-integers form a subset of VZ.

Lemma 1.9. VZ is a free Z-module of rank d = deg(β).

Proof. As vβ is an eigenvector, we get that βVZ ⊂ VZ. Moreover, vβ �= 0
which implies that VZ �= {0}. Thus, since β is irrational of degree d, the
elements vj , βvj , . . . , β

d−1vj ∈ VZ are linearly independent over Q. Therefore

〈vj , βvj , . . . , βd−1vj〉Z ⊂ VZ ⊆ q−1Z[β] and, hence, V has rank d. �

Since VZ is an Abelian group and βVZ ⊂ VZ we have that VZ is a finitely
generated Z[β−1]-module and VZ ·Z[β−1] is a (fractional) ideal of the ring Z[β−1].

Definition 1.10. The set of (σ, a)-fractional parts is defined as

(1.9) Frac(σ, a) = VZ · Z[β−1] ∩ [0, va),

and Frac(σ) =
⋃

a∈A Frac(σ, a) = VZ · Z[β−1] ∩ [0,maxa∈A va), will be called the
set of σ-fractional parts.

An element x ∈ Frac(σ, a) has a (σ, a)-expansion (x)σ,a = .vp−1vp−2 · · · , where
(p−k)k≥1 is the label of an infinite walk in the prefix graph starting at state a.

Lemma 1.11. Tσ maps Frac(σ) onto Frac(σ).

Proof. Given (x, a) ∈ Frac(σ, a), Tσ(y, b) = (x, a) for all (y, b) such that y =
β−1(x+vp) and σ(b) = pas. Notice that there exists at least one (y, b) of this form
since the prefix graph is strongly connected by the primitivity of σ. It is clear that
y ∈ VZ · Z[β−1]. Furthermore, if (x)σ,a = .vp1vp2 · · · , then (y)σ,b = .vpvp1vp2 · · ·
which implies that y ∈ [0, vb). �

Example 1.12. Let σ be the substitution σ(1) = 121, σ(2) = 11. We have

Mσ =

(
2 2
1 0

)
, det(xI −Mσ) = x2 − 2x− 2.

This substitution is an irreducible non-unit Pisot substitution with associated
Pisot root β = 1+

√
3. A left eigenvector associated with β for Mσ is vβ = (β2 , 1).

From the prefix graph of the substitution depicted in Figure 1.2 we can see that
the set of digits is D = {0, v1, v12}.

1 2

1

ε, 12

ε, 1

Figure 1.2. The prefix graph of the substitution σ.
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1

1
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Figure 1.3. The map Tσ.

In Figure 1.3 we illustrate the map Tσ and its combinatorial structure. Given
a point (x, a) ∈ X, if a = 1 then the function depicted in the left square is
used to compute the image by Tσ, if a = 2 we use the one in the right square.
Furthermore, Tσ(x, a) = (y, 1) if we encounter a black linear piece of the map,

and equals (y, 2) if it is light gray. For example, given (x, 1) ∈ [1, β−1
2 ) × {1},

which is in the left square, after one iteration of Tσ it will jump to the right
square. We compute as an example the orbit of (14 , 1):

(14 , 1)
Tσ �� (β4 , 1)

Tσ �� (12 , 2)
Tσ �� (0, 1) Tσ

��

Thus we have (14)σ,1 = .0v1v1. Observe that (β
3

4 , 1) = (3β2 + 1, 1) ∈ Z
(k)
σ,1 for all

k ≥ 2, thus 3β
2 + 1 is a (σ, 1)-integer. On the other hand (3β2 + 1, 2) ∈ Z

(2)
σ,2, with

associated walk 2
δ(1)−→ 1

δ(1)−→ 2, but (3β2 + 1, 2) /∈ Z
(3)
σ,2, and this is due to the fact

that we cannot left-pad its expansion by 0’s, i.e., we can extend the walk in the
automaton on the left only by adding a digit v1. As another example we have

v1v12. ∈ Z
(2)
σ,1, with associated walk 2

v1−→ 1
v12−→ 1, but it cannot be extended to

any infinite walk. In this sense, it remains an approximation. We list some other
expansions:

(β−1
3 )σ,2 = .(v10)

ω (β − 2)σ,1 = .v1v1(0 v12)
ω, (β−1

4 )σ,1 = .0 v12 v12

1.2.2. Beta-numeration. Let β > 1 be a real number. The map

(1.10) Tβ : [0, 1)→ [0, 1), x �→ βx− �βx�,
is the classical greedy β-transformation. Each x ∈ [0, 1) has a unique (greedy)
β-expansion

x =
∞∑
k=1

dkβ
−k, with dk = �β T k−1

β (x)�;

the digits dk are in D = {0, 1, . . . , �β� − 1}. The β-expansions are called greedy
since, for each k ≥ 1, the chosen digit dk is always the greatest possible of D such

that
∑k

i=1 diβ
−i ≤ x.

Define (·)β : [0, 1) → DN, x �→ d1d2 · · · where the dk are the digits of the
β-expansion of x. The set of admissible sequences was characterised first by
Parry [Par60] and depends only on the expansion of 1. The β-expansion of 1 can
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be defined considering the iterations T k
β (1

−) = limx→1− T
k
β (x). We denote its

sequence of digits by (1−)β . Then the set of greedy β-expansions of numbers of
[0, 1) is exactly the set of sequences (dk)k≥1 <lex (1−)β in lexicographical order.

This is a shift-invariant subset of DN. The action of the shift on the closure of
this set, which consists in the sequences (dk)k≥1 ≤lex (1−)β, forms a subshift
called β-shift.

Definition 1.13. Numbers β such that (1−)β is ultimately periodic are called
Parry numbers and those such that (1−)β is purely periodic are called simple
Parry numbers.

The dynamical system ([0, 1), Tβ) is conjugate to the β-shift, which is sofic
if and only if β is a Parry number, or of finite type if and only if β is a simple
Parry number [IT74, BM86, Bla89]. Furthermore the map Tβ is ergodic with
an absolute continuous invariant measure, in particular weak-mixing, with a
unique measure of maximal entropy. It can be shown that ([0, 1), Tβ) is weakly
Bernoulli and its natural extension is a Bernoulli automorphism (for more details
see [DK02]).

Pisot numbers are Parry numbers since every element of Q(β) ∩ [0, 1] has an
eventually periodic β-expansion [Ber77, Sch80].

0 1

1

β−1 β − 1 0 1

1

Figure 1.4. Tβ for β3 = β2 + β + 1 (left) and for β3 = β + 1 (right).

For β Pisot, we can associate with ([0, 1), Tβ) a β-substitution σβ defined
according to the two cases when β is a simple Parry number, that is (1−)β =
.(d1 · · · dn−1(dn − 1))ω, or β is a non-simple Parry number, that is (1−)β =
.d1 · · · d�(d�+1 · · · dn)ω.

σβ(1) = 1d12 σβ(1) = 1d12

σβ(2) = 1d23 σβ(2) = 1d23

...
...

σβ(n) = 1dn σβ(n− 1) = 1dn−1n

σβ(n) = 1dn(�+ 1)

Proposition 1.14. Let (x−β)(xn−1+v2x
n−2+ · · ·+vn) be the characteristic

polynomial of the incidence matrix Mσβ
of σβ. Then vk = T k−1

β (1−) ∈ Z[β] and

vβ = (1, v2, . . . , vn) is a left eigenvector of Mσβ
associated with β.
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Proof. We show it for simplicity only for simple Parry numbers. The character-
istic polynomial of Mσβ

is xn−d1xn−1−· · ·−dn, thus we have the relations dk =

βvk − vk+1, for 1 ≤ k ≤ n− 1. Since v1 = 1 and (1−)β = .(d1 · · · dn−1(dn − 1))ω

we deduce the equalities vk = T k−1
β (1−). A simple calculation shows that

(1, v2, . . . , vn) is a left eigenvector of Mσβ
. �

Remark 1.15. Recall the definition (1.8) of VZ. By Proposition 1.14 we can
choose

vβ = (1, Tβ(1
−), . . . , Tn−1

β (1−)).

Thus VZ = Z[β] and VZ · Z[β−1] is simply Z[β−1]. We will use this especially in
Chapter 3.

Remark 1.16. Dumont-Thomas numeration associated with β-substitutions
coincides with beta-numeration since the prefixes occurring in the prefix graph
of σβ are only strings made of 1’s and v1 = 1.

We will consider in Chapter 3 for β Pisot the sets of points of discontinuity

(1.11) V̂ =
{
T k
β (1

−) : k ≥ 0
}
, V =

(
V̂ ∪ {0}

)
\ {1},

which are finite because each Pisot number is a Parry number. For x ∈ [0, 1), let

x̂ = min
{
y ∈ V̂ : y > x

}
.

Thus, for v ∈ V , v̂ is the successor of v in V ∪ {1}, and V̂ = {v̂ : v ∈ V }. Let
(1.12) L =

〈
V̂ − V̂

〉
Z
⊆ Z[β]

be the Z-module generated by the differences of elements in V̂ . The following
condition

(QM) rank(L) = deg(β)− 1

is an analogue of the quotient mapping condition defined in [ST09]; see also the
definition of the anti-diagonal torus in [BBK06, Section 8]. It is related to a
periodic collection of tiles and will be important in Chapter 3.

1.3. Representation spaces

In all the following, let β be a Pisot number. Let K = Q(β), O its ring of
integers. A place (or prime) p is a class of equivalent valuations of K. For each
(finite or infinite) prime p of K, we choose an absolute value |·|p and write Kp

for the completion of K with respect to |·|p. In all what follows, the absolute
value |·|p is chosen in the following way. Let ξ ∈ K be given. If p | ∞, denote by

ξ(p) the associated Galois conjugate of ξ. If p is real, we set |ξ|p = |ξ(p)|, and if p

is complex, we set |ξ|p = |ξ(p)|2. Finally, if p is finite, we put |ξ|p = N(p)−vp(ξ),
where N(·) is the norm of a (fractional) ideal and vp(ξ) denotes the exponent of
p in the prime ideal decomposition of the principal ideal (ξ). For more details we
refer to [Neu99].

Set S = {p : p | ∞ or p | (β)} and define the representation space

Kβ =
∏
p∈S

Kp = K∞ ×Kf , with K∞ =
∏
p|∞

Kp, Kf =
∏
p|(β)

Kp.
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If β has r real and s pairs of complex Galois conjugates, then K∞ = Rr × Cs.
The space Kf is the product of p-adic spaces, which are finite extensions of Qp,
for p | (p). We equip Kβ with the product metric of the metrics defined by the
absolute values |·|p and the product measure μ of the Haar measures μp on Kp,
p ∈ S. We know that for every measurable subset M of Kp and for every x ∈ Kp,

μp(x ·M) = |x|p μp(M)

(see for instance [Ser79, Chapter II]). The elements of Q(β) are naturally repre-
sented in Kβ by the diagonal embedding

δ : Q(β)→ Kβ , ξ �→
∏
p∈S

ξ.

Let p1 be the infinite place corresponding to the identical Galois automorphism,
that is, |β|p1 = β. We have an expanding-contracting decomposition given by

Kβ = Ke
β ×Kc

β = Kp1 ×
∏

p∈S\{p1}
Kp,

where Ke
β
∼= R is the expanding space, since |β|p1 > 1, and Kc

β is the contracting

space, since |β|p < 1 for all p ∈ S \ {p1}. We will also use the stripe spaces

Z = K∞ × δf(Z[β]) and Zc = Kc
∞ × δf(Z[β]),

where Kc
∞ denotes the product of Kp for p | ∞, p �= p1.

Let π1, πS\{p1} and πc∞ be the canonical projections from Kβ to Kp1 , K
c
β,

and Kc
∞ respectively (not to be confused with any of those in Section 1.3.2). The

diagonal embeddings δe, δc, δ∞, δc∞, δf and the Haar measures μc, μ
c
∞ are defined

accordingly.
The action of Q(β) on any of the representation spaces we have seen up to

now will be denoted by ξ · (zp) = (ξzp), for ξ ∈ Q(β). We will sometimes omit
the dot in case it is clear from the context that we refer to this action.

Remark 1.17. If β is a unit there is no p | (β), thus Kβ = K∞.

1.3.1. Lattices and Delone sets. This section is about lattices and Delone
sets which will form suitable translation sets for Rauzy fractals throughout this
thesis.

We introduce a slightly more flexible version of the adèle ring. For a precise
treatment we refer to [Cas67, Wei95, RV99]. Let K be a number field, P (K) be
the set of places of K and P∞(K) be the set of infinite places.

Definition 1.18. Let S be such that P∞(K) ⊆ S ⊆ P (K). The ring of
S-integers is

OS = {x ∈ K : |x|p ≤ 1 for all p /∈ S}.
For each finite set P of places P∞(K) ⊆ P ⊆ S define the locally compact ring

AK(P ) =
∏
p∈P

Kp ×
∏

p∈S\P
Op

and define the S-adèle ring of K to be the ring

AK,S =
⋃

P finite
P∞(K)⊆P⊆S

AK(P ) =
{
(xp)p∈S ∈

∏
p

Kp : |xp|p ≤ 1 for almost all p ∈ S
}
,
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with the topology defined by requiring that each AK(P ) is an open subring. We
also write AK = AK,P (K) for the adèle ring of K.

Notice that if S = P (K), then OS = K. Denote again by δ the diagonal
embedding of OS into AK,S .

Lemma 1.19 (Approximation theorem, see e.g. [Wei95]). For any number
field K and set S with P∞(K) ⊆ S ⊆ P (K),

AK,S = δ(OS) + AK(P∞(K)).

Moreover δ(OS) is discrete and co-compact in AK,S.

We go back now to our settings, where K = Q(β), S = {p : p | ∞ or p | (β)}.
Lemma 1.20. The set δ(OS) is a lattice in Kβ.

Proof. We have that AK,S = Kβ. Then δ(OS) is a lattice in Kβ by the
approximation theorem for number fields. �

Recall from (1.8) and Lemma 1.9 that VZ is the Z-module of rank d = deg(β)
generated by the components of a left eigenvector vβ of Mσ associated with the
Pisot number β

VZ = 〈v1, . . . , vn〉Z,
and VZ · Z[β−1] is a (fractional) ideal of the ring Z[β−1].

Lemma 1.21. The following assertions hold:

(1) OS = O[β−1].
(2) VZ · Z[β−1] is a subgroup of finite index of OS.

Proof. Since β−1 ∈ OS and O ⊆ OS the inclusion OS ⊇ O[β−1] follows. To
prove the reverse inclusion, choose x ∈ OS and let p | (β). Then there exists
k ∈ N such that |βkx|p ≤ 1. Since S is a finite set of primes, setting h = max{k ∈
N : |βkx|p ≤ 1, for p | (β)} we get βhx ∈ O, and, hence, OS ⊆ O[β−1].

VZ is a subgroup of finite index of q−1O, for some q ∈ Z, which im-
plies that there exists m ∈ N such that mq−1O ⊆ VZ. Thus VZ · Z[β−1] ⊆
q−1O[β−1] ⊆ 1

mVZ · Z[β−1] and it suffices to show that VZ · Z[β−1] is a subgroup

of finite index of 1
mVZ · Z[β−1]. Suppose on the contrary that mVZ · Z[β−1]

is a subgroup of VZ · Z[β−1] of infinite index, in particular |VZ · Z[β−1]/mVZ ·
Z[β−1]| > md. Let x1, . . . , xmd+1 be md + 1 pairwise different representatives
of VZ · Z[β−1]/mVZ · Z[β−1]. Since x1, . . . , xmd+1 ∈ VZ · Z[β−1], there exists

l ∈ N such that x1, . . . , xmd+1 ∈ VZ〈1, β−1, . . . , β−l〉Z. As VZ〈1, β−1, . . . , β−l〉Z is

a Z-module of rank at most d, VZ〈1, β−1, . . . , β−l〉Z/mVZ〈1, β−1, . . . , β−l〉Z has
index at most md, which implies that there exist i, j ∈ {1, . . . ,md + 1} such that
xi ≡ xj mod mVZ〈1, β−1, . . . , β−l〉Z, contradicting xi �≡ xj mod mVZ ·Z[β−1]. �

Definition 1.22. A subset X of a metric space is uniformly discrete if there
is a radius r > 0 such that each ball of radius r contains at most one point of X.
A metric space X is relatively dense if there is a radius R > 0 such that each
ball of radius R contains at least one point of X. A Delone set is a uniformly
discrete and relatively dense set.

For example, lattices are Delone sets with additional group structure.
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Lemma 1.23. The set δ(VZ · Z[β−1]) is a lattice in Kβ. Furthermore, each
set δc(VZ · Z[β−1] ∩X), where X ⊂ R is bounded and has non-empty interior, is
a Delone set in Kc

β.

Proof. The first statement is a direct consequence of Lemma 1.20 and Lemma
1.21. Note that δc(VZ ·Z[β−1]∩X) is a model set (see Section 2.2.4 for a definition).
We refer to [KS12, Lemma 4.3] for more details. By [Moo97, Proposition 2.6]
model sets are Delone sets. �

We look now for a fundamental domain of Kβ modulo the lattice δ(VZ ·Z[β−1]).
We define hp = min{vp(x) : x ∈ VZ}, for every p | (β).

Lemma 1.24. Let {v1, . . . , vd} be a set of rationally independent generators
of VZ. Then the set

D =

{
d∑

i=1

riδ∞(vi) : ri ∈ [0, 1)

}
×
∏
p|(β)

php

is a fundamental domain for Kβ modulo δ(VZ · Z[β−1]).

Proof. Let w1, . . . , wd be an integral basis of O over Z. We claim that the set

D0 :=

{
d∑

i=1

riδ∞(wi) : ri ∈ [0, 1)

}
×
∏
p|(β)

Op

is a fundamental domain for Kβ module δ(OS).
To prove this claim let z := (zp)p∈S ∈ Kβ . We know that δ∞(w1), . . . , δ∞(wd)

is a basis of the real vector spaceK∞. Thus z∞ := (zp)p|∞ =
∑d

i=1 riδ∞(wi) ∈ K∞
for some ri ∈ R, and we denote by ι(z∞) the element

∑d
i=1�ri�wi ∈ O. For

p | (β), zp ∈ Kp can be written as

zp =
−1∑

i=−m

ciν
i +

∞∑
i=0

ciν
i, m ∈ N,

where ν is a uniformiser and the ci are taken in a system of representatives of the
residue class field Op/pOp. Basically we view zp as the sum of a p-adic fractional
part, that we denote by λp(zp), and a p-adic integral part. Define

y =
∑
p|(β)

λp(zp) + ι

(
z∞ − δ∞

(∑
p|(β)

λp(zp)

))
.

One checks that y ∈ OS and z− δ(y) ∈ D0. Indeed, z∞ − δ∞(y) is an element

of the form
∑d

i=1 riδ∞(wi) with ri ∈ [0, 1), by definition of y, and, for p | (β),
observe that both zp − δp(

∑
p|(β) λp(zp)) and δp(ι(z∞ − δ∞(

∑
p|(β) λp(zp)))) are

in Op. Furthermore z− δ(x) /∈ D0 for all x ∈ OS \ {y} (note that the intervals
for the ri in the definition of D0 are half-open).

Now we replace the lattice δ(OS) with the sublattice δ(VZ · Z[β−1]). As
w1, . . . , wd is a Q-basis for K, the same holds for v1, . . . , vd. The completion
of VZ at p, i.e., (VZ)p := VZ ⊗Z Zp is isomorphic to php . We can express an

element zp of the completion Kp as zp =
∑−1

i=−m ciν
i +
∑∞

i=0 ciν
i where ν is a

uniformiser and the ci are taken in a set of representatives of the residue class
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field (VZ)p/p(VZ)p isomorphic to php/php+1. Thus we can adapt all the arguments
given above to get a unique element y ∈ VZ · Z[β−1] such that z− δ(y) ∈ D. �

Lemma 1.25. δ(VZ · Z[β−1]) = β · δ(VZ · Z[β−1]).

Proof. We know that βVZ · Z[β−1] ⊂ VZ · Z[β−1], therefore β · δ(VZ · Z[β−1]) ⊂
δ(VZ ·Z[β−1]). The set β ·δ(VZ ·Z[β−1]) is a sublattice of δ(VZ ·Z[β−1]). Let D′ be
a fundamental domain of Kβ/β · δ(VZ ·Z[β−1]) and recall that D is a fundamental
domain of Kβ/δ(VZ · Z[β−1]) (see Lemma 1.24). Then, by the product formula

μ(D′) = μ(D)
∏
p∈S

|β|p = μ(D),

and the claim follows. �
1.3.2. Projections. There exists a unique Mσ-invariant decomposition

Rn = V ⊕W , where Mσ|V is hyperbolic (by the Pisot hypothesis) with charac-

teristic polynomial f(x). Let {β(1), . . . , β(r), β(r+1), β(r+1), . . . , β(r+s), β(r+s)} be

the Galois conjugates of β = β(1). Choose dual bases {uβ(i)}di=1, {vβ(i)}di=1 and

{uζ(j)}n−d
j=1 , {vζ(j)}n−d

j=1 of right and left eigenvectors for Mσ associated with the

Galois conjugates {β(i)}di=1 of β = β(1), respectively with the roots of the neutral

polynomial {ζ(j)}n−d
j=1 , such that n− d = r′ + 2s′, r′ and 2s′ denoting the number

of real and complex roots of g(x). We choose vβ ∈ Z[β]n and we renormalize uβ

such that 〈uβ ,vβ〉 = 1. Notice that vβ ⊥W . Then, we can write x ∈ Rn as

x = 〈x,vβ(1)〉uβ(1) +

r+s∑
i=2

〈x,vβ(i)〉uβ(i) +

r′+s′∑
j=1

〈x,vζ(j)〉
〈vζ(j) ,uζ(j)〉

uζ(j) .

We will use especially in Chapter 2 and 4 in connection with the dual operators
E∗

k(σ) the following projections:

π : Rn → Kβ , x �→
(
(〈x,vβ(i)〉)r+s

i=1 , (〈x,vβ〉)p|(β)
)

(1.13)

πe : R
n → Ke

β , x �→ 〈x,vβ〉(1.14)

πc : R
n → Kc

β , x �→
(
(〈x,vβ(i)〉)r+s

i=2 , (〈x,vβ〉)p|(β)
)

(1.15)

Let vβ = (v1, . . . , vn). Then πe(ei) = vi, for all i ∈ A.
Proposition 1.26. The following diagram

Rn

π

��

Mσ �� Rn

π

��
Kβ

β �� Kβ

is commutative, where the action of β on Kβ is defined by β · (ξp)p∈S = (βξp)p∈S.

Proof. Use the fact that the vβ(i) are left eigenvectors of Mσ associated with

β(i), for i = 1, . . . , d. �
Since Mσ /∈ GLn(Z) if β is not a unit, we will consider in Chapter 2 the set

Z n
σ :=

⋃
k≥0M

−k
σ Zn. Observe that δ ◦ πe = π and δc ◦ πe = πc if we restrict

the attention to Z n
σ . We will often use δ(vi), δc(vi) equivalently as π(ei), πc(ei)

respectively.
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Proposition 1.27. π(Z n
σ ) = δ(VZ · Z[β−1]) and therefore is a lattice in Kβ.

Proof. π(Z n
σ ) coincides with δ(VZ · Z[β−1]) by Proposition 1.26, which is a

lattice in Kβ by Lemma 1.23. �

1.3.3. Approximation results. We list some results that are used in the
proofs of Chapter 3.

Lemma 1.28 (Strong Approximation Theorem, see e.g. [Cas67]). Let S be a
finite set of primes and let p0 be a prime of a number field K which does not
belong to S. Let zp ∈ Kp be given numbers, for p ∈ S. Then, for every ε > 0,
there exists x ∈ K such that

|x− zp|p < ε for p ∈ S, and |x|p ≤ 1 for p /∈ S ∪ {p0}.

Lemma 1.29. For each x ∈ Z[β−1] \ Z[β], we have δf(x) /∈ δf(Z[β]).
Proof. We first show that

(1.16) Z[β−1] ∩ O ⊆ β−hZ[β]

for some h ∈ N. As Z[β] is a subgroup of finite index of O, we can choose
x1, . . . , xm ∈ O that form a complete set of representatives of O/Z[β]. Choose
integers h1, . . . , hm as follows. If xi /∈ Z[β−1], then set hi = 0 and notice
that (xi + Z[β]) ∩ Z[β−1] = ∅. If xi ∈ Z[β−1], then choose hi ≥ 0 such that
xi ∈ β−hiZ[β], hence xi + Z[β] ⊆ β−hiZ[β]. Then

Z[β−1] ∩ O =

m⋃
i=1

(
Z[β−1] ∩ (Z[β] + xi)

)
⊆ β−max{hi}Z[β],

thus (1.16) holds with h = max{hi}.
Let now x ∈ Z[β−1] \ Z[β] and suppose that δf(x) ∈ δf(Z[β]). Then there

is y ∈ Z[β] such that |y − x|p ≤ |βh|p for all p | (β), with h as above, i.e.,
y−x ∈ βhO. By (1.16), we obtain that y−x ∈ Z[β], contradicting that y ∈ Z[β]
and x /∈ Z[β]. �

Recall that if pe appear in the prime ideal factorization of (p) = pO, then
ep|(p) = e is called the ramification index and fp|(p) = [O/p : Z/pZ] is the inertia
degree of p | (p) (see [Neu99]).

Lemma 1.30. Let (β) =
∏

i p
mi
i , with pi | (pi). Then δf(Q) = Kf if and only

if epi|(pi) = fpi|(pi) = 1 for all i and the prime numbers pi are all distinct.

If β is quadratic, β2 = aβ + b, then gcd(a, b) = 1 implies δf(Q) = Kf .

Proof. By Lemma 1.28, δf(Q) is dense in
∏

iQpi if and only if the pi are distinct.
By [Kpi : Qpi ] = epi|(pi)fpi|(pi), if either epi|(pi) or fpi|(pi) is greater than 1, then
δf(Q) cannot be dense in Kf . The other direction is similar.

