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Abstract 

This thesis deals with the characterization of crack propagation in cyclically loaded elastic–
plastic materials in a new way, namely, by using the concept of configurational forces. 

Crack extension under cyclic loads, i.e. fatigue crack growth, is the most common failure 
mechanism in engineering. In order to assess the lifetime of cyclically loaded components it is 
necessary to predict the growth rate of fatigue cracks. Cracks under low-cycle fatigue 
conditions and short fatigue cracks are of great practical importance, but cannot be treated 
with the conventional stress intensity range ΔK concept, since linear elastic fracture 
mechanics is not valid. An engineering approach is to apply the experimental cyclic J-integral 

expJ  in such cases. However, the conventional J-integral is based on deformation theory of 
plasticity, which is not applicable for cyclic loading and crack extension due to the non-
proportional loading conditions. Therefore, severe doubts arise whether expJ  is appropriate 
to characterize the growth rate of fatigue cracks. 

The concept of configurational forces provides an elegant solution to this problem, since 
it enables the derivation of a J-integral for real elastic–plastic materials with incremental 
theory of plasticity. This new type of J-integral, epJ , keeps, in contrast to the classical J-
integral, the physical meaning of a true thermodynamic driving force term in elastic–plastic 
materials and is applicable even under strongly non-proportional loading conditions. 
However, epJ  is, in general, path dependent. 

The aim of the current thesis is to find out, how epJ  can be used for the evaluation of the 
driving force of a fatigue crack in elastic–plastic materials. A cyclic J-integral term epJΔ  is 
determined from the variations of epJ  during whole load cycles. The path dependence of epJ
is investigated by analyzing the distribution of configurational forces in two-dimensional 
fracture mechanics specimens with long cracks under cyclic Mode I loading. Hereby the 
configurational forces and the values of epJ  are computed by a post-processing procedure 
after a conventional finite element stress and strain analysis. Stationary and growing cracks 
are considered. Different load ratios, between pure tension and tension-compression loading 
are investigated. Loading parameters are varied in order to study the influences of contained 
and uncontained plasticity on the properties of epJΔ .  

The results provide a new, physically appropriate basis for the application of the 
J-integral concept for characterizing fatigue crack growth in the regime of non-linear fracture 
mechanics. It is shown that the experimental cyclic J-integral expJ , which has been strongly 
challenged up to now, is correct for a stationary fatigue crack. It is not strictly correct, if the 
fatigue crack propagates. In addition, it is demonstrated that the new parameter epJΔ  is also 
able to accurately reflect crack growth retardation following a single overload. Moreover, in 
combination with a configurational force analysis, new insights are obtained into the most 
important mechanism for the overload effect, which is still a contentious issue among fatigue 
experts.  
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Kurzzusammenfassung 

Die vorliegende Arbeit befasst sich mit einer neuen Art der Charakterisierung des 
Risswachstums in elastoplastischen Materialien unter zyklischer Belastung. Hierzu wird das 
Konzept der konfigurellen Kräfte (concept of configurational forces) verwendet. 

Ermüdungsrisswachstum, d.h. Risswachstum unter zyklischer Belastung, ist der am 
häufigsten auftretende Schadensmechanismus. Um die Lebensdauer von zyklisch belasteten 
Bauteilen abzuschätzen, ist es notwendig, die Wachstumsrate von Ermüdungsrissen 
vorherzusagen. Die Bestimmung der Risswachstumsraten im Bereich der Kurzzeitfestigkeit 
(low-cycle fatigue) oder für kurze Ermüdungsrisse ist für die Praxis von großer Bedeutung. 
Dafür kann aber nicht die konventionelle Spannungsintensitätsschwingweite K  verwendet 
werden, weil die Voraussetzungen für die linear elastische Bruchmechanik nicht gegeben 
sind. Stattdessen wird das experimentelle zyklische J-Integral expJ  angewandt. Allerdings 
basiert das konventionelle J-Integral auf der Deformationstheorie der Plastizität, die aber 
aufgrund der nichtproportionalen Belastungsbedingungen bei zyklischer Belastung und 
Rissfortschritt nicht verwendet werden darf. Dies hat zu starken Bedenken an der Gültigkeit 
von expJ  zur Charakterisierung der Risswachstumsrate bei der Ermüdung geführt. 

Das Konzept der konfigurellen Kräfte bietet eine elegante Lösung für dieses Problem, da 
es die Herleitung eines J-Integrals für „reale“ elastoplastische Materialien mit inkrementeller 
Plastizitätstheorie ermöglicht. Dieses neue J-Integral, epJ , hat––im Unterschied zum 
klassischen J-Integral––die physikalische Bedeutung einer wahren treibenden Kraft in 
elastoplastischen Materialien und ist auch unter stark nichtproportionalen 
Belastungsbedingungen anwendbar. Allerdings muß man berücksichtigen, dass epJ  vom 
Integrationsweg abhängt. 

Das Ziel dieser Dissertation ist herauszufinden, wie man epJ  für die Bestimmung der 
treibenden Kraft eines Ermüdungsrisses anwenden kann. Dazu wird aus der Variation von epJ
in einem vollständigem Lastzyklus ein zyklischer J-Integralterm epJΔ  bestimmt. Die 
Wegabhängigkeit von epJ  wird mittels Analyse der Verteilung der konfigurellen Kräfte in 
zweidimensionalen Bruchmechanikproben mit langen Rissen unter zyklischer Mode I 
Belastung untersucht. Die konfigurellen Kräfte und die epJ -Werte werden mit einer Post-
Processing Routine nach einer konventionellen Finiten Elemente Analyse berechnet. 
Stationäre und wachsende Risse werden betrachtet. Verschiedene Lastverhältnisse, vom 
Zugschwell- bis zum Zug-Druckbereich, werden untersucht. Die Belastungshöhe wird 
variiert, um den Einfluss der Größe der plastischen Zone auf die Eigenschaften von epJΔ  zu 
studieren.  

Die Ergebnisse liefern die Grundlage für die physikalisch korrekte Anwendung des 
J Integrals zur Beschreibung der Risswachstumsrate bei Ermüdung im Bereich der 
nichtlinearen Bruchmechanik. Es wird gezeigt, dass das experimentelle zyklische J-Integral 

expJ , welches seit langem stark umstritten ist, für stationäre Ermüdungsrisse korrekt ist. Es 
ist aber nicht ganz korrekt, wenn der Ermüdungsriss wächst. Zusätzlich wird gezeigt, dass der 
neue Parameter, epJΔ , auch die Risswachstumsverzögerung nach einer einzelnen Überlast mit 
hoher Genauigkeit beschreiben kann. Darüber hinaus erhält man sogar neue Erkenntnisse über 



viii 

den wichtigsten Mechanismus für den Überlasteffekt, was noch immer ein brisantes Thema 
unter Ermüdungsexperten ist. 
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Nomenclature 

Vector and tensor notation 

Scalars are denoted by lightface letters, vectors by lowercase boldface letters (with the 
exceptions of the reference coordinate X  and the J-integral vector J), and tensors by 
uppercase boldface letters (with the exceptions of the Cauchy stress tensor  and the linear 
strain tensor ). A dot, as in ⋅ = i ia ba b , with summation of repeated indices, designates the 
inner product of vectors; a dot, as in ⋅ = ij ijA BA B  designates the inner product of tensors. The 
expressions ( ) = ij ji A aAa  and ( ) = ik kjij A BAB  denote matrix products. The expression :A , 
with A  as second-order and  as third-order tensor, gives a vector defined by 
( ): = Λij ijkk AA . 

List of parameters 

a actual crack length
0a initial crack length 
aΔ crack extension 
( )aΔ Δ  incremental crack extension during a single load cycle 

daΔ  delay distance after an overload 
OLaΔ  total crack growth distance affected by an overload 
pl,OLraΔ  distance where active plastic zone has escaped from the overload plastic zone 

A  area below load–displacement (F–v) curve 
AΔ  area below a single loading (or unloading) branch of F–v-curve 

nAΔ  element area corresponding to a specific node n in a finite element mesh 
b  ligament length 
B  specimen thickness 

body in (deformed) current configuration 
0  body in (undeformed) reference configurationan 

∂  boundary of 
C (second rank) configurational stress tensor 

pC  plasticity influence term 
d da N  fatigue crack growth rate 

 part of deformed body  , e.g. bounded by integration contour Γ
0  part of undeformed body 0  
r  disk (area) of radius r centered at crack tip 
( )t  migrating control volume in a body 

∂  boundary of 
e unit vector in nominal crack growth direction 
E  Young’s modulus 
f  bulk configurational force vector 

Sf  surface configurational force 
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tipf  configurational force emanating from the crack tip
f  configurational force emerging on an interface 

def.plf  configurational force for deformation plasticity 
epf  incremental plasticity bulk configurational force 

ep
xf x-component of epf -vector 
ep

yf y-component of epf -vector 
nlelf  nonlinear elastic configurational force 

F  loading force 
FΔ  applied load amplitude, max minF F FΔ = −
clF crack closure load, i.e. where crack flank contact appears during unloading 
opF crack opening load, i.e. where crack flank contact disappears during re-loading 

t 0δ =F  crack tip opening load at time 
t 0,optδ =

OLF  magnitude of overload 
F  deformation gradient tensor 
G  elastic energy release rate 
H  height of Compact Tension specimen 
I  identity tensor 
J  conventional J-integral 
J J-integral vector 

JΔ  cyclic J-integral,  
tipJ  near-tip J-integral 

JΓ J-integral evaluated for an arbitrary contour Γ 
farJ  far-field J-integral or driving force inserted into the specimen by the applied load 
actPZJ J-integral evaluated for a contour actPZΓ  around the active plastic zone 
PZJ J-integral evaluated for a contour PZΓ  around the total crack tip plastic zone 
epJ  incremental plasticity J-integral for elastic–plastic materials 

ep
actPZJΔ  driving force for growing fatigue cracks 
ep
PZJΔ  driving force for stationary fatigue cracks 

expJ  experimental J-integral evaluated from the load–displacement (F–v) curve 
expJ  experimental cyclic J-integral 

nlelJ  nonlinear elastic J-integral 
VCEJ  ABAQUS J-integral calculated via virtual crack extension method 

K  stress intensity factor 
opK  stress intensity factor at Fop 

KΔ stress intensity factor range, max minK K KΔ = −
effKΔ  effective stress intensity fator range, eff max opK K KΔ = −

proc.zl  length of process zone 
m Finite Element mesh size 
m unit normal vector in the reference configuration 
n average strain hardening exponent 
n unit normal vector in the current configuration 
N  load cycle number 

max min max min2J J J J JΔ = + −
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p  unit normal vector to the crack flank 
 potential energy 

r  distance from the crack tip 
plr  plastic zone radius 
pl,cycr  radius of cyclic plastic zone 
actPZ,yr extension of active plastic zone in y-direction 

R  load ratio, min maxR F F=
OLR  overload ratio, OL OL maxR F F=

S  first Piola–Kirchhoff stress
t  time 

clt  crack closure time
opt  crack opening time

t 0,cltδ =  crack tip closure time 

t 0,optδ = crack tip opening time 
t  surface traction vector 
u  displacement vector 

yu  displacement in y-direction 
 strain energy 

v  load-line displacement 
v  material point velocity in reference configuration

tipv  crack tip velocity 
w material point velocity in current configuration or motion velocity  
W  specimen width 

 working rate 
x position vector in the current coordinate system (x, y, z) 
X position vector in the reference coordinate system (X, Y, Z) 

Greek symbols 

Γ  arbitrary integration contour for the evaluation of the J-integral 
rΓ  contour at distance r around crack tip 
tipΓ  contour around the crack tip 
proc.zΓ  contour around the process zone 
actPZΓ  contour around the active plastic zone of the current crack tip 
PZΓ  contour around the total crack tip plastic zone 
farΓ  far-field contour 
tδ  crack tip opening displacement 

tδΔ  cyclic crack tip opening displacement, t t,max t,minδ δ δΔ = −
i
jΔ relative difference betweentwo values i and j

ε  (engineering) strain 
εΔ  cyclic strain or strain range 
eε  elastic strain 
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pε  plastic strain 
p
eqε equivalent plastic strain (PEEQ in ABAQUS) 
 linear strain tensor 

η  nondimensional geometry factor for evaluation of expJ  and expJ
ν  Poisson's ratio 
σ  (engineering) stress 

σΔ  cyclic stress or stress range 
 Cauchy stress tensor 
xxσ  normal stress component in x-direction 
yyσ  normal stress component in y-direction 
eqσ  equivalent stress or von Mises stress 
uσ  ultimate tensile strength 
yσ  yield stress 

φ  strain energy density or (Helmholtz) free energy per unit volume 
eφ  elastic (reversible) part of strain energy density
pφ  plastic (dissipated) part of strain energy density
tipψ   dissipation due to crack tip propagation 
bulkψ  bulk dissipation per unit volume 

Acronyms 

CL subscript denoting constant cyclic loading  
conv superscript denoting the conventional J-integral 
contact superscript denoting that crack flank contact is considered in the simulation 
CT Compact Tension (specimen) 
E–PFM elastic–plastic fracture mechanics 
FE Finite Element 
gy general yielding 
HRR Hutchinson-Rice-Rosengren (crack tip field) 
LCF low-cycle fatigue 
LEFM linear elastic fracture mechanics 
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OL subscript denoting cyclic loading with a single overload  
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1 Introduction 

This thesis is an output of a strategic project within the Austrian COMET Competence Center 
Programme. The main objective of the project was to develop a new computational tool for 
the physically correct evaluation of the crack driving force in cyclically loaded elastic–plastic 
materials, in order to characterize the growth rate of fatigue cracks. The rationale was to apply 
the concept of configurational forces (e.g. Maugin 1995, Gurtin 2000), from the field of 
mechanics, and the J-integral concept from the regime of non-linear fracture mechanics.  

The conventional J-integral (Rice 1968a,b) is commonly applied to describe crack growth 
when the material exhibits in general a nonlinear behavior, e.g. if crack growth is 
accompanied by significant plastic deformation (see e.g. Anderson 1995). It is well known 
that two fundamental conceptual difficulties appear when the conventional J-integral is 
applied to elastic–plastic materials: 

• J does not provide a real thermodynamic driving force term in elastic–plastic materials 
(Rice 1968a,b), 

• J is not applicable under non-proportional loading conditions, e.g. if unloading 
processes occur in the material, such as during crack extension and for cyclic loading 
(Rice 1968a,b; Anderson 1995).  

The reason for these restrictions is that the conventional J-integral relies on the assumption of 
deformation theory of plasticity, i.e. the elastic–plastic material is idealized to behave 
nonlinear elastic. Despite these restrictions for the J-integral, an experimental cyclic J-integral 

expJ  is often used as crack driving force parameter to describe fatigue crack growth in cases 
where linear elastic fracture mechanics and the conventional stress intensity range ΔK are not 
applicable. But, this appears highly questionable (e.g. Anderson 1995, Suresh 1998). 

The concept of configurational forces enables the derivation of the J-integral without 
restrictions regarding constitutive assumptions of the material (e.g. Simha et al. 2003). Using 
this concept, Simha et al. (2008) have derived the J-integral for elastic–plastic materials with 
incremental theory of plasticity. This new type of J-integral, called epJ , overcomes the 
restrictions of the conventional J-integral:  

• epJ  has the physical meaning of a true driving force term in elastic–plastic materials, 
• epJ  is applicable even for strongly non-proportional loading conditions, which are 

inevitable during fatigue crack growth.  
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However, one has to bear in mind that epJ  is, in general, path dependent. Therefore, analyses 
on the path dependence of epJ  are required in order to find the appropriate integration path for 
the description of the crack driving force in elastic–plastic materials. 

In a preceding PhD thesis, Schöngrundner (2011) studied the path dependence of epJ  for 
stationary and growing cracks in monotonically loaded elastic–plastic materials. Based on this 
work, Kolednik et al. (2014) demonstrated the usefulness of epJ  for the assessment of crack 
growth and fracture. Moreover, Kolednik et al. (2014) have shown that the epJ -integral 
enables us to shed new light on the fundamental problems of the conventional J-integral for 
elastic–plastic materials: It has been demonstrated that the conventional J-integral J and the 

epJ -integral complement each other, so that J remains useful if certain conditions are fulfilled. 
The current thesis presents comprehensive case studies for cyclic loading in order to 

elucidate how epJ  shall be used for the evaluation of a cyclic J-integral epJ , which 
characterizes the fatigue crack growth rate. The differences to and the usefulness of the 
conventional J-integral for fatigue will be also discussed. 

The main questions the thesis will address in detail are: 

1) How does epJ  change during a load cycle?  
2) How should the cyclic J-integral epJ  be evaluated and can it be used for the 

characterization of fatigue crack growth when the conventional stress intensity range 
ΔK is not applicable?  

3) Is the application of the experimental cyclic J-integral expJ  correct? 

In practice, materials and structural components are often subjected to variable cyclic loading. 
Therefore, another main question of the thesis is: 

4) Is the new parameter epJ  able to characterize crack growth retardation after a single 
tensile overload?  

Questions 1) – 3) will be worked out first for stationary cracks, then for growing cracks that 
are cyclically loaded. Question 4) can be answered only in the context of growing fatigue 
cracks. 

The thesis is structured in two parts: In Part I, first some fundamentals on continuum 
mechanics, fracture mechanics and configurational forces are presented (Sections 2–4). 
Subsequently, Section 5 presents the application of the incremental plasticity J-integral epJ
for the description of the crack driving force in elastic–plastic materials under monotonic 
loading. In Part II, first the answers to questions 1) – 4) are worked out, Sections 6–8. Each of 
these sections contains a peer reviewed journal article: Paper I and Paper II have already 
appeared in International Journal of Fracture; Paper III was sent to International Journal of 
Fatigue and has received excellent reviews. Preliminary remarks to these papers provide a 
brief description, which questions are answered in the following paper. The numbers of the 
equations, figures and tables have been changed according to the section number in the thesis. 
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The individual reference section of each paper has been removed and included into the 
reference section of this thesis. Section 9 discusses open questions that arise from the papers 
and provides proposals for ongoing work. Section 10 provides a summary of the main 
conclusions of the thesis.  



  



Part I 

Theoretical basis and review of the application of 
configurational forces in fracture mechanics 
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2 Fundamentals of continuum mechanics 

Before we deal with fracture mechanics and configurational forces it is necessary to set a 
common continuum mechanical basis. For the sake of brevity detailed calculations are 
omitted and the reader is referred to the cited literature. Comprehensive treatments on 
continuum mechanics can be found in classical textbooks, e.g., by Truesdell and Noll (1965), 
Malvern (1969), Gurtin (1982), Marsden and Hughes (1983), Chadwick (1999), or Bonet and 
Wood (2008). Direct (coordinate-free) notation is used for the mathematical expressions in 
this thesis. The notation is briefly specified in Gurtin (2000) and the section titled 
“Nomenclature” of the current thesis. 

2.1 Large strain theory  
Continuum mechanics deals with the deformation of bodies under stress. For the description 
of deforming bodies the notion of reference- and current (or actual) configuration is essential. 
Assume an unloaded, homogeneous body 0 at initial time t0 = 0 (Fig. 2.1). 0 is considered 
to be an assemblage of material points characterized by their coordinates X, with respect to a 
global coordinate basis.1 If 0 is subjected to external or internal stresses, it will deform 
accordingly into , at time 0t ≠ . In , the material points are described by their current 
position x. The unloaded and deformed configurations, 0 and , are denoted as reference 
(also Lagrangian) and current (also Eulerian) configuration (e.g. Bonet and Wood 2008). 

The family of configurations that change with time t is called motion (Chadwick 1999). 
The motion is described by a nonlinear one-to-one mapping between reference and current 
material point positions (e.g. Bonet and Wood), 

( ), t=x x X . (2.1) 

If t is held fixed, Eq. (2.1) represents a mapping between reference- and current configuration. 
For a fixed material point with position X, Eq. (2.1) describes the motion or trajectory against 
time of the respective material point, see dashed line in Fig. 2.1 (Bonet and Wood 2008).  

The velocity w of a material point is defined as the rate of change with time of the 
position x, also designated by a superposed dot, 

t
∂= =
∂
xw x ; (2.2) 

the velocity of the same material point in the reference configuration is t= = ∂ ∂v X X . 
  

                                                 
1 In this thesis, rectangular Cartesian coordinates are used. 
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Fig. 2.1 Reference configuration 0 at time t0 and current configuration  at time t of a 
deformable body. The nonlinear deformation map ( ),t=x x X maps at time t a material 
point position X of 0 onto the current position x on . Accordingly, the deformation 
gradient tensor F maps line elements of 0 on tangent vectors of  via d d=x F X . 

Analogously to the mapping of X onto x, it is possible to describe the relative position of 
two neighboring material points after deformation, dx, with respect to their position before 
deformation, dX (Fig. 2.1). The line segments dx and dX are related by the deformation 
gradient tensor F (e.g. Bonet and Wood 2008), 

∂= = + ∇
∂

xF 1 u
X

. (2.3) 

The parameter F enables a mapping of line elements from the reference into the current 
configuration and is the key quantity for the description of large deformations (large strain 
theory) and hence strain. For frequently used strain measures see, for example, Truesdell and 
Noll (1965) or Bonet and Wood (2008). In Eq. (2.3), the symbol ∇  is the Lagrangian gradient 
operator and ∇u  denotes the gradient of the displacement u = x – X (Fig. 2.1). 

In large strain theory, no assumptions are made about the magnitude of the displacement 
u. This means that u can be large in comparison to the dimensions of the body. Large strain 
theory is used in the current work, since the crack tip region undergoes large deformations 
during the loading process. 

2.2 Stress 
External forces acting on a body produce internal forces so that each part of the body is in a 
state of static equilibrium (Bonet and Wood 2008). Consider a cut-off part of body , Fig. 2.1, 
and a point located on a small area element da on the cut surface (Fig. 2.2a); n designates the  
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(a) (b) 

Fig. 2.2 (a) Cut-off parts of 0 and . Reaction forces dP and dp act on the cut surface in order 
to fulfill the state of static equilibrium. (b) Cauchy tetrahedron with surface traction t
acting on the cut surface. The existence of a bulk stress tensor  becomes clear from 
the force balance. 

outward unit normal vector to da. The surface traction t is given by the limit of the ratio 
d dap  as da tends to zero; dp is the reaction force corresponding to da, see Bonet and Wood 
(2008). The existence of a bulk stress tensor arises from the balance of deformational forces 
on the Cauchy tetrahedron (Fig. 2.2b). The idea is to do three linearly independent cuts 
around a material point whereby t acts on the surface (e.g. Bonet and Wood 2008). From this 
balance the relationship between the Cauchy stress tensor  and the surface traction vector t
can be derived, 

=t n . (2.4) 

The Cauchy stress tensor  completely defines the stress state of a material point in the 
current configuration. It is the stress that arises in response to deformation and relates, loosely 
speaking, the current element of force dp to the currently deformed area element, d da=a n
(Fig. 2.2a). Therefore,  is also called the true stress (Bonet and Wood 2008).  

It is possible to define different stress measures with respect to the configuration. The 
first Piola–Kirchhoff stress, S, relates the element force vector dp in the current configuration 
to the undeformed area element of the reference configuration, dA (Fig. 2.2a). The traction is 
obtained by =t Sm , with m as the unit normal vector to the area element dA in the reference 
configuration. The first Piola–Kirchhoff stress and the Cauchy stress tensor are related by 
(Bonet and Wood 2008), 

TJ −=S F ; (2.5) 
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J denotes the determinant of the Jacobian, ( )detJ = F , and T−F  the transposed of the inverse 
of F. 

The second Piola–Kirchhoff stress, T, relates forces in the reference configuration, dP, to 
areas in the reference configuration, dA. Note that T has no real physical meaning, however, 
it is useful for the formulation of constitutive models; see Bonet and Wood (2008) for details. 

For the description of crack growth with configurational forces, a description of the 
stresses in reference configuration, i.e. with first Piola–Kirchhoff stress, is necessary, see 
Section 4. 

2.3 Balance laws 
Balance laws are essential for the understanding of the theory of configurational forces. The 
five balance laws in continuum mechanics are: the balance of mass, of linear and angular 
momentum, the first and the second law of thermodynamics. 

Since the transformation between first Piola–Kirchhoff stress and Cauchy stress, Eq. 
(2.5), lead to equivalent relations for the reference- and current configuration, the balance 
laws are only presented for upcoming reference configuration. For detailed derivations see 
e.g. Malvern (1969) or Bonet and Wood (2008).  

It should be noted that, in contrast to constitutive relations (Section 2.5), balance laws are 
universal and not restricted to certain classes of materials. 

Balance of mass 
The balance, or conservation of mass postulates that the mass of a closed system cannot 
change if there is no transfer of mass (or energy) over the system boundary (Malvern 1969). 
  
Balance of linear momentum 
Consider an arbitrary part 0 of a deformable body 0 (Fig. 2.1). In a free-body diagram, one 
can imagine that traction forces t act on the boundary 0∂  of 0, like in Fig. 2.2b; for 
simplicity, inertia and body forces are ignored in the following. The global (or integral) form 
for translational equilibrium (for statics) requires that the sum of all forces acting on 0

vanishes, leading to (e.g. Bonet and Wood 2008) 

0

dA
∂

=Sm 0  for all parts 0 0⊂ . (2.6) 

Here, dA denotes an area increment of the surface 0∂ . Application of the divergence 
theorem yields the local (or pointwise) form, 

∇ ⋅ =S 0  at each point in the body 0 0⊂ ; (2.7) 

∇ ⋅  denotes the divergence. 
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Balance of angular momentum 
The rotational equilibrium of 0 implies that the total moment of traction forces about an 
arbitrary point must vanish. This renders the Cauchy stress to be symmetric, T= . On the 
contrary, the first Piola–Kirchhoff stress is, in general, not symmetric, since T T=SF FS  (see 
e.g. Bonet and Wood 2008).

First law of thermodynamics – conservation of energy 
This law postulates that the total energy of an isolated system is constant (Malvern 1969): 

d d d
d d dt t t

= +   for all parts 0 0⊂ ; (2.8)  

 reflects the stored energy in the system and can be additively split up into external energy, 
like kinetic energy, and internal energy, like strain energy . The quantities  and 
represent transported energies over the system boundary;  denotes the mechanical energy or 
work of the applied forces,  is the inserted or removed energy by heat. For the local form of 
Eq. (2.8) see Malvern (1969).  

The energy balance, Eq. (2.8), will be used in Section 3.1 to define the criteria for crack 
growth and the crack driving force. 

Second law of thermodynamics – dissipation inequality 
The second law of thermodynamics identifies the direction of thermomechanical processes. A 
fundamental version of this law for continuum mechanics is the “Clausius–Duhem inequality” 
(e.g. Malvern 1969), which postulates the dissipation Ψ  to be equal or larger than zero for 
every part 0 of a body 0. Hence, this law is also called dissipation inequality. The 
dissipation Ψ  is a measure of reversibility of mechanical processes and can be expressed in 
global form by the relation (Malvern 1969, Gurtin 2000), 

( )0
d 0
dt

Ψ = − ≥  for all parts 0 0⊂ , (2.9) 

i.e. the difference between the working rate  and the rate of change of energy ; in our 
cases the strain energy  reflects .  

It should be mentioned that heat is not considered in our cases, thus, the dissipation arises 
mainly from plastic deformation. Under consideration of isothermal state changes, the local 
form of the dissipation inequality is given by (Malvern 1969, Gurtin 2000) 

bulk 0ψ φ= ⋅ − ≥S F  at each point in the body 0 0⊂ . (2.10) 

The relation, Eq. (2.10), is also termed “bulk dissipation per unit volume” (e.g. Simha et al. 
2003) and will be derived in Section 4.2.2. The parameter φ  denotes the (Helmholtz) free 
energy per volume in the reference configuration and is in our cases identical to the strain 
energy density, see Section 2.5.1; φ  denotes the time derivative of φ . 
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If φ  is a single valued function of deformation, i.e. φ  exhibits the properties of a 
potential, bulkψ = 0. This means that mechanical processes are fully reversible in the material, 
and Eq. (2.10) serves for calculating the stresses (e.g. Simha et al. 2003), 

( )d
d
φ

=
F

S
F

. (2.11) 

On the contrary, if dissipative processes occur in the material, bulkψ  > 0 applies, and φ  is not 
a single valued function of deformation. As a consequence, Eq. (2.11) is not valid any more 
(e.g. Simha et al. 2003). 

From this section it should be kept in mind that the dissipation inequality, Eq. (2.10), 
considers thermodynamically admissible processes for specific constitutive relations of a 
material, and Eq. (2.11) is only valid under certain conditions; constitutive relations are 
discussed in Section 2.5. 

2.4 Small strain theory 
Though the concept of configurational forces will be derived for large strain theory, it is in 
many cases useful, for an easier understanding, to apply formulations under assumptions of 
small deformations. In small strain theory the displacement u is assumed to be infinitesimally 
small. This means that reference- and current configurations are (approximately) the same, 
which implies that material points can be characterized only by x (e.g. Bonet and Wood 
2008).  

In small strain theory all strain and stress measures coincide. The linearized strain tensor 
 is defined by  

( )( )T1
2

= ∇ + ∇u u ; (2.12) 

see e.g. Bonet and Wood (2008) for details. Hence, the displacement u is the essential 
kinematic descriptor for small deformations. The stress tensor is given by the Cauchy stress 
tensor  (Section 2.2).  

For the linear equilibrium equation, S is substituted by  in Eqs. (2.6) and (2.7). The 
dissipation inequality, Eq. (2.10), follows with 

bulk 0ψ φ= ⋅ − ≥  at each point in the body 0 0⊂ . (2.13) 

This leads to  

( )d
d
φ

= , (2.14) 
  
provided that ( )φ φ=  applies, i.e. for specific constitutive assumptions, see next section. 
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2.5 Constitutive relations  
A constitutive relation (also material law) specifies the stress–strain relationship for a certain 
material. Basically, the mechanics of solids distinguishes between elastic and plastic
materials. Their constitutive behavior is defined after making assumptions about the strain 
energy density φ , Section 2.5.1.  

The Hooke’s law gives the stress–strain relationship in linear elasticity. For homo-
geneous, isotropic, elastic materials, two material constants uniquely define the material 
properties, i.e. Young’s Modulus E and Poisson’s ratio ν . For elastic–plastic materials, the 
description of the material law is more complex. In Section 2.5.2, two theories, which are 
crucial for this thesis, will be introduced. 

For simplicity, small strain theory is considered in the following. Details on material 
theory can be found, e.g., in Truesdell and Noll (1965), Malvern (1969), Marsden and Hughes 
(1983). 

2.5.1 Strain energy density 

A body deforms elastically if the deformation is fully reversible. This implies that the stress 
state  depends only on the current deformation , but not on the deformation history (e.g. 
Malvern 1969). Figure 2.3 shows the stress–strain (σ ε− ) behavior in a nonlinear elastic 
material: Point A is reached independently of the previous stress state B or 0. 

The work done per unit volume during deformation is related to the strain energy density, 
which is given by 

( ) dφ = ⋅
0

, (2.15) 

i.e. the area below the σ ε− -curve (Fig. 2.3a). The requirement for the validity of Eq. (2.15) 
is that φ  is a single valued function of strain, ( )φ φ= , i.e. φ  exhibits the properties of a 
potential. Then, bulkψ  = 0, Eq. (2.13), and the stresses  can be derived after Eq. (2.14). This 
assumption applies for homogeneous, (linear or nonlinear) elastic materials. In Fig, 2.3, it 
does not matter how A is reached, the magnitude of strain energy density φ  is always the 
same. On the contrary, this is not the case in dissipative materials, like elastic–plastic 
materials. 

2.5.2 Deformation plasticity versus incremental theory of plasticity 

If an elastic–plastic material is loaded beyond the yield stress yσ , it will deform plastically. 
Such deformations are not reversible anymore. For small strain theory, the total strain  can 
be split into elastic and plastic parts, e p= +  (Fig. 2.3b). Two theories can be applied for  
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(a) (b) 

Fig. 2.3 Stress–strain (σ ε− ) curves of a material point in (a) a nonlinear elastic material and 
(b) an elastic–plastic material. Deformation plasticity treats the elastic–plastic material 
to be nonlinear elastic. This means that the total strain energy density φ  is assumed to 
be fully recoverable. On the contrary, only the elastic part eφ  of the total strain energy 
density e pφ φ φ= +  is reversible in a real elastic–plastic material with incremental 
theory of plasticity.

the description of the relationship between the stresses  and total strains : Deformation- 
and incremental theory of plasticity.2

Deformation theory of plasticity
This theory presumes the plastic strain as a function of the deviatoric stresses, p s , or of 
the equivalent stress, p eqσ  (e.g. Chakrabarty 2006).3

Application of deformation theory of plasticity means that the elastic–plastic material 
behavior is idealized to be nonlinear elastic.4 This is possible as long as the conditions of 
proportional loading are fulfilled, that is, if no unloading processes occur in the material. 
Then, a material point in an elastic–plastic and a comparable nonlinear elastic material 
exhibits the same stress–strain-curve; compare Figs. 2.3a,b. However, an error appears since 
only the elastic part of the total strain energy eφ  is reversible and not the total strain energy 
density e pφ φ φ= + , which is composed of the elastic and plastic part (Fig. 2.3b); the plastic 
part pφ  has been dissipated during plastic deformation.  
                                                 
2 For any theory in plasticity, a yield condition, a hardening rule, and a flow rule is needed, which shall not be 
discussed here. In this thesis, von Mises plasticity will be used. For details on plasticity theory see e.g. Kachanov 
(2004) and Chakrabarty (2006), respectively.  
3 Stresses can be decomposed into hydrostatic and deviatoric parts. The hydrostatic stress is related to the 
volume change, whereas the deviatoric stress is related to the shape change. Since plastic deformation is 
considered to be isochoric, only deviatoric stresses are crucial for plastic deformation. Note that the equivalent 
stress eqσ  is only a function of the deviatoric stresses, see e.g. Kachanov (2004) or Chakrabarty (2006) for 
details.  
4 The nonlinear stress–strain-curve for elastic–plastic materials is frequently approximated by the Ramberg-
Osgood equation; see, for example, Anderson (1995).
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This has important consequences for the application of the conventional J-integral as 
crack driving force parameter in elastic–plastic materials, as outlined in the Introduction and 
in Section 3.2.1 in detail.  

Incremental theory of plasticity
This theory is required for the correct description of elastic–plastic materials. Here, the 
increment of plastic strain pd  is considered to evolve proportional to the deviatoric stresses, 

pd s , or the equivalent stress, p eqd σ . The elastic strain increment ed  is related to the 
stresses by the Hooke’s law. The total strain increment is given by e pd d d= + , which is 
referred to as Prandtl–Reuss equation, see Kachanov (2004).  

Figure 2.3b shows the stress–strain relationship in an elastic–plastic material. After 
loading to point B the total strain energy density e pφ φ φ= +  is not fully reversible any more, 
but only the elastic part eφ . Therefore, point C is reached after unloading from B. 

In a homogeneous, elastic–plastic material with incremental plasticity, the strain energy 
density is given by (Simha et al. 2003) 

( ) ( ) ( )e e e p,φ φ φ= +x x , (2.16) 

where ( )e eφ  is the reversible part of φ , evaluated analogously to Eq. (2.15), and ( )pφ x
depends on the deformation history of a material point, defined by x. Since φ , Eq. (2.16), 
does not exhibit the properties of a potential, Eq. (2.14) is not valid for elastic–plastic 
materials. The implications for the J-integral will be explained in Sections 3.2.1 and 4.3.2, 
respectively. 
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3 Fundamentals of fracture mechanics 

Fracture mechanics is a continuum mechanics-based tool that enables the description of the 
behavior of cracks in materials and structural components. For a comprehensive overview 
about fracture mechanics much literature is available, e.g., Broek (1982), Anderson (1995), 
Gross and Seelig (2007), Kuna (2008). The article by Kolednik (2012) gives a compact 
review about this topic. For fatigue crack propagation, the book by Suresh (1998) is the 
standard reference.  

The purpose of this section is to introduce relevant fracture mechanics terms and 
concepts, needed for this thesis. Emphasis is placed on the J-integral concept and the 
fundamental conceptual difficulties that appear when J is applied to elastic–plastic materials.  

It should be mentioned that only long cracks under Mode I loading, i.e. the crack opening 
mode, are treated in this thesis, since it is the most critical loading mode (Anderson 1995). 
Moreover, Mode I commonly occurs during fatigue crack propagation, and other mode cracks 
(Mode II and III) often turn into Mode I, see Suresh (1998) for details on this topic. 

3.1 Crack driving force and regimes of fracture mechanics 
The major goal in fracture mechanics is to determine the criteria for the growth of cracks 
(Kolednik 2012). Crack extension is driven by a force, referred to as the crack driving force, 
and hindered by the crack growth resistance. The crack extends if the crack driving force 
becomes equal or larger than the crack growth resistance (e.g. Anderson 1995, Kolednik 
2012). For the former case, “equilibrium crack growth” prevails. For the latter case, we have 
“unstable crack growth”. 

The definition of the crack driving force and the crack growth resistance originates from 
the balance of energy, Eq. (2.8). Assume a monotonically loaded, elastic–plastic body of 
thickness B with a crack during an increment of equilibrium crack extension da  (Fig. 3.1a). 
The balance of energy can be expressed as (e.g. Kolednik 2012) 

e non-rev sd d d d= + + Γ . (3.1) 

Here, e  and non-rev  denote the reversible- (elastic) and the non-reversible strain energy. sΓ
is the surface energy, which reflects the work required to create new fracture surface 
(Anderson 1995, Kolednik 2012). For an elastic–plastic material non-rev  contains mainly the 
plastic strain energy p . Rearrangement of Eq. (3.1) and division by the increased crack area, 
B da , leads to 

e non-rev s

crack driving force crack growth resistance

1 d d 1 d 1 d d
d d dB a B a B a
− + Γ− = − = − . (3.2) 
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(a)  (b)  (c) 

Fig. 3.1 (a) Loaded body with a crack of initial length a0 after incremental crack extension da; 
the total crack length is 0 da a a= + . (b) (c) Regimes of fracture mechanics: (b) linear 
elastic fracture mechanics (LEFM) applies if linear elastic (strict LEFM) or small-
scale yielding conditions prevail; (c) elastic–plastic fracture mechanics (E–PFM) 
applies under large-scale- or general yielding conditions, and during the growth of 
short cracks.

In Eq. (3.2),  denotes the potential energy that is supplied by the internal elastic strain 
energy and the work of the external force F; e= − . For crack extension under constant 
displacement v = const, e=  (e.g. Rice 1968a,b; Anderson 1995).  

The left term in Eq. (3.2) is denominated as the crack driving force, i.e. the potential 
energy released per unit crack extension. The right term of Eq. (3.2) is conform to the crack 
growth resistance, i.e. the non-reversible energy required to produce a unit crack extension, 
see e.g. Griffith (1920), Eftis and Liebowitz (1975), Kolednik (1991), Turner and Kolednik 
(1994).  

A major problem in fracture mechanics is that different parameters are used for the 
description of the crack driving force and the crack growth resistance (Kolednik 2012). For 
the current thesis the crack driving force is of major interest. For details about the crack 
growth resistance the reader is referred, e.g., to Anderson (1995). 

Fracture mechanics can be divided into linear elastic fracture mechanics (LEFM) and 
elastic–plastic- or non-linear fracture mechanics (E–PFM, NLFM), see e.g. Kolednik (2012). 
LEFM is applied when crack growth is accompanied by zero or limited plastic deformation, 
i.e. the radius of the plastic zone plr  is very small compared to the crack length a and the 
ligament length b, pl ,r a b , so that small-scale yielding (ssy) conditions prevail, see Fig. 
3.1b. E–PFM is used in presence of significant plastic deformation, pl ,r a b , that is, if large-
scale yielding (lsy) or general yielding (gy) conditions prevail (Fig. 3.1c), or when the 
material exhibits, in general, nonlinear behavior (Kolednik 2012). Lsy-conditions start with 
the onset of plastic deformation at the back face of the body. Gy-conditions prevail when the 
crack tip plastic zone and back face plasticity region merge, i.e. plasticity spreads over the 
whole ligament. Note that, in spite of a small crack tip plastic zone, pl ,r a b  is not 
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guaranteed for short cracks (see last image in Fig. 3.1c), and therefore E–PFM must be 
applied. 

In the regime of LEFM, the elastic energy release rate G (Griffith 1920) characterizes the 
thermodynamic crack driving force. Alternatively, the stress intensity factor K (Irwin 1957) 
can be used: the crack grows if a critical stress intensity of the crack tip field is reached. The 
parameters G and K are related for linear elasticity, hence, both concepts are in principle 
equivalent (e.g. Anderson 1995, Kolednik 2012). 

The common approaches in the regime of E–PFM are the crack tip opening displacement 
tδ  (Wells 1963) and the J-integral (Rice 1968a,b). Similar to K, the parameters tδ  and J

describe the intensity of the near-tip field; crack growth occurs if the corresponding critical 
values are reached. The J-integral also describes the thermodynamic crack driving force for 
nonlinear elastic bodies (Rice 1968a,b); see next section. For linear elastic bodies, Rice 
(1968a,b) showed that J is identical to the elastic energy release rate G. Since K (or G) is 
uniquely related to tδ  for ssy-conditions, a relation between J and tδ  can be obtained that 
holds even in the E–PFM regime, see Anderson (1995), Kolednik (2012) and Section 6.5.2 of 
the current thesis. 

While crack growth can be readily described in LEFM, it is somewhat problematic in the 
E–PFM regime: the determination of accurate tδ -values is, in general, difficult (e.g. Kolednik 
and Stüwe 1985, Siegmund et al. 1990); the application of the J-integral to elastic–plastic 
materials is connected with fundamental conceptual difficulties (e.g. Rice 1976).  

The main focus of this thesis lies on the J-integral concept. Therefore, the most important 
aspects about the J-integral shall be presented in the following. 

3.2 The conventional J-integral – definition and properties 
Assume a homogeneous, nonlinear elastic body  as illustrated in Fig. 3.2a. The change in 
potential energy d  released during an incremental crack extension da can be expressed by 
the J-integral (Rice 1968a,b), 

1 d d d
d

y s
B a x

Jφ
Γ

∂− = − ⋅
∂

≡ut . (3.3) 

This implies that J reflects the magnitude of the crack driving force in nonlinear elastic 
materials, compare Eq. (3.2). The quantities of the integral term in Eq. (3.3) have been already 
explained in Section 2; ds denotes an increment of the integration path Γ, drawn from the 
lower to the upper crack flank in counterclockwise direction around a crack (Fig. 3.2a). The J-
integral can be calculated when the stresses and strains along Γ are given, for example, after a 
conventional finite element (FE) analysis (Kolednik 2012).  

The big advantage of the J-integral is its path independence in the context of 
homogeneous, nonlinear elastic materials (Rice 1968a,b). This path dependence is very 
important: a direct evaluation of the energy released at the crack tip, characterized by the 
near-tip J-integral tipJ , is very difficult. However, since tip farJ J JΓ= = , the magnitude of tipJ
can readily be determined by the J-integral on a far-field contour, farJ  (Fig. 3.2a). 
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(a)   (b) 

Fig. 3.2 (a) Homogeneous, nonlinear elastic (nlel) body  with a crack after one increment of 
crack extension; crack length 0 da a a= + . In nlel materials, the magnitude of the J-
integral is independent of the integration path Γ. (b) Zones of non-proportional 
loading: process zone after crack-tip blunting (second image) and after crack 
extension Δa (lower image). “J-controlled crack growth” means that a J-dominated 
zone exists around a blunted crack tip even after crack extension.

Hutchinson (1968) and Rice and Rosengren (1968) showed that J provides a measure of 
the intensity of the crack tip field (called HRR field) for nonlinear elastic materials, similar to 
K for linear elasticity.  

It should be emphasized that the meaning of a crack driving force term, Eq. (3.3), and the 
path independence of J can be shown only if the strain energy density φ  exhibits the 
properties of a potential, so that Eq. (3.14) is valid; see e.g. Anderson (1995). Therefore, it is 
required that the material is characterized by nonlinear elastic behavior, i.e. deformation 
plasticity (Section 2.5).  

3.2.1 Problems of J-integral in elastic–plastic materials

The application of the J-integral for elastic–plastic materials with incremental plasticity rests 
on the assumption that deformation theory of plasticity can be used. This is possible as long 
as the conditions of proportional loading are fulfilled, that is, if no unloading occurs in the 
material (Kolednik 2012).  

Figure 2.3 shows that nonlinear elastic and elastic–plastic materials exhibit the same 
stress–strain-curves as long as no unloading occurs. But, even if proportional loading 
conditions prevail the J-integral does not reflect the thermodynamic driving force of a crack 
in elastic–plastic materials (Rice 1968a,b). The reason is that deformation plasticity presumes 
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the total strain energy density φ  to be fully reversible, which applies in a nonlinear elastic 
material. In an elastic–plastic material, however, only the elastic part eφ  can be recovered and 
is available for driving crack extension, see Section 2.5.2. Moreover, Eq. (3.3) cannot be 
derived for incremental plasticity, since φ  is not a thermodynamic potential, hence, Eq. (2.14) 
is invalid (e.g. Anderson 1995). Nevertheless, the J-integral still characterizes the intensity of 
the crack tip field (Hutchinson 1968, Rice and Rosengren 1968, McMeeking and Parks 1979). 

Additional problems arise under assumption of deformation plasticity when proportional 
loading is violated, e.g. for cyclic loading and crack extension, due to the unloading behind 
the moving crack tip. Fig. 2.3 shows that wrong total strains are predicted. In reality, 
however, even when a crack remains stationary under monotonic loading, non-proportional 
loading occurs in a small region in front of the blunted crack tip.5 This region is referred to as 
the process zone, Fig. 3.2b (second image), i.e. the region within which micromechanical 
damage processes occur, e.g. void initiation and void growth (Anderson 1995, Kolednik 
2012). In numerical simulations with incremental plasticity and large strain theory, the 
intensely deformed zone in front of a blunted crack tip can be connected to the process zone. 
The length of the process zone is proportional to the crack tip opening displacement, 

proc.z tl κδ≈ ; the pre-factor κ  is often assumed to be 3 (Rice and Johnson 1970; McMeeking 
1977). The process zone provides a disturbance of the HRR field, like the plastic zone for the 
K-field. The J-integral is only meaningful as long as the process zone remains small, so that a 
so-called “J-dominated zone” exists, where J still characterizes the intensity of the crack tip 
field. The size requirement for the validity of J is due to proc.z tl κδ≈  related to the crack tip 
opening displacement and can be found in Anderson (1995) and Kolednik (2012), 
respectively. 

As a consequence of all these restrictions when deformation theory of plasticity is 
presumed, incremental theory of plasticity is desired for a realistic description of the elastic–
plastic material.  

In incremental theory of plasticity, however, the J-integral becomes path dependent. 
Finite element analyses with incremental plasticity and large strain theory showed that the J-
integral varies in the process zone, within which non-proportional loading occurs. For a 
stationary crack, J reaches a saturation value outside the process zone, which remains useful 
(e.g. McMeeking 1977, Brocks et al. 2003); see next section. For a growing crack, the path 
dependence of J is more pronounced due to the larger zone of non-proportional loading 
around the growing crack tip (Fig. 3.2b, lower image).  

It should be remarked that, although such FE-analyses are performed with incremental 
plasticity, deformation plasticity is implicitly assumed in the evaluation of the J-integral, see 
e.g. Parks (1977). Therefore, the physical meaning of the near-tip J-integral tipJ  as crack 
driving force parameter remains unclear for incremental plasticity (Simha et al. 2008). 

