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Abstract

Metallic supported Solid Oxide Fuel Cells (SOFCs) are considered to be a cost-effective and

competitive alternative to state-of-the-art all-ceramic SOFCs. In substituting the supporting

ceramic by a porous metal-layer, the advantages of the ductile alloy can be exploited and the

mechanical strength is improved. However, this new technology originates different problems,

which have to be solved before the product is ready for the market. The most important issue

is corrosion, inevitably taking place at the operating conditions. The growing oxide layer will

continuously fill the pores and a sufficient gas-diffusion through the layer may be one limiting

factor for the long-term applicability of metallic supported SOFCs.

In order to understand the implications of corrosion on the gas-diffusion, a modelling study on a

microstructural level was pursued. The metallic support was measured with X-ray tomography

and reconstructed into a computational geometry. Different surface representations (stair-step,

smooth) were analysed and their influence on the results assessed. A geometrical evaluation tool

was programmed that determines e.g. porosity distribution, averaged pore diameter, number

of pores.

An enhanced corrosion model based on Wagner’s theory was implemented in OpenFOAM which

describes the growth of the oxide thickness depending on corrosion rate constants, which can

be easily retrieved by measurements. The model is applied on complex 3-D microstructures,

where also the shrinkage of the alloy, due to consumption of Cr-ions for the oxide formation, is

taken into account as a boundary condition.

The transient oxide growth and its corresponding change of the microstructure impedes the

gas-diffusion. This was assessed by determining the change of the concentration over-potential,

which results from a decreased mass transport. Furthermore, the effective diffusion coefficient

was computed, which is an important input parameter for simulations on cell- and stack-level.

It has been shown in this work that the application of periodic boundary conditions for the

lateral walls increase the accuracy of the solution dramatically, compared to the state-of-the-art

symmetry approach, and that more reliable results can be obtained from smaller geometries. In

addition to that, it is now possible to evaluate the change of the microstructure due to corrosion

and its transient influence on the gas-diffusion, which allows predicting the degradation of the

SOFC caused by corrosion of the metallic support.
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Kurzfassung

Die Entwicklung metallgestützer Hochtemperatur-Brennstoffzellen (solid oxide fuel cells SOFCs)

zeigte eine vergleichbare, aber kostengünstigere Alternative zu herkömmlichen keramischen

SOFCs. Die Metallstützschicht verbessert durch ihre Duktilität die mechanischen Eigenschaf-

ten der SOFC, birgt aber andere Probleme, die vor einer Vermarktung gelöst werden müssen.

Die größte Herausforderung in Bezug auf die Metallstützschicht ist die Korrosion. Die wach-

sende Oxidschicht füllt das Porenvolumen, wodurch die Gasdiffusion und die Versorgung der

Anode mit genügend Brennstoff erschwert wird. Dies scheint ein limitierender Faktor in der

Lebensdauer von metallgestützten SOFCs zu sein.

Um abschätzen zu können, welchen Einfluss die Korrosion auf den Massentransport hat, wur-

den Simulationsmodelle auf Mikrostrukturebene entwickelt. Die Metallstützschicht wurde mit

Röntgentomographie vermessen und in ein Rechengitter umgewandelt. Dabei wurden auch un-

terschiedliche Oberflächen (stair-step, geglättet) untersucht und deren Einfluss auf das Simu-

lationsergebnis ermittelt. Zudem wurde ein Algorithmus programmiert, mit dessen Hilfe z.B.

die Porositätsverteilung, der mittlere Porendurchmesser oder die Anzahl der Poren bestimmt

werden können.

Das Korrosionsmodell basiert auf Wagners Theorie und wurde in OpenFOAM implementiert.

Damit konnte das Wachstum der Oxidschicht in Abhängigkeit der gemessenen Wachstumsraten

ermittelt werden. Die Rechnungen wurden auf den komplexen 3-D Mikrostrukturen ausgeführt.

Durch das Oxidwachstum kommt es zu einer Schrumpfung des Metalls, da Cr-Ionen aus dem

Metall in das Oxid eingebaut werden. Dieses Zurückziehen wurde als Randbedingung berück-

sichtigt.

Die Änderung des Porenvolumens führt zu einer Verringerung des diffusiven Massentransports.

Dieser Effekt wurde durch die Bestimmung der Konzentrationsüberspannung ermittelt und be-

wertet. Außerdem wurde der effektive Diffusionskoeffizient der Mikrostruktur bestimmt, welcher

als wichtiger Modellparameter für Simulationen auf Zell- und Stacklevel verwendet wird.

Es konnte in dieser Arbeit gezeigt werden, dass periodische Randbedingungen die Genauig-

keit der Rechenergebnisse im Vergleich zu den herkömmlich verwendeten Randbedingungen

erheblich erhöhen und es somit möglich ist, bessere Ergebnisse auf kleineren Geometrien zu
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bekommen. Der größte Fortschritt konnte aber mit der neuen Korrosionssimulation erzielt wer-

den, da nun die zeitliche Änderung der Mikrostruktur und deren Einfluss auf die Gasdiffusion

ermittelt werden kann. Dadurch ist eine Abschätzung der Degradation der SOFC aufgrund von

Korrosion der Metallstützschicht möglich.
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Chapter 1

Introduction

1.1 Motivation and objectives

Solid Oxide Fuel Cells (SOFCs) are a promising, alternative technology that offers effective

conversion of chemical stored energy to electricity, with efficiencies as high as 55% and even

up to 90% in hybrid configuration with gas turbines and combined heat and power generation

[58]. So it is claimed since the last decades and although there are some example applications

[10, 17, 23] the big break-through in SOFC-technology and the reliability for the mass market

is still not reached. It seems that SOFCs are destined to be a niche product.

One reason may lie in the higher production costs for the different ceramic materials compared

to conventional power generation. Another reason which is a more prominent one is the dur-

ability and reliability of SOFCs. The degradation of the SOFC is defined as potential drop at

constant current density during operating lifetime (expressed in μV h−1). Every single com-

ponent can contribute to the overall degradation and the most common failure mechanisms for

ceramic SOFCs are [25, 89, 101]:

1. Anode:

(a) coarsening of nickel particles;
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2 Chapter 1. Introduction

(b) crack formation in the electrolyte during re-oxidation of the anode support;

(c) carburisation on nickel particles during internal reforming;

(d) formation of nickel sulfide when using unfiltered hydrocarbon fuel.

2. Electrolyte:

(a) loss of ionic conductivity due to phase changes, impurities and dopant diffusion;

(b) cracks caused by thermal cycling, volume expansion, stresses;

(c) delamination from either the anode or the cathode.

3. Cathode:

(a) densification of the structure;

(b) reaction with the zirconia electrolyte and formation of insulation phases;

(c) reaction with volatile chromium species from the interconnect.

4. Interconnect :

(a) formation of less-conductive oxide layers.

The assembling of SOFCs in stacks and varying operating conditions provoke additional prob-

lems with e.g. sealing, stresses, evenly flow distribution, thermal-cycling etc., which can ac-

celerate the above mentioned failure mechanisms. Recent developments try to decrease the

operating temperature below 800 ◦C as this will result in a simplification of the design and a

higher long-term stability of the system [89]. In order to minimise the accompanied performance

loss due to higher ohmic losses in the electrolyte, higher conductive materials were developed.

Operating the SOFC at even lower temperatures (600 ◦C to 700 ◦C) will allow the usage of new

materials to further improve the cell and lower the overall costs.

These are the main aims for the development of Metallic Supported Solid Oxide Fuel Cells (MS-

SOFCs). In this new technology the ceramic support of the anode is replaced by a cheaper

porous metallic support which exhibits a number of advantages such as a higher re-oxidation

tolerance of the applied alloys, improved mechanical strength and a higher thermal conductivity
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of the substrate. Recent metallic supported cell and stack developments have shown very

promising results compared to the state-of-the-art all-ceramic SOFC [7, 9, 28–30, 59, 90–92].

Nevertheless, the porous metallic substrate is prone to other failure mechanisms which are

unique for this technology e.g.: Creep may lead to a loss of integrity [54], and the corrosion

of the porous metallic substrate will occur even at low water vapour partial pressures and will

change the microstructure.

The variety of possible failure mechanisms and their interaction, combined with several coupled

physical phenomena taking place during the operation of an SOFC-stack, makes it virtually

impossible to attribute measurement results to failures. The attempt to understand the physics,

such as electronic and ionic charge transfer; gas diffusion and flow; electro-chemical reactions;

heat transfer and solid mechanics, and their interaction in the SOFC has lead to numerous

numerical implementations and solutions of multi-physics models [1, 12, 36].

Adding up to its complexity the physical phenomena occur at different length scales, from

electro-chemical reactions at sub-micron level at the triple-phase boundary, to flow in the gas

channel at a macroscopic mm to cm level. A high spatial resolution of the entire SOFC including

its microstructure would be required to obtain meaningful results. However, the resolution is

limited by the available computer resources and it is impractical to use a detailed microstructure

for an entire cell- or stack-simulation. Using a resolution of 1 μm for the calculations of an entire

SOFC-stack (12 cm × 12 cm × 10 cm) would lead to approximately 1× 1015 computational cells,

which even exceeds the memory capacities of super computers.

A practical way to overcome this problem and still obtain meaningful results is to use homogen-

ised models. In this approach the microstructure is considered to be pseudo-homogeneous with

defined porous parameters, such as porosity, tortuosity, permeability, heat-, ionic-, electric-

conductivity and so on [4]. The drawback of this approach is that these porous parameters

have to be determined. This is straightforward for some, e.g. the porosity, but the evalu-

ation of a permeability tensor requires more effort, not to mention the determination of the

tortuosity which is an important parameter describing the diffusion through the microstruc-

ture. Additional parameters are used in the constitutive electro-chemistry models, namely the
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Butler-Volmer equation and in Arrhenius’ law. All in all, there are a couple of parameters that

can’t be exactly determined and are used as fitting parameters, which is a worrying situation

having in mind John von Neumann’s words:

With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.

Efforts must be undertaken to minimise the unknown parameters in order to improve the

implemented models and obtain more meaningful results.

Two routes for the determination of mass-transport related parameters like porosity, tortuosity

and permeabilities of the microstructure are available. Firstly, measurements of the cell based

on electro-chemical impedance spectroscopy. Thereby, the impedance is measured while various

operating parameters, like the temperature, fuel composition, current density etc., are varied

[57]. An analysis of the distribution of relaxation times enables the separation of the individual

loss mechanisms. It is therefore possible to obtain the contribution of the mass-transport to the

overall Area-Specific Resistance (ASR). The fitting to an appropriate diffusion model will yield

the values for the porosity and tortuosity. However, this approach depends on the possibility to

discern the individual loss mechanisms and the ability to vary the operating parameters. This

can be a delicate venture if the SOFC does not tolerate temperatures above 800 ◦C, as is the

case with the current generation of metallic supported SOFC, due to limited stability of the

anode.

Therefore, the second route is a viable alternative. Simulations are carried out on the re-

constructed microstructure and homogenised parameters are determined, which describe the

metallic support adequately. The microstructure can be measured either by Focused Ion Beam -

Scanning Electron Microscopy (FIB-SEM) or X-ray computed tomography. Both methods offer

the opportunity to obtain 3-D information of the porous electrode, which can be reconstructed

and converted into a 3-D computational geometry, which incorporates the real microstructural

features. More details on the two measurement techniques and the reconstruction are given in

Chapter 4.
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Various works have used this approach to analyse the microstructure and retrieve homogenised

parameters for anode supported SOFC [33, 35, 40, 45, 46, 55, 94], but it was, to the author’s

knowledge, not yet applied to the porous metallic support. The basic approach to evaluate

the effective diffusion coefficient, which is a measure for the diffusive mass-transport in the

porous electrodes, is to apply symmetry boundary conditions for the lateral boundary (parallel

to the main diffusion path) [33, 35, 45, 46, 94]. This is the easiest way to deal with the lateral

boundaries, but also a problematic one. The symmetry boundary condition basically resembles

a wall, which means that no mass-flux in or out of the geometry is possible trough the lateral

walls which introduces a lot of dead-end pores.

The workaround to limit the influence of this unnatural boundary condition is to perform the

simulations on a sufficiently large volume, so that the ratio between dead-end and continuous

pores is small enough. However, a larger volume will lead to the need of more computing power

and time to perform the simulation, and on inhomogeneous microstructures the required volume

could easily exceed the available memory resources. It was shown that with increasing size of

the investigated volume the evaluated parameters converge because of the diminishing influence

of the lateral boundaries [46]. Nevertheless, the effects of different boundary conditions at the

lateral walls were not discussed yet. So far only the effect of different boundary conditions

on the top and bottom boundaries is discussed [55]. As Alan Mathison Turing, a computer

pioneer, puts it:

Science is a differential equation, religion is a boundary condition.

In this work the influence of different boundary conditions, namely the state-of-the-art sym-

metry and the periodic condition, is evaluated and compared to each other and measurement

results, to lessen our need to believe in the choice of the boundary conditions. The periodic

boundary condition couples boundary faces on opposite walls which overlap, and presumes that

the sum of the mass-flow of both faces is zero. In other words, what leaves from one side enters

on the other. This resembles also reality where the pores which are cut off deliberately by the

computational volume will continue and are not blocked. It will be shown in this work that the
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implementation of periodic boundary conditions will substantially improve the results of the

computations, compared to the state-of-the-art approach.

The accuracy of all current microstructural models that are used to determine homogenised

parameters depends on the quality of the reconstructed microstructure. During the operation

degradation will affect the microstructure. This could be for example a volume expansion of

the Ni-particles in a Ni-YSZ anode for the anode supported SOFC, or the oxide growth in the

metallic supported SOFC due to corrosion. The latter case is part of this research.

In order to assess the impact of corrosion on the metallic support, experiments were carried

out to determine the mass gain of potential substrate material [60–63]. However, it is difficult

to draw conclusions from these measurements, as the local influence of the microstructure,

e.g. blocking of pores, can hardly be assessed. In addition to that, long-term tests have to

be carried out, which are normally time and cost consuming. It was up till now not possible

to evaluate the influence of corrosion on the mass-transport in the metallic support, and the

obtained results of the homogenised parameters were limited to the initial operating phase of

the SOFC.

In this work, a basic corrosion model is presented to compute the change of the microstructure

and determine its influence on the mass-transport. It is based on the theory of Wagner [96],

who proposed a parabolic rate law based on corrosion measurements at high temperatures

>500 ◦C, to describe the growth of the oxide layer. The basic assumption is that the diffusion

of either metal- or oxide-ions through the oxide layer is the rate limiting step of the reaction.

This proved to be true as long as the film thickness is sufficiently large and forms a continuous

layer (e.g. >1 μm for temperatures above 500 ◦C) [3]. During the initial on-set of corrosion, till

a continuous layer is formed, the reaction is faster and kinetics may show a linear behaviour

[44]. A combination of linear followed by parabolic rate models will be used to describe the

thickness increase of the oxide layer adequately.

Unlike other corrosion simulation works [37, 67, 75], where the thickness of the oxide is purely a

boundary condition to compute the ion species distribution in the oxide layer, this work focuses

on the volume change of the 3-D microstructure due to the growth of the oxide layer. The oxide
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thickness is determined by applying first a linear and subsequently a parabolic rate law. The

metal-retraction, which is a shrinkage of the alloy caused by the consumption of Cr-ions for the

formation of the oxide, is determined by a mass balance following the procedure proposed in

[37]. It is thus possible to effectively determine the volume change of the pores.

The results of the corrosion solver are coupled with the evaluation model of the transport

parameters to determine, for the first time, the change of these parameters due to corrosion.

This facilitates the estimation of the SOFC performance after longer operation times without

time and cost consuming long-term test.

1.2 Publications

A 3-D microstructural code for solving a corrosion model and evaluating transport parameters

is presented in this Thesis. Most of the models and the results have been and will be published

in the following papers:

1. Georg Reiss, Henrik L. Frandsen, Wilhelm Brandstätter, André Weber. “Numerical eval-

uation of micro-structural parameters of porous supports in metal-supported solid oxide

fuel cells”. In: Journal of Power Sources 273. (7.10.2014), 1006-1015.

2. Georg Reiss, Henrik L. Frandsen, Christian Weiß, Wilhelm Brandstätter. “Numerical

Evaluation of the Oxide Growth in Metal-supported Solid Oxide Fuel Cells and its Influ-

ence on Mass Transport”. Submitted to: Journal of Power Sources.

1.3 Outline

A concise overview of the Thesis is as follows:

1. In Chapter 1: Introduction the context of the Thesis is explained. A short summary on

state-of-the-art microstructural modelling to retrieve homogenised transport parameters
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as well as on corrosion modelling is given.

2. Chapter 2: SOFC in a minute gives a brief introduction in the operation principal of

SOFCs and explains the differences to metallic supported SOFCs.

3. Chapter 3: Theoretical background gives an overview about corrosion and mass-transport

theory and models.

4. In Chapter 4: Geometry reconstruction measurement techniques are explained which

can be utilised to obtain a three-dimensional information of the porous microstructure.

The reconstruction algorithm for creating computational geometries is explained and the

advantages and drawbacks of surface representation, as well as boundary conditions, are

discussed.

5. Chapter 5: Simulation and modelling summarises and explains the implementation of

the corrosion and the mass-transport model. Furthermore, the geometric analysis of the

microstructure, as well as the determination of the permeability tensor of the metallic

support, are described.

6. Chapter 6: Validation focuses on the validation of the proposed and developed models.

7. In Chapter 7: Results the potential of the corrosion and the evaluation model are demon-

strated on a metallic support.

8. Chapter 8: Conclusions summarises the most important findings and gives a future out-

look.



Chapter 2

SOFC in a minute

2.1 Basics and loss mechanisms

An SOFC is a device designed to convert chemical energy into electricity and heat. A schematic

drawing of a single SOFC including its interconnects is shown in Figure 2.1. Unlike in power

plants, the fuel is not combusted, but electro-oxidised at the anode by oxygen ions, which are

transported from the cathode through the electrolyte. The most common fuel is hydrogen and

the overall reaction at the anode is:

H2(g) + O2− → H2O(g) + 2e−. (2.1)

The electrons move through an external circuit to the cathode where molecular oxygen (present

in air) is reduced to oxide ions:
1

2
O2(g) + 2e− → O2−. (2.2)

These reactions take place in the vicinity of the electrolyte at the so-called triple phase bound-

ary (TPB), where the electrode (electronic phase), the electrolyte (ionic phase) and the gas

phase (hydrogen, air) are in contact. However, in reality these reactions are more complex and

stepwise in nature, including gas phase transport (convection and diffusion) from the gas flow

in the gas channels to the porous electrodes; diffusion in porous media; species absorption, de-

9
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sorption and dissociation; surface reaction; bulk exchange and charge transfer [58]. Depending

on the operating conditions one of the above mentioned steps is rate limiting.

Interconnect
• current collector
• heat conduction

Cathode channel
• plug flow of air
• heat convection

Fuel channel
• plug gas flow
• heat convection

Cathode
• current conduction
• heat conduction
• porous media diffusion

Anode
• current conduction
• heat conduction
• porous media diffusion
• internal reforming

Electrolyte
• ionic conduction
• heat conduction

Electrode-electrolyte TPB-zones
• electro-chemical reactions
• heat generation

Figure 2.1: Principal sketch of the individual components of a single SOFC, including their functions (according
to [58]).

The theoretical reversible Erev or open circuit voltage (OCV) of a single SOFC operated with

hydrogen and oxygen is 1.229V at standard conditions (273.15K, 1.033× 105 Pa). It can be

calculated by the Nernst equation [58]:

Erev(p, T ) = E0(T 0, p0)− RT

2F
ln

(
xH2O

xH2

√
xO2

)
+

RT

4F
lnp, (2.3)

where E0 is the standard electrode potential, R the universal gas constant, T the temperature,

F Faraday’s constant, x the molar concentration and p the pressure. The actual measured OCV

lies slightly below Erev. This difference is denoted Ul which represents potential losses due to

residual electronic conduction in the electrolyte and possible micro-cracks in the electrolyte

which lead to a cross over of gases. When a current I is drawn from the SOFC the voltage
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drops further [58]:

Ucell = Erev − Ul − IRe,i − (ηact + ηconc), (2.4)

due to ohmic losses, where Re,i is the electronic and ionic resistance, ηact denotes the charge

transfer or activation polarisation, and ηconc is the concentration polarisation. The individual

mechanisms that cause the potential loss are summarised in more detail [18]:

1. Activation polarisation: This can be seen as an energy barrier which has to be overcome

so that the reaction can start. It can be quantified by the well-known and widely used

Butler-Volmer equation:

i = i0

(
exp

(
β
neFηact
RT

)
− exp

(
−(1− β

)neFηact
RT

))
, (2.5)

where i0 is the exchange current density, β is the transfer coefficient, normally 0.5, and

ne is the number of electrons transferred per reaction.