If β2 = aβ + b and gcd(a, b) = 1, given p | b, we have that p � disc(Z[β]) =
a2 + 4b. Thus p � [O : Z[β]], by the formula disc(Z[β]) = [O : Z[β]]2 · disc(Q(β))
(see e.g. [Coh93, Proposition 4.4.4]). Hence we can apply [Coh93, Theorem 4.8.13]
and obtain that (p) splits, since gcd(a, b) = 1. This means ep|(p) = fp|(p) = 1 for
all p | (p). �

Recall the definitions of L and property (QM) in Section 1.2.2.
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Lemma 1.31. The set δ(Z[β]) is a lattice in Z. If (QM) holds, then δc(L) is
a lattice in Zc.

Proof. The sets δ∞(Z[β]) and, if (QM) holds, δc∞(L) are Delone subgroups in

K∞ and Kc
∞, respectively. Since δf(Z[β]) is compact, we obtain that δ(Z[β]) and

δc(L) are Delone subgroups in Z and Zc, respectively. �

Lemma 1.32. Assume that deg(β) ≥ 2. For each y ∈ Z[β], k ∈ N, ε > 0, we
have

#
{
x ∈
(
y + βkZ[β]

)
∩ [0, 1) : δc∞(x) ∈ X

}
#
{
x ∈ Z[β] ∩ [0, 1) : δc∞(x) ∈ X

} ≤ 2 + ε

|N(β)|k

for each rectangle X ⊆ Kc
∞ with sufficiently large side lengths.

Proof. Let k ∈ N, choose a set of representatives Y of Z[β]/βkZ[β] with
Y ⊆ [0, 1), and set

C(y) = #
{
x ∈
(
y + βkZ[β]

)
∩ [0, 1) : δc∞(x) ∈ X

}
.

For y, ỹ ∈ Y with y < ỹ, choose z ∈ Z[β] with ỹ − y ≤ βkz ≤ 1. (This is possible
because βkZ[β] is dense in R by the irrationality of β.) Then(

y + βkZ[β]
)
∩ [0, 1) ⊇

((
ỹ + βkZ[β]

)
∩ [ỹ − y, 1) + y − ỹ

)
∪
((
ỹ + βkZ[β]

)
∩ [0, ỹ − y) + βkz + y − ỹ

)
,

which implies the two inequalities

C(y) ≥ #
{
x ∈
(
ỹ + βkZ[β]

)
∩ [ỹ − y, 1) : δc∞(x) ∈ X

}
−#
{
x ∈
(
ỹ + βkZ[β]

)
∩ [ỹ − y, 1) : δc∞(x) ∈ X, δc∞(x+ y − ỹ) /∈ X

}
,

C(y) ≥ #
{
x ∈
(
ỹ + βkZ[β]

)
∩ [0, ỹ − y) : δc∞(x) ∈ X

}
−#
{
x ∈
(
ỹ + βkZ[β]

)
∩ [0, ỹ − y) : δc∞(x) ∈ X, δc∞(x+ βkz + y − ỹ) /∈ X

}
.

Since δc∞(Z[β] ∩ [0, 1)) is a Delone set by Lemma 1.23, the subtracted quantities
are small compared to C(ỹ), provided that (X+δc∞(y− ỹ))\X and (X+δc∞(βkz+
y − ỹ)) \X are small compared to X. If X is a rectangle with sufficiently large
side lengths, we have thus

2C(y) ≥ C(ỹ)

1 + ε/2
.

Similar arguments provide the same inequality for y > ỹ, thus

C(y) ≥ 1

2 + ε
max
ỹ∈Y

C(ỹ)

for all y ∈ Y . Summing over Y gives that

#
{
x ∈ Z[β] ∩ [0, 1) : δc∞(x) ∈ X

}
≥ |N(β)|k

2 + ε
max
ỹ∈Y

C(ỹ),

which proves the lemma. �
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1.3.4. Representing p-adic spaces. We are interested in visualizing p-
adic spaces through a Euclidean model (see e.g. [Rob00]) so that we will be able
later to represent practically our non-unit Rauzy fractals. We can define the
Monna map

ψ : Qp → R+,
∞∑

i=m

dip
i �→

∞∑
i=m

dip
−i−1, m ∈ Z.

This map is onto, continuous, preserves the Haar measure but is not injective and
not a homomorphism with respect to the addition. In our case we will represent
elements of a p-adic completion Kp, isomorphic to a finite extension of Qp, for
p | (p), as ∑∞

i=m diξ
i, where ξ is a uniformiser, i.e. vp(ξ) = 1, and the di are

chosen in a complete set of coset representatives of O/pO. By Lemma 1.28 we
have that δf(Z[β]) is dense in Kf , thus each element of Kf can be even written as∑∞

i=m δf(diβ
i), di ∈ {0, 1, . . . , |N(β)| − 1}. We can then apply the Monna map

to each of the completions Kp appearing in Kf and obtain

Kf → (R+)�,

∞∑
i=m

δf(diβ
i) �→

( ∞∑
i=m

dip
−i−1

)
p

where � is the number of primes p | (β) and p | (p).

1.4. Tilings

Let C be a collection of compact subsets of positive measure of a measurable
space X.

• C is called uniformly locally finite if there exists an integer k such that
each point of X is contained in at most k elements of C.

• If moreover there exists a positive integer m such that almost every point
of X is contained in exactly m elements of C, then we call C a multiple
tiling of X and m the covering degree of the multiple tiling.

• If m = 1, then C is called a tiling of X.

• A (multiple) tiling is called periodic if the translation set is a lattice. It is
called aperiodic if it lacks any translational symmetry. It is self-replicating
if there is an inflation factor α and a subdivision rule such that αC = C.

• A point of X is called exclusive point of C if it is contained in exactly one
element of C. Thus, a multiple tiling is a tiling if and only if it has an
exclusive point.



CHAPTER 2

The geometry of non-unit Pisot substitutions

In this chapter we present several approaches on how to define Rauzy fractals
and stepped surfaces for non-unit Pisot substitutions and discuss the relations
between them. In particular, we consider Rauzy fractals as the natural geo-
metric objects of Dumont-Thomas numeration, in terms of the dual of the
one-dimensional realization of the substitution, and in the context of model sets
for particular cut and project schemes. We also define stepped surfaces suited
for non-unit Pisot substitutions. We provide basic topological and geometric
properties of Rauzy fractals, prove some tiling results for them, and provide
relations to subshifts defined in terms of the periodic points of the substitution, to
adic transformations, and a domain exchange. This chapter is based on [MT14].

2.1. Rauzy fractals and stepped surfaces

Rauzy fractals can be defined in several ways. In this section we give our
main definition, related to Dumont-Thomas numeration, and we define stepped
surfaces in the general settings of (non-unit) irreducible Pisot substitutions.

2.1.1. Dumont-Thomas tiles. Basic notions on Dumont-Thomas numer-
ation, like σ-integers and σ-fractional parts, are presented in Section 1.2.1. We
want to embed the σ-integers into Kc

β to obtain a geometrical representation of
Dumont-Thomas numeration. Observe that

(2.1) δc(Lim
k→∞

Z
(k)
σ,a) = Lim

k→∞
δc(Z

(k)
σ,a) = lim

k→∞
δc(Z

(k)
σ,a) = lim

k→∞
δc(β

k T−k
σ (0, a)),

where lim denotes the limit with respect to the Hausdorff metric and Lim is the

topological limit. Indeed, the third equality holds since all δc(Z
(k)
σ,a) are contained

in a compact set, and the fourth follows easily recalling the definition of Z
(k)
σ,a.

Definition 2.1. Let σ be an irreducible Pisot substitution. The Dumont-
Thomas subtiles associated with σ are defined as

(2.2) Rσ(a) = lim
k→∞

δc(β
k T−k

σ (0, a)) for a ∈ A,

where the limit is taken with respect to the Hausdorff metric. The Dumont-
Thomas central tile is defined as

(2.3) Rσ =
⋃
a∈A

Rσ(a).

Note that these tiles include those defined in [Aki02, ABBS08], since Dumont-
Thomas numeration generalizes beta-numeration. An example of central tile is
depicted in Figure 2.1.

33
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For z = (zp)p∈S\{p1} ∈ Kc
β define the norm ‖z‖ = max{|zp|p : p ∈ S \ {p1}},

and set

(2.4) M =
max{‖δc(vp)‖ : vp ∈ D}

1− ‖δc(β)‖
.

Note that the Dumont-Thomas subtiles Rσ(a) are closed by definition. Further-
more they are contained in the closed ball B(0,M) = {z ∈ Kc

β : ‖z‖ ≤M}. Thus
they are non-empty compact sets. We will prove more properties of these tiles
later.

We define the x-tiles as

Rx =
⋃

{a∈A:x∈[0,va)}
lim
k→∞

δc(β
k T−k

σ (x, a)).

Using (1.6) we see easily that they are unions of subtiles translated by δc(x) that
depend on the number of basic intervals which contain x, i.e.,

Rx =
⋃

{a∈A:x∈[0,va)}
Rσ(a) + δc(x).

In this chapter we will consider mainly subtiles. The x-tiles will be our main
objects in Chapter 3.

R

Z2

Figure 2.1. The central tile Rσ for σ(1) = 21213, σ(2) = 12
subdivided in the purple subtile Rσ(1) and the yellow subtile
Rσ(2).

2.1.2. Stepped surfaces. We define stepped surfaces for irreducible Pisot
substitutions in full generality, without requiring the Pisot substitution to be
unit.

Definition 2.2. The stepped surface for an irreducible Pisot substitution σ
with associated Pisot root β is

(2.5) S = {(δ(x), a) ∈ Kβ ×A : x ∈ Frac(σ, a)}.
The set of projected points of the stepped surface into Kc

β given by

(2.6) Γ = {(δc(x), a) ∈ Kc
β ×A : x ∈ Frac(σ, a)}

will be called the translation set.

Notice that it makes sense to call Γ a translation set since it is a Delone
set by Lemma 1.23. As we will see later in Section 2.4, this set is the natural
translation set for a (multiple) tiling induced by the subtiles.

For our purposes (particularly in Section 2.5) we will interpret (γ, a) ∈ Kβ×A
either as a coloured translation point or as a coloured face of the fundamental



2.2. RELATIONS BETWEEN DIFFERENT APPROACHES 35

domain Kβ/δ(VZ · Z[β−1]) described in Lemma 1.24. To be more precise, in this
latter case, (γ, a) will be represented as γ + Fa, where

Fa =

{∑
i 	=a

riδ∞(vi) : ri ∈ [0, 1)

}
×
∏
p|(β)

php ,

and hp = min{vp(x) : x ∈ VZ}. This construction appeared already in [Sin06b,
Section 6.8] for the non-unit case.

The set function T−1
σ defined in (1.5) is defined on subsets of R × A. Its

restriction to subsets of Q(β) × A admits a natural extension to Kβ × A. We
denote this extension by T−1

σ . Its precise definition is T−1
σ ◦ δ = δ ◦ T−1

σ |Q(β)×A.

(2.7) T−1
σ : δ(Q(β))×A → 2δ(Q(β))×A, T−1

σ (γ, a) =
⋃

b
p−→a

{(β−1(γ+δ(vp)), b)}.

We can iterate T−1
σ m times and get

T−m
σ (γ, a) =

⋃
σm(b)=pas

(β−m(γ + δ(vp)), b).(2.8)

Proposition 2.3. The set S is invariant under T−1
σ .

Proof. We prove first that if (δ(x), a) ∈ S then T−1
σ (δ(x), a) ∈ S. This is

equivalent in showing that every element of T−1
σ (x, a) ∈ Frac(σ). But this is a

direct consequence of Lemma 1.11.
Then we show that distinct faces have disjoint images. Suppose (δ(y), b) ∈

T−1
σ (δ(x1), a1) ∩T−1

σ (δ(x2), a2), that is

(y, b) ∈ T−1
σ (x1, a1) ∩ T−1

σ (x2, a2).

This implies that Tσ(y, b) = (x1, a1) and Tσ(y, b) = (x2, a2), which is impossible
unless (x1, a1) = (x2, a2), since y has a unique (σ, b)-expansion. �

Figure 2.2. T−4
σ ((0, 1)∪(0, 2)) for the substitution σ(1) = 21213,

σ(2) = 12.

2.2. Relations between different approaches

We give alternative definitions for the Rauzy fractals and we investigate their
relations.
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R

Q2

Figure 2.3. T−4
σ ((0, 1) ∪ (0, 2)) projected into Kc

β .

2.2.1. Broken lines. A broken line is the geometrical interpretation of a
fixed point u of σ:

(2.9) u =
⋃
i≥1

{(l(u[0,i)), ui)},

where u[0,i) = u0 · · ·ui−1 and (x, i) denotes the segment from x to x + ei. We
show that Rauzy fractals can be seen as projections of vertices of broken lines
(cf. [BS05, Theorem 5]).

We will use the equivalent reformulation of Definition 2.1 of Dumont-Thomas
tiles

(2.10) Rσ(a) =
{∑

i≥0

δc(vpiβ
i) : (pi)i≥0 ∈ Gp(a)

}
,

where Gp(a) denotes the set of labels of infinite paths in the prefix graph of the
substitution ending at a.

Proposition 2.4. We have

(2.11) Rσ(a) = {πc(l(u[0,i))) : i ∈ N, ui = a)}, a ∈ A.
Proof. We saw already in (1.3) that every prefix u[0,i) of u with ui = a can be

expanded as σk(pk) · · ·σ(p1)p0, where σ(u0) = pkaksk, pk �= ε, and (pi)
k
i=0 is a

walk in the prefix graph of σ starting from u0 and ending at a = a0. Observe that
πc(l(σ(p))) = πc(Mσl(p)) = δc(βvp), and from the equivalent definition (2.10)
of Dumont-Thomas subtiles the inclusion ⊇ follows. For the other inclusion
we can assume without loss of generality that Mσ is positive. Thus, every
(pi)

k
i=0 ∈ Gp(a) can be extended to (pi)

k+1
i=0 ∈ Gp(a), such that σ(u0) contains ak+1

and σ(ak+1) = pkaksk. We conclude by observing that every sum
∑

i≥0 δc(vpiβ
i),

(pi)i≥0 ∈ Gp(a) can be expressed as limk→∞ πc(l(σ
k(pk) · · ·σ(p1)p0)). �

2.2.2. Projective limit. For general notions on projective limits we refer
to [RZ10]. For a ∈ A, let us consider the sets

Z(i)
σ,a = βi T−i

σ (0, a), i ≥ 1,

which can be thought as approximations of the set of integers Zσ,a. The sets Z
(i)
σ,a

together with the continuous maps f ji : Z
(j)
σ,a → Z

(i)
σ,a,
∑j−1

k=0 vpkβ
k �→∑i−1

k=0 vpkβ
k,

for i, j ∈ N+ and j ≥ i, form a projective system. Consider the projective limit

(2.12) Ẑσ,a = lim←−
i

Z(i)
σ,a =

{
(xi)

∞
i=1 ∈

∏
i≥1

Z(i)
σ,a : for all j ≥ i, f ji (xj) = xi

}
,

and the union Ẑσ =
⋃

a∈A Ẑσ,a.
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If we give to each Z
(i)
σ,a the discrete topology and to

∏
i≥1 Z

(i)
σ,a the product

topology, the space Ẑσ,a inherits a topology which turns it into a compact space.

We can equip Ẑσ,a with two other topologies. Indeed, equip Ẑσ,a with the
topology defined by the distance

d(x, y) = 2−max{m∈N: xm=ym}, for x = (xi)i≥1, y = (yi)i≥1 ∈ Ẑσ,a.

In this way Ẑσ,a is a compact Cantor set isomorphic to the subshift formed by
the left-infinite sequences (vpi)i≥0 ∈ ωD such that (pi)i≥0 is the labelling of a

left-infinite walk · · · p2−→ a2
p1−→ a1

p0−→ a in the prefix graph of σ.
On the other hand we can equip Ẑσ,a with the topology defined by the

distance d(x, y) = ‖δc(x)− δc(y)‖. An element of Ẑσ,a can be represented as an

infinite sum
∑

i≥0 vpiβ
i, where each truncation

∑�
i=0 vpiβ

i is contained in Z
(�+1)
σ,a .

Extending δc continuously, we can use this mapping in order to map the infinite
sums in Ẑσ,a to Kc

β. Therefore we have obtained the following equivalence with
the Dumont-Thomas subtiles.

Proposition 2.5. We have Rσ(a) = δc(Ẑσ,a), for a ∈ A.

The definition of the projective limit Ẑσ,a encompasses these two points
of view, thus we can consider one of its elements either as an admissible left
infinite sequence or as an infinite sum. Another advantage is that we have all
the approximations (i.e., the truncations) of the elements included in this vision.
In both interpretations multiplication by β acts as a contraction. We come back
to Ẑσ,a in Section 2.3.2.

2.2.3. Dual substitutions. A consequence of dealing with non-unit Pisot
substitutions is that Mσ /∈ GLn(Z). However it is invertible on

Z n
σ =

⋃
k≥0

M−k
σ Zn.

We denote by F the infinite dimensional real vector space of the maps
Z n

σ ×A → R that take value zero except for a finite set. For (x, a) ∈ Z n
σ ×A

denote by [x, a] the element of F which takes value 1 at (x, a) and 0 elsewhere;
the set {[x, a] : (x, a) ∈ Z n

σ ×A} is a basis of F . The support of an element of
F is the set of [x, a] on which it is not zero.

We define the one-dimensional geometric realization E1(σ) on F by

E1(σ)[y, b] =
∑
b

p−→a

[Mσy − l(p), a].

Denote by F∗ the space of linear forms on F with finite support, i.e., those linear
forms for which there exists a finite subset X of Z n

σ ×A such that the form is 0
on any element of F whose support does not intersect X; this space admits as
basis the set {[x, a]∗ : (x, a) ∈ Z n

σ ×A}. We can associate with E1(σ) its dual
map E∗

1(σ) on F∗.

Proposition 2.6. The following formula for the dual map E∗
1(σ) holds:

(2.13) E∗
1(σ)[x, a]

∗ =
∑
b

p−→a

[M−1
σ (x+ l(p)), b]∗.
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Proof. By definition of the dual map we have

〈E∗
1(σ)[x, a]

∗, [y, b]〉 = 〈[x, a]∗,E1(σ)[y, b]〉
= 〈[x, a]∗,

∑
b

p−→c

[Mσy − l(p), c]〉.

This product can take only 0 and 1 as values and is not zero if and only if c = a
and Mσy − l(p) = x. Since Mσ is invertible as a map from Z n

σ to Z n
σ , this

implies y =M−1
σ (x+ l(p)). �

We can interpret geometrically an element [x, a] ∈ F as a segment {x− tea :
t ∈ [0, 1]} in Rn. In this way we get the negative broken line u defined in (2.9)
associated with the fixed point u = u0u1 · · · of the substitution in terms of E1(σ):

(2.14) − u =
⋃
k≥0

E1(σ)
k[0, u0].

From now on we will only consider elements of F∗ that are of the form
∑

k[xk, ak]
∗

(all the coefficients will be 1). Thus we shall consider E∗
1(σ) as a transformation

acting directly on subsets of Z n
σ ×A.

Lemma 2.7. The following diagram is commutative:

Z n
σ ×A

E∗
1(σ) ��

π

��

2Z n
σ ×A

π
��

δ(Q(β))×A T−1
σ �� 2δ(Q(β))×A

where π is the projection given in (1.13)

π : Rn → Kβ , x �→
(
(〈x,vβ(i)〉)r+s

i=1 , (〈x,vβ〉)p|(β)
)
,

and by convention π[x, a]∗ equals (π(x), a).

Proof. By Proposition 1.26 the action of Mσ on Rn is conjugate under π to
multiplication by β on Kβ , which implies that π(Z n

σ ) = δ(VZ · Z[β−1]). A simple
computation using the definitions (2.7) of T−1

σ and (2.13) of E∗
1(σ) shows that

T−1
σ ◦ π = π ◦E∗

1(σ). �
Proposition 2.8. The Dumont-Thomas subtiles can be expressed as

Rσ(a) = lim
k→∞

πc(M
k
σ E∗

1(σ)
k[0, a]∗),

where the limit is taken with respect to the Hausdorff metric.

Proof. Simple consequence of Lemma 2.7. �
Denote by H the hyperplane of Rn orthogonal to vβ, and let H+ be the set

{x ∈ Rn : 〈x,vβ〉 ≥ 0}, i.e., the half-space above H. The half-space H− strictly
below H is defined in the same fashion. We look for all those x ∈ Z n

σ that are
close to the hyperplane H, in particular, we want x ∈ H+ and x− ea ∈ H− to
be true for some a ∈ A. In the non-unit case we get too many points with this
property, hence we project them by π in order to distribute them discretely with
respect to their p-adic height.

Define the set of nearest coloured points to H in the spirit of [AI01] as

Σ = {(x, a) ∈ Z n
σ ×A : x ∈ H+, x− ea ∈ H−}.
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Proposition 2.9. S = π(Σ).

Proof. As in the proof of Lemma 2.7 we have π(Z n
σ ) = δ(VZ · Z[β−1]). The

conditions x ∈ H+, x− ea ∈ H− translate under π to δ(0) ≤ δ(x) < δ(va), where
x = 〈x,vβ〉. �

2.2.4. Model sets. We describe Sing’s approach [Sin06b] for Rauzy fractals
from the view point of cut-and-project schemes and model sets (see e.g. [Moo97,
BM04, BG13]).

Definition 2.10. A cut and project scheme, or CPS, is a triple (G,H, L̃)
consisting of a locally compact group G which is the union of countably many
compact sets, called the physical space, a locally compact group H called the
internal space and a lattice L̃ in G × H, such that two natural projections
π1 : G×H → G, π2 : G×H → H satisfy the following properties:

(1) The restriction π1|L̃ is injective.

(2) The image π2(L̃) is dense in H.

Setting L = π1(L̃), the star-map is defined as (·)
 = π2 ◦ (π1|L̃)−1 : L → H,
and is well-defined on L by injectivity of π1|L̃. With these definitions, we have

L̃ = {(x, x
) : x ∈ L}. We say that a cut and project scheme (G,H, L̃) is

symmetric if (H,G, L̃) is a cut and project scheme as well. Given a cut and

project scheme (G,H, L̃) and a subset W ⊂ H define Λ(W ) = {x ∈ L : x
 ∈W}.
We call such a set Λ(W ), or more generally any translate of such a set, a model

set if W is a non-empty compact set and W = int(W ). We say that a model set
is regular if ∂W has zero Haar measure. In addition, we say that a set Q is an
inter model set if Λ(int(W )) ⊂ Q ⊂ Λ(W ).

A finite family Λ = (Λ1, . . . , Λn) is a multi-component Delone set if supp(Λ) =⋃n
a=1 Λa is a Delone set. Similarly we say that Λ is a multi-component model set

if each Λa = Λ(Wa) is a model set with respect to the same CPS.

Proposition 2.11. (R,Kc
β , δ(VZ ·Z[β−1])) forms a symmetric cut and project

scheme:

R
π1←− Kβ

πS\{p1}−→ Kc
β =

∏
p∈S\{p1}

Kp

∪ ∪ ∪

VZ · Z[β−1]
1−1←→ δ(VZ · Z[β−1])

1−1←→ δc(VZ · Z[β−1])

Proof. The set δ(VZ ·Z[β−1]) is a lattice by Lemma 1.23. The projections π1 and
πS\{p1} are injective on δ(VZ · Z[β−1]) by construction. By Kronecker’s theorem

VZ is dense in R and so is VZ · Z[β−1]. It remains to prove that δc(VZ · Z[β−1]) is
dense in Kc

β (see [Sin06b, Lemma 6.55]). Since δ(VZ · Z[β−1]) is a lattice in Kβ,

it is relatively dense. Hence δc(VZ · Z[β−1]) must be relatively dense in Kc
β, i.e.,

there exists a radius R > 0 such that B(0, R)+ δc(VZ ·Z[β−1]) = Kc
β . Multiplying

this equation by β (which is equivalent to a contraction in Kc
β) and by Lemma

1.25 we get the denseness. �
For (Y, d) metric space, let H(Y ) be the space of non-empty compact subsets

of Y , equipped with the Hausdorff metric. In the model set setting, Sing [Sin06b]
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associates to each primitive substitution σ an expanding matrix function system
Θ on Rn defined by

(2.15) Θab =
⋃

b
p−→a

{tvp ◦ f0}, for a, b ∈ A,

where f0(x) = βx and tvp(x) = x + vp. Then its incidence matrix SΘ :=
(|Θab|)a,b∈A equals Mσ. Given such a Θ we can define the adjoint iterated

function system Θ# on H(R)n by

(2.16) Θ#
ab =

⋃
a

p−→b

{f−1
0 ◦ tvp}, for a, b ∈ A.

Then obviously SΘ# = M t
σ. Note that Θ# is just a way to write a graph

directed iterated function system in the sense of Mauldin and Williams [MW88]
in matrix form. By the general theory of graph directed iterated function
systems there exists a unique attractor for Θ#, and it is easy to see that it is
A = (Aa)a∈A ⊂ H(R)n, where the Aa = [0, va] are called natural intervals.

Geometrically we can interpret σ as a tiling of the line: given a fixed point
u = u0u1 · · · ∈ Aω of σ, we represent each letter a by the “type a” interval Aa;
starting with the first of these intervals we can construct the entire line inflating
repetitively Aa by β and subdividing it into the corresponding intervals given by
the substitution (compare this to the action of the one-dimensional geometric
realization E1(σ) defined in Section 2.2.3; in particular, we refer to (2.14)).