                                                 
5 During loading of an elastic–plastic material, plastic deformation at the crack tip leads to crack-tip blunting; see 
Anderson (1995), Kolednik (2012) and Fig. 2.2b, for example. 
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 (a) (b) (c) 

Fig. 3.3 (a) Determination of area A from the load–displacement (F–v) record for the 
evaluation of the evaluation of the experimental J-integral expJ . (b) Determination of 
ΔA from a single loading branch for the experimental cyclic J-integral expJΔ . (c)
Determination of ΔA in the presence of crack closure. The open dot indicates the point 
where the crack fully opens during re-loading. The full dot indicates the beginning of 
crack closure during unloading. 

On a more general level, it is also not clarified whether tipJ  alone controls crack growth in 
elastic–plastic materials (Simha et al. 2008, Kolednik et al. 2014). The reason is that J
strongly reduces for shrinking contours in the process zone to the very tip, leading finally to 

tipJ  = 0. This appears independently whether deformation- or incremental theory of plasticity 
is applied, see e.g. Rice and Johnson (1970), McMeeking (1977), McMeeking and Parks 
(1979), Brocks et al. (2003), Kfouri and Miller (1976), Kfouri and Rice (1977), Kolednik et 
al. (2014). Immediately the question arises, how can a crack in an elastic–plastic material 
extend despite zero crack driving force? This is referred to as the “paradox of elastic–plastic 
fracture mechanics” (Rice 1979). The paradox has been extensively investigated in the thesis 
by Schöngrundner (2011) and Kolednik et al. (2014); see also Section 5 herein. 

3.2.2 Experimental J-integral 

The magnitude of the J-integral, Eq. (3.3), can be determined in fracture mechanics 
experiments from the area A below the load–displacement (F–v) curve of a single specimen 
(Fig. 3.3a); before crack extension, A is identical to the total strain energy e p= +
(Section 3.1). The experimental J-integral expJ  is evaluated, for deeply notched bend-type 
specimens, like Compact Tension (CT) or Single-Edge Notched Bend (SENB) specimens, by 
the relation (Rice et al. 1973),  

bB
AJ η=exp ; (3.4) 

b is the ligament length W a− , with W and a as the width of the specimen and the crack 
length, respectively (Fig. 3.1a). The dimensionless geometry factor ( )Waη  takes into 
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account the type of the specimen; see fracture mechanics standard testing procedures ESIS 
P2-92 (1992) or ASTM E1820 (2005).  

Further estimations for expJ  exist, similar to Eq. (3.4), for other specimen types with 
different definitions of A (Rice et al. 1973), or where expJ  is split additively into elastic and 
plastic parts (e.g. ASTM E1820, 2005). Note that the assumption of deformation plasticity has 
been adopted for the experimental J-integral, therefore, its validity for elastic–plastic 
materials is unclear (e.g. Anderson 1995, Kolednik 2012). 

It can be shown that Eq. (3.4) and Eq. (3.3) yield identical J-values, expJ J= , for a 
monotonically loaded, stationary crack in an elastic–plastic material with incremental 
plasticity (Rice et al. 1973, Kolednik 1991). This applies in numerical simulations with large 
strain theory, if the J-integral, Eq. (3.3), has been evaluated for a contour Γ outside the 
process zone (McMeeking 1977, Brocks et al. 2003). For growing cracks, expJ J≠  (Kolednik 
1991, 1993; Kolednik and Turner 1994). However, the J-integral remains applicable for a 
limited crack extension in form of an engineering approach, if the conditions of “J-controlled 
crack growth” are fulfilled (Hutchinson and Paris 1979). With crack extension, the non-
proportional region around the crack tip extends, but the J-integral remains meaningful if this 
region remains small so that a “J-dominated zone” still exists in the surrounding whithin 
which J describes the intensity of the crack tip field (Fig. 3.2b, lower image); see Anderson 
(1995) and Kolednik (2012) for details. 

3.3 Characterization of fatigue crack propagation 

3.3.1 Paris regime of fatigue crack growth 

A crack in a cyclically loaded material can extend even if the crack driving force lies 
significantly below the crack growth resistance. Thus, the meaning of the crack driving force 
for cyclic loading differs from that for monotonic loading. The “crack driving force” for 
cyclic loading characterizes the change in length of a fatigue crack per load cycle, i.e. the 
fatigue crack growth rate da/dN (e.g. Suresh 1998); a is the actual crack length after N load 
cycles. 

When (cyclic) plastic deformation around the crack tip is small compared to the fatigue 
crack, LEFM is valid and the stress intensity range ΔK (Paris et al. 1961, Paris and Erdogan 
1963) can be used for the prediction of the fatigue crack growth rate da/dN; ΔK is the 
difference between the stress intensity factors at maximum and minimum load of a load cycle, 

max minK K− . For fatigue, the regime where LEFM applies is also denominated as high cycle 
fatigue (HCF) regime (Suresh 1998). 

For fatigue cracks that grow in elastic–plastic materials under constant cyclic loading, 
Paris et al. (1961) and Paris and Erdogan (1963) postulated the following power law 
relationship, known as Paris law, 

( )d
d

ma C K
N

= Δ . (3.5) 
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Fig. 3.4 Schematic diagram for different regimes of fatigue crack growth. Stable fatigue crack 
growth prevails in the Paris regime, whereas unstable crack growth occurs at high ΔK-
levels; da/dN approaches zero at low ΔK-levels (e.g. Suresh 1998). 

The terms C and m are empirical scaling constants; for most metals, m ranges between 2 4−
(Anderson 1995, Suresh 1998). In a double logarithmic diagram, Eq. (3.5) shows a linear 
relationship between ( )log d da N  and ( )log KΔ . In reality, most metals and alloys exhibit a 
sigmoidal variation in the ( )log d da N – ( )log KΔ -diagram, see Fig. 3.4. The linear regime, 
where Eq. (3.5) characterizes fatigue crack growth, is referred to as the “Paris regime”. In the 
lower regime, da/dN approaches zero when ΔK tends to a certain non-zero ΔK-value, 
denominated as the threshold stress intensity factor range thKΔ . In the upper regime, da/dN
increases rapidly with increasing ΔK, up to the point where maxK  reaches the critical stress 
intensity factor cK , causing final failure; see Anderson (1995) or Suresh (1998) for details. 

The validity of Eq. (3.5) originates from the relation between ΔK and the cyclic crack tip 
opening displacement tδΔ , i.e. the difference in the crack tip opening displacement between 
maximum and minimum load, t,max t,minδ δ− ; see Suresh (1998) and Section 6.5.2. The 
parameter tδΔ  is proportional to da/dN, since fatigue crack growth in ductile metals and 
alloys is driven by cyclic plastic deformation at the crack tip. Figure 3.5a schematically 
illustrates the mechanism of fatigue crack growth: In the loading phase, plastic blunting of the 
crack tip occurs, followed by re-sharpening during unloading (Laird 1967, 1979). This two-
step mechanism is also confirmed by experimental observations: striation markings form on 
the fracture surface (Zappfe and Worden 1951), whose spacing corresponds to the crack 
extension increments (Forsyth and Ryder 1960), see Fig. 3.5a. These spacings are pro-
portional to the values of tδΔ  (e.g. Tanaka 1989, Krupp et al. 2002, Pippan et al. 2010, 
Suresh 1998). 
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(a)  (b) 

Fig. 3.5 (a) Fatigue crack growth model after Laird (1967, 1979); see also Anderson (1995) or 
Suresh (1998). Blunting (at Fmax) and re-sharpening (at Fmin) of the crack tip leads to 
crack propagation during cyclic loading; ( )aΔ Δ denotes an increment of crack 
extension during one load cycle. (b) Plasticity-induced crack closure: During fatigue 
crack growth, the movement of the active plastic zone, i.e. the crack tip plastic zone of 
the current crack tip, produces a plastic wake with residual stresses (indicated as 
vertical arrows), which cause premature crack flank contact. 

It should be mentioned that Eq. (3.5) characterizes the behavior of long fatigue cracks 
during equilibrium crack growth, also called “stage II crack growth” (Suresh 1998). Short 
fatigue cracks show a different behavior as illustrated in Fig. 3.4. Modifications of Eq. (3.5) 
for short fatigue cracks exist, e.g., in Anderson (1995), Suresh (1998), Maierhofer et al. 
(2014, 2015). The current thesis, however, deals only with long fatigue cracks. An important 
phenomenon that must be considered, especially, during the growth of long cracks is crack 
closure.

3.3.2 Crack closure during fatigue 

Elber (1970, 1971) showed in his experiments that fatigue cracks can close, i.e. crack flank 
contact occurs, before the minimum load is reached in a load cycle. There are many forms of 
crack closure, e.g. plasticity-, roughness- and oxide-induced crack closure; see Ritchie et al. 
(1980), Suresh and Ritchie (1982, 1984), Suresh (1998). Among those, plasticity-induced 
crack closure is most common in ductile metals (Fig. 3.5b). Hereby, crack flank contact is 
caused by residual compressive stresses in the plastic wake of the growing fatigue crack 
(Elber 1970, 1971). 

According to Elber (1970, 1971), crack flank contact significantly influences the driving 
force for fatigue crack growth, since crack growth can only occur during that portion of the 
load cycle where the crack flanks are separated. Therefore, Elber (1970, 1971) proposed a 
modification of Eq. (3.5) by using the effective stress intensity range eff max opK K KΔ = −  in 
order to account for crack closure; opK  is the stress intensity at the load opF  where the crack 
fully opens during re-loading. The crack opening load opF  is commonly determined from the 
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compliance changes in the load–displacement (F–v) curve, which are visible as kinks (e.g. 
Elber 1970, 1971; Suresh 1998); Fig. 3.3c provides an example. It should be mentioned that 
there is no straightforward approach for the determination of opF  since crack opening occurs, 
under constant fatigue loads, continuously forward to the current crack tip; similar to the peel 
away of a tape. During unloading, the crack flanks close continuously backward from the 
crack tip (Suresh 1998). So it can happen that the crack tip is still closed when detecting  
crack opening from far-field displacement measurements; see “local crack closure” in Riddell 
et al. (1999). 

The modification of Eq. (3.5) by using effKΔ  has been very successful in correlating 
da/dN for many metals under various cyclic loading conditions (e.g. in Anderson 1995 and 
Suresh 1998). Furthermore, the crack closure phenomenon provides an explanation for the 
strong influence of the fatigue crack growth rate on the load ratio R, i.e. the ratio between 
minimum and maximum load during cyclic loading, min maxR F F= : Since crack flank contact 
is less pronounced for higher values of R, fatigue cracks grow faster with increasing load ratio 
at ΔK = constant (Suresh 1998). Other well-known influence factors on the fatigue crack 
growth behavior, e.g. microstructure and environment, can be explained with roughness- and 
oxide-induced crack closure; see Suresh (1998) for details on this topic. The reason for the 
different crack growth behavior of short fatigue cracks is also attributed to crack closure (e.g. 
Maierhofer et al. 2014, 2015; Suresh 1998).  

In the current thesis, plasticity-induced crack closure will be of major importance. 

3.3.3 The cyclic J-integral – theory and experiment 

For the regime of elastic–plastic fracture mechanics, also referred to as the low-cycle fatigue 
(LCF) regime, the cyclic J-integral JΔ  or the cyclic crack tip opening displacement tδΔ  is 
commonly used instead of KΔ . Since, tδΔ  is connected to expensive experimental or 
numerical effort (e.g. Kolednik and Stüwe 1985, Siegmund et al. 1990, Solanki et al. 2003, 
2004), a global parameter like the J-integral seems to be more favourable. 

The parameter JΔ  is a contour integral for cyclic loading, analogously to the J-integral 
for monotonic loading, Eq. (3.3), (Lamba 1975; Wüthrich 1982; Tanaka 1983) 

( ) ( )d dJ y s
x

φ
Γ

∂ Δ
Δ = Δ − Δ ⋅

∂
u

t . (3.6) 

In Eq. (3.6), the symbol Δ  refers to the relative change of the parameters between two loading 
stages. The quantity ( )φ Δ  denotes the cyclic strain energy density, 

( ) ( )
0

dφ
Δ

Δ = Δ ⋅ Δ ; (3.7) 

The “Appendix” in Section 6 presents details on the correct calculation of Eq. (3.7). It is 
important to point out that, due to the definition of Eq. (3.7), JΔ  cannot be interpreted as the 
difference between the J-values at maximum and minimum load of a load cycle, 

minmax JJJ −≠Δ  (e.g. Anderson 1995). This can be also shown from the relation between 
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tδΔ  and KΔ , after substitution of 2J K E= ; see Section 6.5.2. At the moment it is not clear 
how JΔ  should be expressed with maxJ  and minJ , see Introduction. 

Since the cyclic J-integral JΔ  relies on the assumption of deformation theory of 
plasticity, JΔ  exhibtis the same properties and limitations as outlined in Section 3.2 for the J-
integral. However, since cyclic loading and crack extension seriously violate the basic 
assumptions leading to the J-integral and only incremental theory of plasticity correctly 
describes the real elastic–plastic material behavior, JΔ  is a questionable parameter for the 
description of the fatigue crack propagation rate in elastic–plastic materials (e.g. Anderson 
1995). 

Despite these doubts, Dowling and Begley (1976) proposed the experimental cyclic J-
integral expJΔ  as driving force parameter for characterizing the growth rate of fatigue cracks 
in the regime of LCF. The parameter expJΔ  can be determined for deeply notched bending 
type specimens, similar to the experimental J-integral expJ , Eq. (3.4), from the relation 

bB
AJ Δ=Δ ηexp . (3.8) 

For re-loading, the quantity ΔA denotes the area between a horizontal line at minimum load 
and the loading branch of the load–displacement (F–v) record (Fig. 3.3b). For unloading 
phases, ΔA is determined between the unloading brach of the F–v-curve and the horizontal 
line at maximum load. 

Analogously to effKΔ , it is possible to determine an effective value of the experimental 
cyclic J-integral, exp

effJΔ , in order to account for crack closure (Dowling and Begley 1976). In 
this case, ΔA is determined from the load opF  where the crack fully opens during re-loading 
(Fig. 3.3c). On the contrary, ΔA is determined to the load clF  where crack flank contact 
appears during unloading.  

Note that Eq. (3.8) is used for long fatigue cracks. Dowling (1977) presents a different 
formula for the evaluation of expJΔ  for short fatigue cracks. 

Despite the theoretical restrictions of the J-integral for cyclic loading, Section 3.2.1, 
Dowling and Begley (1976) found a power law characterization similar to Eq. (3.5) based on 

expJΔ . In many subsequent experimental and numerical studies, it has been confirmed that 
expJΔ  correlates to da/dN for specific elastic–plastic materials under certain cyclic loading 

conditions, see e.g. Dowling (1976), Lambert et al. (1988), Banks-Sills and Volpert (1991); 
Section 6.2.2 provides details about these studies. Moreover, it has been confirmed by 
Lambert et al. (1988) and Banks-Sills and Volpert (1991), that Eq. (3.6) and Eq. (3.8) are in 
principle equivalent, expJ JΔ = Δ . Recent finite element studies present the ability of JΔ , Eq. 
(3.6), for the assessment of the fatigue lifetime of some elastic–plastic components under 
specific cyclic loading conditions (e.g. Vormwald 2014, 2015; Metzger et al. 2015). However, 
they do not provide new insights about the real physical meaning of the conventional cyclic J-
integral.  
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Therefore, it can be concluded that there are lingering doubts of whether JΔ  and expJΔ
are physically appropriate to assess fatigue crack propagation in elastic–plastic materials due 
to the assumption of deformation plasticity (Anderson 1995, Suresh 1998). 





“All life is problem solving.” 

Sir Karl R. Popper, 1902–1994 
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4 Concept of configurational forces 

The configurational force concept provides a convenient framework for studying fracture 
mechanics problems, see e.g. Maugin and Trimarco (1992), Gurtin and Podio-Guidugli 
(1996), Honein and Hermann (1997), Simha et al. (2003, 2005, 2008), Kolednik et al. (2009, 
2010, 2014), Fischer et al. (2007; 2012a,b; 2014), Sistaninia and Kolednik (2014). A big 
advantage of this concept is that it enables the derivation of J-integrals without making any 
assumptions about the constitutive nature of the material; in contrast to the classical J-integral 
by Rice (1968a,b).  

The configurational force concept is explained in books and articles, e.g., by Maugin 
(1995, 2011), Gurtin (1995, 2000), Kienzler and Herrmann (2000). Kolednik et al. (2014) 
provide a summary of the state of the art for the application of configurational forces in 
fracture mechanics, and an extensive review about the derivation of J-integrals, based on 
Simha et. al (2003, 2005, 2008). 

The purpose of this chapter is to present the configurational force framework by Gurtin 
(1995, 2000), to show the relations between J-integrals and configurational forces (e.g. Simha 
et al. 2003), and to elucidate how the J-integral for elastic–plastic materials with incremental 
plasticity, epJ , has been derived by Simha et al. (2008).  

Before, it might be necessary to answer the questions: What are configurational forces, 
and why are they necessary? 

4.1 Idea of configurational forces 
Configurational forces are thermodynamic driving forces which are appropriate for the 
quantitative description of the behavior of various types of defects in materials, such as voids, 
dislocations, cracks, interfaces or phase boundaries (Eshelby 1951, 1970). A configurational 
force at a defect appears, if the total potential energy of the system varies for different 
positions of the defect in the material. The driving force tries to move a defect in such a way 
that the total potential energy of the system decreases; this is a consequence of the second law 
of thermodynamics. 

Crack growth corresponds to the movement of the crack tip from one material point to 
another in the reference configuration (Fig. 4.1, lower row). This movement cannot be 
described only by the classical deformational (or Newtonian) forces that act in the current 
configuration (upper row in Fig. 4.1). A new force system must be introduced which enables 
the description of the thermodynamic driving force on the crack tip, i.e. configurational forces
(Gurtin 1995, 2000). Nevertheless, crack growth requires energy that is provided by 
deformation: zero deformation means zero potential energy and no crack driving force, see 
Eq. (3.1). 
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Fig. 4.1 Crack extension Δa is considered as a motion in the reference configuration, driven by 
a configurational force (lower row). Classic deformational forces cannot describe the 
movement of the crack tip between two material points (upper row).  

4.2 Configurational framework 
There are three main steps in the derivation of the configurational framework: formulation of 
(i) balance of deformational forces, (ii) balance of configurational forces, and (iii) dissipation 
inequality for the body under consideration (Simha et al. 2003). 

4.2.1 Balance of deformational- and configurational forces 

In Gurtin’s (1995, 2000) approach configurational forces can be interpreted as separate force 
system that drives kinematic changes in the reference configuration and satisfies, parallel to 
deformational forces, their own balance laws (e.g. Simha et al. 2003). These balance laws can 
be obtained, e.g., by using free body diagrams in the reference configuration.  

In the following we apply a simple two-dimensional setting in absence of inertia, heating 
and body forces. Figure 4.2a shows a homogeneous body  containing a crack in the 
reference configuration; the subscript “0”, Section 2.1, is omitted henceforth. Note that no
assumptions about the constitutive relations of the body are made. 

Figures 4.2b,c show deformational and configurational forces acting on an arbitrary cut-
out region  containing the crack tip. Figure 4.2b shows that only the contact force due to the 
bulk stress S, i.e. the surface traction =t Sm  (Section 2.2), acts on the boundary ∂ . Thus, 
the global balance of the deformational forces reads, 

ds
∂

=Sm 0  for every subregion ⊂ , (4.1) 

compare Eq. (2.6); ds denotes an increment along and m the unit normal to ∂ . 
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 (a) 

(b) (c) 

Fig. 4.2 (a) Two-dimensional, homogeneous body  with a sharp crack in the reference 
configuration; the direction of crack growth is e. The area  is a subregion of 
containing the crack tip. Region r  of radius r is centered at the crack tip. (b) (c)
show free body diagrams for the deformational- and configurational force system, 
respectively. The configurational force system (c) considers internal body forces f and 
a driving force tipf  emanating from the crack tip.

Gurtin (1995, 2000) postulates the existence of a (global) configurational force balance 
(e.g. Simha et al. 2003) 

tipd ds A
∂

+ + =Cm f f 0  for every subregion ⊂ . (4.2) 

Here, C denotes the bulk configurational stress, and the configurational traction Cm  acts on 
∂ , analogously to the traction stress in the deformational force system. Furthermore, bulk 
configurational forces f act within  and a single configurational force emerges at the crack 
tip tipf ; see next section. It should be mentioned that the validity of Eq. (4.2) has been 
verified, e.g., in Maugin (1995) using an alternative method to Gurtin (1995, 2000). 

For the local forms of the balances we have to consider that  intersects the crack flanks 
and contains the crack tip. Therefore, the divergence theorem must be modified in order to 
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account for singular stresses at the crack tip: a disk r  of radius r centered at the crack tip is 
removed––as in classical potential theory––and the divergence theorem is applied for \ r

where r tends to zero (Fig. 4.2a); the appendix in Simha et al. (2003) presents mathematical 
details about the modified divergence theorem. Localizing of Eq. (4.1) leads to (Simha et al. 
2003): 

∇ ⋅ =S 0  at each point in ⊂ , (4.3) 

  =S p 0  on the crack flanks, (4.4) 

0
lim d

r
r

s
→

Γ

=Sm 0  at the crack tip. (4.5) 

Equation (4.3) is the translational equilibrium condition of continuum mechanics, see Eq. 
(2.7) in Sect. 2.3. Equation (4.4) states stress continuity along the traction free crack flanks; 

⋅ denotes the jump of a quantity, p is the unit normal to the crack flank. Equation (4.5) 
describes the limit value of the singular stress field at the crack tip; rΓ  designates a contour at 
distance r around the crack tip. It should be mentioned that Eqs. (4.3) – (4.5) are satisfied by 
the stress intensity (K-) field of LEFM (Simha et al. 2003). 

Accordingly, we obtain from Eq. (4.2) for the configurational force system (e.g. Simha et 
al. 2003): 

∇ ⋅ + =C f 0  at each point in ⊂ , (4.6) 

=C p 0  on the crack flanks, (4.7) 

tip
0

lim d
r

r
s

→
Γ

+ =Cm f 0  at the crack tip. (4.8) 

From Eqs. (4.6) and (4.8) we can define the configurational forces in the bulk and at the crack 
tip, f  and tipf . Remains only the definition of the bulk configurational stress tensor C, also 
called Eshelby tensor, which is the central quantity in the theory of configurational forces 
(Eshelby 1951, 1970; Gurtin 1995, 2000).  

4.2.2 Dissipation inequality and derivation of Eshelby’s tensor 

In this section we will elucidate how the configurational force tensor C has been derived by 
Gurtin (1995, 2000) from the dissipation inequality, Eq. (2.9); see also Simha et al. (2003).  

Deformational forces act in the current configuration, hence, they perform work over 
positional changes in (Euclidean) space. Configurational forces act and perform work over 
positional changes in the reference configuration (Gurtin 2000). 

In order to formulate a “configurational work”, Gurtin (1995, 2000) introduces a control 
volume ( )t  that migrates in an undeformed, three-dimensional body  (Fig. 4.3a).6

                                                 
6 Note that the part 0 in Fig. 2.1a designates a fixed subregion in the reference body 0, and the time t refers to 
the motion of 0 into the deformed part  (Gurtin 2000). 
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(a)  (b) 

Fig. 4.3 (a) Time-dependent control volume ( )t  that migrates in the reference body  with a 
velocity field v of the boundary ( )t∂ . After motion, ( )t  deforms into ( )t  with a 
corresponding velocity v  of ( )t∂  (see Gurtin 1995, 2000). (b) Cut-out volume 

( )t  with parameterized surface ( )t∂ : the configurational traction force Cm acts 
on ( )t∂ ; configurational body forces f act inside ( )t .

Migration means that ( )t  evolves in the reference configuration with time t, while material 
transfer occurs across the boundary ( )t∂ . Hereby, material points remain fixed and the 
material transfer occurs only due to the motion of ( )t ; see Gurtin (2000) for details. 

Configurational forces perform work in conjunction with this material transfer. In order 
to define the work associated with the change of shape and volume of ( )t , the velocity of 

( )t∂ is required. The boundary ( )t∂  can be described by local parametrization by (e.g. 
Gurtin 1995), 

( ) ( ){ }1 2: , ,t tη η= ∈ =∂ X X X , (4.9) 

where 1η  and 2η  denote scalar parameters (Fig. 4.3b). The time derivative of Eq. (4.9) yields 
the velocity v of ( )t∂ , 

( )
1 2

1 2

,

, ,
t

t
t

η η

η η∂∂= =
∂ ∂
Xv

X
, (4.10) 

for fixed values of 1η  and 2η ; see Gurtin (1995).  
After motion of , Eq. (2.1), the local parametrization Eq. (4.9) results a corresponding 

local parametrization of the boundary ( )t∂  of the migrating control volume ( )t  in the 
deformed body (Gurtin 1995). The velocity v  for the evolution of ( )t∂  is given after 
application of the chain rule by (e.g. Gurtin 1995), 

( )( )
1 2

1 2

,

, ,

t t

t

t t
η η

η η∂∂ ∂ ∂ ∂= = = +
∂ ∂ ∂ ∂ ∂

Xx xx

X
x Xv , 
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= +v x F v . (4.11) 

The velocity v  is composed of the “motion velocity” x , compare w in Eq. (2.2), and “the 
velocity F v  at which deformed material is being transferred to ( )t∂ ”; see Gurtin (2000), p. 
31. 

Now, the working rate ( )( )t , Eq. (2.9), can be formulated. The rate at which work is 
performed on ( )t  consists of the deformational- and configurational working: 
deformational forces perform work over velocities conjugate to the deformed configuration; 
configurational forces perform work over reference velocities (e.g. Gurtin 1995, Simha et al. 
2003). Consequently, the working rate reads (Gurtin 1995), 

( )( ) ( )( )
( )

d
t

t A
∂

= ⋅ + + ⋅Sm x F v Cm v . (4.12) 

The term ⋅Sm x  is the classical deformational working per unit area, if ( )t  is not a 
migrating volume but stationary. ( )⋅Sm F v  accounts for the additional deformation due to 
the material transfer over ( )t∂ . The term ⋅Cm v  represents the working per unit area due 
to the material entering or leaving the evolving control volume ( )t , see Gurtin (1995, 
2000). Note that bulk configurational forces f perform no work since material points inside 

( )t  do not move (Simha et al. 2003). 
The internal energy  of region ( )t  is given by, 

( )( )
( )

d
t

t Vφ= , (4.13) 

with φ  as the (Helmholtz) free energy per unit volume, see Sections 2.3 and 2.5.1. 
Application of Reynolds’ transport theorem leads to (e.g. Simha et al. 2003), 

( )( )
( ) ( )

d
d d

d t t

t
V A

t
φ φ

∂

= + ⋅v m . (4.14) 

With Eq. (4.12) and Eq. (4.14), we are able to express the dissipation of ( )t , e.g. Simha et 
al. (2003), 

( )( ) ( )( )
( ) ( )

d d 0
t t

t A Vφ φ
∂

Ψ = ⋅ + + ⋅ − ⋅ − ≥Sm x F v Cm v v m . (4.15) 

The expression for the configurational stress tensor C follows from the requirement that Eq. 
(4.15) must be independent of changes in the parametrization for ( )t∂  and v, respectively. 
This is equivalent to invariance of the working (Gurtin 1995). Rearrangement of Eq. (4.15) 
gives 

( )( ) ( )( )
( ) ( )

T d d 0
t t

t A Vφ φ
∂

Ψ = ⋅ + + ⋅ − ⋅ − ≥Sm x F Sm Cm v v m . (4.16) 
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Since only the normal component of the velocity, ⋅v m , is not affected by reparametrization, 
the term ( )T +F Sm Cm  must be parallel to m for all lengths α of m, hence,
( )T α+ =F S C m m . This leads to (Gurtin 1995) 

Tα= −C I F S , (4.17) 

where I denotes the identity tensor. Substitution of Eq. (4.17) into Eq. (4.16) and 
transformation gives (Simha et al. 2003) 

( )( ) ( )
( )

( )
( )

d d 0
t t

t A Vφ α φ
∂

Ψ = − ⋅ + ⋅ − ≥v m S F . (4.18) 

In Eq. (4.18), F  denotes the Lagrangian time derivative of F. The scalar α is denominated as 
“bulk tension” in Gurtin (1995); it works to increase the volume of ( )t  through the 
accumulation of material across the boundary ( )t∂ . 

Now, it can be shown that α  is equal to the free energy φ ; see Gurtin (1995) or Simha et 
al. (2003). Consider a second subregion ( )t′ ⊂  that matches with ( )t  at initial time, 
but the boundary ( )t∂ ′  has a different velocity ′ ≠v v . The dissipation ( )( )t′Ψ  is similar 
to Eq. (4.15) or Eq. (4.18); only ′v  appears instead of v. In order to ensure a non-negative 
dissipation in any part of , the bulk tension α  must be identical to the bulk free energy φ ; 
an analogon is the coincidence of surface tension and surface free energy (Gurtin 1995). This 
gives the expression of the configurational stress tensor (Gurtin 1995) 

Tφ= −C I F S , (4.19) 

which is equal to Eshelby’s “energy momentum tensor” (Eshelby 1970). Inserting α φ=  into 
Eq. (4.18) gives the dissipation inequality of the sub-volume ( )t  , 

( )( ) ( )
( )

d 0
t

t VφΨ = ⋅ − ≥S F ; (4.20) 

compare Eq. (2.10). 
Now, since the configurational stress C is known, the configurational forces in the bulk 

and at the crack tip, f  and tipf , can be expressed after rearrangement of the balance equations 
(3.6) and (3.8), see Simha et al. (2003): 

  ( )Tφ= −∇ ⋅ = −∇ ⋅ −f C I F S ,  (4.21) 

( )T
tip

0
lim d

r
r

sφ
→

Γ

= − −f I F S m .  (4.22) 

Equation (4.21) implies that a configurational force f  appears on those positions in the body 
where the divergence of the configurational stress tensor C does not vanish, which is at the 
position of a defect (e.g. Kolednik et al. 2014). The vector f determines magnitude and 
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direction of the thermodynamic driving force on a defect, such as, for example, tipf  for the 
crack tip.  

At this point it should be noted that the derivation of C, and consequently of f  and tipf , 
has been done independent of any assumptions about φ . So the derivations of Eqs. (4.19), 
(4.21), and (4.22) are valid for dissipative materials, like elastic–plastic materials (Gurtin 
1995, Simha et al. 2003). 

4.3 Configurational forces and J-integrals 

4.3.1 General relations 

The dissipation inequality for a cracked body leads to the definition of the crack driving force 
(e.g. Simha et al. 2003). We consider again our two-dimensional setting of Fig. 4.2. The total 
dissipation in a subregion ⊂  containing the crack tip is given by (Gurtin and Podio-
Guidugli 1996) 

( ) ( ) ( )bulk tip tip tipd 0AφΨ = Ψ + Ψ = ⋅ − + − ⋅ ≥S F f v , (4.23) 

i.e. the dissipation in the bulk, including plastic dissipation, plus the dissipation due to the 
crack tip propagation (in the reference configuration) with a velocity tipv . Note that there is 
no working of the deformational forces at the crack tip due to Eq. (4.5), see Simha et al. 
(2003). Localizing Eq. (4.23) yields the bulk dissipation at each material point, Eq. (2.10), 
and due to the movement of the crack tip (Simha et al. 2003), 

( )tip tip tip 0ψ = − ⋅ ≥f v . (4.24) 

In fracture mechanics, the energy dissipated per unit crack extension is equal to the crack 
driving force (Section 3.1). Since ( )tip−f  is the force term conjugate to the crack tip velocity 

tipv , the negative configurational force at the crack tip ( )tip−f  can be identified as the 
thermodynamic crack driving force, which is characterized, e.g., by the near-tip J-integral 
vector ( )ttip ip−= fJ , see e.g. Simha et al. (2003). In order to get the common scalar J-integral, 
the J-integral vector must be projected into the nominal crack growth direction tip tip=e v v . 
The near-tip J-integral tipJ  by Rice (1968a,b), Sect. 3.2, is expressed by the relation (Simha et 
al. 2003) 

( ) ( )T
tip tip tip 0

lim d
r

r
J sφ

→
Γ

= ⋅ − = ⋅ = ⋅ −e f e J e I F S m . (4.25) 

The J-integral for a specific contour Γ and the far-field J-integral, farJ , are derived from 
the configurational force balance for a region \ r , i.e. without the circle containing the 
crack tip, Fig. 4.2c, (Simha et al. 2003) 

( )d d d
r r

A s s
∂ Γ

+ + − =f Cm C m 0 . (4.26) 
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If r tends to zero, so that the crack tip contour vanishes, the balance can be written in the form 

0
tip

lim d d d
r

r
s s A

→
Γ ∂

− =Cm Cm f , (4.27) 

The scalar product of this equation with e yields (Simha et al. 2003) 

tip
tip

dJ J AΓ− = ⋅e f , (4.28) 

where JΓ  is the scalar J-integral for any desired contour Γ, 

( )T
tip

tip

d dJ s J AφΓ Γ
Γ

= ⋅ = ⋅ − = − ⋅e J e I F S m e f ; (4.29) 

ΓJ  is the J-integral vector. The far-field J-integral farJ  on contour farΓ , is obtained for letting 
Γ become a contour adjacent to the external boundary ∂  of the body, Fig. 4.2a, 

( )
far

T
far far tip

tip

d dJ s J Aφ
Γ

= ⋅ = ⋅ − = − ⋅e J e I F S m e f . (4.30) 

The physical meaning of farJ  is that of the driving force inserted into the body by the applied 
load (Kolednik et al. 2014). Equation (4.30) gives also the relation between tipJ  and farJ   
(Simha et al. 2003), 

tip far
tip

dJ J A− = ⋅e f ; (4.31) 

the integral is taken over the entire body excluding the crack tip, \ tip  (and the boundary 
∂ ). The right term in Eq. (4.31) can be used to describe the influence of plasticity on the 
crack driving force, see Simha et al. (2008). This will be discussed in Section 4.3.3. 

It is important to reiterate that no assumptions have been made about the constitutive 
relations of the body. Thus, the J-integrals derived via configurational force concept are, in 
contrast to the classical J-integral, physically appropriate to describe true driving force terms 
for elastic–plastic materials with incremental theory of plasticity (Simha et al. 2008). 

Configurational forces have been proven to be useful to analyze the behavior of cracks in 
inhomogeneous materials. The configurational force concept treats material transitions 
(interfaces) also like defects. For inhomogeneous materials, configurational forces f  are 
induced along the interface Σ where the material properties exhibit a change. These 
configurational forces f  can be used to evaluate a “material inhomogeneity term” which 
enables an explanation of the effect of inhomogeneities on the crack driving force; see, e.g., 
Simha et al. (2003), Kolednik et al. (2009, 2010), Fischer et al. (2007; 2012a,b; 2014), 
Sistaninia and Kolednik (2014). 

For a homogeneous body, the external boundary ∂  (Fig. 4.2a) acts like an interface 
between material and air. Consequently, surface configurational forces Sf  appear on ∂ , 
induced by the applied load. The value of farJ  can be also evaluated by integration of all 
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surface configurational forces on the external boundary ∂ , see Fischer et al. (2012a), 
Kolednik et al. (2014). The integration over all configurational forces in  and along ∂
yields zero, due to translational equilibrium. 

4.3.2 J-integral for elastic–plastic materials with incremental plasticity 

In this section we will make assumptions about φ  for a nonlinear elastic and an elastic–plastic 
material. Since the reversible part of φ  is different for such materials, Section 2.5, differences 
will appear already in the evaluation of the configurational stress C, Eq. (4.19). Consequently, 
the configurational forces and the J-integrals will be different.  

First, assume that body , Fig. 4.4a, consists of nonlinear elastic material. The total
strain energy density φ  is reversible in nonlinear elastic materials. Substitution of φ  into Eq. 
(4.21) and Eq. (4.29) yields the nonlinear elastic configurational force nlelf  and nonlinear 
elastic J-integral nlelJ , 

( )nlel nlel T nlel nlel
tip tip

tip tip

d dJ J A J Aφ= + ⋅ ∇ ⋅ − = − ⋅e I F S e f . (4.32) 

The nlelJ -integral is identical to the conventional J-integral by Rice, Eq. (3.3), Section 3.2. 
Since the crack tip is the single source of dissipation and  is homogeneous, bulk 

configurational forces do not exist, nlel =f 0 . Only a single configurational force emerges from 
the crack tip nlel

tipf  (Fig. 4.4a). This implies according to Eq. (4.32) that nlel nlel nlel
tip farJ J JΓ= = , if Γ

becomes farΓ , hence, the nonlinear elastic J-integral is path independent (Kolednik et al. 
2014). Equation (4.29) shows that the magnitude of the J-integral JΓ  and its path (in-) 
dependence are intimately connected to the configurational force distribution in the body 
(Simha et al. 2008), see below. 

Next, assume that  consists of elastic–plastic material, but it is described with 
deformation theory of plasticity (Fig. 4.4b), i.e. the elastic–plastic material is treated to be 
nonlinear elastic (Section 2.5.2). Therefore, the total φ  is also inserted into Eq. (4.21) and Eq. 
(4.29). The “deformation plasticity” configurational force for elastic–plastic materials shall be 
termed def.plf . The deformation plasticity J-integral for elastic–plastic materials is identical to 
the commonly applied conventional J-integral from elastic–plastic fracture mechanics, Sect. 
3.2, and shall be designated accordingly, 

( ) def.plconv conv T conv
tip tip

tip tip

d dJ J A J Aφ= + ⋅ ∇ ⋅ − = − ⋅e I F S e f . (4.33) 

The difficulties that appear for this J-integral have been already outlined in Section 3.2.1.  
As long as the conditions of proportional are fulfilled in the elastic–plastic material, 

configurational forces do not appear in the body def.pl =f 0 . Therefore, convJ , Eq. (4.33), is path 
independent. As soon as the conditions of proportional loading are disturbed, e.g. in the 
process zone, “artificial” bulk configurational forces def.plf  occur, which do not have any  
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(a)  (b)  (c) 

Fig. 4.4 Homogeneous body made of (a) nonlinear elastic material, (b) elastic–plastic material 
derscribed with deformation plasticity (def.pl) and (c) incremental plasticity (incr.pl). 
The path (in-) dependence of the J-integrals, nlelJ , convJ and epJ , is connected to the 
appearance of configurational forces in the body: if the integration contour Γ increases 
from the crack tip, more and more configurational forces become included, so that the 
magnitude of the J-integral changes, see Eq. (4.29). For simplicity, surface 
configurational forces on the external boundary are omitted.

physical background and cause convJ  to become path dependent (Fig. 4.4b). Kolednik et al. 
(2014) demonstrated in a numerical cyclic tensile test that def.plf -vectors emerge on positions 
with a gradient in plastic strain as soon as non-proportional loading occurs; this is also shown 
for crack extension under monotonic loading in Kolednik et al. (2014).  

Now, assume that  consists of elastic–plastic material, correctly described by 
incremental theory of plasticity (Fig. 4.4c). Only the elastic part of the total strain energy 
density eφ  is recoverable. Substitution of eφ  into Eq. (4.21) and Eq. (4.29) gives the relation 
for the bulk configurational force epf  and the J-integral epJ  for incremental plasticity (Simha 
et al. 2008), 

( )ep ep ep epT
etip tip

tip tip

d dJ J A J Aφ= + ⋅ ∇ ⋅ − = − ⋅e I F S e f . (4.34) 

The great advantage of the epJ -integral is that it provides a real thermodynamic driving 
force term in elastic–plastic materials with incremental theory of plasticity, since the second 
law of thermodynamics has been invoked in the derivation (Simha et al. 2008); see Sect. 
4.3.1. A further advantage is that epJ  is potentially applicable for the description of a growing 
crack under monotonic or cyclic loading. However, epJ  is, in general, path dependent, since 
bulk configurational forces epf  are induced in plastically deformed regions of the material, 
given by the relation (Simha et al. 2008) 

( )
pTep e : ∂=

∂
Ff F S
X

; (4.35) 
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eF  and pF  denote the elastic and plastic components of the deformation gradient e p=F F F . 
Note that the matrix product ( )TeF S  gives a second-order tensor, and the gradient of pF , 

p∂ ∂F X , gives a third-order tensor. Thus, we obtain a vector after operation “:” (see section 
titled “Nomenclature”). In this thesis, third-order tensors appear only in the equations for epf ; 
see also Eq. (4.36) and Eq. (4.39). Equation (4.35) shows that epf  evolves proportional to the 
gradient of pF . Simha et al. (2008) have derived also the expression of epf  for small-strain 
theory, 

p
ep : ∂=

∂
f

x
. (4.36) 

This equation shows that the behavior of epf  can be understood by analyzing the stress and the 
gradient of the plastic strain. For an easier understanding, Eq. (4.36) will be used in Sections 
5–8 of this thesis for the explanation of the variations of the epJ -integral. 

If the body deforms only elastically, it is evident that configurational forces epf  do not 
appear in the body. Moreover, since φ  consists only of eφ , deformation- and incremental 
plasticity are equivalent, thus, epJ  becomes identical to the conventional J-integral convJ . In 
Section 5.1 and Section 6, we will see that this fact plays an important role for the usefulness 
of convJ  as crack driving force parameter in elastic–plastic materials. 

4.3.3 Plasticity influence term 

The plastic dissipation in the bulk material can be written in the form (Simha et al. 2008) 

( )Te p
bulk 0ψ = ⋅ ≥F S F ; (4.37) 

pF  denotes the rate of pF . The total dissipation in the body , Fig. 4.4c, can be expressed by 
(Simha et al. 2008) 

( ) ( ) ( )Te p
bulk tip tip tipd 0AΨ = Ψ + Ψ = ⋅ + − ⋅ ≥F S F f v . (4.38) 

There are two sources of dissipation in : plastic deformation and crack tip propagation. The 
force term conjugate to the crack tip velocity is ( )ttip ip−= fJ , Section 4.3.1. The external 
boundary ∂  does not induce dissipation since it has no velocity in the reference 
configuration. Thus, there is no dissipation term related explicitly to the far-field J-integral 
(Simha et al. 2008, Kolednik et al. 2014). The effect of plastic deformation in  is obtained by 
integrating the bulk configurational force epf , Eq. (4.35), over the whole body, but without the 
crack tip (Simha et al. 2008), 

( )
pTep e

p p
tip tip

d : dC A A∂= ⋅ = ⋅ = ⋅
∂
Fe C e f e F S
X

. (4.39) 

The quantity pC  is denominated as plasticity influence term. It can be interpreted as the scalar 
driving force that is induced by plasticity in the body (Simha et al. 2008). In equivalence to 
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the scalar J-integral, pC  is the component of the corresponding driving force vector, pC , in 
crack growth direction e. After substitution of Eq. (4.39) into Eq. (4.31), the difference 
between the near-tip and far-field J-integral can be written in the form (Simha et al. 2008), 

ep ep
ptip farJ J C− = . (4.40) 

The plasticity influence term pC , Eq. (4.40), has proven to be very useful for the 
theoretical analysis and the understanding of plasticity effects on the driving force of the 
crack tip, ep

tipJ . For example, Simha et al. (2008) showed that p 0C =  for nonlinear elastic 
materials, or deformation plasticity as long as the conditions of proportional loading remain 
undisturbed. This implies nlel nlel

tip farJ J= . On the contrary, due to the appearance of bulk 
configurational forces in elastic–plastic materials, pC  is non-zero and ep ep

tip farJ J≠ . If p 0C < , 
plasticity around the crack tip provides a shielding effect since the crack driving force is 
smaller than the driving force inserted by the applied load system, ep ep

tip farJ J< , Eq. (4.40). 
Crack tip anti-shielding occurs vice-versa. For rigid-plastic, elastic-ideal plastic and elastic–
plastic materials that exhibit a linear hardening behavior, Simha et al. (2008) showed 

ep
p farC J= − , which implies a zero crack driving force. This means that the whole driving force 

induced into the body by the applied load, ep
farJ , is consumed by plasticity in the bulk, so that 

there is no sufficient energy available to drive the crack tip. This problem has been already 
identified by Rice (1979), see “paradox of elastic–plastic fracture mechanics” (Section 3.2.1). 

It should be mentioned that Simha et al. (2008) performed a short numerical case study to 
investigate the J-integrals convJ  and epJ  for a C(T)-specimen, made of elastic–plastic material 
with incremental plasticity and containing a stationary crack. They showed that the J-integrals 
on a path enclosing the process zone, are approximately equal in magnitude, 

ep conv conv exp
proc.z proc.z farJ J J J≈ = = , and they reflect the value of the experimental J-integral, Eq. 

(3.4). The near-tip J-integrals have been investigated extensively in Kolednik et al. (2014), 
see Section 5.  

4.4 Numerical computation of configurational forces and J-integrals 
The configurational forces and J-integrals are computed by a post-processing routine after a 
conventional finite element (FE) stress and strain analysis. For the FE program, the 
commercial software ABAQUS/Standard (see http://www.simulia.com/products/abaqus_ 
fea.html) is used. The post-processing routine is written in Python, i.e. the scripting language 
of ABAQUS, based on Müller et al. (2002, 2004) and Denzer et al. (2003). The idea is to 
implement Eq. (4.21) for the computation of configurational forces f that are consistent with 
the finite element discretization.7 A detailed description of the routine is provided in the 
internal manual by Shan (2005), which is available at the institute, and in Schöngrundner 
(2011). Therefore, only the basic steps are described in the following.  

                                                 
7 Alternatively to Eq. (4.21), it is possible to implement Eq. (4.35) or Eq. (4.36) for the evaluation of f-vectors; 
see Özenç et al. (2014) for details.
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Once the stresses and displacements are known from the FE analysis, the configurational 
stress tensor C, Eq. (4.19), can readily be computed for each integration point in the FE-mesh 
(Fig. 4.5). It should be remarked that the deformation gradient tensor F needs to be calculated 
from Eq. (2.3), since F is not provided by ABAQUS, and the Cauchy stresses  from 
ABAQUS have to be transformed according to Eq. (2.5) into the first Piola–Kirchhoff stresses 
S. The nodal configurational force f-vector can be evaluated for a single element e by the 
relation (Müller et al. 2002), 

( )
( )

T( ) ( ) d
e

e e

V

V= ⋅f D C ; (4.41) 

see Fig. 4.5a. In Eq. (4.41), ( )eD  denotes the derivative of the element shape functions after 
node coordinates, see e.g. Zienkiewicz and Taylor (2005) and Bathe (2007), respectively. The 
integration is performed numerically using a Gauß quadrature, under consideration of 
d dV B A= . Finally, the configurational forces ( )ef  of all elements adjacent to one node n
need to be summed up (assembled) to get the resulting f-vector at this node (Müller et al. 
2002), 

( ) ( )n e

n e∈

=f f ; (4.42) 

see Fig. 4.5b.  

(a) (b) 

Fig. 4.5 (a) 4-node element (e) with integration points (+) and natural (local) coordinate 
system (η, ξ). The vector ( )ef  denotes the configurational force at one node (n) of a 
single element (e). (b) The resulting configurational force vector ( )nf  in one node (n) 
is the sum of the ( )ef -vectors of all elements adjacent to this node. 
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(a) (b) 

Fig. 4.6 Near-tip region of a stationary crack in an elastic–plastic material after loading to a 
maximum load. (a) Distribution of the configurational forces for deformation 
plasticity def.plf  and for (b) incremental plasticity epf . (a) includes also the first two J-
integral contours; mesh size m = 0.2 mm.