2. Ohmic polarisation: These losses occur due to the resistance of the electrolyte for the

ions and the electrode material for the electrons.

3. Concentration polarisation: Whenever a current is drawn the species concentration at the

reaction site will be lower compared to the bulk concentration of the gas stream. This

gas transport loss gets more significant at higher current densities, when more fuel is

consumed. The diffusion through the porous anode can be a rate limiting step. Therefore,

the diffusion through the microstructure will be investigated in this study. The resulting

concentration over-potential at the anode side can be calculated by applying the Nernst

equation [21]:

ηconc =
RT

2F
ln

(
pbulkH2

pAFL
H2O

pbulkH2O
pAFL
H2

)
, (2.6)

where pi denotes the partial pressure of H2 and H2O at the gas-channel metallic support

interface (bulk) and the metallic support anode functional layer interface (AFL).

Figure 2.2 summarises a typical voltage-current characteristic. At low current densities the

activation polarisation is predominant. At higher values a linear relation between the current
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density and the voltage can be seen, so it can be concluded that ohmic polarisation is prevailing.

By increasing the current density further, the concentration polarisation gets higher and a

steeper drop in the potential can be observed.

Figure 2.2: Ideal and actual fuel cell voltage-current characteristics according to [48].

2.2 Metallic supported SOFC

The state-of-the-art anode-supported SOFC consists entirely of ceramic, which is electro-

chemically active, although only in a small region, the triple-phase boundaries, reactions occur.

Metallic supported SOFCs substitute the supporting ceramic material with a sintered metal

powder and try to minimise the costs, with improved performance.

The porous metallic support, which is analysed in this study, is produced at the Technical

University of Denmark (DTU). A comprehensive description of the entire cell can be found in

[9], whilst the most important aspects are summarised here: The support is made by tape-

casting, and the slurries contain Fe-Cr-powder (22% Cr-based stainless steel alloy), organic

solvent and additives required for the process.



2.2. Metallic supported SOFC 13

In order to obtain an electro-chemical active region, Yttria-Stabilised Zirconia (YSZ) was added

to the metal-powder to form a so-called cermet (ceramic+metal) layer, which will later be

infiltrated. The electrolyte is produced using similar tape-casting techniques, where the powder

is based on ZrO2 co-doped with Sc2O3 and Y2O3. The individual tapes are dried and laminated

together. Thereafter, the laminated half-cell is sintered above 1000 ◦C in reducing atmosphere

(H2/Ar). After the sintering process, the porous metallic support is infiltrated with Ce0.8Gd0.2O1.9

(CGO20) + 10 wt.% Ni to form the electro-catalytic active phase, which acts as a fuel electrode.

The final step is the screen-printing of the cathode (LSCF/CGO), as well as the cathode contact

layer (LSC), and the subsequent in-situ firing during cell testing at a maximum temperature of

800 ◦C. A cross-sectional micro-graph of a half-cell after sintering without infiltration is shown

in Figure 2.3.

Figure 2.3: Cross-section of a sintered planar metallic supported half cell, without infiltration and screen-
printed cathode. The dense electrolyte is shown to the left, followed by the cermet layer (anode) and the
metallic support [9].
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Theoretical background

3.1 Corrosion

3.1.1 High-temperature corrosion theory

The porous metallic support of a metallic supported SOFC is prone to corrosion in the H2-

H2O-atmosphere even at very low water-vapour partial pressures. The Richardson Ellingham

diagram for the oxidation of metals is shown in Figure 3.1. It summarises the standard Gibbs

free-energy change ΔG0 versus the temperature for different metals and their oxides [44]. A

lower ΔG0 indicates an easier formation of the oxide. The equilibrium line in the diagram for

Cr2O3 has a more negative ΔG0 than Fe2O3, therefore the formation of Cr2O3 is the preferred

reaction. Drawing a line (red) from the point H on the left-hand side of the diagram and

intersecting it with the free-energy line for the formation of Cr2O3 at 650 ◦C yields a H2/H2O-

ratio of ≈2× 105, which would equal a water partial pressure of 5× 10−6 at the equilibrium. A

higher ratio (less water vapour) would reduce chromia to pure chromium; more water vapour

will oxidise chromium. Consequently, at 650 ◦C a small amount of water vapour is sufficient to

form a stable oxide.

14
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Figure 3.1: Richardson Ellingham diagram of free energy versus temperature for oxidation of metals [44]

The actual corrosion process comprises various reactions [44], which are depicted in a simplified

way in Figure 3.2. In the beginning of the reaction the oxidant is adsorbed at the metal surface

(Figure 3.2(a)). It reacts with the metal and forms an oxide which grows lateral, till a continuous

layer is formed (Figure 3.2(b)). Thereafter, the oxide film becomes thicker and the gas or the

metal ions have to diffusive through the oxide layer to form more oxide (Figure 3.2(c)), for which

reason the further corrosion process slows down. Depending on the oxide and the surrounding
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conditions the oxide layers can have cavities and cracks, which will lead to a faster corrosion

process compared to continuous layers. (Figures 3.2(d) and (e)).

(a) (b) (c)

(d) (e)

Figure 3.2: Formation of an oxide film during high-temperature metal oxidation [44].

In general the oxidation of a metal M to its oxide reads:

xM+ yH2O → MxOy + yH2. (3.1)

This chemical reaction will take place in the beginning of the corrosion, when the gas and the

metal surface can interact directly (Figure 3.2(a) and (b)). As soon as continuous oxide layer

is formed, the following electro-chemical reactions occur:

M → M2+ + 2e−, (3.2)

where the liberated pair of electrons migrates through the oxide and reduce oxygen:

1

2
O2 + 2e− → O2−. (3.3)

The migration of the electrons and the ions depends on the formed oxide and the concentration

of the dominant oxide defects [44]:

1. cation interstitials (Figure 3.3a): The metal cations are liberated at the metal-oxide

interface and move between the lattice positions of the cations and anions to the oxide-
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gas interface, where the oxide is formed.

2. anion vacancies (Figure 3.3b): The O2− anions migrate from the oxide-gas interface

through the oxide lattice by changing place with anion vacancies to the metal-oxide

interface, where they react with metal-ions and form the oxide.

3. cation vacancies (Figure 3.3c): Here, the metal cations move from the metal-oxide to the

oxide-gas interface through cation vacancies, where the oxide is formed.

An elaborate summary of the basic theory of high-temperature corrosion is presented in [3].

The growth of the oxide film can be described with the following models, which depend on

the thickness of the film: The theory of thick films developed by Wagner [96] and the theory

of thin films by Cabrera and Mott [15]. Wagner’s model is based on many measurements and

observations from corrosion experiments that show parabolic weight gain, where the square of

the film thickness xcorr is proportional to time t:

x2
corr = kpt. (3.4)

kp is the parabolic rate constant. The basic assumption is that the diffusion across the film is

the slowest, and therefore the rate-limiting step of all reactions. This diffusion flux through a

compact and perfectly adherent oxide film is proportional to the concentration difference Δc

across the film thickness xcorr. The steady-state flux with a constant ionic diffusivity D is

proportional to the rate of scale thickening dxcorr

dt
:

dxcorr

dt
= CD

Δc

xcorr

, (3.5)

where C is a proportionality constant [44]. The integration of Equation (3.5) with xcorr = 0 at

t = 0 yields Equation (3.4), where kp = CDΔc. Thus, the parabolic rate constant kp is direct

proportional to the ionic diffusivity D and Equation (3.5) can be reformulated to:

dxcorr

dt
=

kp
2xcorr

. (3.6)
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Figure 3.3: Processes occurring in three types of oxide surface scale during high-temperature oxidation [44].

Wagner’s model is accepted to be valid for films thicker than 1 μm. This limit comes from the

consideration that the electric field across the oxide, which is caused by ambipolar diffusion of

the positive and/or negative ions and electrons, has to be sufficiently small so that the Nernst-

Einstein relationship is still valid [3]. (The Nernst-Einstein equation relates the limiting ionic

conductivity to the ionic diffusion coefficient.)
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In thinner films the large electric field can cause atom jumps from the metal in the oxide and

Cabrera and Mott were able to show that the oxidation rate decreases exponentially as film

thickness increases, which leads to an inverse logarithmic law [3]:

dxcorr

dt
=

D

a
exp

(
X1

xcorr

)
, (3.7)

where D has the dimensions of a diffusion coefficient, a is the ionic jump distance and X1 is

equal to the upper limit of thickness defined in the basic assumptions.

The validity of both, thin and thick film theories is depicted in Figure 3.4. Very thin oxide films

<20 nm are described with the theory by Cabrera and Mott, while films thicker than the Debye

length LD, a limit where the Nernst-Einstein equation is valid, can be calculated by Wagner’s

theory.

Figure 3.4: Growth rate of an oxide film as a function of its thickness, calculated with the theory of Cabrera
and Mott when thin (xcorr < X1) and of Wagner when thick (xcorr > LD). The parameters used are appropriate
to a film of NiO growing by lattice diffusion at 500 ◦C according to [3].

The dotted line between the two basic theories is considered as a transition regime and is

adequately discussed in [99], where the kinetics where found to be describable by a direct
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logarithmic rate law:

ln

(
dxcorr

dt

)
= B1 − B2xcorr, (3.8)

where B1 and B2 are constants. Nevertheless, logarithmic behaviour is mainly observed for

lower temperatures (<400 ◦C), while at higher temperatures linear reaction kinetics for thin

films are prevailing:
dxcorr

dt
= kl, (3.9)

where kl is the linear rate constant. This means that in this early stages of corrosion the film

is non protective and the chemical reaction is the rate limiting step. As the film thickens the

kinetics can turn into a parabolic growth [44].

The consumption of Cr-ions for the formation of the oxide results in a shrinkage of the al-

loy, which can be estimated by the Pilling-Bedworth ratio, normally used to determine the

protectiveness of the oxide [44]:

PBratio =
volume of oxide produced

volume of metal consumed
=

Moxρm
zρoxMm

. (3.10)

Mox is the molecular weight and ρox the density of the oxide, while Mm and ρm are the atomic

weight and density of the pure metal, and z is the number of metal atoms in the oxide molecule.

The Pilling-Bedworth ratio is 2.02 for chromium, which means that the volume of the oxide is

twice as large as the volume of the metal, or in other words: When the oxide growths 1 μm the

metal retracts by ∼ 0.5 μm.

A procedure to calculate the metal-retraction r is proposed in [37]. The flux jox of the least

noble element, required for the growth of the oxide Δxt→t+Δt
corr during a time step Δt, is defined

by:

jox =
zoxρox
Mox

Δxt→t+Δt
corr

Δt
. (3.11)

The corresponding metal-retraction of the source faces Δrt→t+Δt can be calculated:

Δrt→t+Δt = −VmjoxΔt, (3.12)
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where Vm is the partial molar volume of the out-diffusing species. With the knowledge of the

oxide thickness and the retraction of the metal-oxide-interface the change of the porous volume

can be determined, which will be described in Chapter 5.1.

3.1.2 Weight-gain measurement

Having dealt with the basic theoretical principles of corrosion, we now want to see how this

knowledge can be used to assess the applicability of metals in SOFCs. One way is to conduct

corrosion experiments [60–63]. Hereby, potential Fe-Cr-powders are compacted at pressures

in the range from 400 kPa to 600 kPa. The subsequent sintering is done in pure hydrogen

at temperatures ranging from 800 ◦C to 1200 ◦C. The samples undergo thermogravimetric

measurements as they corrode at different temperatures and water vapour content.

One problem addressed in [62] is the question how to relate the measured mass gain Δm to a

surface A. The parabolic rate law Equation (3.4) would then read:

(
Δm

A

)2

= kp,mt. (3.13)

Sometimes the apparent area of the sample is used, but the actual surface area might be different

depending on the porosity, which makes a comparison quite difficult. Another approach is to

use a relative weight gain Δm/minit related to the initial weight minit of the sample. However,

this is not satisfactory as better alternatives are available: The actual surface area can be

determined by BET-measurements (named after the founders of the theory Stephen Brunauer,

Paul Hugh Emmett and Edward Teller).

Once the parabolic rate constant kp,m (kg2 m−4 s−1) for the weight-gain is determined, it has

to be converted to the parabolic rate constant kp (m2 s−1), which describes the growth of the

thickness. Therefore the density of the oxide ρox is used:

kp =
kp,m
ρ2ox

. (3.14)
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The sintered metallic supports analysed in this study were measured by Åsa Persson at DTU.

The surface area was determined with BET-measurements prior to the weight-gain measure-

ments. The sintered specimen were cut to 10mm × 10mm samples, which were cleaned in

acetone and ethanol. The experiments were conducted in a furnace at three different temperat-

ures normally used in SOFC applications, namely 650 ◦C, 750 ◦C and 850 ◦C (850 ◦C being used

for accelerated corrosion). The anode gas should simulate a high fuel utilisation and consisted

of an Ar/H2/H2O-atmosphere with a pH2O/pH2
-ratio of 9. This was achieved by mixing pure Ar

with H2-gas, which was flown through a water bottle.

The samples were heated up and cooled down with a ramp of 120 ◦C h−1. They were kept at

a constant temperature for 250 h, before the samples were cooled down and weighted. These

oxidation cycles were repeated for up to 3000 h. Unfortunately, due to the long measurement in-

tervals, it was not possible to describe the initial linear corrosion regime adequately. Therefore,

lacking better information the first 300 h were considered to follow linear kinetics.

All the above mentioned studies evaluate and assess the applicability of potential Fe-Cr-powders

by comparing their weight gain. This will be sufficient for a rough guess and a first go or no-go

decision. Moreover, the measurements are limited to some hundreds to thousand hours, while

the desired life-time of SOFCs is above 40.000 h. Long-term tests require a lot of resources and

time. For these reasons it is desirable to break new ground and develop simulation tools, which

are capable of using the information gained from corrosion experiments in models to describe

the change of the microstructure adequately, and allow an estimation of the degradation caused

by the corrosion.

3.2 Mass-transport

The gaseous mass-transport in the SOFC can be divided in a convective part, which is pre-

dominant in the gas-channels, and a mixture of a convective and diffusive transport in the

electrodes. Due to the dense microstructure the diffusive mass-transport is predominant in the

electrodes.
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3.2.1 Convective flow and permeability

Darcy was the first to introduce an empirical law in 1856 [22] to describe a linear relationship

between specific discharge q (the volume flow rate Q divided by the area q = Q
A
) and the

pressure drop Δp
Δl

[4] for flows in porous media:

q ∼ Δp

Δl
. (3.15)

It is assumed in theory that the inertial forces ∇ · ρ(uu) in the creeping flow regime (low

Reynolds numbers) are negligible compared to the viscous forces, and the steady-state Navier-

Stokes equation

ρ
∂u

∂t
+ (ρu · ∇)u = −∇p+ μ	u+ (λ+ μ)∇ (∇ · u) + f , (3.16)

reduces to a linear relationship between the pressure and the velocity [13]:

∇p = μ∇2u. (3.17)

In the above equations the density of the fluid is denoted ρ, μ is the dynamic viscosity, λ the

first Lamé constant defined as λ = −2
3
μ and f stands for various volume forces such as gravity.

Thus Equations (3.18) and (3.17) can be written in scalar form:

q =
k

μ

Δp

Δl
(3.18)

The permeability k is an important parameter to describe the flow in the microstructure on a

macroscopic level. A lower and upper limit for the applicability of Darcy’s law is reported in

[4]. It is argued that the lower limit results from the necessity of a minimum gradient, below

which no flow is to be expected. The upper limit was found by experiments where the results

of the measured pressure drop at given velocities deviate from the linear relationship reported

in Equation (3.18). Darcy’s law is only valid at low Reynolds numbers (Re < 1 − 10), where
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the flow is laminar and the viscous forces are predominant. But the applicability of Darcy’s

law is also reported to be Re 
 1 [64].

Figure 3.5: Schematic classification of flow through porous media according to [4]
.

At higher Reynolds numbers the inertial forces become more dominant (see Figure 3.5). For

these cases Forchheimer [27] suggested a non-linear relationship between the pressure gradient

and the superficial velocity more than hundred years ago. His one-dimensional motion equation

takes the form:

Δp = a1Ux + a2U
2
x , (3.19)

where the pressure drop is proportional to the superficial velocities [4]. The first term on

the right-hand side attributes the linear Darcy effects at low velocities, wherein the factor

a1 = μΔl
k

. The second term accounts for the non-linear nature as soon as the inertial forces

became predominant. These inertial forces are proportional to the square of the velocity and the

factor a2 = ρΔl
s

, where s is the scalar Forchheimer term accounting for non-linear pressure drop.

A schematic relationship between the superficial velocity and the pressure drop is depicted in

Figure 3.6. While Darcy’s law only predicts a linear pressure increase with higher velocities,

the Forchheimer model also accounts for non-linear effects. The Forchheimer model is a rather

simple model, but by far not the only one. Other models are presented and in discussed in [4].
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Figure 3.6: Schematic representation of experimental relationship between the superficial velocity and the
pressure gradient according to [4].

The experimentally established law by Darcy for a homogeneous, incompressible fluid was

limited to one-dimensional flow. The extension of Equation (3.18) to three-dimensional flow in

anisotropic media has the form [4]:

〈u〉 = kij

μ
∇p, (3.20)

where 〈u〉 is the bulk-volume average velocity, ∇p the pressure gradient, kij being the per-

meability tensor and μ the dynamic viscosity. This extension was proved to be mathematically

correct and it was found that the permeability tensor kij is a symmetric second order tensor

(kxy = kyx, kxz = kzx, kyz = kzy) [66]. Thus Equation (3.20) reads:

⎛⎜⎜⎜⎜⎝
〈ux〉
〈uy〉
〈uz〉

⎞⎟⎟⎟⎟⎠ =
1

μ

⎛⎜⎜⎜⎜⎝
kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∂p
∂x

∂p
∂y

∂p
∂z

⎞⎟⎟⎟⎟⎠ (3.21)

One-dimensional permeability can be measured in laboratory either by applying a fixed pres-

sure and determining the flow rate through the sample, or by applying a fixed flow rate and
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determining the pressure drop [4]. The flow medium can be a liquid or a gas, although it was

found after comparing many experimental data of different materials that the permeability of

one and the same material varies, depending whether the fluid was an incompressible liquid or

a compressible gas.

The air permeability tends to be higher than the liquid permeability in the same porous media.

The reason is that Darcy’s law is based on laminar flow theory, where a zero fluid velocity is

assumed at the solid wall. This is only true for liquids, while gas molecules are interacting with

the solid wall in form of collisions, especially when the mean free path of the gas molecules

approaches the dimensions of the pores. This flow is known as Knudsen flow [4]. Klinkenberg

[51] derived the following relationship for the permeabilities of gases and liquids:

kg = kl

(
1 + 4c

λ

r

)
, (3.22)

where kg is the permeability of the gas, kl is the permeability of the liquid, λ is the mean free

path of the gas molecules, c ∼ 1 is a proportionality factor and r is the radius of the capillary

tubes in Klinkenberg’s model. Additional models are reviewed in [79].

Recent benchmark studies [2, 93] describe the experimental determination not only of the 1-D

permeability but of the entire permeability tensor in textiles. The basic experimental set-up

can be distinguished by three main criteria:

1. flow geometry (linear, radial),

2. injection boundary condition (constant pressure, constant flow rate),

3. saturation of the specimen (saturated/unsaturated).