Given the tiling of the line, denote the set of left endpoints of the type a
intervals by Λa. Precisely, define Λ = (Λa)a∈A by

(2.17) Λ =
⋃
k≥0

Θk(∅, · · · , ∅, {0}, ∅, · · · , ∅)t,

where {0} is at position u0. Then Λ = (Λa)a∈A is a substitution multi-component
Delone set, i.e., Λ = Θ(Λ) and together with A = Θ#(A) this forms the
representation with natural intervals Λ+A of a fixed point u of σ.1

Example 2.12. Consider the substitution of Example 1.12, σ(1) = 121,
σ(2) = 11. Then we obtain the following expanding matrix function system Θ
and its adjoint iterated function system Θ#:

Θ =

(
{f0, fv12} {f0, fv1}
{fv1} ∅

)
, Θ# =

(
{g0, gv12} {gv1}
{g0, gv1} ∅

)
,

where fd(x) = βx+ d and gd(x) = β−1(x+ d), for d ∈ D = {0, v1, v12}. We get
the tiling of the line applying repetitively the process of inflation and subdivision
on the interval [0, v1]:

0
β
2 ·β�−→ 0 β + 1 ·β�−→ 0 3β + 2

1We could have defined Θ using the functions t−vp ◦ f0, in accord with E1(σ). In this way,
we would have obtained a negative tiling of the line −(Λ+A), with Λa set of right endpoints of
the type a intervals.
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Furthermore we have that the sets Λa of left endpoints of the type a intervals,
for a ∈ A, satisfy the point set equations

Λ1 = βΛ1 ∪ (βΛ1 + v12) ∪ βΛ2 ∪ (βΛ2 + v1),

Λ2 = βΛ1 + v1,

and the natural intervals satisfy

A1 = β−1A1 ∪ β−1(A1 + v12) ∪ β−1(A2 + v1),

A2 = β−1A1 ∪ β−1(A1 + v1).

We can extend Θ to the graph directed iterated function system Θ
 on
H(Kc

β)
n relative to the CPS (R,Kc

β , δ(VZ ·Z[β−1])) with star-map δc. As done be-

fore we can consider the adjoint (Θ
)# on (Kc
β)

n relative to the CPS (R,Kc
β , δ(VZ ·

Z[β−1])), which is an expanding matrix function system. This can now be used
to define Rauzy fractals in this context.

Definition 2.13. Let Ω = (Ωa)a∈A ⊂ H(Kc
β)

n be the solution of the graph

directed iterated function system Θ
(Ω) = Ω. We call Ω the dual prototile. The
regular multi-component inter model set Υ = (Υa)a∈A in (Kc

β)
n associated with

the CPS (Kc
β ,R, δ(VZ · Z[β−1])), defined by Υa = Λ([0, va)), is called translation

set.

We want now to relate the Dumont-Thomas tiles to the dual prototiles.

We can refine the sets Z
(k)
σ,a defined in Section 1.2.1 by taking only those finite

integers associated with walks in the prefix graph starting at a state b and ending

at state a. Call these sets Z
(k)
b,a . By definition Z

(k)
σ,a =

⋃
b∈A Z

(k)
b,a . Moreover, if the

word σ(b) starts with b we easily see that the sequence
(
Z
(k)
b,a

)
k≥0

is nested.

Lemma 2.14. Let u = u0u1 · · · be the fixed point of σ and let Λ be as in (2.17).
Then we have (Zu0,a)a∈A = Λ. Furthermore (Zσ,a)a∈A = Limk→∞Θk({0})a∈A,
and in particular (Zσ,a)a∈A = Θ(Zσ,a)a∈A.

Proof. We have Θk(∅, . . . , ∅, {0}, ∅, . . . , ∅)t = (Θk
a,u0

({0}))a∈A, whose elements

are of the form βkvpk + · · ·+ vp0 where u0
pk→ · · · p0→ a. But these are elements of

Z
(k)
u0,a, thus we have shown (Zu0,a)a∈A = Λ . Recalling that Z

(k)
σ,a =

⋃
u0∈A Z

(k)
u0,a

we get the second statement. �
We are now in position to state the equivalence between Dumont-Thomas

tiles and dual prototiles.

Proposition 2.15. We have Rσ(a) = Ωa, for a ∈ A.
Proof. Recall that Ω = (Ωa)a∈A is the attractor of the graph directed iterated
function system Θ
, and the Dumont-Thomas subtiles can be defined as Rσ(a) =

δc(Zσ,a), see (2.1). Then by Lemma 2.14

(Rσ(a))a∈A = Θ
(δc(Zσ,a))a∈A = Θ
(Rσ(a))a∈A

and the result follows by uniqueness of the attractor of Θ
. �
Proposition 2.16. For a ∈ A we have Υa = δc(Frac(σ, a)), which shows that

the translation set Γ = supp(Υ ).
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Proof. Observe that

Υa = {πS\{p1}(z) ∈ Kc
β : z = (zp)p∈S ∈ δ(VZ · Z[β−1]), zp1 ∈ [0, va)}

but this is exactly δc(Frac(σ, a)), for each a ∈ A. �

2.3. Basic properties of the tiles

In this section we will present some basic topological and dynamical properties
of the Rauzy fractals. By abuse of notation we will denote the projection of the
action of T−1

σ on δc(Q(β)) × A again by T−1
σ . Then we can write the Rauzy

fractals as

(2.18) Rσ(a) = lim
k→∞

βk ·T−k
σ (0, a).

2.3.1. Topological properties. The following proposition gives informa-
tion on the p-adic height of the central tile.

Proposition 2.17. If z = (zp) ∈ Rσ, for every p | (β) we have zp ∈ php,
where hp = min{vp(x) : x ∈ VZ}.
Proof. If z ∈ Rσ, we can write z =

∑∞
k=0 δc(vpkβ

k). For p | (β), the p-

th component of z is zp =
∑∞

k=0 vpkβ
k ∈ Kp. We deduce that vp(zp) ≥

mink≥0{vp(vpkβk)} = minvp∈D{vp(vp)} = dp, thus zp ∈ php . �
Next we prove that the subtiles cover the representation space (cf. [ABBS08]

and Chapter 3 for the non-unit beta-expansion setting).

Proposition 2.18. Let σ be an irreducible Pisot substitution. The subtiles
Rσ(a) provide a uniformly locally finite covering of the representation space Kc

β

governed by Γ:

Kc
β =

⋃
(γ,a)∈Γ

Rσ(a) + γ.

Proof. Let Cσ =
⋃

(γ,a)∈ΓRσ(a) + γ. Every point of Cσ is of the form z+ δc(x),

where z =
∑

i≥0 δc(vpiβ
i) ∈ Rσ(a), x =

∑
i≥1 vp−iβ

−i ∈ Frac(σ, a). We have

β ·Cσ ⊆ Cσ since Tσ(x, a) ∈ Frac(σ, b) by Lemma 1.11 and β ·z+δc(vp−1) ∈ Rσ(b),
for some b ∈ A. By Lemma 1.23 Cσ is relatively dense in Kc

β. Furthermore, as
β · Cσ ⊆ Cσ and β is a contraction, Cσ is dense in Kc

β. By compactness of the
subtiles and uniformly discreteness of Γ we obtain Kc

β = Cσ. �
In the following theorem we state some important properties of our tiles

(cf. [Sin06b, Corollary 6.66]).

Theorem 2.19. The following assertions hold for the subtiles Rσ(a), a ∈ A,
of an irreducible Pisot substitution.

(i) The subtiles Rσ(a) are the solution of the graph directed iterated function
system

(2.19) Rσ(a) =
⋃

(γ,b)∈T−1
σ (0,a)

β · (Rσ(b) + γ) =
⋃

b
p−→a

β · Rσ(b) + δc(vp),

where the union is measure disjoint.
(ii) Each subtile Rσ(a) is the closure of its interior.
(iii) The boundary of each subtile Rσ(a) has Haar measure zero.
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Proof. (i) Equation (2.19) is a direct consequence of Lemma 2.14, but we prefer
to give here an explicit proof. By (2.18) and (1.6) we obtain

Rσ(a) = lim
k→∞

βk ·T−k
σ (0, a) = β lim

k→∞

⋃
(γ,b)∈T−1

σ (0,a)

βk−1 ·T−(k−1)
σ (γ, b)

= β ·
⋃

(γ,b)∈T−1
σ (0,a)

(Rσ(b) + γ) =
⋃

b
p−→a

β · Rσ(b) + δc(vp).

Let m = (μc(Rσ(a)))a∈A. Applying the measure μc to equation (2.19) gives

μc(Rσ(a)) ≤
∑
b

p−→a

μc(β · Rσ(b) + δc(vp))(2.20)

= β−1
∑
b

p−→a

μc(Rσ(b)) = β−1
∑
b∈A

(Mσ)ab μc(Rσ(b)).

So we showed that the vectorm satisfiesMσm ≥ βm, and, as a direct consequence
of the Perron-Frobenius Theorem, we get Mσm = βm. Thus the inequality in
(2.20) is actually an equality, and thus no overlap with positive measure occurs
in the union in (2.19).

(ii) Since Kc
β is locally compact, we deduce from Baire’s theorem that there

exists a ∈ A such that int(Rσ(a)) �= ∅. Therefore (2.19) and the primitivity
of σ yield that int(Rσ(a)) �= ∅ holds for each a ∈ A. Let now a ∈ A and
consider η ∈ Rσ(a). Let B be an open ball centred at η. It suffices to show that
B ∩ int(Rσ(a)) �= ∅. Using the k-fold iteration

(2.21) Rσ(a) =
⋃

(γ,b)∈T−k
σ (0,a)

βk · (Rσ(b) + γ)

of (2.19) for k large enough, we obtain that βk · (Rσ(b) + γ) ⊆ B holds for some
(γ, b) ∈ T−k

σ (0, a). As int(βk · (Rσ(b) + γ)) �= ∅ the ball B contains inner points
of Rσ(a).

(iii) Let B ⊂ int(Rσ(a)) be an open ball and fix b ∈ A. By the primitivity
of σ we may choose k ∈ N large enough such that U := βk · (Rσ(b) + γ) ⊆ B
holds for some (γ, b) ∈ T−k

σ (0, a). The boundary ∂U is a subset of the set that is
covered at least twice by the union (2.21). We claim that μc(∂U) = 0. Indeed, if
μc(∂U) > 0 was true, then

μc(Rσ(a)) ≤
∑

(γ,b)∈T−k
σ (0,a)

μc(β
k · (Rσ(b) + γ))− μc(∂U),

contradicting the measure disjointness of the union (2.21). Thus μc(∂U) = 0 and,
hence, μc(∂Rσ(b)) = 0. Since b ∈ A was arbitrary, we are done. �

2.3.2. Adic transformation and domain exchange. Siegel [Sie03] show-
ed that, if σ satisfies the strong coincidence condition (see Definition 1.3), the
following hold:

(1) The subtiles Rσ(a) are disjoint in measure.
(2) (Xσ, S) is isomorphic in measure to (Rσ, E), where E is the domain

exchange E(z) = z+ δc(va), for z ∈ Rσ(a).
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We give a proof of the second result connecting it also to the adic transformation
Ẑσ → Ẑσ, x �→ x+ vw0 on Ẑσ (cf. [CS01b, Proposition 2.3]).

We will need the following lemma (see [CS01a, Lemma 4.1, Proposition 5.1,
Theorem 5.1]).

Lemma 2.20. Let w ∈ Xσ and ψP(w) = (pi, ai, si)i≥0 its prefix-suffix devel-
opment. Then ψP(χ(w)) = (pi, ai, si)i≥1 and ψP(σ(w)) = (qi, bi, ti)i≥0 is such
that q0 = ε and qi+1 = pi, for every i ≥ 0. If Sw is a periodic point of σ then
ψP(Sw) = (ε, bi, ti)i≥0 and ψP(w) = (pi, ai, ε)i≥0, with (pi)i≥0 periodic. If Sw is
not periodic for σ then ψP(Sw) = (qi, bi, ti)i≥0 is such that there exists an integer
k0 with σk(pk) · · ·σ0(p0)a0 = σk(qk) · · ·σ0(q0), for all k ≥ k0.

Sketch of the proof. The first two statements follow from the definition of
ψP . For the third, a successor map ν defined on X l

P and conjugate to the shift
on Xσ is introduced, i.e., such that ν(ψP(w)) = ψP(Sw), for w ∈ Xσ. Given
(pi, ai, si)i≥0 ∈ X l

P , ν((pi, ai, si)i≥0) = (qi, bi, ti)i≥0 is defined as follows: let i0 be
the first index such that si0 �= ε; then, (qi0 , bi0 , ti0) is such that qi0bi0ti0 = pi0ai0si0
and |qi0 | = |pi0 |+ 1, for i ≥ i0, (qi, bi, ti) = (pi, ai, si), and for 0 ≤ i < i0 we take
(ε, bi, ti) such that σ(bi+1) = biti. This is precisely an adic transformation, and,
for its particular shape, we can deduce the last claim. �

Proposition 2.21. Let σ be an irreducible Pisot substitution satisfying the
strong coincidence condition. Let

ϕ : Xσ → Ẑσ, w �→
∑
i≥0

vpiβ
i

where ψP(w) = (pi, ai, si)i≥0 ∈ ωP is the prefix-suffix development of w =
· · ·w−1.w0w1 · · · . Then the action of σ on Xσ is conjugate to the multiplication

by β on Ẑσ and the following diagram

Xσ
ϕ ��

S

��

Ẑσ
δc ��

+vw0
��

Rσ

+δc(vw0 )

��
Xσ

ϕ �� Ẑσ
δc �� Rσ

is commutative.

Proof. The first statement follows from Lemma 2.20 observing that the action
of σ on Xσ is conjugate to the right extension of elements of X l

P by an element
that has an empty prefix.

The commutativity of the left diagram is also a consequence of Lemma
2.20. Let w ∈ Xσ and ψP(w) = (pi, ai, si)i≥0. If Sw is not a periodic point of
σ, ψP(Sw) = (qi, bi, ti)i≥0 is such that ∃ k0 such that for all k ≥ k0 we have
σk(pk) · · ·σ(p0)w0 = σk(qk) · · ·σ0(q0). Thus

ϕ(Sw) =
∑
i≥0

vqiβ
i =
∑
i≥0

vpiβ
i + vw0 = ϕ(w) + vw0 .

If Sw is a periodic point of σ, then ψP(Sw) = (ε, bi, ti)i≥0 and ψP(w) =
(pi, ai, ε)i≥0, with (pi)i≥0 periodic with period �. This implies ϕ(Sw) = 0 and
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σi+kl(pi+k�) · · · p0w0 = σk�(σi(pi) · · · p0w0) for every i < � and every integer k.
Therefore

ϕ(w) = lim
k→∞

k∑
i=0

vpiβ
i = lim

k→∞
(vpkβ

k + · · ·+ vp1β + vp0w0)− vw0

= lim
k→∞

βk�(vpiβ
i + · · ·+ vp1β + vp0w0)− vw0

= 0− vw0 = ϕ(Sw)− vw0 .

The commutativity of the right diagram follows simply applying δc extended to
elements of Ẑσ and observing that the addition by δc(vw0) is well-defined up to a
set of measure zero. �

Observe that the adic transformation can be interpreted and computed by
Bratteli diagrams (see e.g. [Dur10]).

2.4. Multiple tilings and property (F)

In this section we show that the subtiles Rσ(a) induce a multiple tiling of
Kc

β with respect to the translation set Γ. Moreover, we give a tiling criterion in

terms of a finiteness condition of (σ, a)-expansions.

2.4.1. Multiple tiling property. In this section we will prove that ev-
ery irreducible Pisot substitution induces a multiple tiling of the associated
representation space.

A patch is defined as a finite subset of Γ. We say that Γ is repetitive (or
quasi-periodic) if for any patch P there exists a radius R > 0 such that every ball
of radius R in Γ contains a translate of P .

Next result is already contained in [Sin06b, Proposition 6.72] in the model
set approach. We present a similar proof in the spirit of [BST10, Theorem 5.3.13]
in our setting.

Lemma 2.22. The translation set Γ is repetitive.

Proof. Let P = {(γk, ak), 1 ≤ k ≤ �} be a patch of Γ. We can write each γk
as δc(xk), for xk ∈ VZ · Z[β−1] ∩ [0, vak). Let R1 be such that B(0, R1) contains
the patch P . There exists εk > 0 such that xk ∈ VZ · Z[β−1] ∩ [0, (1 − εk)vak),
for each 1 ≤ k ≤ �. Set ε := 1

2 mink εkvak . Then δc(x) + P is in Γ, for every

x ∈ VZ · Z[β−1] ∩ [0, ε).
It remains to prove that there exists R > 0 such that any ball of radius R

in Kc
β contains a point δc(x) with x ∈ VZ · Z[β−1] ∩ [0, ε). By the denseness of

VZ · Z[β−1] in R there exists x0 ∈ VZ · Z[β−1] ∩ [0, ε/2). Let Δ = maxa∈A va. We
can divide [0,Δ) in N = �2Δ/ε� subintervals [jε/2, (j+1)ε/2) of length ε/2. For
each j ≤ N , there exists mj ∈ Z such that mjx0 + [jε/2, (j + 1)ε/2) ⊂ [0, ε).

Fix a point η ∈ Kc
β. Since Γ is a Delone set we know that there is R2 > 0

such that every ball of radius R2 contains at least one element of Γ. In particular,
the ball B(η,R2) contains a point δc(x) with x ∈ VZ ·Z[β−1]∩ [0,Δ). Thus there
exists j ∈ {0, . . . , N} such that x ∈ VZ · Z[β−1] ∩ [jε/2, (j + 1)ε/2), and, hence,
mj ∈ Z such that mjx0 + x ∈ [0, ε). This implies that δc(x+mjx0) + P occurs
in Γ.

Therefore, the ball centred in η with radius R := R1 +R2 +maxj‖δc(mjx0)‖
contains a translated copy of the patch P and the lemma is proved. �
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We are now in a position to state the multiple tiling result (see also [BST10,
Theorem 5.3.13] for irreducible unit substitutions).

Theorem 2.23. Let σ be an irreducible Pisot substitution. The collection
Cσ = {Rσ(a) + γ : (γ, a) ∈ Γ} is a multiple tiling of Kc

β.

Proof. Assume that the assertion of the theorem is false. Then there exist
�1, �2 ∈ N, �1 < �2, and M1,M2 ⊂ Kc

β with μc(Mi) > 0 such that each element of

Mi is covered exactly �i times by the elements of Cσ (i = 1, 2). As the boundaries
of the subtiles have zero measure by Theorem 2.19 ((iii)), there exist points
ηi ∈Mi that are not contained in the boundary of any element of Cσ. Thus we
can find ε > 0 such that B(ηi, ε) is covered exactly �i times by the collection Cσ.
This implies that there exists a patch P2 ⊂ Γ with �2 elements such that

B(η2, ε) ⊂
⋂

(γ,a)∈P2

Rσ(a) + γ.

Consider the inflated ball β−k ·B(η1, ε). By the same arguments presented above,
each point of β−k ·B(η1, ε) is covered by exactly �1 tiles of the collection β−k · Cσ.
Each of the inflated tiles of β−k · Cσ can be decomposed in a finite union of
tiles in Cσ which are pairwise disjoint in measure. Thus almost each point in
β−k ·B(η1, ε) is contained in exactly �1 tiles of Cσ. By Lemma 2.22 we can pick
a suitable large k such that β−k ·B(η1, ε) contains a translated copy P2 + γ, for
some γ ∈ Γ. Therefore B(η2, ε) + γ is contained in β−k · B(η1, ε), for k large
enough. The ball B(η2, ε) is covered exactly �2 times, consequently B(η2, ε) + γ
is covered at least �2 times, but this yields a contradiction since almost every
point in β−k ·B(η1, ε) is contained in exactly �1 tiles, and �1 < �2. �

2.4.2. Finiteness property. In this section we provide a tiling criterion
for Cσ based on the geometric property (F). We take inspiration mainly from
[ST09]. Consider the set

U :=
⋃
a∈A

(0, a) ⊂ Γ.

It is easy to see that U ⊆ T−1
σ (U): indeed, (0, b) ∈ T−1

σ (0, a) if σ(b) = as, i.e.,
if p = ε. Thus (0, b) ∈ T−1

σ (0, a) where a is the first letter of σ(b). Hence the
sequence (T−m

σ (U))m≥0 is an increasing sequence of subsets of Γ.

Definition 2.24. Let σ be an irreducible Pisot substitution. We say that
the substitution σ satisfies the geometric property (F) if the iterations of T−1

σ on
U eventually cover the whole self-replicating translation set Γ:

Γ =
⋃
m≥0

T−m
σ (U).

The geometric property (F) is an equivalent formulation of the finiteness
property firstly introduced in [FS92] in the beta-numeration framework and
further studied in [Aki00]. Here we shall interpret it as a finiteness condition
on (σ, b)-expansions. Indeed, given (γ, b) ∈ Γ, γ can be written as δc(x) where
x ∈ V ·Z[β−1]∩ [0, vb) which has a unique (σ, b)-expansion by Proposition 1.5, i.e.,
x =
∑

i≥1 vpiβ
−i. Then we can say as well that (γ, b) has a formal (σ, b)-expansion

in Kc
β , namely γ =

∑
i≥1 δc(vpiβ

−i).
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Proposition 2.25. The substitution σ satisfies the geometric property (F) if
and only if every point (γ, b) ∈ Γ has a unique finite (σ, b)-expansion.

Proof. Let (γ, b) ∈ Γ. If property (F) holds, then (γ, b) ∈ T−m
σ (0, a), for some

m ≥ 0 and a ∈ A. Thus, using (2.8) we get

(2.22) γ = δc(vp0β
−m + vp1β

−m+1 + · · ·+ vpm−1β
−1),

where b
pm−1−→ · · · p1−→ a1

p0−→ a0 is a walk in the prefix graph ending at a = a0.
On the other hand, suppose that (γ, b) ∈ Γ has a unique finite (σ, b)-expansion

γ = δc(vp1β
−1 + · · ·+ vpmβ

−m) with b
p1−→ · · · pm−1−→ am−1

pm−−→ a. This yields that
βmγ ∈ Rσ(a) and using the iterated set equation in 2.21 we get

γ ∈
⋃

(η,c)∈T−m
σ (0,a)

Rσ(c) + η.

Thus we may conclude that (γ, b) ∈ T−m
σ (0, a). �

For an irreducible Pisot substitution σ satisfying the geometric property (F), it
is immediate from Proposition 2.18 and the definition of subtiles that every z ∈ Kc

β

admits a (σ, a)-expansion in Kc
β for some a ∈ A (cf. [ST09, Proposition 3.9]), i.e.,

z =

∞∑
i=m

δc(vpiβ
i), m ∈ Z.

In the context of beta-numeration, Akiyama [Aki02] proved that property
(F) is equivalent to the fact that 0 is an exclusive inner point of the central tile.
Our next aim is to carry over this statement to the substitution context.

Definition 2.26. The zero-expansion graph G(0) of σ is the directed graph
such that the following conditions hold.

• The nodes (γ, a) ∈ Γ are such that ‖γ‖ ≤ M , where M is taken as in
Equation (2.4).

• There is a directed edge from (γ1, a1) to (γ2, a2) if and only if (γ2, a2) ∈
T−1

σ (γ1, a1).
• Every node is the starting point of an infinite walk.

The zero-expansion graph is used to characterize all the elements (γ, a) ∈ Γ
for which the tile Rσ(a) + γ contains 0. Suppose 0 ∈ Rσ(a) + γ. This implies
that γ ∈ B(0,M), where M is as in (2.4).

Proposition 2.27. The zero-expansion graph G(0) of an irreducible Pisot
substitution σ is well defined and finite. A pair (γ, a) is a node of this graph if
and only if 0 ∈ Rσ(a) + γ.

Proof. The graph is finite since the nodes are elements of the Delone set Γ with
bounded norm. Consider a node (γ, a) = (γ0, a0) ∈ G(0) and the infinite walk
{(γk, ak)}k≥0 starting from it. Then, by definition of edges, we get a left-infinite

walk in the prefix graph · · · p2−→ a2
p1−→ a1

p0−→ a0 and

γ = −δc(vp0 − vp1β − · · · − vpkβk) + βk+1 · γk+1.

Since multiplication by β is a contraction and ‖γk‖ is uniformly bounded in k,
we obtain for k → ∞ a convergent power series: γ = −∑k≥0 δc(vpkβ

k). Thus

−γ ∈ Rσ(a) and hence 0 ∈ Rσ(a) + γ.
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Suppose conversely that 0 ∈ Rσ(a) + γ, for (γ, a) ∈ Γ. Then

γ = −
∑
k≥0

δc(vpkβ
k),

where (pk)k≥0 is the labelling of a left-infinite walk in the prefix graph ending
at state a. Let γ� = −∑k≥0 δc(vpk+�

βk). Each γ� ∈ B(0,M) and β · γ�+1 =

γ� + δc(vp�), i.e., (γ�+1, a�+1) ∈ T−1
σ (γ�, a�). By induction (γ�, a�) ∈ Γ for all

� ∈ N, since this holds for γ = γ0 and Γ is invariant under T−1
σ by Proposition

2.3. Hence, (γk, ak)k≥0 is an infinite walk in the zero-expansion graph starting
from (γ, a). �

Lemma 2.28. Let σ be an irreducible Pisot substitution that satisfies the
strong coincidence condition. Then σ satisfies the geometric property (F) if and
only if 0 is an exclusive inner point of the central tile Rσ.

Proof. Suppose that 0 is not an exclusive inner point of Rσ. Then there exists
γ �= 0, which has a finite expansion by property (F), such that 0 ∈ Rσ(a) + γ,
which implies 0 =

∑∞
j=−m δc(vpjβ

j), for m ∈ N. Multiplying by β−k yields 0 =∑∞
j=−m δc(vpjβ

j−k), that means 0 ∈ Rσ(ak)+
∑m+k

�=1 δc(vpk−�
β−�) for each k ∈ N,

where each of these sums represent a different element since the representation
is unique. This gives a contradiction with the local finiteness of the covering.
Therefore 0 is an exclusive inner point.

Assume that (F) does not hold, i.e., there exists (γ0, a0) ∈ Γ \⋃m≥0T
−m
σ (U).

In particular γ0 �= 0. Since T−1
σ (Γ) = Γ, we can define a sequence {(γk, ak)}k≥1

of elements of Γ with

(γk, ak) ∈ T−1
σ (γk+1, ak+1), k ≥ 0.