In the post-processing the configurational forces are computed for deformation plasticity 
def.plf  and for incremental plasticity epf  (Section 4.3.2). The FE stress and strain analysis is 

always performed with incremental plasticity. 
The scalar J-integrals convJ  for deformation plasticity and epJ  for incremental plasticity 

are evaluated on specific contours Γ around the crack tip, by a summation of configurational 
forces emanating from all nodes that lie within the area  bounded by Γ, compare Eqs. (4.33) 
and (4.34), e.g. Kolednik et al. (2014), 

( )conv def.pl
n

n
J AΓ

∈

= − ⋅ Δe f , (4.43) 

( )ep ep
n

n
J AΓ

∈

= − ⋅ Δe f . (4.44) 

In Eqs. (4.43) and (4.44), the quantity nAΔ  is the element area corresponding to a certain node 
n. Since the magnitude of the f -vector at one node is influenced by the adjacent elements, the 
integration contour Γ always crosses the middle of the elements (Fig. 4.5b and Fig. 4.6a); see 
Kolednik et al. (2014). The nomenclature of interesting J-integral contours will be specified 
in Sections 6.3, 7.3, and 8.3, where details about the FE-modeling for the case studies are 
presented. 

For comparison, the values of the J-integral VCEJ , implemented in ABAQUS adopting 
the virtual crack extension method by Parks (1977), are computed. Note that deformation 
plasticity is implicitly assumed in this method. 

At this point, an important remark should be made about the accuracy of near-tip 
configurational forces and near-tip J-integrals. Figure 4.6 shows, for example, the distribution 
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of the configurational forces def.plf  and epf  around a stationary crack tip in an elastic–plastic 
material with incremental plasticity after monotonic loading to a maximum load; the mesh 
size is m = 0.2 mm.8 Directly at the crack tip a big configurational force, def.pl

tipf  and ep
tipf , 

appears. According to theory, no bulk configurational forces def.plf  should not appear for 
deformation plasticity, see Section 4.3.2. Figure 4.6a, however, shows def.plf -vectors in the 
surrounding of the crack tip. They appear due to numerical inaccuracies, since the 4-node 
isoparametric elements cannot reflect the singularity at the crack tip (e.g. Simha et al. 2008, 
Kolednik et al. 2014). For the numerical computation of the near-tip J-integral conv

tipJ  the 
component of def.pl

tipf  into the crack growth direction e and the area tipAΔ  of tipΓ , Fig. 4.6a, must 
be considered, ( )def.plconv

tiptip tipJ A= − ⋅ Δe f  (Simha et al. 2008). Due to the discretization problem 
the magnitude of conv

tipJ  is usually about 30% lower than the far-field J-integral value, conv
farJ . In 

order to receive the magnitude of conv
farJ , the discretization-induced configurational forces 

around the crack tip must be included, see e.g. Simha et al. (2008), Kolednik et al. (2014).  
Figure 4.6b presents the distribution of configurational forces epf  for incremental 

plasticity. The discretization problem appears also here: Parts of the bulk configurational 
forces epf  within a small region around the crack tip are induced by discretization and not 
only by the plastic strain gradients (Simha et al. 2008, Kolednik et al. 2014). As a 
consequence, the “true” magnitude of ep

tipf  and ( )ep ep
tiptip tipJ A= − ⋅ Δe f cannot be easily determined. 

Simha et al. (2008) considered the second contour 2Γ  around the crack tip as an 
approximation of ep

tipJ , and showed that ep ep conv
2tip farJ J JΓ≈ ≈ . 

According to Rice (1979), the near-tip J-integral tipJ  vanishes in an elastic–plastic 
material. It should be noted that finite values of  def.pl

tipf  and ep
tipf , or conv

tipJ  and ep
tipJ , only occur 

due to numerical reasons and depend on the used FE-mesh size. A mesh refinement yields a 
reduction in the magnitude of def.pl

tipf  and ep
tipf  and the corresponding J-integrals, suggesting 

finally epconv
tip tip 0J J= =  (see e.g. McMeeking 1977, Brocks et al. 2003, Kolednik et al. 2014). 

This will be discussed in the next section.  
In contrast to near-tip J-integrals, the magnitude of J-integrals evaluated for contour radii 

disctintively larger, e.g., than the length of the process zone proc.z t3l δ≈ , Section 3.2.1, is 
almost independent of the FE-mesh size; Section 7.5.1 presents an example. 

                                                 
8 For generating Fig. 4.6, the case study presented in Section 6.4.1 was taken. 
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5 Crack driving force in elastic–plastic materials 
under monotonic loading

In the previous section the incremental plasticity J-integral epJ  has been introduced, which 
has the physical meaning of a true driving force term in elastic–plastic materials, in contrast to 
the conventional J-integral convJ . However, bulk configurational forces cause epJ  to become 
path dependent and it had to be shown how epJ  should be used in order to characterize the 
crack driving force. Moreover, the role of ep

tipJ  for the assessment of crack extension was not 
clear since its magnitude vanishes in an elastic–plastic material, as does the conventional J-
integral (Rice 1975). 

Schöngrunder (2011) and Kolednik et al. (2014) analyzed the path dependence of the 
incremental plasticity J-integral epJ  for long, stationary and continuously growing cracks that 
are subjected to monotonic loading and showed how the crack driving force should be 
correctly evaluated. The results provide also an answer to Rice’ paradox of zero crack driving 
force and demonstrate the usefulness of the conventional J-integral as crack driving force 
parameter for elastic–plastic materials despite its theoretical restrictions.  

The methodological approach in Schöngrunder (2011) and Kolednik et al. (2014) consists 
of numerical case studies for Compact Tension specimens made of homogeneous, isotropic, 
elastic–plastic material with incremental theory of plasticity. The material data is taken from 
an annealed steel St37; see also Section 6.5.4. Plane strain conditions and large-strain theory 
are applied. The specimen is subjected to monotonic loading. The crack remains first 
stationary and grows then at constant load-line displacement vLL = const. Various maximum 
load-line displacements vLL,max are prescribed, so that small-scale, large-scale and general 
yielding conditions prevail in the specimen, in order to study the role of plasticity for the 
configurational force distribution and the behavior of the epJ -integral. Since the path 
dependence of epJ  on contours very close to the crack tip was especially of interest, specific 
numerical parameters have been varied systematically to separate numerical from physical 
effects. 

Section 5 presents the central findings of Kolednik et al. (2014). For a better 
understanding of the path dependence of epJ , schematic figures of the specimen with 
directions and magnitudes of bulk configurational forces epf  have been created. 

5.1 Stationary cracks under monotonic loading 

5.1.1 Path dependence of J-integrals for stationary cracks 

Figure 5.1a presents, for example, the spatial distribution of plasticity for the C(T)-specimen 
of Kolednik et al. (2014) with a stationary crack after loading to a load-line displacement  
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(a)   (b) 

(c) (d) 

Fig. 5.1 Details of the C(T)-specimen with a stationary crack, initial crack length a0 = 27 mm; 
compare Figs. 6b, 8d–f in Kolednik et al. (2014). (a) Distribution of the accumulated 
plastic strain PEEQ at LLv = 0.25 mm (large-scale yielding). The grey color
corresponds to regions with PEEQ ≥  0.001. ΓPZ and Γfar denote the crack tip plastic 
zone and far-field J-integral contours. (b) Distribution of the incremental plasticity 
configurational forces epf  in the crack tip plastic zone. The configurational force at the 
crack tip ep

tipf  is the vector sum of the two partial configurational forces ep
tip,uf  and ep

tip,lf  of 
the upper and lower specimen half. Mesh size in region A, m = 0.15 mm. (b) Detail of 
the near-tip region without large configurational forces of the crack tip. (c) Back face 
region of the specimen.

vLL = 0.25 mm (lsy prevails). Figure 5.1b shows the distribution of incremental plasticity 
configurational forces epf  in the crack tip plastic zone; the mesh size in region A is m = 
0.15 mm. Figures 5.1c,d show a detail of the crack tip and the back face region. Note that in 
Fig. 5.1c two inclined partial configurational forces appear on nodes along the ligament due to  



Crack driving force in elastic–plastic materials under monotonic loading 49

(a)  (b) 

Fig. 5.2 J-integral contours and schematic distribution of incremental plasticity configurational 
forces epf  in plastically deformed regions of an elastic–plastic body  with a 
stationary crack at maximum load-line displacement vLL = vLL,max. (a) entire body (b)
detail of the crack tip plastic zone with blunted crack tip and process zone. The 
integration contour PZΓ  encloses the crack tip plastic zone. proc.zΓ  surrounds the 
process zone.

the coinciding master and slave nodes of the lower and upper specimen half for the 
subsequent crack growth simulation. The resulting configurational force vector at one node on 
the ligament is the sum of the two partial configurational forces and has only a x-component. 
This applies also for the ep

tipf -vector; compare Fig. 4.6 and Fig. 5.1b. In Fig. 5.2, the directions 
and magnitudes of the incremental plasticity configurational forces, ep

if , are schematically
indicated in various regions i. Note that only the x-component of the configurational force 
vectors, i.e. the components into crack growth direction e, contribute to the scalar J-integral, 
see Eq. (4.44).  

First, we concentrate on configurational forces that appear in the crack tip plastic zone 
(Fig. 5.1b,c and 5.2b). According to Eq. (4.36), epf -vectors appear only in plastically 
deformed regions of the material, and they point into the direction of the plastic strain 
gradient (Simha et al. 2008). It is seen from Fig. 5.1c that a configurational force on the left 
boundary “lb” of the crack tip plastic zone, ep

lbf , points, at tensile (positive) load, into positive 
x-direction, whereas ep

rbf  on the right boundary “rb” points into the negative x-direction; on the 
upper boundary “up”, ep

ubf  has only a negative y-component, hence, it is not relevant for the 
magnitude of epJ . Bulk configurational forces induced by crack tip blunting point into both 
negative and positive x-direction (e.g. Kolednik et al. 2014), but the resulting epf -vector, ep

blf , 
points into the negative x-direction, like the configurational force emanating from the crack 
tip, ep

tipf  (Fig. 5.2b).  
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(a) (b) 

Fig. 5.3 Variations of epJ -integrals with increasing load-line displacement vLL for a stationary 
crack; see Fig. 11c and Fig. 13 in Kolednik et al. (2014). Different integration 
contours Γ are centered at the crack tip, for a mesh size (a) m = 0.15 mm, and (b) m = 
1.5625 m, i.e. Γ is very close to the crack tip. The curves of the experimental J-
integral expJ , Eq. (3.4), i.e. denominated as (A)J  in Kolednik et al. (2014), and the 
conventional far-field J-integral epconv

PZfarJ J≅  are drawn for comparison.

Near-tip epf -vectors have the largest magnitude, since stresses and plastic strain gradients 
are largest, see Eq. (4.36). With increasing distance from the crack tip, the magnitudes of the 

epf -vectors descrease significantly, i.e. up to 104 orders of magnitude. Fig. 5.1c and Fig. 5.2b 
show that ep

lbf  and ep
rbf  are distinctively smaller than ep

tipf , respectively. 
Rice (1979) and subsequent authors (e.g. McMeeking 1977, Brocks et al. 2003) reported 

that the conventional near-tip J-integral conv
tipJ  is zero in an elastic–plastic material if large 

strain theory is applied, i.e. the crack tip blunts. The computations by Kolednik et al. (2014) 
showed that the magnitude of ep

tipf  depends strongly on the used FE-mesh size: with decreasing 
mesh size, parts of ep

tipf  become distributed onto the neighboring nodes within the process zone 
so that ep

tipf  decreases with mesh refinement. This implies, finally, a zero driving force at the 
very crack tip, ( )ep ep

tiptip tip 0J A= − ⋅ Δ =e f ; see also Schöngrunder (2011). Note that this is a 
“physical” effect and not connected to a vanishing element area nAΔ , Eq. (4.45), since the 
value of epJ  tends to zero even if many elements are included in the integration contour; see 
Fig. 14 in Kolednik et al. (2014). The reason for this effect is explaned in the next section. 

Figure 5.3 presents the variations of the epJ -integral with increasing load-line 
displacement vLL. Figure 5.3a shows epJ -curves for various integration contours around the 
crack tip and a mesh size in A, Fig. 5.1b, of m = 0.15 mm. Figure 5.3b shows epJ -curves for 
contours very close to the crack tip, i.e. within the process zone; mesh size m = 1.5625 m. 
Small-scale yielding prevails at low vLL; large-scale yielding starts with the onset of plasticity 
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at the backface of the specimen at vLL  0.20 mm, and general yielding starts at vLL

0.35 mm. 
The path dependence of the epJ -integral inside the crack tip plastic zone can be 

understood from Fig. 5.2b and Eqs. (4.34) and (4.44). Note that the path dependence close to 
the crack tip is both physically caused due to the plastic strain gradients and numerically
caused due to the discretization problem, see Section 4.4. For contours inside the process 
zone, tip proc.zΓ < Γ < Γ , epJ  exhibits a very strong path dependence (Fig. 5.3b): With 
decreasing mesh size parts of the big crack tip configurational force vector ep

tipf , Fig. 5.2b, 
become distributed within the small process zone (see Kolednik et al. 2014). If the size of Γ
decreases from proc.zΓ , more and more epf -vectors with negative x-component lie outside the 
contour and cause that epJ  decreases, see Eq. (4.44). On the contrary, epJ  exhibits only a 
slight path dependence between a contour that includes the process zone with the blunting 
region, proc.z 3Γ ≈ Γ , and a contour surrounding the crack tip plastic zone, PZ 25Γ ≈ Γ  (Fig. 5.2b 
and Fig. 5.3a). The reason is that epf -vectors on the left and right boundary of the plastic 
zone, ep

lbf  and ep
rbf , almost cancel out each other (Fig. 5.2b). Kolednik et al. (2014) showed that 

epJ  evaluated for a contour radius of proc.z t3l δ≈  lies approximately 10% below the value of 
ep
PZJ . 

For a further increase of Γ outside the crack tip plastic zone, PZΓ > Γ , the epJ -integral 
remains constant, since no bulk configurational forces appear in elastically deformed regions 
of the material. For ssy-conditions, ep =f 0  up to the path farΓ , hence, ep ep

PZ farJ J= . For lsy, the 
epJ -integral becomes again path dependent if Γ crosses the back face “bf” plasticity region 

(Fig. 5.2a). Here, bulk configurational forces ep
bff  appear with positive x-components, Fig. 

5.1d, and provide an anti-shielding effect, p 0C > , Eq. (4.39), see Simha et al. (2008). This 
causes a slight reduction of the epJ -integral and is the reason why the far-field J-integral 
becomes smaller, e.g. about 4% for vLL = 0.25 mm, than the J-integral around the crack tip 
plastic zone, ep ep

PZfarJ J<  (Fig. 5.3a). For gy-conditions, Fig. 3.1c, epJ  is always path dependent 
from tipΓ  up to farΓ . For vLL = 0.50 mm, the value of ep

farJ  is about 37% lower than the 
conventional far-field J-integral epconv

PZfarJ J≅  (Fig. 5.3a); see also Section 9.1. 
Next, the properties of the conventional J-integral convJ , Eqs. (4.33) and (4.43), shall be 

discussed. The strong path dependence of convJ  for contours within the process zone (see 
McMeeking 1977, Brocks et al. 2003), and conv

tip 0J =  has been confirmed by Kolednik et al. 
(2014). The path dependence can be explained by the occurrence of “artificial” bulk 
configurational forces def.plf  due to the discretization problem, Section 4.4, and non-
proportional loading in the process zone; in contrast to epf , such def.plf -vectors are not 
physically sound, see Section 4.3.2. Since proportional loading is not violated in remote 
regions of the crack tip, artificial def.plf  do not appear and convJ  remains constant for contour 
radii increasing from the magnitude of the process zone to the far-field contour, 

conv conv conv
proc.z PZ farJ J J= =  (Simha et al. 2008, Kolednik et al. 2014).  

The largest differences between the magnitude of epJ  and convJ  is seen in the far-field J-
integral after onset of back face plasticity: ep conv

far farJ J<  for lsy- and gy-conditions, see Fig. 5.3a 
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under consideration that ep conv
25 farJ JΓ ≈ ; ep conv

far farJ J=  as long as no back face plasticity occurs 
(ssy-conditions).  

 An important finding of Kolednik et al. (2014) is the equivalence of epJ  and convJ  for 
contours surrounding the entire crack tip plastic zone PZΓ , Fig. 5.2, 

ep expconv conv
PZPZ farJ J J J= = = , (5.1) 

see Fig. 5.3a. The right hand equality in Eq. (5.1) has been already discussed in Section 3.2.2. 
The equality ep conv

PZPZJ J=  becomes evident from the middle term of Eq. (4.29) and Fig. 5.2a: 
Since PZΓ  goes only through elastically deformed material, the total strain energy density 
consists only of an elastic component, eφ φ= . Therefore, no difference exists between a 
formulation via incremental- and deformation plasticity. Note that ep conv

PZPZJ J≠  for gy-
conditions, since there is no elastic corridor between the crack tip plastic zone and the plastic 
zone at the back face.  

Finally, it should be remarked that the values of the ABAQUS J-integral VCEJ  give, with 
very high accuracy, the magitudes of convJ  computed via configurational force approach; 
except for very small contour radii, proc.zΓ Γ ; see Kolednik et al. (2014) for details. 

5.1.2 Plasticity and crack driving force 

Kolednik et al. (2014) provide an explanation to the seeming paradox of crack extension in 
elastic–plastic materials in spite of zero crack driving force, ep

tip 0J = . 
The physical meaning of the J-integral is that it describes the driving force for the 

simultaneous translational movement of all defects enclosed by the integration contour Γ
(Kolednik et al. 2014). This means that the physical meaning of the near-tip J-integral ep

tipJ  is 
that of the driving force for the exclusive movement of the crack tip (Fig. 5.4a). However, in 
an elastic–plastic material, it is impossible that crack extension occurs without simultaneous 
movement of the surrounding process zone and the plastic zone of the crack tip (Fig. 5.4b). 
Therefore, the magnitude of  becomes meaningless. The physical meaning of the J-
integral  is that of the driving force for the joint movement of the crack tip plus the crack 
tip plastic zone. Thus,  is the appropriate driving force parameter for a stationary crack in 
a monotonically loaded elastic–plastic material (Kolednik et al. 2014). 

An important finding is that the conventional J-integral  (or ), 
and the experimental J-integral, , are physically appropriate to assess crack growth 
initiation, despite the restrictions of deformation plasticity for elastic–plastic materials 
(Section 3.2.1). Due to the validity of Eq. (5.1), they reflect the magnitude of . 

Note that Eq. (5.1) strictly applies unless general yielding conditions appear where no 
“elastic corridor” separates the crack tip plastic zone and the back face plasticity region (Fig. 
3.1c). Kolednik et al. (2014) showed that Eq. (5.1) remains approximately valid shortly after 
onset of gy, but the difference might increase significantly with further increasing load; the 
evaluation of -values under gy-conditions will be discussed in detail in Section 9.1. 

ep
tipJ

ep
PZJ

ep
PZJ

conv conv
PZ farJ J= VCE VCE

PZ farJ J=
expJ

ep
PZJ

ep
PZJ
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(a) (b) 

Fig. 5.4 On the explanation of crack extension in an elastic–plastic material; see also Fig. 
16b,c in Kolednik et al. (2014). (a) A translational propagation of the crack tip alone, 
while the crack tip plastic zone remains stationary, is impossible in an elastic–plastic 
material. (b) Crack growth always occurs combined with the movement of the plastic 
zone surrounding the current crack tip. 

Alternatively, the J-integral around the process zone, , can be used as an approximation, 
since  only slightly underestimates the magnitude of  (Kolednik et al. 2014). 
Therefore, at the moment it is not clear how long  can be used beyond onset of general 
yielding as a driving force parameter; but  remains useful as a parameter that describes 
the intensity of the crack tip field if the process zone is sufficiently small so that a “J-
dominated zone” exists, see Section 3.2.1. 

5.2 Growing cracks under monotonic loading 

5.2.1 Relevant J-integral contours for growing cracks 

Figure 5.5a presents how the crack tip plastic zone in Fig. 5.1a changes after a crack 
extension of Δa = 2.7 mm under constant load-line displacement vLL,max = 0.25 mm (lsy): 
After crack extension, the entire crack tip plastic zone consists of the initial plastic zone of the 
stationary crack, the plastic wake and the active plastic zone, which travels with the moving 
crack tip and produces the plastic wake. The corresponding field of configurational forces epf
is shown in Fig. 5.5b. The directions and magnitudes of the epf -vectors in various regions of 
the crack tip plastic zone are schematically indicated in Fig. 5.6. 
  

ep
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ep
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farJ
conv
farJ

conv
farJ



54 Crack driving force in elastic–plastic materials under monotonic loading

(a) (b) 

Fig. 5.5 Details of the C(T)-specimen after crack extension Δa = 2.7 mm at constant load-line 
displacement LL,maxv = 0.25 mm; compare Figs. 6d and 10b in Kolednik et al. (2014). 
(a) Distribution of the accumulated plastic strain PEEQ; large-scale yielding prevails. 
(b) Arrow plot of the incremental plasticity configurational forces epf  in the crack tip 
plastic zone. The resulting ep

tipf -vector at the current crack tip is the vector sum of ep
tip,uf

and ep
tip,lf ; compare Fig. 5.1b. Mesh size m = 0.15 mm.  

Fig. 5.6 Schematic distribution of incremental plasticity configurational forces  in the entire 
crack tip plastic zone after crack extension Δa at fixed displacement, vLL = vLL,max. The 
magnitude of -vectors located in the initial crack tip plastic zone has been slightly 
decreased during unloading. The integration contour  encloses the plastic zone of 
the initial crack tip, the plastic wake and the active plastic zone of the current crack 
tip.  surrounds only the active plastic zone. 

epf

epf
PZΓ

actPZΓ
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It is seen from Fig. 5.5 that the distribution of configurational forces  is dominated by 
the gradients of the plastic strain field of the initial crack tip plastic zone and the right
boundary of the active plastic zone (Kolednik et al. 2014). The -vectors on the left 
boundary of the active plastic zone “actPZ” and in the plastic wake “pw” have only a y-
component, see  and  in Fig. 5.6. Vertical surface configurational forces that appear 
along the newly crated crack flanks, , are not important; they cancel out each other (Fig. 
5.5b).  

The basic differences to the stationary crack are: (i) The magnitudes of -vectors in the 
initial crack tip plastic zone decrease due to the unloading during crack extension at vLL = 
const. (ii) The configurational force at the current crack tip, , and the -vectors in the 
surrounding blunting region are significantly smaller compared to the stationary crack (Fig. 
5.5b and Fig. 5.1b,c). The reason might be connected to the weaker singularity of a growing 
crack (Rice et al. 1980). Moreover, Fig. 5.5b presents a smaller crack tip opening 
displacement ; thus, the length of the process zone, , is also smaller compared to 
the stationary crack. 

As for the stationary crack, a mesh refinement of the crack tip region results in a 
reduction of the magnitude of  also for a growing crack tip, leading finally to a zero crack 
driving force, , see Kolednik et al. (2014). 

Figure 5.7 presents the path dependence of the -integral during crack extension up to 
Δa = 2.7 mm at fixed vLL,max = 0.25 mm. Shown is the evolution of  against (step-) time: 
t = 0  1 corresponds to monotonic loading of the stationary crack (Fig. 5.3a); crack growth 
corresponds to t > 1. In comparison to the stationary crack, the path dependence of  is 
more pronounced even for contours fully enclosing the process zone, ; see contours 
larger than  in Fig. 5.7. The value of  increases stronger with increasing contour size 
since the x-components of  and  do not compensate (Fig. 5.5b and Fig. 5.6). Thus, 
the -integral evaluated for a contour around the process zone, including the -vectors 
induced by crack tip blunting of the current crack tip “c.tip”, , is distictively smaller than 
the J-integral  for a contour around the active plastic zone  (Fig. 5.6). The path 
dependence of  becomes more pronounced with higher applied load; see Kolednik et al. 
(2014) where figures similar to Fig. 5.7 are provided for ssy- and gy-conditions. 

If the integration contour Γ surrounds the active plastic zone, and further increases 
through the plastic wake,  remains constant, since the vertical -vectors do not deliver 
a contribution to the magnitude of , see Eq. (4.44). The value of  varies again when 
bulk configurational forces of the initial plastic zone become included (Fig. 5.5b). The 
magnitude of  is reached when  and  of the initial plastic zone “iPZ” and , 
of the initial crack tip “i.tip”, are included in Γ (Fig. 5.6). 
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Fig. 5.7 Path dependence of epJ -integral for different integration contours around a growing 
crack tip; compare Fig. 12b in Kolednik et al. (2014). During time t = 0  1, the crack 
remains stationary, the specimen is loaded to vLL,max = 0.25 mm (lsy prevails); compare 
Fig. 5.3a. After t = 1, crack growth occurs at fixed vLL,max. The mesh size is m = 
0.15 mm.

Interesting is the characteristic variation of ep
actPZJ  with crack extension, compared to the 

variation of ep
PZJ . Figure 5.8 presents schematically the evolution of the incremental plasticity 

J-integrals, ep
actPZJ  and ep

PZJ , versus time t during crack extension.9 For the stationary crack, 
time t = 0  1, the active and the initial crack tip plastic zone coincide, actPZ PZΓ = Γ  (Fig. 
5.4b), and therefore ep ep

actPZ PZJ J= . During crack extension, t = 1  2, ep
PZJ  exhibits a slight, 

linear decrease since the applied load decreases with increasing crack extension while the 
displacement vLL = vLL,max remains constant (Kolednik et al. 2014). On the contrary, ep

actPZJ
exhibits the following characteristic variations as marked in Fig. 5.8:  

a) ep
actPZJ  increases when the contour actPZΓ  is shifted to the right during crack extension 

since ep
lb,iPZf  becomes exluded (compare Fig. 5.6).  

b) The negative parts of the configurational forces induced by initial crack tip blunting, 
ep
bl,i.tipf , Fig. 5.5b, drop out of actPZΓ , Fig. 5.6, leading to the steep drop of ep

actPZJ , 
compare Eq. (4.44).  

c) ep
actPZJ  slightly increases, in general, due to the positive parts of ep

bl,i.tipf  in front of the 
crack tip; they are in sum larger than the magnitude of ep

rb,iPZf  (compare Fig. 5.5b).  
d) ep

actPZJ  decreases parallel to ep
PZJ . 

                                                 
9 It should be remarked that for generating Figure 5.8, the results for cyclic loading with crack extension 
(Section 7) were used.  
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Fig. 5.8 Schematic curves of incremental plasticity J-integrals around the entire crack tip 
plastic zone, , and around the active plastic zone, , versus time t during 
loading to vLL = vLL,max and subsequent crack extension Δa at fixed displacement. For a 
stationary crack, t = 0  1,  since the entire crack tip plastic zone consists 
only of the active plastic zone, see Fig. 4.2b.

It should be noted that, provided that the active plastic zone has completely left the 
plastic zone of the initial crack tip, the magnitude of ep

actPZJ  is barely affected by the used FE-
mesh size and the exact shape of the contour actPZΓ , since vertically oriented epf -vectors in the 
plastic wake do not deliver a contribution to the value of ep

actPZJ . However, before the active 
plastic zone exludes the blunting region of the initial crack tip, the FE-mesh size significantly 
influences the position and magnitude of the peak value of ep

actPZJ , Fig. 5.8; see Section 7.7 for 
an example. The extent of the characteristic variations in the ep

actPZJ -curve, a) – c) in Fig. 5.8, 
depends on the magnitude of the applied load: The higher the applied load, the larger the 
initial crack tip blunting region, and, consequently, the larger the resulting epf -vectors in this 
region that become excluded from the moving contour actPZΓ . 

From the analysis of the configurational force distribution, it becomes clear that the 
difference between ep

actPZJ  and ep
PZJ  for larger crack extension is attributed to the positive net 

contribution of epf -vectors in the initial blunting region (Figs. 5.6 and 5.8), see Kolednik et al. 
(2014).  

The zero-value of conv
tipJ  for a growing crack (e.g. by Kfouri and Miller 1976, Kfouri and 

Rice 1977) is also confirmed by Kolednik et al. (2014). After onset of crack extension, the 
conventional J-integral convJ  shows even negative values for small contours around the 
current crack tip; the reason lies in the radial distribution of def.plf -vectors from the crack tip, 
whereby def.plf -vectors with positive x-component are located inside the moving integration 
contours centered around the current crack tip, see Eq. (4.43). The values of the convJ -integral 

ep
PZJ ep

actPZJ

ep ep
PZ actPZJ J=
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around the active plastic zone, conv
actPZJ , lie distinctively lower and decrease slightly stronger 

than ep
actPZJ  with increasing crack extension. 

As for the stationary crack, epconv
PZ PZJ J=  is also valid for a growing crack, if the contour 

passes only elastically deformed regions of the material, see Fig. 5.5a. However, the 
experimental J-integral expJ  does not measure the magnitude of conv

PZJ , see Kolednik (1991, 
1993) and Turner and Kolednik (1994) for details. 

5.2.2 Assessment of the crack driving force for crack growth under constant loading 

For a growing crack, the incremental plasticity J-integral around the entire crack tip plastic 
zone, ep

PZJ , has the physical meaning of the driving force for the simultaneous translational 
movement of the current crack tip and the entire crack tip plastic zone. However, during crack 
extension only the active plastic zone moves with the current crack tip, see Fig. 5.6 or Fig. 
5.4b. The initial crack tip plastic zone and the plastic wake remain stationary. Therefore, ep

PZJ
is not the appropriate driving force parameter for a growing crack. Instead, the incremental 
plasticity J-integral computed on a contour completely enclosing the active plastic zone, 

ep
actPZJ , is the correct parameter to assess crack extension and fracture (Kolednik et al. 2014); 
ep
actPZJ  reflects the driving force for the joint movement of the current crack tip and the 

surrounding active plastic zone.  
Note that epconv

actPZ actPZJ J≠ , since actPZΓ  crosses the plastic wake (Fig. 5.6). The experimental 
J-integral expJ  also does not reflect the value of ep

actPZJ ; see Kolednik (1991; 1993) and Turner 
and Kolednik (1994). This implies that both the conventional and the experimental J-integrals 
are not appropriate to quantify the physically correct driving force of a growing crack under 
monotonic loading. For a stationary crack, however, the active plastic zone and the initial 
crack tip plastic zone coincide, actPZ PZΓ = Γ , hence, ep ep expconv

PZactPZ PZJ J J J= = = , Eq. (5.1). 
As summary of Section 5, it can be stated that configurational forces can help us to 

explain and understand the properties of J-integrals in a better way, and lead to a physically 
appropriate determination of the crack driving force in elastic–plastic materials. 





“Engineering is the art of modelling 
materials we do not wholly understand, into  
shapes we cannot precisely analyse so as to  
withstand forces we cannot properly assess,  
in such a way that the public has no reason  
to suspect the extent of our ignorance.” 

Dr. AR Dykes,  
Institution of Structural Engineers, 1976 
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Driving force of cyclically loaded cracks in  
elastic–plastic materials  
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6 Stationary fatigue cracks 

Part I has explained the application of the configurational force concept in fracture mechanics, 
introduced the incremental plasticity J-integral epJ  for elastic–plastic materials, and presented 
how epJ  should be used to assess the crack driving force under monotonic loading.  

Now it is investigated how epJ  can be used to evaluate the crack driving force for 
cyclically loaded elastic–plastic materials. This is first shown in the context of stationary
fatigue cracks in Paper I, which is presented on the following pages. 

During fatigue, the crack driving force is disctinctively smaller than the crack growth 
resistance (Section 3.1), so that the fatigue crack cannot grow at constant maximum load. 
Therefore, the meaning of the crack driving force for cyclic loading differs from that for 
monotonic loading. A “crack driving force” term for cyclic loading is per se not a real driving 
force term in the thermodynamic sense. The main purpose of a crack driving force term for 
cyclic loading is that it should allow the characterization of the crack growth rate da/dN
during fatigue, see e.g. Suresh (1998) and Sect. 3.3.1. The stress intensity range -concept 
is such a term and can be used if LEFM is applicable. For the regime of low-cycle fatigue 
there exists no physically appropriate crack driving force parameter, since the experimental 
cyclic J-integral expJΔ  (Dowling and Begley 1976) is questionable due to its lack of 
theoretical basis, see Section 3.3.3.  

This leads to the two main questions to be answered in Paper I:  

(i) Does a cyclic J-integral epJΔ  provide a correct fatigue crack driving force term for the 
regime of LCF?  

(ii) Is the application of the experimental cyclic J-integral  correct? 

In Paper I, a set of numerical simulations is performed for a two-dimensional Compact 
Tension specimen with a long, stationary crack under cyclic Mode I loading for different load 
ratios and large-scale yielding conditions. The most important results of this 
paper are: 

• The -integral can be applied for cyclic loading when LEFM is not valid any more. 
An analysis of the behavior of the bulk configurational forces  during cyclic 
loading enables an explanation of the path dependence of  for various load ratios. It 
is shown that negative values of , for integration contours close around the crack 
tip, are physically sound, since they originate from compressive residual stresses 
within the crack tip plastic zone during unloading. 

• As for monotonic loading it is shown that deformation plasticity and incremental 
plasticity give identical J-integral values for cyclic loading if the integration contour Γ

KΔ

expJΔ

maxmin FFR =

epJ
epf

epJ
epJ
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goes only through elastically deformed regions of the elastic–plastic material, such as 
for a path  around the crack tip plastic zone,  (Tables 6.1–6.3). 

• A path PZΓ  should be used in order to evaluate a cyclic J-integral ep
PZJΔ  for the 

description of the driving force of stationary fatigue cracks in elastic–plastic materials; 
the back face plasticity region should be excluded since it is not relevant for cyclic 
plastic deformation at the crack tip which drives a fatigue crack.  

• Theoretical considerations and a comparison with the cyclic crack tip opening 
displacement tδΔ , Fig. 6.11b, show that the cyclic J-integral ep

PZJΔ  is not the range 
between the maximum and minimum J-values, ep ep ep

PZ PZ,max PZ,minJ J JΔ ≠ − . Instead,  
should be evaluated by Eq. (6.19) so that ep

PZJΔ  is proportional to da/dN. For negative 
load ratios R < 0,  reaches exactly a minimum value of zero, , so that 

.  
• It is shown that the experimental cyclic J-integral expJ  reflects the magnitude of 

, see Tables 6.1–6.3. This implies that  is physically appropriate to 
characterize stationary fatigue cracks. The equality  rest on the 
equivalence of  and the conventional cyclic J-integral around the crack tip plastic 
zone, , Eq. (6.22).  

• The conventional determination of the area  via compliance changes for the value 
of expJ  in the presence of crack flank contact leads to an overestimation of the 
magnitude of  by about 10%, see Table 6.3. Instead, the load where  reaches 
a minimum of zero should be considered in order to get the correct crack driving force 
value.  

• The ABAQUS J-integral , which implicitly relies on deformation plasticity, can 
be also used to evaluate the driving force of a stationary fatigue crack, since in all 
cases the J-integral for deformation plasticity  equals , hence, 

. Note that VCE
PZJΔ  can be easily computed after Eq. (6.22). A 

numerically expensive implementation based on Eq. (6.3) like, e.g., in Vormwald 
(2014, 2015) or Metzger et al. (2015) is not necessary since Eq. (6.22) and Eq. (6.3) 
are equivalent; see “Appendix” in Paper I. 

PZΓ ep conv
PZ PZJ J=

ep
PZJΔ

ep
PZJ ep

PZ,min 0J =
ep ep
PZ PZ,maxJ JΔ =

ep
PZJΔ expJΔ

exp ep
PZJ JΔ = Δ

ep
PZJΔ

conv
PZJΔ

AΔ

ep
PZJΔ ep

PZJ

VCEJ

convJ VCEJ
ep conv VCE
PZ PZ PZJ J J= =
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Paper I: 

A new basis for the application of the J-integral for 
cyclically loaded cracks in elastic–plastic materials 

W. Ochensberger and O. Kolednik 

published in 

International Journal of Fracture (2014) 189:77–101 
© Springer Science+Business Media Dordrecht 2014 

Abstract  
Fatigue crack propagation is by far the most important failure mechanism. Often cracks under 
low-cycle fatigue conditions and, especially, short fatigue cracks cannot be treated with the 
conventional stress intensity range KΔ -concept, since linear elastic fracture mechanics is not 
valid. For such cases, Dowling and Begley, ASTM STP 590 (1976) 82, proposed to use the 
experimental cyclic J-integral expJΔ  for the assessment of the fatigue crack growth rate. 
However, severe doubts exist concerning the application of expJΔ . The reason is that, like the 
conventional J-integral, expJΔ  presumes deformation theory of plasticity and, therefore, 
problems appear due to the strongly non-proportional loading conditions during cyclic 
loading. The theory of configurational forces enables the derivation of the J-integral 
independent of the constitutive relations of the material. The J-integral for incremental theory 
of plasticity, epJ , has the physical meaning of a true driving force term and is potentially 
applicable for the description of cyclically loaded cracks, however, it is path dependent. The 
current paper aims to investigate the application of epJ  for the assessment of the crack driving 
force in cyclically loaded elastic–plastic materials. The properties of epJ  are worked out for a 
stationary crack in a compact tension specimen under cyclic Mode I loading and large-scale 
yielding conditions. Different load ratios, between pure tension- and tension-compression 
loading, are considered. The results provide a new basis for the application of the J-integral 
concept for cyclic loading conditions in cases where linear elastic fracture mechanics is not 
applicable. It is shown that the application of the experimental cyclic J-integral expJΔ  is 
physically appropriate, if certain conditions are observed. 

Keywords: Configurational force concept; Crack driving force; Cyclic J-integral; Incremental 
theory of plasticity; Low-cycle fatigue 
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6.1 Introduction 
The crack extension per load cycle of a fatigue crack Na dd  can be in many cases related to 
the stress intensity range KΔ  (Paris et al. 1961; Paris and Erdogan 1963) or the effective 
stress intensity range effKΔ  (Elber 1970, 1971). This is possible, if the conditions of small-
scale yielding are fulfilled and linear elastic fracture mechanics (LEFM) is applicable. If 
conditions of large-scale yielding or general yielding prevail, LEFM is not applicable and KΔ
is not a valid parameter. This also applies in the case of short fatigue cracks where the size of 
the plastic zone is often large compared to the crack length. Therefore, elastic–plastic fracture 
mechanics (E-PFM) with the J-integral concept is required. However, the conventional J-
integral, which is based on deformation theory of plasticity (Rice 1968a,b), is formally not 
applicable due to the appearance of non-proportional loading during fatigue (e.g. Anderson 
1995; Suresh 1998). Incremental theory of plasticity is a core requirement to describe real 
elastic–plastic material behavior in such cases. Nevertheless, Dowling and Begley (1976) 
proposed that the crack growth rate in the E-PFM regime is a function of an experimental 
cyclic J-integral expJΔ , which can be determined experimentally from the area below a single 
loading branch of the load–displacement (F–v) curve. Experimental data (e.g. Dowling and 
Begley 1976; Dowling 1976; Lambert et al. 1988; Banks-Sills and Volpert 1991) show that 

expJΔ  correlates to Na dd  for some elastic–plastic materials under certain cyclic loading 
conditions. In spite of these empirical results, the general applicability of expJΔ  remains 
doubtful due to the lack of its theoretical basis (Suresh 1998).  

The concept of configurational forces enables the derivation of the J-integral for elastic–
plastic materials with incremental theory of plasticity, called epJ , which is able to overcome 
the restrictions of the conventional J-integral (Simha et al. 2008). Advantageous features of 

epJ  are its physical meaning as a true driving force term in elastic–plastic materials and the 
extended field of potential application, e.g. during crack extension or for cyclic loading. 
However, it should be taken into account that the incremental plasticity J-integral epJ  is not 
path independent. Simha et al. (2008) investigated the path dependence of epJ  due to the 
gradient of plastic strain and the appearance of bulk configurational forces for monotonically 
loaded specimens with stationary cracks. They defined a plasticity influence term pC , which 
describes the shielding or anti-shielding effect of the plastic zone. Kolednik et al. (2014) 
investigated the properties of epJ  for growing cracks in elastic–plastic materials under 
monotonic loading and demonstrated how epJ  and the conventional J-integral concept 
complement each other. 

The purpose of the current paper is twofold: (i) we investigate in form of a numerical 
case study, whether the incremental plasticity J-integral epJ  can be used for predicting the 
crack growth rate in cyclically loaded elastic–plastic materials; (ii) we clarify whether the 
application of the experimental cyclic J-integral expJΔ  is correct.  

The paper is structured as follows: Section 6.2 gives a short literature review on the 
conventional J-integral, the experimental cyclic J-integral expJΔ , and the incremental 
plasticity J-integral epJ . Section 6.3 presents the details of the numerical modeling. Section 
6.4 deals with the properties of epJ  for a cyclically loaded elastic–plastic material under 
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large-scale yielding conditions and discusses the influence of various load ratios 
maxmin FFR = . Section 6.5 describes how the driving force of a cyclically loaded crack can be 

expressed via epJ , followed by a comparison to the experimental cyclic J-integral expJΔ . 

6.2 Theoretical background 
The notation of the mathematical expressions in this paper follows that used by Gurtin (2000). 
Scalars are denoted by lightface letters, vectors by lowercase boldface letters (with the 
exceptions of the reference coordinate X  and the J-integral vector J), and tensors by 
uppercase boldface letters (with the exceptions of the Cauchy stress tensor  and the linear 
strain tensor ). A dot, as in ⋅ = i ia ba b , with summation of repeated indices, designates the 
scalar, inner product of vectors; a dot, as in ⋅ = ij ijA BA B  designates the scalar, inner product 
of tensors. The expressions ( ) = ij ji

A aAa  and ( ) = ik kjij
A BAB  denote matrix products. The 

expression :A , with A  as second-order and  as third-order tensor, gives a vector 
defined by ( ): = Λij ijkk

AA . 

6.2.1 The J-integral concept

Assume a homogeneous body  as illustrated in Fig. 6.1a (without plastic zone), consisting of 
(nonlinear) elastic material. The J-integral is a line integral along an integration path Γ drawn 
from the lower to the upper crack flank in counterclockwise direction around a crack (Rice 
1968a,b), 

d dφ
Γ

∂= − ⋅
∂

J y s
x
ut , (6.1) 

where φ  denotes the strain energy density, t  is the traction vector, u  is the displacement 
vector, and ds is an increment of the integration path Γ. It can be proven that J is independent 
of the integration path Γ if the strain energy density φ  exhibits the properties of a potential 
(Rice 1968a,b). This assumption holds for (linear or nonlinear) elastic materials.  

Rice (1968a,b) also showed that the J-integral describes the crack driving force for elastic 
bodies. Hutchinson (1968) and Rice and Rosengren (1968) found that J characterizes the 
intensity of the crack tip field (also called HRR crack tip field), similar to the stress intensity 
factor K for linear elasticity.  

Application of the classical J-integral for elastic–plastic materials rests on the assumption 
of deformation plasticity, which treats elastic–plastic materials as if they were nonlinear 
elastic. Since only the elastic part of the strain energy density eφ  is recoverable in elastic–
plastic materials and not the total strain energy density φ , Fig. 6.1b, the conventional J-
integral does not characterize the crack driving force any more (Rice 1968a,b). But J is still a 
measure of the intensity of the crack tip field (Hutchinson 1968; Rice and Rosengren 1968; 
McMeeking and Parks 1979). Deformation plasticity is applicable only as long as the 
conditions of proportional loading are fulfilled. Therefore, problems appear if unloading 
processes occur in the material. If the unloading processes are small and confined, such as for  
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 (a) (b) 

Fig. 6.1 (a) Homogeneous elastic–plastic body  containing a sharp crack and a plastic zone. 
Γ  is an arbitrary contour for the evaluation of the J-integral, n  denotes the unit 
normal vector on the contour, t the traction vector. (b) Stress–strain curve for point P. 
For deformation theory of plasticity, i.e. nonlinear elastic materials, the total strain 
energy density, e pφ φ φ= + , is recoverable; for incremental theory of plasticity, only 
the elastic part eφ  is recoverable.

a limited crack extension, J can still be applied in the form of an engineering approach, as 
long as the conditions of “J-controlled crack growth” are fulfilled (Hutchinson and Paris 
1979). This is, however, not the case for global unloading of the specimen, such as during 
cyclic loading. Here incremental theory of plasticity is required for a realistic description, and 
the conventional J-integral loses its physical meaning. 

In fracture mechanics experiments, the experimental J-integral expJ  is determined from 
the load–displacement (F–v) records. For deeply notched bending type specimens, i.e. 
Compact Tension or Single-Edge Notched Bend specimens, expJ  is evaluated from the 
relation (Rice et al. 1973)  

bB
AJ η=exp . (6.2) 

The parameter A is the area below the F–v-curve (Fig. 6.2a), the ligament length is aWb −= , 
where W and a are the width of the specimen and the crack length, respectively. The 
dimensionless factor ( )Waη  depends on specimen type and geometry, see the fracture 
mechanics standard testing procedures ESIS P2-92 (1992) or ASTM E1820 (2005), where 
also modifications of Eq. (6.2) are given. Equations similar to Eq. (6.2), but with different 
definitions of the parameter A, exist for other specimen types, such as the Center Cracked 
Tension and the Single- or Double-Edge Notched Tension specimen, see Rice et al. (1973). 
Equations (6.1) and (6.2) yield identical J-values for a monotonically loaded elastic–plastic 
material as long as the crack remains stationary. This is not so for a growing crack (Kolednik 
1991, 1993). 
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6.2.2 The cyclic J-integral

The cyclic J-integral JΔ  is a contour integral for cyclic loading, analogous to the J-integral 
for monotonic loading, and is defined by the relation (Lamba 1975; Wüthrich 1982; Tanaka 
1983),  

( ) ( )d dJ y s
x

φ
Γ

∂ Δ
Δ = Δ − Δ ⋅

∂
u

t . (6.3) 

JΔ  has been termed “Z-integral” in Wüthrich (1982). The symbol Δ in Eq. (6.3) refers to the 
relative change of the parameters between two states. The quantity ( )φ Δ  is analogously to 
the strain energy density defined as  

( ) ( )
0

dφ
Δ

Δ = Δ ⋅ Δ , (6.4) 

see the example presented in Appendix A. For the determination of the cyclic stresses and 
strains, a Δ – Δ -diagram is drawn with origin reset to the beginning of a new loading phase 
in a stress–strain hysteresis loop (Fig. 6.2b). The axes point into the direction of variation, i.e. 
into positive directions for a loading sequence. The expression ( )φ Δ  corresponds to the 
strain energy density achieved during a single loading branch. Lamba (1975) and Tanaka 
(1983) showed that JΔ  is path independent if ( )φ Δ  exhibits the properties of a potential, 
i.e. if the stress range Δ  is a unique function of Δ  (see also Anderson 1995). 

The validity of the cyclic J-integral for elastic–plastic materials is dubious, since 
deformation plasticity does not describe the real elastic–plastic material behavior (see Section 
6.2.1). This makes the application of JΔ  for the characterization of fatigue crack growth in 
elastic–plastic materials questionable (Anderson 1995). 

