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Preamble

The time it took me to write my dissertation was a time well spent, I would not like to miss
this period in my life. As his apprentice, Paul introduced me to the art of scientific writing and
he showed me the value of good engineering practice. We’ve spent countless hours discussing
novel approaches to find solutions for problems most people are not even aware they exist. It
makes me proud, that over the years we not only developed a professional partnership, but also
established a deep personal friendship. Paul enlightened me, that scientific documents such
as this very dissertation will always remain in a work-in-progress state. If you are completely
satisfied with your work, you did something terribly wrong. This formulation may sounds
frustrating, but on second thought it enables us to reinvent ourselves, exploit unused potential
and to leave predefined paths. Nevertheless, it is important to be proud of your achievements.
At this point, I want to thank Paul for his support and the numerous lessons he taught me as
friend and teacher during the last years.

One of these lessons was to always scrutinize even state-of-the-art literature. It is important
to maintain a critical view onto all sources of knowledge. Especially in the young field of
cyber-physical systems (CPS), there is no established body of knowledge. Numerous possible
applications are described in literature, yet actual solutions to solve the associated problems
are virtually non-existent. The vague and competing definitions of CPS pose a real threat to
this young field of research. CPS are an interdisciplinary field, which makes it hard to identify
suitable conferences to present our work. The importance of adequate physical models is often
underrated in practical applications. New design methodologies such as model based design
help scientists and engineers to formulate the required models on an abstract level and directly
deploy them on a target system without detailed knowledge about the hardware platform.
Assisting technologies of this kind may reduce the discrepancies between theory and practice.
The problem class of inverse problems is ubiquitous in our daily life, e.g., our consciousness is
based on our sensory experience. Cognition is based on perception, reasoning, awareness and
judgment of physical phenomena. Our senses only provide us with the perturbed effect, yet we
are searching for the associated cause. This introduces the concept of uncertainty, which is vital
for any technical application incorporating measurements.

This thesis is structured from a bottom-up approach w.r.t. the information flow: from sensors to
the supervisory system. The industrial projects and scientific publications in Part III form the
core of this work. The related theory is explained in Part II while Part I summarizes the design
methodologies. The chapter about machine vision is not to be seen in a CPS context, it has
been included because the majority of projects in Part III uses optical cameras as the sensory
input. A vast outlook is given in Part IV, because the described technology bears so much more
potential for countless future applications. In particular, the topic of temporal data mining will
play an important role for real-time condition monitoring of machines and knowledge discovery
in machine data. A future thesis may describes CPS deductively from a top-down data mining
point of view.

Nature is bound to the irrevocable laws of physics, even if we do not understand all of them yet.
On the other hand, people follow their own rules, which are even harder to understand. I’m
fortunate that I met special people along my journey whom I could rely on in every situation
and I never had to doubt their support. I want to thank my family, friends and colleagues;
all of them contributed to this work in their own ways. A special thanks goes to Peter for his
constructive criticism as my second supervisor.
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Abstract

A cyber-physical system (CPS) is defined as a distributed network of collaborating hybrid,
dynamic devices that operate in real-time and abide the by laws of physics. CPS incorporate
sensors to acquire data from their environment as well as actuators to influence physical
processes. The concept encompasses intercommunicating mechatronic systems; popular civil
implementations of this concept are wireless sensor actuator networks (WSAN) and cyber-
physical production systems (CPPS).

The combination of sensors and actuators within the physical domain effectively forms a
hierarchy of operational/reactive and strategic/predictive closed control loops within the cyber
and socio domains respectively. The feedback loop is fundamentally a measurement system.
In a mathematical sense, the evaluation of a measurement is an inverse problem, whereby the
system’s perturbed output, i.e., the effect, is observed and the system’s original input, i.e.,
the cause, is sought. The acquired data has a given significance depending on the context it
is related to. An analytically correct solution requires adequate mathematical models of the
physical phenomena, whereby models are simplified abstractions of reality. Incorporation of
a-priori knowledge about the system enables the solution of the problem with respect to a
maximum likelihood estimation in the presence of noise. Using model based design (MBD), the
equations are formulated on abstract model level without the need of detailed knowledge about
the intended target hardware platform or programming language.

The dissertation focuses on the formulation of a robust algebraic framework for the description
of physical models using discrete orthogonal polynomial (DOP) basis functions as numerical
linear operators in regression analysis. Furthermore, a linear differential operator for the solution
of perturbed ordinary and partial differential equations (ODE and PDE) has been derived.
In this vein, inverse problems are solved using spectral regularization in a least squares sense
with high numerical quality and stability. The use of linear operators is advantageous in terms
of estimating the error propagation as well as their potential to be automatically translated
to platform specific target code for embedded systems using MBD. In-the-loop verification
techniques ensure the functional and numerical equivalence between model code and target code.
The generic DOP concept has been expanded to weighted approximation, constrained basis
functions and bivariate transformations to cover a wider range of possible applications.

The theoretical framework has been implemented in CPS applications on heavy machinery
from the mining and tunneling industry utilizing the presented system design approach. This
encompasses the use of DOP basis functions for system level calibration in machine vision together
with a-priori estimation of confidence intervals, uncertainty weighted multi-source data fusion as
well as the automatic generation and deployment of target code on various embedded processor
platforms. Extensive experimental verification has been carried out during these projects. The
new methods are completely general and fully scalable. They bear immense potential for future
applications, especially in temporal data mining where multi-channel streaming data emerging
from large-scale CPS has to be analyzed in real-time for adaptive/predictive control of physical
processes within the socio domain.

Index Terms

cyber-physical system; inverse problem; model based design; embedded system; automatic
programming; discrete orthogonal polynomials; machine vision;
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Kurzfassung

Ein cyber-physisches System (CPS) ist definiert als ein verteiltes Netzwerk von zusamme-
narbeitenden hybriden, dynamischen Geräten welche in Echtzeit betrieben werden und den
Gesetzen der Physik unterliegen. CPS verwenden Sensoren um Umgebungsdaten zu erfassen und
Aktuatoren um physikalische Prozesse zu beeinflussen. Das Konzept umfasst kommunizierende
mechatronische Systeme, bekannte zivile Anwendungen sind drahtlose Sensor-/Aktuatornetze
(WSAN) sowie cyber-physische Produktionssysteme (CPPS).

Durch die Kombination von Sensoren und Aktuatoren im physischen Umfeld wird eine Hierarchie
von operativen/reaktiven und strategischen/prädiktiven geschlossenen Regelkreisen im cyber
bzw. in der socio Domäne aufgebaut. Die Rückkopplungsschleife im Regelkreis ist ein Messsys-
tem, wobei die Auswertung von Messergebnissen ein inverses Problem im mathematischen
Sinn darstellt. Das verrauschte Ausgangssignal, d.h. die Wirkung, wird beobachtet um auf das
ursprüngliche Eingangssignal, d.h. die Ursache, zu schließen. Die erfassten Daten haben eine
kontextabhängige Signifikanz. Eine analytisch korrekte Lösung benötigt adäquate mathematis-
che Modelle der auftretenden physikalischen Phänomene, wobei Modelle immer vereinfachte
Abstraktionen der Realität darstellen. Das Einbringen von Vorabwissen über das betrachtete
System schafft die Voraussetzungen für die Problemlösung im Sinne eines Maximum-Likelihood
Schätzers in Anwesenheit von Rauschen. Modellbasiertem Entwurf (MBD) ermöglicht die
Formulierung der notwendigen Gleichungen auf abstrakter Modellebene ohne Detailwissen der
verwendeten Zielhardware oder der verwendeten Programmiersprache.