Since multiplication by β is a contraction in Kc
β, for some k0 ∈ N large enough,

γk ∈ B(0,M), for all k ≥ k0, where M is as in equation (2.4). There exist only
finitely many (γk, ak) ∈ Γ such that γk ∈ B(0,M), since Γ is a Delone set. Then

∃k′ > k0, ∃� > 0 such that (γk′ , ak′) = (γk′+�, ak′+�),

and γk′ �= 0, otherwise γ0 ∈
⋃

m≥0T
−m
σ (U). This is equivalent to the existence

of a loop in the zero-expansion graph G(0)

γk′ → γk′+�−1 → · · · → γk′+1 → γk′ ,

and, by the definition of G(0), this implies that 0 ∈ Rσ(ak′) + γk′ . Since γk′ �= 0,
we have that 0 is not an exclusive inner point of Rσ. �

Finally we can generalize the tiling condition given in [ABBS08] for beta-
numeration to (non-unit) irreducible Pisot substitutions.

Theorem 2.29. Let σ be an irreducible Pisot substitution. If σ satisfies the
geometric property (F) and the strong coincidence condition, the self-replicating
multiple tiling {Rσ(a) + γ : (γ, a) ∈ Γ} is a tiling.

Proof. By the geometric property (F) 0 is an exclusive inner point. Since the
strong coincidence condition holds, the subtiles Rσ(a) are disjoint in measure
(see the beginning of Section 2.3.2) and there is a set of positive measure around
0 which is covered only once. Since we know by Theorem 2.23 that {Rσ(a) + γ :
(γ, a) ∈ Γ} is a multiple tiling, this implies that the covering degree is 1. �
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2.5. Examples

In this section we consider two examples of irreducible non-unit Pisot substi-
tutions.

2.5.1. A two letters example. Consider the substitution σ(1) = 152,
σ(2) = 13. We have

Mσ =

(
5 3
1 0

)
, det(xI −Mσ) = x2 − 5x− 3.

The dominant eigenvalue is β = 5+
√
37

2 and its conjugate β′ satisfies |β′| < 1.

1 2

15

ε, 1, 11, 13, 14

ε, 1, 11

Figure 2.4. Prefix graph of σ.

The prime ideal (3) = p1 p2 = (β)(5 − β) splits completely in O. The
normalized absolute values are such that |β|p1 = 1

3 , |β|p2 = 1, and we deduce
that we have to consider only the non-Archimedean completion Kp1 , which is an
extension of degree one of Q3, equipped with the normalized absolute value |·|p1 .
Thus the representation space is Kc

β = R×Q3. Notice that β is a uniformiser for

Kp1 and we can represent each element of Q3 as
∑∞

i=m diβ
i with di ∈ {0, 1, 2},

m ∈ Z. Recall from Section 1.3.4 that we represent Q3 with the Euclidean model
given by the Monna map. The canonical embedding is given explicitly by

δc : Q(β) −→ R×Q3, a0 + a1β �−→
(
a0 + a1β

′,
∞∑

i=m

diβ
i
)
.

We choose vβ = (β3 , 1) as left eigenvector ofMσ. The set of digits for the Dumont-
Thomas expansions is D = {0, v1, 2v1, 3v1, 4v1, 5v1}. We obtain the central tile
Rσ by taking the closure of the embedding of the σ-integers (see Figure 2.5).
Having chosen vβ as above, we get that Rσ ⊂ R × Z3 (see Proposition 2.17).
Furthermore, the subtiles satisfy the following set equations:

Rσ(1) = β · Rσ(1) + (β · Rσ(1) + δc(v1)) + (β · Rσ(1) + δc(2v1))

+ (β · Rσ(1) + δc(3v1)) + (β · Rσ(1) + δc(4v1))

+ β · Rσ(2) + (β · Rσ(2) + δc(v1)) + (β · Rσ(2) + δc(2v1)),

Rσ(2) = β · Rσ(1) + δc(5v1).

In Figure 2.6 a patch of the self-replicating tiling is illustrated. The first
3-adic level of the tiling, i.e., those tiles whose p-adic part is contained in Z3,
consists in the Rx with

x ∈
{
2β

3
− 3,

2β

3
− 2,

β

3
− 1, 0, 1, 2− β

3
, 3− β

3

}
.

One can check in fact that all these x we have |x|p1 ≤ 1. Furthermore the tiles

Rx, for x = 2β
3 − 3, β3 − 1, 0, 2 − β

3 , are union of the two subtiles Rσ(1) and
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Figure 2.5. The central tile Rσ divided in the red (light gray)
subtile Rσ(1) and the blue (dark gray) subtile Rσ(2), and the self
similar structure arising from the set equations.

Rσ(2), because these x are less than 1, i.e., they are both in [0, v1) = [0, β3 ) and
[0, v2) = [0, 1).

R

Q3

Figure 2.6. Tiling of the representation space Kc
β with trans-

lation set Γ. The black (white) points belong to δc(Frac(σ, 1))
(respectively δc(Frac(σ, 2))).

In Figure 2.7 and Figure 2.8 it is represented the action of T−1
σ on the basic

faces (0, 1), (0, 2) and on their union U . This is an example of substitution
satisfying the geometric property (F). Finally we show in Figure 2.9 the exchange
of domains given by the substitution σ.

(a) The face (0, 1) and its image
T−1

σ (0, 1).
(b) The face (0, 2) and its image
T−1

σ (0, 2).

Figure 2.7
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Figure 2.8. T−3
σ (U) and its projection into Kc

β .

Figure 2.9. Exchange of domains.

2.5.2. A three letters example. Let σ be the substitution σ : 1 �→ 1113,
2 �→ 11, 3 �→ 2. The incidence matrix of the substitution and its characteristic
polynomial are

Mσ =

⎛⎝3 2 0
0 0 1
1 0 0

⎞⎠ , det(xI −Mσ) = x3 − 3x2 − 2.

The characteristic polynomial is irreducible over Q with Pisot root β ≈ 3.196 and
associated complex conjugates β2, β̄2 ≈ −0.098± 0.785i with norm less than 1.

1 2 3

111

ε, 1, 11

ε, 1 ε

Figure 2.10. Prefix graph of σ.

We want to determine the representation space for the substitution σ. Setting
K = Q(β), we know that the Archimedean part of the representation space
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is C, while for the non-Archimedean part we have to compute the prime ideal
factorization of 2O:

(2) = (2, β)2 (2, β − 1) = (β)2︸︷︷︸
p21

(−1− β2)︸ ︷︷ ︸
p2

.

We have |β|p1 = 1
2 , |β|p2 = 1, hence the non-Archimedean completion we have to

consider is Kp1 , which is an extension of degree e1f1 = 2 of Q2.
There exist only 7 non-isomorphic quadratic extensions of Q2, and one can

check that Kp1
∼= Q2(

√
7). Furthermore β is a uniformiser in Kp1 , thus we can

express every element of this completion as
∑∞

i=m diβ
i, with di ∈ {0, 1} and some

m ∈ Z. The canonical embedding is

δc : Q(β)→ C×Q2(
√
7), a0 + a1β + a2β

2 �→
(
a0 + a1β2 + a2β

2
2 ,

∞∑
i=m

diβ
i

)
.

We represent each element of Q2(
√
7) with the Monna map Q2(

√
7) → R+,∑∞

i=m diβ
i �→∑∞

i=m di2
−i−1 described in Section 1.3.4. In Figure 2.11 the tiles

associated with the substitution are represented. We choose vβ = (β2/2, β, 1)
as left eigenvector of Mσ. With this choice we have the set of digits D =
{0, β2/2, β2, 3β2/2} for the Dumont-Thomas expansions. Furthermore we have
that the p-adic part of the central tile is contained in Z2[

√
7].

C

Z2[
√
7]

Figure 2.11. Pictures of the central tile Rσ divided in the red
(gray) subtile Rσ(1), the blue (dark gray) Rσ(2) and the yellow
(light gray) Rσ(3).



CHAPTER 3

Tilings for Pisot beta-numeration

For a (non-unit) Pisot number β, several collections of tiles are associated
with β-numeration. This includes an aperiodic and a periodic one made of Rauzy
fractals, a periodic one induced by the natural extension of the β-transformation
and a Euclidean one made of integral beta-tiles. We show that all these collections
(except possibly the periodic translation of the central tile) are tilings if one of
them is a tiling or, equivalently, the weak finiteness property (W) or a spectral
condition on the boundary graph hold. We also obtain new results on rational
numbers with purely periodic β-expansions; in particular, we calculate γ(β) for
all quadratic β with β2 = aβ + b, gcd(a, b) = 1. This chapter is based on [MS14].
Background notions on beta-numeration can be found in Section 1.2.2.

3.1. Tiles

Beta-tiles. For x ∈ Z[β−1] ∩ [0, 1), define the x-tile (or Rauzy fractal) as

(3.1) R(x) = lim
k→∞

δc
(
βk T−k

β (x)
)
⊆ Kc

β ,

where the limit is taken with respect to the Hausdorff distance, and let

Caper =
{
R(x) : x ∈ Z[β−1] ∩ [0, 1)

}
,

C̃aper =
{
R(x) : x ∈ Z[β] ∩ [0, 1)

}
⊆ Caper.

Note that the limit in (3.1) exists since βk T−k
β (x) ⊆ βk+1 T−k−1

β (x) for all k ∈ N.

Recall that

L =
〈
V̂ − V̂

〉
Z
⊆ Z[β]

is the Z-module generated by the differences of elements in V̂ and let

Cper =
{
δc(x) +R(0) : x ∈ L

}
.

The periodic collection of tiles Cper is locally finite only when

(3.2) rank(L) = deg(β)− 1

holds, which is (QM), an analogue of the quotient mapping condition defined in
[ST09]. A sufficient condition for (QM) is that #V = deg(β). In Section 3.6.4,
we give examples with #V > deg(β) where (QM) holds and does not hold,
respectively.

Integral beta-tiles. For x ∈ Z[β] ∩ [0, 1), the integral x-tile

(3.3) S(x) = lim
k→∞

δc∞
(
βk
(
T−k
β (x) ∩ Z[β]

))
⊆ Kc

∞

was introduced in [BSS+11] in the context of SRS tiles; see also [ST13]. Let

Cint =
{
S(x) : x ∈ Z[β] ∩ [0, 1)

}
.

53
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If β is an algebraic unit, then Z[β] = Z[β−1] and S(x) = R(x), Cint = C̃aper =
Caper.

Natural extension. Recall that if (Y,BY , ν, S) is a non-invertible measure-
preserving dynamical system, an invertible measure-preserving dynamical system
(X,BX , μ, T ) is called a natural extension of (Y,BY , ν, S) if (Y,BY , ν, S) is a factor
of (X,BX , μ, T ) and the factor map φ satisfies

∨∞
m=0 T

mφ−1BY = BX , where∨∞
m=0 T

mφ−1BY is the smallest σ-algebra containing the σ-algebras Tmφ−1BY

for all m ∈ N.
We give a version of the natural extension of the β-transformation Tβ with

nice algebraic and geometric properties, in the case where β is a Pisot number,
not necessarily unit. We will do this using the x-tiles defined above. Let

X =
⋃
v∈V

(
[v, v̂)×

(
δc(v)−R(v)

))
⊆ Kβ ,

T : X → X , z �→ β z− δ(�β π1(z)�),

Cext =
{
δ(x) + X : x ∈ Z[β−1]

}
,

C̃ext =
{
δ(x) + X : x ∈ Z[β]

}
.

The set X is the domain and T the transformation of our natural extension
of the beta-transformation on [0, 1). Note that one usually requires the natural
extension domain to be compact. Here, we often prefer working with X instead
of its closure because it has some nice properties, e.g., it characterises the purely
periodic expansions.

Boundary graph. The nodes of the boundary graph are the triples [v, x, w] ∈
V × Z[β]× V such that x �= 0, δc(x) ∈ R(v)−R(w) + δc(w − v), and w − v̂ <
x < ŵ − v. There is an edge

[v, x, w]
(a,b)−→ [v1, x1, w1] ⇔ a, b ∈ D, x1 = b−a+x

β , a+v
β ∈ [v1, v̂1),

b+w
β ∈ [w1, ŵ1).

This graph provides expansions of the points that lie in two different elements
of Caper. If Caper forms a tiling, then these points are exactly the boundary points
of the tiles.

In [ABBS08], a slightly different boundary graph is defined that determines
the boundary of subtiles instead of that of Rauzy fractals. In their definition, x
may be in Z[β−1] and it is shown to be in O. We will see that Z[β] is sufficient.

Purely periodic expansions. Let

Pur(β) =
{
x ∈ [0, 1) : T k

β (x) = x for some k ≥ 1
}
.

be the set of numbers with purely periodic β-expansion. By [Ber77, Sch80], we
know that

(3.4) ∃ k ≥ 0 : T k
β (x) ∈ Pur(β) if and only if x ∈ Q(β) ∩ [0, 1).

Furthermore, the set Pur(β) was characterised in [HI97, IR05, BS07] by

(3.5) x ∈ Pur(β) if and only if x ∈ Q(β), δ(x) ∈ X ;

see also [KS12]. In particular, we have

Q ∩ Pur(β) ⊆ ZN(β) =
{
p/q ∈ Q : gcd(q,N(β)) = 1

}
;
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see e.g. [ABBS08, Lemma 4.1]. Here, N(β) denotes the norm of the algebraic
number β. We study the quantity

(3.6) γ(β) = sup
{
r ∈ [0, 1] : ZN(β) ∩ [0, r) ⊆ Pur(β)

}
that was introduced in [Aki98].

Weak finiteness. The arithmetical property

(W) ∀x ∈ Pur(β) ∩ Z[β] ∃ y ∈ [0, 1−x), n ∈ N : Tn
β (x+ y) = Tn

β (y) = 0,

turns out to be equivalent to the tiling property of our collections.

3.2. Main results

In the following theorem, we list some important properties of the x-tiles.
Most of them can be proved exactly as in the unit case, see e.g. [KS12]. Some of
them can also be found in [BS07, ABBS08] or are direct consequences of the more
general results proven in [MT14] in the substitution settings. For convenience,
we provide a full proof in Section 3.4.

Theorem 3.1. Let β be a Pisot number. For each x ∈ Z[β−1] ∩ [0, 1), the
following hold:

(i) R(x) is a non-empty compact set that is the closure of its interior.

(ii) The boundary of R(x) has Haar measure zero.

(iii) R(x) =
⋃

y∈T−1
β (x) βR(y), and the union is disjoint in Haar measure.

(iv) R(x)− δc(x) ⊆ R(v)− δc(v) for all v ∈ V with v ≤ x.

(v) R(x)− δc(x) ⊇ R(v)− δc(v) for all v ∈ V with v̂ > x.

Moreover, we have

δ
(
Z[β−1]

)
+ X = Kβ , δ

(
Z[β]
)
+ X = Z,(3.7) ⋃

x∈Z[β−1]∩[0,1)
R(x) = Kc

β ,
⋃

x∈Z[β]∩[0,1)
R(x) = Zc,

and

(3.8) X =
⋃

x∈Z[β]∩[0,1)
δ(x)− {0} ×R(x).

The following theorem is informally stated in [ABBS08] and other papers;
see [KS12] for the unit case. Here, B and B denote the Borel σ-algebras on
X = [0, 1) and X , respectively. The set X is equipped with the Haar measure μ,
while X is equipped with the measure μ ◦ π−1

1 , which is an absolutely continuous
invariant measure for T .

Theorem 3.2. Let β be a Pisot number. The dynamical system (X ,B, μ,T )
is a natural extension of ([0, 1), B, μ ◦ π−1

1 , T ).

Some of the following properties of integral β-tiles can be found in [BSS+11];
the main novelty is that we can show that the boundary has measure zero.

Theorem 3.3. Let β be a Pisot number. For each x ∈ Z[β] ∩ [0, 1), the
following hold:

(i) S(x) is a non-empty compact set.
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(ii) The boundary of S(x) has Lebesgue measure zero.

(iii) S(x) = ⋃y∈T−1
β (x)∩Z[β] β S(y).

(iv) For all y∈(x+βkZ[β])∩[v, v̂), k ∈ N,

dH
(
S(x)− δc∞(x),S(y)− δc∞(y)

)
≤ 2 diamπc∞(βkR(0)),

where v ∈ V is chosen such that x ∈ [v, v̂), and dH denotes the Hausdorff
distance with respect to some metric on Kc

∞.

(v) If β is quadratic, then S(x) is an interval that intersects
⋃

y∈Z[β]∩[0,1)\{x}
S(y) only at its endpoints.

Moreover, we have

(3.9)
⋃

x∈Z[β]∩[0,1)
S(x) = Kc

∞,

and, if deg(β) ≥ 2,

R(v) =
⋃

x∈Z[β]∩[v,v̂)
δc(v − x) + S(x)× δf({0}) for all v ∈ V,(3.10)

X =
⋃

x∈Z[β]∩[0,1)
δ(x)− {0} × S(x)× δf({0}).(3.11)

A series of equivalent tiling conditions constitutes the core of this paper.

Theorem 3.4. Let β be a Pisot number. Then the collections Cext, C̃ext, Caper,
C̃aper, and Cint are multiple tilings of Kβ, Z, K

c
β, Z

c, and Kc
∞, respectively, and

they all have the same covering degree. The following statements are equivalent:

(i) All collections Cext, C̃ext, Caper, C̃aper, and Cint are tilings.

(ii) One of the collections Cext, C̃ext, Caper, C̃aper, and Cint is a tiling.

(iii) One of the collections Cext, C̃ext, Caper, C̃aper, and Cint has an exclusive
point.

(iv) Property (W) holds.

(v) The spectral radius of the boundary graph is less than β.

If (QM) holds, then the following statement is also equivalent to the ones above:

(vi) Cper is a tiling of Zc.

By Theorem 3.3 (v) or e.g. by [ARS04], the equivalent statements of the
theorem hold when β is quadratic.

The following bound and formula for γ(β) (defined in (3.6)) simplify those
that can be found in [ABBS08].

Theorem 3.5. Let β be a Pisot number. Then

(3.12) γ(β) ≥ inf

(
{1} ∪

⋃
v∈V

{
x ∈ Q ∩ [v, v̂) : δc∞(v − x) ∈ πc∞

(
Zc \ R(v)

)})
.

If moreover δf(Q) = Kf , then equality holds in (3.12).
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Note that δc∞(Q) is a line in Kc
∞, thus we essentially have to determine the

intersection of a line with the projection of the complement of R(v). We are
able to calculate the explicit value for γ(β) for a large class of quadratic Pisot
numbers.

Theorem 3.6. Let β be a quadratic Pisot number with β2 = aβ+b, a ≥ b ≥ 1.
Then

(3.13) γ(β) ≥ max

{
0, 1− (b− 1)b β

β2 − b2
}
,

and equality holds if gcd(a, b) = 1. We have (b−1)b β
β2−b2

< 1 if and only if (b−1)b < a.

For a = b = 2, numerical experiments suggest that γ(β) ≈ 0.9148, while
(3.13) only gives γ(β) ≥ 0. Thus we believe that equality may not hold in (3.13)
if gcd(a, b) > 1.

3.3. An example

We illustrate our different tilings for the example β = 1+
√
3, with β2 = 2β+2.

Here, the prime 2 ramifies in O, thus we get the representation space Kc
β = R×Kf ,

with Kf
∼= Q2

2. Each element of Kf can be written as
∑∞

j=k δf(djβ
j), with dj ∈

{0, 1}, and we represent it by
∑∞

j=k dj2
−j−1 in our pictures (see Section 1.3.4).

In Figure 3.1, a patch of the aperiodic tiling Caper together with the cor-
responding integral beta-tiles (that form Cint) is represented. The aperiodic

tiling C̃aper constitutes the “lowest stripe” of Caper. Another possibility to tile
the stripe Zc is given by the periodic tiling Cper that is sketched in Figure 3.2.
In Figure 3.3, the natural extension domain is shown, which tiles Kβ and Z
periodically; see Figure 3.4 and 3.5.

S(β−2) S(0) S(3−β)

R(0)R(2β−1)

R(β−1)

R(2β−2)

R(β−1+2β−2)

R(β−1+β−2)

R(β−2)R(2β−1+β−2)

Figure 3.1. The patch β−2R(0) of the aperiodic tiling Caper and
the corresponding integral beta-tiles, β2 = 2β + 2.

0 3−ββ−3 6−2β

Figure 3.2. A patch of Cper = {δc(x) + R(0) : x ∈ Z (β−3)},
β2 = 2β + 2.
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0 1

1

β−1 2β−1 (1, 0, 0)

(1, 1, 0)

(1, 1, β−1)

(1, 1, 1)

(0, 0, β−1)

Figure 3.3. β-transformation and natural extension domain X
for β2 = 2β + 2.

Figure 3.4. Periodic tiling C̃ext ⊆ Cext, β2 = 2β + 2. The
following tiles are represented: X (yellow), X + δ(1) (purple),
X + δ(β − 2) (brown), X + δ(β − 1) (light green).

−β

1−β

2−β

3−β

−2

−1

0

1

2

β−3

β−2

β−1

β

Figure 3.5. The intersection of C̃ext with K∞ × δf({0}).
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3.4. Properties of Rauzy fractals and the natural extension

Proof of Theorem 3.1. Let x ∈ Z[β−1] ∩ [0, 1). Each element of R(x) is

the limit of elements of δc(β
k T−k

β (x)) and hence of the form

z = lim
k→∞

δc

( k−1∑
j=0

ajβ
j + x

)
= δc(x) +

∞∑
j=0

δc(ajβ
j),

with aj ∈ D = {0, 1, . . . , �β�−1} and∑k−1
j=0 ajβ

j+x ∈ [0, βk) for all k ∈ N. Thus
our definition of the x-tiles is essentially the same as in the other papers on this
topic. In particular, R(x) is a compact set with uniformly bounded diameter.

The set equation in Theorem 3.1 (iii) is a direct consequence of our definition.

If 0 ≤ y ≤ x, then we have

βk T−k
β (x)− x ⊆ βk T−k

β (y)− y
for all k ∈ N, which proves Theorem 3.1 (iv). Let now v ∈ V with v̂ > x. To see
that

βk T−k
β (x)− x ⊇ βk T−k

β (v)− v
for all k ∈ N, suppose that there exists z ∈ (βk T−k

β (v) − v) \ (βk T−k
β (x) − x),

and assume that k is minimal such that this set is non-empty. Then we have

z + v < βk ≤ z + x. Since T j
β(

z+v
βk ) ∈ T j−k

β (v) for 1 ≤ j ≤ k, the minimality of k

gives that βk−jT j
β(

z+v
βk )+x− v ∈ βk−j T j−k

β (x), thus βk−jT j
β(

z+v
βk )+βk− z− v <

βk−j , which implies that T j
β(1

−) = βj + T j
β(

z+v
βk )− z+v

βk−j . Hence T
k
β (1

−) = βk − z
and thus v < T k

β (1
−) ≤ x, which contradicts the assumption that v̂ > x. This

proves Theorem 3.1 (v). In particular, we have that

(3.14) R(x)− δc(x) = R(v)− δc(v) for all x ∈ Z[β−1] ∩ [v, v̂), v ∈ V.

We now consider the covering properties of our collections of tiles, following
mainly [KS12]. We start with a short proof of (3.5). Let x ∈ [0, 1) with T k

β (x) = x.

Then x ∈ Q(β) and

δc(0) = lim
n→∞

δc(β
nkx) ∈ lim

n→∞
δc(β

nkT−nk
β (x)) ∈ R(x),

where we have extended the definition of R(x) to x ∈ Q(β). If v ∈ V is such that
x ∈ [v, v̂), then (3.14) gives that

δ(x) ∈ {x} × (δc(x)−R(x)) = {x} × (δc(v)−R(v)) ⊆ X .

On the other hand, let x ∈ Q(β) be such that δ(x) ∈ X . If q ∈ Z is such that x ∈
1
qZ[β

−1], then we have T −n(δ(x)) ⊆ δ(1qZ[β
−1]) for all n ∈ N. Since δ(1qZ[β

−1])

is a lattice in Kβ by Lemma 1.23 and X is bounded, the set
⋃

n∈N T −n(δ(x))

is finite, thus T k(δ(z)) = δ(z) for some k ≥ 1, z ∈ Q(β) ∩ [0, 1), with δ(z) ∈
T −n(δ(x)), n > k. Since T (δ(z)) = δ(Tβ(z)), we obtain that T k

β (z) = z and

Tn
β (z) = x, thus T k

β (x) = x.

Now, we use (3.5) to prove that δ(Z[β−1]) + X = Kβ . We first show that

(3.15) δ(Q(β)) ⊆ δ(Z[β−1]) + X .
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Let x ∈ Q(β). Then the sequence (βkx mod Z[β−1])k∈Z is periodic; indeed, choos-
ing q ∈ Z such that x ∈ 1

qZ[β
−1], we have βkx ∈ 1

qZ[β
−1] for all k ∈ Z, and the

periodicity of (βkx mod Z[β−1])k∈Z follows from the finiteness of 1
qZ[β

−1]/Z[β−1].

By (3.4) and (3.5), we have δ(T k
β (x − �x�)) ∈ X for all sufficiently large

k ∈ N. Thus we can choose k ∈ N such that βkx ≡ x mod Z[β−1] and
δ(T k

β (x − �x�)) ∈ X . As T k
β (x − �x�) ≡ βkx mod Z[β−1], we obtain that

δ(x) ∈ X + δ(Z[β−1]), i.e., (3.15) holds.
Since X is compact and δ(Z[β−1]) is a lattice, (3.15) implies that

δ(Z[β−1]) + X = δ(Q(β)) = Kβ .

Observe that X differs only slightly from its closure:

(3.16) X \X =
⋃
v∈V

(
{v̂} ×

(
δc(v)−R(v)

)
\
(
δc(v̂)−R(v̂)

))
,

where R(1) = ∅. As X is a finite union of products of a left-closed interval with
a compact set, the complement of δ(Z[β−1]) + X in Kβ is either empty or has

positive measure. Since μ(X \X ) = 0, we obtain that

(3.17) δ(Z[β−1]) + X = Kβ .

Since R(v) − δ(v) ⊆ δc(Z[β]) for all v ∈ V , we have X ⊆ Z. By Lemma 1.29,
we have thus (δ(x) + X ) ∩ Z = ∅ for all x ∈ Z[β−1] \ Z[β]. Together with (3.17),
this implies that

δ(Z[β]) + X = Z.