Dowling and Begley (1976) proposed that the crack growth rate in low-cycle fatigue 
(LCF) is a function of the experimental cyclic J-integral. This experimental cyclic J-integral 

expJΔ  is determined from the area AΔ  below the load–displacement record of a single loading 
(or unloading) branch (Fig. 6.2c). For deeply notched bending type specimens, expJΔ  is 
evaluated, analogously to Eq. (6.2), from the relation,  

bB
AJ Δ=Δ ηexp . (6.5) 

Dowling and Begley (1976) propose to determine an effective value of the experimental 
cyclic J-integral exp

effJΔ , if crack closure occurs: For the evaluation from the loading branch of 
the F–v-curve, the area AΔ  should be taken from the point where crack flank contact fully 
disappears (point “op” in Fig. 6.2d); for evaluation from the unloading branch, AΔ  should be 
taken only to the point when crack closure starts to become significant (point “cl” in Fig. 
6.2d). 

Dowling and Begley (1976) conducted fatigue tests using Compact Tension (C(T)-) 
specimens manufactured from A533B steel. Hereby the loading (mainly zero-to-maximum  
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 (a) (b) 

 (c) (d) 

Fig. 6.2 (a) Determination of the experimental J-integral expJ  for a deeply notched bending 
type specimen from the area A under the load–displacement record. (b) Evaluation of 
cyclic stresses and strains for the evaluation of ( )φ Δ , Eq. (5.4), by resetting the 
origin of a Δ − Δ -diagram. (c) Determination of AΔ  for a re-loading sequence to 
calculate the experimental cyclic J-integral expJΔ , Eq. (5.5). (d) Determination of AΔ
for a re-loading sequence in presence of crack closure from the point of crack opening 
“op” which yields exp

effJΔ ; for an unloading sequence, AΔ  should be determined only 
to the point “cl” where crack closure starts.

displacement control) was chosen so that general yielding conditions occurred, i.e. plasticity 
spreads from the crack tip to the back face of the specimen. The major finding in Dowling and 
Begley (1976) was that there exists a Paris-law type correlation between crack propagation 
rate Na dd  and expJΔ  if no ratcheting effect appears, i.e. that stable stress and strain 
hysteresis loops are formed during cyclic loading. In a subsequent study, Dowling (1976) 
found a similar correlation for fatigue cracks in Center Cracked Tension specimens. Lambert 
et al. (1988) and Banks-Sills and Volpert (1991) combined experimental and numerical (finite 
element) studies of the cyclic J-integral. Lambert et al. (1988) performed displacement 
controlled tests on compact tension specimens made of AISI 316 stainless steel. Banks-Sills 
and Volpert (1991) conducted load controlled fatigue tests on compact tension specimens 
made of Al 2024-T351 with load ratios R = 0.05 and R = 0.5. In both papers, correlations 
between expJΔ  and Na dd  were observed. In their numerical tests, cyclic J-integral values 
were evaluated from numerical F–v data, Eq. (6.5), and by applying Eq. (6.3) with 
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substitution of stresses and displacements determined from the numerical analysis. Close 
agreement between experimental and numerical results was found and, furthermore, the 
equivalence between Eq. (6.5) and Eq. (6.3) was numerically demonstrated.  

Several other researchers have demonstrated via fatigue experiments that a functional 
relationship exists between expJΔ  and the fatigue crack growth rate, but this relationship has 
not been conclusively proven (Anderson 1995). “At this point, experimental documentation of 
a reasonably good characterization of fatigue crack growth under some elastic–plastic 
conditions is the main justification that can be provided for the application of J-integral to 
cyclic loading” (Suresh 1998, p. 315).  

It should be noted here that Dowling (1977) derived a formula different from Eq. (6.5) for 
determining the experimental cyclic J-integral for short fatigue cracks, e.g. semi-circular 
surface cracks. It was found that the correlation between Na dd  and expJΔ  for short cracks, 
in general, coincides with the correlation earlier found for long cracks (Dowling and Begley 
1976; Dowling 1976). McClung et al. (1997) extended the expJΔ -evaluation procedure to 
other surface crack geometries and to combined and multiaxial loading conditions. These and 
similar procedures have been applied successfully in fatigue life prediction models, e.g., in 
Döring et al. (2006). Such short fatigue cracks do not lie within the scope of the current paper.  

6.2.3 The configurational force concept and the incremental plasticity J-integral epJ

An extensive review on the relation between configurational forces and J-integrals has been 
given recently in Kolednik et al. (2014). Therefore, only essential relations are repeated in this 
section.  

Configurational forces are thermodynamic forces that describe the driving force on 
defects in materials, such as dislocations, cracks, or interfaces (Maugin 1995; Gurtin 1995, 
2000; Kienzler and Herrmann 2000). The notion of configurational forces, also called 
material forces, goes back to the works of Eshelby (1951, 1970), who introduced the 
configurational stress tensor C as “energy momentum tensor”. A configurational force f
appears at those positions in the body where the divergence of the configurational stress C
does not vanish, 

( )Tφ= −∇ ⋅ = −∇ ⋅ −f C I F S . (6.6) 

In Eq. (6.6) the symbol ∇ ⋅  denotes the divergence, I the identity tensor, FT the transposed of 
the deformation gradient, and S the 1st Piola-Kirchhoff stress. The configurational force f
describes magnitude and direction of the driving force acting on the defect.  

Consider a homogeneous body  with a sharp crack as illustrated in Fig. 6.1a. The scalar, 
near-tip J-integral can be derived from the concept of configurational forces in the form 
(Simha et al. 2003),  

( )
Γ

→
⋅=−⋅=⋅=

r

sJ
r

dlim
0tiptiptip nCefeJe , (6.7) 
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where tipf  designates the configurational force vector emanating from the crack tip, and rΓ  is 
a contour drawn around the crack tip at a distance r; n is the outward unit normal vector to the 
contour. The scalar near-tip J-integral tipJ  is the projection of the near-tip J-integral vector 

tipJ  into the direction of the unit nominal vector in crack growth direction e. The scalar J-
integral along an arbitrary contour Γ  is given by the relation,  

( )T
tipd d dφ

Γ Γ

= ⋅ = ⋅ = ⋅ − = − ⋅J s s J Ae J e Cn e I F S n e f . (6.8) 

Here,  is the area enclosed by the contour Γ , but excludes the crack tip. The scalar J-
integral J for an arbitrary contour Γ  is the projection of the J-integral vector J into the 
direction e.  

The benefit of derivation of the J-integral via the configurational force concept is that 
Eq. (6.7) and Eq. (6.8) are independent of the constitutive relations of the material. For 
nonlinear elastic materials or elastic–plastic materials described by deformation plasticity, the 
total strain energy density φ  is recoverable, whereas for incremental plasticity only the elastic 
part of the strain energy density eφ  is recoverable (Fig. 6.1b). Therefore, we distinguish in the 
following between the nonlinear elastic configurational force nlelf , if the total strain energy 
density φ  is inserted into Eq. (6.6), and the elastic–plastic configurational force epf , if the 
elastic part of the strain energy density eφ  is inserted.  

Substitution of the total strain energy density φ  into the configurational stress C, Eq. 
(6.6), and into Eq. (6.8) yields the nonlinear elastic J-integral,  

( )nlel nlel T nlel nlel
tip tipd dφ= + ⋅ ∇ ⋅ − = − ⋅J J A J Ae I F S e f , (6.9) 

which is identical to the classical J-integral, Eq. (6.1). In homogeneous, nonlinear elastic 
materials, bulk configurational forces do not exist. Only a single configurational force nlel

tipf
appears at the crack tip, and the J-integral is path-independent.  

In elastic plastic fracture mechanics, the nonlinear elastic J-integral nlelJ  is commonly 
applied to elastic–plastic materials. This application rests on the assumption of deformation 
theory of plasticity, see Introduction. However in such cases, nlelJ  does not characterize the 
crack driving force any more (Rice 1968a,b). Another problem is that this approach is limited 
due to the occurrence of non-proportional loading, i.e. if unloading processes occur due to 
crack extension or unloading of the whole body, e.g. McMeeking (1977) or Anderson (1995). 
For the nonlinear elastic J-integral applied to elastic–plastic materials, based on deformation 
plasticity, we introduce the term “conventional J-integral” convJ ; the corresponding nonlinear 
elastic configurational force for elastic–plastic materials, based on deformation plasticity, is 
designated def.plf . 

It is well known from literature that the conventional J-integral, when applied to real 
elastic–plastic materials, i.e. materials modelled with incremental theory of plasticity, is path 
independent as long as proportional loading conditions prevail. If non-proportional loading 
occurs, convJ  becomes path dependent, see e.g. Brocks et al. (2003). Within the concept of 
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configurational forces, path dependence of convJ  means that (artificial) bulk configurational 
forces def.plf  are induced, compare Eq. (6.9). This fact was demonstrated exemplarily by a 
numerical cyclic tensile test and then shown for crack extension under monotonic loading in 
Kolednik et al. (2014). 

Substitution of the elastic part of the strain energy density eφ  into the configurational 
stress C, Eq. (6.6), and into Eq. (6.8) yields the J-integral for elastic–plastic materials with 
incremental theory of plasticity (Simha et al. 2008), 

( )ep ep T ep ep
tip e tipd dφ= + ⋅ ∇ ⋅ − = − ⋅J J A J Ae I F S e f . (6.10) 

The main advantage of the elastic–plastic J-integral epJ  is that it has the physical meaning of 
a true driving force term in elastic–plastic materials. 

In elastic–plastic materials bulk configurational forces epf  appear in plastically deformed 
regions and they evolve proportional to the gradient of the plastic component of the 
deformation gradient (Simha et al. 2008), 

( )
pTep e : ∂=

∂
Ff F S
X

. (6.11) 

Note that ( )TeF S  gives a second order tensor, p∂ ∂F X  is a third-order tensor, see Section 
6.2. Due to these bulk configurational forces, the elastic–plastic J-integral epJ  becomes path-
dependent. Equation (6.11) holds for large strain theory with eF  and pF  as the elastic and 
plastic components of the deformation gradient. 

The properties of epJ  (and convJ ) for monotonic loading, with and without crack 
extension and under various yielding conditions, have been studied extensively in Kolednik et 
al. (2014). It has been found that for stationary cracks and contours within the crack tip plastic 
zone, epJ  does not vary significantly for contour radii larger than the process zone. Hereby 
the process zone characterizes the intensely deformed region around the blunted crack tip, 
Rice and Johnson (1970). The length of the process zone proc.zl  is proportional to the crack tip 
opening displacement tδ , proc.z tl κ δ= , with a pre-factor often assumed as 3≈κ  (Rice and 
Johnson 1970; McMeeking 1977). A further decrease of the contour radius leads to a sharp 
decrease of epJ  and yields finally 0ep

tip =J . This means that the driving force becomes zero, if 
the contour shrinks to the very tip, a fact first discovered by Rice (1979). The implications 
have been discussed in Kolednik et al. (2014), see also Section 6.5.1. When increasing the 
contour radius from a value proc.zl , the incremental plasticity J-integral epJ  first remains 
approximately constant (inside the crack tip plastic zone), then remains exactly constant (for 
contours outside the crack tip plastic zone). Path dependence again starts, if the contours 
intersect the region of back-face plasticity.  

For cracks continuously growing at a constant load, pronounced path dependence of epJ
occurs even for contours fully enclosing the region of the process zone, i.e. integration 
contour radius larger than proc.zl , around the current crack tip (Kolednik et al. 2014). epJ
increases with increasing contour radius up to the point where the active plastic zone around 
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the current crack tip is surrounded. Again, a decrease of the contour radius to the current 
crack tip yields finally 0ep

tip =J .  
An important finding of Kolednik et al. (2014) is the following: For a stationary crack 

under monotonic loading, the appropriate parameter describing the crack driving force is the 
incremental plasticity J-integral ep

PZJ  for an integration path, which encloses completely the 
crack tip plastic zone. If small- and large-scale yielding conditions prevail, ep

PZJ  equals both 
the deformation plasticity J-integral around the crack tip plastic zone conv

PZJ  and the 
experimental J-integral expJ , 

ep conv exp
PZ PZJ J J= = (6.12) 

The basic reason for the validity of Eq. (6.12) is that the condition ep convJ JΓ Γ=  holds, if the 
integration contour Γ  goes only through elastically deformed regions. This can be seen from 
the middle terms of Eq. (6.8): If the contour  passes elastically deformed region only, there 
will appear no difference between the descriptions of deformation plasticity and incremental 
plasticity. Note that for monotonically loaded cracks conv

PZJ  equals the far-field J-integral conv
farJ ; 

this is not so for cyclically loaded cracks, since the conditions of proportional loading are 
disturbed in the unloading cycle. The reason for the equality at the right hand side of Eq. 
(6.12) has been discussed at the end of Section 6.2.1. 

The appropriate crack driving force parameter for a continuously growing crack at 
constant load is the incremental plasticity J-integral ep

actPZJ  for an integration path, which 
encloses completely the active plastic zone. The left side of Eq. (6.12) applies also for a 
growing crack, if the contour surrounds the complete plastic zone. It should be stressed that 
the right side of Eq. (6.12) does not apply, since conv exp

PZJ J≠  for a growing crack, see 
Kolednik (1991, 1993), Turner and Kolednik (1994). 

The characteristic properties of epJ  for a stationary crack under cyclic loading conditions 
shall be worked out in the following by a numerical case study. 

6.3 Finite element modeling and post processing 
All simulations are performed using the commercially available finite element (FE) program 
ABAQUS/Standard 6.12 (see http://www.simulia.com/products/abaqus_fea.html), and a self-
written post processing code developed in Python. The numerical case studies are conducted 
for a cyclically loaded C(T)-specimen (ASTM E1820, 2005) with a straight crack in 
horizontal x-direction (Fig. 6.3a). A stationary crack is considered, since the crack extension 
per load cycle is usually small in fatigue. Note that the doubts about the application of the J-
integral in fatigue are caused by the strongly non-proportional loading conditions and not by 
the small crack extension per load cycle, which is similar to that during the blunting of a 
stationary crack. A possible influence of a small crack extension per load cycle will be 
investigated in a later study by adopting the numerical procedure of Newman (1976). The 
specimen dimensions are: crack length a = 25 mm, width W = 50 mm, height H = 60 mm, and  
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(a) (b)

Fig. 6.3 (a) FE model of the upper half of a C(T)-specimen. (b) Variation of the load F in time 
for constant maximum load Fmax and various load ratios, R = 0 (solid line), R = 0.5 
(dashed line), R = −1 (dotted line).

nominal thickness B = 25 mm. The crack is cyclically loaded under Mode I by prescribing the 
load F at the load application point. 

The material is homogeneous, isotropic, elastic−ideally plastic. The material behavior is 
modeled using the incremental plasticity model provided by ABAQUS. The Young’s 
modulus is E = 200 GPa, Poisson’s ratio ν = 0.3, and yield strength yσ = 270 MPa. To avoid 
large plastic deformations at the load application point, a small strip is modeled consisting of 
linear elastic elements with E = 200 GPa (Fig. 6.3a). This does not pose any problems, since 
the plastic zone does not come close to the elastic strip. 

Half of the two-dimensional C(T)-specimen is discretized. The FE mesh consists of 
bilinear 4-node continuum elements, under assumption of plane strain. The mesh size around 
the crack tip region is held constant for all simulations (m = 0.2 mm). Geometric nonlinearity 
is taken into account, since elements in the near-tip region undergo large deformations during 
the loading process. To consider crack flank contact, the counterpart to the upper geometry is 
modeled as rigid surface. No friction between the rigid body and the upper crack flank is 
applied. The displacements of all nodes on the plane 0=y  are fixed in y-direction but 
unlocked in x-direction, except the nodes on the crack flank.  

The maximum number of applied load cycles is set to N = 200. The maximum load is set 
to 35max =F kN. Figure 6.4a shows the distribution of the accumulated plastic strain PEEQ 
for the load Fmax. Large-scale yielding conditions are assumed to prevail, since plastic 
deformation appears at the back face of the specimen. The load ratio maxmin FFR = , i.e. the 
ratio between minimum and maximum applied load, is set to R = 0 (zero-tension), R =  0.5 
(pure tension), and R = 1−  (tension-compression loading), see Fig. 6.3b.  
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(a) (b) 

Fig. 6.4 (a) Contour plots of the accumulated plastic strain PEEQ at maxF = 35 kN, which 
corresponds to large-scale yielding conditions. The back face plasticity region is also 
visible. (b) Nomenclature for J-integral contours. The color code of PEEQ is the same 
for both graphs. The grey color corresponds to regions with an equivalent plastic 
strain p

eqε ≥  0.001. 

The finite element stress and strain analysis is in all cases performed with incremental 
theory of plasticity. The configurational force is calculated at each node following Eq. (6.6), 
using a self-written post processor based on the papers of Müller et al. (2002, 2004) and 
Denzer et al. (2003). Both types of configurational force,  for deformation plasticity and 

 for incremental plasticity, are computed. The J-integrals for deformation plasticity  
and incremental plasticity  are calculated by a summation of all configurational forces 
lying within the area bounded by the contour ,  

( )conv def.pl

tip
n

n

J AΓ
∈ ∪

= − ⋅ Δe f , (6.13) 

( )ep ep

tip
Γ

∈ ∪

= − ⋅ Δ n
n

J Ae f . (6.14) 

The quantity nAΔ designates the element area corresponding to a specific node n. Note that the 
crack tip node must be included in the summation. The summation of the configurational 
forces within a certain contour  is also performed by our post processing routine. 

In addition to the J-integrals derived from the configurational forces, convJ  and epJ , the 
computational J-integral values VCEJ  are calculated for comparison, using the virtual crack 
extension method of ABAQUS (Parks 1977). Note that deformation plasticity is implicitly 
assumed in the calculation of VCEJ , when applying to elastic–plastic materials.  

Figure 6.4b explains the nomenclature for various J-integral contours. The index i
denotes the distance of an arbitrary contour iΓ  from its center, i.e. the crack tip, in units of 
element rings. For example, 2Γ  means that the integration area includes the nodes of two 
entire element rings; the corresponding J-integral is denoted 2J . From Eq. (6.13) and Eq. 
(6.14) it is clear that the integration contours go through the middle of the elements. The near-
tip J-integral around the crack tip node 0tip Γ=Γ  is denoted tipJ . The contour PZΓ  designates a 

def.plf
epf convJ

epJ
Γ
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path surrounding the crack tip plastic zone; the corresponding J-integral is denoted PZJ . The 
far-field J-integral along the path farΓ  is termed farJ .  

6.4 Application of the incremental plasticity J-integral Jep for cyclic loading 
This section deals with the characteristic properties of the incremental plasticity J-integral 

epJ  for a cyclically loaded specimen under large-scale yielding conditions. The conventional 
J-integral based on deformation plasticity, convJ , and the computational J-integral VCEJ  are 
studied for comparison. The load ratio R is varied to examine its possible influence on epJ . 

6.4.1 Load ratio R = 0

Figure 6.5 shows the evolution of the conventional J-integral convJ  for different integration 
contours iΓ  centered at the crack tip. In Fig. 6.5a, convJ  is plotted against time t for the first 
three load cycles, N = 1 ÷ 3. Figure 6.5b shows curves connecting the convJ -values at 
maximum and minimum load, maxF  and minF , respectively. Time t = 2N – 1, with N∈ , 
corresponds to the state at maximum load maxF , time t = 2N corresponds to the state at 
minimum load minF  in the Nth load cycle.  

It is seen from Fig. 6.5a that the convJ -curves oscillate between certain maximum and 
minimum values, roughly corresponding to the variation of the prescribed load. Hereby a 
strong path dependence is observed. A slight path dependence appears already during 
monotonic loading in the first load cycle. The value directly at the crack tip, conv

tipJ , is 
significantly smaller than higher contour values, but this effect is mainly caused due to the 
discretization problem; configurational forces are induced onto the neighboring nodes, which 
usually belong to the crack tip (Kolednik et al. 2014). The path dependence of convJ  becomes 
especially strong during unloading from maxF . Also in all the following load cycles, path 
dependence becomes more and more pronounced during the unloading sequence and 
decreases during the loading sequence.  

Note that path dependence of convJ  is in contradiction to theory, since no bulk 
configurational forces should appear in a material with deformation plasticity, see Section 
6.2.3. Hence, the question arises whether the computed convJ -values are physically sound. 
Performing a numerical cyclic tensile test, Kolednik et al. (2014) exemplified the difficulties 
in applying deformation plasticity for the description of elastic–plastic materials.  The reason 
is that artificial bulk configurational forces def.plf  are induced in regions with a plastic strain 
gradient, as soon as the conditions of proportional loading are violated. Due to these artificial 
bulk configurational forces, which do not have any physical meaning, convJ  becomes path 
dependent under cyclic loading, within plastically deformed regions. 

Since the plastic strain gradient decreases with increasing distance from the crack tip, 
path dependence becomes weaker with increasing contour radius. For contours outside the 
crack tip plastic zone, convJ  becomes path-independent, conv conv

PZJ JΓ = , as long as the contour 
Γ  does not intersect the region of remote plasticity. Note that the contour 33 PZΓ = Γ  encloses 
completely the crack tip plastic zone (Fig. 6.4a). Once the integration path crosses the back- 
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(a) 

(b) 

Fig. 6.5 (a) Conventional, deformation plasticity J-integral convJ  plotted against time t for 
various contours iΓ  around the crack tip. The first three load cycles are depicted. The 
load ratio is R = 0 (zero-tension cyclic loading). (b) Development of convJ  for high 
load cycle numbers N; the curves connect the J-values, conv

minJ  and conv
maxJ , at maximum 

and minimum load, respectively. The convJ -values for contours near the tip do not 
exhibit saturation; conv

PZJ  and conv
farJ  show saturated values for high N.

face plastic zone,  starts to become path dependent again and reaches finally the far-field 
value, . For the second load cycle, N = 2,  varies between  at 

 and  at , whereas the far-field J-integral varies between the 
values  and . In general,  is almost equal to 

, and  is somewhat larger than . 

convJ
conv
farJ conv

PZJ conv
PZ,max 18.86 kJ/m²J =

maxF conv
PZ,min 0.053 kJ/m²J = minF

conv
far,max 18.87 kJ/m²J = conv

far,min 1.286 kJ/m²J = conv
far,maxJ

conv
PZ,maxJ conv

far,minJ conv
PZ,minJ
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Table 6.1 Values of the incremental plasticity J-integrals, ep
PZJ  and ep

farJ , and the conventional, 
deformation plasticity J-integral conv

PZJ  for load ratio R = 0 during various load cycles N. 

N ep
PZ,maxJ ep

PZ,minJ ep
far,maxJ ep

far,minJ conv
PZ,maxJ conv

PZ,minJ ep
PZJΔ conv

PZJΔ expJΔ

- [kJ/m²] [kJ/m²] 

1 18.80 0.050 17.56 0.028 18.80 0.050 - - 18.42 

2 18.86 0.053 17.61 0.028 18.86 0.053 16.97 16.97 16.72 

25 19.54 0.086 18.02 0.036 19.54 0.086 17.03 17.03 16.69 

50 19.84 0.105 18.19 0.039 19.84 0.105 17.06 17.06 16.70 

100 20.09 0.124 18.31 0.040 20.09 0.124 17.06 17.06 16.72 

200 20.15 0.135 18.30 0.037 20.15 0.135 17.00 17.00 16.74 

The indices “max” and “min” denote values at maximum and minimum load. The cyclic 
J-integral values ep

PZJΔ  and conv
PZJΔ  are calculated for re-loading sequences following Eq. 

(6.19) and Eq. (6.22). The values of the experimental cyclic J-integral expJΔ  are 
evaluated from Eq. (6.5). For the first load cycle, the value listed under column expJΔ
denotes the experimental J-integral after loading to the maximum load. 

Figure 6.5b shows the development of - and -values for load cycle numbers up 
to . For contours at and very close to the crack tip,  (tip) and , the - 
and -curves continuously decrease with increasing N, whereas the curves for  and 

 continuously increase. The curves for  and  increase only slightly and seem to 
reach stationary values for high load cycle numbers. For example,  and 

 at maximum load of the 200th load cycle; the values at minimum load 
are  and . Table 6.1 lists additional - values for 
various load cycles. 

The computation of the standard ABAQUS VCEJ - values leads, with high accuracy, to 
the same results as convJ . In spite of the problems that occur when deformation plasticity is 
used to describe elastic–plastic material behavior, the application of conv

PZJ  or VCE
PZJ , which 

varies always between a certain maximum and a value close to zero, might be still useful for 
cyclic loading; the reason will be explained below.  

Next, the behavior of the J-integral for elastic–plastic materials with incremental 
plasticity epJ  is discussed for zero-tension cyclic loading, Fig. 6.6. The epJ -curves for the 
first three load cycles, Fig. 6.6a, appear similar to the convJ -curves shown in Fig. 6.5a. Some 
important details are different, however.  

The basic difference is that the depicted path dependence of epJ  is physically correct; the 
reason is the appearance of bulk configurational forces epf  within the plastically deformed 
regions, see Section 6.2.3. With increasing radius of the integration contour, starting from 

tip0 Γ=Γ , more and more epf -vectors are included and cause a variation of epJ , compare Eq. 
(6.14). The behavior will be explained in more detail in Section 6.4.2. When for a contour  
  

conv
,maxiJ conv

,miniJ
 200N = 0i = 1i = conv

,maxiJ
conv
,miniJ 2i =

3i = conv
PZJ conv

farJ
conv
PZ,max 20.15 kJ/m²J =

conv
far,max 20.36 kJ/m²J =

conv
PZ,min 0.135 kJ/m²J = conv

far,min 2.094 kJ/m²J = conv
PZJ
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(a) 

(b) 

Fig. 6.6 (a) Incremental plasticity J-integral epJ  plotted  against time t for various contours iΓ
around the crack tip. The first three load cycles are depicted. The load ratio is R = 0 
(zero-tension cyclic loading). A lower ep

farJ -curve compared to ep
PZJ  appears due to the 

anti-shielding effect of the back-face plastic zone. b Behavior of epJ  for high load 
cycle numbers N. Saturation is visible for all epJ -curves. 

 the crack tip plastic zone is completely enclosed,  remains constant for 
further increasing contour radius. The reason is that the integration contour then proceeds 
only through elastically deformed regions where no bulk configurational forces appear. Path 
dependence again starts when  intersects the remote plastic zone at the back face of the 
specimen, and  reaches finally the value of  on the far-field contour. 

33 PZΓ = Γ ep ep
PZJ JΓ =

Γ
epJ ep

farJ
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A few examples for the values of  and  shall be given: For the second load cycle, 
N = 2,  varies between  and , whereas  
varies between  and . Whereas the difference 
between  and  is negligible at the minimum load, this is not so at the maximum load. 
The reason will be explained in Section 4.2. Irreversible elastic strain energy, which is stored 
around the crack tip (Atkins and Mai 1986), is probably the reason why ep

minPZ,J  and ep
far,minJ  are 

not exactly zero after full unloading of the specimen.  
Figure 6.6b shows the development of the incremental plasticity J-integral values at 

maximum and minimum load, ep
max,iJ  and ep

min,iJ , with increasing load cycle number, up to 
N = 200. The ep

iJ -amplitudes increase and, on the contrary to conv
iJ , all curves seem to reach 

saturation values. The values of ep
PZJ  and ep

farJ  exhibit only little variation with increasing N, 
see Table 6.1. For example, for N = 200 we get ep

PZ,max 20.15 kJ/m²J =  and ep
PZ,minJ = 0.135 

kJ/m², and ep
far,max 18.30 kJ/m²J =  and ep

far,min 0.037 kJ/m²J = , respectively. 
A comparison of Fig. 6.5 with Fig. 6.6 and the data listed in Table 6.1 demonstrate that, 

for contours surrounding the crack tip plastic zone PZ, the deformation plasticity J-integral 
convJ  has exactly the same value as the incremental plasticity J-integral epJ . This is so, 

independent of the considered time step t. For example, at the maximum load during the 
second load cycle, t = 3, we get ep conv

PZ,max PZ,max 18.86 kJ/m²J J= = ; at the maximum load during 
the 200th load cycle, t = 399, we get ep conv

PZ,max PZ,max 20.15 kJ/m²J J= = . The same applies for 
larger contour radii, as long as the back-face plasticity region is not touched. The reason lies 
in the left-hand side equality of Eq. (6.12): The incremental- and deformation plasticity J-
integrals are equal, ep convJ JΓ Γ= , if the integration contour Γ  goes through elastically 
deformed regions only, see Kolednik et al. (2014). This is valid also for cyclic loading 
conditions. 

6.4.2 Variations of bulk configurational forces during unloading

In order to find out why epJ  achieves so different––and even negative––values for various 
contours and different loading stages, it is reasonable to examine the distribution of the 
incremental plasticity configurational forces epf .  

First, we concentrate on the configurational forces that appear in the region of back-face 
plasticity. Fig. 6.7a shows the field of epf -vectors at maximum load maxF  of the first load 
cycle, Fig. 6.7b shows the epf -vectors at minF . At maximum load, all epf -vectors point into 
positive x-direction (Fig. 6.7a). Consideration of Eq. (6.10) reveals that these epf -vectors 
diminish the magnitude of the J-integral epJ  as soon as the integration contour  crosses the 
back-face plastic zone. Back-face plasticity provides an anti-shielding effect and, 
consequently, ep ep

far PZJ J<  at maximum load; this is also seen in the inlay diagram in Fig. 6.6a. 
During unloading, the bulk configurational forces decrease and, finally, they almost vanish at 

min 0F =  (Fig. 6.7b). This is the reason why ep
far,minJ  is almost equal to ep

PZ,minJ .  
  

ep
PZJ ep

farJ
ep
PZJ kJ/m²86.18ep

maxPZ, =J kJ/m²053.0ep
minPZ, =J ep

farJ
kJ/m²61.17ep

maxfar, =J kJ/m²028.0ep
minfar, =J

ep
PZJ ep

farJ
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(a) (b) 

Fig. 6.7  Distribution of incremental plasticity bulk configurational forces epf . Detailed view of 
the back-face region (a) at time t = 1, maximum load, and (b) at t = 2 after unloading 
to zero. After fully unloading the epf -field nearly vanishes.

Notice that in the case of post-processing with deformation plasticity, artificial bulk 
configurational force vectors def.plf  are present due to non-proportional loading in the back-
face plasticity region. However, the behavior of the def.plf -vectors is opposite to that of the epf
-vectors: At maximum load maxF  the def.plf -vectors are very small and this is the reason why 
the values of conv

PZ,maxJ  and conv
far,maxJ  barely differ, see Section 6.4.1 and Fig. 6.5a. The conditions 

of proportional loading are violated during unloading and a field of def.plf -vectors is induced. 
These def.plf -vectors have negative x-components. Therefore, at min 0F =  the value of conv

far,minJ
becomes larger than conv

PZ,minJ , compare Eq. (6.9) and Fig. 6.5a. 
Next we want to clarify the questions why negative epJ -values appear during unloading 

within the crack tip plastic zone and whether these negative epJ -values are physically sound. 
Therefore, the behavior of the configurational forces near the crack tip is studied during the 
first unloading step.  

Figure 6.8 presents arrow plots of the bulk configurational forces epf  within the crack tip 
plastic zone at different time steps. Figure 6.8a shows the epf -field at t = 1, maximum load. 
The configurational force ep

tipf , emanating from the tip node, points into the negative x-
direction, i.e. the near-tip J-integral ( )ep

tip
ep
tip fe −⋅=J  is positive, Eq. (6.7).10 Note that the unit 

nominal vector in crack growth direction e points into the positive x-direction (Fig. 6.1a). If 
the specimen is unloaded, we observe that the magnitude of the ep

tipf -vector decreases, Fig 
6.8b. At t = 1.17 and kN4.28=F , ep

tipf  becomes zero and, hence, ep
tipJ  vanishes (Fig. 6.8c). 

After further unloading, the ep
tipf -vector points into positive x-direction (Fig. 6.8d), which 

implies that ep
tipJ  is negative. The magnitude of the ep

tipf -vector increases with further 
decreasing load (Fig. 6.8e), until 0F =  (Fig. 6.8f).  

                                                 
10 For numerical reasons, the magnitude of ep

tipJ  depends on the mesh size, see Kolednik et al. (2014). 
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 (a) (b) (c) 

 (d) (e) (f) 

 (g) (h) (i) 

Fig. 6.8  Arrow plots of incremental plasticity bulk configurational forces epf  at different time 
steps during unloading: (a) time t = 1, maximum load; (b) t = 1.1; (c) t = 1.17, where 

ep
tipf  and, hence, ep

tipJ  vanish; (d) t = 1.2, where ep
tipf  and ep

tipJ  have turned in sign; (e) t = 
1.3; (f) t = 2, after full unloading. The lower row shows contour plots of the principal 
stress yyσ : (g) tensile stress field near the crack tip at maxF , t = 1; (h) compressive 
stresses appear in front of the crack tip already after small unloading, t = 1.3; (i) final 
compressive stress field at minF , t = 2. 
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Configurational forces emanating from nodes near the crack tip rotate during unloading 
(Fig. 6.8b–f). A comparison of Fig. 6.8a, f shows that most of the near-tip bulk 
configurational forces have rotated so that their x-components have changed signs. 
Consequently, it becomes clear why the scalar -integrals for contours near the crack tip 
also changed from positive to negative values, compare Eq. (6.14).  

Now to the question, why do the x-components of the near-tip -vectors change sign 
during unloading? The bulk configurational force of Eq. (6.11) can be expressed for small 
strain plasticity as (Simha et al. 2008), 

, (6.15) 

where  denotes the Cauchy stress tensor and  the plastic part of the linear strain tensor .  
Hence,  depends on the stress and the gradient of the plastic strain. Only the x-component 

 contributes to the scalar J-integral,  

. (6.16) 

At maximum load maxF , the stress components in y-direction yyσ  near the crack tip are tensile 
stresses (Fig. 6.8g); also the stress components in x-direction xxσ  are positive. Both normal 
stress components become negative during unloading, which is shown for the component yyσ
in Fig. 6.8h, i. While compressive stresses appear near the crack tip already after small 
unloading, the components of the plastic strain only slightly change. From Eq. (6.16) it is 
evident that changes in sign of the stresses xxσ  and yyσ  lead to a change in sign of the x-
component of the bulk configurational force ep

xf .  
Thus, we can conclude that the negative values of the incremental plasticity J-integral 

epJ  during the unloading stage for contours near to the crack tip are correct. Remains the 
question, how far does the zone extend where negative epJ -values may occur? Since negative 

epJ -values are connected with the appearance of compressive stresses, the cyclic plastic zone 
is a probable candidate. The radius of the cyclic plastic zone can be estimated by inserting 
twice the yield stress yσ  into Irwin’s estimate of the plastic zone (Rice 1967) and using the 
relation between J-integral and stress intensity factor K in the form 2J K E=  where the term 
( )21 ν−  for plane strain conditions is neglected. The radius of the plastic zone for monotonic 
and cyclic loading is given by 

( )pl 2

y

JEr β
σ

=  and 
( )pl,cyc 2

y2
J Er β
σ

Δ= , (6.17) 

respectively, where  is a constant with the magnitude 0.1β ≅ . Note that Eq. (6.28) must be 
applied for evaluating the cyclic J-integral JΔ , see Appendix and Section 6.5.2. 

For the maximum load kN35max =F , the extension of the monotonic plastic zone (in y-
direction) is determined from the numerical analysis, mm6.6pl =r , i.e. 33 elements counted 
from the crack tip (this can be seen if the equivalent plastic strain is plotted in Fig. 6.4b with 
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an upper limit value ≥p
eqε  10-10); the extension of the cyclic plastic zone is mm8.1cycpl, =r , 

i.e. 9 elements. This relation between rpl and rpl,cyc is roughly in agreement with Eq. (6.17).  
The size of the cyclic plastic zone roughly corresponds to the field of compressive 

negative yyσ  in Fig. 6.8i. The depicted compressive stress zone is the region where the x-
components of the bulk configurational forces reverse their signs during unloading. The epJ -
value is given by the sum of the x-components of all epf -vectors lying inside the contour, 
Eq. (6.14). Therefore, for a contour surrounding the cyclic plastic zone, the epJ -value at Fmin

is negative; for example, after the first load cycle, at t = 2, we get ep
9,min 0.871 kJ/m²J = − , see 

also Fig. 6.6a. This means that at minimum load the driving force for the combined movement 
of the crack tip plus the cyclic plastic zone is negative. For larger contours, the 
configurational forces with reversed sign are more and more compensated: at t = 2, we get 

kJ/m²018.0ep
min18, −=J , kJ/m²005.0ep

min19, =J , and finally, for a contour surrounding the entire 
crack tip plastic zone, ep

PZ,min 0.053 kJ/m²J = . 

6.4.3 Load ratio R = 0.5

In this section, the properties of the incremental plasticity J-integral epJ  are explained for a 
load ratio R = 0.5 (pure tension cyclic loading). Figure 6.9 shows the evolution of epJ  versus 
time t for different integration paths iΓ  during the first three load cycles. In comparison to the 
case with R = 0, the epJ -curves for R = 0.5 are more similar to the corresponding zigzag 
shape of the prescribed load. Only for the inner three contours, i = 0 (tip), i = 1, and i = 2, ep

iJ
becomes negative at the minimum load, kN5.17min =F . This corresponds to a smaller 
extension of the cyclic plastic zone, , which should be, in agreement with 
Eq. (6.17), approximately one-sixteenth of the monotonic plastic zone size, . The 
magnitude of  increases with increasing contour radius and reaches finally the value of 

, which is distinctly larger than zero. 

Fig. 6.9 Incremental plasticity J-integral epJ  plotted against time t for various contours iΓ
centered the crack tip. The first three load cycles, N = 1 ÷ 3, are plotted. The load ratio 
is 0.5R = . 

pl,cyc 0.6 mmr =
mm6.6pl =r

ep
min,iJ

ep
minPZ,J
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Table 6.2 Values of the incremental plasticity J-integrals,  and , and the conventional, 
deformation plasticity J-integral  for load ratio R = 0.5 during various load cycles N. 

- [kJ/m²] [kJ/m²] 

1 18.80 5.321 17.56 4.681 18.80 5.321 - - 18.42 

2 18.82 5.334 17.58 4.688 18.82 5.334 4.127 4.127 4.054 

25 18.96 5.407 17.66 4.727 18.96 5.407 4.117 4.117 4.040 

50 19.01 5.433 17.68 4.740 19.01 5.433 4.117 4.117 4.038 

100 19.05 5.455 17.70 4.749 19.05 5.455 4.117 4.117 4.038 

200 18.80 5.321 17.56 4.681 18.80 5.321 - - 18.42 

The cyclic J-integral values  and  are calculated for re-loading sequences 
following Eq. (6.19) and Eq. (6.22). The values of the experimental cyclic J-integral 

 are evaluated from Eq. (6.5).

Due to the anti-shielding effect of the bulk configurational forces emanating from the 
region of back-face plasticity, the far-field J-integral ep

farJ  is always lower than ep
PZJ , see 

Section 6.4.2. For example, ep
PZJ  varies for the second load cycle between 

ep
PZ,max 18.82 kJ/m²J =  and ep

PZ,min 5.334 kJ/m²J = , whereas ep
farJ  varies between 

ep
far,max 17.58 kJ/m²J =  and ep

far,min 4.688 kJ/m²J = . Table 6.2 lists the values for increasing load 
cycle numbers, together with the values of the conventional J-integral around the crack tip 
plastic zone conv

PZJ . Again it is seen that ep conv
PZ PZJ J= . The values of conv

farJ  shall be given here 
for comparison, during N = 2, conv

far,max 18.82 kJ/m²J =  and conv
far,min 5.929 kJ/m²J = . 

6.4.4 Load ratio R = −1

Next, the case for tension-compression loading, R = −1, is considered. Such a case is 
especially interesting, since crack closure appears and must be adequately taken into account 
for the determination of the driving force for a cyclically loaded crack, see Section 6.5.2. 
Fig. 6.10a presents curves ep

iJ  against time t for the first three load cycles. The same 
integration contours iΓ  are plotted as previously for R = 0 and R = 0.5.  

The ep
iJ -values decrease rapidly during unloading from ep

max,iJ  and reach a negative 
minimum value, termed ( )ep

max,min iJ , distinctly before or at the point where 0F =  is reached, 
i.e. at 1.5t ≤  for the first load cycle. Subsequently, the magnitude of ep

iJ  remains almost 
stationary, while the specimen is further unloaded to min 35 kNF F= = −  and re-loaded to 

0F =  in the compression regime; a slight increase is just visible for contours at and very 
close to the crack tip. With increasing contour radius, this stationary value increases until 

 is reached for a contour surrounding the crack tip plastic zone. The incremental 
plasticity far-field J-integral  decreases to a value very close to zero at , but then 
increases again and reaches a peak value at , . This peak value is rather high, e.g. 

 for . 

ep
PZJ ep

farJ
conv
PZJ

N ep
PZ,maxJ ep

PZ,minJ ep
far,maxJ ep

far,minJ conv
PZ,maxJ conv

PZ,minJ ep
PZJΔ conv

PZJΔ expJΔ

ep
PZJΔ conv

PZJΔ

expJΔ

ep
PZ 0J ≈

ep
farJ 1.5t =

minF 2t =
kJ/m²973.4ep

minfar, =J 2N =
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(b) 

(c) 
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(d) 

Fig. 6.10 (a) Incremental plasticity J-integral epJ  plotted against time t for various contours iΓ
around the crack tip. The first three load cycles are depicted. The load ratio is 1R = −
(tension-compression loading). The crack closure and opening times tcl and top are 
indicated. (b) PEEQ plot at min maxF F= −  (the legend is the same as in Fig. 4b): ep

farJ
exhibits a peak during negative loads due to the appearance of notch plasticity when 
crack flank contact occurs. The contact surface at min maxF F= −  is shown as dashed line 
in the upper image. The lower images show the distribution of incremental plasticity 
bulk configurational forces epf  in the notch- and crack tip regions. (c) ep

PZJ  (solid line), 
ep
farJ  (dash-dot line), and applied load F (dashed line) in the time interval t  1.5 ÷ 2.5, 

i.e. during the compressive loading stage. ep
PZJ  has a minimum value equal to zero at a 

time 0Jt = . (d) F−v curve during the time interval t = 0 ÷ 3. Kinks are clearly visible 
when at the times tcl and top crack flank contact appears (closure “cl”) or disappears 
(opening “op”).  

The reason for this peak value of  and the roughly stationary values of  lies in the 
appearance of crack flank contact. We detect the beginning of crack flank contact as the time 
when the first point lying on the crack flank reaches during the unloading stage a 
displacement in y-direction, ; the corresponding time is denoted as  (closure time). 
Analogously, the crack flank opening time  can be determined when  becomes again 
non-zero during the following re-loading stage (Newman 1976). Exactly at these times,  
and , kinks occur in the −t-curves; for example, at  = 1.55 during the first unloading 
stage, and  = 2.45 for the subsequent loading stage. The first crack flank contact occurs at 
the notch tip, located 7 mm behind the crack tip, see Fig. 6.4a and Fig. 6.10b. The near-tip 
stresses barely change in the time interval between closure and opening and, therefore, the 

- values remain almost stationary. 
The peak value  at  occurs, since a big configurational force  appears at 

the notch tip pointing into the negative x-direction which more than compensates the sum of  
  

ep
farJ ep

iJ

0=yu clt
opt yu

clt
opt ep

iJ clt
opt

ep
iJ

ep
minfar,J minF ep

notchf
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Table 6.3 Values of the incremental plasticity J-integrals,  and , and the conventional, 
deformation plasticity J-integral  for load ratio R = –1 during various load cycles N. 

- [kJ/m²] [kJ/m²] 

1 18.80 0.000 17.56 0.022 18.80 0.000 - - 18.42 18.42 

2 18.87 0.000 17.70 0.028 18.87 0.000 18.87 18.87 20.45 18.59 

25 19.64 0.000 18.13 0.032 19.64 0.000 19.64 19.64 21.01 19.30 

50 19.96 0.000 18.29 0.032 19.96 0.000 19.96 19.96 21.76 19.58 

100 20.10 0.000 18.32 0.031 20.10 0.000 20.10 20.10 22.19 19.77 

200 20.02 0.000 18.09 0.024 20.02 0.000 20.02 20.02 22.19 19.59 

The cyclic J-integral values  and  are calculated for re-loading sequences 
following Eq. (6.19) and Eq. (6.22). The values of the experimental cyclic J-integral 

 are evaluated from Eq. (6.5). The term  considers the conventional crack 
opening load, , whereas the term  uses the correct opening load, , 
compare Fig. 6.10. 

the configurational forces around the crack tip, see Fig. 6.10b and compare Section 6.4.2. 
Note that compressive stresses appear during unloading at the notch and at the crack tip. 
However, the components of the plastic strains around the notch have a different sign as those 
around the crack tip. This is the reason why  and the configurational force emanating 
from the crack tip node  point into opposite directions.  

Figure 6.10c shows a detail of Fig. 6.10a for the time interval between t  1.5 and t  2.5, 
i.e. during the compression stage. It is seen that the minimum value of  is exactly zero, 

( )ep
PZmin 0J = . The term “exactly” means here that the deviation is smaller than 4 210 kJ/m− .  

The minimum value of ep
farJ  is small, but not exactly zero; e.g. for the second load cycle 

( ) kJ/m²028.0min ep
far =J . The variation of the load F is also plotted in Fig. 6.10c. It is seen that 

ep
PZJ  reaches its minimum value during unloading at a time 0=Jt  when the load is already 

negative, but before crack flank closure occurs, i.e. 0 clJt t= <  for the unloading stage. On the 
contrary, 0 opJt t= >  for the loading stage.  

The cyclic plastic zone has a magnitude of mm0.2pl,cyc =r , which comes close to the 
theoretically quarter of the size of the monotonic plastic zone. Table 6.3 lists the J-integral 
values for different load cycles N. It is seen that ep

maxPZ,J  and ep
maxfar,J  increase with increasing 

load cycle numbers, but seem to reach saturation values. The minimum values of ep
PZJ  are 

always zero. Table 6.3 collects also values for conv
PZJ ; Eq. (6.12) is again confirmed.  

We can conclude Sect. 6.4 by stating that deformation plasticity is not appropriate for 
cyclic loading conditions, since bulk configurational forces appear during unloading which 
are not physically sound and cause the artificial path-dependence of  convJ . The incremental 
plasticity J-integral epJ  is also path dependent. This is physically appropriate, since bulk 
configurational forces are induced in the plastically deformed regions. Even negative epJ -

ep
PZJ ep

farJ
conv
PZJ

N ep
PZ,maxJ ep

PZmin( )J ep
far,maxJ ep

farmin( )J conv
PZ,maxJ conv

PZmin( )J ep
PZJΔ conv

PZJΔ op
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FJΔ

0

exp
JFJ
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Δ
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PZJΔ
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values, which appear during unloading for integration contours close to the crack tip, are 
correct, since they originate due to compressive residual stresses caused by reverse plasticity 
within the crack tip plastic zone. This means that the incremental plasticity J-integral leads to 
reasonable results for cyclic loading. Furthermore, our numerical case study confirms the 
relation ep convJ JΓ Γ= , if the integration paths  go only through elastically deformed regions, 
such as around the entire crack tip plastic zone PZ. 

6.5 Plasticity and driving force under cyclic loading  
This section discusses the use of the incremental plasticity J-integral epJ  as a measure of the 
crack driving force for cyclically loaded elastic–plastic materials, the application and 
evaluation of the cyclic J-integral epJΔ  for characterizing the crack growth rate in fatigue, 
and the correctness of the experimental cyclic J-integral expJΔ  of Dowling and Begley 
(1976). 

6.5.1 Crack driving force for monotonic and cyclic loading

An essential property of the incremental plasticity J-integral epJ  is its path dependence within 
plastically deformed regions. Therefore, the question arises, which integration path  should 
be considered for calculating epJ  in order to predict the crack driving force for cyclic loading. 
Before solving this question, it is useful to clarify the physical meaning of the critical driving 
force. 