Der Schwerpunkt dieser Dissertation liegt auf der robusten algebraischen Formulierung physikalis-
cher Modelle durch den Einsatz von diskreten orthogonalen Polynomen (DOP) als numerische
lineare Operatoren in der Regressionsanalyse. Ein linearer Differenzialoperator wurde entwickelt
um verrauschte gewöhnliche sowie partielle Differenzialgleichungen (ODE und PDE) zu lösen.
Ein Ergebnis mit hoher numerischer Qualität und Stabilität wird durch Regularisierung im
Spektralbereich und mithilfe der Methode der kleinsten Quadrate erreicht. Lineare Operatoren
ermöglichen die verlässliche Abschätzung der Fehlerfortpflanzung und mit MBD kann plattform-
spezifischer Zielcode für eingebettete Systeme erzeugt werden. Die funktionale sowie numerische
Äquivalenz zwischen Modell- und Zielcode wird durch In-the-Loop Verifizierung sichergestellt.
Das generische DOP Konzept wurde um gewichtete Näherungsverfahren, Basisfunktionen mit
Nebenbedingungen sowie bivariate Transformation erweitert.

Die Implementierung der Theorie erfolge auf Schwermaschinen im Berg- und Tunnelbau unter
Verwendung der vorgeschlagenen Entwurfsprinzipien. Dies umfasst den Einsatz von DOP
Basisfunktionen für die Kalibration von Bildverarbeitungssystemen auf Systemebene inklusive
Vertrauensintervallabschätzung sowie analytische, mit der Messunsicherheit gewichtete, Daten-
fusion aus mehreren Signalquellen. Aus den Modellen wurde automatisch Zielcode generiert und
auf unterschiedlichen eingebetteten Prozessorplattformen verteilt. Umfassende experimentelle
Verifizierung wurde während dieser Projekte durchgeführt. Die neuen Methoden sind komplett
generisch und voll skalierbar, daher bieten sie Potential für vielfältige Anwendungen. Zeitab-
hängigen Daten, welche von großräumig angelegten CPS stammen und durch kontinuierliche
parallele Datenflüsse gekennzeichnet sind, werden durch Data-Mining in Echtzeit analysiert.

Schlagwörter

cyber-physikalisches System; inverses Problem; modellbasierter Entwurf; eingebettetes System;
automatisches Programmieren; diskrete orthogonale Polynome; maschinelles Sehen;
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Glossary

x, y . . . scalar
x̂, ŷ . . . estimator for scalar
x, y . . . vector
x̂, ŷ . . . estimator for vector
X, Y . . . matrix
xT, XT . . . transposed vector, transposed matrix

X−1, X+, X− . . . inverse, pseudoinverse, generalized inverse matrix
X ◦ Y . . . Hadamard product
X⊗ Y . . . Kronecker product
{x, y} . . . a set of variables
xi . . . ith element of x
xij . . . ith row / jth column element of X

i, j, k . . . indexing variables
m, n . . . number of rows, columns, samples, etc.
0 . . . vector of zeros
1 . . . vector of ones
ei . . . unit vector in ith dimension
I . . . identity matrix
W . . . weighting matrix
J . . . Jacobian matrix
L . . . linear operator
B . . . general basis
G . . . discrete orthogonal polynomial basis
D . . . differentiating matrix
μx . . . expectation value of x
x̄ . . . sample mean of x
σ2
x . . . variance of x
s2x . . . sample variance of x
Λx . . . covariance matrix of x
ν . . . degrees of freedom (d.f.)
t(ν) . . . Student distribution with ν d.f.

F(ν1,ν2) . . . Fisher distribution with ν1 and ν2 d.f.
χ2
(ν) . . . Chi-squared distribution with ν d.f.

i.i.d. . . . independent and identically distributed
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1 | Introduction

Cyber-physical systems (CPS) are a relatively young field of study, the first publications are
dating back to the year 19981, whereby the topic got widely accepted by the scientific community
in the mid 2000s2 [172]; as a consequence, numerous ambiguous definitions of CPS have been
given, e.g., in [59, 60, 108, 194]. These existing definitions will be discussed and refined in
Chapter 2 for the context of this thesis.

CPS are designed as a network of interacting computational elements controlling physical
entities, i.e., a consequent advancement of mechatronic systems. The implementation of a
CPS is an interdisciplinary task, resulting in co-design of hardware, software, networks and
associated mathematical models of the physical phenomena. The goal of the thesis is to propose
a stringent algebraic framework for models satisfying the demands of CPS in monitoring and
control applications. The models are generally applicable in high-level supervisory as well as
low-level embedded systems. A special focus is laid onto the efficient solution of inverse problems.
This class of problems naturally occurs in measurements with perturbed observations, and,
therefore, in CPS.

1.1 Synopsis

Part I: System Design. The idea of CPS is introduced and existing approaches to the topic
are discussed. Fields of application are listed and a generic CPS architecture is described. A
wireless sensor actuator network (WSAN) has numerous individual sensor/actuator nodes, called
motes, whereby each mote is composed of an embedded system with sensors and actuators
connected to it. The acquired and processed data is transmitted to a supervisory system,
which consolidates the extracted information from multiple sources via temporal data mining.
This approach effectively forms a large-scale multi-purpose monitoring and control system.
A cyber-physical production system (CPPS) uses the concept of model based production for
adaptive control of production processes.

Model based design (MBD) is an attempt to handle the design complexity and to ensure the
fulfillment of the system requirements. Physical models are formulated in an abstract mathe-
matical sense, which enables the deployment on embedded systems via automatic programming.
An overview of embedded system architecture is given along with a description of in-the-loop
verification techniques for embedded targeting. The supervisory system uses the very same
models in a parallel processing environment to accelerate data mining. Additionally, a summary
of optical principles and image processing techniques for machine vision is provided.

1Thomson Reuters: Web of Knowledge, search term cyber-physical system, www.webofknowledge.com
2Elsevier: Scopus, search term cyber-physical system, www.scopus.com

1



2 Chapter 1. Introduction

Part II: Algebraic Models. The established theoretical framework is completely general
and facilitates the solution of inverse problems with uncertainty analysis. The context of the
occurring physical effects in CPS must be fully understood in order to formulate suitable models
during system identification. Models utilizing only fundamental linear algebra are executable on
embedded systems while fulfilling the strict energy and communication constraints of a CPS.

The concept of basis functions is introduced, accompanied by the synthesis of discrete orthogonal
polynomials (DOP) and a discussion of their numerical stability on different platforms. Spectral
regularization allows the solution of ill-posed inverse problems w.r.t. a maximum likelihood
estimation. Furthermore, weighted approximation, constrained basis functions and bivariate
transformations are derived; combining these principles with a covariance estimation yields the
capability for analytic multi-source data fusion based on measurement uncertainty.

The theory on basis functions is expanded to numerically solve ordinary differential equations
(ODE) and partial differential equations (PDE) from data acquired from perturbed measure-
ments in an efficient and robust manner with high numerical quality.