For each x ∈ Z[β−1] ∩ [v, v̂), v ∈ V , we have

X ∩ {x} ×Kc
β = {x} ×

(
δc(v)−R(v)

)
(3.18)

= {x} ×
(
δc(x)−R(x)

)
= δ(x)− {0} ×R(x),

Since Z[β] is dense in R, we obtain (3.8). Rewriting (3.18), we get
(
δ(x)−X ) ∩

{0} ×Kc
β = {0} ×R(x), which shows together with (3.17) that

(3.19)
⋃

x∈Z[β−1]∩[0,1)
R(x) = Kc

β .

Since R(x) ∩ Zc = ∅ for all x ∈ Z[β−1] \ Z[β] by Lemma 1.29, we have

(3.20)
⋃

x∈Z[β]∩[0,1)
R(x) = Zc.

By (3.19) and Baire’s theorem, R(x) has non-empty interior for some x ∈
Z[β−1]∩ [0, 1). Using the set equations in Theorem 3.1 (iii) and (3.14), we obtain
that R(x) has non-empty interior for all x ∈ Z[β−1] ∩ [0, 1). Consequently, the
set equations also imply that R(x) is the closure of its interior; see e.g. [KS12] or
Chapter 2 for more details. This proves Theorem 3.1 (i).

For the proof of Theorem 3.1 (ii), we follow again [KS12] and prove first
that T is bijective up to a set of measure zero. First note that T (X ) = X .
Partitioning X into the sets

Xa = {z ∈ X : �β π1(z)� = a} (a ∈ D),
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we have T (z) = β z − δ(a) for all z ∈ Xa. Thus T is injective on each Xa,
a ∈ D, and∑

a∈D
μ
(
T (Xa)

)
=
∑
a∈D

μ(βXa) =
∑
a∈D

μ(Xa)

= μ(X ) = μ
(
T (X )

)
= μ

( ⋃
a∈D

T (Xa)

)
,

where the second equality holds by the product formula
∏

p∈S |β|p = 1. Hence

μ(T (Xa) ∩ T (Xb)) = 0 for all a, b ∈ D with a �= b, and T is bijective up to a
set of measure zero.

For each x ∈ Z[β−1] ∩ [0, 1) and sufficiently small ε > 0, we have

T −1
(
[x, x+ ε)×

(
δc(x)−R(x)

))
=
⋃

y∈T−1
β (x)

[y, y + εβ−1)×
(
δc(y)−R(y)

)
.

Since this union is disjoint, the union in Theorem 3.1 (iii) is disjoint in Haar

measure. Thus if R(y), y ∈ T−k
β (x), is in the interior of β−kR(x), its boundary

has measure zero. As R(x) has non-empty interior and multiplication by β−1

is expanding on Kc
β, we find for each v ∈ V some k ∈ N, y ∈ T−k

β (x) ∩ [v, v̂),

such that R(y) is in the interior of β−kR(x). Together with (3.14), this proves
Theorem 3.1 (ii), which concludes the proof of Theorem 3.1.

Proof of Theorem 3.2. We have π1(X ) = [0, 1), Tβ ◦ π1 = π1 ◦ T , and
we know from Section 3.4 that T is bijective on X up to a set of measure zero.
It remains to show that ∨

k∈N
T kπ−1

1 (B) = B,

where
∨

k∈N T kπ−1
1 (B) is the smallest σ-algebra containing the σ-algebras T k

π−1
1 (B) for all k ∈ N. It is clear that

∨
k∈N T kπ−1

1 (B) ⊆ B. For the other

inclusion, we show that we can always separate in
∨

k∈N T kπ−1
1 (B) two points

z, z̃ ∈ X with z �= z̃. If π1(z) �= π1(z̃), then there are disjoint intervals

J, J̃ ⊆ [0, 1) with z ∈ π−1
1 (J), z̃ ∈ π−1

1 (J̃). If π1(z) = π1(z̃), then consider the
partition of [0, 1) into continuity intervals of T k

β for large k. For each continuity

interval J ⊆ [v, v̂) of T k
β , we have T kπ−1

1 (J) = T k
β (J) × (δc(T

k
β (v)) − βkR(v)).

Since multiplication by β is contracting on Kc
β, we can find k ∈ N such that

z ∈ T kπ−1
1 (J), z̃ ∈ T kπ−1

1 (J̃), with two disjoint intervals J, J̃ ⊆ [0, 1).

3.5. Properties of integral beta-tiles

3.5.1. Basic properties. We first prove that, for each x ∈ Z[β] ∩ [0, 1),

S(x) is well defined and S(x) �= ∅. To this end, we show that (δc∞(βk (T−k
β (x) ∩

Z[β])))k∈N is a Cauchy sequence with respect to the Hausdorff distance dH . Since
{0, 1, . . . , |N(β)| − 1} is a complete residue system of Z[β]/βZ[β] and |N(β)| ≤ β
because β is a Pisot number, we have T−1

β (y) ∩ Z[β] �= ∅ for all y ∈ Z[β] ∩ [0, 1).

Using that T−k−1
β (x) ∩ Z[β] = T−1

β (T−k
β (x) ∩ Z[β]) ∩ Z[β], we get

dH

(
δc∞
(
βk+1 (T−k−1

β (x)∩Z[β])
)
, δc∞
(
βk (T−k

β (x)∩Z[β])
))
≤ (�β�−1) ‖δc∞(βk)‖,



62 3. TILINGS FOR PISOT BETA-NUMERATION

which tends to 0 exponentially fast as k →∞. This proves Theorem 3.3 (i).

Theorem 3.3 (iii) follows directly from the definition.

To show Theorem 3.3 (iv), let x, y ∈ Z[β]∩ [v, v̂) with x− y ∈ βk Z[β], v ∈ V .

We know from the proof of Theorem 3.1 that βk T−k
β (x) − x = βk T−k

β (y) − y

and thus

βk
(
T−k
β (x) ∩ Z[β]

)
− x = βk

((
T−k
β (y) + β−k(x− y)

)
∩ Z[β]

)
− x

= βk
(
T−k
β (y) ∩ Z[β]

)
− y.

Therefore, we have

dH
(
S(x)−δc∞(x),S(y)−δc∞(y)

)
≤ dH

(
S(x)−δc∞(x), δc∞

(
βk
(
T−k
β (x)∩Z[β]

)
−x
))

+ dH

(
δc∞
(
βk
(
T−k
β (y) ∩ Z[β]

)
− y
)
,S(y)− δc∞(y)

)
≤ 2 max

z∈Z[β]∩[0,1)
dH

(
S(z), δc∞

(
βk
(
T−k
β (z) ∩ Z[β]

)))
≤ 2 diamπc∞

(
βkR(0)

)
.

3.5.2. Slices of Rauzy fractals and X . An alternative definition of the
integral x-tile, x ∈ Z[β] ∩ [0, 1), could be

(3.21) R(x) ∩Kc
∞ × δf({0}) = S(x)× δf({0}).

Indeed, the inclusion ⊇ follows from limk→∞ δf(β
k Z[β]) = δf({0}). For the other

inclusion, let z ∈ R(x) ∩Kc
∞ × δf({0}). By Theorem 3.1 (iii), there is a sequence

(xk)k∈N with xk ∈ T−k
β (x) , z ∈ βkR(xk) for all k ∈ N. We have xk ∈ Z[β], since

otherwise we would have R(xk) ∩ Zc = ∅ and thus βkR(xk) ∩Kc
∞ × δf({0}) = ∅

by Lemma 1.29. Therefore, we have z ∈ S(x)× δf({0}), and (3.21) holds. Since
the tiles can be obtained as the intersection with a “hyperplane”, the equivalent
of integral beta-tiles in [ST13] are called intersective tiles.

Now, the covering property (3.9) is a direct consequence of (3.20) and (3.21).

To prove (3.10), let x ∈ Z[β] ∩ [v, v̂), v ∈ V . Then we have

R(v) ∩Kc
∞ × δf({v − x}) =

(
R(x) + δc(v − x)

)
∩Kc

∞ × δf({v − x})
= δc(v − x) +R(x) ∩Kc

∞ × δf({0}) = δc(v − x) + S(x)× δf({0}).

Since δf(Z[β] ∩ (v − v̂, 0]) is dense in δf(Z[β]) if β is irrational and R(x) is the
closure of its interior, we obtain (3.10).

Similarly to the x-tiles, we can express the natural extension domain by
means of integral x-tiles. For each x ∈ Z[β] ∩ [0, 1), we have

X ∩ {x} ×Kc
∞ × δf({x}) = {x} ×

((
δc(x)−R(x)

)
∩Kc

∞ × δf({x})
)

= δ(x)− {0} ×
(
R(x) ∩Kc

∞ × δf({0})
)
= δ(x)− {0} × S(x)× δf({0}).

By Lemma 1.28 and since Z[β] is a subgroup of finite index of O, the set

{(x, δf(x)) : x ∈ Z[β]∩[0, 1)} is dense in [0, 1]×δf(Z[β]), provided that deg(β) ≥ 2.
As X is the closure of its interior, we obtain (3.11).



3.5. PROPERTIES OF INTEGRAL BETA-TILES 63

3.5.3. Measure of the boundary. In the present subsection, we show
that μc∞(∂S(x)) = 0. The proof is similar to that of [ST13, Theorem 3 (i)].

Let x ∈ Z[β] ∩ [0, 1), and X ⊆ Kc
∞ be a rectangle containing S(x). Since

β−n ∂S(x) ⊆ ⋃y∈Z[β]∩[0,1) ∂S(y) by Theorem 3.3 (iii), we have

(3.22)
μc∞(∂S(x))
μc∞(X)

=
μc∞(β−n ∂S(x))
μc∞(β−nX)

≤
μc∞
(⋃

y∈Z[β]∩[0,1) ∂S(y) ∩ β−nX
)

μc∞(β−nX)

for all n ∈ N. To get an upper bound for μc∞(
⋃

y∈Z[β]∩[0,1) ∂S(y) ∩ β−nX), let

(3.23) Rk(v) = {z ∈ T−k
β (v) : βkR(z) ∩ ∂R(v) �= ∅} (v ∈ V ).

Then, for each y ∈ Z[β] ∩ [v, v̂),

∂S(y)× δf({0}) ⊆ ∂R(y) ∩Kc
∞ × δf({0}) =

(
∂R(v) + δc(y − v)

)
∩Kc

∞ × δf({0})
⊆ δc(y − v) +

⋃
z∈Rk(v)

βkR(z) ∩Kc
∞ × δf({v − y}).

If βkR(z) ∩ Kc
∞ × δf({v − y}) is non-empty for a given z ∈ Rk(v) ⊆ β−kZ[β],

v ∈ V , then y ∈ v − βk(z + Z[β]) by Lemma 1.29, thus⋃
y∈Z[β]∩[0,1)

∂S(y) ⊆
⋃
v∈V

⋃
z∈Rk(v)

⋃
y∈(v−βkz+βkZ[β])∩[v,v̂)

(
δc∞(y − v) + πc∞(βkR(z))

)
.

Setting

Ck,n,v(z) = #
{
y ∈ (v−βkz+βkZ[β])∩[v, v̂) : δc∞(y−v) ∈ β−nX−πc∞(βkR(z))

}
,

we have that
(3.24)

μc∞

( ⋃
y∈Z[β]∩[0,1)

∂S(y) ∩ β−nX

)
≤
∑
v∈V

∑
z∈Rk(v)

∑
y∈Ck,n,v(z)

μc∞
(
πc∞(βkR(z))

))
.

Now, we estimate the number of terms in the sums in (3.24). First, we have

(3.25) #Rk(v) = O(αk)

for some α < β. Indeed, we can define, similarly to the boundary graph, a
directed multiple graph with set of nodes V and #(T−1

β (v)∩ [w, ŵ)) edges from v

to w, v, w ∈ V . Then this graph is strongly connected and the number of paths
of length k starting from v ∈ V is #T−k

β (v), whose order of growth is βk, thus the

spectral radius of the graph is β. Since the interior of R(0) is non-empty, we have
βmR(z) ∩ ∂R(0) = ∅ for some z ∈ T−m

β (0), m ∈ N. Let p be the corresponding

path of length m from 0 to w, with z ∈ [w, ŵ). Then there is α < β such that
the number of paths of length k starting from v ∈ V that avoid p is O(αk), hence
(3.25) holds.

From Lemma 1.32, we obtain that

(3.26)
Ck,n,v(z)

#
{
x ∈ Z[β] ∩ [0, 1) : δc∞(x) ∈ β−nX

} ≤ 3

|N(β)|k

for all z ∈ β−kZ[β], v ∈ V , for sufficiently large n. (The subtraction of
πc∞(βkR(z)) in the definition of Ck,n,v(z) is negligible when n is large com-
pared to k.) As δc∞(Z[β] ∩ [0, 1)) is a Delone set, we have

(3.27) #
{
x ∈ Z[β] ∩ [0, 1) : δc∞(x) ∈ β−nX

}
= O
(
μc∞(β−nX)

)
.
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Finally, we use that

(3.28) μc∞
(
πc∞
(
βkR(z)

))
= O

( |N(β)|k
βk

)
for all z ∈ Z[β−1] ∩ [0, 1). Inserting (3.25)–(3.28) in (3.24) gives that

μc∞
(⋃

y∈Z[β]∩[0,1) ∂S(y) ∩ β−nX
)

μc∞(β−nX)
≤ c

αk

βk

for all k ∈ N and sufficiently large n ∈ N, with some constant c > 0. Together

with (3.22), this implies that μc∞(∂S(x)) ≤ c αk

βk μ
c
∞(X) for all k ∈ N, i.e.,

μc∞(∂S(x)) = 0. This concludes the proof of Theorem 3.3 (ii).

3.5.4. Quadratic Pisot numbers. To prove Theorem 3.3 (v), let β be a
quadratic Pisot number, and denote by z′ the Galois conjugate of z ∈ Q(β). We
show first that

(3.29) sgn(x′1 − y′1) = sgn(β′) sgn(x′ − y′)
for all x1 ∈ T−1

β (x) ∩ Z[β], y1 ∈ T−1
β (y) ∩ Z[β], with x, y ∈ Z[β] ∩ [0, 1). Writing

x1 = a+x
β , y1 = b+y

β with a, b ∈ A, we have sgn(x′1 − y′1) = sgn(β′) sgn(a − b +

x′ − y′). Write now x = mβ − �mβ�, y = nβ − �nβ� with m,n ∈ Z, and assume
that n = m+ 1. Then

a− b+ x′ − y′ = a− b+ �(m+ 1)β� − �mβ� − β′ ≥ a− b+ �β� − β′.
Recalling that |β′| < 1 since β is a Pisot number, we obtain that a−b+x′−y′ > 0
if b < �β�. If b = �β�, then y1 < 1 implies that �β�+ (m+1)β−�(m+1)β� < β,
thus �mβ� = �(m+1)β�−�β�−1, hence we also get that sgn(a− b+x′−y′) = 1.
Since sgn(x′−y′) = sgn(n−m), we obtain that (3.29) holds in the case n = m+1,
and we infer that (3.29) holds in the general case.

Inductively, we get that sgn(x′k − y′k) = sgn(β′)k sgn(x′ − y′) for all xk ∈
T−k
β (x) ∩ Z[β], yk ∈ T−k

β (y) ∩ Z[β]. Since Tβ(Z[β] ∩ [0, 1)) ⊆ Z[β] ∩ [0, 1), the

sets T−k
β (x) ∩ Z[β], x ∈ Z[β] ∩ [0, 1), form a partition of Z[β] ∩ [0, 1) for each

k ∈ N. Renormalizing by (β′)k and taking the Hausdorff limit shows that S(x) is
an interval for each x ∈ Z[β] ∩ [0, 1) that meets

⋃
y∈Z[β]∩[0,1)\{x} S(y) only at its

endpoints, i.e., Cint is a tiling of Kc
∞ = R.

3.6. Equivalence between different tiling properties

3.6.1. Multiple tilings. We first recall the proof that Caper is a multiple
tiling; see e.g. [IR06, KS12] for the unit case. Since δc(Z[β

−1]∩ [0, 1)) is a Delone
set and diamR(x) is uniformly bounded, Caper is uniformly locally finite. Suppose
that Caper is not a multiple tiling. Then there are integers m1 > m2 such that
some set U of positive measure is covered at least m1 times by elements of Caper
and some point z lies in exactly m2 tiles. Since the set

⋃
x∈Z[β−1]∩[0,1) ∂R(x) has

measure zero, we can assume that U is contained in the complement of this set,
and we can choose U to be open. For small ε > 0, the configuration of the tiles
in a large neighbourhood of δc(x) does not depend on x ∈ Z[β−1]∩ [0, ε). (In the
parlance of [IR06, KS12], the collection Caper is quasi-periodic.) Therefore, each
element of z+ δc(Z[β

−1] ∩ [0, ε)) lies in exactly m2 tiles. By the set equations
in Theorem 3.1 (iii), β−kU is covered at least m1 times for all k ∈ N. Since
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δc(Z[β
−1] ∩ [0, ε)) is a Delone set and β−kU is arbitrarily large, we have a

contradiction.

As C̃aper is the restriction of Caper to Zc, it is a multiple tiling with same
covering degree.

The multiple tiling property of Cext also follows from that of Caper. Indeed,
for x, y ∈ Z[β−1], we have (δ(x) +X )∩ {y}×Kc

β �= ∅ if and only if y− x ∈ [0, 1).
Since(
δ(x) + X

)
∩ {y} ×Kc

β = {y} ×
(
δc(y)−R(y − x)) = δ(y)− {0} ×R(y − x)

if y − x ∈ [0, 1) and Z[β−1] is dense in R, we obtain that Cext is a multiple tiling

with same covering degree as Caper. Again, C̃ext being the restriction of Cext to Z,
it is a multiple tiling with same covering degree.

Almost the same proof as for Caper shows that Cint is a multiple tiling. The
collection Cint need not be quasi-periodic, but we have “almost quasi-periodicity”
by Theorem 3.3 (iv). If z ∈ Kc

∞ lies in exactly m2 tiles, then for large k ∈ N each
element of z+ δc∞(βkZ[β] ∩ [0, ε)) lies in at most m2 tiles. As δc∞(βkZ[β] ∩ [0, ε))
is Delone, we get that Cint is a multiple tiling.

The relation between C̃aper and Cint is similar to that between Cext and Caper,
as one is obtained from the other by intersection with a suitable “hyperplane”.
However, the proof that Cint has the same covering degree as C̃aper needs a bit more

attention than that for Cext. Let m be the covering degree of C̃aper and choose
y1, . . . , ym ∈ Z[β] ∩ [0, 1) such that the interior U of

⋂m
i=1R(yi) is non-empty;

then U ∩R(x) = ∅ for all x /∈ {y1, . . . , ym}. Set
ε = min

{
x̂− x : x ∈ Z[β] ∩ (−1, 1), δc∞(x) ∈ πc∞

(
U −R(0)

)}
,

with x̂ = 0 for x < 0. As δf(Z[β] ∩ [0, ε)) is dense in δf(Z[β]), there exists
z ∈ Z[β] ∩ [0, ε) such that U ∩Kc

∞ × δf({−z}) �= ∅. Then the set

Ũ = δc∞(z) + πc∞
(
U ∩Kc

∞ × δf({−z})
)

is open. If S(x+z)∩ Ũ �= ∅ for x ∈ Z[β]∩ [−z, 1−z), then we get from S(x+z) ⊆
δc∞(x+z)+πc∞(R(0)) that δc∞(x+z) ∈ Ũ−πc∞(R(0)), i.e., δc∞(x) ∈ πc∞(U−R(0)).
Therefore, we have x̂−x ≥ ε, which ensures that x ∈ [0, 1−z) because x ∈ [−z, 0)
would mean that x̂− x = −x ≤ z < ε. Now, x+ z < x+ ε ≤ x̂ implies that

R(x) ∩Kc
∞ × δf({−z}) =

(
R(x+ z)− δc(z)

)
∩Kc

∞ × δf({−z})
= S(x+ z)× δf({0})− δc(z).

From U ⊆ R(yi), we obtain that πc∞(U ∩Kc
∞ × δf({−z})) ⊆ S(yi + z)− δc∞(z),

thus
Ũ ⊆ S(yi + z) for 1 ≤ i ≤ m.

We have already seen that S(x + z) ∩ Ũ = ∅ for x ∈ Z[β] ∩ [−z, 0). For

x ∈ Z[β]∩ [0, 1−z)\{y1, . . . , ym}, the disjointness of S(x+ z) and Ũ follows from

U ∩ R(x) = ∅. Thus, Ũ is a set of positive measure that is covered exactly m
times, i.e., the covering degree of Cint is m.

We have proved that the collections Cext, C̃ext, Caper, C̃aper, and Cint are all
multiple tilings with the same covering degree. The equivalence of Theorem 3.4
(i)–(iii) follows immediately.
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3.6.2. Property (W). Several slightly different but equivalent definitions
of weak finiteness can be found in [Hol96, Aki02, Sid03, ARS04]. Our defini-
tion of (W), which is called (H) in [ARS04], is essentially due to Hollander.
By [ARS04], this property holds for each quadratic Pisot number, for each cubic
Pisot unit, as well as for each β > 1 satisfying βd = t1β

d−1+t2β
d−2+· · ·+td−1β+td

for some t1, . . . , td ∈ Z with t1 >
∑d

k=2 |tk|. Other classes of numbers giving
tilings and thus satisfying (W) were found by [BK05, BBK06].

An immediate consequence of (3.5) is that, for x ∈ Z[β−1] ∩ [0, 1),

δc(0) ∈ R(x) if and only if x ∈ P = Pur(β) ∩ Z[β].

(Note that we cannot have Tn
β (x) = x for x ∈ Z[β−1] \ Z[β].) For general

z ∈ Z[β−1] ∩ [0,∞), let n ∈ N be such that y + β−nz < ŷ for all y ∈ P . Then we
have

(3.30) δc(z) ∈ R(x) if and only if x ∈ Tn
β (P + β−nz).

To prove (3.30), let first x = Tn
β (y + β−nz), y ∈ P , and let k ≥ 1 be such that

T k
β (y) = y. Then y+β−nz < ŷ implies that Tn+jk

β (y+β−n−jkz) = Tn
β (y+β

−nz) =

x for all j ∈ N; cf. the proof of Theorem 3.1 (v) in Section 3.4. Thus we have
δc(β

n+jk(y+β−n−jkz)) ∈ R(x), i.e., δc(z) ∈ R(x)− δc(βn+jky). Taking the limit
for j →∞, we conclude that δc(z) ∈ R(x).

Let now δc(z) ∈ R(x), x ∈ Z[β−1]∩ [0, 1), z ∈ Z[β−1]∩ [0,∞). For each k ∈ N,

there is an xk ∈ T−k
β (x) such that δc(β

−kz) ∈ R(xk). Then the set {δc(β−kz−xk) :
k ∈ N} is bounded and thus finite by Lemma 1.23. Choose y ∈ Z[β−1] such that
xk − β−kz = y for infinitely many k ∈ N. Let j and k be two successive elements
of the set {k ∈ N : xk − β−kz = y}, with j large enough such that y + β−jz < ŷ.

Then T k−j
β (y + β−kz) = y + β−jz and T k−j

β (y + β−kz) = T k−j
β (y) + β−jz thus

T k−j
β (y) = y, which implies that y ∈ P and T j

β(y + β−jz) = T j
β(xj) = x. We

infer that x ∈ Tn
β (P + β−nz) for all n ∈ N such that y + β−nz < ŷ for all y ∈ P ,

thus (3.30) holds.

We use (3.30) to prove the equivalence between (W) and the tiling property
of Caper, similarly to [Aki02, KS12]. If Caper is a tiling, then R(0) contains
an exclusive point. Since δc(Z[β

−1] ∩ [0,∞)) is dense in Kc
β, we have thus an

exclusive point δc(z) ∈ R(0) with z ∈ Z[β−1] ∩ [0,∞). By (3.30), this implies
that Tn

β (P + β−nz) = {0} for all n ∈ N satisfying x + β−nz < x̂ for all x ∈ P ,
in particular Tn

β (β
−nz) = 0 because 0 ∈ P . Hence, (W) holds with y = β−nz

(independently from x ∈ P ).
Now, we assume that (W) holds and construct an exclusive point δc(z) ∈ R(0)

of Caper, with z ∈ Z[β−1]∩ [0,∞), as in [Aki02, KS12]. Note first that (W) implies
that

(3.31) ∀x ∈ P, ε > 0 ∃ y ∈ [0, ε), n ∈ N : Tn
β (x+ y) = Tn

β (y) = 0.

Indeed, if x = max{T j
β(x) : j ∈ N}, T k

β (x) = x, and Tn
β (x+ y) = Tn

β (y) = 0, then

we have T �k−j
β (T j

β(x) + β
j−�ky) = x+ y and thus Tn+�k−j

β (T j
β(x) + β

j−�ky) = 0 =

Tn+�k−j
β (βj−�ky) for all � ≥ 1, 0 ≤ j < k, which proves (3.31); see also [ARS04,

Lemma 1].
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If P = {0}, then δc(0) is an exclusive point. Otherwise, let P = {0, x1, . . . , xh}
and set

z = βk1+k2+···+khy1 + βk2+···+khy2 + · · ·+ βkhyh,

where yj and kj are defined recursively for 1 ≤ j ≤ h with the following properties:

• T kj
β

(
T
k1+···+kj−1

β (xj +
∑j−1

i=1 yi β
−k1−···−ki−1) + yj

)
= T

kj
β (yj) = 0,

• T k1+···+kj
β

(
xj+1 +

∑j
i=1 yi β

−k1−···−ki−1
)
∈ P , if j < h,

• x+
∑j

i=� yi β
−k�−···−ki−1 < x̂ for all x ∈ P , 1 ≤ � ≤ j.