In these experiments the position of the flow front of the liquid is tracked and used to determine

the permeability tensor. However, the principal directions of the permeability tensor have to be

known, otherwise more experiments in different directions are needed, or the pressure gradient

has to be measured simultaneously in different directions [2]. If the principal directions of the
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permeability are unknown, as this would be the case in the metallic support microstructure,

six independent experiments would be required to derive all six components of the symmetric

permeability tensor [4].

Another way to determine the permeability tensor is to use the actual microstructures obtained

by measurements (see Chapter 4) and simulate the flow through the pores. This procedure is

used in this work and is described in more detail in Chapter 5.3.1.

3.2.2 Diffusion modelling

The microstructure of SOFCs is normally rather dense with a very low permeability, and mass-

transport is mainly based on diffusion. The species conservation equation for a species i reads:

∂(ρwi)

∂t
+∇ · (ρwiu) +∇ · ji = swi

, (3.23)

where ρ is the density of the gas, wi is the mass fraction of species i, u is the mass averaged

velocity, which is also used in the momentum conservation and continuity equations, ji is the

mass diffusion flux of species i relative to the mass averaged velocity and swi
is the mass source

or sink of the species i.

Here an important term, the mass averaged velocity, needs a more thorough explanation, as

this may lead to some confusion in the definitions of diffusion modelling. A detailed overview

of different reference frames and diffusion fluxes is given in [86]: Each species i in a gas has its

own velocity vi, with respect to a stationary coordinate reference frame. Then its mass flux ni

can be defined as:

ni = ρivi, (3.24)

with ρi as the mass density of species i. The sum over all species yields the entire mass flux nt:

nt =
n∑

i=1

ni = ρu, (3.25)
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where the mass averaged velocity u is defined as:

u =
n∑

i=1

wivi. (3.26)

As it is sometimes more convenient to use a molar reference frame, Equation (3.23) can be

re-formulated with a molar averaged velocity U :

∂(cxi)

∂t
+∇ · (cxiU) +∇ · J i = Sxi

, (3.27)

where c is the mixture molar density, xi is the mole fraction and J i is the molar flux of species

i. Similar definitions as before can be made for the species molar flux N i:

N i = civi, (3.28)

with ci being the molar density of species i. The entire molar flux N t is again the sum over all

species molar fluxes:

N t =
n∑

i=1

N i = cU , (3.29)

where the molar averaged velocity U is defined as:

U =
n∑

i=1

xivi. (3.30)

Various definitions have been introduced which are needed to describe diffusion processes.

Nevertheless, there is more to define because in the species conservation equations (3.23) and

(3.27) the mass diffusion flux ji or the molar diffusion flux J i are needed. These fluxes are

defined relative to the flux of the mixture. And that’s when your headache begins, based loosely

on Elvis, because the first question to answer is which mixture velocity should be used. And

for each reference velocity there are at least two diffusion fluxes which can be defined, mass and

molar fluxes. If the mass averaged velocity u is chosen as reference velocity, the mass diffusion

flux reads:

ji = ρi(vi − u), (3.31)
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with the constraint that the sum of the diffusion mass fluxes is zero:

n∑
i=1

ji = 0. (3.32)

The total mass flux nt and the mass diffusion flux are related as follows:

ni = ji + ρiu = ji + wint. (3.33)

The same holds true if the molar averaged velocity U is chosen as reference velocity:

J i = ci(vi −U ), (3.34)

again with
n∑

i=1

J i = 0. (3.35)

The total molar flux N t is related to the molar diffusion flux by:

N i = J i + ciU = J i + xiN t. (3.36)

It is possible to convert the diffusion fluxes from one reference frame to another. For example

the transformation of the mass diffusion flux ji relative to the mass averaged velocity u to the

mass diffusion flux jUi relative to the molar averaged velocity U is defined by [86]:

jUi =
n−1∑
k=1

Buo
ik jk, (3.37)

where the coefficients of Buo
ik are given by:

Buo
ik = δik − wi

( xk

wk

− xn

wn

)
. (3.38)
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The inverse transformation is defined as:

ji =
n−1∑
k=1

Bou
ik j

U
k , (3.39)

with Bou
ik :

Bou
ik = δik − wi

(
1− wnxk

xnwk

)
. (3.40)

Table 3.1 summarises common reference velocities together with the definition of the diffusion

fluxes and the corresponding constraints.

Table 3.1: Diffusion fluxes and constraints [86]

jai Mass diffusion flux relative to an arbitrary reference velocity

jai = ρi(vi − ua)
∑n

i=1
ai
wi
jai = 0

ji Mass diffusion flux relative to mass averaged velocity

ji = ρi(vi − u)
∑n

i=1 ji = 0

jUi Mass diffusion flux relative to molar averaged velocity

jUi = ρi(vi −U )
∑n

i=1
xi

wi
jUi = 0

Ja
i Molar diffusion flux relative to an arbitrary reference velocity

Ja
i = ci(vi − ua)

∑n
i=1

ai
xi
Ja

i = 0

J i Molar diffusion flux relative to molar averaged velocity

J i = ci(vi −U )
∑n

i=1 J i = 0

Ju
i Molar diffusion flux relative to mass averaged velocity

Ju
i = ci(vi − u)

∑n
i=1

wi

xi
Ju

i = 0

Why to bother with different reference velocities? The answer is that under certain conditions

either the mass or the molar averaged velocity is zero and Equations (3.23) and (3.27) simplify.

As an example, this is the case in an anode of the SOFC where an H2-H2O-fuel mixture is used.

An equimolar counter-diffusion takes place where for each hydrogen molecule that diffuses from
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the gas-channel to the anode-functional-layer, one water molecule is formed and diffuses back

NH2O = −NH2 . This results in a zero entire molar flux and thus also the molar averaged

velocity has to be zero:

N =
n∑

i=1

N i = ctU = 0. (3.41)

However, this does not mean that the mass averaged velocity u is zero as well. In the case of a

H2-H2O-fuel mixture the ratio of the molecular weight of water and hydrogen is 9. This means

that for each water molecule which diffuses from the anode-functional-layer to the gas-channel,

9 hydrogen molecules would have to diffuse in the opposite direction to satisfy the diffusion

constraint in Equation (3.32), which would increase the driving force of the hydrogen diffusion.

This effect is balanced by a mass averaged velocity from the anode functional layer which

transports the water vapour to the gas-channel. The result of this is a pressure gradient in the

microstructure which has a significant influence on the results, when the Maxwell-Stefan model

(see Chapter 3.2.2.2) is applied, where the pressure gradient is part of the driving force. The

differences and the influence on the concentration over-potential will be shown in Figure 6.13

in Chapter 6.2.

3.2.2.1 Fick model

The species conservation equations (3.23) and (3.27) contain the mass and molar diffusion

fluxes. It is hard to determine the species velocity vi by measurements, for which reason

constitutive laws are needed to model these diffusion fluxes. Fick was one who provided an

empirical law to relate the diffusion fluxes to concentration gradients [86]:

ji = −ρDij∇wi. (3.42)

Dij is the binary diffusion coefficient of species i diffusing in species j, defined in Chapter 3.2.3.

Equation (3.42) represents the mass diffusion flux in a mass averaged velocity frame. The mass
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diffusion flux in a molar averaged velocity frame would be:

jUi = −Mi
ρ

M
Dij∇xi with

n∑
i=1

wi

xi

jUi = 0, (3.43)

where Mi is the molar mass of species i and M is the molar mass of the mixture. Note that

normally ji �= jUi , but the entire mass flux of species i has to be same:

ni = ji + ρiu = jUi + ρiU . (3.44)

In analogy, the Fick equation (3.42) in the mass averaged frame can be defined for molar

diffusion fluxes in a molar averaged velocity reference frame:

J i = −cDij∇xi. (3.45)

3.2.2.2 Maxwell-Stefan Model

A more general model to describe diffusive fluxes especially of more than two components is

the Maxwell-Stefan model. It is capable of describing typical diffusive effects which occur at

multi-component diffusion like counter-diffusion. In the limit of binary-diffusion the Maxwell-

Stefan model reduces to the Fick model. The derivation of the Maxwell-Stefan model is based

upon a force balance on a control volume [86]. The general Maxwell-Stefan equations have the

form [53]:

di =
n∑

j=1

xixj(ui − uj)

Dij

(3.46)

The driving force di for ideal gas mixtures, without external body forces, can be formulated as

follows:

di ≡ −∇xi − 1

p
(xi − wi)∇p. (3.47)
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The diffusion coefficient Dij in Equation (3.46) is called the Maxwell-Stefan diffusivity and is

related to the binary diffusion coefficient:

Dij = DijΓ, (3.48)

where Γ is the thermodynamic factor, which can be assumed to be Γ = 1 for gaseous mixtures

at low to moderate pressures [53].

Using the definition of molar fluxes N i = ciui, Equation (3.46) can be reformulated [86]:

−∇xi − 1

p
(xi − wi)∇p =

n∑
j=1

(xjN i − xiN j)

ctDij

, (3.49)

or in terms of molar diffusion fluxes J i:

−∇xi − 1

p
(xi − wi)∇p =

n∑
j=1

(xjJ i − xiJ j)

ctDij

, (3.50)

Unlike the Fick model no reference velocity is defined in the Maxwell-Stefan model (Equa-

tion (3.46)), where the species velocities (ui−uj) are affected by the driving force. Only n− 1

molar diffusion fluxes J i are independent. The selected reference frame resides in the chosen

constraint:

n∑
i=1

J i = 0 → molar averaged velocity frame (3.51)

n∑
i=1

wi

xi

J i = 0 → mass averaged velocity frame (3.52)

Although it may be sometimes more convenient to use one or the other reference frame, it is ad-

vised to use the mass averaged velocity u because this velocity is also defined in the momentum

equations. If the velocity u is not zero, a pressure distribution within the microstructure will be

calculated, which has a significant influence on the driving force of the Maxwell-Stefan model

and the results (see Chapter 6.2.2).
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3.2.2.3 Dusty-Gas Model

Both, the Fick and the Maxwell-Stefan model, describe the diffusion of gases. In a porous

matrix the interaction between the gaseous species and the pores gets more important. In

general, three different types of diffusion mechanisms can be distinguished, depending on the

pore size [53]:

• Bulk or free molecular diffusion is significant for large pore sizes, typically >1μm;

• Knudsen diffusion becomes more dominant if the mean-free path of the species is much

larger than the pore diameter. In this case it is more likely for the gas-molecules to hit

the walls than to interact with each other;

• Surface diffusion of absorbed molecular species along the pore wall surface, which is

prevailing in micro-pores <2 nm.

The dusty-gas model is an extension of the Maxwell-Stefan model taking into account dust

particles as an additional species, and considering the interaction between the n species with

the immobile and evenly distributed dust particles. The basic equations read [53]:

− 1

RT
∇pi =

n∑
j=1

(xjN i − xiN j)

Deff
ij

+
N i

Dk,i

. (3.53)

Dk,i represents the effective Knudsen diffusion coefficient of species i, defined in Chapter 3.2.3.

The meaning of the effective diffusion coefficient Deff
ij is a scaled binary diffusion coefficient,

which takes into account the influence of the microstructure on the mass-transport, and will

be addressed in more detail in Chapter 3.2.4.

It was stated earlier that Knudsen diffusion becomes more dominant if the mean free path of

the species molecules is in the range or smaller than the mean pore diameter. The mean free

path λH2 of H2 can be estimated according to [94]:

λH2 =
RT√

2πd2H2
Nap

, (3.54)
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where Na is Avogadro’s number, R is the gas constant, T is the temperature, dH2 is the diameter

of the H2 molecule and p is the pressure. At an operating temperature of 923K and a pressure

of 1× 105 Pa, and by assuming that the diameter of H2 is dH2 =0.2 nm, the mean free path of

hydrogen molecules is close to 700 nm. Martin Knudsen also defined a dimensionless number,

the so-called Knudsen-number Kn [4]:

Kn =
λ

L
, (3.55)

depending on the mean free path λ of the molecules and a characteristic length L which could

be i.e. the average pore diameter dp.

Knudsen diffusion is relevant if the Knudsen-number Kn > 1. At the same time this would

violate the validity of the continuum modelling approach where the application of the Navier-

Stokes equations is justified. This is normally at Kn < 0.01, while at Kn ≈ 1 a slip-flow regime

must be assumed [4]. The modelling approach of the Knudsen diffusion takes molecule-wall

interactions into account, but is coupled in SOFC-simulations with the continuum approach,

which is no longer applicable. Instead statistical mechanics should be pursued. However,

the dusty-gas model is widely used in SOFC-simulations [31, 84, 95, 98] with or without the

knowledge of its limitations.

3.2.3 Diffusion coefficient modelling

The binary diffusion coefficient Dij needed for the diffusion models can be estimated by several

correlations, namely the Chapman-Enskog model, the Wilke-Lee model or the Fuller-Schettler-

Giddings model. A summary of those models can be found in [70]. Only the Chapman-Enskog

model is repeated here to highlight the dependencies of the diffusion coefficient. The model is

based on the Boltzmann equation and it reads for ideal gases [74]:

Dij =
0.00266T 3/2

pM
1/2
ij σ2

ijΩD

, (3.56)



36 Chapter 3. Theoretical background

where σij is the characteristic length defined as the average

σij =
σi + σj

2
, (3.57)

Mij is calculated with the molar masses of the species i and j

Mij =
2(

1
Mi

)
+
(

1
Mj

) , (3.58)

and ΩD is the diffusion collision integral:

ΩD =
A

T̂B
+

C

exp (DT̂ )
+

E

exp (FT̂ )
+

G

exp (HT̂ )
(3.59)

where

T̂ =
kT

εij
A = 1.06036 B = 0.15610

C = 0.19300 D = 0.47635 E = 1.03587

F = 1.52996 G = 1.76474 H = 3.89411.

The Lennard-Jones energy εij can be determined with:

εij = (εiεj)
1/2 . (3.60)

Thus, the binary diffusion coefficient depends mainly on the temperature and the pressure.

For small porous structures the diffusion coefficient for the Knudsen diffusion is defined as [83]:

Dki =
dp
3

√
8RT

πMi

. (3.61)

It mainly depends on the pore diameter dp and the temperature. Very small pore diameters

will lead to a small Knudsen diffusion coefficient. Looking at Equation (3.53) the following

cases can be distinguished:
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1. dp 
 → Dki 
 → Diffusion mainly influenced by Dki

2. dp 
 → Dki 
 → Diffusion mainly influenced by Dij.

3.2.4 Effective diffusion coefficient

In Chapter 3.2.2.3 an important term for the simulation of homogenised microstructures was

introduced: the effective diffusion coefficient Deff
ij . Simulations on cell- or stack-level are lim-

ited by computer resources, so that a detailed resolution of the microstructure is not feasible.

Therefore, these models have to rely on the description of a pseudo-homogenised microstructure,

where the complex microstructure is considered as a block with constant porosity ε, tortuosity

τ and permeability K. This approach is also applicable with the previously introduced Fick

and Maxwell-Stefan model, where the binary diffusion coefficient is replaced by the effective

diffusion coefficient. The reliability of the results depends on an accurate determination of

these microstructural parameters.

The determination of the microstructural porosity, as well as the tortuosity will be briefly

discussed. An averaged porosity can be easily retrieved from the reconstructed geometry:

ε =

∑n
i=1 Vcell,i

Ve

, (3.62)

where Vcell,i is the volume of the i-th porous computational cell and Ve is the entire volume of

the reconstructed geometry.

The tortuosity is more difficult to define, let alone to determine. Various definitions exist in

literature [82]. A simple geometrical definition of the tortuosity in 2-D is the ratio between the

actual distance Leff between point A and B and the geometrically shortest distance L :

τ =
Leff

L
. (3.63)
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A

B�
��

L
�
��

Leff

Figure 3.7: Shortest and tortuous path between two points.

Experimental approaches to determine the tortuosity, like saturation current density meas-

urement [87] or mercury intrusion porosimetry [34], are still indirect measurements, as the

parameter cannot be measured directly [82].

With the possibility to retrieve 3-D information of the microstructure via measurements tech-

niques described in Chapter 4, computational algorithms like the fast marching method [47]

or the centre of mass calculations [33] can be used to determine the geometrical tortuosity.

However, the tortuosity was originally introduced as a kinematic property in SOFC models [1],

comparable to the relative average length of the flow path of one fluid particle from one side of

the porous structure to the other, and does not necessarily equal the geometric definition.

Both, the porosity and the tortuosity are used to scale the binary diffusion coefficient in a way

that the solution of a macroscopic approach would yield the same mass-fluxes as the result in

the complex microstructure. A comparison between the diffusion flux models of pure gases and

gases in an ideal microstructure suggests the definition of a scaling factor f so that Deff
ij = fDij.

The analytical solution of Fick’s law in Equation (3.42) yields:

ji = −ρDij
Δwi

L
, (3.64)

where Δwi is the difference between the mass fractions at a distance L. The binary diffusion

coefficient Dij can be calculated by using various models [74], e.g. Wilke-Lee or Fuller. The

decreased mass diffusion due to the presence of a porous media is taken into account by using

a scaled effective diffusion coefficient:

jporousi = −ρDeff
ij

Δwi

L
. (3.65)
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jporousi describes the superficial axial diffusion through the porous matrix. But also the un-

derlying driving force Δwi/L is influenced by the tortuosity [4, 24]. A definition of the average

diffusional flux through the pores reads:

ji,p = −ρDij
Δwi

Leff

. (3.66)

In order to relate the actual flux in the pores ji,p to the superficial axial diffusion flux jporousi

the residence time tr of species i could be used, as this has to be the same for both approaches:

tr =
Lρε

jporousi

=
Leffρ

ji,p
(3.67)

Note that jporousi /ε would equal the interstitial axial diffusion. Simplifying Equation (3.67) yields

jporousi = ε
L

Leff

ji,p. (3.68)

Inserting Equation (3.66) into (3.68) and using the definition of the geometric tortuosity in

(3.63) results in

jporousi = −ρ
ε

τ 2
Dij

Δwi

L
. (3.69)

A comparison between Equation (3.65) and (3.69) shows the relation between the binary dif-

fusion coefficient and its effective counterpart for the microstructure:

Deff
ij =

ε

τ 2
Dij. (3.70)

For convenience a scaling factor f can be defined, which incorporates the effects of the micro-

structure:

f =
ε

τ 2
. (3.71)

Although the derivation of the correct scaling factor is straightforward, many SOFC-models [1,

16, 84, 95] use a wrong formulation f = ε/τ. In these macro-scale simulations the tortuosity is

often used as a fitting parameter, in which case the misinterpreted use seems not to be crucial.

However, correct model equations must be applied, if reliable results are to be expected. This
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is even more important in microstructural modelling, where the wrong formulations would lead

to erroneous results.

main flow channel

dead-end pore with
practically stagnant fluid

practically
stagnant
pockets

bottleneck

Figure 3.8: Dead-end pores, stagnant pockets and bottlenecks will effect the diffusion in the microstructure
according to [4].

The definition of the geometrical tortuosity in Equation (3.63) is an idealised approach, which

is not sufficient to describe real microstructures, where also pockets and dead-end pores can be

present that influence the diffusion, as pictured in Figure 3.8. In addition to dead-end pores,

orifices which impede diffusion have also be taken into account [83].

All these additional microstructural effects are included in the computed tortuosity, for which

reason the geometrical definition holds true only for ideal microstructures. This will be shown

in Chapter 6.2, where also the correct derivation of the scaling factor in Equation (3.71) will

be validated. The tortuosity should therefore be understood as a parameter which describes

the microstructure, including orifices, pockets and dead-end pores.



Chapter 4

Geometry reconstruction

The starting point for a simulation is the creation of a computational geometry that resembles

reality, and the discretisation of this geometry into a grid, on which the physical models can be

solved numerically. The following chapter describes different measurement techniques of micro-

structures and the reconstruction into a computational geometry. The implications of different

possible boundary conditions will be addressed, as well as the problem of the representativity of

the investigated volume. Furthermore, different surface representations are compared, namely

a voxel (stair-step) surface and a smoothed (body-fitted) surface. Finally, the set-up of an

artificial geometry with known geometric properties for validation purposes is described.