Part III: Projects and Publications. A total of four projects are presented along with
their corresponding publications. The design approach presented in Part I and the theoretical
framework formulated in Part II are applied in these specific applications. All projects are
settled in a measurement/control/condition monitoring domain for underground constructions
and heavy machinery from the mining and tunneling industry. The conference papers and
journal articles are accompanied by additional information that did not fit into the documents
when they were published. The first and second project are monitoring applications while the
third and fourth project are control applications.

1. The opto-electronic perpendicular (OEP) demonstrates the possibility of using a bivariate
DOP basis to implement a mapping between a distorted camera space and the metric real
space for an optical measurement system. The concept is applied as a structural health
monitoring system for large-scale underground constructions, e.g., shafts and tunnels,
using electro-active glass targets;

2. The embedded geo-sensing (EGS) deploys the mathematical models on motes for measuring
geological phenomena such as ground subsidence. The established sensor network is utilized
for safety relevant condition monitoring of structural integrity in underground constructions.
This includes the repeated real-time solution of ODE from perturbed measurement data
on embedded systems. Utilizing a time series of measurement values supports the solution
of PDE in a post-processing step on a supervisory system;

3. The laser guided mining (LGM) uses uncertainty weighted multi-source sensor fusion to
facilitate a compact hardware design for a large-scale optical position sensitive detector
(PSD) with extended measurement range. The device is used to remotely guide a continuous
miner via a reference laser plane during its operation;

4. The active laser target (ALTv2) is a fully integrated optical measurement device for
controlling a tunnel boring machine (TBM) in a harsh environmental setting. A system
level calibration process is presented, whereby an estimation of the expected measurement
uncertainty can be given a-priori.
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Part IV: Discussion and Appendices. The results and insights acquired from the projects
are interpreted and it is concluded how future work can be improved using this knowledge.
An outlook is given for potential fields of applications for the design framework as well as
the corresponding mathematical models. Thereby, a special focus is laid on temporal data
mining techniques for real-time analytics of machine operating data, which is the consequent
enhancement of the presented theory in a CPS environment. The appendix contains a list of
common terms in metrology, the list of figures, the list of the author’s publications and the
bibliography.

1.2 Contributions

(1) Instrumentation theory. In contrast to classical digital signal processing, the proposed
approach handles discrete, non-periodic signals of finite length which have been sampled from a
continuous signal. A sound measurement and calibration model is formulated which enables
the solution of forward and associated inverse problems in a least squares sense. The presented
linear transformations are advantageous w.r.t. noise behavior, i.e., the measurement uncertainty
can be estimated during the calibration procedure. The mathematical model facilitates analytic
uncertainty weighted multi-source data fusion. The goodness-of-fit parameters enable the
computation of confidence and prediction intervals during regression analysis. The nature
of random error and the existence of a systematic error is determined via non-parametric
statistical validation techniques. The method is in compliance with the guide to uncertainty in
measurements [105] and relevant European Union directives.

(2) Mathematical framework. The verbose theoretical derivation proves, that there exists
one and only one unitary discrete orthogonal basis which can by synthesized from a sum of
monomials. The basis is numerically stable, provides excellent noise behavior and supports
arbitrary placement of nodes, which is especially useful for the numeric solution of differential
equations from perturbed measurement data. The continuous measurement model is discretized
and its solution is efficient and stable, because the regularizing differential operator works in the
presence of noise. The solver is implemented using only fundamental linear algebra; consequently,
the propagation of uncertainty can be determined analytically and automatic programming for
low-level languages becomes possible.

(3) Design methodologies. A survey of definitions for cyber-physical systems is given together
with an overview of structured design methodologies for model based design. The architectural
constraints of cyber-physical systems are described, whereby special focus was laid onto wireless
sensor actuator networks. Thanks to its algebraic formulation, the mathematical framework is
suitable for automatic generation of target code for various embedded processor platforms, i.e.,
the models are fully scalable. The types of embedded system architectures are listed together
with relevant standards.

(4) Practical applications. The design methodologies and the mathematical framework are
applied on laboratory prototypes. The devices are engineered to operate in a harsh environmental
setting provided by the mining and tunneling industries. The presented theory is completely
general, e.g., it can be applied for structural deformation measurements as well as for optical
measurements. The concepts of machine vision are explained in this application-oriented context.
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2 | Cyber-Physical Systems

CPS have been described in various ways since their emergence; however, there is still no
unified body of knowledge. A selection of various definitions from institutions, universities and
governments are cited in the upcoming section. The most general definition is:

A cyber-physical system is an agent-based network of spatially distributed, collaborating,
hybrid, computing devices and a supervisory intelligence. A CPS dynamically interacts with
its environment in real-time and abides by the laws of physics.

The chapter’s goal is to refine the topic to fit the thesis’ scope. Fields of application are listed
and a generic CPS architecture is derived with characterization of its main components. A CPS
manifests itself in three distinct domains: the physical, the cyber and the socio space. Models
form the architectural foundation of a CPS, see Fig. 2.1.

models

sensors embedded
software

network 
communicationactuators

embedded 
systems

supervisory 
system

socio spacecyber space physical space

implementation hierarchy of cyber-physical systems

[discrete, real-time][continuous, real-time] [discrete, non real-time]

Fig. 2.1 A CPS is hierarchically divided into three layers. The physical system to be monitored and
controlled resides in the continuous real space. Sensors and actuators interface with the physical space
(green). They are connected to embedded systems, which integrate the required embedded software in
the discrete cyber space (red). The data of multiple embedded systems is accumulated over network
communications by a supervisory system in the temporally decoupled socio space (purple). Models
(blue) unite the individual layers.

2.1 Definitions

According to the agendaCPS report [59, 108] by the German National Academy of Science and
Engineering (acatech), which has been assigned by the German government (Federal Ministry
of Education and Research), CPS are composed of connected embedded systems, which directly
acquire physical data via sensors and control actuators to actively influence their surroundings.
CPS possess multi-modal human-machine interfaces (HMI) and they are capable of utilizing
globally available data and services; i.e., CPS can be seen as open social-technical networks and
cover corresponding logistic, coordination and management processes.

6
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The Fraunhofer Institute [57, 194, 195] defines CPS as self-organizing, connected, intelligent
objects, which are controlled decentralized. They capture data of the real world via sensors,
process them with software from embedded controllers, use the internet and cloud computing
for mutual communication between the connectors and interact with the real world by means of
mechatronic actuators. The institute sees much potential in CPS cooperating with humans in
order to achieve lean production.

The United States National Institute of Standards and Technology (NIST) [44, 196] and the
National Science Fund (NSF)1 describe CPS as systems with integrated intelligence which have
computational processes that interact with physical components in changing environments. The
computational and physical processes of such systems are tightly interconnected and coordinated
to work together effectively, often with humans-in-the-loop.

The Institute of Electrical and Electronics Engineers (IEEE) [10] as well as the Association for
Computing Machinery (ACM) define2 CPS as systems with a coupling of the cyber aspects of
computing and communications with the physical aspects of dynamics and engineering that
must abide by the laws of physics. This includes sensor networks, real-time and hybrid systems.

Another description has been given in the Elsevier Computer Communications [172] journal:
in CPS, various embedded devices with computational components are networked to monitor,
sense, and actuate physical elements in the real world. This is a transformation of traditional
embedded systems into CPS, which are characterized by tight integration and coordination
between computation and physical processes by means of networking.