Then we have

T k1+···+kh
β (xj + β−k1−···−khz) = T k1+···+kh

β

(
xj +
∑h

i=1yi β
−k1−···−ki−1

)
= T

kj+···+kh
β

(
T
k1+···+kj−1

β

(
xj +
∑j−1

i=1yi β
−k1−···−ki−1

)
+ yj +

∑h
i=j+1yi β

−kj−···−ki−1

)
= T

kj+1+···+kh
β

(∑h
i=j+1yi β

−kj+1−···−ki−1
)

= T
kj+2+···+kh
β

(∑h
i=j+2yi β

−kj+2−···−ki−1
)

= · · · = 0

for 0 ≤ j ≤ h, with x0 = 0. By (3.30), δc(z) is an exclusive point of Caper
(in R(0)).

Therefore, we have proved that Theorem 3.4 (iv) is equivalent to (i)–(iii).

3.6.3. Boundary graph. We study properties of the boundary graph de-
fined in Section 3.1 and prove the tiling condition Theorem 3.4 (v). First note
that the boundary graph is finite since, for each node [v, x, w], δc∞(x) is contained
in the intersection of the Delone set δc∞(Z[β] ∩ (−1, 1)) with the bounded set
πc∞(R(0)−R(0)).

Next, we show that the labels of the infinite paths in the boundary graph
provide pairs of expansions exactly for the points that lie in R(x)∩R(y) for some
x, y ∈ Z[β−1] ∩ [0, 1), x �= y. When Caper is a tiling, these points are exactly the
boundary points of R(x), x ∈ Z[β−1] ∩ [0, 1), hence the name “boundary graph”.
(In general, “intersection graph” might be a better name.) If x ∈ Z[β−1] ∩ [v, v̂),
y ∈ Z[β−1] ∩ [w, ŵ), v, w ∈ V , x �= y, then

(3.32) R(x) ∩R(y) �= ∅ ⇔ [v, y−x,w] is a node of the boundary graph,

and

(3.33) z ∈ R(x) ∩R(y) ⇔ z = δc(x) +

∞∑
k=0

δc(akβ
k) = δc(y) +

∞∑
k=0

δc(bkβ
k)

where (a0, b0)(a1, b1) · · · is the sequence of labels of an infinite path starting in
[v, y−x,w].

For x ∈ Z[β−1] ∩ [v, v̂), y ∈ Z[β−1] ∩ [w, ŵ), we have R(x) ∩R(y) �= ∅ if and
only if

δc(0) ∈ R(x)−R(y) = R(v)−R(w) + δc(w − v)− δc(y − x),
i.e., δc(y − x) ∈ R(v) − R(w) + δc(w − v) ⊆ δc(Z[β]) and thus y − x ∈ Z[β]
by Lemma 1.29. If moreover x �= y, this is equivalent to [v, y−x,w] being a
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node of the boundary graph, which proves (3.32). Let z ∈ R(x) ∩R(y). Using
Theorem 3.1 (iii), we have

R(x)∩R(y) =
⋃

x1∈T−1
β (x)

y1∈T−1
β (y)

βR(x1)∩βR(y1) =
⋃

[v, y−x,w] (a0,b0)→ [v1,
b0−a0+y−x

β , w1]

β
(
R
(
a0+x
β

)
∩R
( b0+y

β

))
,

where the transitions are edges in the boundary graph, with a0+x
β ∈ [v1, v̂1),

b0+y
β ∈

[w1, ŵ1). Thus we have z ∈ β (R(x1) ∩ R(y1)) for some x1 = a0+x
β ∈ T−1

β (x),

y1 = b0+y
β ∈ T−1

β (y), and [v, y−x,w] (a0,b0)→ [v1, y1−x1, w1] is an edge in the

boundary graph. Iterating this observation, we get a path in the boundary graph
labelled by (a0, b0)(a1, b1) · · · such that, for each k ∈ N, z ∈ βk (R(xk) ∩R(yk))

with xk =
(∑k−1

j=0 ajβ
j + x
)
β−k ∈ T−k

β (x), yk =
(∑k−1

j=0 bjβ
j + y
)
β−k ∈ T−k

β (y).

Since limk→∞ βkR(xk) = δc(x) +
∑∞

j=0 δc(ajβ
j) and limk→∞ βkR(yk) = δc(y) +∑∞

j=0 δc(bjβ
j), we obtain one direction of (3.33). The other direction of (3.33) is

proved similarly.

Next, we prove that Caper is a tiling if and only if � < β, where � denotes the
spectral radius of the boundary graph. We have seen that, for x ∈ Z[β−1]∩ [v, v̂),
y ∈ Z[β−1] ∩ [w, ŵ) with R(x) ∩R(y) �= 0, each path of length k starting from

the node [v, y−x,w] in the boundary graph corresponds to a pair xk ∈ T−k
β (x),

yk ∈ T−k
β (y) with R(xk) ∩R(yk) �= ∅. As, for each x̃ ∈ Z[β−1] ∩ [0, 1), there is a

bounded number of ỹ ∈ Z[β−1] ∩ [0, 1) such that R(x) ∩R(y) �= ∅, the number
of these paths gives, up to a multiplicative constant, the number of subtiles
βkR(xk) of R(x) that meet

⋃
y∈Z[β−1]∩[0,1)\{x}R(y). Hence we have μc

(
R(x) ∩⋃

y∈Z[β−1]∩[0,1)\{x}R(y)
)
≤ P (k) �kβ−k for all k ∈ N, with some polynomial P (k).

If � < β, this yields that Caper is a tiling. On the other hand, if Caper is a tiling,
then ∂R(x) = R(x)∩⋃y∈Z[β−1]∩[0,1)\{x}R(y), thus the number of paths of length

k from [v, y−x,w] is bounded by a constant times Rk(v), with Rk(v) as in (3.23).
Since #Rk(v) = O(αk) with α < β by (3.25), we have that � ≤ α < β. Therefore,
Theorem 3.4 (v) is equivalent to (i)–(iii).

The equivalence between Theorem 3.4 (i)–(ii) and (v) can also be extended
to multiple tilings. To this end, one defines a generalisation of the boundary
graph that recognises all points that lie in m tiles (instead of 2 tiles). Then the
spectral radius of this graph is less than β if and only if the covering degree of
Caper is less than m.

3.6.4. Periodic tiling with Rauzy fractals. The last of our equivalent
tiling conditions is that of the periodic tiling, under the condition that (QM)
holds. This condition is satisfied when the size of V is equal to the degree of the
algebraic number β; the following examples show that (QM) can be true or false
when #V > deg(β).

Example 3.7. Let β > 1 satisfy β3 = tβ2 − β + 1 for some integer t ≥ 2.
Then

Tβ(1
−) = β − (t− 1) = (t−1)β2+1

β3 , T 2
β (1

−) = (t−1)β2+1
β2 − (t− 1) = 1

β2 ,

T 3
β (1

−) = 1
β , T 4

β (1
−) = 1,
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thus V̂ = {1, β−(t−1), β2−(t−1)β−(t−1), β2−tβ+1}, and L = 〈β−t, β2−tβ〉Z.
Therefore, (QM) holds.

Example 3.8. Let β > 1 satisfy β3 = tβ2 + (t + 1)β + 1 for some integer
t ≥ 0. (For t = 0, β is the smallest Pisot number.) Then

Tβ(1
−) = β − (t+ 1) = tβ+1

β4 , T 2
β (1

−) = tβ+1
β3 , T 3

β (1
−) = tβ+1

β2 ,

T 4
β (1

−) = tβ+1
β − t = 1

β , T 5
β (1

−) = 1,

thus V̂ = {1, β− (t+1), β2− (t+1)β,−β2+(t+1)β+1, β2− tβ− (t+1)}. Since
1 =
(
1− β2 + (t+ 1)β

)
+
(
β2 − (t+ 1)β

)
=
(
1− T 2

β (1
−)
)
+
(
1− T 3

β (1
−)
)
∈ L,

we have V̂ ⊆ L and thus L = Z[β], hence (QM) does not hold. According to
[EI05] (see also [EIR06]), the central tile R(0) associated with the smallest Pisot
number β cannot tile periodically its representation space Kc

β = C.

The central tile R(0) is closely related to the set of non-negative β-integers

Nβ =
⋃
k≥0

βk T−k
β (0),

as R(0) = δc(Nβ). We know from [Thu89, Fab95, FGK03] that the sequence
of distances between consecutive elements of Nβ is the fixed point of the β-

substitution σ, which can be defined on the alphabet V̂ by

σ(x) = 1 1 · · · 1︸ ︷︷ ︸
�Tβ(x−)
−1 times

Tβ(x
−) (x ∈ V̂ ).

More precisely, we have Nβ =
{∑m−1

k=0 wk : m ∈ N
}
, where w0w1 · · · ∈ V̂ N is the

infinite word starting with σk(1) for all k ∈ N. Similarly to [IR06, Proposition 3.4],
we obtain that

(3.34) L+ Nβ =

{∑
v∈V

cv v̂ : cv ∈ Z,
∑
v∈V

cv ≥ 0

}
,

using that L = {∑v∈V cv v̂ : cv ∈ Z,
∑

v∈V cv = 0}, which implies that

L+

m−1∑
k=0

wk =

{∑
v∈V

cv v̂ : cv ∈ Z,
∑
v∈V

cv = m

}
for all n ∈ N. Next, we prove that

(3.35) δc(L) +R(0) = Zc.

If (QM) does not hold, then δc(L) is dense in δc(Z[β]) = Zc, hence (3.35) follows
from the fact that R(0) has non-empty interior. If (QM) holds, then it is sufficient
to prove that

(3.36) δc(L+ Nβ) = δc(Z[β]),

as δc(L) is a lattice in Zc by Lemma 1.31 and R(0) is compact. Since V̂
spans Z[β], we can write each x ∈ Z[β] as x =

∑
v∈V cv v̂, with cv ∈ Z. By (QM),

we have βk /∈ L for infinitely many k ∈ N, thus x + (
∑

v∈V cv)β
k ∈ L + Nβ or

x−(
∑

v∈V cv)β
k ∈ L+Nβ for these k. Since limk→∞ δc

(
x±(
∑

v∈V cv)β
k
)
= δc(x),

we obtain that (3.36) and thus (3.35) holds.
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Throughout the rest of the subsection, assume that (QM) holds. Then we
have

Nβ ∩ L = {0}

because
∑m−1

k=0 wk ∈ L for some m ≥ 1 implies that{∑
v∈V

cv v̂ : cv ∈ Z,
∑
v∈V

cv = m
}
⊆ L,

in particular mv̂ ∈ L for all v ∈ V , contradicting (QM). We immediately obtain
that

(3.37) Nβ ∩ (x+ Nβ) = ∅ for all x ∈ L \ {0},

i.e., {x+ Nβ : x ∈ L} forms a partition of L+ Nβ. It is natural to expect from

this partition property that Cper = {δc(x) + δc(Nβ) : x ∈ L} is a tiling, but this
may not be true due to the effects of taking the closure. We can only prove
that the tiling property of Cper is equivalent to that of Caper, similarly to [IR06,
Proposition 3.5] and [Sin06b, Proposition 6.72 (v)].

Suppose that Caper is a tiling. From (3.35), we know that Cper covers Zc.
Consider R(0) ∩ (δc(x) +R(0)) for some x ∈ L \ {0}, and assume w.l.o.g. that
x > 0. As β−kR(0) =

⋃
y∈T−k

β (0)R(y), we have that

β−k
(
R(0) ∩

(
δc(x) +R(0)

))
=

⋃
y,z∈T−k

β (0)

(
R(y) ∩

(
δc(β

−kx) +R(z)
))
.

If z + β−kx < ẑ, then δc(β
−kx) +R(z) = R(z + β−kx). Since y �= z + β−kx for

all y, z ∈ T−k
β (0) by (3.37), the tiling property of Caper implies that μc(R(y) ∩

R(z + β−kx)) = 0 (if z + β−kx < 1). Therefore, only tiles δc(β
−kx) +R(z) with

z + β−kx ≥ ẑ can contribute to the measure of R(0) ∩ (δc(x) + R(0)). The
inequality z + β−kx ≥ ẑ is equivalent to z ∈ [v̂ − β−kx, v̂) for some v ∈ V . As

βk T−k
β (0) ⊆ Nβ and the distances between consecutive elements in Nβ are in V̂ ,

there are at most (#V )x /min V̂ numbers z ∈ T−k
β (0) satisfying this inequality.

This implies that

μc

(
R(0) ∩

(
δc(x) +R(0)

))
≤ (#V )x

min V̂
μc
(
βkR(0)

)
=

(#V )x

min V̂
μc
(
R(0)
)
β−k

for all k ∈ N, hence R(0) ∩ (δc(x) +R(0)) has measure zero, thus Cper is a tiling.
If Caper is not a tiling, then it covers Kc

β at least twice, and a similar proof

as for the tiling property shows that R(0) ∩⋃x∈L\{0}(δc(x) +R(0)) has positive

measure. Hence, we have proved that Theorem 3.4 (vi) is equivalent to (i), which
concludes the proof of Theorem 3.4.

With some more effort, the proof above can be adapted to show that Cper is
a multiple tiling with same covering degree as Caper.

A patch of the periodic tiling induced by β3 = 2β2−β+1, which satisfies (QM)
by Example 3.7, is depicted in Figure 3.6.
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0

β2 − 3β + 2

β2 − 2β

2− β

Figure 3.6. Patch of the periodic tilingR(0)+δc(〈β−2, β2−2β〉Z)
induced by β3 = 2β2 − β + 1.

3.7. Gamma function

3.7.1. Proof of Theorem 3.5. To prove Theorem 3.5, suppose first that
(3.12) does not hold. Then there exists y ∈ ZN(β) ∩ [0, 1) with δ(y) /∈ X and

(3.38) y < inf

(
{1} ∪

⋃
v∈V

{
x ∈ Q ∩ [v, v̂) : δc∞(v − x) ∈ πc∞

(
Zc \ R(v)

)})
.

Let v ∈ V be such that y ∈ [v, v̂). Then δc(y) /∈ δc(v)−R(v) and thus δc(v−y) ∈
Zc \ R(v) because δc(ZN(β) ∪ V ) ⊆ Zc. This contradicts (3.38), hence (3.12)
holds.

Assume now that δf(Q) = Kf . We want to prove the opposite inequality
of (3.12). Since γ(β) ≤ 1, the inequality is clearly true if {x ∈ Q ∩ [v, v̂) :
δc∞(v − x) ∈ πc∞(Zc \ R(v))} = ∅ for all v ∈ V . Otherwise, we show that
arbitrarily close to each x ∈ Q ∩ [v, v̂) with δc∞(v − x) ∈ πc∞(Zc \ R(v)), we can
find y ∈ ZN(β) with δ(y) /∈ X . Indeed, for sufficiently small ε > 0, we have

δc∞(v − y) ∈ πc∞(Zc \ R(v)) for all y ∈ Q ∩ (x, x+ ε)

because πc∞(Zc \ R(v)) is open. By [ABBS08, Lemma 4.7], we have

δ
(
ZN(β) ∩ (x, x+ ε)

)
= δ∞

(
Q ∩ (x, x+ ε)

)
× δf
(
ZN(β)

)
.

The set

{z ∈ Zc \ R(v) : πc∞(z) ∈ Q ∩ (x, x+ ε)} ⊆ δc∞
(
Q ∩ (x, x+ ε)

)
× δf(Z[β])

is non-empty and open in δc∞(Q)×Kf . Since δf(Q) = Kf implies that δf(ZN(β)) =

δf(Z[β]), we obtain that this set contains some δc(y) with y ∈ ZN(β) ∩ (x, x+ ε).
Then we have δ(y) /∈ X . Since ε can be chosen arbitrary small, this concludes
the proof of Theorem 3.5.
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3.7.2. Boundary in the quadratic case. Let now β be a quadratic Pisot
number. Then we show that the boundary of R(x) is simply the intersection
with two of its neighbours. More precisely, for each x ∈ Z[β−1] ∩ [0, 1), we have
that

(3.39) ∂R(x) = R(x) ∩
(
R
(
x+ β − �x+ β�

)
∪R
(
x− β − �x− β�

))
.

There may be other neighbours of R(x), but they meet R(x) only in points that
also lie in R(x± β − �x± β�).

To prove (3.39), let x ∈ Z[β−1] ∩ [0, 1), and set y = x + β − �x + β�,
z = x− β − �x− β�, ε = min{x̂− x, ŷ − y, ẑ − z}. For each u ∈ Z[β] ∩ [0, ε), we
have

(3.40) R(x) ∩Kc
∞ × δf({−u}) =

(
S(x+ u)− δc∞(u)

)
× δf({−u}),

and S(x+ u) is an interval by Theorem 3.3 (v). Since δf(Z[β] ∩ [0, ε)) = δf(Z[β])
and R(x) is the closure of its interior, each z ∈ ∂R(x) can be approximated by
endpoints of intervals (S(x+ u)− δc∞(u))× δf({−u}), u ∈ Z[β] ∩ [0, ε). By the
proof of Theorem 3.3 (v) in Section 3.5.4 and since y + u < ŷ, z + u < ẑ, each
endpoint of S(x+ u) lies also in S(y + u) or S(z + u). As (3.40) still holds if we
replace x by y or z, we obtain that z ∈ R(y) ∪R(z).

3.7.3. Pruned boundary graph. Formula (3.39) suggests the following
definition: the pruned boundary graph of a quadratic Pisot number β is the
subgraph of the boundary graph that is induced by the set of nodes [v, x, w] with
x ∈ ±{β − �β�, �β� − β}.

By (3.39), we can replace the boundary graph by its pruned version in (3.32)
and (3.33). This allows us to simplify some arguments of [ABBS08, Section 5].

In the following, let β2 = aβ + b with a ≥ b ≥ 1. Then we have V = {0, v}
with v = β − a. We do not consider the case of negative b because we know
from [Aki98, Proposition 5] that Pur(β) ∩ Q = {0} when β has a positive real
conjugate, which implies that γ(β) = 0.

For the description of the pruned boundary graph, we have to distinguish
two cases:

• If 2b ≤ a, then the transitions of the pruned boundary graph are

[v, v−1, 0]
(d,d+a−b+1)−→ [0, 1−v, v] (0 ≤ d < b),

[0, 1−v, v] (d,d−a+b−1)−→ [v, v−1, 0] (a− b < d ≤ a),

[0, v, v], [v, v, v]
(d,d+a−b)−→ [0, 1−v, v] (0 ≤ d < b),

[v,−v, 0], [v,−v, v] (d,d−a+b)−→ [v, v−1, 0] (a− b ≤ d < a).
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• If 2b > a, then the transitions of the pruned boundary graph are

[v, v−1, 0], [0, v−1, 0]
(d,d+a−b+1)−→ [0, 1−v, 0] (0 ≤ d ≤ 2b− a− 2),

[v, v−1, 0], [0, v−1, 0]
(d,d+a−b+1)−→ [0, 1−v, v] (2b− a− 1 ≤ d < b),

[0, 1−v, v], [0, 1−v, 0] (d,d−a+b−1)−→ [0, v−1, 0] (a− b < d < b),

[0, 1−v, v], [0, 1−v, 0] (d,d−a+b−1)−→ [v, v−1, 0] (b ≤ d ≤ a),

[0, v, v]
(d,d+a−b)−→ [0, 1−v, 0] (0 ≤ d < 2b− a),

[0, v, v]
(d,d+a−b)−→ [0, 1−v, v] (2b− a ≤ d < b),

[v,−v, 0] (d,d−a+b)−→ [0, v−1, 0] (a− b ≤ d < b),

[v,−v, 0] (d,d−a+b)−→ [v, v−1, 0] (b ≤ d < a).

To prove that these are exactly the transitions of the pruned boundary graph, note
first that the states of the graph are of the form [u, x, w] with u,w ∈ {0, v} and
x ∈ ±{v, 1−v}. The only possibilities are thus [0, v, v], [0, 1−v, v], [0, 1−v, 0] if
2v > 1, [v, v, v] if 2v < 1, and their negatives [v,−v, 0], [v, v−1, 0], [0, v−1, 0], and
[v,−v, v] respectively. Since v = b

β , we have 2v > 1 if and only if 2b > a. Moreover,

the only possibility for v+d
β ∈ ±{v, 1−v} with d ≤ a is that v+d

β = 1+ d−a
β = 1−v,

i.e., d = a− b. Therefore, the above lists contain all possible transitions. Since
we have an infinite path starting from each node, all given nodes correspond to
the intersection of some tiles and are thus in the boundary graph.

From the description of the boundary graph, we see that the paths starting
in a state [u, x, w] depend only on x. Therefore, we can merge the states with
same middle component and obtain the graph in Figure 3.7. Note that we have
exactly |N(β)| outgoing transitions from each state, which can be explained by
the fact that the intersection R(x) ∩R(x+ β − �x+ β�) ∩ R× {y} consists of a

singleton for each x ∈ Z[β], y ∈ δf(Z[β]).

β − a a+1−β β−a−1 a− β

(0, a−b)
...

(b−1, a−1)

(a−b+1, 0)
...

(a, b−1)

(0, a−b+1)
...

(b−1, a)

(a−b, 0)
...

(a−1, b−1)

Figure 3.7. The pruned boundary graph (after merging the
states with same middle component) for β2 = aβ + b, a ≥ b ≥ 1.
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3.7.4. Proof of Theorem 3.6. Let β2 = aβ + b, a ≥ b ≥ 1, and β′ =
−bβ−1 = a− β be the Galois conjugate of β. By Theorem 3.5, we have

γ(β) ≥ inf
(
{1} ∪

{
x ∈ Q ∩ [0, β−a) : δc∞(−x) ∈ πc∞

(
Zc \ R(0)

)}
(3.41)

∪
{
x ∈ Q ∩ [β−a, 1) : δc∞(−x) ∈ πc∞

(
Zc \ R(β−a)

)
− δc∞(β−a)

})
,

with equality if δf(Q) = Kf . By Lemma 1.30, the latter equality holds if

gcd(a, b) = 1. We have to show that the infimum is equal to max{0, 1− (b−1)b β
β2−b2

}.
By (3.39) and its proof, πc∞(Zc \ R(0)) is the union of two half-lines:

πc∞
(
Zc \ R(0)

)
=
(
−∞,maxπc∞

(
R(0) ∩R(β−a)

))
∪
(
minπc∞

(
R(0) ∩R(a+1−β),∞

))
.

The point in R(0) ∩R(β−a) that realises maxπc∞(R(0) ∩R(β−a)) is given by
the following infinite walk in the pruned boundary graph starting from β−a:
choose the transition to a+1−β with maximal first digit b−1, then the transition
to β−a−1 with minimal first digit a−b+1 (since we multiply it by an odd power
of β′ < 0), again the transition to a+1−β with maximal first digitb−1, etc. This
gives

maxπc∞
(
R(0) ∩R(β−a)

)
=

∞∑
j=0

(
b− 1 + (a− b+ 1)β′)

)
(β′)2j

=
b− 1 + (a− b+ 1)β′

1− (β′)2
=

(1− b)β′
1− (β′)2

− 1

=
(b− 1)b β

β2 − b2 − 1,

Note that δc∞(x) = x for x ∈ Q. If (b−1)b β
β2−b2

≥ 1, then we obtain that

inf{x ∈ Q ∩ [0, β−a) : δc∞(−x) ∈ πc∞(Zc \ R(0))} = 0 = max
{
0, 1− (b−1)b β

β2−b2

}
.

Assume now that (b−1)b β
β2−b2

< 1. Then, by similar calculations as above, we

obtain that

minπc∞
(
R(0) ∩R(a+1−β)

)
=
a− b+ 1 + (b− 1)β′

1− (β′)2
= β

(
1− (b− 1)β

β2 − b2
)
> 0.

Therefore, we have
[ (b−1)b β

β2−b2
− 1, 0

]
× δf(Z[β]) ⊆ R(0), and

inf
{
x ∈ Q∩[0, 1) : δc∞(−x) ∈ πc∞

(
Zc\R(0)

)}
= 1− (b−1)b β

β2−b2
= max

{
0, 1− (b−1)b β

β2−b2

}
.

This concludes the case 0 < 1− (b−1)b β
β2−b2

< β − a.
Assume now that (b−1)b β

β2−b2
≤ a+ 1− β. We see from the boundary graph that

maxπc∞
(
R(β−a) ∩R(2β−�2β�)

)
− δc∞(β−a) = maxπc∞

(
R(0) ∩R(β−a)

)
and, since the smallest first digit in the outgoing transitions from a−β is a−b,

minπc∞(R(β−a) ∩R(0))− δc∞(β−a) = minπc∞
(
R(0) ∩R(a+1−β)

)
− 1

= β − (b− 1)β2

β2 − b2 − 1 ≥ β − (a+ 1− β)β
b

− 1 = β

(
1− 1

b

)
≥ 0.
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Similarly as above, we obtain that

inf
{
x ∈ Q∩ [β−a, 1) : δc∞(−x) ∈ πc∞

(
Zc \R(β−a)

)
− δc∞(β−a)

}
= 1− (b−1)b β

β2−b2
,

provided that b ≥ 2. Finally, for b = 1, we obtain Schmidt’s equality γ(β) = 1
[Sch80].

To conclude the proof of Theorem 3.6, we show that (b−1)b β
β2−b2

< 1 if and only

if (b− 1)b < a. Indeed, if (b− 1)b ≥ a, then

β2 − b2 − (b− 1)b β ≤ β2 − aβ − b2 = b− b2 ≤ −a < 0,

and, if (b− 1)b < a, then

β2 − b2 − (b− 1)b β ≥ β2 − (a− 1)β − (a+ b) = β − a > 0.

3.7.5. Example of γ(β). Let β = 3+
√
17

2 , i.e., β2 = 3β + 2. Then, by
Theorem 3.6,

γ(β) = 1− 2β

β2 − 4
=

1

β + 2
≈ 0, 1798.

Figure 3.8 illustrates how to obtain γ(β) as minπc∞
(
−R(0) ∩ −R(β−3)

)
.

0γ(β) 1

−R(0) −R(β−3)

Figure 3.8. Visualization of γ(β) for β2 = 3β + 2.





CHAPTER 4

Dynamics of reducible Pisot substitutions

In this chapter we set up a geometrical theory for the study of the dynamics of
reducible Pisot substitutions based on Rauzy fractals generated by duals of higher
dimensional extensions of substitutions. We obtain geometric representations of
stepped surfaces and related polygonal tilings, self-replicating and periodic tilings
made of Rauzy fractals for a family of reducible substitutions. We analyse the
codings of a domain exchange defined on these fractal domains and we interpret
them in a new combinatorial way. This chapter is based on [Min14].