We consider first a monotonically loaded body with a crack (Fig. 1a). The crack will 
extend if the crack driving force equals or exceeds the crack growth resistance Rcg of the 
material. The crack driving force reflects the energy that becomes available during a unit 
crack extension. The crack growth resistance Rcg is the non-reversible energy required to 
produce a unit crack extension, see e.g. Griffith (1920), Eftis and Liebowitz (1975), Kolednik 
(1991), Turner and Kolednik (1994). If the material is non-linear elastic, the J-integral is path 
independent and characterizes the crack driving force. Therefore, the condition for crack 
extension reads cgJ R≥ . For elastic–plastic materials under small- and large-scale yielding 
conditions, the crack driving force is characterized by the incremental plasticity J-integral for 
a contour completely enclosing the crack tip plastic zone, ep

PZJ , see Kolednik et al. (2014), and 
the condition for crack extension becomes,  

ep conv exp
PZ PZ cgJ J J R= = ≥ (6.18) 

compare Eq. (6.12). The physical meaning of ep
PZJ  is that of the driving force for the 

combined, translational movement of the crack tip and the crack tip plastic zone, including the 
process zone. The physical meaning of near-tip incremental plasticity J-integral ep

tipJ  is that of 
the crack driving force for the translational movement of the crack tip alone. For crack 
extension in an elastic–plastic material, the movement of the crack tip without simultaneous 
movement of the surrounding process zone and tip plastic zone does not make sense. Thus, 

ep
tipJ  is irrelevant for understanding whether a crack can propagate or not, apart from the fact 
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that 0ep
tip =J , see Kolednik et al. (2014) and Rice (1979). It should be also mentioned that the 

incremental plasticity J-integral for a contour around the process zone, ep
proc.zJ , is 

approximately equal to ep
PZJ  (Kolednik et al. 2014). Note that the condition ep conv

PZ PZJ J=  still 
holds for monotonic loading after a cyclic pre-deformation, since the integration path PZ

goes, for small- and large-scale yielding conditions, only through elastically deformed 
material, see Sect. 6.2.3.  

Now we consider a cyclically loaded elastic–plastic body with a crack. As common in the 
fatigue of metals and alloys, the crack driving force is considerably smaller than the crack 
growth resistance, ep

PZ,max cgJ R< , and the crack cannot extend at maximum load, maxF const= . 
A crack driving force term has been introduced for a cyclically loaded crack, whose meaning 
differs from that of monotonically loaded cracks (Paris et al. 1961; Paris and Erdogan 1963). 
The main purpose of this crack driving force term in fatigue is that it should allow the 
prediction of the crack propagation rate of a fatigue crack. Crack extension under cyclic 
loading in micro-ductile materials is caused by a two-step mechanism: blunting of the crack 
tip during each loading phase and the re-sharpening process during the subsequent unloading 
phase (Laird 1967, 1979; Pippan et al. 2010). For elastic−plastic materials, the crack growth 
rate per load cycle Na dd  can be assumed as being proportional to the cyclic crack tip 
opening displacement, i.e. the difference of the crack tip opening displacement between 
minimum and maximum load, t t,max t,minδ δ δΔ = − . The proportionality constant might depend, 
apart from several other factors, such as material properties, also on the magnitude of tδΔ
(Tanaka 1989, Schweizer et al. 2010).  

Since (cyclic) plasticity at the crack tip is responsible for fatigue crack propagation, it is 
reasonable to consider ep

PZJ  and its variation during cyclic loading as possible candidate for the 
crack driving force for cyclic loading. The reason is that the contour PZΓ  includes the whole 
plasticity within the crack tip plastic zone. At a first glance, it appears that ep

proc.zJ  might be 
also a possible candidate, since proc.zΓ  takes into account the plasticity within the process zone, 
which should be mainly responsible for the formation of cyclic crack tip blunting. However, it 
is seen from the results of Fig. 6.6, Fig. 6.9, and Fig. 6.10a that path dependence of the 
incremental plasticity J-integral ep

iJ , on contours iΓ , extends during the unloading stages to 
much higher distances from the crack tip than the length of the process zone proc.zl . This path 
dependence would make a reliable determination of a driving force parameter very 
complicated. 

Therefore, the conclusion of this section is that the incremental plasticity J-integral for a 
contour completely enclosing the crack tip plastic zone, ep

PZJ , should be taken as parameter 
characterizing the crack growth rate in fatigue. 

6.5.2 Evaluation of the cyclic J-integral ep
PZJΔ

The parameter ep
PZJ  varies during a considered load cycle between a minimum and a 

maximum value, ep
PZ,minJ  and ep

PZ,maxJ . The cyclic J-integral ep
PZJΔ  should be evaluated by the 

relation  
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ep ep ep ep ep
PZ PZ,max PZ,min PZ,max PZ,min2J J J J JΔ = + − . (6.19) 

The reason for the validity of Eq. (6.19) will be presented in the following, see also Appendix. 
The cyclic crack tip opening displacement, t t,max t,minδ δ δΔ = − , can be expressed in terms 

of the stress intensity range KΔ  by inserting twice the yield stress yσ  into the standard 
relation between crack tip opening displacement and stress intensity (Rice 1967),  

( )
y

2

t 2 σ
αδ

E
KΔ=Δ , (6.20) 

similar to the estimate of the cyclic plastic zone, Eq. (6.17). The parameter  is a constant, e.g. 
0.5α ≅  for plane stress and 1α ≅  for plane strain conditions. The results of 

stereophotogrammetric measurements by Siegmund et al. (1990) support the validity of Eq. 
(6.20). By expanding the term max minK K KΔ = −  and substituting the relation 2J K E= , we 
get a relation between cyclic crack tip opening displacement and cyclic J-integral JΔ  in the 
form,  

( )t max min max min
y y

2
2 2

J J J J Jα αδ
σ σ

Δ = + − = Δ . (6.21) 

Eq. (6.19) then follows from the right-hand side equality of Eq. (6.21). Similarly, Eq. (6.19) 
could be derived just based on the empirical fact that the crack growth rate per load cycle in 
fatigue  depends on the stress intensity range  and by substituting the relation 

 into .  
Use of Eq. (6.19) is especially important for load ratios , since  for these 

cases. If  Eq. (6.19) and the term  lead to identical results. 
In order to check the validity of Eq. (6.19), the variation of the crack tip opening 

displacement  during cyclic loading is analyzed. The values of  are determined one 
element length m behind the crack tip. Figure 6.11a shows for the load ratios R = 0, 0.5 and –
1 the evolution of  during the first three load cycles. It is seen that both the values at 
maximum and minimum load,  and , increase with increasing numbers of load 
cycles N. This increase is stronger for higher magnitudes of the applied load amplitude 

. For high load cycle numbers N,  and  seem to reach saturation 
values, as already seen for various -curves depicted in Fig. 6.6b. The cyclic crack tip 
opening displacement  exhibits only little change with increasing load 
cycle number and reaches a saturation value for high N.  

In Figure 6.11b, the cyclic J-integral values  according to Eq. (6.19) and the values 
of the term  are plotted against the cyclic crack tip opening displacement . 
Hereby, the values of the second load cycle, N = 2, are taken. In order to have more data 
points, additional computations are made for various load ratios between R = −0.1 and 
R = 0.8. It is seen that  increases proportional to , as it should according to Eq. 
(6.21), whereas this is clearly not so for the values of the term . 

Na dd KΔ
2J K E= ( )2KΔ

0R > ep
PZ,min 0J >

ep
PZ,min 0,J = ep ep

PZ,max PZ,minJ J−

tδ tδ

tδ
t,maxδ t,minδ

max minF F FΔ = − t,maxδ t, minδ
epJ

t t, max t, minδ δ δΔ = −

ep
PZJΔ

ep ep
PZ,max PZ,minJ J− tδΔ

ep
PZJΔ tδΔ

ep ep
PZ,max PZ,minJ J−
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(a) 

(b) 

Fig. 6.11 (a) Evolution of the crack tip opening displacement tδ  during the first three load 
cycles for the load ratios R = 0, 0.5, and –1. For R = –1 the times tcl and top, when 
crack closure appears and disappears, are indicated. (b) Incremental plasticity cyclic J-
integral ep

PZJΔ , Eq. (6.19), and values of the term ep ep
PZ,max PZ,minJ J−  plotted against the 

cyclic crack tip opening displacement tδΔ . Proportionality is clearly given between 
ep
PZJΔ and tδΔ ; results for additional values of the load ratio R confirm this finding. 

It should be remarked that the determination of very accurate tδ - or tδΔ -values would 
require a much finer mesh than we used in these FE-analyses. For R = 0, the crack tip opening 
displacement is at the second load cycle m4.62maxt, =δ . Ideally, the magnitude of tδ  should 
be measured a distance behind the crack tip, which corresponds to the width of the stretched 
zone, i.e. approximately m254.0 t ≅δ  behind the blunted tip (Kolednik and Stüwe 1985; 
Siegmund et al. 1990). The mesh size is m = 0.2 mm, i.e. we are not able to determine tδ  at 
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the correct distance. Because of the larger measurement distance, the elastic component of tδ
will be overestimated. Change of this elastic component might be also the reason for the small 
variation of tδ , which is seen for 1R = −  between the times tcl and top in Fig. 6.11a. 
Nevertheless, our analysis is accurate enough in order to be able to confirm Eq. (6.19) and to 
show that ep ep ep

PZ PZ,max PZ,minJ J JΔ ≠ − . It should be mentioned here that the cyclic crack tip 
opening displacement tδΔ  would be an ideal parameter for the estimation of the crack driving 
force during cyclic loading and the crack propagation rate in fatigue (Pippan and Grosinger 
2014). However, its accurate determination would be numerically very expensive and, 
therefore, a global parameter, such as ep

PZJ , which is barely affected by the mesh size, is much 
more suitable in practice. 

In Fig. 6.11b, two ep
PZJΔ -values are drawn for load ratio R = 0: For the theoretical value,

ep
PZ,min 0J = , we would get kJ/m²86.18ep

maxPZ,
ep
PZ ==Δ JJ ; the FE-analysis gives 

ep
PZ,min 0.050 kJ/m²J =  and  Eq. (6.19) yields kJ/m²97.16ep

PZ =ΔJ . These two ep
PZJΔ -values differ 

by 10%. This example shows that the square root term in Eq. (6.19) makes the cyclic J-
integral ep

PZJΔ  sensitive to small variations of the ep
minJ -values. A slightly negative load ratio, R

= −0.1, is required so that really ep
PZ,min 0J = .  

Tables 6.1 and 6.2 lists values of ep
maxPZ,J , ep

minPZ,J , and ep
PZJΔ  after re-loading following 

Eq. (6.19) for load ratios R = 0 and 0.5 during various load cycles. The incremental plasticity 
cyclic J-integral around the crack tip plastic zone ep

PZJΔ  slightly increases with increasing load 
cycle number N, but the values seem to approach a saturation value. The corresponding values 
of the conventional, deformation plasticity cyclic J-integral around the crack tip plastic zone 

conv
PZJΔ  are listed for comparison. These values are evaluated analogously to Eq. (6.19), 

conv conv conv conv conv
PZ PZ,max PZ,min PZ,max PZ,min2J J J J JΔ = + − . (6.22) 

From Eq. (6.12) it is clear that ep
PZJΔ  and conv

PZJΔ  are identical, 

ep conv exp
PZ PZJ J JΔ = Δ = Δ . (6.23) 

The right hand equality of Eq. (6.23) will be further discussed in Section 6.5.3. 
Evaluation of the incremental plasticity cyclic J-integral ep

PZJΔ  for negative load ratios is 
simple in most cases, since ep

PZJ  reaches a minimum of zero, ( )ep
PZmin 0J = , and ep

PZJΔ  is equal 
to the J-integral at maximum load, ep

maxPZ,
ep
PZ JJ =Δ . Table 6.3 lists the ep

PZJΔ -values with 
increasing load cycle number N for tension-compression loading, R = –1. The results of 

conv
PZJΔ  are also listed for comparison.  

It has been demonstrated in this section that the incremental plasticity cyclic J-integral 
evaluated along a contour around the crack tip plastic zone, ep

PZJΔ , is an appropriate parameter 
for the characterization of the crack driving force for cyclic loading and the crack growth rate 
in fatigue. ep

PZJΔ  and the deformation plasticity cyclic J-integral around the crack tip plastic 
zone conv

PZJΔ  are identical as long as crack tip plastic zone and region of back face plasticity are 
separated by an elastic region. The quantities ep

PZJΔ  and conv
PZJΔ  must be evaluated from 
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Eq. (6.19) and Eq. (6.22), respectively. Equation (6.23) means that it is possible to apply the 
conventional J-integral for estimating the crack driving force for cyclic loading, if certain 
conditions are fulfilled.  

This fact provides also the basis for the application of the experimental cyclic J-integral 
expJΔ , proposed by Dowling and Begley (1976). The reasoning is that the conventional J-

integral of Eq. (6.1) and the experimental J-integral expJ , Eq. (6.2), yield identical results for a 
monotonically loaded elastic–plastic material with a stationary crack (Rice 1973; Kolednik 
1991), and the fatigue crack during a single loading branch of a load cycle can be treated like 
a stable crack, since only crack tip blunting occurs. As shown in Tables 6.1, 6.2 and 6.3, the 
shape of the F−v-curve and the values of the J-integrals at maximum (and minimum) load 
vary with increasing load cycle number N. However, this fact does not influence the validity 
of Eq. (6.12) and Eq. (6.23) during a single branch of a considered load cycle.  

The application of expJΔ  is investigated in the following section. 

6.5.3 Determination of the experimental cyclic J-integral expJΔ

The values of the experimental cyclic J-integral expJΔ  are evaluated from Eq. (6.5) and 
compared to the results presented in Section 6.5.2. The resulting expJΔ -values for load ratios 

0=R  and 0.5R =  are inserted into Table 6.1 and Table 6.2. It is seen that the expJΔ -values 
are about 2% smaller than the values of ep

PZJΔ  or conv
PZJΔ  for all load cycles N. The same 

underestimate occurs already at the maximum load of the first load cycle. Therefore, it can be 
concluded that the deviation between expJΔ  and ep conv

PZ PZJ JΔ = Δ  can be attributed to the 
geometry factor η  from ASTM E1820 (2005). Taking this fact into account, we can state that 

expJΔ  gives very good approximations of ep
PZJΔ  or conv

PZJΔ . 
Dowling and Begley (1976) propose that in presence of crack closure, the area AΔ  for a 

loading branch should be taken as area above the load Fop where the crack fully opens (Fig. 
6.2c and Fig. 6.10d). When analyzing the unloading branch, AΔ  should be taken as area to the 
load Fcl when crack closure starts. Dowling and Begley (1976) propose to determine the crack 
opening (or closure) loads from the compliance changes, which are visible as kinks in the 
load–displacement (F−v) hysteresis loops.  

Such kinks are also visible in the F−v-curves of our analyses for cyclic tension-
compression loading with load ratio R = −1 (Fig. 6.10d). As already mentioned in Section 
6.4.4, we determine from the numerical analysis the time tcl of the first crack flank contact 
during an unloading cycle as the time when the first point lying on the crack flank reaches 

0yu = . The time for complete crack flank opening top is determined analogously. The times 
tcl and top are indicated in the ep

PZJ  versus time curve of Fig. 6.10a and 6.10c, as well as in the 
tδ  versus time plot of Fig. 6.11a. 

Figures 6.10c, d show that for R = −1 crack flank closure and -opening do not occur at 
load 0F = , but the closure- and opening loads, Fcl and Fop, are both slightly negative. 
Figure 6.10c shows also that ep

PZJ  reaches during the unloading sequence a minimum value, 
( )ep

PZmin 0J =  at a load 0JF = , which lies between 0F =  and Fcl, i.e. at a time 0 clJt t= < . 
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During the loading sequence ep
PZJ  reaches the minimum value, ( )ep

PZmin 0J = , at a time 
0 opJt t= > .  

Additional analyses are conducted for cyclic tension-compression loading with load 
ratios between 0.1R = −  and 2R = − . In all cases, the minimum value of the incremental 
plasticity cyclic J-integral evaluated along a contour around the crack tip plastic zone is 
exactly zero, ( )ep

PZmin 0J = . From these results, it can be concluded that  

ep ep conv
PZ PZ,max PZ,max for 0.1J J J RΔ = = ≤ − . (6.24) 

Note that the exact upper boundary and a possible lower boundary for the validity of Eq. 
(6.24) have not been determined. 

It is clear that for 0R <  the values of the experimental cyclic J-integral expJΔ rely on the 
determination of the correct area AΔ , i.e. the correct crack opening or -closure load. The 
analysis above (Fig. 6.10c) has shown that the conventional determination via compliance 
changes leads to inaccurate results: Use of Fop for the determination of AΔ  leads to values, 

op

exp
FJΔ , that are 10% too high, see Table 6.3; the same inaccuracy appears if Fcl is considered 

for the determination of AΔ  during an unloading branch. If the correct opening or -closure 
loads 0JF =  are used where ( )ep

PZmin 0J = , the experimental cyclic J-integral comes very close 
to the correct value, 

0

exp ep
PZJFJ J

=
Δ ≅ Δ . 

The difference between 
op

exp
FJΔ  and 

0

exp
JFJ

=
Δ  can be interpreted as follows: An abrupt 

compliance change for negative load ratios appears, since crack closure at the load Fcl occurs 
during unloading first at a point lying significantly behind the crack tip, i.e. at the notch tip in 
Fig. 6.10b, so that the effective crack length significantly changes. The material around the 
crack tip becomes already fully unstressed at a somewhat higher load 0JF = , causing that ep

PZJ
becomes zero. At the load Fcl where crack closure appears, the material around the crack tip is 
already re-stressed again, so that ep

PZJ  increases (Fig. 6.10c). This interpretation can also 
explain the fact that the compliance dependent opening- or closure loads, Fcl and Fop, are 
influenced by the notch geometry (Fig. 6.4a). For example, the magnitudes of Fcl and Fop

vary, if the length between crack tip and notch tip is changed. On the contrary, the correct 
opening load 0JF =  does not significantly vary.  

This section can be concluded by stating that the experimental cyclic J-integral expJΔ
proposed by Dowling and Begley (1976) is correct, if the correct procedure is applied to 
determine the area AΔ  in cases of crack closure. A problem for the practical application is 
that it is in the moment not able to propose an easily applicable procedure for the 
determination of the correct closure load 0JF = , apart from the computation of the incremental 
plasticity J-integral, ep

PZJ .  

6.5.4 Influences of strain hardening and other computational aspects

All the computational results presented so far have been generated for elastic−ideally plastic 
material. Additional numerical analyses have been conducted for a material with isotropic 
hardening. Young’s modulus, Poisson’s ratio, and yield strength are the same as introduced in 
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Section 6.3; the ultimate tensile strength is uσ = 426 MPa and the average strain hardening 
exponent is n = 0.2. These material data have been taken from an annealed steel with German 
designation St37 and were previously used in Simha et al. (2008) and Kolednik et al. (2014).  

In principle, the results do not change due to the isotropic hardening, and it is possible to 
draw the same conclusions as for an elastic−ideally plastic material. The conclusions drawn in 
this paper are valid also for materials with kinematic hardening, or for combinations of 
isotropic and kinematic hardening behavior, which is typical for metals subjected to low-cycle 
fatigue. 

It should be stressed that the numerical analyses presented in this paper have been 
conducted for large-scale yielding (and not general yielding) conditions. The reason is that 
only then it is possible to show that Eq. (6.12) and, as a consequence, Eq. (6.23) are strictly 
correct. This does not apply if general yielding conditions prevail in the specimen, since the 
crack tip- and the back-face plastic zone are not separated by an “elastic corridor”, see 
Sect. 6.4. The correctness of the experimental cyclic J-integral expJΔ  approach for general 
yielding conditions will be topic of a separate paper.  

Furthermore it should be stressed that stationary cracks have been considered in this 
paper. The differences that occur by considering growing fatigue cracks will be discussed in a 
forthcoming paper (Ochensberger and Kolednik 2014).  

6.6 Summary 
The current paper provides the basis for the physically appropriate application of the J-
integral for the assessment of fatigue cracks in elastic–plastic materials. A set of numerical 
simulations for a two-dimensional compact tension specimen with a stationary crack under 
cyclic Mode I loading conditions has led to the following findings: 

• The incremental plasticity J-integral epJ  can be applied for cyclic loading when linear 
elastic fracture mechanics is not applicable anymore. epJ  has the physical meaning of 
a true driving force even in cases of non-proportional loading conditions, such as 
cyclic loading. epJ  is, in general, path dependent on contours intersecting plastically 
deformed regions. This is physically correct due to the appearance of bulk 
configurational forces within plastically deformed regions. Negative epJ -values, 
which appear during unloading for integration contours close to the crack tip, are also 
correct, since they are caused by compressive residual stresses within the crack tip 
plastic zone.  

• Deformation plasticity is usually not appropriate for cyclic loading conditions, since 
bulk configurational forces appear during unloading which are not physically sound 
and lead to an artificial path-dependence of the conventional deformation plasticity J-
integral convJ . However, the deformation- and incremental plasticity J-integrals are 
equal, ep convJ JΓ Γ= , if the integration contour  goes only through elastically deformed 
regions, such as a path around the crack tip plastic zone PZ. Consequently, the 
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conventional, deformation plasticity J-integral can be useful for cyclic loading 
conditions, if certain conditions are fulfilled. 

• The incremental plasticity J-integral for a contour completely surrounding the crack 
tip plastic zone, ep

PZJ , should be taken as parameter characterizing the driving force of a 
crack in an elastic−plastic material, which is monotonically loaded after a cyclic pre-
deformation. Crack extension occurs, if ep

PZJ  is equal or larger than the crack growth 
resistance. 

• It is physically appropriate to characterize the crack growth rate in fatigue by the 
incremental plasticity cyclic J-integral, computed along a contour around the crack tip 
plastic zone, ep

PZJΔ . The parameter ep
PZJΔ  and the corresponding deformation plasticity 

cyclic J-integral conv
PZJΔ  are equal, as long as crack tip plastic zone and region of back 

face plasticity are separated by an elastic region. The quantities ep
PZJΔ  and conv

PZJΔ  must 
be, in general, evaluated from Eq. (6.19) and Eq. (6.22), respectively.  

• The experimental cyclic J-integral expJΔ proposed by Dowling and Begley (1976) is, 
in principle, physically appropriate. However, a correct procedure must be applied in 
cases of crack closure to determine the area below a single branch of the 
load−displacement record, AΔ . The conventionally applied procedure via the 
determination of the closure- or opening loads, Fcl and Fop, as proposed by Dowling 
and Begley (1976), can lead to inaccurate results. 
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Appendix: J-integral and cyclic J-integral 
In this appendix, the difference between J-integral, Eq. (6.1), and cyclic J-integral, Eq. (6.3), 
shall be demonstrated, and Eq. (6.19) is derived for a simple specimen geometry.  

Fig. 6.12a shows a double cantilever beam (DCB) specimen with height h and a long 
crack. The material is linear elastic. The specimen is clamped at the lower boundary and 
loaded at the upper boundary by prescribing the vertical displacement v . Rice (1968a) 
showed that the J-integral can be expressed as,  

2
rb appl

1
2

J h E hφ ε= = . (6.25) 
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The term rbφ  denotes the strain energy density at the right boundary, and the applied strain is 
given by appl v hε = . At a fixed displacement minv , the J-integral  

( )2
min rb,min appl,min1 2J h E hφ ε= =  corresponds to the area 0AE0 in Fig. 6.12b.  

Now the specimen shall be loaded from the displacement minv to maxv , Fig. 6.12b. The 
increase in J-integral is then  

( ) ( )2 2
max min rb,max rb,min appl,max appl,min

1
2

J J h E hφ φ ε ε− = − = − , (6.26) 

corresponding to the area ABDEA in Fig. 6.12b. During cyclic loading between the 
displacements minv and maxv , the J-integral varies between the values of minJ  and 

( )2
max rb,max appl,max1 2J h E hφ ε= = . 

For calculating the cyclic J-integral JΔ  as defined by Eq. (6.3), we should note that the 
cyclic stress σΔ  and cyclic strain εΔ  are taken from the minimum load, point A in Fig. 
6.12b; the quantity ( )Δφ  of Eq. (6.4) corresponds to the area ABCA in Fig. 6.12b. The cyclic 
J-integral is then given by 

( ) ( ) ( )22
appl,max appl,min

1 1
2 2

J h E h E hφ ε ε ε εΔ = Δ = Δ = − , (6.27) 

again corresponding to the area ABCA. The comparison of Eq. (6.26) and Eq. (6.27) shows 
that minmax JJJ −≠Δ  and that 

minmaxminmax 2 JJJJJ −+=Δ , (6.28) 

which is in form identical to Eq. (6.19) or Eq. (6.22).  
The areas 0AEA and 0BD0 correspond to the areas Amin and Amax under the 

load−displacement (F−v) curve and, therefore, the magnitudes of the experimental J-integrals
exp
minJ  and exp

maxJ  can be evaluated from Eq. (6.2). By inserting the appropriate geometry factor 
, we will find that exp

min minJ J=  and exp
max maxJ J= . Similarly, the area ABCA in Fig. 6.12b 

corresponds to the area A of a loading branch of the F−v-curve during a single load cycle, 
and we find that the experimental cyclic J-integral of Eq. (6.5) and the cyclic J-integral of 
Eq. (6.3) yield equal results, expJ JΔ = Δ . 
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(a) 

(b) 

Fig. 6.12 (a) Double cantilever beam specimen with a long crack. The lower boundary is 
clamped. A constant displacement in y-direction, v, is prescribed on the upper 
boundary; the displacements u in x-direction are free. (b) Load−displacement (F−v) 
curve and stress−strain ( )σ ε−  curve for a linear elastic material. For cyclic loading 
between the displacements minv and maxv , the origin of the coordinate system is reset 
into point A. 
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7 Growing fatigue cracks 

Paper I has shown that the incremental plasticity cyclic J-integral ep
PZJΔ , evaluated for a 

contour around the crack tip plastic zone, is physically appropriate to characterize the driving 
force of stationary fatigue cracks in elastic–plastic materials.  

For a growing fatigue crack, the entire crack tip plastic zone consists of the initial plastic 
zone of the stationary crack tip, the plastic wake, and the active plastic zone of the moving 
crack tip (Fig. 7.1b). Since cyclic plasticity around the current crack tip drives a fatigue crack 
(e.g. Laird 1967, 1979), and from the results of Sect. 5.2, it can be guessed that the 
incremental plasticity cyclic J-integral around the active plastic zone of a propagating crack 
tip, ep

actPZJΔ , Eq. (7.15), is the appropriate driving force parameter of growing fatigue cracks.  
The main intention of Paper II is to check whether this is true. The same finite element 

model as in Paper I is applied. A basic difference is that a crack extension step occurs at 
minimum load after each load cycle. The maximum load is changed so that small- and large-
scale yielding conditions prevail in the specimen. 

A problem observed from these analyses is that ep
actPZJ  becomes negative at minimum 

load, ep
actPZ,min 0J < , due to compressive stresses during unloading, which yields a complex 

square root term in Eq. (7.15). However, comparisons of the variations of ep
actPZJ  with the 

evolution of the crack tip opening displacement tδ  during a load cycle showed that the crack 
tip is closed, t 0δ = , during the stages where ep

actPZ 0J < , see Fig. 7. Consequently, negative 
values of ep

actPZJ  do not deliver a contribution to the driving force for fatigue crack growth and 
ep
actPZJΔ  is equal to the value of ep

actPZ,maxJ  at maximum load of a load cycle, ep ep
actPZ actPZ,maxJ JΔ = , i.e. 

for load ratios 0R ≤ . 
The conventional cyclic J-integral around the active plastic zone, calculated via 

configurational forces, , or by ABAQUS, , analogously to Eq. (7.15), leads to 
erroneous results for growing fatigue cracks. They are only correct in the case of a stationary 
fatigue crack, where the active and the initial crack tip plastic zone coincide, so that 

, Fig. 7.1a,b. 
It is shown that the experimental cyclic J-integral , Eq. (3.8), corresponds to ; 

see Fig. 7.8, Table 7.1 and Table 7.2. This implies that  is only fully appropriate for 
stationary fatigue cracks, where . After crack extension, however,  
is not equal to the magnitude of , and, therefore,  is not fully appropriate to 
measure the driving force for a growing fatigue crack. The difference between  and 

 can be small for constant fatigue loads under ssy-conditions, but it can reach 20% for 
lsy-conditions (Tables 7.1 and 7.2). 

The ultimate check of ep
actPZJΔ  as physically correct driving force parameter for fatigue 

crack growth is by conducting a numerical experiment where the constant fatigue load is 
superimposed by a single overload. The fatigue crack growth rate da/dN is proportional to the 

conv
actPZJΔ VCE

actPZJΔ

ep ep conv VCE
PZ PZactPZ PZJ J J JΔ = Δ = Δ = Δ

expJΔ ep
PZJΔ

expJΔ
ep ep
actPZ PZJ JΔ = Δ exp ep

PZJ JΔ = Δ
ep
actPZJΔ expJΔ

expJΔ
ep
actPZJΔ
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cyclic crack tip opening displacement  even after application of an overload (e.g. Bichler 
and Pippan 2007). Thereby, it is demonstrated that  correctly reflects crack growth 
retardation since it varies analogously to tδΔ  (Fig. 7.9). Moreover, the estimated maximum 
reduction in ep

actPZJΔ , compared to a constant fatigue load, is in very good aggreement with the 
results reported for an experimental overload test conducted by Bichler and Pippan (2007). 

On the contrary, the experimental cyclic J-integral  (and ep
PZJΔ ), predict a 

continuously increasing crack growth rate after an overload, which confirms that  is not
strictly correct, if the fatigue crack grows.  

tδΔ
ep
actPZJΔ

expJΔ
expJΔ
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Abstract  
The current paper discusses the physically correct evaluation of the driving force for fatigue 
crack propagation in elastic–plastic materials using the J-integral concept. This is important 
for low-cycle fatigue and for short fatigue cracks, where the conventional stress intensity 
range (ΔK) concept cannot be applied. Using the configurational force concept, Simha et al.,
J. Mech. Phys. Solids 56 (2008) 2876, have derived the J-integral for elastic–plastic materials 
with incremental theory of plasticity, epJ , which is applicable for cyclic loading and/or for 
growing cracks, in contrast to the conventional J-integral. The variation of this incremental 
plasticity J-integral epJ  is studied in numerical investigations conducted on two-dimensional 
C(T)-specimens with long cracks under cyclic Mode I loading. The crack propagates by an 
increment after each load cycle. The maximum load is varied so that small- and large-scale 
yielding conditions prevail. Three different load ratios are considered, from pure tension to 
tension-compression loading. By theoretical considerations and comparisons with the 
variation of the crack tip opening displacement tδ , it is demonstrated that the cyclic, 
incremental plasticity J-integral ep

actPZJΔ , which is computed for a contour around the active 
plastic zone of the growing crack, is physically appropriate to characterize the growth rate of 
fatigue cracks. The validity of the experimental cyclic J-integral, expJΔ , proposed by 
Dowling and Begley, ASTM STP 590 (1976) 82, is also investigated. The results show that 

expΔJ  is correct for the first load cycle, however, not fully appropriate for a growing fatigue 
crack. 

Keywords: Configurational force concept; Crack driving force; Cyclic J-integral; Low-cycle 
fatigue; Fatigue crack growth; Overload effect 
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7.1 Introduction 
This paper deals with the physically correct evaluation of the driving force of cyclically 
loaded, growing cracks in elastic–plastic materials for cases where linear elastic fracture 
mechanics is not applicable.  

The conventional J-integral convJ  (Rice 1968a,b), which is commonly applied in the 
regime of nonlinear fracture mechanics, relies on deformation theory of plasticity, i.e. the 
elastic–plastic material is treated as being nonlinear elastic. For this reason, convJ  suffers from 
two fundamental problems when it is applied to elastic–plastic materials: (i) convJ  is formally 
not applicable for non-proportional loading conditions (Rice 1968a,b; Anderson 1995), (ii) 

convJ  does not describe the real driving force of a crack in elastic–plastic materials (Rice 
1968a,b). In spite of these problems, Dowling and Begley (1976) proposed the experimental 
cyclic J-integral expJΔ  as a parameter characterizing the growth rate Na dd  of fatigue cracks 
for cases where the stress intensity range ΔK  is not applicable. Although supported for some 
materials by experimental data (e.g. Dowling and Begley 1976; Dowling 1976; Lambert et al. 
1988; Banks-Sills and Volpert 1991), the applicability of expJΔ  has remained doubtful due to 
the lack of its theoretical basis (Suresh 1998). 

New insight into this problem has been gained by adopting the concept of configurational 
forces, which enables the derivation of the J-integral for elastic–plastic materials with 
incremental theory of plasticity (Simha et al. 2008). This incremental plasticity J-integral epJ
has the physical meaning of a real driving force term of a crack in an elastic–plastic material 
even under strongly non-proportional loading conditions, however it is path dependent (Simha 
et al. 2008). Kolednik et al. (2014) studied this path dependence and demonstrated the 
usefulness of epJ  for stationary and growing cracks under monotonic loading conditions. In a 
very recent study, Ochensberger and Kolednik (2014) have investigated the application of 

epJ  for stationary cracks in elastic–plastic materials that are cyclically loaded, and it has been 
shown that the experimental cyclic J-integral expJΔ  is, in principle correct, if certain 
conditions are observed.  

The current paper complements the study of Ochensberger and Kolednik (2014) by 
considering growing cracks in elastic–plastic, cyclically loaded materials. It will be 
demonstrated that important differences occur compared to the case of a stationary crack. The 
paper shall provide a new basis for the application of the J-integral concept for characterizing 
the crack growth rate in fatigue.  

The next section briefly reviews the incremental plasticity J-integral epJ  and the findings 
of the papers by Kolednik et al. (2014) and Ochensberger and Kolednik (2014) that are 
necessary for the understanding of the current paper. Readers who are already familiar with 
the topic may continue reading at the last paragraph in Sect. 7.2. 

7.2 Incremental plasticity J-integral Jep and crack driving force 
Configurational forces are thermodynamic driving forces on defects in materials (Maugin 
1995; Gurtin 1995, 2000; Kienzler and Hermann 2000). The application of the configurational 
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force concept for studying fracture mechanics problems has gained increasing research 
interest, see e.g. Simha et al. (2003, 2005), Nguyen et al. (2005), Özenç et al. (2014), 
Sistaninia and Kolednik (2014), Kolednik et al. (2014) and the according references in 
Section 2 therein. The concept rests on the notion of the second-rank configurational stress 
tensor, which is defined in the form, Tφ= −C I F S  (Eshelby 1951, 1970). 11 The parameter φ
denotes the strain energy density, I the identity tensor, FT the transposed of the deformation 
gradient tensor F, and S the 1st Piola-Kirchhoff stress. A configurational force f in a body is 
associated with the divergence of the configurational stress tensor, 

( )Tφ= −∇ ⋅ = −∇ ⋅ −f C I F S . (7.1) 

The vector f gives the magnitude and direction of the thermodynamic driving force acting on 
the defect.  

7.2.1 Configurational forces and J-integrals for elastic–plastic materials 

A literature review on the application of configurational force concept for the prediction of 
the behavior of cracks has been given in Kolednik et al. (2014) and shall not be repeated here. 
Figure 7.1a shows a sketch of a homogeneous body  containing a crack with length a0 and a 
unit vector in the nominal crack growth direction e. The configurational force concept allows 
the derivation of the J-integral. The scalar, near-tip J-integral Jtip is related to the 
configurational force vector emanating from the crack tip, tipf , in the form (see e.g. Simha et 
al. 2003), 

( )
Γ

→
⋅=−⋅=⋅=

r

sJ
r

dlim
0tiptiptip nCefeJe , (7.2) 

where rΓ  is a contour drawn from the lower to the upper crack surface in counterclockwise 
direction at a distance r around the crack tip; n is the outward unit normal vector to the 
contour Γ, and ds is an increment of the integration path. The scalar J-integral tipJ  of Eq. 
(7.2) is the projection of the near-tip J-integral vector tipJ  into the nominal crack growth 
direction e. The J-integral along an arbitrary contour Γ can be evaluated from the relation, 

( )T
tipd d dJ s s J Aφ

Γ Γ

= ⋅ = ⋅ = ⋅ − = − ⋅e J e Cn e I F S n e f , (7.3) 

where  denotes the area bounded by Γ , but excluding the crack tip. Note that Eq. (7.2) and 
Eq. (7.3) do not rely on constitutive equations of the material. 

We assume that body  is homogeneous and consists of elastic–plastic material. Then we 
can distinguish between two different types of J-integral, the conventional J-integral convJ , 
which presumes deformation theory of plasticity (see e.g. Simha et al. 2003), and the  
  
                                                 
11 For the mathematical expressions in this paper the direct (coordinate-free) notation is used as in Gurtin (2000). 
The notation is specified in Ochensberger and Kolednik (2014). 
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(a) 

(b) (c) 

Fig. 7.1 (a) Homogeneous elastic–plastic body  with a long, stationary crack. The contour 
PZΓ  encloses the crack tip plastic zone. (b) Body  after crack extension aΔ . The 

contour actPZΓ  encloses the active plastic zone of the current crack tip, whereas the 
contour PZΓ  encloses the entire crack tip plastic zone, including the plastic wake. (c)
Stress–strain (σ –ε ) curve for point P in the plastic zone. Only the elastic part of the 
strain energy density eφ  is reversible. The total strain energy density e pφ φ φ= +
would be recoverable in a comparable nonlinear elastic material with the identical σ –
ε -curve.

incremental plasticity J-integral  for materials with incremental theory of plasticity 
(Simha et al. 2008), 

( )conv conv T conv def.pl
tip tipd dJ J A J Aφ= + ⋅ ∇ ⋅ − = − ⋅e I F S e f , (7.4) 

( )ep ep T ep ep
tip e tipd dJ J A J Aφ= + ⋅ ∇ ⋅ − = − ⋅e I F S e f . (7.5) 

epJ
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The difference between convJ  and epJ   appears in the substitution of the strain energy density 
φ . For deformation plasticity, the total strain energy density φ  is inserted as for a nonlinear 
elastic material, whereas for incremental plasticity only the elastic part of the strain energy 
density eφ  is inserted, see Fig. 7.1c. From Eq. (7.4) and Eq. (7.5), or by inserting either φ  or 

eφ  into Eq. (7.1), it is clear that also two different types of configurational force exist, the 
deformation plasticity configurational force def.plf  and the elastic–plastic configurational force 

epf .  
If the body  deforms only elastically, there exists no difference between def.plf  and epf , 

or between convJ  and epJ . The bulk configurational force f vanishes, and configurational 
forces appear only at the crack tip, tipf , and at the external boundary  (Fischer et al. 
2012a). Therefore, the J-integral is path-independent, see the right-hand side extension of Eq. 
(7.4). 

If body  is also plastically deformed, bulk configurational forces epf  are induced in the 
plastically deformed regions of the body and, according to the right-hand side extension of 
Eq. (7.5), the incremental plasticity J-integral epJ  becomes path-dependent. The bulk 
configurational force epf  at a material point in the elastic–plastic body evolves proportional to 
the gradient of the plastic component of the deformation gradient (Simha et al. 2008), 

( )
pTep e : ∂=

∂
Ff F S
X

. (7.6) 

In Eq. (7.6), eF  and pF  are the elastic and plastic components of the deformation gradient 
tensor F, and p∂ ∂F X  is the gradient of pF  with respect to the unloaded reference coordinate 
system. 

Performing a numerical cyclic tensile test, Kolednik et al. (2014) have demonstrated the 
problem of idealizing elastic–plastic materials with deformation theory of plasticity: artificial 
bulk configurational forces def.plf  emerge on positions with a gradient in plastic strain as soon 
as non-proportional loading occurs. These bulk configurational forces do not have a physical 
background and lead to an artificial path dependence of convJ , compare Eq. (7.4); see also 
Brocks et al. (2003) or, e.g., in Kuna (2008).  

A big advantage of the incremental plasticity J-integral epJ  is that it has the physical 
meaning of a true driving force term in elastic–plastic materials even for non-proportional 
loading conditions, such as a growing crack or a cyclically loaded crack, while, on the 
contrary, the conventional J-integral convJ  possesses the well-known restrictions outlined in 
the Introduction.  

7.2.2 Path dependence of epJ and driving force for cracks under monotonic loading 

The path dependence of the incremental plasticity J-integral epJ  for stationary and growing 
cracks in monotonically loaded elastic–plastic materials has been investigated in Kolednik et 
al. (2014). The investigation showed that for a stationary crack, the J-integral for a contour 
enclosing the entire crack tip plastic zone ep

PZJ , Fig. 7.1a, should be taken as parameter 
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characterizing the driving force. Crack extension occurs, if ep
PZJ  is equal or larger than the 

crack growth resistance. 
The incremental plasticity J-integral for a contour enclosing the crack tip plastic zone 

ep
PZJ  has the physical meaning of the driving force for the combined movement of the crack tip 

and the crack tip plastic zone. From a comparison of Fig. 7.1a and 7.1b it becomes clear that it 
is impossible for a crack to grow in an elastic–plastic material without the simultaneous 
movement of the surrounding plastic zone. Thus, the near-tip J-integral ep

tipJ , which is the 
driving force for the translational movement of the crack tip alone, is meaningless for the 
assessment of crack extension. The numerical results in Kolednik et al. (2014) suggest that the 
magnitude of the incremental plasticity near-tip J-integral is zero, ep

tip 0J = , for both a 
stationary and a growing crack under monotonic loading. As noted already in classical papers, 
e.g. Rice and Johnson (1970) or Rice (1979), also the conventional, deformation plasticity 
near-tip J-integral is zero, conv

tip 0J = , for stationary and growing cracks under monotonic 
loading.  

For a contour around the crack tip plastic zone, the conventional J-integral conv
PZJ  is 

identical to the incremental plasticity J-integral ep
PZJ ,  

ep conv
PZ PZJ J= . (7.7) 

The requirement for this equality is that the crack tip plastic zone is completely surrounded by 
material that is only elastically deformed. In this case there is no difference in the formulation 
between deformation- and incremental plasticity, see middle term in Eq. (7.3).  

Notice that a relation similar to Eq. (7.7) for the far-field J-integrals, ep conv
far farJ J= , only 

exists, if no part of the outer boundary of the specimen is plastically deformed. A back-face 
plasticity region appears in case of large-scale yielding (lsy) conditions, compare Fig. 7.4b. 
Configurational forces epf  with a positive component in x-direction are induced in the back-
face plasticity region so that epJ  decreases and ep ep

far PZJ J< , compare Eq. (7.5). On the contrary, 
the conventional J-integral remains constant, conv conv

far PZJ J= , since proportional loading 
conditions prevail. It is well known that for a stationary crack the conventional J-integral 

convJ  equals the experimental J-integral expJ , which is determined from the load
displacement curve (Rice et al. 1973; Kolednik 1991). Therefore, the incremental plasticity J-
integral for a contour around the crack tip plastic zone ep

PZJ  equals the experimental J-integral 
for a stationary crack, ep conv conv exp

PZ PZ farJ J J J= = = . This means that both the conventional and 
the experimental J-integral give the correct driving force for the initiation of crack growth. 

For a continuously growing crack at constant load, the J-integral ep
actPZJ  for a contour 

actPZΓ  around the active plastic zone of the moving crack tip, Fig. 7.1b, is the physically 
correct crack driving force parameter (Kolednik et al. 2014). Here, the contour PZΓ  encloses 
the initial plastic zone of the stationary crack, the plastically deformed regions along the crack 
flanks (plastic wake), and the active plastic zone around the current crack tip. Since the 
contour PZΓ  goes only through elastic deformed regions, Eq. (7.7) is still valid. However, note 
that ep conv

actPZ actPZJ J≠ , since the contour actPZΓ  crosses the plastic wake along the crack flanks 
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(Fig. 7.1b). It should be mentioned that the experimental J-integral expJ  does, in general, not 
reflect the driving force for a growing crack, ep exp

actPZJ J≠ ; see Kolednik (1991, 1993) and 
Turner and Kolednik (1994). This means that neither the conventional nor the experimental J-
integral give the correct driving force for a continuously growing crack under monotonic 
loading.  

7.2.3 Driving force for cyclically loaded, stationary cracks in elastic–plastic materials 

The characteristic properties of the incremental plasticity J-integral epJ  under cyclic loading 
conditions, but for a stationary crack, have recently been presented in Ochensberger and 
Kolednik (2014). The path-dependence of epJ  was investigated for various, positive and 
negative, load ratios maxmin FFR =  under lsy-conditions. It has been shown that negative epJ
-values can appear during the unloading stages on contours close to the crack tip; they 
originate from compressive residual stresses caused by reverse plasticity within the crack tip 
plastic zone. 

The incremental plasticity J-integral for a contour enclosing the crack tip plastic zone 
ep
PZJ  also characterizes the driving force of a crack in an elastic–plastic material, which is 

monotonically loaded after a cyclic pre-deformation. It is clear that ep conv
PZ PZJ J= , since Eq. 

(7.7) is valid also for cyclic loading conditions, as long as the crack tip plastic zone is 
surrounded by elastically deformed material.  

In the fatigue of metals and alloys, the magnitude of the crack driving force at the 
maximum load ep

PZ,maxJ  is considerably smaller than the crack growth resistance, so that the 
crack cannot extend at max constantF = . Driving force terms for fatigue crack growth have 
been introduced, which should allow the prediction of the crack propagation rate of a fatigue 
crack (e.g. see Suresh 1998). Note that these terms are not necessarily real driving force terms 
in the thermodynamic sense. The stress intensity range KΔ  (Paris et al. 1961; Paris and 
Erdogan 1963) or the effective stress intensity range effKΔ  (Elber 1970, 1971) are used, if 
linear elastic fracture mechanics is applicable. For the regime of elastic-plastic fracture 
mechanics, Dowling and Begley (1976) proposed the application of the experimental cyclic J-
integral expJΔ , which is determined from a single loading or unloading branch of the load–
displacement (F–v) curve, similar to expJ  for monotonic loading. For deeply notched bend- 
and C(T)-specimens, expJΔ  is given by the relation  

exp AJ
b B

η ΔΔ = , (7.8) 

where AΔ  is the area below a single loading branch of the F–v-curve (Fig. 7.2a), b W a= −  is 
the ligament length, with W as the specimen width and a as the crack length, and B is the 
specimen thickness. The geometry factor ( )a Wη  depends on the specimen type (see also 
ESIS P2-92, 1992 or ASTM E1820, 2005). In spite of empirical results showing that expJΔ
correlates to Na dd  for specific materials under certain cyclic loading conditions (e.g.  
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(a) (b) 

Fig. 7.2  To the determination of the experimental cyclic J-integral expJΔ  for a C(T) or deeply 
notched bend specimen from the area AΔ  below a single loading branch of the load–
displacement (F–v) curve, (a) for load ratio R > 0 without crack closure, (b) for R < 0. 
The load opF  denotes the point of crack opening.

Dowling and Begley 1976; Dowling 1976; Lambert et al. 1988; Banks-Sills and Volpert 
1991), the general applicability of  remained doubtful due to the lack of theoretical basis 
(Anderson 1995; Suresh 1998).  