Lee [119] from the University of California at Berkeley3 and Tabuada [200] from University of
California at Los Angeles define CPS as a network of physically distributed embedded sensors
and actuators equipped with computing and communicating capabilities, usually with feedback
loops where physical processes affect computations and vice versa.

infrastructure & 
mobility

fields of 
application

health & 
living

energy & 
resources

military &
defense

production &
logistics

monitoring &
control

Fig. 2.2 CPS can be categorized into six fields of
application. A number of scenarios are described
in the agendaCPS report [59] with special focus on
infrastructure and mobility, energy and resources as
well as health and living applications. The field of
production and logistics is described in [108]. Smart
dust and unmanned aerial vehicles (UAV) [14], a.k.a.
drones, are the weaponized agent-based form of CPS.
The author wants to strictly dissociate with CPS
utilized in a military context. The focus of this thesis
is laid on the monitoring and control aspect of CPS,
which also supports production and logistics.

1Cyber-Physical Systems Virtual Organization, cps-vo.org
2ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), iccps.acm.org
3A list of publications can be found at cyberphysicalsystems.org
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2.2 Applications

In literature [59, 108], CPS claim a vast field of applications. Fig. 2.2 gives an overview of a
possible classification, whereby the production and logistics as well as the monitoring and control
aspect will be reviewed in more detail. Fig. 2.3 illustrates a CPS in a tunneling application,
bringing together multiple collaborating measurement and control systems; some of them are
introduced in Part III.

example of a cyber-physical system in tunneling

tunnel boring machine

surface

cutter 
head

concrete casing
underground structural 

health monitoring

navigation 
system

cutter head 
control system

pressure 
monitoring

overground structural 
health monitoring

advance

subsurface

supervisory 
system

error

Fig. 2.3 The example shows a heterogeneous CPS in a tunneling application. The motes (�) act as the
agents within the CPS; they are connected to the supervisory system. The optical cutter head control
system (orange) [79] and the optical navigation system (blue) [74] are used to control the tunnel boring
machine. The tunnel is encased with a concrete casing, the pressure during the concreting process
is monitored (green). Structural health monitoring is implemented either as an underground optical
measurement system (cyan) [71] as well as an overground inclinometer based system (red) [88]. The
agents are able to operate independently even when an error of the network connection occurs.

2.2.1 Cyber-Physical Production System

Condition monitoring and reactive control of facilities enables one of the major technological
advances associated to CPS: the cyber-physical production system (CPPS) [60, 61]. In Europe
and especially in Germany4, these new manufacturing techniques are referred to as Industrie
4.0 [108]; within the United States a similar program is called Smart Manufacturing [44, 196].
CPPS mainly focus onto the internet of things and services to enable highly individualized
rapid manufacturing in the self-organizing, resilient factory.

The concept of mass customization, or batch size 1, and the dynamic adaption of production
processes on manufacturing execution system (MES) level is presented in [7, 21, 154, 215].
The combination of flexible production modules allows to have a mix of high and low volume
products on the same production line. The smart workpiece becomes an active part of the
production, notifying the machines via radio frequency identification (RFID) what operations
to perform on it. In a CPS sense, products are the agents and the MES is the supervisory
system. CPS are integrated horizontally in the value chain and vertically in production systems.

4Plattform Industrie 4.0, www.plattform-i40.de
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Consequently, continuous life-cycle analysis with predictive maintenance and self-diagnostics of
machinery becomes possible [68].

The need of human-machine collaboration for lean production is described by the Fraunhofer
Institute [195] in order to even out fluctuating work loads in the production process. CPS are
seen as assistance system for organizing work capacities within the factory. As stated in [57],
the main challenges in establishing CPPS are: interoperability between legacy and new systems
as well as communication interfaces between different production installations; the amount
of complex data with the need of automatic anomaly recognition; the need of a user-centric
approach with intelligent information conditioning; and a holistic security concept, which takes
care of data interception and manipulation.

McKinsey identified twelve potentially economically disruptive technologies [130], a majority of
them is CPS related: mobile internet, automation of knowledge work, the internet of things,
cloud technology, advanced robotics, autonomous and near-autonomous vehicles as well as 3D
printing. The last-mentioned is of particular usefulness for rapid prototyping [52], a methodology
for quickly fabricating small numbers of physical parts via generative model based production.

wireless sensor actuator network with dynamic network topology

E

E

E

E
E

E

E

E

E

E

E

E

E

E

SVS

Fig. 2.4 A generic WSAN is composed of a (variable) number of spatially distributed, autonomous
sensor nodes (motes). The location of each mote is not known a-priori. Each mote consists of an
embedded system (E) and sensor(s)/actuator(s) attached to it, see Fig. 2.5. The motes are dynamically
connected adhoc to each other in a mesh-like, adaptable topology. Each mote covers a physical
subsystem with its sensor(s)/actuator(s). These subsystems can overlap, the resulting redundancy is
usable for verification purposes. Physical processes are intrinsically concurrent. A supervisory system
(SVS) harvests the data from all motes for analytics in data mining.

2.2.2 Wireless Sensor Actuator Network

The term wireless sensor actuator network (WSAN) is the most generic description of a CPS
incorporating the monitoring and control aspect [3], leading to the term of ubiquitous comput-
ing [59, 172]. Other common terms are wireless sensor network (WSN) [81] for implementations
without actuators or simply sensor network as a generic description. The wireless property
emphasizes the adaptive structure of a WSAN’s network topology. WSAN have been originally
developed for autonomous battlefield observation [120], coining the term smart dust [207];
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fortunately, WSAN are now used in a more meaningful way, e.g., in monitoring civil infras-
tructure [212]. Fig. 2.5 shows the system environment of a WSAN in a CPS sense. The goal
is to implement WSAN motes, which efficiently perform autonomous monitoring and reactive
control, i.e., certain computations are carried out locally and the results are transmitted to a
supervisory system, see Fig. 2.6. The bandwidth demands are effectively reduced by increasing
the information density. Only the processed spectra/coefficients/moments are transmitted
instead of the raw data. The wireless infrastructure poses a number of resource constraints:

1. The power supply must be provided via batteries or power scavenging units. A possible
solution is the implementation of a stand-by or sleep state, which must not interfere
with the global time synchronization within the network. Energy efficient communication
protocols and models are required [207];

2. The self-organizing network topology is multi agent-based and scalable: motes can
dynamically enter and leave the network. Each mote requires a unique identifier, e.g., via
IPv6 [156]. The data is forwarded in multi-hop infrastructureless architecture between
the motes until it reaches the supervisory system upstream or the actuators downstream
respectively, leading to a cumulative data aggregation. Therefore, the data one mote has
to carry increases with the size of the WSAN and motes near the sink suffer the most
from communication overhead [81]. The network path is optimized either by the available
power, minimum energy or minimum hop distance [3];

3. State-of-the-art wireless communication technologies on data link level are WiFi
(IEEE 802.11b), ZigBee (IEEE 802.11.5) and Bluetooth (IEEE 802.15.1) [212], which are
compatible to the most promising protocol stack IEEE 1451 [101] for WSAN. A stable
network connection cannot be guaranteed. When the number of participating motes
increases, the available bandwidth decreases while the latency increases. The sampled
data must be buffered when the connection is lost and, as a consequence, the sample rate
must be slowed down because of the limited local storage of embedded systems;

4. Each measurement acquired by a mote must have a unique identifier and a time
stamp. The data can be corrupted or lost physically during measurement, computation
and transmission as well as logically during organization and interpretation. Sensors and
actuators are most commonly based on microelectromechanical systems (MEMS).