4.1 Sample measurement

The microstructure of the electrodes of an SOFC can be analysed by e.g. focused ion beam -

scanning electron microscopy (FIB-SEM) or X-ray computed tomography (CT). The established

methodology is to apply FIB-SEM measurements on regions with a fine porous structure where

a high resolution is needed, see e.g. [47]. The drawback of this procedure is that only a small

volume of the electrode can be investigated, whereas CT-scanning can be used to measure a

larger region of the microstructure, given that the resolution is good enough to resolve the

pores. Nevertheless, X-ray nano-tomography yields comparable results to FIB-SEM [65, 81]

41
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even on smaller scales. The two approaches which complement and overlap each other in their

regime of use are described in the following sections.

4.1.1 Focused-ion-beam scanning-electron-microscopy

The basic procedure in the FIB-SEM approach is the ablation of the material with a high current

focused-ion-beam and the evaluation of the new surface with scanning-electron-microscopy. A

concise description of the FIB-SEM methodology is given in [45]. The process starts with a

preparation of the porous sample by infiltrating it under vacuum with a two component epoxy

resin. Thus, the mechanical stability is enhanced, milled out material is not deposited in the

pores and uncontrolled break-away of particles can be avoided. Furthermore, the contrast

between the dark resin and the surrounding material (grey) is much better compared to pure

voids, which facilitates the subsequent segmentation between the material and the pores.

The basic assembly is shown in Figure 4.1, where the FIB system is operated at high beam

currents to remove material layers with a precision on sub-micron scale [26], and the new

surfaces are imaged using SEM. This process is repeated several times to obtain the depth

profile of the microstructure.

Figure 4.1: Schematic assembly of a FIB-SEM [102].
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4.1.2 X-ray computed tomography

In contrary to the FIB-SEM approach X-ray CT is a non-destructive method. The basic

assembly can be seen in Figure 4.2. The sample is rotated, while the absorption of the X-

ray radiation is measured in the detector. An algorithm reconstructs a 3-D model, using the

absorbed intensity for each rotation angle of the sample. This generated 3-D model can in turn

be converted into a 2-D image stack with the corresponding depth information. The quality of

the results depends on the contrast between the materials, and the resolution of the pictures.

For more information the reader is referred to [14] and [49].

Figure 4.2: Schematic assembly of an X-ray nano CT system: X-ray optics are utilised to focus the incident
and transmitted beam, enabling high-resolution 3D X-ray CT imaging [81].

4.2 Reconstruction algorithm

The input of the experimental methods described in 4.1.1 and 4.1.2 for the reconstruction is an

image-stack of 2-D pictures, which represent the slices of the material in one direction. The data

is processed using an in-house algorithm [56], where statistical functions, based on [11, 19, 97,

100], are applied to evaluate the data. The main goal is to regenerate the microstructure into a

computational mesh. The 2-D pictures are processed consecutively, and the grey-scale value of

each pixel is compared to the overall histogram of grey-scale values and to the surrounding in
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order to determine whether it represents pores or material. Thus the positions where solid or

pores are prevailing are identified. The result of one evaluated picture is shown in Figure 4.3.

200 μm

Figure 4.3: Left-hand side shows a single 2-D image representing a slice through the obtained 3-D microstruc-
ture with X-ray CT-scans. The digitalised binary image is shown on the right-hand side (white → material,
black → pores) [78].

The obtained information of the algorithm is passed to an utility which builds a 3-D voxel mesh

with the information of the centre points and the size of the voxels. The dimensions of one voxel

correspond to the pixel size and the step width. A schematic description of the reconstruction

of a computational geometry out of an image stack is shown in Figure 4.4. From the measured

volume ≈1100 μm × 2200 μm × 370 μm a geometry with a volume of 300 μm × 300 μm × 350 μm

is selected and reconstructed.

In addition to that, the algorithm applies a special treatment on the lateral boundary faces

(parallel to the main diffusion direction, which is in z-direction) and tries to create periodic

boundary conditions. The state-of-the-art approach is the application of symmetry boundary

conditions which result in a wall and no mass-diffusion in or out of the geometry [33, 35, 45,

46, 94]. This will basically introduce a lot of dead-end pores and will have, depending on the

microstructure, an huge influence on the solution, as reported in [78]. Periodic boundaries on

the other hand allow mass transport through the boundary by defining that the mass, which

leaves on the one side, has to enter on the other, ensuring mass conservation.

One remedy so far is to perform the computation on a sufficiently large volume, so that the

ratio between blocked pores due to boundary restriction and continuous pores is very low. In
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this case, the influence of the suboptimal symmetry boundary condition will be negligible. The

drawback is that a much larger volume of the reconstructed geometry has to be used which

leads to the requirement of more computing power and time to perform the simulation. It

was shown in [46] that with increasing volume the values of interest (e.g. porosity, tortuosity)

converge because the error due to transport via the lateral boundaries decreases. However, no

comparison between periodic and symmetry boundary conditions and their influence was made.

So far only the effect of different boundary conditions for the top and bottom boundaries is

analysed by [55], but not for the lateral boundaries. This gap is closed in this work.

Figure 4.4: Reconstruction of a computational geometry out of an image-stack data-set obtained with X-ray
CT [78].

In order to evaluate where periodic boundary conditions can be applied, it is tested if each

boundary face on one wall has an corresponding face on the opposite wall. If faces are congruent

the labels of these faces are copied in a list where periodic boundaries can be applied, while

all boundary faces without an opposite face are written in another list, where only symmetry

boundary conditions can be applied. It was thus possible to get the periodic behaviour of the

geometry without changing the geometry as such. This approach is straightforward for a voxel-

mesh where the faces are either congruent or the don’t overlap each other. For the smoothed

mesh, no standard tool was available to determine the periodicity because in this case the

opposite faces can partially overlap each other. The result of the boundary face evaluation can
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be seen in Figure 4.5, where boundary faces in dark blue represent symmetry walls and red

boundary faces correspond to periodic boundaries. It is impossible to obtain a 100% periodic

boundary in a real microstructure. In the evaluated metallic support the amount of periodic

boundary compared to the entire boundary area is about 17%. However, with the application

of partly periodic boundary conditions many pores are connected with the opposite side, and

the amount of dead-end pores is reduced.

Figure 4.5: Computational geometry with lateral boundaries shown in dark blue → symmetry and red →
periodic boundary. The diffusion path is from top to bottom. Approximately 17% of the lateral boundary area
can be defined to be periodic boundaries. The size of the geometry is 300 μm × 300 μm × 350 μm [78].

4.3 Representative equivalent volume

One problem which arises in microstructural modelling is the question of how trust-worthy the

results are. The reconstructed volume on which the computations are carried out is roughly 5

millionth of the entire electrode volume. It is very important to determine a volume that delivers

representative results. If the control volume is too small, microscopic effects will prevail and
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large fluctuations can be observed [4]. At a certain volume these fluctuations become smaller

and eventually will converge. One way of finding a representative volume is the so called

windowing technique. In this approach a property that describes the microstructure (e.g.

porosity) is evaluated for an initial, arbitrarily chosen volume. Then the volume is increased

incrementally till the property has reached a constant value [46]. This volume is considered to

be large enough to resemble the average properties of the entire electrode.

In order to find a representative volume of the metallic support an algorithm is programmed

in python [76]. The open-source computer vision library (openCV [71]) is used to process

the pictures. An image segmentation procedure [32] converts the X-ray image stack to binary

images and distinguishes between solid (white) and fluid (black) regions (see also Figure 4.3).

The algorithm starts with a predefined volume, segments the pictures and evaluates the porosity.

Then the initial volume is increased and the porosity is evaluated again. The user is able to

define the initial volume, the increment of the volume and how often it should be made larger.

Figure 4.6: Algorithm to determine a representative volume of the metallic support. The porosity is evaluated
for increasingly larger volumes till a constant porosity is reached. The minimum representative volume lies in
the range of 0.1mm3 which corresponds a cube with approx. 500 μm × 500 μm × 350 μm.
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The result is plotted in Figure 4.6. At least a volume of 0.1mm3 is needed for a poros-

ity which varies only by 2%. This would correspond to a cube with dimensions of about

500 μm × 500 μm × 350 μm. The length of 350 μm is limited by the height of the metallic sup-

port. A geometry of this size with a resolution of one computational cell being 1 μm3 will

require 87.5 million cells, which is unfeasible for the computation on standard workstations.

This large representative volume is an indication for the inhomogeneity of the microstructure,

which requires a special treatment to ensure representative and thus reliable results. Five

independent sample positions on the scanned metallic support where chosen and geometries

with a size of 200 μm × 200 μm × 350 μm where reconstructed. The size is a trade-off between

a representative volume and a feasible amount of computational cells so that the computations

won’t need too much resources. The location of the different sample positions can be seen in

Figure 4.7.

Figure 4.7: Top view of the metallic support with positions of the arbitrarily chosen samples. It is ensured
that the sample positions don’t overlap and a certain distance is kept to the edges [78]. One continuous square
represents an area of 100 μm × 100 μm.

Although smaller than the computed representative volumes, the evaluation of different sample

positions will give a more reliable picture of the microstructure. This is especially true in a

very inhomogeneous electrode because several different positions are evaluated which can hugely

differ from each other.
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One option to reduce the amount of computational cells and to enlarge the considered volume

is to increase the size of the computational cells. A doubling of the voxel length from 1 μm to

2 μm results in a decrease of computational cells by a factor of ≈ 23 = 8. Figure 4.8 shows

the reconstructed geometry with a volume of 350 μm × 350 μm × 350 μm and from left to right

voxel lengths 1 μm, 2 μm and 3 μm.

Figure 4.8: Reconstruction of the same geometry with varying voxel volumes from left to right 1 μm3, 8 μm3

and 27 μm3. The circles indicate regions where the pores are not resolved properly and information is lost,
compared to the 1 μm3 case.

It has to be noted that the resolution of the X-ray scan is 1 μm and that the reconstruction

algorithm uses this resolution for the segmentation. The outcome of this process step is the

left picture in Figure 4.8 with a voxel length of 1 μm. Once the images are segmented a factor

can be defined which determines how many pixel should be combined to one. In 3-D a factor

of 2 leads to a new voxel which consists of 23 = 8 smaller voxels. Whether the new voxel is

solid or fluid depends on the smaller voxels. If the amount of fluid voxels > than the amount of

solid voxels, then the new voxel will also be a fluid voxel. If the number of fluid voxels equals

the number of solid voxels, then the algorithm decides whether the new voxel is fluid or solid

depending on its neighbours.
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The comparison of different voxel volumes and its effects on the number of computational cells

and the porosity is summarised in Table 4.1. The expected decrease in computational cells

can be seen, but also variations in the porosity of ±5% can be observed. It is difficult to

draw conclusions from these averaged values, so it is worth looking at Figure 4.8 and make a

visual comparison between the reconstructed geometries. From this, it can be seen that both

geometries with larger voxel-volume lose information and some pores are neglected. Especially

bottlenecks between pore volumes tend to be ignored after the change of the resolution, so that

pores become separated and are deleted by the algorithm.

Table 4.1: Comparison of reconstructed microstructures with different voxel-sizes.

voxel-volume number of computational cells porosity

1 μm3 9.2× 106 0.209

8 μm3 1.2× 106 0.215

27 μm3 0.3× 106 0.197

Furthermore, it is a rule of thumb that at least eight computational cells should fill the diameter

of a pore in order to ensure proper simulation results, e.g. a distinct parabolic profile for flows.

This supports the approach to entirely refrain from changing the resolution of the geometry and

use a voxel length of 1 μm, despite the drawback of the smaller computational volume which

can be evaluated.

4.4 Smoothing of the geometry

The outcome of the reconstruction algorithm (see Section 4.2) is a voxel (stair-step) mesh,

meaning that the volume is represented by cubes, and the surface will be overestimated. This

may not have an impact in simple problems, like the concentration distribution within the

porous microstructure, but it probably has a significant influence on processes where the surface
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area is of importance, like e.g. the pressure drop and surface reactions. It is therefore of the

utmost importance to represent the structure in an accurate way and in its smooth nature. In

literature a rescaling of Π/6 is proposed [55], but it was pointed out by [78] that the rescale factor

depends also on the voxel resolution and the algorithm’s capability of recreating the structure

with voxels.

In the following section the procedure to smooth the voxel geometry is presented. In order

to achieve the smoothing, the open-source utility snappyHexMesh which comes along with

the OpenFOAM distribution is used. The snappyHexMesh utility is capable of producing

3-D hexahedral and split-hexahedral meshes from triangulated surface geometries in stereo-

lithography (.stl) format. The initial surface is approximated by refining a starting mesh and

morphing the resulting mesh on the surface. Therefore, a coarse hexahedral mesh is defined

which overlaps the surface of the microstructure. Each cell that is intersected by the surface is

split into eight smaller cells. This process is repeated several times till the refinement at the

surface reaches a desired quality.

In a next step the algorithm determines which cells are inside or outside of the STL-surface and

removes the predefined ones. The remaining part is called castellated mesh. The last step is

the snapping to the surface, where the vertices in the castellated boundary are displaced onto

the STL-surface, trying to preserve a pre-defined mesh quality. A more detailed description

including pictures to illustrate the process can be found in [20, 72].

The surface of the original voxel geometry could be easily extracted and exported in an stl-

format using the open-source software ParaView [50]. Two routes have been pursued in order

to obtain a smoothed geometry. The first one was to directly use the voxel-surface and try

to use bad feature snapping parameters in snappyHexMesh to smooth the surface. The other

attempt was to smooth the surface prior to the snapping. A comparison between the original

and the smoothed surface can be seen in Figure 4.9.
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Figure 4.9: Comparison between the original rough voxel-surface (left-hand-side) and the smoothed surface
(with Meshlab) (right-hand-side).

The smoothing of the surface was carried out with the open-source meshing software Meshlab

[39]. It offers a huge variety of different filters and morphological operations. One technique to

smooth the surface is to use the Gaussian smoothing method, which is a linear technique where

the new position of each vertex is computed as a weighted average of the current positions of

the vertex itself, and its neighbours which share an edge with the current vertex. It is discussed

that this smoothing method has a number of advantages, but produces shrinkage [85].

The Gaussian smoothing algorithm calculates a vector average for each vertex vei:

Δvei =
∑
j∈ĩ

wij (vej − vei). (4.1)

The weights wij for each vertex vei are positive and add up to one. Good results can be

obtained with all weights wij set equal to the inverse of the number of neighbours 1/|̃i|. After

all vector averages are calculated, the position of the vertexes is updated by adding to each

current vertex position vei the corresponding displacement vector

ve′i = vei + γΔvei. (4.2)

The displacement vector is defined as the product of the vector average Δvei and a scale factor
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γ. The scale factor is a positive number in the range of (0 < γ < 1). This is also the source

of the shrinkage, as the Gaussian algorithm has to be applied for a number of times to acquire

sufficient smoothing. Therefore, [85] suggested to apply two consecutive Gaussian smoothing

steps. The first step is carried out with a positive factor γ and is applied to all vertexes. After

that, a second Gaussian smoothing step is applied to all vertexes, with a negative scale factor

θ, which is greater in magnitude than the first scale factor (0 < γ < −θ) to prevent shrinking.

In the current work the improved Gaussian smoothing method is used and the result can be

seen in Figure 4.9 on the right-hand-side.

The result of the creation of a volume mesh out of the original stair-step surface and the pre-

smoothed surface is depicted in Figure 4.10. The left-hand-side shows a rather coarse surface

where the initial cubes still can be seen. In contrast, the right-hand-side shows a smooth mesh,

which is used for the simulations. Due to the better visual result it is proposed to smooth the

surface mesh prior to the creation of a volume mesh.

Figure 4.10: Comparison of the final smoothed volume meshes generated by the snapping of the original
stair-step surface (left-hand-side) and the pre-smoothed surface (right-hand-side). While the stair-step nature
can still be seen on the left-hand-side, the pre-smoothed surface can be converted in a smoothed volume mesh.

SnappyHexMesh offers a wide range of parameters to obtain the desired results. After a lot of

volume mesh creations with different sets of parameters the most important are determined:

refinementSurfaces and nSmoothPatch. The refinementSurfaces defines the min and max re-

finement levels of the initial starting mesh. The more often the starting mesh is refined, the

better the surface mesh is approximated. This can be seen in Figure 4.11 where the red areas

are obtained with a lower refinement level compared to the green areas which fill the stair-step
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surface to a significantly higher degree. The nSmoothPatch sets the number of patch smooth-

ing iterations before the correspondence to the surface is found. The more patch smoothing

iterations are applied the smoother the surface gets.

Higher refinement leads to better representation

Original stair-step surface

Some pores are separated

Figure 4.11: Comparison between the stair-step surface mesh and the final volume meshes for different
parameter settings in snappyHexMesh for an arbitrarily chosen slice position of the geometry. The black lines
represent the original stair-step surface, which is smoothed and then snapped. The red areas show the volume
mesh with a lower refinement, while the green areas are obtained with a higher refinement. The higher the
refinement the better the reconstruction of the initial geometry gets.

A comparison between the geometric features of the voxel and smoothed microstructure can be

found in Table 4.2. A slight difference in the porosity can be observed which may come from

the fact that in the smoothing procedure 1 μm of each edge is cut away to ensure proper results.

The difference between the surface area of nearly 37% is more striking. This is a quantification

of the overestimation of the surface area by the voxel mesh and it is lower compared to the

factor π/6 proposed by [55].

To what extent this will have an influence on the computational results will be discussed in

Chapter 6 and 7. One drawback of the smoothing is the increase of computational cells because

of the algorithm used in snappyHexMesh. Many refinement steps are needed in order to obtain

a good representation of the initial geometry, which in turn results in a higher number of

computational cells.

Another problem which comes along with the creation of a smoothed volume mesh out of

a stair-step surface is that not only the visual result, but also the mesh quality depends on
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Table 4.2: Geometric features of voxel and smoothed microstructure.

porosity surface area computational cells

(-) m2

voxel 0.214 1.40× 10−6 3.1× 106

smoothed 0.207 0.89× 10−6 5.1× 106

difference -3.3% -36.6% 64.5%

the chosen settings for snappyHexMesh. The particular problem in this case are so called

skewed faces. This means that the intersection between a straight line of two centre points of

neighbouring cells and the corresponding cell face lies far away from the centre point of this

face, see Figure 4.12.

Figure 4.12: Description of skewness. The centre point of the shared face f deviates from the point fi obtained
by the intersection between this shared face and a straight line between the two centre points P and N of the
cell [41].

The implication of this is, that the calculation of face integrals requires the value of the variable

in the middle of the face (point f in Figure 4.12):

∫
f

dSφ = Sφf . (4.3)

The face value φf is calculated by linear interpolation between the points P and N. This

actually gives the value of φ at the point fi [41], for which reason the interpolation of the

convection term introduces a diffusion-like error. This error will be smaller compared to the

numerical diffusion from the convection differencing scheme on meshes with reasonable good
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quality (|m| < |d| in Figure 4.12). On highly distorted meshes the influence of this term

can be significant. Nevertheless, this problem can be handled with appropriate settings of the

discretisation schemes. Namely the usage of a least-square gradient scheme in OpenFOAM is

recommended [42, 43].

4.5 Artificial geometry

The complexity of the microstructures often does not allow the comparison of simulation results

with simple analytic solutions. It was therefore tried to create artificial microstructures with

pre-defined geometric features, which could be used for a validation of the simulation results.

Here, a python program is designed which is capable of producing a picture stack (similar to

what would be the input from X-ray tomography) from simple tubes or spheres.

Figure 4.13: Simple artificial microstructure consisting of small tubes with a diameter of 10 μm and a normal
distance of 20 μm. The overall size of the geometry is 222 μm × 286 μm × 213 μm. All faces on opposite walls
are periodic. Note: The pores on the left-hand side look slightly distorted due to the perspective.

One example artificial microstructure is shown in Figure 4.13. It consists of straight tubes

with a diameter of 10 μm and a normal distance of the centre points of 20 μm. In addition to

these values, the user is able to define the direction vector of the pores. With vector analysis

the size of the cube is determined where the boundaries in all three dimensions are periodic.