General assumptions. In this chapter we will always assume that A =
{1, 2, . . . , n} and σ is a primitive unit Pisot substitution with Pisot root β such
that deg(β) = d.

4.1. Higher dimensional dual substitutions

We recall the definition and main properties of k-dimensional extensions of a
substitution and their dual, first defined in [SAI01].

Definition 4.1. We will denote by (x, a1 ∧ · · · ∧ ak) ∈ Zn × ∧k
i=1A the

k-dimensional face {x+
∑k

i=1 tieai : ti ∈ [0, 1]}. We will assume the following:

• (x, a1 ∧ · · · ∧ ak) = 0 if ai = aj for some i, j.
• Antisymmetry: (x, aτ(1) ∧ · · · ∧ aτ(k)) = sgn(τ)(x, a1 ∧ · · · ∧ ak), where
sgn(τ) is the signature of the permutation τ .

Observe that this justifies the wedge product as choice of notation. The type of a
face (x, a1 ∧ · · · ∧ ak) will be a1 ∧ · · · ∧ ak.

Let Ck be the free Z-module with basis elements in Zn ×∧k
i=1A.

We will use multi-dimensional notation. Define a := a1 ∧ · · · ∧ ak and write

a
p
−→ b, a

s−→ b for σ(ai) = pibisi for each ai appearing in the wedge a, bi in b,
with emphasis on either the prefixes or suffixes; l(p) and l(s) will denote the
abelianization of all prefixes pi, suffixes si respectively.

Definition 4.2. The k-dimensional extension of σ is the linear map on Ck

(4.1) Ek(σ)(x, a) =
∑
a

p
−→b

(Mσx+ l(p), b).

Write (x, a)∗ for the dual of the element (x, a) ∈ Ck. Let C∗
k be the free

Z-module generated by the basis elements (x, a)∗. We are interested in the dual
of Ek(σ).

Proposition 4.3. We have

(4.2) E∗
k(σ)(x, a)

∗ =
∑
b

p
−→a

(
M−1

σ (x− l(p)), b
)∗

77
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Proof. Using the definition of dual of the linear map Ek(σ)

〈E∗
k(σ)(x, a1∧· · ·∧ak)∗, (y, b1∧· · ·∧bk)〉 = 〈(x, a1∧· · ·∧ak)∗,Ek(σ)(y, b1∧· · ·∧bk)〉,

and using definition (4.1) we obtain that the scalar product is non-zero and
equals sgn(τ) only for those faces such that Mσy + l(p1) + · · · + l(pk) = x

and b1
p1−→ aτ(1), . . . , bk

pk−→ aτ(k) for some permutation τ . Thus, denoted z =

M−1
σ (x− (l(p1) + · · ·+ l(pk))), this means that sgn(τ)(z, b1 ∧ · · · ∧ bk)∗ appears

in the image E∗
k(σ)(x, a)

∗ and we can reorder it into (z, bτ(1) ∧ · · · ∧ bτ(k))∗ with

bτ(1)
pτ(1)−−−→ a1, . . . , bτ(k)

pτ(k)−−−→ ak and rename. �

As observed in [SAI01] there is a boundary operator which associates with
a k-dimensional face its boundary consisting in a union of oriented (k − 1)-
dimensional faces. A coboundary operator acting on duals of faces can be defined
as well. An important property is that the boundary and coboundary operators
commute with Ek(σ) and E∗

k(σ) respectively. All this can be done as in the
classical simplicial homology and cohomology theory (see e.g. [Hat02]).

The dual maps are abstract objects formally defined on the dual basis,
which has no geometric interpretation. We will interpret geometrically duals of
faces of dimension k as faces of dimension n− k, in a Poincaré duality flavour
(cf. [SAI01, AFHI11]).

Definition 4.4. The map ϕk is defined by

ϕk : (x, a1 ∧ · · · ∧ ak)∗ �→ (−1)a1+···+ak(x+ ea1 + · · ·+ eak , b1 ∧ · · · ∧ bn−k)

where {a1, . . . , ak} and {b1, . . . , bn−k} form a partition of {1, 2, . . . , n} with a1 <
· · · < ak, b1 < · · · < bn−k. If a = a1 ∧ · · · ∧ ak we will write a∗ = b1 ∧ · · · ∧ bn−k.
We call (x, a∗) the (n− k)-dimensional face transverse to a.

It was shown in [SAI01] that this map commutes with the boundary and
coboundary operators. Furthermore ϕk is invertible.

Now we can conjugate the dual maps by ϕk to obtain explicit geometric
realizations.

Definition 4.5. The geometric dual map Ek(σ) is defined as

Ek(σ) ◦ ϕn−k = ϕn−k ◦E∗
n−k(σ).

Matrices. Notice that, since the geometric dual substitution Ek(σ) is conju-
gate to E∗

n−k(σ), it still depends on wedges of n−k letters (see Equation (4.4) for
k = d− 1). Define the (n− k)× (n− k) matrix Mk associated with the operator
Ek(σ) by

(4.3) (Mk)a b := |Ek(σ)(0, a)|b
where |·|b counts the number of times a face of type b occurs, taking orientation
into account. The matrix Mk can be seen algebraically as the transpose of the
(n− k)-th exterior power of Mσ, by computing all (n− k)× (n− k) minors. Its
eigenvalues are the products of n − k distinct eigenvalues of Mσ. Denote by
ρ(Mk) its leading eigenvalue (if it exists).
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Prefix and suffix graph. We extend the definition of prefix and suffix graph
(see Section 1.1) to this multi-dimensional setting. These are the graphs having

the wedges a ordered lexicographically as nodes and weighted edges a
p
−→ b

(respectively a
s−→ b) if σ(a) = pbs, where the weight of an edge is the sign of the

permutation used to reorder b. Finally we sum up the weights of identical edges.
We will use a simplified version of the suffix graph we have just defined.

Precisely, we will consider the En−k(σ)-suffix graph having the wedges a∗ as

nodes and weighted edges a∗
s−→ b∗ where s is the concatenation of all suffixes

appearing in s for σ(a) = pbs.

In general we have n = #A ≥ d = deg(β) with strict inequality for reducible
substitutions. We want to represent the action of the substitution geometrically
on Kc

β , thus it makes sense to consider the action of a dual substitution on (d−1)-
dimensional faces. For this reason we will work with the geometric realization
Ed−1(σ) conjugate to E∗

n−d+1(σ) by ϕn−d+1. An explicit formula for Ed−1(σ)
reads as follows.

Proposition 4.6. The following holds:

Ed−1(σ)(x, a∗) =
∑
b

s−→a

(−1)a+b
(
M−1

σ (x+ l(s)), b∗
)

(4.4)

where (−1)a denotes (−1)a1+···+an−d+1 with ai ∈ a seen as numbers, (x, a∗) is the
(d− 1)-dimensional face transverse to a.

Proof. A face (x, a∗) is sent by ϕ−1
n−d+1 to (−1)a(x− (ea1 + · · ·+ ean−d+1

), a).
Applying E∗

n−d+1(σ) we get a sum of elements of the form

(−1)a
(
M−1

σ (x− (ea1 + · · ·+ ean−d+1
)− (l(p1) + · · ·+ l(pn−d+1))), b

)
,

for σ(bi) = piaisi. Applying ϕn−d+1 we have

(−1)a+b
(
M−1

σ

(
x−(l(p1a1)+· · ·+l(pn−d+1an−d+1))+Mσ(eb1+· · ·+ebn−d+1

)
)
, b∗
)

but, since Mσebi = l(σ(bi)) = l(piai) + l(si) we get the result. �
Similar formulas hold for general Ek(σ).

4.2. Stepped surfaces

We use some terminology as in [AFHI11], where they use a similar construction
for a free group automorphism associated with a complex Pisot root. Recall
d = deg(β).

Definition 4.7. A patch is a union of (d− 1)-dimensional faces in Rn. We
will say that a patch is in good position with respect to Kc

β if the restriction of
the projection of πc to the patch is one-to-one. A stepped surface is a union of
(d− 1)-dimensional faces in Rn homeomorphic to Kc

β under πc.

Notice that it is immediate that the projection by πc of a stepped surface is
a polygonal tiling of Kc

β .

We look for a stepped surface invariant under (a power of) Ed−1(σ). An
m-seed patch U is a union of (d−1)-dimensional faces based at 0 in good position
such that U ⊆ Ed−1(σ)m(U), for some integer m ≥ 1.
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Given an m-seed patch U we will consider the following potential candidate
for a stepped surface:

(4.5) ΓU :=
⋃
k≥0

Ed−1(σ)mk(U).

The next property will be crucial in the sequel.

Definition 4.8. We say that σ is regular if the sequence (Ed−1(σ)mk(U))k≥0

is in good position, for each m-seed patch U .
Observe that regularity implies that Ed−1(σ)(0, a) is in good position for

each a. We conjecture that the latter is enough to deduce that ΓU is in good
position, but problems could arise in proving that Ed−1(σ)((x, a) ∪ (y, b)) is in
good position for (x, a) ∪ (y, b) in ΓU in good position.

We do not know whether πc(ΓU ) covers the entire representation space Kc
β.

This motivates the next definition.

Definition 4.9. We say that σ satisfies the geometric finiteness property for
U if πc(ΓU ) is a covering of Kc

β .

We can give a sufficient condition so that the geometric finiteness property is
satisfied.

In order to do this we will consider powers of the matrices Md−1 and Md−2

associated with Ed−1(σ) and Ed−2(σ) respectively, defined in (4.3), which describe
respectively the growth of patches of (d− 1) and (d− 2)-dimensional faces. From
now on we will suppose that these matrices are primitive. The main point is that
these matrices may have negative entries. Thus cancellation may occur by taking
powers of Md−1 or Md−2. Now there are two cases:

• Cancellation is “good”, in the sense that two faces based at the same point
and with the same type but opposite orientations cancel.

• Cancellation is “bad”, in the sense that two faces with the same type and
opposite orientations are cancelled but they should not since they have
different base points, but this happens because the effect of abelianisation
does not recognize it.

Good cancellation happens for example for the Tribonacci substitution. But
in general we are in the bad cancellation case, as it happens for the Hokkaido
substitution (see Section 4.5).

For this reason we will consider the non-negative matrices M ′
d−1 and M ′

d−2,
defined by

(4.6) (M ′
d−1)a b = |(Md−1)a b|, (M ′

d−2)a b = |(Md−2)a b|.
They consider everything under the same orientation and their use prevents
that bad cancellation occurs. The drawback is that good cancellation is ruined:
some coincident faces with opposite orientation which should cancel are anyway
counted with positive multiplicities. However, if the growth of the matrix M ′

d−1

is greater than the growth of the matrix M ′
d−2, which describes the boundary of

(d− 1)-dimensional patches, we can say that the geometric finiteness condition
holds. We make it more precise in the next proposition.

Proposition 4.10. If ρ(M ′
d−1) > ρ(M ′

d−2) then we can cover disks of arbi-

trarily large radius by iterating Ed−1(σ) on any non-empty patch and projecting.
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Proof. Let Pk be the k-th iterate by Ed−1(σ) on a non-empty patch P . The
ratio #Pk+1/#Pk will be greater than ρ(M ′

d−1)− ε, ∀ ε > 0. The boundary of

the patch Pk+1 is ∂Pk+1 = ∂Ed−1(Pk) = Ed−2(∂Pk). Thus the ratio of faces
touching the boundary of Pk+1 to those touching the boundary of Pk will be less
than ρ(M ′

d−2) + ε. Hence

(4.7)
#∂Pk

#Pk
= O

(
(ρ(M ′

d−2) + ε)k

(ρ(M ′
d−1)− ε)k

)
which approaches 0 for k →∞ if ρ(M ′

d−1) > ρ(M ′
d−2). We deduce that we can

cover disks of arbitrarily large radius by iterating Ed−1(σ) on the non-empty
patch P . Otherwise any fixed face in Pk would stay at bounded distance from
the boundary ∂Pk for each k, and the ratio (4.7) would be bounded by some
positive constant. �

The aim of this section is to obtain stepped surfaces for reducible substitutions.
Now we have all the necessary ingredients.

Theorem 4.11. Let σ be a regular substitution which satisfies the geometric
finiteness property for the m-seed patch U . Then ΓU is a stepped surface invariant
under the substitution rule associated with Ed−1(σ)m. Furthermore π(ΓU ) stays
within bounded distance of Kc

β.

Proof. The primitivity of Md−1 assures that there exists an m-seed patch.
By the geometric finiteness property πc(ΓU ) is a covering of Kc

β and indeed a
polygonal tiling since the substitution is regular. Furthermore it is by definition
invariant under Ed−1(σ)m. π(ΓU ) stays within bounded distance of Kc

β since the

elements of πe(ΓU ) are all of the form
∑

i≥1 vsiβ
−i, with the vsi = πe(l(si)) in a

finite set, and β−1 < 1. �
We can consider the stepped surface also as a set of coloured points. In this

case we denote it by Γ•
U .

Corollary 4.12. The elements of πc(Γ
•
U ) form a Delone set.

Proof. It is an easy consequence of the fact that πc(Γ) forms a polygonal tiling
of Kc

β . �
Remark 4.13. Similarly as in the irreducible case an abstract stepped surface

seen as set of nearest coloured points above Kc
β is defined in [EIR06] as

(4.8) S1 = {(π(x), a) ∈ π(Zn)×A : πe(x) ∈ [0, va)}.
It was shown that this set is invariant under the operator E∗

1(σ) conjugate to
En−1(σ). Its projection into Kc

β gives a quasi-periodic Delone set which acts
naturally as translation set for a self-replicating multiple tiling of Kc

β. However
they were not able to get a geometric representation for this stepped surface.

The set ΓU depends strongly from the initial patch U we choose. It seems
difficult to characterize this set in a similar fashion as (4.8). Computer experiments
suggest that π(Γ•

U ) ⊂ S1. Iterations of Ed−1(σ) on the initial patch U select some
of the points of S1 and generate a Delone set, which, as we will see in the next
section, if the geometric finiteness property holds, provides a translation set for a
tiling made of Rauzy fractals.
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Figure 4.1. πc(E
2(σ)k(U)) for k = 0, 1, 2, 3, 7, 15 and U =

{(0, 1 ∧ 3), (0, 1 ∧ 4), (0, 2 ∧ 4), (0, 2 ∧ 5), (0, 3 ∧ 5)}.

4.3. Rauzy fractals and aperiodic tilings

From now on we will assume that σ is a regular Pisot substitution.

Proposition 4.14. For any (x, a), the sequence of sets βk ·πc(Ed−1(σ)k(x, a))
converges in the Hausdorff metric.

Proof. The Hausdorff distance dH((x, a), β · πc(Ed−1(σ)(x, a))) is uniformly
bounded. The action of β in Kc

β is a contraction and we obtain that the Hausdorff

distance between two successive sets in the sequence (βk · πc(Ed−1(σ)k(x, a)))k∈N
decreases geometrically fast. Hence the sequence (βk · πc(Ed−1(σ)k(x, a)))k∈N is
a Cauchy sequence which converges to a unique compact set in the Hausdorff
topology. �
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Definition 4.15. The Rauzy fractals are defined as

R(a) + πc(x) = lim
k→∞

βk · πc(Ed−1(σ)k(x, a)),

where the limit is taken with respect to the Hausdorff metric.

Recall that g(x) is the neutral polynomial of σ. We introduce the condition

(N) g(x) has only roots of modulus one.

Remark 4.16. Condition (N) is related to homological Pisot substitutions
defined in [BBJS12]. Indeed, if σ is homological Pisot with characteristic polyno-
mial f(x)g(x), where g(x) is the neutral polynomial, then all roots of g(x) are
zero or roots of unity.

Lemma 4.17. Suppose Md−1 is primitive. If (N) holds then the Perron
eigenvalue of Md−1 is β.

Proof. Recall that the eigenvalues of Md−1 are the products of n − d + 1
distinct eigenvalues of Mσ. Thus the modulus of the Perron eigenvalue of Md−1

is |β∏i ζi| = β, where the ζi are the n − d roots of the unimodular neutral
polynomial g(x). �

Proposition 4.18. We have the set equations

(4.9) R(a) + πc(x) =
⋃

(y,b)∈Ed−1(σ)(x,a)

β ·
(
R(b) + πc(y)

)
.

Furthermore if (N) holds the union on the right-hand side is measure disjoint.

Proof. The set equations follow easily by definition of Rauzy fractal. For the
measures the following holds

β μc(R(a)) ≤
∑
b

ma b μc(R(b))

where ma b denote the entries of Md−1. We get the equality since by Lemma 4.17
the Perron eigenvalue of Md−1 is β. �

It follows from the above proposition that the vector of measures (μc(R(a)))a
is a (non-zero) Perron eigenvector of Md−1.

Assume for the rest of the section that (N) holds. Lemma 4.17 allows us
to use the result [LW03, Theorem 5.5] on substitution Delone sets to get nice
properties for our Rauzy fractals (see also [EIR06, Section 6]).

Proposition 4.19. The Rauzy fractals have the following properties:

(i) they are compact sets with non-zero measure.
(ii) they are the closure of their interior.
(iii) their fractal boundary has zero measure.

We are interested in aperiodic tilings made of Rauzy fractals. In the following
theorem we show that the geometric finiteness condition is sufficient to obtain
aperiodic tilings.

Theorem 4.20. Given a seed patch U , if the geometric finiteness property for
U holds then the collection CU = {R(a) + πc(x) : (x, a) ∈ ΓU} is a self-replicating
tiling of Kc

β.
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Figure 4.2. A patch of the self-replicating tiling generated by
the patch U .

Proof. By the geometric finiteness property πc(ΓU ) is a covering and by defini-
tion of ΓU and its Ed−1(σ)-invariance we have that CU is a covering, i.e.,

Kc
β =
⋃
k≥0

⋃
(x,a)∈Ed−1(σ)k(U)

R(a) + πc(x).

By Proposition 4.18, iterating the set equations (4.9) we get that the union of the
R(a) + πc(x) such that (x, a) ∈ Ed−1(σ)k(U) is measure disjoint. This implies
that CU is a tiling. �

4.4. Periodic tilings

One of the main novelties is that we obtain natural periodic tilings by our
Rauzy fractals starting from periodic polygonal tilings.

Definition 4.21. A periodic patch is a polygonal patch P which, translated
by a set of points ΛP ⊂ Zn such that πc(ΛP) is a lattice, forms a stepped surface.
In this case we will call the latter a periodic stepped surface.

Examples of periodic stepped surfaces are:

(1) A single (d− 1)-dimensional face (0, a1 ∧ · · · ∧ ad−1) together with ΛP =
ea1Z+ · · ·+ ead−1

Z.
(2) A touching pair, that is, a patch of two faces in good position which differ

only in one letter: (0, b ∧ a2 ∧ · · · ∧ ad−1), (0, c ∧ a2 ∧ · · · ∧ ad−1), b �= c.

The associated set is ΛP = (eb − ec)Z+
∑d−1

i=2 eaiZ.
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(3) A d-touching patch, that is, a patch of d = deg(β) faces which are touching

in pairs
∑d

k=1(0, a1 ∧ · · · ∧ âk ∧ · · · ∧ ad), where â denotes that a does not

appear. The associated set is ΛP =
∑d

i=2(ea1 − eai)Z.

We will need the following.

Assumption: the image by Ed−1(σ) of a stepped surface is a stepped surface.

We strongly believe that this assumption is true and that can be proven with
similar techniques as in [Fer06, ABFJ07, BF11].

Proposition 4.22. Let P + ΛP be a periodic stepped surface. Then βk ·
πc(E

d−1(σ)k(P)) +πc(ΛP) provides a polygonal periodic tiling of Kc
β, for every

k ≥ 0.

Proof. Since by assumption the projected image by Ed−1(σ) of P +ΛP is again
a polygonal tiling, we have that

μc
(
βk · πc(Ed−1(σ)k(x, a)) ∩ βk · πc(Ed−1(σ)k(y, b)

)
= 0

for any two faces (x, a), (y, b) ∈ P+ΛP . Furthermore μc(β
k·πc(Ed−1(σ)k(x, a))) =

μc(πc(x, a)), since (μc(πc(0, a)))a is a Perron-Frobenius eigenvector of Md−1 as-
sociated with β. Thus Pk + ΛP is a periodic tiling. �

Now we replace πc(P) with the Rauzy fractals. Denote RP =
⋃

(0,a)∈P R(a).

Corollary 4.23. RP + πc(ΛP) is a periodic covering of Kc
β.

Proof. It follows from Proposition 4.22 and from the fact that RP is the
Hausdorff limit of the approximations βk · πc(Ed−1(σ)k(P)). �

Let Rk(a) := βk · πc(Ed−1(σ)k(a)).

Theorem 4.24. Let P + ΛP a periodic stepped surface. Then RP + πc(ΛP)
forms a periodic tiling if and only if limk→∞ ∂Rk(a) = ∂R(a), for all a.

Proof. Assume limk→∞ ∂Rk(a) = ∂R(a). Then, since Rk(a)→ R(a), we have
that for any ε > 0 there exists k = k(ε) such that

dH(R(a),Rk(a)) < ε and dH(∂R(a), ∂Rk(a)) < ε.

By the former, for any z ∈ R(a) \ Rk(a) there exists z′ ∈ B(z, ε) ∩Rk(a), which
implies that the line segment from z to z′ must intersect ∂Rk(a). Hence there
exists z′′ ∈ ∂Rk(a) such that |z − z′′| < ε, and

R(a) ⊆ Rk(a) ∪ [∂Rk(a)]ε,

where [X]ε = {x : |x − y| < ε for some y ∈ X}. Since the approximations
Rk(a) have for every k the same measure as the projected faces πc(0, a) and
RP + ΛP is a covering we have μc(RP)/μc(Pk) ≥ 1. Thus we get equality
if limε→0 μc([∂Rk(a)]ε) = 0. But the inequality dH(∂R(a), ∂Rk(a)) < ε im-
plies that [∂Rk(a)]ε ⊆ [∂R(a)]2ε and limε→0 μc([∂R(a)]2ε) = 0 since ∂R(a) has
measure zero.

Suppose RP + ΛP is a tiling. Then β−k · RP and β−k ·⋃(0,a)∈P Rk(a) tile

both Kc
β modulo β−k · ΛP . Let

C = max
a
{diam(R(a))}+max

a
{diam(πc(0, a))}.
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Figure 4.3. A patch of the periodic tiling RP +πc(ΛP), for P =
{(0, 2∧ 3), (0, 2∧ 4), (0, 3∧ 4)} and ΛP = (e4− e2)Z+(e4− e3)Z.

If B(z,R) ⊂ β−k · RP then B(z,R− C) ⊂ β−k ·⋃(0,a)∈P Rk(a), and B(z,R) ⊂
β−k ·⋃(0,a)∈P Rk(a) implies B(z,R− C) ⊂ β−k · RP . Hence

dH(∂(β−k · R(a)), ∂(β−k · Rk(a)) < 2C,

and the result follows. �
Proposition 4.25. Let P be a periodic seed patch. If the geometric finiteness

property for P holds, then RP + πc(ΛP) is a tiling.

Proof. If the geometric finiteness property for P holds then CP = {R(a)+πc(x) :
(x, a) ∈ ΓP} and πc(ΓP) are tilings with the same translation set. This implies
that μc(R(a)) = μc(πc(0, a)), for all a, in particular for those appearing in the
patch P, and we know RP + ΛP is a covering by Corollary 4.23. Therefore
RP + ΛP is a tiling. �

4.4.1. Domain exchange. We introduce an important combinatorial con-
dition on the substitutions.

Definition 4.26. Given a non-overlapping patch P, we say that the sub-
stitution σ satisfies the P-strong coincidence condition if for every pair (0, b1),
(0, b2) ∈ P , there exist k ∈ N and a such that σk(b1) = p

1
as1 and σk(b2) = p

2
as2

with l(s1) = l(s2).

Remark 4.27. Notice that in the irreducible case we can take the non-
overlapping patch P =

⋃
a∈A(0, a

∗) and the P-strong coincidence condition
coincides with the strong coincidence condition (see Definition 1.3).
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Proposition 4.28. If σ satisfies (N) and the P-strong coincidence condition,
for P non-overlapping patch, then the subtiles R(a), a ∈ P, are measure disjoint.

Proof. For every b1, b2 ∈ P there exist k ∈ N and a such that σk(b1) =
p
1
as1 and σk(b2) = p

2
as2 with l(s1) = l(s2). Thus βk · R(b1) + πc(l(s1)) and

βk · R(b2) + πc(l(s2)) both appear in the k-fold iteration of the set equations of
Proposition 4.18 for R(a), and furthermore are measure disjoint. �

Recall the definition of a d-touching patch given at the beginning of Section 4.4.

Definition 4.29. Let P be a d-touching patch and let AP be the alphabet
of the patch, consisting of the single letters appearing in the wedges of the patch
P. If the P-strong coincidence condition holds, the domain exchange on RP is
defined as

(4.10) EP : R(a) �→ R(a) + δc(v�),

for � ∈ AP \ {a1, . . . , ad−1}, a = a1 ∧ · · · ∧ ad−1.

Let P be a d-touching patch with associated set ΛP and assume that σ
satisfies the P-strong coincidence condition. Then it is clear that, if RP + πc(ΛP)
is a periodic tiling, then EP is a translation on the (d − 1)-dimensional torus
Kc

β/πc(ΛP).
We are interested now in codings of the domain exchange EP with respect to

the natural partition given by RP . The question is whether we can generalize
the techniques used in the irreducible case and prove the measure-theoretic
conjugations of the diagram

Ω ��

S

��

RP ��

EP
��

Kc
β/ΛP

EP
��

Ω �� RP �� Kc
β/ΛP

where Ω is a symbolic dynamical systems which codes the orbits of (RP , EP).
We would like to investigate further and know what the connections with the
original substitution dynamical system (Xσ, S) are. We will provide a complete
answer to these questions for a family of reducible Pisot substitutions in the next
section.