2.3 Architecture

Building a unified framework of algebraic models for CPS by carefully considering the consistency
among all parts of the system, especially the agreement with the underlying physical principles,
is the main issue of this thesis. From a design point of view, all domains must be planned
and implemented simultaneously in order to yield a fully integrated CPS [47, 54], see Fig. 2.6.
Systems analysis and engineering [16, 36, 63, 80, 173] deliver methods to handle the complexity
of interdisciplinary cooperation. A top-down approach is most practical to ensure the fulfillment
of the system requirements: the techniques associated with model based design (MBD) are
presented in Chapter 3, the associated models are discussed in Part III. An overview of CPS
system architecture is illustrated in Fig. 2.6 with a more detailed description in Fig. 2.7.
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Fig. 2.5 A mote resided in the physical and the cyber space. Sensor(s) are used to acquire the current
state of the plant, whereas actuator(s) influence the plant’s state. The physical system’s characteristics
must be known to formulate adequate models and contextual constraints in order to give the acquired
data significance. The embedded system integrates the software for the control and measurement
processes, the generated information is forwarded to adjacent motes and ultimately to the supervisory
system via the communication module.

The architectural components of a CPS are:

(1) System. A system is an integrated set of interacting components with a structured
architecture and a clear functionality. The boundaries of a real system are within the spatial and
temporal domain. Defined interfaces enable the communication with the system’s surrounding
environment, which also includes other adjacent systems. CPS are real-time, hybrid, dynamic
systems, i.e., they exhibit both continuous and discrete time-dependent behavior. CPS are
often related to as systems of systems with non-static boundaries, i.e., the modular architecture
facilitates self-organization of spatially distributed subsystems. Each subsystem operates
autonomously, subsystem failures do not lead to a complete system breakdown. System
requirements are specified on system level; however, networked systems are never completely
testable under all possible conditions and must be verified via cross-validation techniques.

(2) Physical space. The underlying physical system is bound to the laws of physics and
situated within the continuous, real-time domain. Physical components always incorporate a
certain level of uncertainty caused by randomness in the environment. The occurring physical
phenomena are best expressed as ordinary differential equation (ODE) in one dimension or as
partial differential equation (PDE) in multiple dimensions. Coupled physical subspaces interact
with each other non-deterministically over many spatial and temporal scales, because each
physical subspace is part of the real world. Sensors detect the current state of the physical
subsystem, whereas actuators are changing it, i.e., the behavior of the physical system has a
causal relationship with the control system. Sensors and actuators are interfacing with a subset
of the physical space, whereby these components are connected to embedded systems.

(3) Cyber space. The cyber space is the discretized representation of the continuous physical
space. Discretizing ODE or PDE yields difference equations, which are solved numerically.
The on-site (local) embedded system has two main functions: quantitative measurement of the
physical subsystem via sensors and control of the actuators. This forms an operative level-1
real-time control loop, i.e., a reactive systems in the field. Conventional programming paradigms
can only be applied in a limited manner, as time cannot be hidden in the abstraction [150]. The
composite of an embedded system and its peripherals form a local sensor/actuator node, the
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...

...

level-1 and level-2 control loop
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phenomenology of the physical system

deployment on 
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Fig. 2.6 Each locally embedded system (E) and its sensor(s)/actuator(s) (S/A) form an operative level-1
reactive system (green). Critical computations are carried out on-site for adaptive control in real-time.
The processed data of each mote is forwarded to the supervisory system (SVS); using the information
from all available motes forms a strategic level-2 predictive system. The physics behind the observed
system defines the model. The models in this thesis are generically applicable and fully scalable, i.e.,
targeting of embedded systems is possible; the models are also suitable for high-performance computing
(HPC).

mote. The intermediate computation of critical parameters results in significant reduction in
communication overhead and energy consumption. Embedded software is written in low-level
languages such as C.

(4) Socio space. The off-site (global) supervisory system collects the quantitative data
streamed from multiple individual motes and fuses it to qualitative information with significance
considering all available devices in the network. The information facilitates a decision-making
process, i.e., a strategic level-2 control loop for predictions utilizing time series data mining
techniques according to the cross industry standard process for data mining (CRISP-DM)
framework [25], see Section 15.4. The goal of data mining and data analytics is to find events
within the accumulated data, whereby strategic decisions are based on this events. Actions based
on decisions bear a risk. Besides this functionality, the global supervisory system coordinates
and synchronizes the locally distributed embedded systems.

(5) Models. A model is a simplified abstraction of a real physical system while still describing
its characteristic behavior. Contextual understanding of the physical system such as constraints
and a-priori knowledge are necessary to acquire unique solutions from deterministic models.
Measurements incorporate uncertainty by definition, probabilistic models can compensate
some of these effects. Higher-order ODE describe changes in the temporal or spatial domain,
whereas conventional PDE describe changes in both domains of physical systems. A model’s
computational traits are: (1) quality of the results, i.e., how well does the model suit the
problem; (2) cost, i.e., how much time, memory and energy does the computation require; and
(3) complexity, i.e., is the model deployable on embedded systems and/or is it suitable for
high-performance computing (HPC), see Fig. 2.6.
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Fig. 2.7 This is a detail illustration of Fig. 2.6: the physical phenomenon determines the formulation
of the model. The model is deployed on the embedded system’s measurement and control routines as
well as on the supervisory system’s data analytics process. The reactive level-1 control loop and the
predictive level-2 control loop are characteristic traits of a CPS.
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Model based design (MBD) is a methodology for iterative system analysis, modeling and validation
on an abstract level while ensuring the consistency of the system’s physical representation [150,
174]. In literature [23, 32, 107, 147], MBD is described as a top-down approach, where software
components are replaced by executable models, that represent the system’s behavior and
deliver immediate feedback. A system is divided in the description of its functionality and its
architectural implementation [35, 189].

MBD supports a workflow that incorporates system modeling, controller design, simulation, code
generation and rapid prototyping; engineering problems are handled on system level, not code
level, which significantly reduces development time; detailed knowledge about the target system
is not required [47]. Abstract models with well designed interfaces are adaptable for various
projects. MBD improves the efficiency of system development that unites multiple physical
domains, especially in the automotive [41, 148] and aerospace industry [211]. For instance, the
NASA [201] developed a guidance, navigation and control system, where even the specification
of requirements took several years. Using MBD, the requirements are executable and enable the
errors identification early in the design process.

The consistency between models and their implementation is given at any point during the
development process thanks to the integrated documentation [41]. Full traceability is needed
to match requirements with functionality; furthermore, multiple engineering teams can work
on the same project simultaneously [8]. The core idea of MBD is continuous verification and
validation at each design stage to ensure that the (sub)system’s requirements are satisfied. MBD
utilizes the standardized V-model framework for product development [173, 204], see Fig. 3.1.
It was shown in literature [1, 83, 107, 175, 183], that MBD is best-practice for designing CPS
as well as safety relevant applications in compliance with the IEC 61508 standard on functional
safety [32, 98].