This is needed to prove the applicability of periodic boundary conditions in microstructural

computations. The heart of the algorithm for pore location determination is summarised in

Listing 4.1
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Listing 4.1: Code snippet from the python program: Determination of tube positions and colouring of picture
1 for i in range ( nx ) :

for j in range ( ny ) :
3 for k in range ( nz ) :

5 # the po in t i s ro ta t ed to a plane or thogona l to the d i r e c t i on vec tor

7 di , dj , dk=drehMatrix ( [ i , j , k ] )

9 # Now the cross s e c t i on o f the tube i s a c i r c l e and
# the ac tua l p o s i t i on i s c a l c u l a t e d with r e spec t to the

11 # dis tance between the tubes

13 dy=np .mod( dj+d i s t ance /2 . , d i s t anc e )−d i s t ance /2 .
dz=np .mod(dk+dis tanceZ /2 . , d i s tanceZ )−di s tanceZ /2 .

15

# i f the l eng t h o f the y , z po s i t i on i s wi th in the tube
17 # radius then the po s i t i on i s marked b l a c k ( False in matrix )

19 l ength=np . sq r t (pow(abs ( dy ) ,2 )+pow(abs ( dz ) ,2 ) )

21 i f l ength<=rad iu s :
data [ i , j , k]= Fal se

23

return data

A 3-dimensional boolean matrix is set up which resembles our picture stack, and is initialised

with True which would equal to white. Every point of this matrix is now rotated with a

rotation matrix in a plane which is orthogonal to the direction vector of the tubes. Thus the

cross sections of the tubes are circles. The distance of the points from the centre points of

the tubes are calculated with a modulo-function. If this distance is smaller than the defined

diameter, the point lies within the tube and is marked black (False) in the original position. The

result is a black and white picture-stack showing the cross-section of the pores for individual

slices (see Figure 4.14). The exported pictures can then easily be converted to computational

geometries using the reconstruction algorithm (see Section 4.2).

Figure 4.14: One generated slice which represents the cross-section of tubes with a pre-defined direction. The
circular sections of the tubes are presented as ellipses.



Chapter 5

Simulation and modelling

5.1 Corrosion simulation

In this chapter the main focus lies on the development of a corrosion model that is capable of

determining the oxide growth and the change of the porous volume in the metallic support.

The main ideas of the model have already been presented in [77] and will not be referenced

each time.

5.1.1 Simulation approach

Various researchers focused on the development of algorithms and models to describe corrosion.

They analysed the species concentration of the metal-ions in the oxide, while the growth of the

oxide was more or less a boundary condition [37, 67–69, 75]. In this work however, it is abstained

from determining the oxide composition, as the focus is laid on the change of the porous volume

due to the oxide growth.

Before coming to the actual model equations it is worthwhile having a short excursus in under-

standing the finite volume discretisation in OpenFOAM. In order to solve partial differential

equations the computational domain is subdivided into small volumes. By applying numerical

methods the partial differential equations are converted into a system of algebraic equations,

58
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which can be solved using appropriate methods. OpenFOAM uses two distinct kind of fields

(arrays) where all values of the discretized geometry are stored: Firstly, volume fields, where

the values (e.g. pressure, temperature, velocity, concentration, porosity, . . . ) are defined at the

cell centres of the volumes. Secondly, surface fields, like for example the mass flux, are stored

at the face centres. In the corrosion model the oxide thickness, as well as the metal-retraction,

are stored at the face centres, while the porosity change caused by corrosion εcorr is treated as

a volume field.

In order to resolve the growing of the oxide a very fine mesh would be required at the metal-

gas interface. Furthermore, the growth of the oxide and thus the decrease of the open pore

space would require the re-meshing of the computational geometry. Both, a large number of

computational cells and the re-meshing of the geometry consume a large amount of computer

resources, which in turn would result in long computation times. In order to avoid the re-

meshing, the growth of the oxide is taken into account as an additional porosity εcorr which

effects the mass-diffusion through the pores. Thus, the amount of computational cells can be

significantly reduced and the re-meshing avoided resulting in fast computations.

The calculations are carried out on a metallic support described in Chapter 2.2, which is

reconstructed into a computational voxel geometry (see Chapter 4.2). It is assumed in the

corrosion model that only the least noble element forms the oxide, which is, in the case of the

metallic support, chromium. The oxide film is considered to be perfectly adherent and does

not show any cracks or holes. Furthermore, it is assumed that the film does not spall.

The oxide growth is described in the initial regime by an integrated and enhanced form of the

linear growth law Equation 3.9:

xcorr(t+Δt) = xcorr(t) +
klΔt

n
κ t ≤ tp, (5.1)

where kl is the linear rate constant, n is the number of corroding faces that belong to one

corresponding source face, κ is the geometry correction factor and tp is the time at which the

linear rate is switched to the parabolic rate. Here, the integrated form of Equation (3.6) is
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implemented with the improvement of limiting the growth by n and the geometry correction κ:

xnew
corr(t+Δt) =

√(
xold
corr(t)

)2
+

kpΔt

n
κ t > tp. (5.2)

A principal sketch of the basic mechanism is depicted in Figure 5.1 and the meaning of n and

κ will be explained below. At the beginning the corroding and the source (retracting) face

(green in Figure 5.1(a)) are identical. The thickness of the oxide, as well as the retraction, are

stored as surface fields. As the oxide grows the porosity in the cell (stored as volume field)

will change (light red in Figure 5.1(b)). At a certain point the first cell will be entirely filled,

and the algorithm will determine the new faces where the corrosion can continue (dark red in

Figure 5.1(c)).

(a) (b) (c)

Figure 5.1: Basic principle of corrosion model implementation: (a) Initial corroding and corresponding source
(retracting) face are the same (green face). (b) The oxide starts to grow and continuously fills the volume of
the cell (red), taking the retraction of the boundary into consideration. (c) After the cell is completely filled
potential faces to neighbouring cells are the new corroding faces (dark red). The distance to the initial source
face (green) is calculated, including its retraction. Now two corroding faces obtain the Cr-ions from one source
face → n = 2 and the growth is limited, to ensure mass conservation of the Cr-ions [77].

The new oxide thickness is determined by vector analysis between the centre points of the

new corroding faces and its corresponding source face, including its retraction. The number of

corroding faces (dark red) that obtain their Cr-ions from one source face (green) is determined.

As shown in Figure 5.1(c), the ratio between corroding faces to source faces is n = 2, and the

growth on these faces is limited, so that the mass of Cr-ions is conserved.

The complementary case would be a computational cell, which corrodes from more than one

side. This cell would be filled twice as fast (if it has two corroding surfaces) than a cell corroding

only from one side. Figure 5.2(a) shows the voxel representation (thick black line) of a straight



5.1. Corrosion simulation 61

line (green). This would be the worst case scenario, where the computational cells are not

aligned with the surface, but rotated by 45◦. The wrong surface interpretation of the voxel

geometry has already been addressed in Chapter 4.4.

(a) (b)

Figure 5.2: Sketch showing the influence of the voxel geometry on the growth and the need for a geometry
correction factor. The initial surface (green line) is approximated by voxel (thick black line). Cells that are
corroding from more than one side are filled earlier, resulting in an overestimation of the oxide growth.

In general a computational cell will be full if the oxide thickness xcorr satisfies:

xcorrκ =
l

Fc

+ r, (5.3)

where κ is the proposed correction factor, l is the edge length of the voxel (equals the length of

the square in Figure 5.2), r is the retraction and Fc is the number of corroding faces per cell.

Figure 5.2(b) shows the state after the first cell layer is entirely filled (red squares). Compare

the continuous black line with the dashed line which would equal the oxide thickness of an 1-D

growth and is lower than the oxide thickness in the voxel case. The introduction of the growth

correction factor κ aims at limiting this grid influence.

After one cell layer is filled, new corroding faces in the voxel geometry are determined as the

interface between oxide and pores and the actual oxide thickness is computed by vector analysis

between the face centre points of the new corroding faces and the shortest distance to the source

boundary faces, including their retraction. This equals the diagonal of the cube (see continuous

black line in Figure 5.2(b):

xcorr = l

√
1

G
+ r, (5.4)
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where G is a growth parameter defined as:

G =

⎧⎪⎪⎨⎪⎪⎩
1 for Fc = 1

2 for Fc � 2

(5.5)

In the case of Figure 5.2 the number of faces per corroding cell F would be 2 and neglecting

the retraction r = 0 in this thought experiment, the cell will be filled twice as fast compared

to a cell corroding only from one side. The new oxide thickness will then jump from l/2 to l/
√
2,

which would correspond to the nearest distance to the source surface. Each time a new cell

layer will be filled the oxide will jump again and the growth will be overestimated.

The Pilling-Bedworth ratio for Chromium is 2.02 [44], and the metal-retraction r can be estim-

ated:

r ∼= 1

2
xcorr. (5.6)

Inserting Equation (5.6) in Equations (5.3) and (5.4) and solving for κ yields a growth correction

factor for Chromium:

κ =

√
G

4F 2
c

+
1

2
. (5.7)

Once the oxide thickness growth Δxt→t+Δt
corr during the time step Δt is determined, an enhanced

form of the proposed mass balance by [37] can be used to calculate the metal-retraction:

Δrt→t+Δt = −Vm
zoxρox
Mox

Δxt→t+Δt
corr

Acorr

Asource

. (5.8)

Equation (5.8) is the combination of Equations (3.11) and (3.12) presented in Chapter 3.1.1,

expanded by the ratio between the corroding area Acorr and the retracting or source area Asource.

This term is important if the calculations are carried out on unstructured grids, where the face

areas may be different. On structured grids Acorr/Asource equals 1.
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With the knowledge of the oxide thickness and the metal-retraction the change of the pore

volume Vdiff can now be estimated:

Vdiff = Acorr (Δxcorr −Δr) . (5.9)

This leads directly to the evaluation of the local porosity εcorr of each computational cell:

εcorr = 1− Vdiff

Vcell

, (5.10)

where Vcell is the volume of a computational cell. A porosity of 1 indicates regions without

oxide, while a porosity of 0 means that this domain is entirely corroded.

The basic work-flow of the corrosion algorithm is summarised in Listing 5.1. During the time

loop the algorithm calculates the oxide thickness either according to the linear or parabolic rate

law. The additional oxide calculated within a time step is used to determine the Cr-ion flux

and thus the retraction of the metal. With the new location of the oxide interface the porosity

can be updated.

As soon as one computational cell is entirely filled with oxide the method handleFilledCells

is called. Here, the storage and coupling of the corroding and source (retracting) faces is

updated. In the first step, each face of the volume cell is identified and it is checked, whether

the neighbouring cell is already filled or not. If it is not filled, the oxide can grow in this

direction. Then the shortest distance to all possible source faces is calculated using vector

analysis, taking into account their actual retraction. It is assumed that the corroding face

obtains its Cr-ions from the closest source face. This pair of faces is stored in a hash-table. The

old corroding faces are deleted from this list. In a final step it is checked, how many corroding

faces belong to one source face (corresponds to the value n) and this information is stored in a

separate hash-table.
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Listing 5.1: Basic functionality of the corrosion algorithm
// function that maps the corresponding corroding

2 // and source faces and stores it in a hashTable
faceTofaceMapping corrFaces <- boundaryFaces [corrosion]

4

while corrFaces.length () >0 do:
6 // solution of the rate law

forAll ith faces from corrFaces
8 if(t<=tp)

solve Equation (5.1)
10 else

solve Equation (5.2)
12 end

// calculation of the metal -retraction
14 forAll ith faces from corrFaces

solve Equation (3.12)
16 end

18 // calculation of local porosity
forAll ith corrodingCells

20 solve Equation (5.10)
end

22

if eps_corr >fillingLimit
24 // handle filled cells

1. find faces to neighbouring cells that are not entirely filled --> insert in corrFaces
26 2. determine the shortest distance to source faces and subtract retraction -->

x_corr_full; add boundary face as corresponding face
3. delete current corroding face from corrFaces

28 end
end

A concise explanation on how the oxide thickness, the weight gain and the porosity is evalu-

ated shall be given. During the corrosion it can occur that one computational cell has more

corroding faces with different oxide thicknesses. This is depicted in Figure 5.1(c), where the

distance between the two dark red faces to the green face differs. The average oxide thickness

is determined by looping over all currently corroding cells and determining the average oxide

thickness.

The evaluation of the mass gain defined as kg m−2 comprises the difficulty to which surface the

additional mass should be related to. The additional weight Δmox can be easily determined by

summing over the incremental oxide volume:

Δmox =
n∑

i=1

ΔxcorrAcorrρox, (5.11)

where ΔxcorrAcorr is the additional oxide volume. The surface area will change during the oxide

growth depending on the curvature of the geometry. In a convex geometry (growing outward)

the surface area will decrease, while in a concave geometry (growing inward) the surface area
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will increase. A more detailed discussion, as well as a figure, can be found in Chapter 6.1.

Due to this change of the surface area it seemed to be best practice to use the initial surface

area Ainit for the calculation of the mass gain wox:

wox =

∑tend

t=0 Δmox

Ainit

. (5.12)

A detailed validation of the corrosion algorithm is presented in Chapter 6.1 and computational

results on real metallic support microstructures are summarised in Chapter 7.3.

5.2 Porosity distribution and geometric evaluation

The measurement techniques presented in Chapter 4.1 provide a deep insight into the complex

metallic support microstructure. In order to get the most out of it, the effort was taken to

program a MATLAB -algorithm that is capable of evaluating the porosity distribution, the

mean pore diameter, number of the pores, etc. which is also presented in [78]. The input-

data are the positions of the centre points of the computational volume cells, including various

additional information e.g. concentration, pressure, mass-flux and oxide at these points. In a

first step the 3-D position information of the cell centres is sorted along a chosen coordinate

axis. If, for example, the z-coordinate is selected for evaluation, the cells are sorted along the

z-axis and for each height a binary matrix is created. The elements of the matrix represent

scalar values at cell centres of the computational geometry at this z-position (0 → metal, 1 →
pore).

These matrices can be processed with the Image Processing Toolbox namely the bwlabel -

function, which evaluates connected components and labels them. Figure 5.3 shows the geo-

metry with its slices and one evaluated sample slice of the geometry. Connected pores are

labelled and highlighted in different colours.

The obtained geometric information of the slices can now be used to determine various micro-

structural parameters. The knowledge of the individual pore areas in each slice can be used to
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calculate an equivalent pore diameter (diameter of a circular shaped pore with the same area).

Also the number of pores can easily be retrieved, by summing up the individual pores per slice.

The porosity distribution can be evaluated by determining the porosity of each slice. This

yields a more significant information of the microstructure, as its homogeneity can be assessed,

or regions with different porosities can be discerned.

Figure 5.3: Evaluated sample slice of the microstructure. Connected pores are highlighted in different colours
[78].

Similarly to the determination of the porosity distribution, also the concentration or the pres-

sure distribution along one coordinate axis can be evaluated. This gives a more profound

picture of the microstructure, as well as the species distribution, and may highlight potential

for improvement.

5.3 Mass-transport simulation

5.3.1 Flow simulation

In general, the flow through a porous medium in macroscopic simulations can be described with

the volume-averaged Navier-Stokes equations [4]. Assuming steady-state conditions, Stokes flow



5.3. Mass-transport simulation 67

(small Reynolds number) and homogeneous porosity these equations can be reduced to Darcy’s

law (Equation (3.20)) [70]. In microstructural modelling, however, the porous structure is

known and the flow is simulated only in the pores, while the solid acts as an obstacle and the

Navier-Stokes equations can be applied [6]:

ρ
∂u

∂t
+ (ρu · ∇)u = −∇p+ μ	u+ (λ+ μ)∇ (∇ · u) + f , (5.13)

wherein ρ is the density of the fluid, u is the actual velocity in the microstructure, p is the

pressure, μ the dynamic viscosity, λ the first Lamé constant defined as λ = −2
3
μ and f describes

various volume forces such as gravity. Together with the continuity equation for incompressible

fluid

∇ · u = 0, (5.14)

Equation (5.13) simplifies to:

ρ
∂u

∂t
+ (ρu · ∇)u = −∇p+ μ	u+ f . (5.15)

In order to solve the momentum equations and to calculate the flow field, standard numeric

techniques are applied namely the SIMPLE -algorithm (Semi-Implicit Method for Pressure-

Linked Equations) [73]. An implementation of this algorithm is provided by the standard

OpenFOAM -solver simpleFoam, which solves the steady-state, incompressible Navier-Stokes

equations, for given boundary conditions.

For a correct solution a sufficiently large in- and outlet section has to be added to the porous

geometry. The length of the inlet section should ensure the formation of a parabolic flow profile.

More care has to be taken at the outlet section, which should be large enough that no back-flow

can occur. As the fluid has to flow through the pores, these act as jets at the outlet yielding

swirls, which could cause back-flows. A longer outlet section allows the flow to level out and

form again a parabolic profile.
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In Figure 5.4 two cases with an in- and outlet section at different flow velocities are shown, where

the flow direction is from left to wright. The dimensions are: inlet section 200 μm; metallic

support 350 μm and outlet section 400 μm. Due to the low velocities and the small pores,

creeping flow can be expected and the Reynolds number indicates laminar flow. Nevertheless,

the in- and outlet section is too short for a velocity of 0.2m s−1, which can be seen at the

distorted streamlines in Figure 5.4(a). The results of such simulations may be influenced by

back-flows and are not reliable. On the other hand, Figure 5.4(b) shows straight streamlines

which go through the microstructure, and expand in the outlet section without distortions.

(a) Pressure distribution and streamlines at a superficial
velocity of 0.2ms−1

(b) Pressure distribution and streamlines at a superficial
velocity of 0.01ms−1.

Figure 5.4: Reconstructed microstructure of the metallic support with an 200 μm long inlet and an 400 μm
long outlet section. The inlet section should be long enough to form a parabolic flow profile, while the outlet
section should assure that no back-flow occurs. In the case of the higher velocity (a) the inlet, as well as the
outlet section is too short and the streamlines indicate back-flow. At lower velocities (b) both sections are
sufficiently large and straight streamlines can be observed.

There is no simple rule of thumb to determine the required length of the in- and outlet sections

because it depends both on the ratio length/pore-diameter (L/D), the flow velocity and the

permeability of the microstructure. Samples with very low permeabilities will have higher flow

velocities in the microstructure, which will require larger outlet sections. From experience the

inlet section can be shorter than the outlet section and a practicable way for microstructures

with low porosities is to use an L/D-ratio of 20 for the outlet-section.

The results of the computation are the pressure distribution and the flow field in the micro-

structure. In the calculation periodic boundary conditions were applied (see Chapter 4.2) at

the lateral boundaries, which leads to ∂p
∂x

= ∂p
∂y

= 0 for a flow in z-direction. Therefore, Darcy’s
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Equation (3.21) can be simplified to

⎛⎜⎜⎜⎜⎝
〈ux〉
〈uy〉
〈uz〉

⎞⎟⎟⎟⎟⎠ =
1

μ

⎛⎜⎜⎜⎜⎝
kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0

0

∂p
∂z

⎞⎟⎟⎟⎟⎠ . (5.16)

This yields three equations for the three unknown permeability-tensor components:

〈ux〉 = kxz
μ

Δpz
ΔLz

〈uy〉 = kyz
1

μ

Δpz
ΔLz

〈uz〉 = 1

μ
kzz

Δpz
ΔLz

, (5.17)

where 〈ui〉 is the superficial velocity in the x, y or z-direction, Δpz is the pressure drop in

z-direction and ΔLz is the length of the microstructure in this direction.

The pressure drop is evaluated as the difference between the area weighted averages of the

pressure at the beginning and the end of the microstructure. The superficial velocities are

extracted from the flow field by [4]:

〈ux〉 = ε ·

⎛⎜⎜⎜⎜⎝
ux

uy

uz

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎠ 〈uy〉 = ε ·

⎛⎜⎜⎜⎜⎝
ux

uy

uz

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠ 〈uz〉 = ε ·

⎛⎜⎜⎜⎜⎝
ux

uy

uz

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠ , (5.18)

where ε is the porosity. It is noted [4], that in reality sometimes a part of the fluid is immobile,

which can occur when adhesion plays a role or when the porous matrix contains a large number

of dead-end pores. In this cases it is suggested to define an effective porosity εeff < ε. An

exemplary comparison between the superficial velocities of an ideal and a real microstructure

and the corresponding implications are discussed in more detail in Chapter 6.2.1.