4.5. A family of regular substitutions

We consider the family of substitutions

σt : 1 �→ 1t+12, 2 �→ 3, 3 �→ 4, 4 �→ 1t5, 5 �→ 1

with associated polynomials

f(x)g(x) = (x3 − tx2 − (t+ 1)x− 1)(x2 − x+ 1), t ∈ N0.

Note that σ0 is the substitution associated with the minimal Pisot number. Being
#A = 5 and deg(β) = 3 we will consider the geometric dual substitution E2(σ)
conjugate to E∗

3(σ). We say that a face (x, a ∧ b) is positively oriented if a < b.



88 4. DYNAMICS OF REDUCIBLE PISOT SUBSTITUTIONS

For σ0 the dual map is given explicitly by

E2(σ0) : (0, 4 ∧ 5) �→ (0, 3 ∧ 4)

(0, 3 ∧ 5) �→ (0, 2 ∧ 4)

(0, 3 ∧ 4) �→ (0, 2 ∧ 3)

(0, 2 ∧ 5) �→ (0, 1 ∧ 4) ∪ (M−1
σ e2, 4 ∧ 5)

(0, 2 ∧ 4) �→ (0, 1 ∧ 3) ∪ (M−1
σ e2, 3 ∧ 5)

(0, 2 ∧ 3) �→ (0, 1 ∧ 2) ∪ (M−1
σ e2, 2 ∧ 5)

(0, 1 ∧ 5) �→ −(0, 4 ∧ 5)

(0, 1 ∧ 4) �→ −(0, 3 ∧ 5)

(0, 1 ∧ 3) �→ −(0, 2 ∧ 5)

(0, 1 ∧ 2) �→ −(0, 1 ∧ 5)

In Figure 4.4 the E2(σt)-suffix graph is depicted. Observe that this graph with
reversed edges describes the images of every face by E2(σt).

3 ∧ 5

2 ∧ 4

1 ∧ 3

1 ∧ 4

2 ∧ 5

4 ∧ 5

1 ∧ 5

2 ∧ 3

1 ∧ 2

3 ∧ 4

5, . . . , 1t−15

2, . . . , 1t2

2, . . . , 1t2

5, . . . , 1t−15

5, . . . , 1t−15

2, . . . , 1t2

Figure 4.4. The E2(σt)-suffix graph. Every unlabelled edge has
the empty suffix as label, while the edges labelled by 5, . . . , 1t−15
exist only for t ≥ 1.

We say that a patch of faces (Fk)
m
k=0 forms a chain if Fk and Fk+1 have an

edge in common and are in good position.

Proposition 4.30. E2(σt)(0, a) is in good position for each a. Furthermore
the image by E2(σt) of a chain is a chain.

Proof. We check it using the graph of Figure 4.4. It is clear that E2(σt)(0, a)
is in good position for every face which is replaced by only one face, that is, for
(0, 1 ∧ 2), (0, 1 ∧ 3), (0, 1 ∧ 4), (0, 1 ∧ 5), (0, 3 ∧ 4). The face (0, 2 ∧ 4) is replaced
with a patch of faces (M−1

σ (e2 + se1), 3 ∧ 5) = (e1 + (s − t − 1)e5, 3 ∧ 5), for
s = 0, . . . , t, and (0, 1 ∧ 3). One checks easily that these faces form a chain.
Analogously one can check it for (0, 3∧5), (0, 4∧5), (0, 2∧3). By iterating E2(σt)
on (0, 2 ∧ 5) we obtain also a perfect matching patch, formed by two chains
beginning from (0, 1 ∧ 4) and followed by (e1 − se5, 4 ∧ 5) and (e4 − s′e5, 1 ∧ 5),
for s = 0, . . . , t and s′ = 0, . . . , t− 1 (the latter for t ≥ 1).
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Figure 4.5. Polygonal and Rauzy fractals tiling induced by the
5-seed patch U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4).

To see that the image by E2(σt) of a chain is a chain it is sufficient to check it
for chains made of two faces. Given (0, a∧b) there are only finitely many (x, a∧c)
such that together form a chain. With the help of the graph of Figure 4.4 we can
make a complete study of all cases and see that the images by E2(σt) of these
chains are again chains. �

The patch U = {(0, 1 ∧ 3), (0, 1 ∧ 4), (0, 2 ∧ 4), (0, 2 ∧ 5), (0, 3 ∧ 5)} is an
example of a 1-seed patch, that is, U ⊆ E2(σ)(U). An example of 5-seed patch is
U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4).

By Proposition 4.30 we have that σt are regular, for all t ≥ 0, and furthermore
the assumption of regularity on the periodic stepped surface is satisfied.

Proposition 4.31. For every seed patch the geometric finiteness property
holds.

Proof. We prove that the sufficient condition of Proposition 4.10 for the geo-
metric finiteness property holds. Choose an appropriate orientation such that
M ′

2 = M2. Then, by Lemma 4.17, ρ(M ′
2) = βt, where βt is the Pisot root of

σt, t ∈ N0. We notice that the matrix M ′
1 of σt has characteristic polynomial

x5− tx4− (t+1)x− (t+1). One can check asymptotically that ρ(M ′
1) < t+1 <

ρ(M ′
2), for all t ≥ 1, while for t = 0 we have ρ(M ′

1) ≈ 1, 167 < ρ(M ′
2) ≈ 1, 325. �

Corollary 4.32. For every seed patch U the collection CU = {R(a) + πc(x) :
(x, a) ∈ ΓU} is an aperiodic self-replicating tiling of Kc

β
∼= C. Furthermore, given

a 3-patch P, RP tiles periodically by the lattice πc(ΛP) and the domain exchange
EP is a translation on the torus C/πc(ΛP).

Proof. Direct consequence of Theorem 4.20 and Proposition 4.25, since we
showed in Proposition 4.30 that the substitutions σt are regular and in Proposition
4.31 that the geometric finiteness property holds. �

For example, for σ0 the 3-touching patch P = {(0, 2∧ 3), (0, 2∧ 4), (0, 3∧ 4)}
induces the periodic tiling RP + πc(ΛP), with ΛP = (e4 − e2)Z+ (e4 − e3)Z.

4.5.1. Decomposition in Hokkaido subtiles. The aim of this section
is to find a way to decompose our new Rauzy fractals R(a ∧ b) in original
Dumont-Thomas subtiles R(c) (see Definition 2.1 and (2.10)).
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Figure 4.6. It is interesting to notice that changing suitably the
projection we get different polygonal tilings by some faces of three
different types.

Figure 4.7. Domain exchange for R(2 ∧ 3), R(2 ∧ 4), R(3 ∧ 4),
and original Hokkaido tile −R.

We can use numeration to describe the subtiles R(a∧b) using the E2(σ)-suffix
graph in Figure 4.4. Indeed, by definition

R(a ∧ b) =
{∑

i≥0

δc(vsiβ
i) : (si)i≥0 ∈ Gs(a ∧ b)

}
where Gs(a∧b) denotes the set of labels of left-infinite walks in E2(σ)-suffix graph
ending at state a ∧ b.

Since we are using a suffix description for R(a ∧ b) it is convenient to express
also the Dumont-Thomas subtiles R(c) in terms of infinite labels of paths in the
suffix graph. This can be done as in [CS01b, Section 5] through the use of (1.2),
and we get

(4.11) −R(a)− δc(va) =
{∑

i≥0

δc(vsiβ
i) : (si)i≥0 ∈ Gs(a)

}
,
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where Gs(a) denotes the set of labels of left-infinite walks in the suffix graph of
the substitution ending at state a (cf. (2.10)). By abuse of notation we will write
0 instead of ε by reading labels of walks in the suffix or E2(σ0)-suffix graphs.

We will relate the elements
∑

i≥0 δc(vsiβ
i) with (si)i≥0 ∈ Gs(a∧ b) with those∑

i≥0 δc(vsiβ
i) for (si)i≥0 ∈ Gs(a).

We work with the substitution σ0, generally known with the name of Hokkaido
substitution, for which we have

Gs(a) = {(si)i≥0 = · · · 052k2052k10a−1 : 0 ≤ ki ≤ ∞}.
Notice that we have πe(e1) = πe(e3) + πe(e4) and πe(e5) = πe(e2) + πe(e3), or
equivalently v1 = v3 + v4, v5 = v2 + v3.

Lemma 4.33. We have

R(2 ∧ 3) = (−R(1)− δc(v1)) ∪ (−R(4)− δc(v4)),
R(2 ∧ 4) = (−R(1)− δc(v3)) ∪ (−R(3)− δc(v3)) ∪ (−R(5)− δc(v3)),
R(3 ∧ 4) = (−R(2)− δc(v2)) ∪ (−R(5)− δc(v5)).

Proof. Observe that

(4.12) v2β
3 = v2β + v2, i.e. λ(2000.) = λ(0022.).

where λ(w) =
∑|w|

i=0 δc(vwiβ
i). Notice that we can extend λ to infinite strings

(si)i≥0. We will prove using (4.12) that λ(Gs(2 ∧ 3)) = λ(Gs(1) ∪ Gs(4)). For this
reason we will write w =λ w

′ if λ(w) = λ(w′). The cycle

2 ∧ 3 2 ∧ 5 2 ∧ 4 3 ∧ 5 2 ∧ 5 2 ∧ 3
200

(20)k

000002

in the graph of Figure 4.4 produces strings of type 00203(20)k002 =λ 0522k+2.
Starting from state 2 ∧ 5 we get strings 0522k+1. Walking from the first node
2∧ 5 to the second 2∧ 5 returns 0522k and extending this walk to the left starting
from 2 ∧ 3 we obtain 0522k+3. Walking in Figure 4.4 from 2 ∧ 3 to 2 ∧ 5 we
get the word 0022002 =λ 2052. Thus, λ(Gs(2 ∧ 3)) = λ(· · · 052k2052k1), with
0 ≤ ki ≤ ∞, i.e. λ(Gs(1)). Strings ending with 03 are obtained following the

loop 2 ∧ 3
00→ 4 ∧ 5

2→ 2 ∧ 5
2→ 2 ∧ 3. Since these are all possible paths ending

at 2 ∧ 3 we have proven that λ(Gs(2 ∧ 3)) = λ(Gs(1) ∪ Gs(4)) which implies
R(2 ∧ 3) = (−R(1)− δc(v1)) ∪ (−R(4)− δc(v4)) by (4.11).

Since 2 ∧ 3 goes to 3 ∧ 4 by reading a 0 we deduce immediately that all the
strings ending at 3∧ 4 are equivalent under λ to those in Gs(2)∪Gs(5). Hence by
(4.11) we get R(3 ∧ 4) = (−R(2)− δc(v2)) ∪ (−R(5)− δc(v5)).

Starting from 2∧ 5 and going to 2∧ 4 passing by 1∧ 3 we read 00 and by the
above reasonings we get then all possible strings · · · 2k2052k100 belonging to Gs(3).
From 2∧ 5

00→ 2∧ 4
0→ 3∧ 5

2→ 2∧ 4 we get all expansions in Gs(5)+2, where with
the latter we mean the set of (si)i≥0 ∈ Gs(5) such that s0 = 2. Walking k times
through the loop 2 ∧ 4→ 3 ∧ 5→ 2 ∧ 4 and extending to the left with 2 ∧ 5 we
get strings 02(02)k. Subtracting v4 = λ(200.) we get 02(02)k−20002 =λ 0522k−3.
Walking through the loop 2 ∧ 4 → 3 ∧ 5 → 2 ∧ 5 → 2 ∧ 4 and then once into
2 ∧ 4→ 3 ∧ 5→ 2 ∧ 4 we read the string 0205 =λ 0423 and, after subtracting v4,
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we get 0522. Repeating this loop we get arbitrary large strings ending with an
even number of 2s. Thus we have shown we get strings in Gs(1) + 4.

So by (4.11) we just proved that R(2 ∧ 4) is made of the domains λ(Gs(3)) =
−R(3)− δc(v3), λ(Gs(5) + 2) = −R(5)− δc(v5) + δc(v2) = −R(5)− δc(v3) and
λ(Gs(1) + 4) = −R(1)− δc(v1) + δc(v4) = −R(1)− δc(v3), since v1 = v3 + v4 and
v5 = v2 + v3. �

We can carry on the computations for the other R(a ∧ b) in a similar way as
above. We obtain

R(2 ∧ 5) = (−R(1)− δc(v1)) ∪ (−R(4)− δc(v4) + δc(v2)),

R(3 ∧ 5) = (−R(5)− δc(v5)) ∪ (−R(1)− δc(v4)),
and for the others just use the set equation R(a∧b) = βR(a′∧b′) for a∧b← a′∧b′.

Similar formulas to express the Rauzy fractals in terms of the subtiles R(a)
hold for the entire family of substitutions σt.

4.5.2. Coding of the domain exchange and broken lines. We describe
an interesting interpretation for RP in terms of broken lines. Being reducible for
a substitution means that we have some linear dependencies between the π(ei),
for i = 1, . . . , n. For Hokkaido we have

(4.13) π(e1) = π(e3) + π(e4), π(e5) = π(e2) + π(e3).

We have a broken line in R5 which is the geometrical interpretation of the fixed
point u of σ:

u =
⋃
i≥1

{(l(u[0,i)), ui)},

where u[0,i) = u0 · · ·ui−1 and (x, i) denotes the segment from x to x+ ei. Pro-

jecting the broken line into Kβ
∼= R3 the rational dependencies show up, and we

get what we call a “reducible” broken line, made of five different segments. We
can change this broken line using the rational dependencies, i.e. we substitute
every π(e1) and π(e5) with their linearly independent atoms π(e2), π(e3) and
π(e4) as in the relations (4.13). Combinatorially this is equivalent to applying
the code

(4.14) χ : 1 �→ 34, 2 �→ 2, 3 �→ 3, 4 �→ 4, 5 �→ 32,

to the fixed point of σ. Operating in this way we get more vertices in the
new broken line, included the old ones. View as a tiling of the line, we get a
decomposition of the tiling of the line using only the rationally independent
lengths v2, v3 and v4.

1 2 3 4 5 1 1 2 1 2 3

3 4 2 3 4 3 2 3 34 4 3 42 2 3

Figure 4.8. Effect of the code χ on the tiling of the line deter-
mined by the fixed point of σ0.

So we may say that in this process we converted the substitution in an
irreducible one. A similar approach was considered for a Pisot substitutions on
four letters in [Fre05, Section 2.2, 2.3] in the framework of model sets.
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Let w = χ(u) and consider the refinements

(4.15) R̃(a[0,�)) := {πc(l(w[0,N)) : N ∈ N, w[N,N+�) = a[0,�)},
for a[0,�) ∈ {2, 3, 4}∗. Using the definition (2.11) of the subtilesR(a) as projections

of coloured vertices of the broken line and considering the refinements R̃(a) =

R̃(a[0,1)), we see from the code χ that

R(1) ⊂ R̃(3), R(1) + δc(v3) ⊂ R̃(4), R(5) ⊂ R̃(3), R(5) + δc(v3) ⊂ R̃(2)

and of course R(2) ⊂ R̃(2), R(3) ⊂ R̃(3), R(4) ⊂ R̃(4). Therefore, in view of
Lemma 4.33, we can deduce the following.

Proposition 4.34. We have

R̃(a) + δc(va) = −R(b ∧ c), for {b, c} = {2, 3, 4} \ {a}.
Let R̃ =

⋃
a∈{2,3,4} R̃(a). Denote by Ẽ the domain exchange R̃ → R̃,

x �→ x+ δc(va), for x ∈ R̃(a). Then (R̃, Ẽ) = (−RP , E
−1
P ).

Figure 4.9. The domain exchanges E on the original Hokkaido

tile R and Ẽ on R̃.

This is in fact not surprising since we considered suffixes in the definition

of Ed−1(σ) and we constructed the R̃(a) as projection of vertices of the broken
line, i.e. considering prefixes. In fact these two constructions are equivalent up to
isometry, as it is explained also in [CS01b, Section 5].

Combinatorially the code χ describes the first return of Ẽ on R. Indeed from
the decomposition of Lemma 4.33 and Proposition 4.34 one can see in Figure 4.9
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for example that R(1) ⊂ R̃(3) before returning to R under Ẽ passes through

R̃(4).

Proposition 4.35. E is the first return of Ẽ on R.

Proof. From the decomposition of Lemma 4.33 and Proposition 4.34 we see

that Ẽ(R̃(4)) = R̃(4) + δc(v4) = (R(1) + δc(v3 + v4)) ∪ (R(4) + δc(v4)) and

Ẽ(R̃(2)) = R̃(2) + δc(v2) = (R(2) + δc(v2)) ∪ (R(5) + δc(v3 + v2)). Furthermore

R(1), R(3) and R(5) are in R̃(3) and applying Ẽ we translate them by δc(v3).

Using the relations v3 + v4 = v1 and v2 + v3 = v5 we get Ẽ|R = E. �

Let Ω = {Skw : k ∈ N}, where w = χ(u) is the coded fixed point of σ.

Lemma 4.36. (Ω, S) is minimal and uniquely ergodic.

Proof. We know that (Xσ, S), Xσ = {Sku : k ∈ N}, is minimal and uniquely
ergodic. In particular every factor of u occurs in u with bounded gaps, and
the same happens for χ(u). Thus (Xσ, S) is minimal. Applying the code χ to
the word u changes linearly the frequencies of the letters 2, 3, 4, and we can
associate uniquely an invariant measure m, such that its value on the cylinder
[a] := {w′ ∈ Ω : w′

0 = a}, for a ∈ {2, 3, 4}, is exactly the frequency of the letter a
(for more details see [Que10]). Hence (Ω, S) is uniquely ergodic. �

We want to show that the dynamical system (Ω, S,m), where m is the unique

S-invariant Borel probability measure on Ω, is measurably conjugate to (R̃, Ẽ, μc).
Following [BST14], we define the representation map

(4.16) φ : Ω→ R̃, (ai)i∈N �→
⋂
�∈N
R̃(a[0,�)).

Lemma 4.37. φ is well-defined, continuous and surjective.

Proof. Let (ai)i∈N ∈ Ω. Then R̃ = R̃(a[0,0)) ⊃ R̃(a[0,1)) ⊃ · · · , and R̃(a[0,�)) �=
∅ for all � ∈ N. The word w = χ(u) is uniformly recurrent, since u is generated
by a primitive substitution and χ does not affect the uniformly recurrence. Thus
we have a sequence (�k)k∈N such that a[�k,�k+k) = w[0,k), for all k ∈ N. Since

R̃(a[0,�k+k)) ⊂ R̃(a[�k,�k+k))− πc(l(a[0,�k))), we need to show that the diameter of

R̃(a[�k,�k+k)) = R̃(w[0,k)) converges to zero. Let Sk = {πc(l(w[0,j)) : 0 ≤ j ≤ k}.
Then R̃(w[0,k)) + Sk ⊂ R̃ for all k ∈ N, and limk→∞ Sk = R̃ with respect to the

Hausdorff metric. But this implies that limk→∞ R̃(w[0,k)) = {0}, which proves
that φ is well-defined.

The map φ is continuous since the sequence (R̃(a[0,�)))�∈N is nested and
converges to a single point. The surjectivity follows from a Cantor diagonal
argument. �

Lemma 4.38. (Ω, S,m) is measurably conjugate to (R̃, Ẽ, μc).

Proof. The collections Ki = {R̃(a[0,i)) : a[0,i) ∈ Li(w)} are measure-theoretic

partitions of R̃ since the strong coincidence condition for P holds and R̃(a[0,i)) =⋂i−1
j=0 Ẽ

−jR̃(aj). Hence φ(w′) �= φ(w′′) for all w′, w′′ ∈ φ−1(R̃ \⋃i∈N,K∈Ki
∂K)

with w′ �= w′′, and m(φ−1(
⋃

i∈N,K∈Ki
∂K)) = 0 since we have μc(∂K) = 0 for all
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K ∈ Ki, i ∈ N, by Proposition 4.19, and μc ◦ φ is an S-invariant Borel measure,
which equals m by unique ergodicity of (Ω, S). Thus the map φ is injective

almost everywhere. Finally φ((ak)k∈N) is a single point z =
⋂

�∈N R̃(a[0,�)).

Since R̃(a[0,�+1)) + πc(ea0) ⊂ R̃(a[1,�+1)), for all � ∈ N, we obtain that Ẽ(z) =

z+πc(ea0) =
⋂

�∈N R̃(a[1,�)), but this is the same as shifting (ak)k∈N and applying

φ. Thus we checked that Ẽ ◦ φ = φ ◦ S. �
Notice that the relations (4.13) hold for the whole family of σt. The inter-

pretation with broken lines (4.15) and the results of Proposition 4.34, 4.35 and
Lemma 4.38 can be generalized for the entire family of substitutions σt, t ∈ N0.

Theorem 4.39. For the family of substitutions σt, t ∈ N0, we have the
following commutative diagram:

Xσ
χ ��

S

��

Ω
φ ��

S

��

R̃ ��

˜E
��

C/Λ

˜E
��

Xσ
χ �� Ω

φ �� R̃ �� C/Λ

where χ is the code (4.14).

4.6. Non-regular examples

Consider the substitution

σ : 1 �→ 12, 2 �→ 13, 3 �→ 4, 4 �→ 1,

with characteristic polynomial f(x)g(x) = (x3− 2x2+x− 1)(x+1). The rational
dependency relation is v1 + v3 = v2 + v4. Since n = 4 and d = 3, we deal with
E∗

2(σ) and its geometric realization E2(σ).

Proposition 4.40. The substitution σ is non-regular.

Proof. We observe that E2(σ)(0, 2 ∧ 4) = (0, 1 ∧ 3) + (e1 − e4, 3 ∧ 4) is not in
good position since the projections of the two faces do not have disjoint interiors
(see Figure 4.10). �

Figure 4.10. The overlapping faces (δc(0), 1 ∧ 3) and (δc(v1 −
v4), 3 ∧ 4).

Overlaps can be observed for the whole family of substitutions

σt : 1 �→ 1t−12, 2 �→ 1t−13, 3 �→ 4, 4 �→ 1 (t ≥ 2).
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See also [Fur06] for some similar polygonal overlaps obtained in the framework
of non-Pisot unimodular matrices.

The overlaps problem could be solved by considering a different projection onto
Kc

β , or by operating some flips on the problematic faces of the stepped surface (for

a treatment of flips on stepped surfaces see e.g. [ABFJ07, BF11]). Nevertheless,
we notice that in our case the overlaps would vanish in the Hausdorff limit process
generating the Rauzy fractals, since the resulting overlapping polygons have only
two small shapes and occur distant to each other.

We notice that for this family of substitutions the Rauzy fractal R, defined
in Chapter 2, provides a periodic tiling related to the domain exchange trans-
formation, since the quotient mapping condition (QM) holds. For the family of
Section 4.5 this condition does not hold but nevertheless we obtain new periodic
tilings using some R(a ∧ b).

Figure 4.11. Projected E2(σ)-iterate of a patch and explanation
of the overlaps: this is due to the particular “inclination” of two
types of faces in Kβ , in the sense that they insert themselves under
other faces, producing overlaps when projecting them along the
expanding direction.



Conclusion

We have seen that enlarging the representation space with p-adic factors
we can set up a Rauzy fractal theory even in the non-unit case and we have
substantially the same generalized ingredients as in the unit case to attack Pisot
conjecture. Leaving irreducibility involves new combinatorial constructions to
see the substitution as if it were irreducible, as well as higher dimensional duals
of geometric realization of substitutions. Especially the last constructions and
ideas lead to many perspectives.

• Some initial questions are: can we generalize the constructions of Chapter 4
to any reducible Pisot substitution? Is it possible to characterize the points
of our stepped surfaces in a similar way as in the irreducible case? Can we
improve some tiling results discarding or improving some of the hypotheses
we needed? Another important point is to investigate the dynamics and
the geometry in the neutral space of the substitution, and understand
whether they have some influence in the Rauzy fractals tiling theory. Some
studies in this direction have been initiated in [ABB11]. The study of the
combinatorial codes and of the new modified broken lines deserves more
investigations. Figure 4.6 suggests that we can change projection and view
stepped surfaces as if we were in the irreducible settings, by selecting some
of the faces, getting rid of the linear dependencies. Can we in general
reduce the study of the dynamics of a reducible substitution to that of an
irreducible one? We saw that for a family of substitutions (Xσ, S) can be
interpreted as the first return of a toral translation. Induced dynamics
can have different behaviour, thus it is natural to ask in which cases these
first returns have pure discrete spectrum (see [Rau84]). Finally further
research could be motivated by the fact that the existence of polygonal
approximations for the Rauzy fractals allows now to define contact graphs
even in the reducible case.

• Can we isolate some classes of reducible substitutions whose associated
substitutive systems have pure discrete spectrum? And when is it true
in general that, like constant length substitutions, reducible substitutive
systems are codings of skew products of rotations on tori or solenoids and
finite groups?

• In view of the coincidence rank conjecture, can we define a suitable coho-
mology on the Rauzy fractals tiling spaces? Since it is conjectured that
the coincidence rank divides the norm of the Pisot number, are there
any examples of non-unit irreducible Pisot substitutions for which Pisot
conjecture does not hold?

97
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• In this thesis we dealt with symbolic dynamical systems generated by
a single substitution. A fractal theory associated with S-adic subshifts,
where S is a finite set of unit Pisot substitutions, has been developed in
[BST14]. To which extent can we generalize this theory to the non-unit
reducible case?

• Sturmian words are the codings of rotations on one-dimensional tori and
their connection with continued fractions is well-known. It could be possible
to generalize to higher dimensions and investigate the connections between
substitution dynamical systems, Rauzy fractals and multi-dimensional
continued fractions, with the help of the Teichmüller geodesic flow, as done
in the one-dimensional case in [AF01].
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(xθn)n≥0; langages codés et θ-shift, Bull. Soc. Math. France 114 (1986), no. 3,
271–323. (page 24)

[BM04] M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction, J.
Reine Angew. Math. 573 (2004), 61–94. (page 39)

[Bow70] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92
(1970), 725–747. (page 5)

[Bow78] , Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), no. 1,
130–132. (page 5)

[BS02] M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge University
Press, Cambridge, 2002. (page 5)
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519–533. (page 2)

[Fog02] N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes
in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S.
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