Model driven architecture (MDA) is a standardized technique to automatically synthesize
usable code from visualizations such as class diagrams; it is part of the OMG1 UML2 2.x
specification [160]. SysML [159] is an extension of UML to describe requirements on system level.
Recent studies [27, 34, 35, 109] recommend a UML based platform based design (PBD) approach,
which lays the focus on connecting subsystem via standardized interfaces. The difference to a
conventional MBD approach is that parts of the development are carried out bottom-up. The
goal is to establish a library of reusable soft- and hardware components.

1Object Management Group, www.omg.org
2Unified Modeling Language, www.uml.org
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Fig. 3.1 MBD is based on the V-model for software/product development [147, 204].

(1) Application level: system concept and operation. Ideally, a product is the result of
a distinct business plan with freedom to operate w.r.t. intellectual properties. A product is a
self-containing system, which is defined by its functionality on application level within a given
context. According to UML 2.x [160], the required functionality is described via exemplary use
cases w.r.t. the system’s operation. The goal is to identify numerous use cases to unambiguously
define the system concept. It is important to ensure consistency, so that different use cases do
not contradict each other or physical principles. The problems to be solved must be character-
ized and communicated explicitly. Test cases are generated from these use cases to verify the
functionality during the system operation via cross validation. Post-production updates are
possible using MBD.

(2) Product level: system requirements and acceptance. A product has functional
(quality and performance) and non-functional (costs, safety, security, robustness, availability,
etc.) system requirements (German: Lastenheft) [147]. The product properties are specified on
product level. Technically spoken, requirements are constraints on the system which reduce the
solution space. The underlying models are formulated during system identification and must
abide by the laws of physics. Executable models enable full traceability of the requirements and
simplifies acceptance testing, i.e., if the system is working as intended [41]. In contrast, textual
descriptions of requirements always bear the potential to be misinterpreted. MBD reduces the
need for dedicated requirement tracking tools such as IBM DOORS [94].

(3) System level: system design and test. A system is composed of a number of heteroge-
neous subsystems (or components/modules) within a structured architecture, this is defined
in the system specification (German: Pflichtenheft) and part of the project’s deliverables.
Functional decomposition of the whole system is required to reduce the design complexity [148].
Therefore, an ideally designed system is the integration of these subsystems via defined interfaces.
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Model-in-the-loop (MIL) simulation verifies the correctness of the mathematical framework on
system level via executable models [32]. This is an efficient way for system identification and
model parameter estimation with varying configurations; it is made possible through simulation
on abstract model level in an artificial development-environment. Parameter sweeping during
simulation allows to measure the system’s performance/behavior under varying conditions.
A design of experiments test plan helps to find the optimal set of parameters for a system
incorporating multiple physical domains. Hardware-in-the-loop (HIL) simulation establishes a
verification environment for the hardware’s system test utilizing the models [54, 91, 149, 174],
see also Fig.3.2.

(4) Subsystem level: component design and test. Each component is designed to fulfill a
specific task within its domain and implements standardized interfaces on subsystem level. The
challenge is to minimize the dependencies between the individual components. Most commonly,
a component itself is partitioned into further (possibly already existing) subsystems. This
leads to a natural form of recursion within in the design process and emphasizes the need of
functional decomposition in order to handle the design complexity in means of size and compli-
cation [147, 148]. Existing subsystems, which have originally been written in other languages
such as C/C++/Fortran, are integrated by wrapping the functions to match the interfaces. Each
component must be tested individually [32].

(5) Logic level: implementation and integration. Automatic programming converts the
implemented hardware-independent model code into the target machine code, both executable
programs must be functionally and numerically equivalent on logic level: a certain input must
deliver the same output on all abstraction layers [107]. Software-in-the-loop (SIL) verification is
used to proof the functional/numerical equivalence of the model and the generated code on the
development system [32]. The results computed by the model are compared with the results
computed by the compiled program in the target language. This is of particular importance
when the target language misses certain features of the model language. Note, that code is
compiled differently depending on the operating system (most commonly Windows or UNIX
based) and the CPU architecture (x86 or x64). Processor-in-the-loop (PIL) verifies the correct
computation of the integrated code on the embedded system, see Fig. 3.2 (c). The results
computed by the embedded system are fed back to the host system for comparison with the
results computed by the aforementioned. The outcome is not necessarily the same, because the
hardware platform of the host and target system are architecturally different (see Section 3.2).

(6) Deployment and rapid prototyping. The best set of parameters is deployed onto the
target hardware. Depending of the process’ degree of automation, this step requires manual
configuration, e.g., tying the synthesized code to hand-written, hardware specific code. Auto-
matic targeting facilitates rapid prototyping using HIL simulation [91], see Fig. 3.2 (d).

3.1 Automatic Programming

An embedded system is a dedicated computer system designed to perform specific functions,
usually as part of a complete device or system. In a CPS sense, it is characterized by tight
integration and coordination between computation and physical processes by means of network-
ing. Embedded systems directly interact with the physical space; as a matter of fact, physical
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components are qualitatively different from conventional object-oriented software components.
There are three relevant low-level target languages for embedded systems [122]: multi-purpose
ANSI-C code, which is also the focus of this thesis; hardware description languages (HDL) such
as VHDL [99] and Verilog [100] for field programmable gate arrays (FPGAs) or application
specific integrated circuits (ASICs); and IEC 61131-3 compliant languages [97] such as structured
text for programmable logic controllers (PLC). These hardware platforms are explained in
Section 3.2.

Automatic programming is the task of converting the abstract models and their algorithms to
usable machine code, effectively automating the time-consuming and error-prone process of
low-level programming, i.e., the time-to-market is shortened significantly [121, 123, 147, 148].
The OMG defines this procedure as model driven architecture. The concept of automatic code
generation, software synthesis and targeting has been described for various problems, such as
convex optimization [141], agent-oriented software [83] and control units [183]. There has been
a study [24] with control groups trying to write model-equivalent code manually in C, but they
never got anywhere near as far as those who use MBD. The suitable model remains fully scalable
during embedded targeting, because standard C code can be deployed on various platform. It is
not possible to map every model function into an equivalent C function; however, mathematical
models using only linear algebra are always translatable.

When using a certified code generator, the generated code complies to common programming
paradigms such as the MISRA3 C guidelines [145, 148]. Embedded systems are traditionally
integrated in many safety critical industrial applications [205]. Consequently, the quality of the
generated code must be in compliance with existing standards, e.g., ISO 26262 [31, 33, 104]
or AUTOSAR4 [110, 189] for the automotive and DO-178C [184] for the aerospace industry.
MathWorks Polyspace [31, 140] is a verification tool to test C code against these standards.

Production code is generated after finishing the verification and validation process. All parame-
ters needed during testing/debugging are stripped out and the code is optimized for performance
(low memory demands, high computational speed) or safety (data consistency, robust algo-
rithms) [32, 147]. Modern C/C++ compilers such as those from Microsoft Visual Studio [143],
Intel Composer [103] with Math Kernel Library (MKL) or ARM Compiler [6] recognize linear
operations and manual pragmas and replace those hand-written lines with suitable processor
instructions [122]. These automatic compiler optimization improves the computation speed by a
magnitude of up to 1000; furthermore, computations supported processor instructions are more
energy efficient. The code is revised statically on soft- and hardware levels [122]:

1. The C code is optimized on source-code level in a machine-independent manner, which
is beneficial for most programs. Standard optimization techniques include constant folding,
loop transformations and function inlining;

2. Special operations are mapped to the controller’s corresponding machine-specific in-
struction sets. The set of used techniques includes vectorization for continuous addressing
in memory, permutation of operations and parallelization of computation tasks [198]. It
was shown, that this mapping is an NP-hard partitioning problem [47, 122] and its solvable
with a meta-heuristic approach. The assembly code is improved w.r.t. memory access
organization and instruction scheduling.