In order to obtain the entire permeability tensor three calculations, one for each direction

(x,y,z) of the same geometry, have to be carried out. Each time the in- and outlet sections

have to be long enough and the lateral boundaries have to be periodic in order to simplify

the set of equations as shown in Equation (5.16). If the calculated pressure drop shows a

non-linear behaviour, the same routine as with Darcy’s law can be applied to the Forchheimer
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Equation (3.19) to determine the permeability and the Forchheimer term in one calculation.

5.3.2 Evaluation of the scaling factor for the effective diffusion coef-

ficient

The determination of the scaling factor allows a detailed assessment of the mass-transport in

the microstructure. The scaling factor defined in Equation (3.71) is used to take the influence

of the inhomogeneous microstructure on the diffusional mass-transport into account by scaling

the binary diffusion coefficient.

One way to determine the scaling factor is to solve a diffusion equation, either Fick or Maxwell-

Stefan for binary gases. Therefore, any numerical method, e.g. Computational Fluid Dynamics

(CFD) with the finite volume method, the Lattice Boltzmann Method (LBM) or the finite

element method can be applied. The effects of the microstructure are incorporated into the

model through the geometry of the pores. Although this is a straightforward approach attention

has to be paid to the correct application of the lateral boundary conditions. This should be, as

far as possible, periodic boundary conditions to minimise dead-end pores. The pros and cons

of this application is discussed in more detail in Chapter 4.2 and its correctness is shown in

Chapter 6.2.

Inserting Fick’s model (3.42) into the species conservation equation (3.23) yields:

∂(ρwi)

∂t
+∇ · (ρwiu) +∇ · (−ρDij∇wi) = swi

. (5.19)

The aim is to determine the scaling factor for the binary diffusion coefficient, with the following

assumptions to be made: only steady-state will be evaluated; no source-terms are anticipated;

and no convection occurs. Thus Equation (5.19) simplifies to a Laplacian equation:

∇ · (−ρDij∇wi) = 0. (5.20)

Equation (5.20) is solved using the finite volume method implemented in OpenFOAM : The
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volume integral over the cell volume Vp is converted into a summation over all face areas Sf of

the cell volume with the Gauss-theorem:

∫
Vp

∇ · (−ρDij∇wi) dV =
∑
f

Sf (−ρDij∇wi) = 0. (5.21)

The result is the distribution of the mass fraction wi. With this knowledge, the averaged local

flux φ across the boundary surface S can be calculated:

∫
S

φ dS =

∫
S

−ρDij∇windS, (5.22)

where n is the normal vector of the faces S and φ is the mass flux through the microstructure.

This value can be compared to the analytical solution of Fick’s diffusion equation (3.64):

f =

∫
S
−ρDij∇windS

−ρDij
Δwi

L

. (5.23)

Δwi in the denominator is calculated as the difference of the weighted average of the mass

fraction at the top and bottom surfaces, normal to the main diffusion path. Not only the type

of the lateral boundary conditions influences the results, but also the boundary conditions (Di-

richlet, Neumann) at the top and bottom surfaces. As proposed in [55] the following boundary

conditions are applied and a similar tendency is observed and reported in [78]:

• Two fixed mass fractions on the top and bottom boundaries (Dirichlet) result in the lowest

tortuosity value.

• Two fixed fluxes on the top and bottom boundaries (Neumann) yield the highest tortuosity

value.

• The tortuosity value obtained with a fixed mass fraction on the top and a defined flux on

the bottom boundary lies between the above approaches.

The last approach with one fixed mass fraction and a defined flux resembles the physics in the

SOFC most adequately, although the first approach is more stable in numerical terms. With
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the obtained scaling factor f the tortuosity can be calculated:

τ =

√
ε

f
. (5.24)

In order to determine the scaling factor, basically any Laplacian equation can be solved. This

could be the Maxwell-Stefan equation, but also an electrostatic equation [46] can be applied,

where the gas in the pores is assigned a fictive conduction value, or a simple heat conduction

equation could be solved.

5.3.3 Evaluation of the scaling factor with corrosion

The corrosion model presented in Chapter 5.1.1 is capable of determining the change of the

porous volume due to growth of the oxide scale. The decreased porosity will influence the mass-

diffusion in the microstructure. The corrosion and diffusion mechanisms take place at different

time-scales. While the growth of the oxide usually takes several hours, the diffusion occurs in

seconds. The aim of the computation should be the determination of the mass-transport after

40 000 h, in which case time-steps in the order of seconds would be inappropriate. It is therefore

assumed, that the diffusion is quasi steady-state, while the transient corrosion equations are

solved. After a certain time-span, and an quantifiable change of the microstructure, the diffusion

equations are solved and a new species concentration is evaluated.

In order to take the changes of the microstructure into account and to determine their effects

on the scaling factor some extensions to the previously discussed equations have to be made,

which is also presented in [77]. Namely, the additional porosity due to corrosion εcorr has to be

incorporated in Equation (5.20):

∇ · (−ρDijεcorr∇wi) = 0. (5.25)

As a reminder: the corrosion porosity εcorr is 0 in regions that are fully corroded and 1 where

no oxide is prevailing. This definition induces severe numerical problems as Equation (5.25)
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will become zero at certain points. The numerical solution of Equation (5.25) involves the

creation of a system of linear algebraic equations which are obtained by numerical methods.

These equations are written in matrix formulation and solved using special matrix solvers.

Ax = b. (5.26)

The matrix A contains the diagonal and off-diagonal elements of each volume cell and its

neighbours. The vector x would equal the mass-fraction distribution and the vector b contains

explicit terms, as well as boundary and initial conditions. As soon as the diagonal elements

of the matrix A becomes zero, as in the case of εcorr = 0, a division by zero causes a floating

point exception. Therefore, special treatment has to be applied to regions where the corrosion

porosity equals 0.

In a first step the minimum corrosion porosity value is set to 1× 10−10 to avoid division by

zero. In addition to that, the matrix is manipulated so that previously zero diagonal elements

become �= 0. This is done in a way that the solution of the algebraic system still results in a

zero mass-fraction in these cells. Furthermore, a special interpolation scheme is used, which

interpolates the cell volume values to the faces. The interface between the oxide and the pores

is very steep (from 1× 10−10 to 1 in the worst case). Standard linear interpolation may not

represent this effect correctly. Therefore, a harmonic interpolation scheme is used, where the

reciprocal of the interpolation of 1/value is returned. Thus the lower value contributes more to

the interpolated value.

In addition to Equation (5.25) also the calculation of the mass-diffusion flux is influenced by

the corrosion porosity: ∫
S

φ dS =

∫
S

−ρDijεcorr∇windS, (5.27)

and finally the scaling factor can be evaluated by comparing the computed flux in the micro-

structure with the analytical solution of the Fick equation for binary gases:

f =

∫
S
−ρDijεcorr∇windS

−ρDij
Δwi

L

. (5.28)



Chapter 6

Validation

In this chapter the validation of the corrosion (Chapter 6.1) and the mass-transport models is

presented. The focus is laid on the determination of a permeability tensor (Chapter 6.2.1), the

correct implementation of the diffusion equations with the consideration of convective transport

(Chapter 6.2.2) and the determination of a scaling factor for an effective diffusion coefficient

(Chapter 6.2.3).

6.1 Corrosion model

Several test cases were set up to validate the corrosion model and parts of the results were

already published in [77].

6.1.1 One-dimensional growth

The first computation was carried out on a flat plate, where the oxide grows only in one

direction. An arbitrarily chosen kp-value of 2.22× 10−18 m2 s−1 was used for the calculation,

which is in the range of values reported by [3] for the formation of chromia in an oxygen

atmosphere at 700 ◦C.

74
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Figure 6.1: The simulated and theoretical oxide thickness and mass gain for a simple test geometry with oxide
growth only in one direction [77].

The computed oxide thickness and the mass gain are compared to the 1-D parabolic rate law

(Equation (3.4)). In the simple test cases only the parabolic growth was simulated. The results

are plotted in Figure 6.1. A perfect agreement between simulation and theory can be seen for

both, the oxide thickness and the mass gain, which demonstrates the correct implementation

of the model.

Figure 6.2: Rotated square with an edge length of 10 μm, where the edges are represented by stair steps. The
oxide thickness after 500 h is shown.
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6.1.2 Growth correction for voxel geometries

In more complex geometries it is unavoidable that the original surfaces are approximated by

voxels, which will lead to an overestimation of the surface (see Chapter 4.4) and a faster growth

of the oxide if one computational cell is corroding from more than one side. A growth correction

factor κ has been introduced in Chapter 5.1.1 that accounts for this higher growth rate. The

geometry together with the computed oxide is shown in Figure 6.2, where a cube with an edge

length of 10 μm is rotated by 45◦, so that the edges are represented as stair-steps.

The computed oxide thickness with and without the growth correction is plotted in Figure 6.3.

The voxel length is 0.1 μm and each time one cell layer is filled the oxide jumps. In the case

of no growth correction this error sums up and is about 10%. The growth correction slows

down the growth of the oxide so that it balances the jumps and only a small difference (∼1%)

between the computed oxide thickness and the 1-D growth can be discerned.

Figure 6.3: Comparison of the oxide thickness for the square geometry shown in Figure 6.3 computed with
and without the growth correction and the 1-D growth.
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6.1.3 Growth on convex and concave surfaces

In a further step a geometry was created representing a ring with a diameter of 10 μm. Two

cases were calculated: Firstly, the convex case, where the oxide grows outward, and secondly,

the concave case, where the oxide grows inward. A result of the two test cases with the oxide

distribution is shown in Figure 6.4. The parabolic rate constant is the same as in the one

dimensional case. The black ring in the middle of the red oxide is the initial surface. Note: the

position of this initial surface is not changed during the calculation, but the metal-retraction

is stored at the boundary faces. Fully corroded regions are coloured red. In this region no

diffusion can occur and the corrosion porosity εcorr is zero. In the blue regions no oxide is

hindering the mass transport.

Figure 6.4: Oxide growth on a simple geometry representing a ring with a diameter of 10 μm, which is
discretized using equidistant voxel with a volume of 1× 10−21 m3. Fully corroded areas are coloured red, while
in the blue regions no oxide is prevailing. The inner part of the ring is referred to as concave, while the outer
part is convex. Note: The metal-retraction is only calculated and stored at the boundary faces (in this case the
initial ring (black)), with no change of the initial geometry [77].

The comparison between the average thickness computed by the corrosion algorithm and the 1-D

parabolic thickness is shown in Figure 6.5. Several conclusions can be drawn from this result:

Firstly, the oxide thickness in the concave case is slightly higher compared to the convex. This

means, that the oxide grows slightly faster inward than outward because the diffusion paths of
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the Cr-ions are shorter in the concave (inward) case and therefore the oxide can grow faster.

Secondly, the results show a good agreement with the 1-D parabolic rate law.

Figure 6.5: Comparison of the oxide thickness between a concave (inward) and a convex (outward) geometry.
Only a slight difference of the average oxide layer thicknesses between the concave and convex curvature can be
discerned and a good agreement with the 1-D parabolic rate law is achieved [77].

In order to illustrate the influence of the growth limitation and correction described and presen-

ted in Chapter 5.1.1, the corrosion on the same geometries was recalculated with the same

algorithm, but without the limitation and growth correction. That means, that the oxide can

grow unaffected of geometric features. The result in Figure 6.6 shows that in the case without

the limitation the oxide thickness in both geometries is highly overestimated compared to the

1-D solution.

Clearly, in a geometry with edges, where the oxide can grow from several directions the oxide

will form more rapidly than expected. This deviation originates in the implementation of the

corrosion model, which is reported here again for an easier understanding:

xnew
corr =

√(
xold
corr

)2
+

kpΔt

n
κ. (6.1)

The additional thickness of the oxide kpΔt is limited by the factor n, which is the number of

corroding faces that get their Cr-ions from one retracting face. An example sketch is shown in
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Figure 6.6: Calculated oxide thickness of the concave (inward) and convex (outward) geometry without the
growth limitation. Both cases overestimate the analytical oxide thickness.

Figure 5.1(c), where two corroding faces (dark red) are linked to one retracting face (green). In

order to conserve the flux of Cr-ions, the growth of the oxide is evenly distributed amongst the

corroding faces. This leads to a slower oxide growth in geometries with many edges. However,

this effect is overlapped by the fact that many computational cells corrode from more than one

side which increases the growth rate. To account for these effects the growth correction factor

κ was introduced.

The mass gain due to corrosion is determined by summing up the local oxide growth and relating

this mass to the initial surface. The result is plotted in Figure 6.7 and one interesting finding is

the difference between the mass gain in the concave (inward) and convex (outward) geometry.

This can be explained by the fact that the additional mass in both cases is related to the same

initial surface area (see Equation (5.12)). During the growth of the oxide the current available

surface for the corrosion increases in the convex (outward) case and decreases in the concave

(inward) case. And although the oxide thickness is smaller in the convex case (see Figure 6.5),

a larger volume has to be filled and the mass gain has to be higher. As expected, the 1-D

parabolic mass-gain lies in between the convex and concave growth, as shown in Figure 6.6.
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Figure 6.7: Computed and theoretical mass gain of the concave (inward) and convex (outward) geometry [77].

6.1.4 Comparison to micro-graphs

So far the principle functionality of the corrosion algorithm, e.g. correct determination of the

mass gain, could be validated on simple geometries. The focus now shifts to the question,

whether the algorithm is capable of distributing the oxide correctly. For this purpose corroded

metallic supports were analysed by SEM (special thanks to Åsa Persson from DTU Copenha-

gen for the measurements). One micro-graph of the metallic support after 500 h at 850 ◦C in

simulated anode outlet gas (an Ar/H2/H2O atmosphere with pH2O/pH2
= 9) is shown in Fig-

ure 6.8(a), where the light grey areas show the metal, the dark grey areas indicate the oxide

and the black areas are the remaining open pore space. In order to achieve a direct comparison

between measurement and simulation the micro-graph was used as input for the reconstruction

algorithm described in Chapter 4.2, and a 2-D computational geometry was created. The sim-

ulated corroded metallic support in Figure 6.8(b) shows the oxide in red and the pores in blue.

The oxide is evenly distributed in the simulation, and on average a good agreement between

measured and computed oxide thickness can be seen.
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However, two differences are apparent. Firstly, in the middle left pore in Figure 6.8(a) a much

thinner oxide can be discerned. This may indicate spallation of the oxide, or comes from the

polishing prior to the measurement where the oxide may be damaged. In any case, effects like

spallation are not included in the corrosion model because of the lack of an appropriate model

to determine the spallation, and the fact that as soon as spallation occurs the corrosion is so

far advanced that the functionality of the fuel cell is questionable.

(a) SEM picture of corroded metallic support (b) Corresponding reconstruction and computed corro-
sion

Figure 6.8: Comparison between the corrosive scale of a metallic support SEM and the computational result
thereof. The dark grey and the red areas indicate the measured and the computed oxide [77].

The second difference becomes obvious at regions that have a much thicker oxide. This deviation

can be explained by the fact that the measurement resembles the corrosion in 3-D, while the

simulation is based only on a 2-D geometry. Therefore, effects from the curved geometry in the

third dimension are not taken into account in the simulation. However, the algorithm is capable

of determining different thick oxides provided that the geometry is 3-D. Figure 6.9 shows a 2-D

slice of a full 3-D reconstructed metallic support. Here only the pores are depicted, where dark

blue regions correspond to the open pore volume and red regions are fully corroded. The colour

bar indicates the oxide: 1 (red) → fully corroded; 0 (dark blue) → no oxide. It is evident

that the oxide thickness varies, as it was seen before in the SEM micro-graph. The correct

distribution of the oxide is thus validated.
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Figure 6.9: 2-D slice showing the computed oxide of a full 3-D metallic support after 40 000 h at 850 ◦C in
simulated anode gas with pH2O/pH2

= 9. Here only the pores are shown. Red indicates fully corroded areas,
while blue areas have got no oxide [77].

6.1.5 Comparison to mass-gain measurement of metal-support

In a final step the computed mass gain of the reconstructed metallic supports is compared

to the measured mass gain of the actual corroded samples. The measured mass gain data

of two samples in 650 ◦C is used. A least-square fit was implemented in a python program

using the package SciPy [80]. The fitted parabolic rate constant kp,e was determined to be

1.61× 10−21 m2 s−1. kp,e denotes the parabolic rate constant, if only parabolic kinetics are

assumed. As explained in Chapter 3.1.1 the corrosion in the initial step often follows linear

kinetics. This can also be observed in Figure 6.10 where the red lines show the mass gain

of measured samples. In the initial regime, clearly linear kinetics can be observed, why the

data is split into a linear and a parabolic set. Due to the coarse measurement (every 250 h)

the transition between the linear and the parabolic regime was set to 300 h. Each data-set

is fitted to the corresponding 1-D model and the rate constants are as follows: a linear rate

constant kl =8.83× 10−14 m s−1 for the fast initial corrosion and a parabolic rate constant

kp =1.30× 10−21 m2 s−1 for the subsequent slower corrosion.
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These values are used as input parameters in the corrosion model and the comparison between

the measurement data and the different model approaches is shown in Figure 6.10. The pure

parabolic approach with the rate constant kp,e shows a poor agreement in the beginning and

only after 3000 h a convergence can be observed. Nevertheless, the slope seems to be too

steep so that the corrosion may be overestimated at later time steps. On the contrary, the

more elaborated model with a linear start and subsequent parabolic kinetics shows very good

agreement with the measurement and a reliable validation is obtained.

Figure 6.10: Measured and computed mass gain of a metallic support at 650 ◦C. The linear combined with
the parabolic approach shows a very good agreement, while the sole parabolic approach underestimates the
mass gain in the beginning and shows a faster growth in the end.

In conclusion, the corrosion model was validated with simple geometries, as well as on real

reconstructed microstructures. The agreement of overall parameters like the mass gain was

satisfying and also the distribution of the oxide corresponds to measurements. However, the

limitations of the models lie in the assumption that the oxide is perfectly adherent and does

not spall. Thermal stresses during thermal cycling might cause cracks in the oxide, which will

increase the oxidation. Nevertheless, a reliable tool was developed which is capable of predicting

the microstructural changes due to corrosion and assess its influence on the mass transport.
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6.2 Mass transport

6.2.1 Permeability

The first interesting question that has to be answered when determining the permeability tensor

is how to compute the superficial velocities in the microstructure. The result of the solution of

the Navier-Stokes equations (5.13) is the actual velocity in the microstructure. It was shown

in [4] that the relation between the superficial velocity 〈u〉 and the actual velocity u is related

via the porosity ε:

〈u〉 = εu. (6.2)

It was reported in [66] that Equation (6.2) holds only true if the effective porosity is used,

which excludes all isolated pores. This important fact can be observed in Figure 6.11, where

the superficial velocity in a real microstructure is plotted over the bulk velocity. The bulk

velocity equals the velocity in the inlet section and the superficial velocity is calculated from

the actual velocity in the microstructure according to Equation (6.2). In the ideal case the bulk

and the superficial velocities should be the same (continuous line). In reality, deviations can

be observed that are higher at higher velocities (dashed line). It is therefore advisable to limit

the evaluation to a velocity range, where the deviations are negligible.

The measurements carried out at DTU (special thanks to Peter Blennow) were done on a

different, slightly more open metallic support than the reconstructed metallic support used in

this study. Although not completely comparable the range of permeabilities is reported here to

have at least a rough estimation: kmeasured =1× 10−13 m2. Due to the denser structure of the

investigated metallic support the permeability along the main diffusion path is assumed to be in

the range of 2× 10−13 m2 to 2× 10−14 m2 [8]. The computed permeability in the same direction

is 3.2× 10−14 m2 and within the expected range. Nevertheless, the permeability tensor of the
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Figure 6.11: Comparison between the bulk and the superficial velocity in the microstructure. In an ideal
microstructure both velocities are the same, but in real microstructure deviations can be observed.

real metallic support microstructure was not symmetric:

kij =

⎛⎜⎜⎜⎜⎝
5.52× 10−14 −4.69× 10−15 −1.20× 10−15

−9.04× 10−16 4.56× 10−14 1.69× 10−15

−2.28× 10−15 5.30× 10−15 3.18× 10−14

⎞⎟⎟⎟⎟⎠ (6.3)

It was assumed that this deviation may come from the fact that only ∼17% of the lateral

boundary are periodic (see Chapter 4.2) and this factor varies depending on the main flow

in x, y or z direction. Note: In order to calculate a full permeability tensor three individual

calculations in three directions have to be carried out (see Chapter 5.3.1).