Ochensberger and Kolednik (2014) have shown that the incremental plasticity cyclic J-
integral for a contour around the crack tip plastic zone, , is a physically appropriate 
parameter for characterizing the driving force for a cyclically loaded, stationary crack. The 
parameter  should be evaluated by the relation, 

. (7.9) 

Here, ep
maxPZ,J  and ep

minPZ,J  denote the maximum and minimum ep
PZJ -values achieved in a single 

load cycle. It should be mentioned that the magnitude of ep
PZJΔ  is, due to the square root term 

in Eq. (7.9), very sensitive to small values of ep
minPZ,J . This fact is especially important for 

small positive load ratios. For a stationary crack, negative load ratios gave minimum ep
PZJ - 

values of exactly zero, ep
PZ,min 0J = , leading to ep ep

PZ PZ,maxJ JΔ =  (Ochensberger and Kolednik 
2014). 

The application of Eq. (7.9) for the correct calculation of the cyclic J-integral can be 
demonstrated by comparison with the cyclic crack tip opening displacement tδΔ
(Ochensberger and Kolednik 2014). In a very recent study, Metzger et al. (2014) 
demonstrated the correlation between the conventional cyclic J-integral (Lamba 1975; 
Wüthrich 1982; Tanaka 1983) and tδΔ . Note that the conventional cyclic J-integral used in 
Metzger et al. (2014) is, in principle, equal to the expression in Eq. (7.9), see Appendix in 
Ochensberger and Kolednik (2014) for details.  

 If the crack tip plastic zone is completely surrounded by elastically deformed material, 
Eq. (7.7) applies for both the epJ -values at maximum and minimum load. Therefore, the 

expJΔ

ep
PZJΔ

ep
PZJΔ

ep ep ep ep ep
PZ PZ,max PZ,min PZ, max PZ, min2J J J J JΔ = + −
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incremental plasticity and deformation plasticity cyclic J-integrals for a contour around the 
crack tip plastic zone must be equal,  

ep conv exp
PZ PZJ J JΔ = Δ = Δ . (7.10) 

The right-hand side extension of Eq. (7.10) results from Ochensberger and Kolednik (2014), 
who have shown that the experimental cyclic J-integral expJΔ  reflects the magnitude of ep

PZJΔ , 
provided that in cases of crack closure a correct procedure is applied for the determination of 
the area AΔ  in Eq. (7.8). The conventionally applied procedure via the determination of the 
closure- or opening loads, Fcl and Fop (Fig. 7.2b), as proposed by Dowling and Begley (1976), 
can lead to inaccurate results, see also Section 7.5.2 below. 

The results of Ochensberger and Kolednik (2014) demonstrate that the experimental 
cyclic J-integral expJΔ proposed by Dowling and Begley (1976) is, in principle, a physically 
appropriate driving force parameter for a cyclically loaded specimen. It should be noted, 
however, that this investigation has been conducted for a stationary crack. Therefore, the 
question remains to be solved whether these findings are applicable also in the case where the 
crack grows under cyclic loading, as it occurs in fatigue crack growth.  

We consider in the current paper cyclic loading with crack extension. It will be 
demonstrated in this paper that important differences appear between a stationary and a 
growing crack, although the crack growth rate per load cycle is small. 

7.3 Numerical modeling and computational aspects 
For the numerical investigations the same procedure is applied as in Ochensberger and 
Kolednik (2014). The simulations are performed using the finite element (FE) program 
ABAQUS (see http://www.simulia.com/products/abaqus_fea.html). A two-dimensional C(T)-
specimen (ASTM E1820, 2005) is modeled with a straight crack in horizontal x-direction, 
Fig. 7.3a. The specimen dimensions are: width mm50=W , height H = 60 mm, nominal 
thickness B = 25 mm, and initial crack length 0a = 25 mm. The specimen is subjected to 
cyclic Mode I loading by prescribing the load F at the load application point. Plane strain 
conditions are assumed.  

The specimen consists of homogeneous, isotropic, elastic–ideally plastic material with 
Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3, and yield strength yσ = 270 MPa. A 
small strip near the left boundary of the specimen is adopted as linear elastic, with Young’s 
modulus E = 200 GPa and Poisson’s ratio ν = 0.3. This is done to prevent large plastic 
deformation at the load application point. Note that this does not cause any problems, since 
the plastic zone does not approach the elastic region.  

Half of the specimen is discretized (Fig. 7.3a). The mesh consists of bilinear 4-node 
continuum elements. The inner region A, where the crack propagates, has a dimension of 

0.35.13 ×  mm²; it is filled with elements of equal size. If not specified otherwise, the element 
size is 0.1 mmm = . Geometric nonlinearity is applied to consider large deformations around  
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(a) 

(b) 

Fig. 7.3 (a) Model of the C(T)-specimen with boundary conditions. (b) Applied load F versus 
time t for a load ratio R = 0; the increment of crack extension per load cycle ( )aΔ Δ  is 
two element lengths. Apart from the cases with constant loads, an additional study is 
conducted for a single tensile overload FOL, applied during the fourth load cycle. 

the crack tip. Crack flank contact without friction is modeled; a rigid body serves as 
counterpart to the upper half of the specimen. The nodes on the plane y = 0, except the nodes 
on the crack flank, are locked in y-direction, but unlocked in x-direction.  

The loading steps are shown in Fig. 7.3b. Each load cycle N can be divided into three 
steps. In the first step, finished at time t = 3N – 2 with N , the specimen is loaded to 
maximum load . In the second step, finished at t = 3N – 1, the specimen is unloaded to 
minimum load . The crack length is held fixed during the loading and unloading stages. 

∈

maxF

minF
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In the third step, finished at t = 3N, the crack extends by an increment at the minimum load 
. We refer to Solanki et al. (2004) regarding the preferred load level for incremental crack 

extension. Incremental crack extension is modeled by adopting the node release technique 
(Ohji et al. 1975; Newman 1976). Hereby initially bonded nodes on the plane y = 0 are 
released according to a pre-defined crack length function of time (see also Kuna 2008). Two 
elements are chosen as crack extension increment per load cycle, . The number of 
applied load cycles is N = 24; the total crack advance is .

The maximum load is varied so that we get small-scale yielding (ssy) and large-scale 
yielding (lsy) conditions at kN and kN, respectively (Fig. 7.4a and 
7.4b). Large-scale yielding is assumed to start with the onset of plasticity at the back face of 
the specimen (Fig. 7.4b). Three load ratios are considered, R = 0 (zero-tension loading, Fig. 
7.3b), R = 0.5 (pure tension), and R = –1 (tension-compression).  

The FE stress and strain analyses are in all cases performed using the incremental 
plasticity model provided by ABAQUS. Subsequently, the configurational forces are 
evaluated by a self-written post-processing routine, which is based on the papers by Müller et 
al. (2002, 2004) and Denzer et al. (2003). Deformation plasticity and incremental plasticity 
are alternatively applied for this post-processing in order to calculate at each node the 
deformation- and incremental plasticity configurational force, def.plf  and epf , by inserting 
either φ  and eφ  into Eq. (7.1). 

The scalar J-integral for an arbitrary contour Γ is calculated by a summation of the 
configurational forces over all nodes within the area  bounded by Γ , including the crack tip 
node, compare Eq. (7.4) and Eq. (7.5). The J-integrals for deformation plasticity and 
incremental plasticity, convJ  and epJ , are given by 

( )conv def.pl

tip
n

n
J AΓ

∈ ∪

= − ⋅ Δe f ,  (7.11) 

  ( )ep ep

tip
n

n

J AΓ
∈ ∪

= − ⋅ Δe f . (7.12) 

The parameter nAΔ  denotes the element area corresponding to a specific node n.  
Important are the computation of J-integrals around the crack tip plastic zone PZJ  and 

around the active plastic zone actPZJ , see Fig. 7.1b. The shape of the active plastic zone is 
obtained by observation of currently yielding integration points, i.e. when the plastic strain p

changes during a loading sequence. An example is presented in Fig. 7.4a; currently yielding 
integration points are marked by x-symbols. The integration path actPZΓ  is chosen so that it 
includes all marked integration points at maximum load maxF . It should be noted that the 
magnitude of the integration path is held fixed for a specific loading and unloading sequence, 
i.e. actPZΓ  does not vary with increasing or decreasing load. 

minF

( ) ma 2=ΔΔ
( )1

4.8 mmN

ii
a a

=
Δ = Δ Δ =

max 12.5F = max 27F =
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(a) 

(b) (c) 

Fig. 7.4 Maps of the equivalent plastic strain  at an applied load of (a) kN 
(small-scale yielding conditions), (b) kN (large-scale yielding, i.e. after 
onset of back face plasticity), and (c) at kN and  (general 
yielding). In (a) the configuration after  crack extension is depicted, when 
the active plastic zone has completely left the monotonic plastic zone of the initial 
crack tip; the plastic zone shapes are marked with dashed lines.  and  denote 
the contours around the entire and the active plastic zone, respectively. Directions of 
the bulk configurational force  are schematically indicated. 

In addition to the J-integrals derived from configurational forces, convJ  and epJ , the 
conventional computational J-integral of ABAQUS VCEJ , which is based on the virtual crack 
extension method developed by Parks (1977), is also computed. Note that VCEJ  implicitly 
relies on deformation plasticity, when applied to elastic–plastic materials.  

p
eqε max 12.5F =
max 27F =

max 27F = 4.6mmaΔ =
1mmaΔ =

PZΓ actPZΓ

epf
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7.4 Incremental plasticity J-integral epJ  for crack extension under cyclic 
loading 

7.4.1 Characteristic incremental plasticity J-integral terms, ep
PZJ  and ep

actPZJ  

Figures 7.5a and 7.5c present, for a load ratio 0R = , the variations of the incremental 
plasticity J-integrals around the crack tip plastic zone, ep

PZJ , and around the active plastic zone, 
ep
actPZJ , under ssy- and lsy-conditions, i.e. kN5.12max =F  and kN27max =F , respectively. 

Shown are 24N =  load cycles; Fig. 7.5b, d show in more detail the 11th load cycle. The epJ -
values reached at maximum load maxF  are marked with full (for ep

PZ,maxJ ) and open (for 
ep
actPZ,maxJ ) dots.  

It is seen from Fig. 7.5 that, due to the crack extension after each load cycle, the epJ -
values at maximum load, ep

PZ,maxJ  and ep
actPZ,maxJ , continuously increase, whereas the values 

taken at minimum load, ep
minPZ,J  and ep

actPZ,minJ , remain approximately constant. While ep
PZJ

shows a regular behavior, with values very close to zero at minF , the ep
actPZJ -curve exhibits 

some irregularities during the first load cycles. The ep
actPZJ -curve appears shifted downwards 

compared to the ep
PZJ -curve.  

The values of ep
actPZJ  and ep

PZJ  are equal for the first loading and unloading cycle, since 
crack extension has not occurred yet. With the first crack extension step, time 2t > , the 
active plastic zone starts to leave the plastic zone of the initial crack tip, and ep

actPZJ  differs 
from ep

PZJ . The active plastic zone has completely left the initial plastic zone after a crack 
extension of  and 2 mm,  and 11, for ssy- and lsy-conditions, respectively. 
This is indicated by a vertical dashed line in Fig. 7.5a and 7.5c. It is seen that the irregularities 
of the -curve occur before this line; e.g. especially high -values appear during 
N = 2, followed by especially low -values. This behavior will be discussed in more 
detail in the next section. 

The J-integral values are collected in Tables 7.1 and 7.2. The values of  lie 
approximately 6% lower than the values of ; the difference decreases to approximately 
4% with increasing crack extension. The difference almost disappears, if the active plastic 
zone merges with the back-face plasticity region so that general yielding (gy) conditions 
prevail. This happens for the values in Table 7.2 after , see also Fig. 7.4c and 
Fig. 7.5c. The values of  are very close to zero for ssy-conditions (Table 7.1), whereas 
they reach several tenths of kJ/m2 for lsy-conditions (Table 7.2), probably caused by 
irreversible elastic strain energy stored around the crack tip (Atkins and Mai 1986). The 

-values are, in general, negative. 
The incremental plasticity far-field J-integral  equals  for ssy-conditions. Due to 

the appearance of back-face plasticity,  is lower than  for lsy- and gy-conditions. With 
increasing crack length the difference between and increases from 0.5% up to 
33%, due to the increase of the back-face plasticity region. 

6.0=Δa 4N =

ep
actPZJ ep

maxactPZ,J
ep

minactPZ,J

ep
maxactPZ,J

ep
maxPZ,J

mm6.4=Δa
ep
PZ,minJ

ep
actPZ,minJ

ep
farJ ep

PZJ
ep
farJ ep

PZJ
ep
far,maxJ ep

PZ,maxJ
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Fig. 7.5 Incremental plasticity J-integrals around the crack tip plastic zone, ep
PZJ , and around 

the active plastic zone, ep
actPZJ , versus time t for (a) small-scale yielding; (c) large-scale 

yielding, turning to general yielding after t = 69, 4.6mmaΔ = . (b) and (d) show a 
detail of the 11th load cycle. The values reached at maximum load, ep

PZ,maxJ  and 
ep
actPZ,maxJ , are marked with full and open dots, respectively. The vertical dashed lines 

indicate when the active plastic zones leave the initial crack tip plastic zones. 

(a) (b) 

(c) (d) 
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Table 7.1 Values of the incremental plasticity J-integrals around the crack tip plastic zone, ep
PZJ , and 

around the active plastic zone, ep
actPZJ , for small-scale yielding conditions. 

R N Δa ep
PZ,maxJ ep

PZ,minJ ep
actPZ,maxJ ep

actPZ,minJ actPZ,max

PZ,max

J
JΔ ep

PZJΔ ep
actPZJΔ expJΔ actPZ

PZ

J
J

Δ
ΔΔ

- -  [mm] [kJ/m²] [%] [kJ/m²] [%]
            

0 1 0 2.132 0.000 2.132 0.000 0.00 - - 2.082 - 
0 2 0.2 2.184 8.0e–5 2.341 –0.621 6.71 2.157 2.341 2.121 7.86 
0 6 1 2.415 2.0e–4 2.280 –0.062 –5.92 2.372 2.280 2.358 –4.04 
0 11 2 2.759 2.8e–4 2.653 –0.087 –4.00 2.703 2.653 2.705 –1.88 
0 16 3 3.177 3.8e–4 3.059 –0.119 –3.86 3.108 3.059 3.119 –1.60 
0 21 4 3.691 5.6e–4 3.558 –0.134 –3.74 3.600 3.558 3.621 –1.18 
0 24 4.6 4.056 7.1e–4 3.882 –0.156 –4.48 3.949 3.882 3.973 –1.73 
            

0.5 1 0 2.132 0.000 2.132 0.540 0.00 - - 2.082 - 
0.5 2 0.2 2.183 0.540 2.264 0.444 3.58 0.552 0.703 0.549 21.5 
0.5 6 1 2.414 0.612 2.279 0.576 –5.92 0.595 0.564 0.595 –5.50 
0.5 11 2 2.755 0.700 2.633 0.604 –4.63 0.678 0.715 0.683 5.17 
0.5 16 3 3.170 0.809 2.948 0.609 –7.53 0.776 0.877 0.790 11.5 
0.5 21 4 3.682 0.943 3.417 0.698 –7.76 0.898 1.026 0.918 12.5 
0.5 24 4.6 4.046 1.039 3.748 0.762 –7.95 0.984 1.130 1.009 12.9 

            
–1 1 0 2.132 0.000 2.132 5.7e–6 0.00 - - 2.082 - 
–1 2 0.2 2.184 5.7e–6 2.352 –0.625 7.23 2.177 2.352 2.129 7.44 
–1 6 1 2.415 1.6e–4 2.300 –0.066 –5.00 2.376 2.300 2.359 –3.30 
–1 11 2 2.760 2.0e–4 2.654 –0.090 –3.99 2.713 2.654 2.705 –2.22 
–1 16 3 3.178 2.8e–4 3.061 –0.120 –3.82 3.119 3.061 3.119 –1.89 
–1 21 4 3.692 4.4e–4 3.560 –0.122 –3.71 3.612 3.560 3.621 –1.46 
–1 24 4.6 4.058 5.6e–4 3.883 –0.156 –4.51 3.962 3.883 3.974 –2.03 

The parameter R denotes the load ratio, N the load cycle number, and Δa the crack 
extension. The indices “max” and “min” denote maximum and minimum values during a 
load cycle. The values of the experimental cyclic J-integral expJΔ  are shown for 
comparison. Columns with i

jΔ  denote the relative difference between two values i, j.

In all cases the J-integrals for deformation plasticity convJ  equals the computational J-
integral of ABAQUS, VCEJ . It is clear from Eq. (7.7) that conv ep

PZ PZJ J= , unless gy-conditions 
appear. At the maximum load of every load cycle the deformation plasticity far-field J-
integral comes close to the value around the plastic zone, , whereas at 
the minimum load of each load cycle,  strongly differs from the values of 

. The reason has been already explained in detail in Ochensberger and 
Kolednik (2014), Section 4.2 therein: Artificial bulk configurational forces are induced in the 
back-face plasticity region since the conditions of proportional loading are violated during 
unloading. The deformation plasticity J-integral around the active plastic zone  shows 
an oscillating curve that continuously decreases with every load cycle, so that after a certain 
number of load cycles the values are negative even at maximum load.  

Tables 7.1 and 7.2 collect also additional results of  and  for load ratios 
R = 0.5 and –1 under ssy- and lsy-conditions. Especially for R = 0.5 and lsy-conditions, the 
difference between the values at maximum load,  and , can be significant. 

conv conv ep
far,max PZ,max PZ,maxJ J J≈ =

conv
far,minJ

conv ep
PZ,min PZ,minJ J=

conv
actPZJ

ep
actPZJ ep

PZJ

ep
actPZ,maxJ ep

PZ,maxJ
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Table 7.2 Values of the incremental plasticity J-integrals around the crack tip plastic zone, ep
PZJ , and 

around the active plastic zone, ep
actPZJ , for large-scale yielding conditions. 

R N Δa ep
PZ,maxJ ep

PZ,minJ ep
actPZ,maxJ ep

actPZ,minJ actPZ,max

PZ,max

J
JΔ ep

PZJΔ ep
actPZJΔ expJΔ actPZ

PZ

J
J

Δ
ΔΔ

- - [mm] [kJ/m²] [%] [kJ/m²] [%] 

            
0 1 0 10.56 0.000 10.56 0.008 0.00 - - 10.42 - 
0 2 0.2 10.83 0.008 15.27 –3.133 29.1 10.23 15.27 10.17 33.0 
0 6 1 12.06 0.011 11.33 –0.575 –6.44 11.34 11.33 11.32 –0.09 
0 11 2 14.02 0.019 13.30 –0.524 –5.41 13.01 13.30 13.06 2.18 
0 16 3 16.81 0.045 16.19 –0.529 –3.83 15.12 16.19 15.24 6.61 
0 21 4 21.40 0.143 21.25 –0.690 –0.71 18.04 21.25 18.12 15.1 
0 24 4.6 27.95 0.367 27.86 –1.015 –0.32 21.91 27.86 22.51 21.4 
            

0.5 1 0 10.56 0.000 10.56 2.832 0.00 - - 10.42 - 
0.5 2 0.2 10.81 2.832 14.85 3.520 27.2 2.578 3.910 2.568 34.1 
0.5 6 1 12.00 3.135 10.72 1.743 –11.9 2.868 3.818 2.867 24.9 
0.5 11 2 13.93 3.670 12.20 2.364 –14.2 3.300 3.823 3.321 13.7 
0.5 16 3 16.69 4.511 15.05 3.111 –10.9 3.847 4.476 3.889 14.0 
0.5 21 4 21.24 6.039 19.70 4.511 –7.82 4.628 5.357 4.695 13.6 
0.5 24 4.6 27.87 7.923 26.83 6.075 –3.88 6.073 7.371 6.419 17.6 

            
–1 1 0 10.56 0.000 10.56 5.2e–4 0.00 - - 10.42 - 
–1 2 0.2 10.84 5.2e–4 15.30 –3.608 29.1 10.69 15.30 10.57 30.1 
–1 6 1 12.08 0.002 11.60 –0.484 –4.14 11.92 11.60 12.04 –2.76 
–1 11 2 14.06 0.003 13.79 –0.454 –1.96 13.73 13.79 13.80 0.44 
–1 16 3 16.90 0.004 17.04 –0.702 –0.82 16.45 17.04 16.63 3.46 
–1 21 4 21.57 0.006 22.19 –1.166 –2.79 20.99 22.19 21.04 5.41 
–1 24 4.6 27.96 0.020 29.22 –1.680 –4.31 26.48 29.22 26.13 9.38 

The parameter R denotes the load ratio, N the load cycle number, and Δa the crack 
extension. The indices “max” and “min” denote maximum and minimum values during a 
load cycle. The values of the experimental cyclic J-integral expJΔ  are shown for 
comparison. General yielding conditions prevail for the rows marked in grey. 

7.4.2 Bulk configurational forces in the crack tip plastic zone 

In order to explore the differences that appear in Fig. 7.5 between ep
actPZJ  and ep

PZJ , we analyze 
in this section the distribution of the bulk configurational force epf  in the crack tip plastic 
zone. For easier understanding, it is useful to transform Eq. (7.6) into small strain plasticity 
(Simha et al. 2008),  

p
ep : ∂=

∂
f

x
, (7.13) 

where  denotes the Cauchy stress tensor and p  the plastic part of the linear strain tensor . 
Note that for crack and crack growth in x-direction, only the x-component of the 
configurational force epf -vector,  
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Fig. 7.6 Distribution of incremental plasticity bulk configurational force epf in the entire crack 
tip plastic zone at a maximum load, max 12.5kNF = , after a crack extension of 

1mmaΔ = , compare Fig. 7.4a. Regions on the boundaries of the plastic zone and the 
bunting region of the initial crack tip are enlarged in detailed views; a finer mesh size 
of m = 0.033 mm is used for a better visualization of the epf -vectors.

contributes to the scalar -integral, see Eq. (7.5).  
Figure 7.6 presents, for a load ratio R = 0, the distribution of the bulk configurational 

force  in the total crack tip plastic zone at maximum load during the 6th load 
cycle, after 1 mm of crack growth. Important regions are enlarged in the detailed views where 
a finer mesh of m = 0.033 mm is used to obtain a better visualization of the -vectors.12  

On the left boundary of the crack tip plastic zone, -vectors appear with a positive -
component, while  is negative for -vectors on the right boundary. Along the upper 
boundary, -vectors emerge with x-components of almost zero; they only have a negative y-
component . It is seen that in all cases the direction of -vectors clearly follows the 
gradient of the plastic strain, corresponding to Eq. (7.13); Fig. 7.4a includes schematically the 
directions of these -vectors. In the blunting region of the initial crack tip, the -vectors 
point to either direction, but the resulting configurational force, i.e. the sum of the x-
components of all -vectors lying within this region, points into the negative x-direction.  

The largest -vectors appear around the current crack tip, since there both stress and 
gradient of plastic strain are largest, Eq. (7.13). Due to symmetry, each -vector that 
emerges from a node directly along the ligament in front of the current crack tip does have a 
“companion” -vector from the lower specimen half. The resulting -vector of both 
                                                 
12 For generating Fig. 7.6, the simulation was repeated with a FE-mesh size of m = 0.033 mm. 
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specimen halves has only a component in x-direction. This applies also for  which emerges 
from the current crack tip. For numerical reasons,  has a finite value which 
depends on the FE-mesh size, see Kolednik et al. (2014). A decrease of the mesh size leads to 
a reduction of the magnitude of  and yields finally  = 0. However, the values of  
(and ) are not affected by a mesh refinement; Section 7.5.1 provides an example.  

The variation of the difference between  and  shown in Fig. 7.5a can be 
understood from Fig. 7.6 and Eq. (7.12): More and more bulk configurational forces  of 
the initial plastic zone become excluded from the integration contour , when it is shifted 
to the right during crack extension. First, the epf -vectors with positive ep

xf -components from 
the left boundary are excluded, leading to the peak value of ep

actPZ,maxJ  observed at N = 2. Next, 
the integration contour actPZΓ  excludes the blunting region of the initial crack tip. Since the 
resulting epf  in this blunting region has a negative x-component, the value of ep

actPZ,maxJ  drops 
below the value of ep

PZ,maxJ . With further crack extension the difference between ep
actPZ,maxJ  and 

ep
PZ,maxJ remains equal, since the excluded epf -vectors of the plastic wake have no x-

component. It should be mentioned that a similar variation of ep
actPZJ  is reported in Section 5.3 

of Kolednik et al (2014) for a growing crack under constant load. 
For lsy-conditions, the difference between the values of ep

actPZ,maxJ  and ep
PZ,maxJ decreases 

with increasing crack extension, because the right boundary of the active plastic zone, with 
epf -vectors in negative x-direction, increases. Finally, the difference nearly vanishes under 

gy-conditions.  
The differences between ep

actPZ,minJ  and ep
PZ,minJ  at minimum load minF  can be explained 

analogously. Note that, due to the appearance of compressive stresses during unloading, the 
epf -vectors at minF  point into the opposite x-direction compared to the maxF -stage. This has 

been explained already in Ochensberger and Kolednik (2014), see also Section 7.2.3. It can be 
shown that negative ep

actPZ,minJ -values originate for R  0 from these negative stresses; the 
relevance of these negative ep

actPZ,minJ -values will be discussed in the next section. 

7.5 Driving force for fatigue crack growth 
For a cyclically loaded, stationary crack, Ochensberger and Kolednik (2014) proposed the 
cyclic, incremental plasticity J-integral around the crack tip plastic zone, ep

PZJΔ , as physically 
appropriate driving force parameter. Consequently, for a growing fatigue crack it is 
reasonable to adopt the cyclic, incremental plasticity J-integral around the active crack tip 
plastic zone, ep

actPZJΔ , as the appropriate driving force parameter for fatigue crack growth. One 
argument is that only the active plastic zone travels with the crack tip during crack extension; 
the initial plastic zone and the plastic wake do not move. Another reason is that plasticity far 
from the current crack tip cannot be responsible for fatigue crack propagation that occurs due 
to cyclic plastic deformation at the current tip. 

It seems obvious that ep
actPZJΔ  should be evaluated, analogously to Eq. (7.9), by the 

relation, 

ep
minactPZ,

ep
maxactPZ,

ep
minactPZ,

ep
maxactPZ,

ep
actPZ 2 JJJJJ −+=Δ . (7.15) 

ep
tipf

( )ep ep
tip tipJ = ⋅ −e f
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tipJ ep
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At this point we arrive at a dilemma when the incremental plasticity J-integral at minimum 
load, ep

minactPZ,J , is negative, as shown in Tables 7.1 and 7.2 for load ratios 0R =  and 1R = − , 
since this leads to a complex square root term. Therefore, it should be clarified in which form 
the negative values of ep

actPZJ  in a load cycle deliver a contribution to the driving force for 
fatigue crack growth. We do this by studying the relation between the incremental plasticity 
J-integral epJ  and the crack tip opening displacement tδ .  

7.5.1 Incremental plasticity J-integral epJ  and crack tip opening displacement 

Fatigue crack growth in ductile metals and alloys is driven by cyclic plasticity at the current 
crack tip (Laird 1967, 1979). The crucial role of crack tip plasticity was confirmed by 
experiments, e.g. Tanaka (1989), Krupp et al. (2001), and Pippan et al. (2010), where it was 
shown that the crack growth rate of a fatigue crack Na dd  is a function of the cyclic crack tip 
opening displacement at the current crack tip, td da N δ∝ Δ  with t t,max t,minδ δ δΔ = − .  

A correct numerical evaluation of the crack tip opening displacement tδ  during fatigue 
crack propagation is difficult, since it requires a very fine FE-mesh. Experimental 
investigations using stereophotogrammetric measurements show that the crack tip opening 
displacement should be determined a distance behind the blunted crack tip, which 
corresponds to the width of the stretched zone (Kolednik and Stüwe 1985; Kolednik and 
Kutlesa 1989, Siegmund et al. 1990); a good approximation of this distance is for many 
materials given by t0.4 δ , see Kolednik and Stüwe (1987), Heerens et al. (1988). Therefore, 

tδ  should not be determined at a fixed distance behind the crack tip, since measurements at 
too large distances lead to an overestimate of tδ , and vice versa. However, it is difficult to 
fulfill these requirements in practice. Dougherty et al. (1997) give a minimum element size m
in order to determine accurate tδ -values, pl 0.1m r ≤ , where plr  denotes the radius of the 
crack tip plastic zone. According to Solanki et al. (2003, 2004) the mesh size shall be further 
reduced by a factor 3  4. The relation 2

pl yr JEβ σ= , with 0.1β ≈ , yields for the maximum 
load of the 1st load cycle pl 0.59 mmr ≈  and pl 2.90 mmr ≈  for ssy- and lsy-conditions, 
respectively; this is roughly in agreement with Fig. 7.4a and Fig. 7.4b. The relation 

y tJ k σ δ= , with ep
PZJ J=  and 2k ≈ , yields values of the crack tip opening displacement, 

t 3.95 mδ ≈  and t 19.6 mδ ≈ , for ssy- and lsy-conditions, respectively. According to the 
criterion by Solanki et al. (1997), a mesh size of approximately m  4 tδ  would be sufficient 
for gaining accurate tδ -values, which appears somewhat doubtful to us.  

However, the computation of accurate tδ -values is not very important for our purposes; 
our interest lies only in the correct reflection of crack tip opening and -closure behavior 
during the loading and unloading stages. Therefore, a mesh size of m = 0.1 mm should be 
sufficient for lsy-conditions; additional computations with smaller mesh size, 01=m m, are 
conducted for ssy-conditions. The crack tip opening displacement is taken one element behind 
the current crack tip, as e.g. in Solanki et al. (2004).  
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Fig. 7.7 Incremental plasticity J-integrals, ep
actPZJ  and ep

PZJ , plotted against the crack tip opening 
displacement tδ  during re-loading after 1mmaΔ =  crack extension. Values are 
depicted for (a) small-scale yielding, mesh sizes m = 0.1 mm and 10 m; (c) large-
scale yielding, m = 0.1 mm. (b) and (d) show enlarged views of the beginnings of the 
loading sequences. The results suggest that loading stages where ep

actPZJ  is negative do 
not contribute to fatigue crack propagation, since tδ  is zero. 

Figure 7.7 shows the curves  versus  during loading from  to  during 
the 6th load cycle, i.e. after a crack extension of . The values for  are included 
for comparison. The curves for ssy-conditions are plotted in Fig. 7.7a; Fig. 7.7b gives a 
detailed view of the region near the minimum load. Figure 7.7c, d present the curves for lsy-

ep
actPZJ tδ minF maxF

mm1=Δa ep
PZJ

Δa = 1 mm, N = 6, large-scale yielding conditions

Δa = 1 mm, N = 6, small-scale yielding conditions

(a) (b) 

(c) (d) 
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conditions. It is seen that  during the very initial loading stages. The curves suggest that 
the crack tip opening displacement  does not start to increase before  becomes 
positive.  

Thus, we state that negative values of  do not deliver a contribution to the fatigue 
crack growth rate, since the crack tip is closed during this stage. Moreover, from a 
thermodynamic view, a negative x-component of the -vector means that the crack feels 
a driving force for shortening its length. Therefore, the stage where the crack driving force is 
negative cannot deliver a contribution to the driving force for fatigue crack growth. For these 
reasons, we conclude that the negative values of  are not relevant for calculating the 
driving force for fatigue crack growth, and  for . 

It should be mentioned that the values of  (and ) are not affected by the 
decrease in mesh size m by a factor ten for ssy-conditions. For example, at maximum load we 
get  for  and  for . On 
the contrary, the values of the crack tip opening displacement show a big variation: at 
maximum load we get  for  and  for . This 
clearly demonstrates the advantage of the J-integral concept. 

For negative load ratios R < 0 it can be also shown that negative -values do not 
give a contribution to the cyclic J-integral . Therefore, the driving force for fatigue 
crack growth is equal to the incremental plasticity J-integral around the active plastic zone at 
maximum load for zero-tension and tension-compression loading, 

. (7.16) 

Note that the exact upper boundary for the validity of Eq. (7.16) has not been determined. For 
positive load ratios R > 0, the curves  and  versus  are almost linear and do not 
have a vertical part near Fmin. Since both the ep

minactPZ,J - and mint,δ -values are positive at 
minimum load, Eq. (7.15) must be used to evaluate ep

actPZJΔ .  
Table 7.1 lists ep

actPZJΔ -values with increasing load cycle number N and crack extension 
aΔ  for load ratios, R = 0, 0.5 and –1, under ssy-conditions. The results for ep

PZJΔ , Eq. (7.9), 
are collected for comparison. The difference between ep

actPZJΔ  and ep
PZJΔ  is of the order of 2% 

for 0R ≤ ; on the contrary, ep
actPZJΔ  can even exceed ep

PZJΔ  by 13% for 0.5R = . Table 7.2 lists 
corresponding values for lsy-conditions. Here, the difference between ep

actPZJΔ  and ep
PZJΔ  can 

become large for all load ratios. For R = 0.5, the values of ep
minactPZ,J  are distinctively smaller 

than the ep
minPZ,J -values which cause lower square root terms in Eq. (7.15) and, thus,  

significantly higher values of ep
actPZJΔ  compared to ep

PZJΔ . Figure 7.8 presents, for a load ratio 
R = 0, the variations of ep

actPZJΔ  and ep
PZJΔ  with increasing crack extension. The variations of 

the cyclic crack tip opening displacement, t t,max t,minδ δ δΔ = − , with crack extension are shown 
for comparison. 

  

t 0δ =

tδ ep
actPZJ
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ep ep
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(a) 

(b) 

Fig. 7.8 Development of the cyclic, incremental plasticity cyclic J-integrals around the crack 
tip plastic zone, ep

PZJΔ , and around the active plastic zone, ep
actPZJΔ , with crack extension 

aΔ . Values of the cyclic crack tip opening displacement tδΔ  and the experimental 
cyclic J-integral expJΔ  are drawn for comparison. (a) Small-scale yielding, (b) large-
scale yielding conditions. The computations are made for a FE-mesh size of m = 0.1 
mm; the first crack growth periods are re-calculated for a finer mesh size, m = 10 m, 
see dotted curves. 

The conclusion of this section is that the loading stages where  becomes negative 
do not play a role for the calculation of the driving force for fatigue crack propagation. In the 
following section, the validity of the experimental cyclic J-integral  proposed by 
Dowling and Begley (1976) shall be checked. 
  

ep
minactPZ,J

expJΔ
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7.5.2 Comparison to the experimental cyclic J-integral expJΔ

The experimental cyclic J-integral expJΔ  (Dowling and Begley, 1976) is computed from the 
area AΔ  below a single loading branch of the load–displacement (F–v) curve, Eq. (7.8). The 

expJΔ -values for R = 0 are drawn into Fig. 7.8 and listed in Tables 7.1 and 7.2. It is seen that 
expJΔ  fits very well to the values of the cyclic, incremental plasticity J-integral ep

PZJΔ . This 
corresponds to the findings reported in Sections 7.2.2 and 7.2.3, and to Eq. (7.10). The 
experimental cyclic J-integral expJΔ  does not fit so well to ep

actPZJΔ , although the error remains 
small for ssy-conditions. However, the error can reach 20% for lsy-conditions. The values 
listed for actPZ

PZ

J
J

Δ
ΔΔ  in Tables 7.1 and 7.2 are approximately equal to the relative difference 

between ep
actPZJΔ  and expJΔ . Note that a small error of about 2% has to be taken into account 

in the evaluation of expJΔ , which seems to result from an inaccuracy of the geometry factor 
taken from ASTM E1820 (2005), compare the values listed for N = 1 in Tables 7.1 and 7.2.  

Tables 7.1 and 7.2 collect also the expJΔ -values for load ratios R = 0.5 and –1. For load 
ratios 0R < , in presence of crack closure, the values of expJΔ  depend on the correct 
determination of AΔ . According to Dowling and Begley (1976), the opening load opF  shall be 
determined from the compliance change that is visible as kink in the F–v-curve, Fig. 7.2b. 
Ochensberger and Kolednik (2014) showed for stationary cracks that this procedure tends to 
overestimate the driving force. Instead, AΔ  should be determined as the area above the load 

ep
PZ 0J

F
= , where the incremental plasticity J-integral around the crack tip plastic zone reaches its 

minimum value, ep
PZ,min 0J = . The same procedure is used for the evaluation of the expJΔ -

values listed in Tables 7.1 and 7.2 for 1R = − . The results show that expJΔ  fits very well to
ep
PZJΔ , and Eq. (7.10) remains valid, unless gy-conditions prevail. 
Crack closure does not occur for 0R > . It is seen that the misfit between expJΔ  and 

ep
PZJΔ  is small for various load ratios under ssy- and lsy-conditions, see Tables 7.1 and 7.2. In 

both cases the misfit slightly increases with increasing crack extension. 
The validity of Eq. (7.10) becomes clear from the following: the condition ep conv

PZ PZJ J= , 
Eq. (7.7), is fulfilled for cyclic loading conditions as long as the crack tip plastic zone is 
surrounded by elastically deformed material, see Sections 7.2.2 and 7.2.3. The requirement 
for the validity of the condition conv exp

PZJ J=  is that a single loading cycle of a growing fatigue 
crack can be treated like a stationary crack under monotonic loading; only then, the 
conventional J-integral and the experimental J-integral expJ  lead to the same results, see Rice 
et al. (1973), Kolednik (1991). This requirement is fulfilled during loading in each load cycle. 

Table 7.1 shows that the experimental cyclic J-integral expJΔ  overestimates the driving 
force for fatigue crack growth ep

actPZJΔ  by approximately 2% for ssy-conditions and 0R =  and 
1R = − . On the contrary, expJΔ  considerably underestimates ep

actPZJΔ  for 0.5R = , whereby 
the misfit decreases up to 12% with increasing crack extension. For lsy-conditions, Table 7.2, 

expJΔ  underestimates ep
actPZJΔ  for all load ratios. The misfit increases with crack extension to 

approximately 20% for 0R =  and to 5% for 1R = − . For 0.5R = , the misfit of about 15% is 
rather independent of crack extension. The reason for the high misfit under R = 0.5, even for 
ssy-conditions, is currently not fully understood by the authors, but it might be caused by the 
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fact that proportional loading is fulfilled for each maximum load of a load cycle, which is 
required for the validity of ep exp

PZJ J= , whereas this is not the case for the minimum load. 
We can conclude this section by stating that the experimental cyclic J-integral does not 

exactly reflect the driving force for growing fatigue cracks in elastic–plastic materials, since it 
corresponds to the cyclic, incremental plasticity J-integral around the crack tip plastic zone, 
and not around the active plastic zone, exp ep ep

PZ actPZJ J JΔ ≈ Δ ≠ Δ . The difference between expJΔ
and ep

actPZJΔ  can reach approximately 20% for lsy-conditions. 

7.6 The effect of a single tensile overload 
In this section, a further test shall be conducted in order to check whether the cyclic, 
incremental plasticity J-integral for a contour around the active plastic zone, ep

actPZJΔ , is the 
appropriate parameter for the characterization of the driving force for fatigue crack 
propagation, and not the cyclic J-integral for a contour around the plastic zone, ep

PZJΔ . It is 
investigated whether ep

actPZJΔ  is able to reflect the well-known overload effect: Crack growth 
retardation occurs, after a single tensile overload has been superimposed to cyclic loading 
with constant load amplitude. With further crack extension the crack growth rate gradually 
increases, reaching again the crack growth rate pertaining to the constant fatigue load 
somewhat after the active plastic zone has escaped from the plastic zone produced by the 
overload (Schijve 1960, Christensen 1959, von Euw et al. 1972, Suresh 1983, Fleck 1988, 
Skorupa 1998). 

The fatigue crack growth rate Na dd  in ductile metals and alloys is proportional to the 
cyclic crack tip opening displacement tδΔ ; this is so also after applying an overload. This fact 
was confirmed by experiments, e.g. Pippan et al. (2005) and Bichler and Pippan (1999, 2007), 
and by numerical studies, e.g. Tvergaard (2005). For example, Bichler and Pippan (2007) 
conducted KΔ -controlled fatigue tests under ssy-conditions with load ratio R = 0.05, using 
C(T)-specimens fabricated of ductile austenitic CrNi steel. The constant KΔ -fatigue history, 
with KΔ  = 70 MPa m, was interrupted by a single tensile overload with various overload 
ratios, OL OL max 1.1 2R F F= = ÷ . By analyzing fatigue striations (Zappfe and Worden 1951), 
which usually correlate with Na dd  (Forsyth and Ryder 1960), and by conducting 
stereophotogrammetric measurements (Kolednik 1981) of the crack tip opening displacement 

tδ , Pippan and Bichler (2007) demonstrated that the relation, td da N δ∝ Δ , is valid also in 
the post-overload regime.  

Our numerical test is conducted for zero-tension cyclic loading under ssy-conditions with 
applied maximum load, 5.12max =F kN. A tensile overload, kN25OL =F , is applied in the 
fourth load cycle after aΔ  = 0.6 mm crack extension (Fig. 7.3b); the overload ratio is 

OL OL max 2R F F= = . Note that ssy-conditions still prevail during application of the overload, 
i.e. no back-face plasticity occurs. For our purpose, a FE-mesh size of m = 0.1 mm was seen 
to be sufficient. 
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Fig. 7.9 Effect of a single tensile overload, applied during the 4th load cycle at aΔ  = 0.6 mm. 
The cyclic, incremental plasticity J-integrals around the crack tip plastic zone, ep

PZJΔ , 
and around the active plastic zone, ep

actPZJΔ , are plotted against crack extension aΔ . 
Values of the cyclic crack tip opening displacement tδΔ  and the experimental cyclic 
J-integral expJΔ  are drawn for comparison. The parameter ep

actPZJΔ  correlates perfectly 
with tδΔ , exhibiting a crack growth retardation effect, whereas this is not the case for 

ep
PZJΔ  and expJΔ . 

Figure 7.9 presents the variations of , , the cyclic experimental J-integral 
, and  as functions of the crack extension . It is seen that  varies 

analogously to  and clearly shows the retardation effect, whereas this is not the case for 
 and .  

The minimum value of ep
actPZ 0.269 kJ m²JΔ =  is reached after 0.4 mm of crack growth 

following the overload cycle, i.e. 1mmaΔ =  total crack extension. This gives a reduction of 
about 88% compared to the ep

actPZJΔ -value at 1mmaΔ =  for a constant fatigue load, see Fig. 
7.8a and Table 7.1. This value is in excellent agreement with the experimental results 
obtained by Bichler and Pippan (2007) from 25 mm thick C(T)-specimens (plane strain 
dominance), subjected to OL 2R = , where a maximal reduction in Na dd  of about 84% was 
observed after approximately 0.5 mm crack growth following the overload.  

The overload case study has confirmed that the cyclic, incremental plasticity J-integral 
for a contour around the active plastic zone, ep

actPZJΔ , is a physically appropriate driving force 
parameter for assessing the fatigue crack growth rate. 

ep
actPZJΔ ep

PZJΔ
expJΔ tδΔ aΔ ep

actPZJΔ
tδΔ

ep
PZJΔ expJΔ
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7.7 Computational aspects in the evaluation of ep
actPZJΔ

In the following, a few issues regarding the computation of ep
actPZJΔ  shall be pointed out, 

which might be important for the practical application of the concept presented in the current 
paper.  

The values of ep
actPZJ  are not affected of the used FE-mesh size, especially, in comparison 

to the expensive numerical effort that is necessary to obtain accurate results for the crack tip 
opening displacement tδ , see Fig. 7.7a.  

Provided that the active plastic zone has left the plastic zone of the initial crack tip, the 
magnitude of ep

actPZJ is not significantly influenced by the magnitude of the integration contour 
actPZΓ . The reason is that the configurational forces in the plastic wake do not deliver a 

contribution to the value of ep
actPZJ , see Section 7.4.2. Therefore, it is not important to find the 

exact shape of the active plastic zone (Fig. 7.4a).  
However, one has to be careful during the initial stages of crack extension, especially, 

before the active plastic zone excludes the blunting region of the initial crack tip. In Section 
7.4 we have shown that ep

actPZJ  at maximum load exhibits a peak value after the onset of crack 
extension; compare the ep

actPZ,maxJ -values listed for N = 2 in Tables 7.1 and 7.2. Note that both 
position and magnitude of this peak value depends on the FE-mesh size m: A smaller mesh 
size gives a higher peak at smaller crack growth distance. The effect is shown in Fig. 7.8, for 
a reduction of m by a factor ten and a crack extension increment per load cycle of ( ) ma 2=ΔΔ . 
In this way, the finer FE-mesh is connected to a smaller crack extension increment per load 
cycle. Nevertheless, graphs similar to Fig. 7.7 can be also drawn for the first load cycles, 
showing that the crack tip is closed during the stages where ep

actPZJ  is negative and, thus, 
ep ep
actPZ actPZ,maxJ JΔ = , Eq. (7.16), is still valid and that ep

actPZJΔ  correlates to tδΔ . 
The dependence of this peak value on the mesh size m is caused by the inhomogeneity of 

the plastic strain field around the crack tip, especially, near the blunted tip. A coarse mesh 
leads to a smoothing of stress and strain peaks and causes a reduction of the magnitude of the 
configurational force epf , see Eq. (7.13).  

Furthermore, it should be noted that additional FE-analyses are conducted where the 
crack extension in each load cycle occurs at maximum load. Basically, the results do not 
change compared to the procedure with crack extension at minimum load, and the same 
conclusions can be drawn as presented above.  

7.8 Summary 
The current paper discusses the physically correct evaluation of the driving force for fatigue 
crack propagation in elastic–plastic materials using the J-integral concept. Numerical 
investigations are conducted for a two-dimensional compact tension specimen with a long 
crack under cyclic Mode I loading. The crack extends by an increment after each load cycle at 
the minimum load. The maximum load is varied so that small- and large-scale yielding 
conditions prevail. Three different load ratios are considered, from pure tension to tension-
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compression loading. In general, maximum and minimum load are held constant during crack 
extension; in addition, the effect of a single tensile overload is also studied.  

The results of the analyses show that the cyclic, incremental plasticity J-integral ep
actPZJΔ , 

which is computed for a contour around the active plastic zone of the growing crack, is 
physically appropriate to characterize the growth rate of fatigue cracks in elastic–plastic 
materials.  

The experimental cyclic J-integral expJΔ , proposed by Dowling and Begley (1976), 
measures the cyclic, incremental plasticity J-integral for a contour around the total plastic 
zone, ep

PZJΔ ; the contour includes also the plastic zone around the initial crack tip and the 
plastic wake. The experimental cyclic J-integral expJΔ  reflects the driving force of a 
stationary crack, i.e. it is valid for the first load cycle. After crack extension, the incremental 
plasticity J-integral around the total plastic zone ep

PZJ  differs from that around the active 
plastic zone ep

actPZJ . Therefore,  ep ep
PZ actPZJ JΔ ≠ Δ , and the  experimental cyclic J-integral expJΔ

is not fully appropriate to reflect the driving force for a growing fatigue crack. 
The difference between ep

actPZJΔ  and ep
PZJΔ  is most clearly seen in the overload case, 

where ep
actPZJΔ  is able to correctly reflect the well-known crack growth retardation effect, 

whereas ep
PZJΔ  and expJΔ  would predict a constant crack growth rate. 
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8 Fatigue crack growth after an overload 

In Paper II it has been shown that the parameter ep
actPZJΔ  is able to accurately reflect crack 

growth retardation after a single overload. However, the main reason for this effect has not 
been investigated. The overload effect is the most famous load history effect in fatigue under 
variable load amplitude, but its major reason is still not fully clarified (e.g. Anderson 1995, 
Suresh 1998). Clear understanding of load history effects on the fatigue crack growth rate is 
of great importance for the development of reliable fatigue lifetime predictions models under 
variable amplitude loading since load fluctuations commonly occur in service.  