3Motor Industry Software Reliability Association, www.misra.org.uk
4AUTomotive Open System ARchitecture, www.autosar.org
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The LLVM5 compilation framework introduces code-lifecycle optimization, which improves the
code dynamically during run- and idle-times depending on the application/user. Furthermore,
LLVM enables cross compilation on the host system via processor virtualization using a hardware-
independent intermediate language [117]. The code can be compiled directly on the target
system if an operating system (OS) and an appropriate compiler is present. The production
code is verified with HIL. The complete workflow is visualized in Fig. 3.3.

code generation

system design

code deployment

software-in-the-loop (SIL)

processor-in-the-loop (PIL)

workflow for in-the-loop verification

model-in-the loop (MIL)

system test hardware-in-the-loop (HIL)

embedded (target) systemdevelopment (host) systemdesign step

code compilation

cross compilation

code compilationOS
yes

no

start

end

Fig. 3.3 MBD is an iterative development process with multiple verification steps. The correctness of
the model-code translation must be tested for discrepancies, i.e., if the generated code is functionally
and numerically equivalent to the model on code/software (SIL), processor (PIL) and hardware (HIL)
level [32]. The code is either compiled on the target system if an operating system (OS) with a compiler
is available or it is cross compiled on the development system.

Most industrial controllers are programmable with C. Table 3.1 gives an overview of engineering
and scientific software for designing mathematical models and the functionality to automatically
generate standard ANSI-C code from their application-specific syntax. A short survey on MBD
approaches has been given in [34, 35, 148], tools for automatic code generation are summarized
in [179]. SystemC [102] is a library for C++ which introduces classes for event-driven simulation,
but lacks the required abstraction of a MBD tool [54].

This thesis is focused on the use of MATLAB and its Coder Toolbox, because it is the standard
software in industry for mathematical MBD. Although MATLAB is a commercial programming
language, it is widely used6 for engineering and scientific applications. MATLAB Coder features
the ability to replace model function calls with calls for MATLAB executables (*.mex) for SIL
verification. Such functions are wrappers around compiled C code, which can be directly called
from the MATLAB development environment. Code generation fully supports linear algebra.
Alternatively, the code for SIL can be compiled by any integrated development environment
(IDE) of choice supporting C, e.g., Microsoft Visual Studio, Eclipse or Apple XCode.

5The LLVM Compiler Infrastructure, llvm.org
6TIOBE Programming Community Index, www.tiobe.com
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software package toolbox

MathWorks MATLAB [133] MATLAB Coder

MathWorks Simulink/Stateflow [134] Simulink Coder, Embedded Coder

National Instruments LabVIEW [155] C Generator

Maplesoft Maple [131] CodeGeneration Package

Wolfram Mathematica [209] CCodeGenerator

Tab. 3.1 A selection of engineering tools and corresponding toolboxes supporting automatic C code
generation directly from their IDE. Simulink Coder was formerly known as Real-Time Workshop
(RTW).

3.2 Embedded Systems

The development (host) system is significantly different from the embedded (targeted) system.
Modern central processing units (CPU) have a complex instruction set computer (CISC) von
Neumann architecture with 32-bit (x86) or 64-bit (x64), where most microcontrollers employ a
modified Harvard architecture. This section gives a very short overview in order to understand
the significance for automatic code generation [122]. Embedded systems are roughly categorized
into two groups:

1. A microcontroller unit (MCU) is a general purpose 8-, 16-, 32- or 64-bit reduced
instruction set computer (RISC); MCUs are commonly programmable in C. The most
popular designs are ARM’s Cortex A/R/M (www.arm.com), Atmel’s AVR (www.atmel.
com) and Microchip’s PIC (www.microchip.com) microcontrollers. MCUs are available
with and without operating system, the most popular choice is a (real-time) embedded
Linux distribution;

2. A field programmable gate array (FPGA) is a special purpose logical unit (pro-
grammable hardware). An FPGA contains reconfigurable logic blocks and interconnects
(i.e., gate arrays), whereby functions are implemented by connecting these blocks (netlist).
FPGAs are used for specialized hardware accelerated computationally intensive applications
which utilize parallel architecture, e.g., real-time image processing [199]. FPGAs are repro-
grammable directly on hardware level to change the functionality (i.e., field programmable).
Market leaders are Xilinx (www.xilinx.com) and Altera (www.altera.com). An
application specific integrated circuit (ASIC) is basically a migrated FPGA design cus-
tomized for a particular use. The programming is burned-into the hardware, which makes
the chip cheaper in mass production. ASICs are faster and more energy efficient, but
cannot be modified after the design is committed. Bug fixing in post-production is not
possible.

An application processor describes a heterogeneous computing system, i.e., a highly integrated
system-on-chip (SoC). A general purpose MCU may be paired with a specialized co-processor,
for instance a digital signal processors (DSPs) for filtering streaming data or graphic processing
units (GPUs) for parallel computing. These special instruction sets must be known to the
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compiler for optimization w.r.t. automatic function replacement. Xilinx offers the possibility to
integrate a fully functional ARM Cortex-A processor into its Zynq FPGA7; this facilitates the
fact, that the boundaries between processor architectures are not intrinsically clear.

The OS, if one is present, must be considered. An OS is an abstraction layer for resource
management between the hardware and the applications. Application programming interfaces
(API) offered by the OS avoid the need of reprogramming low-level functions. The non-
deterministic behavior of an OS can be a problem for embedded systems in real-time applications.
Real-time operating systems (RTOS) possess predictable scheduling policies, but do only offer a
limited range of services.

Rapid prototyping is simplified using development platforms such as Arduino (www.arduino.
cc), Raspberry Pi (www.raspberrypi.org) and BeagleBoard (www.beagleboard.org).
The employed MCUs are based on ARM and/or Atmel AVR designs. The boards feature various
general purpose input/output (GPIO) interfaces such as I2C/TWI, SPI, UART and/or USB.
The models described in this thesis are deployed on these development boards for PIL testing
as shown in Fig. 3.2 (c).

The algebraic models presented in Part II are completely general and are meant to be deployed
on embedded systems, see Fig. 3.4. The number of required floating point operations is known
a-priori to the execution of the linear operations; consequently, these operations are capable for
real-time computations by definition8.

FPGA (HDL) MCU (C) SoC (C) PLC (C/ST) HPC (C/M)

software-in-the-loop (SIL)

system design / model

model-in-the-loop (MIL)

hardware-in-the-loop (HIL)

code generation

system requirements

processor-in-the-loop (PIL)

system operation / test

code deployment

platform independent models and in-the-loop verification 

fully 
scalable 
models

start

end

Fig. 3.4 Generic models can be deployed on low level FPGAs (field programmable gate arrays) using
HDL (hardware description level) code, MCUs (microcontroller units) using C code, system on a chip
(SoC) application systems using C code, industrial PLCs (programmable logic controllers) using C code
or ST (structured text), and HPC (high-performance computing) systems using C/C++ code and/or
high-level model code (M).