The verification of this assumption was carried out on an artificial geometry. It consists of

straight pores with defined diameter and distance between the pores. Here, it is possible

to obtain 100% periodic boundaries in all three directions. The creation of the geometry is

described in more detail in Chapter 4.5. The overall dimensions of the artificial geometry

are 222 μm × 286 μm × 213 μm, with a pore diameter of 10 μm and a distance of 20 μm. The

inclination vector of the pores is ( −0.8, −0.6, 1 ) and a porosity of 0.261 is determined. The
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pressure drop is calculated for all three directions with three individual calculations and the

computed permeability tensor kij has the form:

kij =

⎛⎜⎜⎜⎜⎝
2.45× 10−10 1.81× 10−10 −3.01× 10−10

1.81× 10−10 1.37× 10−10 −2.25× 10−10

−3.01× 10−10 −2.26× 10−10 3.80× 10−10

⎞⎟⎟⎟⎟⎠ . (6.4)

The difference of the off-diagonal elements is less than 0.2%, and the tensor is symmetric as

expected in theory. Using the linear algebra package that comes with SciPy the eigenvectors

and eigenvalues can be calculated:

eigenvectors :

⎛⎜⎜⎜⎜⎝
−0.566 −0.683 −0.347

−0.423 −0.241 0.901

0.707 −0.690 0.261

⎞⎟⎟⎟⎟⎠ eigenvalues :

⎛⎜⎜⎜⎜⎝
7.56× 10−10

4.25× 10−12

2.22× 10−12

⎞⎟⎟⎟⎟⎠ (6.5)

The eigenvectors define a new, rotated coordinate system in the principal direction of the

flow. Calculating the normalised inclination vector, which was the input for the creation of the

artificial geometry, yields: ⎛⎜⎜⎜⎜⎝
−0.566

−0.424

0.707

⎞⎟⎟⎟⎟⎠ , (6.6)

which is equal to the first column eigenvector in Equation (6.5). Thus, one direction of

the rotated coordinate system is equal to the defined inclination vector, and the others are

orthogonal to this direction. The permeabilities in this new coordinate system are defined by

the corresponding eigenvalues in Equation (6.5). Interestingly, the permeability in this new

x-direction is by two orders of magnitude higher compared to the other directions, which is

obvious as the x-direction of the rotated coordinate system is parallel to the pores and thus

the convective flow is less hindered. The result of one computation on the artificial geometry

is shown in Figure 6.12, where the pressure drop is depicted together with a vector plot of the

velocity. The inlet velocity was 0.1m s−1 and the in- and outlet section was 100 μm each.
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Figure 6.12: Pressure drop in the artificial geometry together with a vector plot of the velocity. The dimensions
of the microstructure are 222 μm × 286 μm × 213 μm, with a 100 μm long in- and outlet section.

The deviation of the off-diagonal elements of the permeability tensor calculated for the real

microstructure originates from the fact that in reality the microstructure will never be 100%

periodic. In this case only an average periodicity of 17% could be achieved. This means

that the effective area, where the fluid can leave and enter the geometry, varies in the three

computations. While the fluid can access the entire area in the flow direction because of the in-

and outlet section, only the periodic areas are available for the flow at the lateral boundaries.

As the in- and outlet sections change in the three required calculations, also the available areas

change and thus the superficial velocities, which explains the different off-diagonal elements in

the permeability tensor in Equation (6.3).

6.2.2 Diffusion

The importance of the correct implementation of the Maxwell-Stefan model including the influ-

ence of the pressure drop shall be discussed here. The basic theory is given in Chapter 3.2.2.2.
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The validation focused on the concentration over-potential caused by diffusion in the micro-

structure, why an entire, coupled SOFC model for the whole SOFC was not necessary. To

simplify the analysis further only binary H2 − H2O diffusion was assumed. The molar frac-

tion of hydrogen was fixed to 0.6 at the gas-channel metallic support interface and a periodic

boundary condition is applied at the lateral walls (parallel to the diffusion path). The interface

boundary between the metallic support and the anode-functional-layer (AFL) is a fixed gradi-

ent condition, which depends on the required molar flux of hydrogen NH2 defined by Faraday’s

law:

NH2 =
i

2F
, (6.7)

where i is the current density and F is Faraday’s constant.

A higher current density will lead to a higher hydrogen consumption which in turn will lower

the molar fraction of hydrogen at the metallic support AFL interface.

The concentration over-potential defined in Equation (2.6) is calculated with and without the

pressure driven molar fluxes for different current densities and is plotted in Figure 6.13. As

expected, the differences increase with higher current densities due to the higher molar fluxes

which induce a larger pressure gradient. This in turn decreases the concentration at the anode

and increases the concentration over-potential. Therefore, the influence of the diffusion on the

overall cell performance is underestimated if the pressure gradient is neglected.

6.2.3 Effective diffusion coefficient

This section summarises the validation of the evaluation model to determine the effective dif-

fusion coefficient by analysing the results on simple geometries and comparing the computed

values of the real microstructure to measurements.
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Figure 6.13: Influence of the pressure gradient on the concentration over-potential for the Maxwell-Stefan
model.

6.2.3.1 Validation on artificial geometry

Firstly, the results on an artificial geometry are presented. It is the same geometry which was

used for the validation of the determination of the permeability tensor described in Chapter 6.2.1.

The advantage of such a simple geometry is, that the porosity, as well as the geometrical tor-

tuosity are known. In Equation (3.63) the tortuosity is defined as ratio between the actual

pore length and the geometrically shortest length. The latter is determined by the size of

the geometry and the actual length Leff can be calculated as the inclination vector is known

gin = (−0.556 − 0.424 0.707) and only straight pores are considered. The pore length in

z-direction is:

Leff =
L

ginz

, (6.8)

where ginz is the z-component of the inclination vector and L is the shortest distance in z-

direction (equals the z-length of the geometry). The tortuosity is thus:

τ =
Leff

L
=

1

ginz

= 1.414. (6.9)
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Table 6.1 summarises the results of various computations with different boundary conditions

on the patches. A principal sketch with annotations of the patches and the applied boundary

conditions can be found in Figure 6.14, where the main diffusion path is from top to bottom.

The lateral walls are either considered to be periodic or symmetry. Symmetry boundaries

basically act as walls where no mass flux can occur, while periodic boundaries allow a mass

flow out of the geometry which is balanced by a mass flux on the opposite wall. The top

and bottom walls, that means the interface between the gas-channel and the metallic support

and the interface between the metallic support and the anode-functional-layer, are either set

to a fixed value (fixed concentration) or to a fixed gradient (fixed mass flux). The calculated

porosity of the artificial geometry is 0.261. The computed scaling factor is the ratio between

the binary and the effective diffusion coefficient and is defined in Equation (3.71).

Table 6.1: Comparison between the computed and analytical results of the artificial geometry with different
boundary conditions. A sketch explaining the application of the boundary conditions at the different patches
is provided in Figure 6.14. The calculated porosity value is 0.261.

top/bottom/lateral patches scaling factor f tortuosity factor τ 2 tortuosity τ

fixedValue/fixedValue/periodic 1.14× 10−1 2.296 1.515

fixedValue/fixedGrad/periodic 1.15× 10−1 2.269 1.506

fixedGrad/fixedGrad/periodic 1.16× 10−1 2.241 1.497

fixedValue/fixedValue/symmetry 5.57× 10−3 46.890 6.848

fixedValue/fixedGrad/symmetry 9.15× 10−3 28.536 5.342

fixedGrad/fixedGrad/symmetry 2.01× 10−2 13.016 3.708

Several conclusions can be drawn from the computational results: The most obvious fact is the

high deviation between the scaling factor calculated with the periodic and symmetry boundary

conditions at the lateral walls. Since a symmetry condition basically blocks the lateral walls,

the mass flow through the artificial geometry is much smaller compared to the more accurate

periodic approach, for which reason also the scaling factor is smaller. In order to obtain
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meaningful results with this approach, the computational geometry has to be large enough to

allow enough continuous pores from the top to the bottom. In doing so, the influence of the

boundary condition decreases.

The second interesting finding is the influence of the top and bottom boundary conditions on

the results. Here the deviations are much smaller compared to the lateral walls and it can

be seen that the tortuosity calculated with the two fixed gradients approach is closest to the

geometric tortuosity (see Equation (6.9)) with a deviation of ∼5.5%. The remaining difference

may be due to discretisation errors, or due to the voxel representation of the real geometry.

Thirdly, that the correct form of the scaling factor is

f =
ε

τ 2
, (6.10)

contrary to f = ε/τ as often used in SOFC modelling. This result validates the theoretical

derivation of [24] presented in Chapter 3.2.4, and hopefully will guide the way to correct im-

plementations of the effective diffusion coefficient in simulation studies of other researches in

the future.

gas-channel/ top
fixed value/ fixed gradient

lateral walls
periodic/ symmetry

anode-functional-layer/ bottom
fixed value/ fixed gradient

Figure 6.14: Description of the annotation of the patches and applied boundary conditions in the simulation.
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6.2.3.2 Validation on real 3-D model

The validation of the evaluation model on a real metallic support microstructure was presented

in a concise form in [78] and will now be described in more detail.

One common tool to understand and analyse the complex electrochemical system of an SOFC is

the Electrochemical Impedance Spectroscopy (EIS). The measured impedance spectra is fitted

to a model that represents an equivalent circuit, including all the resistances and losses of a real

SOFC. The main problem is the identification and set-up of this model. In order to identify

an appropriate model the impedance response is analysed by the Distribution function of Re-

laxation Times (DRTs), where various parameters e.g. temperature, fuel composition, oxygen

partial pressure, etc. are varied independently. Their influence on the measured impedance

gives information on the contribution of different loss mechanisms, which can be included in

the equivalent circuit [57]. It is thus possible to decompose the entire impedance response of

the SOFC into the individual contributions e.g. gas diffusion limitations, H2 electro-oxidation,

O2− diffusion, e− conduction, etc.

Unfortunately, it was not possible to perform this measurement on the metallic supported

SOFC, whose microstructure is analysed in this study, due to the limited stability of the SOFC

at higher temperatures. These higher temperatures are needed to identify the contribution of

the mass-diffusion on the entire measured impedance. Therefore, published data of a similar

cell design is used. The metallic support microstructure of the tested cell is slightly different in

terms of porosity and pore-size distribution compared to the reconstructed and simulated one.

Nevertheless, the two microstructures are still comparable.

The measurement data is presented in [9]. DRT was used to identify the individual loss mechan-

isms and a process at low frequencies was found to account for the gas diffusion in the metallic

support. An appropriate model to relate the impedance resistance RD(anode) to the diffusion is

presented in [57]:

RD(anode) =

(
RT

2F

)2

lMS
1

DH2,H2Of

(
1

pH2(anode)

+
1

pH2O(anode)

)
×
(
1.0133× 105

Pa
atm

)−1

, (6.11)
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where lMS is the length of the metallic support (390 μm), DH2,H2O is the binary diffusion

coefficient for a mixture of water and hydrogen, f is the scaling factor, defined as f = ε/τ2,

pH2(anode) and pH2O(anode) denote the partial pressure of hydrogen and water vapour of the anode

gas, respectively. The binary diffusion coefficient was calculated according to the Chapman-

Enskog theory for 750 ◦C and was found to be DH2,H2O=6.96× 10−4 m2 s−1 [74].

The measurement results, together with the fitted function are plotted in Figure 6.15, where

the ASR is the area specific resistance, extracted with DRTs from the EIS.

Figure 6.15: pH2O dependency of the diffusion related processes in the anode (measurement data according
to [9]).

The target of the fitting is the evaluation of the scaling factor f in Equation (6.11). The meas-

urement, together with the calculated resistance in Equation (6.11) form an over-determined

system of linear equations:

Ax = b, (6.12)

where A is in this case not a matrix, but a vector containing the results of Equation (6.11), x

reduces to the scaling factor f and b lists the measurement data. By applying the least-squares

method the scaling factor can be evaluated [52]:

f =
(
ATA

)−1
ATb. (6.13)
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The measured/fitted scaling factor equals 1.32× 10−2. The agreement between the fitted and

measured data is satisfying for low pH2O-values, but gets poorer for higher values. This may be

due to the fact that the measurement includes the influences of the metallic support as well as

the anode-functional-layer (AFL). In the porous AFL with its smaller pore diameters, Knudsen

diffusion is taking place, which is not comprised in the fitting model (see Equation (6.11)).

However, the AFL is not considered in this study, why this deviation is not important and the

fitted scaling factor can be used for a comparison to the simulated results.

Table 6.2 summarises the validation of the evaluation model with different boundary conditions

and surface representations (voxel vs. smooth). The computations on the voxel geometries

where carried out on five different geometries with a base area of 200 μm × 200 μm and a

thickness of 350 μm. The approach with fixed values on the gas-channel metallic support

interface, as well as the metallic support AFL interface was chosen, although this didn’t show

the best agreement in the artificial geometry validation case, but it is the most stable set of

boundary conditions from a numerical point of view. The positions of the five geometries were

chosen in a way that they don’t overlap each other and kept some distance to the edges of

the sample (see Figure 4.7). This should ensure that influences of the mechanical treatment

(cutting) of the cell are not affecting the investigated microstructure. The five geometries are

identical for the two sets of computations except for the boundary conditions which are either

symmetry or partially periodic (up to 17%).

Table 6.2: Comparison of the mean values and standard deviations of scaling factors for different boundary
conditions calculated on the same five computational voxel geometries to the value obtained from impedance
measurements which is 1.32× 10−2. The base area is in all cases 200 μm × 200 μm and the height is 350 μm.

scaling factor(×10−2)

boundary condition mean value standard deviation diff (%)

measurement 1.32

periodic 1.19 0.477 10.9

symmetry 0.81 0.41 63.0
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In Table 6.2 the superiority of the proposed application of periodic over zero gradient boundary

conditions can be seen. The difference between the measurement and the computation with

periodic BCs is roughly 11%, while the symmetry approach deviates by more than 60%.

A look at the values of the standard deviations of the scaling factors in Table 6.2 might give an

explanation for this huge difference. The rather high standard deviations are an evidence for

the very inhomogeneous nature of the metallic support. It was tried to increase the volume of

the investigated microstructure stepwise till the scaling factor and the porosity converges and

the inhomogeneity does no longer influence the result. One position on the metallic support

was chosen and an initial geometry with a base area of 50 μm × 50 μm and a fixed thickness of

350 μm was reconstructed. The porosity and the scaling factor was evaluated. Then the base

area of the geometry was increased by 50 μm in each direction, till a maximum base area of

350 μm × 350 μm was reached.

Table 6.3: Porosity values, scaling factor and number of computational cells for a geometry height of 350 μm
and increasing base area. The geometry with a base area of 50 μm × 50 μm has not got a continuous pore from
the gas-channel to the anode functional layer interface [78].

area (μm2) porosity (-) scaling number of

factor (-) (x10−2) computational cells

50× 50 0.193 − 0.2× 106

100× 100 0.196 2.11 0.7× 106

150× 150 0.206 1.90 1.6× 106

200× 200 0.206 1.99 2.9× 106

250× 250 0.192 1.69 4.2× 106

300× 300 0.193 1.35 6.1× 106

350× 350 0.209 1.73 9.0× 106

Table 6.3 summarises the results of the windowing analysis of the microstructure. Although the

computational limits of the reconstruction algorithm are reached, the obtained porosity values

and the scaling factor do not converge. This finding is in accordance to the results found with

the python program presented in Chapter 4.3, where the porosity values of the metallic support
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don’t converge till a volume of 500 μm × 500 μm × 350 μm is reached.

Therefore, it is proposed to use several smaller geometries, which require less computational

resources, and average the calculated values. This approach has two significant advantages

over one larger volume. Firstly, the calculation times of smaller geometries with less compu-

tational cells are much shorter, and more important secondly, evaluating the inhomogeneous

microstructure of the metallic support at several positions will increase the reliability of the

result.

In a further step the influence of the surface representation (voxel vs. smoothed) is assessed. The

circumstantial smoothing procedure was carried out on one larger 300 μm × 300 μm × 350 μm

geometry. Unfortunately, it was not possible to obtain periodic boundaries in this case with the

state-of-the-art procedures offered by OpenFOAM. An application will be programmed in the

future to determine periodic pores. For the time being, only symmetry boundary conditions

can be applied in smoothed geometries. The results are summarised in Table 6.4, where the

scaling factor together with the porosity is reported. Again the periodic approach shows a

better agreement to the measured scaling factor. And also the results obtained with symmetry

boundary conditions on the smoothed surface show a better agreement, although the difference

between the smoothed and stair-step approach is roughly 4%. This means that the solution of

the Laplacian equation is not very sensitive on the geometry boundary surface although there

is a surface overestimation of ∼37%. The slightly smaller porosity can be explained by loss of

information during the smoothing procedure.

Table 6.4: Comparison of the scaling factor and porosity values of the same geometry in voxel and smoothed
surface representation. The volume of the geometry is 300 μm × 300 μm × 350 μm and for the voxel case the
influence of the periodic and symmetry boundary condition is analysed.

boundary condition scaling factor(×10−2) porosity (-)

periodic (voxel) 1.33 0.1925

symmetry (voxel) 1.17 0.1925

symmetry (smoothed) 1.22 0.1871



Chapter 7

Results

After the validation of the mass-transport (evaluation) and the corrosion model showed their

correctness and reliability, this chapter focuses on the applicability and the knowledge gain

based on the results of these models. Some of the results in this chapter have already been

published, especially the parts concerning geometric evaluation of the microstructure, the de-

termination of the scaling factor [78] and the results of the corrosion model [77].

7.1 Geometric evaluation

The MATLAB program presented in Chapter 5.2 is capable of determining the porosity dis-

tribution in the microstructure, as well as the average pore diameter, number of pores, etc.

Figure 7.1 shows the porosity distribution of a 350 μm × 350 μm × 350 μm reconstructed geo-

metry. The z-direction corresponds to the diffusion path from the gas-channel to the anode-

functional-layer (AFL), while the other two directions are parallel to the gas-channel. In general,

the microstructure shows a rather inhomogeneous porosity, varying around 0.20, but especially

in the first 100 μm of the diffusion path a much denser microstructure is prevailing, compared

to the rest of the metallic support.

97
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Figure 7.1: Porosity distribution along the three coordinate axes for the windowing geometry with a base
area of 350 μm × 350 μm. The z-direction is the diffusion path from the gas-channel to the anode functional
layer. While the directions parallel to the gas-channel show an homogeneous porosity distribution, the diffusion
path orthogonal to the gas channel has a much lower porosity in the first 100 μm compared to the rest of the
electrode. The gas-channel interface is located at 0 μm and the interface to the anode functional layer at 350 μm
[78].

The denser region might be caused by the sintering process, where a longer exposure time in a

hotter environment may lead to a higher densification. This is an important feedback for the

cell production process, where actions can be taken to minimise these effects.

Another interesting property of the microstructure is the average pore diameter because it

indicates if the flow can still be considered as a continuum or if other modelling approaches

have to be undertaken. In Chapter 3.2.2.3 the Knudsen number was presented which is the

ratio between the free path of the molecules and a characteristic length (e.g. pore diameter).

If the Knudsen number is below 0.01 the continuum approach with the application of partial

differential equations is valid. Knudsen numbers in the range or larger than 1 indicate that the

interaction between the gas molecules and the walls are more dominant than the interaction

amongst the molecules. In this case the continuum models fail and a statistical modelling

approach has to be applied.

In order to determine the Knudsen number the algorithm is capable of discerning individual

pores along the diffusion path and calculates their equivalent diameter, that corresponds to the
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diameter of a circle with the same cross-sectional area as the pore.

Figure 7.2: Mean pore diameter distribution along the diffusion path. The gas-channel interface is at 0 μm
and the interface to the anode functional layer at 350 μm [78].