What is the main reason for crack growth retardation after an overload? Is it crack flank 
contact behind or residual stresses around the propagating crack tip? This is the main 
question to be answered in Paper III. 

Numerous researchers claim that crack flank contact is the most dominant mechanism for 
the overload effect (see e.g. Suresh 1998). The main justification for this opinion rests on the 
delayed crack growth retardation phenomenon, i.e. crack growth retardation does not occur 
immediately after the overload. Some crack growth into the overload plastic zone is needed so 
that residual stresses behind the crack tip result in plasticity-induced crack closure. On the 
contrary, crack growth retardation should occur immediately if residual stresses around the 
moving crack tip are more dominant (e.g. Anderson 1995, Suresh 1998). Therefore, we 
investigate also the delayed crack growth retardation phenomenon in Paper III. 

In the following paper, numerical case studies are performed, similar as in Paper II, for 
various overload ratios, OL OL maxR F F=  and various load ratios, min maxR F F= , under small-
scale yielding and plane strain conditions. Important to mention is that the simulations are 
first performed with crack flank contact, and then compared to a fictive case where crack 
flank overlap is possible, i.e. without contact. This enables a separation of the effect of crack 
flank contact on the overload effect. 

The studies on the variations of ep
actPZJ , Eq. (8.3), during cyclic loading after an overload, 

in combination with an analysis of the configurational force distribution, leads to the 
following conclusions of Paper III: 

• The main features of the overload effect, i.e. the strong reduction of the fatigue crack 
driving force  and the delayed retardation phenomenon, occur, no matter 
whether crack flank contact does exist or not.  

• The major mechanism for the reduction of  is the reduction of the stresses 
around the propagating crack tip. The appearance of delayed crack growth retardation 
is related to a stronger crack tip blunting by the overload. 

• Crack flank contact causes, for load ratios 0R ≥ , only a little further decrease of the 
stresses around the current crack tip; for example, the maximum reduction in  is 

ep
actPZJΔ

ep
actPZJΔ

ep
actPZJΔ
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for R = 0 and OL 2R =  only 6% smaller compared to the overlap case. Therefore, crack 
flank contact may decide whether a crack arrests or not. The role of crack flank 
contact becomes more important for tension-compression loading, R < 0.  

• The ability of the effective stress intensity range effKΔ  to reflect the overload effect is 
also checked. It is shown that effKΔ  can be used to accurately determine the maximum 
crack growth retardation after an overload. However, effKΔ  does not deliver the 
delayed retardation phenomenon and significantly underestimates the magnitude of the 
fatigue crack driving force for larger crack extensions after the overload. 

It is important to highlight that these findings are obtained for a perfectly flat crack under 
plane strain conditions. For a real three-dimensional specimen, with rough crack flanks, the 
influence of the lateral contraction at the side surfaces of the specimen might lead to a 
considerably higher contribution of crack flank contact to the overload effect. 
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Overload effect revisited –  
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International Journal of Fatigue (2015) 

Abstract  
The configurational force concept enables the derivation of the incremental plasticity J-
integral epJ , which is, in contrast to the conventional J-integral, physically appropriate to 
characterize the crack driving force in cyclically loaded elastic–plastic materials with growing 
cracks. In this paper we apply epJ , combined with an analysis of the configurational force 
distribution, for the investigation of fatigue crack growth retardation after a single tensile 
overload. The motivation for this investigation is that the main reason for the overload effect, 
i.e. crack flank contact behind or residual stresses around the growing crack tip, is today still 
an open question in fatigue. Numerical case studies are performed for two-dimensional 
Compact Tension specimens with long cracks that grow under cyclic Mode I loading and 
plane strain conditions. Variables of the numerical case studies are the overload ratio and the 
load ratio during constant cyclic loading. The influence of crack flank contact is examined by 
a comparison of two different simulations: The first simulation assumes frictionless contact 
between the upper and lower crack flank; in the second, fictive case, it is assumed that crack 
flank overlap is possible. The results show that all features of the overload effect even occur, 
if crack flank contact is not possible. Finally, the ability of the effective stress intensity range 

effKΔ  to characterize the overload effect is also discussed.  

Keywords: Fatigue crack growth; Crack driving force; Cyclic J-integral; Crack closure; 
Residual stresses 
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8.1 Introduction 
The overload effect, i.e. crack growth retardation following a single tensile overload, is an 
abundantly studied phenomenon, see e.g. Schijve (1961); Christensen (1959); von Euw et al. 
(1972); Suresh (1983); Fleck (1988); Skorupa (1998). Various mechanisms can contribute to 
this effect (e.g. Anderson 1995, Suresh 1998); the two most important mechanisms are crack 
flank contact behind (e.g. Elber 1970, 1971; von Euw et al. 1972; Fleck 1988; Ward-Close 
and Ritchie 1988; Ward-Close et al. 1989; Blom 1989) and residual stresses around the 
moving crack tip (e.g. Drew et al. 1982; Suresh 1983; Ling and Schijve 1992; Sadananda et 
al. 1999). The question, which of the two mechanisms is more dominant, is still a contentious 
issue. 

The preferred opinion among fatigue experts is that crack flank contact is predominant 
(e.g. Anderson 1995, Suresh 1998). The main justification for this opinion is the delayed 
retardation phenomenon, i.e. crack growth retardation does not occur immediately after the 
overload (e.g. Schijve 1961; Elber 1970, 1971; von Euw et al. 1972; Fleck 1988; Ward-Close 
and Ritchie 1988; Ward-Close et al. 1989; Blom 1989; Bichler and Pippan 1999, 2007). 
Although many experiments confirm the role of crack flank contact in influencing the 
overload effect, some experimental observations are not fully consistent with this mechanism, 
see e.g. Suresh (1983), Drew et al. (1982), Ling and Schijve (1992). Especially, Sadananda et 
al. (1999) raise doubts on the significance of crack flank contact, and they claim that residual 
stresses around the crack tip are more important for the overload effect.  

This paper focuses on the question, what is the primary reason for crack growth 
retardation after a single tensile overload? We aim to shed new light on this topic by using the 
concept of configurational forces.  

The concept of configurational forces has enabled the derivation of the J-integral epJ  for 
elastic–plastic materials with incremental theory of plasticity (Simha et al. 2008). Even for 
strongly non-proportional loading conditions, such as crack extension under monotonic or 
cyclic loading, epJ  has the physical meaning of a driving force term for a crack in an elastic–
plastic material; however, it is path dependent (Simha et al. 2008). It is well known that the 
classical J-integral (Rice 1968a,b) does not provide such a true driving force term when 
applied to elastic–plastic materials, see e.g. Anderson (1995). The reason is that the classical 
J-integral is based on deformation theory of plasticity, which is not applicable for non-
proportional loading conditions. 

In two recent papers, Ochensberger and Kolednik (2014, 2015) have successfully applied 
the incremental plasticity J-integral epJ  for the characterization of the growth rate of fatigue 
cracks in elastic–plastic materials. This is important for low-cycle fatigue and the growth of 
short fatigue cracks, where linear elastic fracture mechanics becomes invalid. It can be 
expected that the application of epJ , in combination with the analysis of the configurational 
force distribution, will provide us with new insight into the question of the most important 
mechanism for the overload effect. 

In the next section, we briefly introduce the epJ -integral and describe, how epJ  is used 
for the assessment of the fatigue crack propagation rate.  
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8.2 Incremental plasticity J-integral Jep and driving force for fatigue crack 
growth 

8.2.1 Configurational forces and J-integral for elastic–plastic materials

Configurational forces are thermodynamic driving forces that act on various types of defects 
in materials, e.g. vacancies, dislocations, voids, cracks (Eshelby 1951, 1970). The benefit of 
the concept of configurational forces is that it enables the derivation of the J-integral 
independent of the constitutive relations of the material, see e.g. Simha et al. (2003). Kolednik 
et al. (2014) provide an extensive literature review for the application of the configurational 
force concept for studying the behavior of cracks, which shall not be repeated at this point. 
Only the definition of the J-integral for elastic–plastic materials with incremental theory of 
plasticity epJ  is presented below. 

Assume a loaded elastic–plastic body , described by incremental theory of plasticity, 
with a crack and a crack tip plastic zone, as illustrated in Fig. 8.1a. The scalar J-integral epJ
is evaluated by multiplying the J-integral vector epJ  with the unit vector in the nominal crack 
growth direction e,  

ep ep ep ep
tip d= ⋅ = − ⋅ +J Ae J e f f . (8.1) 

The J-integral vector epJ , calculated for an arbitrary contour Γ , is given as the sum of the 
configurational force vector ep

tipf  emanating from the crack tip and the bulk configurational 
force vectors epf  that originate inside the contour  (Simha et al. 2008). Note that the contour 
Γ  is drawn around the crack tip from the lower to the upper crack flank and that  is the area 
enclosed by , but excluding the crack tip. The bulk configurational force vector epf  is 
calculated as the divergence of the second-rank configurational stress tensor C (Eshelby 1951, 
1970),

( )ep T
eφ= −∇ ⋅ = −∇ ⋅ −f C I F S . (8.2) 

In Eq. (8.2), the parameter eφ  denotes the elastic part of the strain energy density, I the 
identity tensor, TF  the transposed of the deformation gradient tensor F, and S the 1st Piola-
Kirchhoff stress. The bulk configurational force epf  is non-zero in the plastically deformed 
regions of the body. The magnitude of epf  is proportional to the stress and the gradient of the 
plastic strain, see Section 8.4.4 and Simha et al. (2008). Equation (8.2) is also used for 
calculating the configurational force at the crack tip ep

tipf  by forming a limit value, see Simha et 
al. (2008). 
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(a) (b) 

Fig. 8.1  (a) Homogeneous, elastic–plastic body  with a crack and the crack tip plastic zone. 
(b) Body after crack extension Δa. 

The configurational forces and the J-integral  can be evaluated, if the stresses and the 
strains in the body  are known. The advantages of the incremental plasticity J-integral  
in comparison to the classical J-integral (Rice 1968a,b) are:  

•  has the physical meaning of a driving force term in elastic–plastic materials with 
incremental theory of plasticity,  

• epJ  is applicable under non-proportional loading conditions, such as for cyclic loading 
and/or for growing cracks.  

However, since bulk configurational forces epf  are induced in plastically deformed regions, 
such as the crack tip plastic zone, epJ  becomes path dependent, see Eq. (8.1) and Fig. 8.1a.  

How the incremental plasticity J-integral epJ  can be used for the characterization of the 
fatigue crack growth rate, is briefly reviewed in the next section. 

8.2.2 Driving force for fatigue crack growth in the regime of non-linear fracture mechanics 

A “driving force” for fatigue crack growth should allow the characterization of the growth 
rate da/dN of fatigue cracks (e.g. Suresh 1998). The stress intensity range ΔK (Paris et al. 
1961; Paris and Erdogan 1963) or the effective stress intensity range effKΔ  (Elber 1970, 
1971) are such terms; they can be used if linear elastic fracture mechanics is valid. If this is 
not the case, the cyclic incremental plasticity J-integral, ep

actPZJΔ , should be applied, calculated 
for a contour actPZΓ  around the active plastic zone of the moving crack tip, see Fig. 1b. The 
parameter ep

actPZJΔ  is evaluated from the relation,  

ep
minactPZ,

ep
maxactPZ,

ep
minactPZ,

ep
maxactPZ,

ep
actPZ 2 JJJJJ −+=Δ , (8.3) 

epJ
epJ

epJ
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with ep
actPZ,maxJ  and ep

actPZ,minJ  as the maximum and minimum values of the incremental plasticity 
J-integrals during the considered load cycle. Note that ep

actPZ,min 0J ≥ , see Sect. 8.4.2. The 
expression of the cyclic J-integral, Eq. (8.3), was derived in Ochensberger and Kolednik 
(2015); see Section 6.5.2 and “Appendix” therein. 

The validity of the term ep
actPZΔJ  as driving force parameter for fatigue crack growth and 

the application of Eq. (8.3) have been demonstrated by comparisons with the cyclic crack tip 
opening displacement t t,max t,minδ δ δΔ = − , see Ochensberger and Kolednik (2015). This has 
been done because the crack growth rate in fatigue is driven by cyclic plasticity around the 
current crack tip, i.e. td da N δ∝ Δ  (e.g. Tanaka 1989, Krupp et al. 2001, Pippan et al. 2010). 
Ochensberger and Kolednik (2015) have shown that negative values of ep

actPZJ , which originate 
from compressive stresses during unloading, do not deliver a contribution to the driving force 
for fatigue crack growth, since tδ = 0 during these stages. As a consequence, Eq. (8.3) is 
simplified to the relation ep ep

actPZ actPZ,maxJ JΔ =  for load ratios 0R ≤ .  
For stationary fatigue cracks, the active and the initial crack tip plastic zone coincide, 

actPZ PZΓ = Γ  (Fig. 8.1), and ep
actPZΔJ  becomes equal to the cyclic incremental plasticity J-

integral around the total crack tip plastic zone ep
PZΔJ . For this case, ep

PZΔJ  corresponds exactly 
to the experimental cyclic J-integral expJΔ  introduced by Dowling and Begley (1976), which 
is determined from the area below a single loading branch of the load–displacement (F–v) 
record (Ochensberger and Kolednik 2014). Hence, expJΔ  is a fully appropriate driving force 
parameter for stationary fatigue cracks. For growing fatigue cracks, the experimental cyclic J-
integral expJΔ  reflects the magnitude of the cyclic incremental plasticity J-integral around the 
total crack tip plastic zone ep

PZΔJ , calculated for a contour PZΓ  around the total crack tip 
plastic zone; the contour includes the plastic zone of the initial crack tip, the plastic wake and 
the active plastic zone. But ep

PZΔJ  is not equal to the cyclic incremental plasticity J-integral 
around the active crack tip plastic zone ep

actPZΔJ , which is the real driving force. Therefore, the 
experimental cyclic J-integral expJΔ  is not fully appropriate to measure the driving force for a 
growing fatigue crack. The difference between ep

actPZJΔ  and expJΔ  (or ) can become large 
for lsy-conditions. Important is that in this case ep ep exp

actPZ PZJ J JΔ > Δ ≈ Δ , so that the 
experimental cyclic J-integral underestimates d da N , which can lead to a non-conservative 
assessment of the lifetime. 

The difference between ep
actPZJΔ  and expJΔ  (or ep

PZΔJ ) is most clearly seen, if the constant 
fatigue load is superimposed by a single tensile overload. The parameter ep

actPZJΔ  predicts 
correctly the crack growth retardation, whereas expJΔ  and ep

PZΔJ  would predict a constant 
crack growth rate (Ochensberger and Kolednik 2015). It should be stressed that the two main 
mechanisms of the overload effect, crack flank contact behind and residual stresses around the 
moving crack tip, have not been investigated in Ochensberger and Kolednik (2015); this is the 
topic of the current paper. 

ep
PZΔJ
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8.3 Numerical procedure 

8.3.1 Finite element modeling of overload experiments

We apply the same finite element (FE) model as in Ochensberger and Kolednik (2015). 
Therefore, only some important details shall be given in the following. 

A two-dimensional compact tension (C(T)-) specimen (ASTM E1820, 2005) under plane 
strain conditions is modelled with a straight crack in horizontal x-direction. The dimensions of 
the specimen are width , height H = 60 mm, nominal thickness B = 25 mm, and 
initial crack length  (Fig. 8.2). The specimen is cyclically loaded in Mode I by 
prescribing the load F at the load application point. 

The specimens consist of homogeneous, isotropic, elastic–ideally plastic material 
following incremental theory of plasticity. The material data are Young’s modulus E = 200 
GPa, Poisson’s ratio ν = 0.3, and yield strength yσ = 270 MPa. A small elastic strip, with 
same E and ν , is modelled along the left boundary to prevent large plastic deformation at the 
load application point (Fig. 8.2). This can be done, since the plastic zone does not touch this 
elastic strip. 

The simulations are conducted using the FE-program ABAQUS. Due to symmetry, only 
half of the C(T)-specimen is modelled. Bilinear 4-node continuum elements are used for the 
mesh. Region A, with a dimension 0.35.13 ×  mm², consists mainly of elements with mesh 
size m = 0.10 mm. The inner region B A, with a dimension of 0.6 0.3×  mm², is discretized 
with a finer mesh of m = 0.01 mm; its location is seen in Fig. 8.2. The fine mesh enables a 
detailed analysis of the post-overload period, Section 8.4. The dimensions of B are chosen so 
that the active plastic zone travels inside B during maximum reduction of the fatigue crack 
driving force after overload. Geometric nonlinearity is selected to account for large 
deformations around the crack tip.  

Since crack flank contact plays a crucial role in our investigation, frictionless contact 
between the upper crack surface and the lower rigid surface is modeled (Fig. 8.2). Nodes on 
the plane 0y = , except those on the crack flank, are constrained in y-direction, but 
unconstrained in x-direction; the specimen is fixed in x-direction at the load application point. 
The rigid surface avoids an overlapping of the upper crack flank during unloading, so that the 
vertical displacements of the nodes lying on the upper crack flank cannot become negative, 

0yu ≥ . In the following, this case is indicated by a superscript “contact”. 
In order to estimate the influence of crack flank contact on the overload effect, we consider a 
second, fictive case where crack flank overlap is possible. The rigid surface in the FE-model 
is removed so that the vertical displacements at nodes on the upper crack flank can become 
negative, i.e. crack flank contact does not appear. This is in reality not possible, because the 
crack flanks cannot penetrate. A superscript “overlap” designates this fictive case. Metzger et 
al. (2014) have applied a similar procedure; however, they studied the behavior of the 
conventional, cyclic J-integral under constant tension-compression loading.  

  

mm50=W
0 25mma =
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Fig. 8.2  FE-model of the C(T)-specimen with boundary conditions. Without the rigid surface, 
crack flank overlap is possible, i.e. the vertical displacements on the upper crack flank 
can become negative. The figure on the right shows a detail of the fine-mesh region B. 

Fatigue crack propagation is modeled for constant amplitude loading (CL case), 
max min constantF F FΔ = − = , as well as for the case with a single tensile overload OLF (OL 

case). In our simulations, one load cycle consists of loading and unloading between maximum 
and minimum load, maxF  and minF , and subsequent crack extension at minF = constant.13 Crack 
extension is modeled using the node release technique (Ohji et al. 1975; Newman 1976). The 
crack extension increment per load cycle is two element lengths 2m, i.e. 0.20 mm in Region 
A, and 0.02 mm in Region B. The simulation is terminated after N = 51 load cycles when the 
total crack length reaches a = 31.4 mm. 

The maximum load during constant cyclic loading is 5.12max =F kN. In the OL case, a 
single tensile overload OLF  is applied in the fourth load cycle, i.e. after 0.6 mm of crack 
growth. If not specified otherwise, the load ratio is min max 0R F F= =  (zero-tension loading) 
and the overload ratio is OL OL max 2R F F= = . The loads maxF  and OLF  have been chosen so 
that small-scale yielding conditions prevail, i.e. no plastic deformation appears at the back-
face of the specimen. This has been done to enable a comparison to the characterization with 
the effective stress intensity range effKΔ , see Section 8.6.  

8.3.2 Configurational force and J-integral post-processing

After the FE stress and strain analysis with incremental theory of plasticity, the 
configurational force vectors epf  are computed from Eq. (8.2) at each node n of the FE mesh 
by a self-written post-processing routine, which is based on the papers of Müller et al. (2002, 
2004) and Denzer et al. (2003). The incremental plasticity J-integral for a contour around the 

                                                 
13 Regarding the preferred load level for simulating incremental crack extension via node release technique, the 
reader is referred to Solanki et al. (2004). 
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active plastic zone, ep
actPZJ , is then calculated by a summation of all epf -vectors emanating 

from all nodes n located within actPZΓ , 

( )
actPZ

ep ep
actPZ

within
n

n
J A

Γ

= − ⋅ Δe f . (8.4) 

Note that the crack tip node must be included in the summation, compare Eq. (8.1). In Eq. 
(8.4) the parameter nAΔ  denotes the element area corresponding to a specific node n. The J-
integral values for other contours  are calculated analogously. 

The shape of the active plastic zone is determined by letting ABAQUS mark those 
integration points where the plastic strain p  changes during the re-loading phase, i.e. the 
loading interval from minF  to maxF , of a considered load cycle.14 The integration path actPZΓ
includes all these integration points. The size of actPZΓ  is held constant when calculating the 
variation of ep

actPZJ  during a single load cycle. The driving force for fatigue crack growth, i.e. 
the value of the cyclic incremental plasticity J-integral for a contour around the active plastic 
zone ep

actPZJΔ , is calculated from Eq. (8.3). 
The accuracy of the J-integral evaluation has been discussed in Ochensberger and 

Kolednik (2015). It has been shown that the values of ep
actPZJ  and ep

actPZJΔ  are not very sensitive 
to the exact shape of the integration contour actPZΓ  or to the FE-mesh size m. This means that 
an accurate determination of ep

actPZJ -values is numerically not very expensive, in contrast to 
that of the crack tip opening displacement tδ .  

8.4 Analysis of crack growth retardation after a single tensile overload 

8.4.1 Variation of the fatigue crack driving force ep
actPZJΔ  following an overload

Figure 8.3a presents the variations of the cyclic incremental plasticity J-integral around the 
active plastic zone, ep

actPZJΔ , with increasing crack extension aΔ  after the overload. Shown are 
the values with and without crack flank contact, ( )contactep

actPZ OL
JΔ  (full dots) and ( )overlapep

actPZ OL
JΔ

(open dots). The values of the driving force for the constant load case, ( )contactep
actPZ CL

ΔJ , are 
plotted as solid line for comparison. Figure 8.3b,c show details for the ranges aΔ  = 0 
0.8 mm and  = 4.0 5.8 mm after overload. The fine mesh region B extends to  
mm. The load cycle numbers N are written on the upper axes of the graphs. 

The driving force for the constant load (CL) case, , continuously increases 
due to crack extension. The small peak in the 2nd load cycle occurs, since the active plastic 
zone still includes the blunting region of the initial crack tip, whereas this is not the case for  

  

                                                 
14 Note that new plastic deformation does not occur along the crack flanks during re-loading of the specimen to 
the maximum load. In the following unloading cycle, plasticity at the crack flanks can occur (inside and outside 
of the integration path actPZΓ ). However, this does not deliver a contribution to the driving force, since the 
configurational forces at the crack flanks have no component in x-direction due to the vertical gradient of the 
plastic strain. 

aΔ 0.4aΔ =

( )contactep
actPZ CL

ΔJ
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(a) 

(b) (c) 

Fig. 8.3 Effect of a single tensile overload on the driving force for fatigue crack growth, 
, with and without crack flank contact for load ratio R = 0 and overload ratio 

. The -values are plotted against crack extension Δa from the overload. 
(a) Overview. (b) (c) Details for Δa = 0  0.8 mm and Δa = 4.0 5.8 mm. 

larger crack extensions, , see Ochensberger and Kolednik (2015). It should be noted that 
the difference between  and  is negligible for the CL case and 

. 
In the overload case, the ep

actPZJΔ -variations with and without crack flank contact appear 
quite similar in Fig. 8.3a. The ep

actPZJΔ -values rapidly decrease after the overload and fall 
within a short crack growth distance below the CL-values. Delayed retardation is visible: in 
the 8th load cycle, i.e. the 4th load cycle after the overload, ep

actPZJΔ  is still somewhat larger than 
( )contactep

actPZ CL
ΔJ . After reaching a minimum value at the crack extension daΔ , ep

actPZJΔ  gradually  

ep
actPZJΔ

OL 2R = ep
actPZJΔ

3N ≥

( )contactep
actPZ CL

ΔJ ( )overlapep
actPZ CL

JΔ
0R ≥
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Table 8.1 Characteristic overload-affected crack growth distances, , , and , for 
various load ratios R and overload ratios ROL, compare Fig. 8.3a,b. 

 with crack flank contact  without contact (overlap) 

R 
[-]

ROL

[-] [mm] [mm] 

0 2.0  0.32 1.60 > 6  0.34 1.60 4.00 
0 1.6  0.22 1.20 3.60  0.22 1.20 2.80 
0 1.2  0.14 0.80 1.20  0.14 0.80 1.20 

0.5 2.0  0.16 1.60 3.20  0.16 1.60 3.00 
–1 2.0  0.38 1.60 > 6  0.34 1.60 4.00 

increases with further crack extension until the values for constant cyclic loading are reached; 
the position of maximum reduction in the driving force for fatigue crack growth daΔ  is 
denoted as delay distance, see e.g. Suresh (1998), Skorupa (1998). The parameter OLaΔ
denotes the total crack growth distance affected by the overload (e.g. Skorupa 1998); it is 
taken in the current study as the value where the difference between ( )ep

actPZ OL
JΔ  and ( )ep

actPZ CL
JΔ

falls below 1%. This value, OLaΔ , is significantly larger than the distance pl,OLraΔ  where the 
active plastic zone has escaped from the plastic zone produced by the overload, Fig. 8.3a. The 
characteristic overload-affected crack growth distances, daΔ , pl,OLraΔ , and OLaΔ , are 
collected in Table 8.1 for the contact- and overlap cases. Table 8.2 lists the cyclic J-integral 
values for these characteristic crack growth distances and for some additional Δa-values. 

On closer examination, it can be observed from Fig. 8.3b and Fig. 8.3c that the values of 
( )contactep

actPZ OL
JΔ  lie, in general, below the ( )overlapep

actPZ OL
JΔ -values. Immediately after the overload, 

the difference between these parameters first increases and then decreases with crack 
extension, Fig. 8.3b. The parameter ( )contactep

actPZ OL
JΔ  reaches a minimum value of 0.229 kJ/m² 

after daΔ = 0.32 mm crack extension from the overload, N = 20. In the overlap case, the 
minimum value is slightly higher, ( )overlapep

actPZ OL
0.356JΔ =  kJ/m² at daΔ = 0.34 mm, N = 21. 

The relative reduction of the driving force compared to cyclic loading with constant load 
amplitude is quantified by the parameter 

( ) ( )
( )

contact iep ep
actPZ actPZCL OLCL

i contactep
actPZ CL

J J

J

Δ − Δ
Δ =

Δ
, (8.5) 

where the index i stands for “contact” or “overlap”, respectively. The maximum possible 
reduction is 90% and 84%, respectively. Data for other Δa-values are listed in the columns 

CL
contactΔ  and CL

overlapΔ  in Table 8.2. Note that the ( )contactep
actPZ OL

JΔ -values do not fully reach the CL-
values within the modeled crack extension, whereas the ( )overlapep

actPZ OL
JΔ -values do so after 

OLaΔ = 4 mm (Fig. 8.3c, Table 8.1). 

daΔ pl,OLraΔ OLaΔ

daΔ pl,OLraΔ OLaΔ daΔ pl,OLraΔ OLaΔ
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Table 8.2 Values of the cyclic incremental plasticity J-integral around the active plastic zone, , 
Eq. (8.3), for load ratio R = 0 and various overload ratios ROL. 

ROL N Δa

[-] [-] [mm] [kJ/m²] [%] 

2.0 20 0.32  2.250 0.229 0.358 0.214  89.8 84.1 90.5
2.0 21 0.34  2.259 0.231 0.356 0.221  89.7 84.2 90.2 
2.0 30 1.6  2.728 2.125 2.152 0.792  22.1 21.1 71.0
2.0 42 4.0  3.882 3.776 3.865 2.425  2.73 0.44 37.5
2.0 51 5.8  5.304 5.229 5.332 4.190  1.41 –0.53 21.0 

1.6 15 0.22  2.235 0.631 0.735 0.626  71.8 67.1 72.0 
1.6 28 1.2  2.578 2.252 2.272 1.249  12.6 11.9 51.5
1.6 36 2.8  3.246 3.198 3.221 2.350  1.48 0.77 27.6
1.6 40 3.6  3.671 3.637 3.668 2.998  0.93 0.08 18.3
1.6 51 5.8  5.304 5.308 5.342 4.810  –0.08 –0.72 9.31 

1.2 11 0.14  2.204 1.721 1.726 1.566  21.9 21.7 28.9 
1.2 26 0.8  2.438 2.381 2.371 1.919  2.34 2.75 21.3
1.2 28 1.2  2.578 2.577 2.584 2.213  0.04 –0.23 14.2 
1.2 42 4.0  3.882 3.911 3.908 3.828  –0.75 –0.67 1.39 
1.2 51 5.8  5.304 5.344 5.342 5.287  –0.75 –0.72 0.32 

The subscripts “CL” and “OL” denote constant loading and the overload case. The 
superscripts “contact” and “overlap” denote the cases with and without crack flank 
contact. The cyclic J-integral value  is calculated from the effective stress 
intensity range , Eq. (8.8), for the contact case. The parameters CL

iΔ  give the 
relative reduction in driving force with respect to the CL case, see Eq. (8.5). 

It should be mentioned that Bichler and Pippan (2007) carried out overload experiments 
on C(T)-specimens made of ductile austenitic CrNi-steel under constant cyclic loading with a 
load ratio R = 0.05 and ssy-conditions. Variables of these tests were the overload ratio, OLR = 
1.1 ÷ 2, and the specimen thickness. For 25 mm thick specimens (plane strain dominance) and 

OL 2R = , they found by an analysis of the fatigue striations after the overload a maximal 
reduction of the fatigue crack growth rate, da/dN, of about 84% after daΔ  0.5 mm crack 
extension from the overload. This is in good agreement with our modeling result, see 
Table 8.2.  

The results of this section show that the retardation effect after an overload is only 
slightly more pronounced, if crack flank contact is taken into account, compared to the case 
when the crack flanks are allowed to overlap during the unloading. The main features of the 
overload effect, including the strong reduction of the driving force and the delayed retardation 
phenomenon, occur independent of crack flank contact. Compared to the constant load case, 
the minimum  with crack flank contact is only 6% lower than for the overlap case. 

ep
actPZJΔ

( )contactep
actPZ CL

JΔ ( )contactep
actPZ OL

JΔ ( )overlapep
actPZ OL

JΔ eff
OL

KJ ΔΔ CL
contactΔ CL

overlapΔ CL
effKΔΔ

eff
OL

KJ ΔΔ
effKΔ

ep
actPZJΔ
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However, the relative difference between the minimum values of  and 
, calculated analogously to Eq. (8.5), can be significant (about 50%). Therefore, 

crack flank contact may decide whether a crack arrests or not, i.e. whether the fatigue crack 
driving force becomes smaller than the effective threshold for fatigue crack propagation; this 
criterion has been used for modeling the fatigue crack growth rate and possible crack arrest in 
inhomogeneous materials (Kolednik et al. 2009, 2015). 

It should be stressed that these results are valid for a perfectly flat crack, a load ratio 
R = 0, and plane strain conditions. For a real three-dimensional specimen, as e.g. in the 
numerical studies by Roychowdhury and Dodds (2005), the contribution of crack flank 
contact to the overload effect might be considerably higher due to the different stress state and 
the lateral contraction at the side surface of the specimen. 

8.4.2 Variation of the J-integral ep
actPZJ  in the post-overload regime  

In order to understand the variation of the driving force ep
actPZJΔ  following an overload, it is 

useful to study the behavior of the ep
actPZJ -values during cyclic loading, compare Eq. (8.3). In 

addition, the variation of the crack tip opening displacement tδ  is also analyzed. The values 
of tδ  are determined one element length m behind the crack tip. Figure 8.4a shows variations 
of ( )contactep

actPZ OL
J and ( )overlapep

actPZ OL
J  against time t for the last load cycle before the overload, load 

cycle number N = 3, and the first 20 load cycles after the overload, N = 4  24, time t = 9 
72, crack extension after overload aΔ  = 0  0.4 mm. Time t = 3N – 2, with N∈ , 
corresponds to the state at maximum load maxF ; time t = 3N – 1 corresponds to the state after 
unloading to the minimum load minF ; time t = 3N corresponds to the state when the crack 
extension step is finished. Note that at t = 3N, the contour actPZΓ  is updated for the upcoming 
load cycle; thus, two values of ep

actPZJ  exist after the crack extension step. The J-integral values 
at maxF  are marked with full and open dots for ( )contactep

actPZ,max OL
J and ( )overlapep

actPZ,max OL
J , 

respectively. The dash-dotted line marks the maximum J-values for the CL case. Figure 8.4b 
shows in more detail the interval t = 47  66.  

It can be observed from Fig. 8.4a that the J-integral value at maximum load for the 
contact case, ( )contactep

actPZ,max OL
J , strongly decreases with crack extension and reaches its 

minimum value at t = 58, daΔ = 0.32 mm. Subsequently, the values increase again. Very 
interesting is the behavior of the J-integral values at minimum load: At t = 11, after unloading 
from OLF to min 0F = , ( )contactep

actPZ OL
0J ≈ , but the J-integral becomes distinctly negative after the 

crack extension step, t = 12; reasoning is given in Sections 8.4.3. and 8.4.4. Nearly the same 
negative J-value is reached at minF  in the following load cycle, but here the values before and 
after the crack extension step at 14t =  and 15 are almost equal. With increasing crack 
extension, the ( )contactep

actPZ,min OL
J -values continuously increase and for times t  33 their 

magnitude remains roughly zero, i.e. are of the order of 10–3 kJ/m2.  
The negative ep

actPZJ -values between t = 12 and t  39 do not contribute to the driving 
force, since the crack tip is closed during these stages, i.e. the crack tip opening displacement 

t 0δ = , see Section 8.2.2. This fact has been extensively studied in Ochensberger and  
  

( )contactep
actPZ OL

JΔ
( )overlapep

actPZ OL
JΔ
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  (a) 

  (b) 

Fig. 8.4 (a) Variations of the incremental plasticity J-integrals around the active plastic zone 
ep
actPZJ  for the contact and overlap cases, load ratio R = 0 and overload ratio OL 2R = . 

The OL-cycle starts at time t = 9. (b) Detail of the time interval t = 47 ÷ 66. The 
variation of the crack tip opening displacement ( )contact

t OLδ  is included for comparison. 

Kolednik (2015). As a consequence, ep
actPZ,minJ  can be set to zero in Eq. (8.3) if it is negative. 

The variation of the crack tip opening displacement tδ  is drawn as blue curve in Fig. 8.4b. It 
is seen that, in the interval with maximum reduction of the driving force, the crack tip is 
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closed during the larger times of the unloading and loading periods, e.g. from 
t 0,cltδ =  where 

the crack tip closes to 56t = , or from 57t =  to 
t 0,optδ =  where the crack tip opens. It is also seen 

from Fig. 8.4b that ep
actPZ 0J =  at 

t 0,cltδ =  and 
t 0,optδ = . It is interesting that ep

actPZJ  reaches a very 
small positive value, while the crack tip is closed, see below and Section 8.4.4.  

Since ep
actPZ,min 0J = , Eq. (8.3) simplifies to ep ep

actPZ actPZ,maxJ JΔ = , and the ep
actPZJΔ -values 

presented in Fig. 8.3 and Table 8.2 are equal to the maximum ep
actPZJ -values of Fig. 8.4.  

The relation ep ep
actPZ actPZ,maxJ JΔ =  also applies in the case where crack flank overlap is 

possible; negative ep
actPZJ -values during the unloading stages for t = 12  29, Fig. 8.4a, do not 

contribute to the driving force ep
actPZJΔ , since the crack tip is closed, t 0δ ≤ . Compared to the 

contact case, the curve for ( )overlapep
actPZ OL

J shows two important differences: (i) The J-values at 
maximum load ( )overlapep

actPZ,max OL
J  are, in general, higher than ( )contactep

actPZ,max OL
J , Fig. 8.4a and Fig. 

8.3b. (ii) In the interval with maximum reduction of the driving force, the J-integral 
( )overlapep

actPZ OL
J  increases during the unloading stage from zero at time 

t 0,cltδ =  to a high positive 
value. Although it can become even higher than the J-value at maximum load ( )overlapep

actPZ,max OL
J , 

Fig. 8.4b, this value does not contribute to the driving force ep
actPZJΔ , since the crack tip is 

closed. The reasoning, why such high ( )overlapep
actPZ OL

J can appear during unloading, will be given 
in Section 8.4.4.  

8.4.3 To the appearance of delayed crack growth retardation  

Especially high (at maximum load) and low (at minimum load) values of ep
actPZJ  appear in the 

period t = 12  24, see Fig. 8.4a. This effect can be explained analogously to the occurrence 
of the peak value of ep

actPZJΔ  observed at N = 2 in Fig. 8.3a: Up to a distance of Δa = 0.08 mm 
from the overload, N = 8, the crack tip blunting region induced by the overload still lies 
within the active plastic zone, which travels to the right with crack extension. For the first 
four load cycles after the overload, the extension of the active plastic zone in –x-direction is 
0.07 mm, counted from the current crack tip. Since the x-components of the configurational 
forces in this overload blunting region at maxF are negative, they deliver a positive 
contribution to epJ , see Eq. (8.4). Therefore, the magnitude of ep

actPZ,maxJ  is increased. For the 
ep
actPZ,minJ -values, we have to consider that epJ  changes its sign during unloading due to the 

appearance of compressive stresses around the crack tip; this is explained shortly in Section 
8.4.4. and in more detail in Ochensberger and Kolednik (2014). 

It should be noted that such delayed crack growth retardation has been analyzed by 
quantitative fracture surface inspection in von Euw et al. (1972) and Bichler and Pippan 
(1999, 2007). 

8.4.4 Effects of crack flank contact and residual stresses on crack growth retardation 

The driving force for fatigue crack growth ep
actPZJΔ  reaches its minimum value in the 20th load 

cycle, t = 58, daΔ = 0.32 mm after the overload (Figs. 3a,b). Since ep
actPZ,min 0J = , Section 

8.4.2, the reason for the strongly decreased ep
actPZJΔ -value is the strongly reduced ep

actPZ,maxJ -
value, compared to the value for the CL case, Fig. 8.4a. This reduction can be deduced from 
the configurational force distribution in the active plastic zone. For the explanation, the 
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following formulation for the bulk configurational force epf  for small-strain plasticity15 is 
helpful (Simha et al. 2008), 

p
ep : ∂=

∂
f

x
. (8.6) 

Here,  is the Cauchy stress tensor and p  the plastic part of the linear strain tensor . 
According to Eq. (8.1), only the x-component of the configurational force, 

xxx
f yy

yy
xy

xy
xx

xxx ∂
∂

+
∂

∂
+

∂
∂=

ppp
ep 2

ε
σ

ε
σεσ , (8.7) 

contributes to the scalar epJ -integral, if the crack grows in x-direction, see Fig. 8.1.  
In the overload cases, the epf -vectors in the active plastic zone at t = 58 are significantly 

smaller than in the constant load case, which leads to a reduction of ep
actPZ,maxJ , compare Eq. 

(8.4). The smaller epf -vectors can be attributed to significantly reduced stresses and plastic 
strain gradients in the post-overload period, Eq. (8.6). Figure 8.5 shows, for example, that the 
normal stress component σ yy  around the crack tip is in the OL case (Fig. 8.5e,h) distinctively 
lower than in the CL case (Fig. 8.5b). As a consequence of these smaller stresses, the 
magnitude of the active plastic zone becomes also smaller, which additionally diminishes 

ep
actPZ,maxJ , Eq. (8.4). In the contact case, the extension of the active plastic zone in y-direction 

decreases from the 5th to the 20th load cycle from ractPZ,y = 0.24 mm at Δa = 0.02 mm to 0.08 
mm at daΔ = 0.32 mm, whereas ractPZ,y remains 0.90 mm in the CL case. With further crack 
growth, ractPZ,y gradually increases and reaches at OLaΔ the magnitude of the value for 
constant cyclic loading.  

Such a strong reduction of the active plastic zone size does not appear in the overlap case; 
ractPZ,y  0.24 mm for N = 5  20. This can be understood from Fig. 8.5d,g: At minimum load, 
high compressive stresses appear in front of the crack tip if crack flanks can overlap, whereas 
much lower compressive stresses appear in front of the crack tip in the presence of crack flank 
contact. Consequently, the near-tip region experiences in the overlap case a higher stress 
amplitude during re-loading to the maximum load, which results in a larger active plastic 
zone. This becomes evident from Fig. 8.5f,i where the equivalent stress eqσ  is plotted at t = 
58. The active plastic zone corresponds to the red area, i.e. where the yield strength is 
reached, eq yσ σ= . A comparison of the OL- and CL cases with crack flank contact shows that 
distinctively higher stresses appear at maximum load in the CL case, Fig. 8.5b, leading to 
higher equivalent stresses and a significant larger active plastic zone, Fig. 8.5c. This is 
connected to distinctively lower compressive stresses at minimum load (Fig. 8.5a).  

                                                 
15 Simha et al. (2008) derived also the expression for large-strain plasticity. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 8.5 Contour plots of the normal stress yyσ  at minimum load (time t = 57, a = 0.32 mm 
after overload), at maximum load (t = 58) of the 20th load cycle, and map of equivalent 
stress eqσ  at t = 58. (a) (b) (c) Constant cyclic loading (CL) with load ratio R = 0, (d)
(e) (f) overload (OL) case for overload ratio OL 2R =  with crack flank contact, (g) (h) 
(i) OL case without crack flank contact. The legend for (f) (i) is the same as in (c). 
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In the OL case with crack flank overlap, the larger magnitude of the active plastic zone 
also contributes to higher values of  compared to the contact case. However, 
the main contribution arises from larger configurational forces  in the near-tip region at 

, since both stress and gradients of plastic strain are larger when crack flank overlap is 
possible, Eq. (8.7). 

Equation (8.7) makes also clear that the x-component of the configurational force will 
change its sign, if the normal stress components near the crack tip changes during the 
unloading from tensile at maximum load to compressive, whereas the signs of the plastic 
strain gradients do not change. This explains the occurrence of negative -values in Fig. 
8.4a; for more details see Ochensberger and Kolednik (2014). If the compressive load is so 
high that also the plastic strain components (and the gradients) change their sign, the ep

actPZJ -
values can become positive again and large, as seen in Fig. 8.4b in the overlap case. On the 
contrary, the components of the plastic strain gradient are very low near minimum load in the 
presence of crack flank contact. This is the reason why configurational forces almost 
disappear in the active plastic zone and ( )contactep

actPZ,min OL
J  becomes roughly zero, Fig. 8.4b. 

The conclusion of this section is that the strong reduction in the fatigue crack driving 
force ep

actPZJΔ  following an overload is attributed to a significant reduction of the near-tip 
stresses, which occurs, for R = 0 and ROL = 2 and the assumed plane strain conditions, 
independent of crack flank contact. Crack flank contact further reduces the near-tip stresses, 
which significantly affect the size of the active plastic zone, but this leads only to a little 
further decrease of ep

actPZJΔ .  

8.5 Influences of overload ratio and load ratio on the overload effect 
It is well-known that the overload effect depends on the overload ratio ROL and the load ratio 
R (e.g. Suresh 1998; Skorupa 1998; Sadananda et al. 1999; Roychowdhury and Dodds 2005). 
The parameters ROL and R are varied separately in order to study how they influence the 
findings of Section 8.4.  

8.5.1 Variation of overload ratio ROL

Figure 8.6a presents, similar to Fig. 8.3a, the variations of the fatigue crack driving force 
ep
actPZΔJ  with and without contact for R = 0 and three different overload ratios ROL = 2, 1.6 and 

1.2; the constant load case is marked as solid line. Figures 8.6b,c show details for the ranges 
aΔ  = 0  0.8 mm and aΔ  = 4.0 5.8 mm after overload. The characteristic overload-

affected crack growth distances and the cyclic J-integral values ep
actPZΔJ  for the contact and 

overlap cases are collected in Tables 8.1 and 8.2.
It is seen that the variations of ep

actPZΔJ  with and without crack flank contact exhibit a very 
uniform behavior if ROL is decreased: Only the degree of crack growth retardation and the 
overload-affected crack growth distances, daΔ , pl,OLraΔ , and OLaΔ , become smaller (Fig. 8.6a, 
Tables 8.1 and 8.2). The reason is that lower compressive stresses are induced after unloading 
from FOL in a smaller overload plastic zone. Consequently, higher stresses appear around the 

( )overlapep
actPZ,max OL

J
epf

maxF

ep
actPZJ
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(a) 

(b) (c) 

Fig. 8.6 Overload effect for load ratio R = 0 and various overload ratios = 1.2, 1.6 and 2. 
Driving force for fatigue crack growth ep

actPZJΔ  with and without crack flank contact 
plotted against crack extension  from the overload. (a) Overview; vertical lines 
indicate the distances , compare Table 8.1. (b) (c) Details for  = 0  0.8 
mm and  = 4.0 5.8 mm. 

crack tip after re-loading to maxF which implies larger epf -vectors, Eq. (8.6), and larger 
magnitudes of the active plastic zone. Therefore, ep

actPZΔJ  exhibits higher values compared to 
the case with ROL = 2. The shorter delay-distance daΔ  is connected to weaker crack-tip 
blunting induced by the smaller overload. For ROL = 1.2, crack growth retardation occurs 
already in the first load cycle after the overload, N = 5 (Fig. 8.6b).  

Tables 8.1 and 8.2 suggest a roughly linear decrease of the OL-affected crack growth 
distances, daΔ and OLaΔ , and of the maximum relative reduction of the fatigue crack driving 
force, CL

contactΔ  and CL
overlapΔ , Eq. (8.5), with decreasing ROL; the parameter pl,OLraΔ  exhibits 

exactly a linear behavior. The relative difference between the minimum values of the driving 
forces for the contact and overlap cases, ( )contactep

actPZ OL
JΔ  and ( )overlapep

actPZ OL
JΔ , at daΔ  becomes 

OLR

aΔ
pl,OLraΔ aΔ

aΔ
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55%, 16% and 0.3% for ROL = 2, 1.6 and 1.2, respectively. This decreasing difference 
indicates that the role of crack flank contact decreases with decreasing ROL as has been 
reported e.g. in Roychowdhury and Dodds (2005).

8.5.2 Variation of load ratio R 

Figure 8.7a presents, similar to Fig. 8.3a, the variations of the driving force ep
actPZΔJ  with and 

without contact for ROL = 2 and three different load ratios, R = 0, 0.5 and –1. The solid lines 
denote the constant load cases with crack flank contact. The dashed green line denotes the 
constant load case for crack flank overlap under R = –1. Figures 8.7b,c show details for aΔ  = 
0  0.8 mm and aΔ  = 4.0 5.8 mm after overload. The characteristic overload-affected 
crack growth distances are listed in Table 8.1, and the ep

actPZΔJ - and CL
iΔ -values for R = 0.5 and 

–1 are given in Table 8.3. 
First, we consider the effect of the load ratio on the constant load (CL) cases. For positive 

load ratios, the J-integral values at minimum load are positive, ( )ep
actPZ,min CL

0J > , which leads 
to non-zero square root terms in Eq. (8.3) and lower values of the fatigue driving force 

, compared to the case with . Figure 8.7a shows that the fatigue crack driving 
force  for  is roughly one third of that for . It is also seen that the 

-curves for  and  coincide. This can be explained by the 
observation that the crack tip is closed when  becomes negative (Section 8.4.2.), so that 
the driving force is not influenced by further unloading. The difference between 

 and  is zero or negligible for . This is, however, not so for 
negative load ratios. Figure 8.7 shows that, for , the driving force for the overlap case 
is roughly 10% larger than that of the contact case. The reason lies in the higher 

-values, see Section 8.4.4 and below. 
Next, we consider the effects of an overload with ROL = 2 for the three load ratios. 

Figures 8.7a,b show that, for , the fatigue crack driving force  becomes roughly 
zero, i.e. of the order of 10–3 kJ/m2, already after a crack extension of mm 
following the overload and remains small up to mm (Fig. 8.7b). The minimum of 

 appears at  = 0.16 mm (Table 8.3). These findings are valid with and without 
crack flank contact.  

The results indicate that the crack growth retardation effect of an overload is higher for a 
positive load ratio than for . A reason might be that, for a constant overload ratio 

, the ratio  increases with increasing positive R (e.g. Skorupa 1998). 
An additional overload experiment has been conducted with ROL = 2 and R = 0.8 where a 
nearly zero crack driving force was also predicted. Note that ep

actPZ 0JΔ ≈  implies that the crack 
tip remains closed during the load cycle, t 0δΔ ≈ , hence, the fatigue crack growth rate da/dN
is zero. 

( )ep
actPZ CL

JΔ 0R =

( )ep
actPZ CL

JΔ 0.5R = 0R =

( )contactep
actPZ CL

JΔ 0R = 1R = −
ep
actPZJ

( )contactep
actPZ CL

ΔJ ( )overlapep
actPZ CL

JΔ 0R ≥
1R = −

( )overlapep
actPZ,max CL

J

0.5R = ep
actPZJΔ

0.12aΔ =
0.30aΔ ≈

ep
actPZJΔ daΔ

0R =
OL OL maxR F F= OLF FΔ



152 Fatigue crack growth after an overload

Paper III 

(a) 

(b) (c) 

Fig. 8.7 Overload effect for overload ratio OLR = 2 and various load ratios R = 0, 0.5, –1. 
Driving force for fatigue crack growth ep

actPZJΔ  with and without crack flank contact 
plotted against crack extension aΔ  from the overload. (a) Overview. (b) (c) Details 
for aΔ  = 0  0.8 mm and aΔ  = 4.0 5.8 mm. 

The configurational force analysis reveals that, in the range mm, the -
vectors remain very small in the near-tip region at , so that . The active 
plastic zone is in the contact case smaller than one element length, contact

actPZ, 0.01yr < mm. 
Therefore, the simulation was repeated with a FE-mesh size of m = 0.001 mm to determine 
the size of the active plastic zone for the integration path actPZΓ . The difference between 
( )contactep

actPZ OL
JΔ  and ( )overlapep

actPZ OL
JΔ  during 0.4 2.2aΔ = ÷ mm, Fig. 8.7a, originates from lower, 

positive J-integral values at minimum load for the overlap case, see Eq. (8.3). In the range 
mm, crack flank contact does disappear, and the driving force  reaches the 

CL-values for both OL cases (Fig. 8.7a,c and Table 8.3). 

0.12 0.3aΔ = ÷ epf
maxF ep

actPZ,max 0J ≈

2.2aΔ > ep
actPZΔJ
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Table 8.3 Values of the cyclic incremental plasticity J-integral around the active plastic zone, ep
actPZJΔ , 

Eq. (3), and , Eq. (8.8), for load ratios R = 0.5 and −1, and overload ratio ROL = 2. The 
parameters CL

iΔ  give the relative reduction in driving force with respect to the constant load case, Eq. 
(8.5). 

R N Δa ( )contactep
actPZ CL

JΔ ( )contactep
actPZ OL

JΔ ( )overlapep
actPZ OL

JΔ eff
OL

KJ ΔΔ CL
contactΔ CL

overlapΔ CL
effKΔΔ

[-] [-] [mm] [kJ/m²] [%] 

0.5 12 0.16  0.734 6.5e–4 –4.2e–4 0.002  100 100 99.7 
0.5 30 1.6  0.877 0.620 0.773 0.429  29.3 11.9 51.1
0.5 37 3.0  1.053 1.039 1.048 0.895  1.33 0.47 15.0
0.5 38 3.2  1.080 1.073 1.082 0.921  0.65 –0.19 14.7 
0.5 51 5.8  1.600 1.595 1.602 1.386  0.31 –0.13 13.4 

–1 21 0.34  2.304 0.356 1.240 0.351  84.6 46.2 84.8
–1 23 0.38  2.325 0.340 1.277 0.347  85.4 45.1 85.1
–1 30 1.6  2.769 2.136 2.441 0.964  22.9 11.9 65.2 
–1 42 4.0  3.906 3.825 4.146 2.639  2.07 –6.14 32.4
–1 51 5.8  5.357 5.299 5.685 4.200  1.08 –6.12 21.6

For negative load ratio, 1R = − , the driving force with crack flank contact ( )contactep
actPZ OL

JΔ
is, compared to the case 0R = , slightly larger. The largest difference occurs during the rapid 
decrease of ep

actPZJΔ  after the overload (Fig. 8.7b). The reason for the difference can be easily 
understood by comparing two specimens during unloading and first re-loading after the OL. 
The crack in the specimen with 1R = −  opens at a lower load than the crack in the specimen 
with 0R = . Therefore, the near-tip region becomes higher stressed during loading to Fmax, 
and ( )contactep

actPZ OL
JΔ  becomes larger. Also in the subsequent load cycles, the closure and 

opening loads where crack flank contact appears or disappears will be lower for 1R = − , but 
the difference diminishes. The overload leads to a maximum reduction of the driving force of 
85.4% of the CL-value at d 0.38aΔ = mm for 1R = − , compared to 89.8% at d 0.32aΔ = mm 
for 0R = . 

The significant higher ( )overlapep
actPZ,max CL

J -values for  compared to  originate 
from the fact that the crack tip region experiences the full compressive loading to minF , since 
crack flank overlap is possible. 

The following conclusions can be drawn from the results of this section: The overload 
effect becomes less pronounced with decreasing overload ratio ROL. The conclusion of 
Section 8.4, that (for ) the retardation effect after an overload is mainly caused by the 
reduction of the near-tip stresses and only slightly influenced by crack flank contact, holds 
also for positive load ratios. For R = 0.5, the fatigue crack driving force can reach a value of 
zero, although no crack flank contact appears. It is clear that the role of crack flank contact 
becomes, however, more important under tension-compression loading, R < 0. 

The computations in this paper have been conducted for an elastic–ideally plastic 
material behavior. We performed additional numerical overload experiments for a material 

eff
OL

KJ ΔΔ

1R = − 0R =

0R =
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with isotropic hardening. The selected material is an annealed steel with German designation 
St37, also used in Simha et al. (2008), Kolednik et al. (2014), Ochensberger and Kolednik 
(2014), which can be described by the Ramberg–Osgood law. Young’s modulus, Poisson’s 
ratio, and yield stress are the same as given in Section 3.1; the ultimate tensile stress is uσ = 
426 MPa, the average strain hardening exponent is n = 0.2. Basically, the results do not 
change compared to the cases with ideally plastic material. We only observed that the 
overload effect is slightly smaller.  

8.6 Characterization of overload effects with the effective stress intensity 
range ΔΔΔΔKeff

For the assessment of the fatigue crack growth rate in presence of crack flank contact, Elber 
(1970, 1971) proposed to apply the effective stress intensity range, eff max opK K KΔ = − , with 

opK  as the stress intensity at the crack opening load opF , i.e. where crack flank contact fully 
disappears during re-loading of the specimen. According to Elber (1970, 1971), opF  can be 
determined from the compliance changes, visible as kinks in the load–displacement (F–v) 
curve (e.g. Elber 1970, 1971; Fleck 1988; Suresh 1998). The parameter effKΔ  can be applied 
to quantify the overload effect, provided that small-scale yielding conditions prevail after the 
overload (Schijve 2009). Hereby crack growth retardation is related to an enhancement of the 
crack opening level, opK , which leads to a reduction of effKΔ  (e.g. Elber 1970, 1971; von 
Euw et al. 1972; Fleck 1988; Suresh 1998).  

In the following, the application of the effective stress intensity range effKΔ  for the 
description of the overload effect shall be checked. To do so, we compare the variations of 

effKΔ  to the variations of the driving force for the contact cases, ( )contactep
actPZ OL

JΔ , presented in 
Sections 8.4 and 8.5. The values of the stress intensity factor K are evaluated from the load F, 
following ASTM E1820 (2005). For the evaluation of opK , the crack opening load opF  is 
determined from the compliance change of a loading branch of the F–v-curve. In Fig. 8.8a, 
examples are presented for the 24th and 37th load cycle, aΔ  = 1 mm and 3 mm, after an 
overload with R = 0 and ROL = 2; the solid line (F– contactv ) denotes the contact case, the dashed 
line (F– overlapv ) the overlap case. Crack flank contact disappears (point “op”) when the F–v-
curves for the contact and overlap cases exhibit the same compliance. Note that the overlap 
case cannot exhibit a compliance change, since crack flank contact is not possible. In order to 
identify accurately the point of crack opening (“op”) the offset procedure is applied (Fig. 
8.8b); see e.g. Kikukawa et al. (1976), Fleck (1988), or Suresh (1998) for details. In our cases, 
the offset displacement v* is computed by subtracting the load-line displacement 
corresponding to the overlap case, overlapv , from the displacement of the real (contact) case, 

contact overlap* = −v v v . Hereby, the compliance change becomes easier visible, compare Figs. 
8.8a,b. 

For comparison purposes, it is necessary to transform effKΔ  into a cyclic J-integral value, 

eff 2
eff

KJ K EΔ ′Δ = Δ , (8.8) 
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(a)  (b) 

(c) 

Fig. 8.8 (a) Effect of crack flank contact on the specimen compliance: F–v-curve for the 24th

and 37th load cycle. (b) Determination of crack opening with the offset procedure.  
(c) Cyclic J-integral calculated from the effective stress intensity range eff

OL
KJ ΔΔ , Eq. 

(8.8), cyclic crack tip opening displacement ( )contact
t OLδΔ  and ( )contactep

actPZ OL
JΔ  versus crack 

extension aΔ  after overload for  ROL = 2 and R = 0. The respective values for constant 
loading are also included. 

analogously to the relation,  (Dowling and Begley 1976; Wüthrich 1982; 
Anderson 1995).  for plane strain conditions, and the superscript “ ” 
indicates that  has been calculated via the effective stress intensity range.  

Figure 8.8c presents the variations of and  after an overload for R = 0 
and ROL = 2. The variation of the cyclic crack tip opening displacement  is shown 
for comparison. Note that Bichler and Pippan (1999, 2007) demonstrated the proportionality 
between the fatigue crack growth rate da/dN and tδΔ  by comparisons of the fatigue striations 

2 ′Δ = ΔJ K E
( )21 ν−=′ EE effKΔ

JΔ
eff

OL
KJ ΔΔ ( )contactep

actPZ OL
JΔ

( )contact
t OLδΔ
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with the crack tip opening displacement tδ , determined by stereophotogrammetric 
measurements (Stampfl et al. 1996a,b). The cyclic crack tip opening displacement is 
computed 0.1 mm behind the actual crack tip, which corresponds to the largest mesh size 
applied in region A. It should be remarked here that the t-values are strongly mesh 
dependent, and a very fine FE mesh would be required for the calculation of accurate t-
values. However, a distance of 0.1mm is sufficient for our purposes, to estimate the relative 
change in t with crack extension after an overload. In contrast to t, the values of  are 
only weakly mesh dependent, see Ochensberger and Kolednik (2015).  

Figure 8.8c shows that the cyclic incremental plasticity J-integral around the active 
plastic zone, ( )contactep

actPZ OL
JΔ , reflects very well the variation of the cyclic crack tip opening 

displacement. The parameter eff
OL

KJ ΔΔ is not able to reflect the delayed retardation phenomenon, 
but gives good approximations of ( )contactep

actPZ OL
JΔ  during the period of maximum retardation. 

The minimum driving force at daΔ  is accurately predicted. With further increasing Δa, 
however, eff

OL
KJ ΔΔ  significantly underestimates the true fatigue crack driving force 

( )contactep
actPZ OL

JΔ , and the values for constant fatigue load are clearly missed even for large crack 
extensions. The values of eff

OL
KJ ΔΔ  and of the relative reduction of the fatigue crack driving 

force CL
effΔΔ K  for different Δa-values are included in Table 8.2. The misfit between eff

OL
KJ ΔΔ  and 

( )contactep
actPZ OL

JΔ  first increases to 67% at 2aΔ =  mm, and decreases with further crack extension 
to 21% at 5.8aΔ = mm. Tables 8.2 and 8.3 show that eff

OL
KJ ΔΔ  accurately predicts the minimum 

in ( )contactep
actPZ OL

JΔ  also for other ROL- or R-values; however, the large error after the maximum 
retardation period remains, except for 4mmΔ >a  under R = 0 and ROL = 1.2.  

It should be mentioned that such underestimations of the fatigue crack driving force by 
effKΔ , which we found under the assumption of plane strain conditions, Fig. 8.8c, have been 

already reported by Fleck (1988), who performed overload experiments on 24 mm thick and 
3 mm thin C(T)-specimens. The effect is referred to as discontinuous crack closure/opening 
phenomenon: After an overload, a “residual hump” is created on the crack surface, which 
leads to higher crack opening loads and too low effKΔ -values, compared to constant cyclic 
loading. Thus, effKΔ  does not reflect the true stress intensity range experienced by the crack 
tip after the period of maximum retardation following an overload (Fleck 1988). This finding 
has been also confirmed by three-dimensional finite element studies, e.g., in Roychowdhury 
and Dodds (2005). 

It can be concluded from this section that the effective stress intensity range effKΔ  is able 
to quantify accurately the maximum retardation after an overload. However, effKΔ  does not 
deliver the delayed retardation phenomenon and significantly underestimates the driving force 
for fatigue crack growth for longer crack extensions after the overload. The reason is that 

effKΔ  is not able to reflect fully the behavior of the actual crack tip, which determines the 
fatigue crack propagation rate. 

ep
actPZJ
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8.7 Summary 
It has been demonstrated in this paper that the cyclic incremental plasticity J-integral ep

actPZJΔ , 
which is computed by Eq. (8.3) for a contour around the active plastic zone of the growing 
crack, is an appropriate tool for the description of the overload effect in fatigue. The 
parameter ep

actPZJΔ  is able to reflect the variation of the cyclic crack tip opening displacement 
at the current crack tip, tδΔ , but with much less computational effort. 

The computation of the J-integral ep
actPZJ  during cyclic loading after an overload, in 

combination with a configurational force analysis, demonstrate that the main features of the 
overload effect, i.e. the strong reduction in the fatigue crack driving force ep

actPZJΔ  and the 
delayed retardation phenomenon, occur, no matter whether crack flank contact does exist or 
not. The reduction in ep

actPZJΔ  after an overload is mainly caused by a significant reduction of 
the near-tip stresses. Crack flank contact further reduces the near-tip stresses, but this leads, 
for a load ratio 0R ≥ , only to little or no further decrease of ep

actPZJΔ . For example, the 
analyses for 0.5R =  showed that the driving force can even reach a value of zero, although no 
crack flank contact appears.  

It should be stressed that this does not mean that crack flank contact is unimportant. Even 
if the additional reduction of the driving force due to crack flank contact is small, e.g. our 
analyses for 0R =  gave a further reduction of 6% compared to the constant load case, this 
difference may decide whether a crack arrests or not. It is clear that the role of crack flank 
contact becomes more important under tension-compression loading, R < 0. 

Note that all simulations in the current paper were conducted for two-dimensional 
specimens with a perfectly flat crack under plane strain assumptions, and for a non-hardening 
material. For a real three-dimensional specimen with rough crack flanks, the contribution of 
crack flank contact to the overload effect might be appreciably higher. 

The results in this paper also show that the effective stress intensity range effKΔ  can be 
used to determine the maximum crack growth retardation after an overload. However, effKΔ
does not deliver the delayed retardation phenomenon and significantly underestimates the 
driving force for fatigue crack growth for longer crack extensions after the overload. 

It should be mentioned that the development of a procedure, which enables the 
experimental determination of the correct fatigue crack driving force ep

actPZJΔ  is currently under 
investigation. 
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9 Discussion 

9.1 Evaluation of the fatigue crack driving force for a stationary crack under 
general yielding conditions  

Paper I shows that the incremental plasticity cyclic J-integral ep
PZJΔ , evaluated for a contour 

PZ around the crack tip plastic zone, characterizes the driving force of a stationary crack in 
an elastic–plastic material under cyclic loading. The parameter ep

PZJΔ  can be readily calculated 
if small- or large-scale yielding conditions prevail in the specimen, since a contour PZ can be 
easily drawn around the crack tip plastic zone (e.g. Fig. 6.1a and Fig. 6.4a). A problem 
appears if general yielding conditions prevail where a complete path through plastically 
deformed material exists between crack tip and back face region, so that a clean solution does 
not exist for separating the crack tip plastic zone by a contour PZ. Figure 9.1 illustrates this 
problem.  

In the following it is investigated whether it is possible to find ep
PZJΔ  for gy-conditions in 

an approximative way and how this value fits to the value of the conventional cyclic J-
integral conv

PZJΔ  and the experimental cyclic J-integral expJΔ .  

(a) (b) 

Fig. 9.1 Maps of the equivalent plastic strain p
eqε  (or PEEQ) at (a) max,gy 45F = kN (time t = 1), 

onset of general yielding, and (b) max,sly 50F = kN (time t = 5), severe ligament yielding
conditions. Global directions of the bulk configurational force epf  are schematically 
inticated. In (a), relevant J-integral contours are indicated. 
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(a) (b) 

Fig. 9.2 (a) FE-model with boundary conditions and different mesh regions A and B; region A 
has mainly a mesh size of m = 0.2 mm. (b) shows a detail of the fine mesh region B 
around the crack tip, with a mesh size m = 10 μm. The procedure for the determination 
of the crack tip opening displacement tδ  is also shown.  

Numerical experiments are performed for the same finite element model as presented in 
Section 6.3, see Fig. 9.2a. Only some details are different: 

The material tested is the annealed mild steel St37, which has been introduced in Section 
6.5.4. An ideally plastic behavior would lead to convergence problems for load-prescribed 
tests in combination with general yielding. One numerical experiment consists of four load 
cycles. In the first two load cycles, N = 1, 2, the maximum load is set to max,gy 45F = kN 
resulting in general yielding (Fig. 9.1a); this load is known as plastic limit load (e.g. 
Anderson 1995). In the load cycles N = 3, 4, a higher load is chosen kN so that 
plastic deformation along the ligament significantly increases (Fig. 9.1b); this will be denoted 
as severe ligament yielding (sly) in the following. The equivalent plastic strain is, for 
example, p

eq 0.06ε = % in point P for gy-conditions, see Fig. 9.1a; p
eq 0.56ε = % for sly-

conditions. 
In order to get accurate crack tip opening displacement δ t-values, a smaller element size 

is used in the near-tip region. Region A consists mainly of elements with mesh size 
0.2 mmm = . Region B A⊂ , with a dimension of 0.4 0.2 mm²× , is discretized with a finer 

mesh size of 10 mm = , see Fig. 9.2b. The value of tδ  is taken at the intersection of a 45° 
line, drawn from the crack tip, with the upper crack flank (e.g. Anderson 1995, Suresh 1998, 
Kuna 2008).  

J-integrals are evaluated for deformation plasticity and incremental plasticity, conv
PZJ  and 

ep
PZJ , see Eq. (6.13) and Eq. (6.14). Three different contours are chosen, PZ7.2 (dashed-dotted 

line), PZ10.8 (dashed line), PZ14.4 (dots), see Fig. 9.1a; the number denotes the distance (in 
mm) of the right boundary of the contour in x-direction from the crack tip. The values of the 
cyclic J-integrals are calculated from Eq. (6.19) and Eq. (6.22), respectively. 

  

max,sly 50F =
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Fig. 9.3 Distribution of incremental plasticity bulk configurational forces for general yielding 
conditions in the plastically deformed region between the right boundaries of the three 
integration contours. Mesh size m = 0.2 mm.

Table 9.1 lists, for load ratio R = 0, the values ep
PZ7.2J , ep

PZ10.8J  and ep
PZ14.4J  at maximum and 

minimum load of the 2nd and 4th load cycle, i.e. for gy- and sly-conditions, respectively. It is 
seen that ep

PZ,maxJ  at maximum load remains almost constant for changes of PZ; the maximal 
relative difference is about 1% for gy, and it even decreases if the load is increased. The 
reason is that the x-components of epf -vectors in the plastically deformed region between

PZ7.2 and PZ14.4 almost cancel each other out when they are summed up along a vertical line, 
see Fig. 9.3. On the contrary, ep

PZ,minJ  at minimum load min 0F =  exhibits stronger relative 
variations of about 17% and 35% for gy and sly; however, the absolute differences remain 
smaller than 0.9 kJ/m². 

For load ratios R = 0.5 and R = –1, the influence for variations of PZ on the ep
PZJ -values is 

basically the same. For R = 0.5, the relative variation of ep
PZ,minJ  is weaker due to the higher 

minimum load, min 0F > . For R = –1, ep
PZ,minJ  becomes even negative. 

Table 9.1 collects also results for the conventional J-integrals conv
PZ10.8J  and conv

farJ . For R = 0 
and R = 0.5, the value of conv

PZ,maxJ  remains constant for gy- and sly-conditions, conv conv
PZ,max far,maxJ J= . 

This does not apply at minimum load, since the conditions of proportional loading are 
violated during unloading; see also Section 6.4.2 for details. For N = 2, conv

PZ,minJ  varies by about 
20% for gy; the deviation decreases to 5% for sly. Note that conv

PZJ  varies for R = –1 even at 
maximum load; the reason is currently not fully understood.  

Table 9.1 shows that conv
PZJ exhibits in general higher values than ep

PZJ . For gy-conditions, 
N = 2, the relative difference between ep

PZ,maxJ and conv conv
PZ,max far,maxJ J=  is only about 2% at 

maximum load, but it increases for sly-conditions, N = 4, up to approximately 20%. The 
values of conv

PZ,minJ and, especially,  lie distinctively higher than ep
PZ,minJ  at minimum load. 

This has important consequences for the corresponding conventional cyclic J-integrals, see 
below. 
  

conv
far,minJ
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Table 9.1 Values of the incremental plasticity and deformation plasticity J-integrals around the crack 
tip plastic zone, ep

PZJ  and conv
PZJ , for general yielding (gy) and severe ligament yielding (sly) conditions. 

The conventional far-field J-integral conv
farJ  is also included for comparison. 

 R ep
PZ7.2,maxJ ep

PZ7.2,minJ ep
PZ10.8,maxJ ep

PZ10.8,minJ ep
PZ14.4,maxJ ep

PZ14.4,minJ conv
PZ10.8,maxJ conv

PZ10.8,minJ conv
far,maxJ conv

far,minJ
 - [kJ/m²] [kJ/m²]

gy 0 38.03 0.515 38.22 0.578 38.43 0.608 39.09 1.570 39.10 10.59 
sly 0 82.88 2.502 82.81 3.356 82.65 2.954 99.47 18.96 99.44 47.26 

gy 0.5 38.03 12.51 38.22 12.64 38.43 12.77 39.10 13.56 39.12 17.98 
sly 0.5 83.95 34.92 83.91 35.45 83.73 35.19 101.1 51.97 101.0 66.21 

gy –1 37.83 –0.187 38.01 –0.171 38.22 –0.183 40.64 0.954 44.65 13.43 
sly –1 75.34 –5.226 75.21 –5.150 75.24 –5.688 96.38 11.62 145.1 74.41 

Table 9.2 Values of the incremental plasticity, deformation plasticity and experimental cyclic J-
integrals, ,  and  for gy- and sly-conditions.

 R   
 - [kJ/m²] [%] 

gy 0 29.69 24.99 27.89 15.83 6.081 –11.60 
sly 0 56.58 31.58 34.68 44.20 38.71 –9.834 

gy 0.5 6.926 6.608 6.769 4.460 2.116 –2.451 
sly 0.5 10.58 8.099 8.401 23.47 20.62 –3.720 

gy –1 37.83 29.14 37.71 22.97 0.317 –29.41 
sly –1 75.34 41.07 84.75 45.49 –12.49 –106.4 

Now, we want to compare the cyclic J-integrals, ep
PZJΔ  and conv

PZJΔ , with the experimental 
cyclic J-integral expJΔ  and check if they increase during re-loading proportional to the cyclic 
crack tip opening displacement tδΔ  for different load ratios R. 

Table 9.2 lists the cyclic J-integral values for load ratios R = 0, 0.5 and –1, and load 
cycles N = 2 (gy) and N = 4 (sly). Hereby, ep

PZJΔ  and conv
PZJΔ   are evaluated after Eq. (6.19) and 

Eq. (6.22), using the PZ7.2J -values in Table 9.1. For R = –1, ep
PZ,minJ  (Table 9.1) is set to zero 

according to the results of Section 6.4.4. The quantity expJΔ  is computed according to the 
corrected procedure in Sect. 6.5.3. The last three columns in Table 9.2 show the relative 
differences between all cyclic J-integrals. 

It is seen that expJΔ  gives rather good approximations of ep
PZJΔ  for gy, taking a 2% 

underestimation due to the geometry factor η into account, see Section 6.5.3. The difference 
becomes large for sly-conditions. The conventional cyclic J-integral conv

PZJΔ  and expJΔ  differ 
especially for low load ratios. The reason is probably connected to the fact that  at 
the minimum load. It can be shown that  at  is still valid for R = 0 and 
0.5 under sly-conditions; the misfit between  and  is less than 3%. This is, however, 
not the case for R = –1, see Table 9.1. The difference between  and  is always 
significant, except for R = 0.5 and gy. The reason is mainly attributed to the higher -
values, which give higher square-root terms in Eq. (6.22).  

ep
PZJΔ conv

PZJΔ expJΔ
ep
PZJΔ conv

PZJΔ expJΔ ep
convΔ ep

expΔ conv
expΔ

expconv
PZJ J≠

expconv conv
PZ farJ J J= ≅ maxF

conv
farJ expJ

ep
PZJΔ conv

PZJΔ
conv
PZ,minJ
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(a) (b) 

Fig. 9.4 Cyclic J-integrals ,  and  plotted against the cyclic crack tip opening 
displacement : (a) at kN (N = 2), onset of general yielding, and (b) at 

kN (N = 4), severe ligament yielding. The far-field cyclic J-integrals, 
 and , are also included. Additional results for different load ratios R

confirm the proportionality between  and . 

Figure 9.4 presents, similar to Fig. 6.11b, the increase of the cyclic J-integral values 
(Table 9.2) with increasing cyclic crack tip opening displacement . For generating Fig. 
9.3, additional simulations are performed with load ratios between R = –1 and 0.8. Thereby, it 
was confirmed that  exhibits a minimum of zero for R = –0.1, see Section 6.5.3. 

It is seen from Fig. 9.4a,b that the magnitude of ep
PZJΔ  increases, for gy, exactly linear 

and, for sly, almost linear with increasing tδΔ . The experimental cyclic J-integral expJΔ
deviates from this line with decreasing load ratio R. The parameter conv

PZJΔ  deviates even 
stronger. The increasing misfit between conv

PZJΔ  and ep
PZJΔ  for decreasing R is mainly connected 

to the higher minimum conv
PZ,minJ -values due to the stronger non-proportional loading, see Table 

9.1 and Eq. (6.22). This effect does not appear for large-scale yielding conditions, Fig. 6.11b, 
where an “elastic corridor” does exist between the crack tip- and back face plastic zone, 
hence, conv

PZ,minJ  equals ep
PZ,minJ . 

It should be mentioned that the variation of the path PZΓ  would give a maximal change 
by about 5% of ep

PZJΔ  and conv
PZJΔ , but this does not change the trend depicted in Fig. 9.4.  

It is seen that ep
farJΔ  and conv

farJΔ  strongly deviate from the corresponding PZJΔ -values: 
ep
farJΔ  exhibits lower values than ep

PZJΔ  due to the anti-shielding effect of the back face plastic 
zone (Sect. 6.4). For example, for R = 0 and N = 2, 4, ep

far,maxJ  lies about 24% and 36% below 
the value of ep

PZ,maxJ ; compare also Sect. 5.1. The values of conv
farJΔ  lie even lower than ep

farJΔ , 

ep
PZJΔ conv

PZJΔ expJΔ
tδΔ max,gy 45F =

max,sly 50F =
ep
farJΔ conv

farJΔ
ep
PZJΔ tδΔ

tδΔ

ep
PZJ



164 Discussion

which is caused by higher J-values at minimum load, see Table 9.1 and Eq. (6.28). This 
confirms that the far-field cyclic J-integrals are not appropriate for characterizing the crack 
driving force of cyclically loaded, stationary cracks. 

It can be concluded that ep
PZJΔ  seems to have, for stationary fatigue cracks, a useful 

physical meaning as a crack driving force term also beyond the onset of general yielding 
although it can be determined only in an approximative way. Changes of PZΓ , like in Fig. 
9.1a, almost do not influence the magnitude of ep

PZJΔ . Important is only that PZΓ  does not 
intersect the back face plasticity region. The condition Eq. (6.23) still seems to hold 
approximately at onset of general yielding conditions and positive load ratios. However, the 
conventional and experimental cyclic J-integral, conv

PZJΔ  and expJΔ , give inaccurate estimations 
of the fatigue crack driving force in the presence of severe ligament yielding conditions. 

For a growing crack under cyclic loading, Paper II shows that the incremental plasticity 
cyclic J-integral ep

actPZJΔ , which is computed for a contour actPZΓ  around the active plastic zone 
of the growing crack, Eq. (7.15), is the correct driving force parameter. The contour actPZΓ  can 
be easily determined for ssy- or lsy-conditions as described in Sect. 7.3. The problem of 
extracting the correct value of  under gy-conditions is even more difficult than for a 
stationary crack, since the active plastic zone approaches the back face plasticity region. This 
requires similar studies as presented in this section. 

It can be expected that the determination of  in an approximative way works at 
onset of gy-conditions. In this case, the part of the active plastic zone that travels with crack 
extension must be included in the contour actPZΓ ; the back-face plasticity region shall be not 
included since it does not move. This has been done for the calculation of the ep

actPZJΔ -values 
listed in Paper II in Table 7.2 under N = 24, Δa = 4.6 mm. Here the right boundary of actPZΓ  is 
chosen to be located where epf -vectors emerge with x-components of almost zero (like PZ10.8  
in Fig. 9.3). The last data point in Fig. 7.8b suggests a steep increase of ep

actPZJΔ , in accordance 
with an increase in the cyclic crack tip opening displacement tδΔ .  

Note that the growth of long fatigue cracks under gy-conditions are in practice not really 
meaningful since final failure can happen very soon. Instead, the gowth of short fatigue 
cracks under gy-conditions is of greater practical importance. 

9.2 On the characterization of short fatigue cracks in elastic–plastic 
materials 

Short fatigue cracks are of great practical importance since every fatigue crack is initially 
short. In most cases short cracks cannot be treated with ΔK, since the crack tip plastic zone 
becomes easily comparable to the crack length so that LEFM is not valid any more; see 
Section 3.1 and, e.g., Suresh (1998). Dowling (1977) proposed a special type of experimental 
cyclic J-integral for short fatigue cracks,  

exp
sc e p3.2 5.0J a aφ φΔ = Δ + Δ . (9.1) 

ep
actPZJΔ

ep
actPZJΔ
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The parameter exp
scJΔ  shall measure the fatigue driving force of small semi-circular cracks in 

initially smooth low-cycle fatigue specimens, i.e. a tensile test where a crack is initiated on 
the specimen surface during cyclic loading. In Eq. (9.1), a denotes the crack length, eφΔ  and 

pφΔ are the elastic and plastic components of the cyclic strain energy density. The magnitude 
of eφΔ  and pφΔ are determined from the stress–strain (σ ε− ) curve of a LCF-test, 
analogously to the determination of ΔA from the F–v-record, Fig. 3.3b, for , Eq. (3.4); 
see e.g. Suresh (1998) for details. The pre-factors in Eq. (9.1) originate from the derivation of 

exp
scJΔ  for a semi-circular crack, see Dowling (1977). It should be noted that Eq. (9.1) is, 

nevertheless, commonly applied for short fatigue cracks (also with other crack geometries). 
The parameter exp

scJΔ  and modifications for other crack geometries have been successfully 
applied for correlating the growth rate of short fatigue cracks (e.g. Dowling 1977, McClung et 
al. 1997, Döring et al. 2006, Pippan and Grosinger 2013). However, doubts about the validity 
of this parameter have been raised, since it is based, like the experimental cyclic J-integral 

expJΔ  for long cracks in Eq. (3.4), on the classical J-integral (Suresh 1998). 
It can be expected that the incremental plasticity J-integral epJ , in combination with a 

configurational force analysis, is able to provide us with new insights about the validity of the 
experimental cyclic J-integral exp

scJΔ . 
We have already started with numerical tests for short surface and interior cracks, using 

Single Edge Notched Tension (SENT) and Center Cracked Tension (CCT) specimens (see 
e.g. Anderson 1995). Note that Compact Tension (CT) specimens are  not appropriate, and are 
commonly not used for experimental tests on short fatigue cracks. The methodological 
approach is the same as for long fatigue cracks (Sections 6.3, 7.3): First, stationary cracks, 
then growing cracks are treated under various prescribed maximum loads, so that ssy-, lsy-, 
and gy- conditions prevail, and different load ratios. It shall be also checked for which 
magnitude of the crack tip plastic zone ΔK is not applicable any more. 

The intention of these future investigations is (i) to demonstrate that the parameter ep
actPZJΔ

works also for the characterization of the growth rate of short fatigue cracks, and (ii) to clarify 
whether the experimental cyclic J-integral exp

scJΔ  can be used to measure the driving force for 
short fatigue cracks.  

9.3 Proposal for the experimental estimation of the driving force for fatigue 
crack growth 

The maybe most important question that arises from Paper II in the context of long fatigue 
cracks would be: How can we measure the magnitude of the correct fatigue crack driving 
force ep

actPZJΔ  in experiments? The problem is that the experimental cyclic J-integral expJΔ , 
proposed by Dowling and Begley (1976), measures the incremental plasticity cyclic J-integral 

ep
PZJΔ , which is computed for a contour PZΓ  encompassing the entire crack tip plastic zone, 

Fig. 7.1b, but not the active plastic zone, exp ep ep
PZ actPZJ J JΔ = Δ ≠ Δ . The difference between 

exp ep
PZJ JΔ = Δ   and  can be seen in Tables 7.1 and 7.2 and Fig. 7.8.  

expJΔ

ep
actPZJΔ
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Fig. 9.5 Schematic variations of incremental plasticity cyclic J-integrals for a contour around the 
entire plastic zone, , and the active plastic zone, , against crack extension Δa
during cyclic loading; load ratio R = 0 and ssy-conditions are assumed. The peak in  
is induced by crack tip blunting of the initial crack tip after monotonic loading in the first 
load cycle. 

A possible solution for this problem could be the introduction of a correction factor in the 
-procedure, so that the new, improved experimental procedure enables the estimation of 

the correct fatigue crack driving force . This requires further investigations in addition 
to Paper II. An idea how to determine the difference between  and  shall be 
presented in the following. 

Due to the validity of Eq. (7.10), it is reasonable that a correction factor for expJΔ  can be 
developed by investigating the relative difference between ep

actPZJΔ  and ep
PZJΔ  during fatigue 

crack propagation. Figure 9.5 shows schematically the characteristic evolution of ep
actPZJΔ  and 

ep
PZJΔ  with increasing crack extension during cyclic loading. Hereby, it is assumed that the 

crack grows under constant fatigue load with load ratio R = 0 and small-scale yielding 
conditions; compare Figs. 7.4a, 7.6 and 7.8. Figure 9.6 presents, similar to Fig. 5.6, 
schematically the directions and magnitudes of the configurational forces epf  at maximum 
load after a crack extension Δa up to point A (Fig. 9.5). Note that Fig. 9.6 is similar to Fig. 5.6 
for crack extension under monotonic loading; differences occur only due to the different 
boundary conditions. 

Analogously to the case for crack extension under monotonic loading, Section 5.2.1, it 
becomes clear from Fig. 9.6 that the difference between  and , Fig. 9.5, is related 
to the net contribution of the configurational forces on the left boundary of the initial crack tip 
plastic zone and in the initial blunting region.  

The difference between  and exp ep
PZJ JΔ = Δ  is small and constant for longer crack 

extensions under ssy-conditions; see also Fig. 7.8a. This is not the case for fatigue crack 
propagation under lsy- or gy-conditions (Fig. 7.8b). The reason is that the right boundary of  
  

ep
PZJΔ ep

actPZJΔ
ep
actPZJΔ

expJΔ
ep
actPZJΔ

expJΔ ep
actPZJΔ

ep
actPZJΔ ep

PZJΔ

ep
actPZJΔ
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Fig. 9.6 Schematic distribution of incremental plasticity bulk configurational forces epf  in the 
entire crack tip plastic zone after crack extension Δa (up to point A, Fig. 9.5) under 
constant fatigue load. The integration contour PZΓ  surrounds the initial crack tip 
plastic zone, the plastic wake and the active plastic zone of the moving crack tip. 

actPZΓ  surrounds the active crack tip plastic zone. On the contrary to monotonic 
loading, epf -vectors located in the initial crack tip plastic zone decrease significantly 
after some load cycles with crack extension. 

the active plastic zone, with configurational force vectors  in negative x-direction, 
increases with increasing crack extension; see Sect. 7.4.2. Therefore,  increases 
stronger than  and expJΔ  as seen in Fig. 7.8b. This implies that the experimental cyclic 
J-integral expJΔ  can lead to strong underestimations of the fatigue crack driving force  
for lsy-conditions and, especially, for gy-conditions, which can be dangerous since the crack 
grows in reality faster as predicted via expJΔ . 

For future work, numerical case studies are planned on how the initial crack tip blunting 
region influences the difference between  and expJΔ  under ssy-conditions, and how 
this difference can be estimated even for more complicated cases, such as fatigue crack 
growth under lsy- or gy-conditions. 

9.4 Does the effective stress intensity range ΔΔΔΔKeff exactly characterize the 
fatigue crack driving force in the regime of LEFM? 

Paper III shows that the incremental plasticity cyclic J-integral ep
actPZJΔ  is able to accurately 

reflect the overload effect, and that it is possible, in combination with an configurational force 
analysis, to understand the most dominant mechanisms for the delayed crack growth 
retardation phenomenon. It can be expected that the procedure outlined in Paper III provides 
us also with new insights into the most dominant mechanism for other types of load history 
effects on the fatigue crack growth rate; see Skorupa (1998) for some examples. 

ep
rb,actPZf

ep
actPZJΔ

ep
PZJΔ

ep
actPZJΔ

ep
actPZJΔ
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Somewhat surprisingly, we encountered a problem in the application of the effective 
stress intensity range effKΔ , which seems to have not been reported in the literature: In Paper 
III it is seen that effKΔ  can significantly underestimate the driving force for fatigue crack 
growth for longer crack extensions following an overload (Fig. 8.8c). However, effKΔ  can 
give erroneous results in the regime of LEFM even for constant fatigue loads. This problem 
shall be briefly addressed in the following. 

Numerous simulations and experiments on plasticity-induced crack closure show that 
crack tip opening occurs at around 20% of maxF  for plane strain and steady state crack growth 
under constant load amplitude (e.g. Fleck 1986, Sehitoglu and Sun 1991, McClung 1991, 
Bichler and Pippan 2007). This is also confirmed by the numerical case studies in Paper II 
and Paper III (for sufficiently large crack extensions after the overload). However, the 
(global) crack opening load opF , i.e. determined via compliance change method, lies with 
approximately 2% of maxF significant below the (local) crack tip opening load 

t 0δ =F , i.e. where 
the crack tip opening displacement tδ  becomes non-zero during re-loading (Fig. 8.4b). Note 
that Riddell et al. (1999) have already shown via near-tip displacement measurements that the 
crack tip can be still closed at opF ; the phenomenon is referred to as local crack opening. 
Nevertheless, Fig. 8.8c shows, for constant cyclic loading with R = 0, that eff

CL
KJ ΔΔ , Eq. (8.8), 

reflects very well the values of ep
actPZJΔ . However, a substitution of 

t 0δ =F  for opF  in the 
evaluation of effKΔ  (and eff

CL
KJ ΔΔ ), would lead to a very strong underestimation of the ep

actPZJΔ -
magnitude of about 55%; this can be shown also for negative load ratios.  

This demonstrates that a global parameter like the effective stress intensity range effKΔ
does not fully reflect the local behavior of the crack tip during fatigue crack growth. This is 
confirmed by the overload case studies presented in Paper III and also by the following: For 
positive load ratios R > 0 crack flank contact does not occur, so that effKΔ =

max minK K KΔ = −  since op minK K= . For such cases, it can be shown that the parameter CL
KJ ΔΔ , 

evaluated after Eq. (8.8) from KΔ , reflects the magnitude of ep
PZJΔ . This is reasonable, since 

ep
PZJΔ  equals the experimental cyclic J-integral expJΔ  (see Paper II) and expJΔ  reflects the 

magnitude of ΔΔ KJ  (see e.g. Dowling and Begley 1976, Banks-Sills and Volpert 1991), 

ep exp
PZ for 0KJ J J RΔΔ = Δ = Δ > . (9.2) 

Thus, it can be stated that the stress intensity range KΔ  does not correspond to ep
actPZJΔ , 

but to ep exp
PZJ JΔ = Δ . However, note that the results of Paper II show that the difference 

between ep
actPZJΔ  and ep

PZJΔ  is, in general, negligible for small-scale yielding conditions. One 
has to be only careful in the presence of crack flank contact, since the parameter effKΔ is very 
sensitive to the “correct” determinations of the crack opening load opF . This applies 
especially in the case where an overload has been applied, see Section 8.6. 

For future work, additional investigations are planned on the exact role of KΔ  or effKΔ
as a crack driving force parameter for fatigue crack growth. Probably, this will provide us also 
with a better understanding of the difference between ep

actPZJΔ  and expJΔ  under ssy-conditions. 
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10 Summary 

The aim of the current thesis was to develop a numerical procedure for the physically correct 
characterization of the driving force for cyclically loaded cracks that grow in elastic–plastic 
materials, in order to describe the crack growth rate during fatigue.  

The concept of configurational forces was applied for this challenge. The reason is that 
the concept enables the derivation of the J-integral without restrictions about constitutive 
assumptions for a material. The J-integral for incremental theory of plasticity, epJ , provides, 
in contrast to the conventional J-integral, a true driving force term when applied to elastic–
plastic materials even under strongly non-proportional loading conditions. Therefore, epJ
should be applied for the assessment of the crack driving force for crack growth in elastic–
plastic materials for monotonic loading. When characterizing the growth rate of fatigue cracks 
in elastic–plastic materials, a cyclic incremental plasticity J-integral epJΔ  should be used as 
crack driving force parameter. However, at the start of this thesis it was neither clear (i) which 
integration path should be considered, since epJ  is in general path dependent, nor (ii) how the 
cyclic J-integral epJΔ  should be calculated with ep

maxJ  and ep
minJ  so that it describes the driving 

force for fatigue crack growth. 
The properties of epJ  and the distribution of the configurational body forces have been 

worked out for long fatigue cracks in two-dimensional Compact Tension specimens under 
plane strain and cyclic Mode I loading conditions. Stationary and growing cracks have been 
considered; incremental crack extension after each load cycle has been modeled using the 
node release technique. The maximum load has been varied in order to obtain small-scale, 
large-scale and general yielding conditions. Different load ratios have been applied. The case 
of a single tensile overload was also carefully investigated. 

The main conclusions of the thesis are: 

• The incremental plasticity cyclic J-integral ep
actPZJΔ , computed for an integration 

contour actPZΓ  around the active plastic zone of the growing crack tip, is the physically 
correct driving force for the description of fatigue crack growth in elastic–plastic 
materials. The cyclic J-integral should be evaluated by the relation

max min max min2J J J J JΔ = + − ; the quantities maxJ  and minJ  denote the maximum and 
minimum ep

actPZJ -values achieved in a single load cycle. The parameter  is able 
to reflect the variation of the cyclic crack tip opening displacement at the current crack 
tip, , but with much less computational effort.  

• The experimental cyclic J-integral expJΔ , proposed by Dowling and Begley (1976), 
reflects the magnitude of the incremental plasticity cyclic J-integral ep

PZJΔ , computed 
for a contour PZΓ  enclosing the entire crack tip plastic zone. After crack extension, the 
contour PZΓ  includes the initial crack tip plastic zone, the plastic wake and the active 

ep
actPZJΔ

tδΔ
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plastic zone. Therefore, expJΔ  is exactly correct only for stationary fatigue cracks, 
since the entire and the active crack tip plastic zones coincide and ep ep

PZ actPZJ JΔ = Δ . After 
crack extension, however, ep ep

PZ actPZJ JΔ ≠ Δ . Thus, expJΔ  is not fully appropriate to 
measure the driving force for growing fatigue cracks. 

• Basically, this result rests on the finding that the conventional cyclic J-integral conv
PZJΔ

reflects the magnitude of ep
PZJΔ  if the contour PZΓ  goes only through elastically

deformed regions, since then deformation- and incremental plasticity yield identical 
results. For a growing fatigue crack, the contour around the active plastic zone actPZΓ
crosses the plastic wake, therefore, epconv

actPZ actPZJ JΔ ≠ Δ . 
• The difference between ep

actPZJΔ  and ep
PZJΔ  is caused by the net-contribution of the bulk 

configurational forces that are located within the blunting region of the initial crack 
tip. This finding might be a clue for working out a new, improved experimental 
procedure, which enables the estimation of the fatigue crack driving force ep

actPZJΔ . 
• The application of the experimental cyclic J-integral expJΔ  for the characterization of 

stationary fatigue cracks in elastic–plastic materials works even at onset of general 
yielding, i.e. a complete path through plastically deformed material exists between 
crack tip and back face region. Beyond that, i.e. under severe ligament yielding 
conditions, only the new parameter ep ep

actPZ PZJ JΔ = Δ  is appropriate.  
• The parameter ep

actPZJΔ  is also able to reflect very accurately the well-known delayed
crack growth retardation effect after an overload. Moreover, in combination with an 
analysis of the configurational body forces in the plastic zone, insights can be obtained 
into the exact mechanisms that are responslibe for the overload effect. For our cases 
under plane strain assumptions, it has been shown that residual stresses around the 
propagating crack tip mainly cause the overload effect, whereas crack flank contact 
does not play such a crucial role. Analyses for pure tension cyclic loading show that 
the fatigue crack can even stop although crack flank contact did not exist. It should be 
stressed that the contribution of crack flank contact to the overload effect might be 
appreciably higher for a three-dimensional specimen, due to the lateral contraction at 
the side surface of the specimen. 

• The experimental cyclic J-integral expJΔ  is not appropriate to characterize the crack 
growth rate after an overload. The reason becomes clear from the parameter ep

PZJΔ : The 
contour PZΓ  surrounds the entire crack tip plastic zone and goes only through 
elastically deformed regions where residual stresses cannot appear. Therefore, ep

PZJΔ
and expJΔ  predict a constantly increasing crack growth rate, such as for a constant 
fatigue load.  

• The current thesis also shows that problems can appear when using the effective stress 
intensity range effKΔ  as fatigue crack driving force term for the regime of linear 
elastic fracture mechanics. The reason is related to the fact that a global parameter like 

effKΔ  is, in contrast to ep
actPZJΔ , not able to reflect fully the local behavior of the 

propagating crack tip, which is crucial for the fatigue crack growth rate. As a 
consequence, effKΔ  can lead to significant underestimations of the driving force for 
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fatigue crack growth; this is seen especially for fatigue crack growth for longer crack 
extensions after an overload. 
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