Figure 7.2 shows the equivalent pore diameter distribution along the diffusion path. Each

point in the graph is the average equivalent pore diameter at this height level. The gas-channel

metallic support interface is located at 0 μm and the interface between the metallic support

and the anode-functional-layer lies at 350 μm. The average pore diameter of the five sample

positions is 18.1 μm. The mean free path length of hydrogen λH2 according to Equation (3.54)

is ∼700 nm and thus the calculation of the Knudsen number yields:

Kn =
λH2

dp
=

0.7

18.1
= 0.039, (7.1)

which is slightly higher than 0.01, but sufficiently below 1 so that the continuum approach is

still applicable.

Another result of the geometric evaluation algorithm is the determination of the number of

individual pores along the diffusion path shown in Figure 7.3. Here again a similar finding

can be seen as the porosity distribution in Figure 7.1. In the first 50 μm at the gas-channel

metallic support interface only half as much pores can be identified compared to the rest of
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the metallic support. This also points to a too high densification of the material due to the

sintering process.

Figure 7.3: Number of pores per m2 along the diffusion path. In the first 100 μm there are less pores compared
to the rest of the metallic support. The gas-channel interface will be at 0 μm and the interface to the anode
functional layer at 350 μm. The base area is 200 μm × 200 μm [78].

7.2 Mass-transport model

7.2.1 Permeability

It was shown in Chapter 6.2.1 that the determination of a symmetric permeability tensor in the

real microstructure is not possible, with the state-of-the-art boundary conditions. This is due

to the fact that the boundary areas are not 100% periodic and the available boundary area for

the flow differs along the three coordinate axes. Nevertheless, it is at least possible to retrieve

the permeabilities in the main directions. To do so the pressure drop for different superficial

velocities is computed in the three coordinate directions (three individual calculations for each

superficial velocity). The results are fitted with the Forchheimer equation using a non-linear
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least-square fit. The Forchheimer equation is repeated here for the readers convenience:

Δp = a1Ux + a2U
2
x . (7.2)

It relates the pressure drop Δp to the superficial velocity Ux. The coefficient in the linear

term a1 = μΔl
kii

represents the Darcy effects, while the squared term a2 = ρΔl
sii

accounts for

the non-linear effects caused by inertial forces. The pressure drop in the microstructure for

different velocities in x-direction (parallel to the gas-channel) and the fitted function is plotted

in Figure 7.4.

Figure 7.4: Calculated pressure drop in the microstructure for different superficial velocities (red dots) and
fitted function.

The calculated Darcy permeabilities are:

kxx = 5.52× 10−14 m2 kyy = 4.56× 10−14 m2 kzz = 3.18× 10−14 m2, (7.3)

and the corresponding Forchheimer terms are:

sxx = 6.94× 10−9 m syy = 4.83× 10−9 m szz = 2.19× 10−9 m. (7.4)
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The z-direction corresponds to the main diffusion path through the metallic support from the

gas-channel to the anode-functional-layer. The Darcy permeability in this direction is the

smallest kzz = 3.18× 10−14 m2 and a low permeability means less mass flow at a given pressure

gradient.

A plot showing the pressure distribution within the microstructure together with the streamlines

is presented in Figure 7.5. Here the flow direction is from left to right along the main diffusion

path. Only few continuous pores are present in this geometry, indicated by the streamlines

which go through the entire geometry. This may be caused by the dense interface between the

gas-channel and the metallic support identified with the geometric evaluation algorithm.

Figure 7.5: Calculated relative pressure drop in the reconstructed metallic support. Flow direction is from
left (gas-channel interface) to right (anode-functional-layer interface). The superficial velocity is 5× 10−3 ms−1.
The streamlines (depicted as tubes) indicate that only some continuous pores are present, due to dense interface
between the gas-channel and the metallic support.

The influence of the applied lateral boundary conditions, as well as the surface representation

(voxel vs. smooth) is assessed by comparing the computed pressure drop of the same geometry

with different settings. The results for a superficial velocity of 0.05m s−1 are summarised in

Table 7.1.
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Table 7.1: Comparison of the influence of the surface representation and the boundary conditions on the
pressure drop for a superficial velocity of 0.05ms−1.

periodic symmetry

voxel 372.2Pa 1287.6Pa

smoothed - 1185.2Pa

From this finding it can be concluded that the application of symmetry boundary conditions

yields a much higher (∼ factor 3.5) pressure drop because dead-end pores are created by this

boundary condition. The geometry with the smoothed surface has a ∼8% lower pressure

drop compared to the voxel surface. Actually, it was anticipated that this difference would

be much higher because the surface area has a huge influence on the flow resistance. But

due to the low velocity, the flow creeps and the effect of the surface area diminishes. It is

expected that the lowest pressure drop will be calculated with periodic boundary conditions

on a smoothed surface. Unfortunately, the state-of-the-art procedures in OpenFOAM don’t

support this approach.

Figure 7.6: Computed concentration gradient of hydrogen in one reconstructed microstructure. The interface
between the gas-channel and the metallic support is at 0 μm and the interface between the metallic support and
the anode-functional-layer lies at 350 μm.
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7.2.2 Effective diffusion coefficient

The determination of the effective diffusion coefficient was carried out on five independent recon-

structed geometries with a volume of 200 μm × 200 μm × 350 μm per geometry. The boundary

conditions perpendicular to the main diffusion path (e.g. gas-channel; anode-functional-layer)

were set to fixed value, while the lateral walls (parallel to the diffusion path) were set to peri-

odic, wherever possible (∼17% periodic; rest symmetry). The geometric evaluation algorithm

identified two different dense regions in the microstructure.

A closer look at the concentration gradient within the microstructure illustrates this finding.

The concentration gradient plotted in Figure 7.6 is much steeper in the first 100 μm compared

to the rest of the microstructure.

This behaviour cannot be reproduced in cell-simulations with only one effective diffusion coef-

ficient. Therefore, the microstructure is subdivided into two parts: One describing the denser

first 100 μm of the metallic support, and the other the more porous rest of the support. A

principal sketch can be seen in Figure 7.7.

Figure 7.7: Principal depiction of the metallic support with the 100 μm thick dense upper layer (referred to
as dense) and the more porous 250 μm of the remaining metallic support (referred to as porous). Homogenised
parameters (referred to as hom) are calculated for the entire height of 350 μm [78].
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The porosity, tortuosity and scaling factor were evaluated for each section and the results are

summarised together with the homogenised value for the entire metallic support in Table 7.2.

The tortuosities were calculated with the correct formulation derived in Equation (5.24) which

is τ =
√

ε/f. It was discussed in Chapter 5.3.2 and it is stressed again here, that the calculated

tortuosities do not reflect the geometric interpretation of the microstructure, but they also

include effects like orifices, stagnant pockets and dead-end pores.

Table 7.2: Comparison of microstructural parameters, obtained from 3-D reconstruction/modelling, averaged
from five different computational geometries, with a base area size of 200 μm × 200 μm. The subscript hom
refers to the overall homogenised parameter calculated with a height of 350 μm. The dense-parameters are
evaluated only in the first 100 μm, where a significant lower porosity was found (see Figure 7.1). Parameters
with the subscript porous are computed in the remaining region (from 100 to 350 μm). The principal positions
of the geometries are shown in Figure 4.7, and Figure 7.7 depicts the positions of the different layers [78].

mean value standard deviation

εhom 0.200 0.009

scaling factor fhom 1.19× 10−2 4.8× 10−3

τhom 4.3 0.81

εdense 0.147 0.006

scaling factor fdense 0.84× 10−2 4.03× 10−3

τhom 4.1 0.59

εporous 0.219 0.013

scaling factor fporous 1.94× 10−2 5.7× 10−3

τhom 3.9 0.86

As expected the porosity and also the scaling factor is much lower for the denser region compared

to the more porous region. However, the obtained values for the scaling factor are by a factor

of 20 smaller than those usually obtained by fitting of the material parameters to experiments

[5, 18, 38, 84, 88, 98]. Admittedly, those experiments where either carried out on anodes or

cathodes with considerably different microstructures, so a direct comparison may be misleading.

However, it seems that the metallic support with its large pore diameter has a considerable

amount of dead-end pores which account for these low scaling factors.



106 Chapter 7. Results

7.3 Corrosion

The presented corrosion model is able to determine the porosity and the scaling factor as a

function of time, depending on the oxide growth in the microstructure. The required input

parameters for the corrosion model are the linear kl and parabolic rate constants kp.

Table 7.3: Linear and parabolic rate constants for the corrosion simulations at different temperatures. The
values of kl and kp are obtained by splitting the measured weight gain into an initial, faster regime and a slower
regime, and fitting the data to the corresponding linear or parabolic growth law. The rate constant kp,e was
determined by fitting the entire measurement data to the parabolic growth law [77].

temperature kl kp kp,e

(◦C) (m s−1) (m2 s−1) (m2 s−1)

650 8.83× 10−14 1.30× 10−21 1.61× 10−21

750 2.98× 10−13 2.40× 10−20 3.28× 10−20

850 5.30× 10−13 7.07× 10−20 1.15× 10−19

These values can be either obtained from literature or more preferably from measurements. The

values for the rate constants presented in Table 7.3 were extracted from corrosion experiments

carried out by Åsa Persson from DTU at 650 ◦C, 750 ◦C and 850 ◦C in simulated anode outlet

gas (Ar/H2/H2O-atmosphere with pH2O/pH2
= 9). The measurement data was fitted to either

a linear or parabolic function to obtain the corrosion rate constants for the simulation. kp,e is

the parabolic rate constant if the entire corrosion is considered to obey parabolic kinetics.

The change of the average porosity due to corrosion for different temperatures is depicted in

Figure 7.8. In the corrosion computations both the linear and the parabolic kinetics were

considered. A higher porosity decrease can be seen in the first few hours, during the faster

linear growth. After this the growth of the oxide layer slows down and the porosity decreases

more slowly. While the porosity change for 750 ◦C and 850 ◦C is certainly too high, it is ∼10%

after 40 000 h at 650 ◦C. If this value is still tolerable cannot be assessed by an average porosity

value alone, having in mind the inhomogeneous porosity distribution in the metallic support.
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Figure 7.8: Computed averaged porosity of five different sample geometries. The volume of each reconstructed
geometry is 200 μm × 200 μm × 350 μm. With ongoing corrosion the porosity is decreasing [77].

A closer look at the change of the porosity distribution due to the corrosion at different tem-

peratures is given in Figure 7.9. The porosity distribution after 40 000 h is calculated on a

representative 200 μm × 200 μm × 350 μm geometry and compared to the initial distribution.

The microstructure becomes denser at higher temperatures, due to increased corrosion rates,

and the porosity distribution gets smoothed, with a reduced standard deviation.

Figure 7.9: Initial porosity distribution along the diffusion path of one representative geometry
(200 μm × 200 μm × 350 μm) compared to the porosity after 40 000 h corrosion at different temperatures. The
interface to the gas-channel is at 0 μm and the interface to the anode functional layer at 350 μm [77].
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However, the applicability of the metallic support in SOFCs does not so much depend on

the porosity, but more on its ability to ensure a sufficient supply of fuel gas to the anode

functional layer. Therefore, also the homogenised scaling factor f is evaluated at different

times for the three temperatures (650 ◦C, 750 ◦C and 850 ◦C). Note: The effective diffusion

coefficient is defined as De
ij = fDij. The percentage difference to the evaluated scaling factor

f = 1.19× 10−2 without corrosion is plotted in Figure 7.10. A tremendous decrease of the

scaling factor can be observed at 750 ◦C and 850 ◦C after 40 000 h. The difference is −65.9%

and −88.0% respectively, which means that the mass diffusion at 850 ◦C is by a factor of ∼8

smaller than the initial mass diffusion. At 650 ◦C the decrease of the scaling factor is 15.3%.

Figure 7.10: Calculated averaged scaling factor difference for five independent reconstructed geometries. The
geometry size is 200 μm × 200 μm × 350 μm and the change of the microstructure due to corrosion was computed
at 650 ◦C, 750 ◦C and 850 ◦C. The averaged scaling factor f for a non-corroded sample is 1.19× 10−2. Note:
The scaling factor is the ratio between the binary and the effective diffusion coefficient [77].

In order to assess the influence of the decreased scaling factor on the concentration over-potential

the Nernst Equation (2.6) is used. It relates the difference of the partial pressures in the gas-

channel to the partial pressures in the anode-functional layer. The hydrogen partial pressure in

the metal-support can be computed with the models presented in Chapter 3.2.2. The required

binary diffusion coefficients for the temperatures 650 ◦C, 750 ◦C and 850 ◦C are calculated with

the Chapman-Enskog model (see Chapter 3.2.3). The molar fraction of hydrogen in the gas-
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channel interface is fixed to 0.9, while the hydrogen flux φH2 at the anode-functional-layer

interface is defined by Faraday’s law:

φH2 =
j

2F
, (7.5)

where j is the current density and F Faraday’s constant. A current density of 1A cm−2 is

assumed for the simulations.

The computed averaged concentration over-potential for five independent reconstructed geo-

metries is summarised in Table 7.4. The change of the concentration over-potential over time

at 650 ◦C is not dramatic and may be tolerable. However, the oxide growth after 40 000 h at

850 ◦C proceeded so fast that the mass-transport of hydrogen is limited to an extend that not

enough fuel can be supplied to the anode-functional-layer at this current density.

Table 7.4: The computed averaged concentration over-potential for five independent reconstructed geometries.
The presumed current density was 1A cm−2 and the molar fraction of hydrogen in the gas-channel was 0.9. The
change of the pore volume after 40 000 h at 850 ◦C was so high that the supply of the anode with hydrogen was
not sufficient, which indicates the blocking of some pores (according to [77]).

temperature concentration over-potential ηconc (V)

◦C 1000 h 2000 h 5000 h 10 000 h 20 000 h 40 000 h

650 0.056 0.056 0.056 0.057 0.058 0.060

750 0.062 0.064 0.070 0.080 0.094 0.119

850 0.072 0.079 0.094 0.113 0.154 -

In Figure 7.11 the concentration distributions along the main diffusion path of one geometry

for different temperatures after 20 000 h are plotted. The molar fraction of hydrogen is fixed to

0.9mol at the gas-channel metallic support interface, while a fixed gradient boundary condition

is applied at the metallic support anode-functional-layer interface. The huge differences in the

molar fraction of hydrogen at the AFL interface are an evidence for the blocking of some pores,

a decreased mass-diffusion and a required higher gradient to supply enough hydrogen.
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Figure 7.11: Averaged mass fraction distribution along the diffusion path after 20 000 h for different temper-
atures in a volume of 200 μm × 200 μm × 350 μm. The molar fraction of hydrogen is fixed to 0.9 at the interface
between the gas-channel and the metallic support, while a fixed gradient (a fixed flux of hydrogen) is applied on
the metallic support anode-functional-layer interface. The lateral boundaries are partly periodic and symmetry
[77].

The computed oxide growth and its influence on the mass-diffusion through the metallic sup-

port, with the measured corrosion rate constants, is sufficiently low for 650 ◦C, so that a sat-

isfactory amount of hydrogen can be supplied to the anode-functional-layer throughout the

lifetime of the SOFC. On the other hand, the application of this type of metallic support

at higher temperatures is not feasible because of the high decrease of the effective diffusion

coefficient and the increase of the concentration over-potential.

The huge advantage of the proposed corrosion model is its dependency on parameters which

can be retrieved rather easily by measurements. Nevertheless, the obtained results have to

be interpreted with care because the assumption that no spallation occurs may not hold true,

especially during thermal cycles, which would increase the corrosion rate.
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Conclusions

A thorough modelling study of the mass-transport in the porous metallic support microstructure

has been presented in this thesis, in order to obtain a deeper knowledge and understand the

implications of mass-diffusion on the overall cell performance. The proposed approach made

steps beyond the state-of-the-art by firstly improving the results by applying periodic boundary

conditions and secondly by developing a corrosion model, that is capable of determining the

change of the porous structure due to oxide growth and hence its impact on the mass transport.

8.1 Mass-transport modelling

The determination of homogenised microstructural parameters of SOFC anodes and cathodes is

state-of-the-art. The proposed approach was pursued in this study and applied on the metallic

support. However, the usage of symmetry boundary conditions for the lateral walls seemed

to introduce a lot of additional dead-end pores in the microstructure. Therefore, the state-of-

the-art approach was improved by applying periodic boundary conditions at the lateral walls,

wherever possible. In the case of the investigated metallic support ∼17% of the lateral walls

are periodic, while the rest is still symmetry. By this new treatment of the boundaries it was

possible to obtain a computed scaling factor that is only 11% smaller than the measurement

value, compared to a 60% deviation in case of the state-of-the-art approach.

111
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Furthermore, it could be shown that the implementation of the Maxwell-Stefan diffusion model

needs special attention. Its incorporation into the species conservation equation requires the

addition of a pressure term in order to ensure consistency in the chosen reference frames.

Disregarding this effect leads to an underestimation of the concentration over-potential which

becomes significant even at low current densities.

A detailed investigation of the porosity distribution within the microstructure revealed the

inhomogeneous nature of the metallic support. Especially the first 100 μm along the diffusion

path are much denser compared to the rest of the microstructure. This dense layer might be

caused during the sintering and is an important feedback for cell production. Even apart from

this denser layer the porosity of the entire microstructure is rather inhomogeneous which is

caused by the larger particle size of the sinter material, resulting in average pore diameters

of ∼18 μm. These diameters are much larger compared to the state-of-the-art anodes and

cathodes. However, the scaling factor is smaller, which indicates that several dead-end pores

are prevailing in the microstructure. This could be visualised by plotting streamlines of the

velocity field, where only few pores are continuous from the gas-channel to the anode-functional-

layer.

8.2 Corrosion modelling

One significant step beyond the state-of-the-art in determining homogenised material paramet-

ers was taken, and a corrosion model was developed that is capable of describing the change of

the microstructure caused by oxide volume expansion. So far it was only possible to compute

the scaling factor, or the effective diffusion coefficient of the measured microstructure. This

microstructure will be prone to changes during the process and the informative value of the

obtained scaling factor decreases over time because it describes a completely different micro-

structure. With the developed and validated corrosion model the growth of the oxide and the

corresponding change of the microstructure can be predicted. This offers the opportunity to

compute the scaling factor as a function of time and an estimation of the degradation due to
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corrosion is possible. One great advantage is that the model requires only parameters which

are accessible by measurements, which makes it an applicable and reliable tool.

8.3 Applications

With state-of-the-art measurement technologies like FIB-SEM or X-ray CT the microstructure

of SOFCs can be scanned and the obtained results are converted into computational geometries.

The developed models offer a deep insight into the physical phenomena taking place inside the

metallic support and deliver important information on them. Firstly, the determination of

the porosity distribution is an significant feedback for the cell fabrication process and the

sintering parameters. Secondly, the evaluated scaling factor is a fundamental parameter in cell-

and stack-modelling which would otherwise be solely a fitting parameter without a physical

meaning. It is thus possible to improve the models further and make the results more reliable.

Thirdly, the corrosion model can substitute costly, long term corrosion measurements, and will

help to assess the applicability of different metal materials for metallic-supported SOFCs.

8.4 Future Work

Improvements to existing approaches and new models have been developed, and as it always is

the case:

Nothing is as simple as it seems at first,

or as hopeless as it seems in the middle,

or as finished as it seems in the end.

quoted from an unknown source, there is still room for further improvement. Two main aspects

are the improvement of the lateral boundary conditions and the enhancement of the corrosion

solver.
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The application of partially periodic boundaries (∼17%) shows a significant improvement of the

obtained results. Nevertheless, the deviation to the measurements is 10% and a full periodic

approach will probably yield even more accurate results. To this end, all computational faces

belonging to individual pores should be identified. Then the entire mass flux of each face

should be mapped to the other side, allowing a flow through the entire pore area and not only

through the periodic faces. This approach should also solve the problem with the asymmetric

permeability tensor.

For the time being the corrosion solver is capable of computing the change of the porous

microstructure due to corrosion, but relies completely on the corrosion rate constants. A

further improvement would be the implementation of a more sophisticated corrosion model

which describes the growth of the oxide and takes the ion diffusion in the oxide layer into

consideration.
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