7Zynq-7000 SoC, www.xilinx.com/products/silicon-devices/soc/zynq-7000/
8A real-time system is defined as any information processing activity or system which has to respond to

externally generated input stimuli within a finite and specified period [214].
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Fig. 3.2 The output of an open-loop system (a) has a direct functional relation to the input, this
architecture is equivalent to a finite impulse response (FIR) filter. A closed-loop system (b) considers
previous outputs of the system, this architecture is referred to as the classical control-loop. During
processor-in-the-loop (c) verification, the embedded system is targeted with the automatically generated
code, i.e., the controller’s correct behavior w.r.t. its functionality and numerical behavior is verified.
Hardware-in-the-loop (d) replaces the plant with a functionally equivalent model in order to test the
complete control loop with real data emerging from the physical system.
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This chapter provides the summarized background knowledge for the projects involving optical
measurements presented in Part III. The Chair of Automation has done extensive research
in machine vision in the past, mainly with applications derived from the metal processing
industry [53, 69, 87, 111, 185, 188, 199, 203], quality assurance and inspection via infrared
thermography [171, 182, 190] and condition monitoring for underground tunneling/mining
operations [70, 71, 157]. The subtopic of metric vision covers the optical measurement of
quantitative information for geometric objects, such as position, orientation, dimensions and
shape. In a CPS context, machine vision systems detect physical phenomena, process the data
on a(n) (embedded) computing system and transmit the information to a supervisory system.

4.1 Optical Arrangement

The quality of the acquired raw imaging data strongly depends on the arrangements of the
optical components and the environmental conditions. The setup of the measurement scene
is the origin of most systematic errors, which must be compensated during image processing.
It is recommended to establish the best physical conditions for image acquisition within the
application’s constraints, i.e., cost and time, before processing the data.

optical arrangement of a machine vision system w/ laser target

field of view

g

G
H

GW

sandblasted & 
anodized target

camera 
w/ lens

laser beam

laser spot

laser

window w/ 
hot-mirror foil

interface image processing 
system

external 
light 
source

IR light

x

y

z

Fig. 4.1 The measurement chain of a general purpose machine vision system consists of hardware
(optical) and software (image processing) components. The thesis focuses on optical measurement
systems which are based on the use of targets and laser light. The laser beam passes through a glass
window and impinges upon the specially prepared target; the resulting laser spot is then captured by a
camera, the raw data is sent to an embedded or remote image processing system.

22
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(1) Target. The target is the object of interest observed by the optical measurement system;
most commonly, it is attached to the controlled machine. The physical size G of the target must
be specified in the system requirements. Following measures increase the detectability of a laser
spot or line on a metal target and reduce the influence of external disturbing light sources:

1. Sandblasting the target is the attempt to diffuse the surface’s reflectance, which ideally
has the same radiance when viewed from any angle. This desired property is called
Lambertian and exhibits Lambertian reflectance according to Lambert’s emission (cosine)
law [127, 187]. This means the radiance is constant for the observer, because the emitted
light and the corresponding observed area are reduced by the same factor; this effect is
shown in Fig. 4.2. Consequently, the scattered light generated by a laser beam is angle
invariant for the camera observing the laser spot/line;

2. Anodizing the metal target’s surface via electrolytic passivation thickens its natural
oxide layer, which makes it more durable against corrosion, especially when the target’s
surface has been roughened via sandblasting. Furthermore, anodizing aluminum facilitated
dying [19]. A black target incorporates the highest contrast for an imaging system, whereas
a colored target provides the highest reflectance rate within the associated spectrum of
visible light;

3. Hot mirrors are dielectric mirrors which reflect the radiation energy of infrared light
(IR) while allowing visible light to pass, effectively implementing a high-pass filter. The
lower bound of reflected wavelengths is in the range of approximately 750 . . . 1250 [nm].
The spectrum of white light contains large portions of IR light, which can negatively
influence an optical measurement. If the instrument employs a window, a hot mirror foil
can be applied to the glass. Due to the reflection rather than absorption of the radiation,
the hot mirror and the housing are not critically heated. The optical system is then
effectively protected from overheating [185] and the disruptive IR portions of white light.
A comparison of hot mirror coatings for protecting camera equipment has been given
in [185].

In certain applications, e.g., when multiple targets are set up as a consecutive chain, semi-
transparent targets are required. A possible solution is electro-active glass [70, 71], which can
switch from opaque to translucent, or screen-printed patterns on a glass plate [157, 158], see
also the project description in Chapter 11 and 14.

(2) Lighting and/or laser light. Appropriate and stable lighting of the environment ensures
a robust segmentation of objects. In measurement applications, the lighting is often put into
effect with a laser. A laser is characterized by its power P and its wavelength λ. The emitted
light’s wavelength and frequency ν are related via λ ν = c, i.e., the product between both
factors is constant, whereby c denotes the speed of light1. This means shorter wavelengths
cause higher frequencies. According to quantum mechanics [126, 127], the emitted energy E of
a single photon is E = � ν, where � denotes the Planck constant2. The energy and power are
related via E = P t, where t is time. As a consequence, lasers with shorter wavelengths (higher
frequency) are more energetic than those with longer wavelengths (lower frequency). This must
be considered when using lasers in working environments: the European Union Council directive

1speed of light c = 299792458 [m/s]
2Planck constant � = 6.62606957(29) 10−34 [J s]
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Fig. 4.2 When the target’s Lambertian surface
is illuminated by an external source I0, i.e., the
laser beam, then the irradiance Ir (power density)
is proportional to the cosine of the angle θ.
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Fig. 4.3 Laser light is a coherent optical radia-
tion. Parts of the laser light are reflected from the
target, leading to self-interference. Speckles are
the visible result. (Image from [70].)

2006/25/EC [50] on artificial optical radiation clearly defines thresholds for exposure limit values
in dependence of exposure time, wavelength and area3. The directive uses the guideline for the
maximum permissible exposure (MPE) value established in the IEC 60825− 1 on safety of laser
products [96], which also defines the classes of laser products. Considering these safety issues,
optical instruments should employ visible red lasers with relatively short wavelengths if possible,
see Fig. 4.4.

Unfortunately, the wavelength directly corresponds to the measurable objects size. In order
to avoid diffraction4 from wave effects [13, 126, 128] in practical applications, a the minimal
wavelength λmin which is at least five-times larger than the object size G should be chosen, i.e.,
λmin ≥ 5G can be used as a rule of thumb.

electronmagnetic spectrum

wavelength [nm]104 106 108 1010102110−2

400 500 600 700

infrared radiox-raygamma ray

visible light:
blue red

ultraviolet microwave

Fig. 4.4 The electromagnetic spectrum is the range of all frequencies of electromagnetic radiation.
The laser light’s color directly corresponds to its wavelength, whereby shorter wavelengths bear higher
energy [181, 185]. Humans see light of in the range of approximately λ = 400 . . . 800 [mm], whereas most
cameras reach into the near IR range, covering λ = 400 . . . 1000 [mm], which justifies the employment
of hot mirrors in optical measurement applications.

3The critical area is a circle with �7 [mm], which is approximately the size of a human eye’s pupil.
4This is known as the Airy disc effect [2].
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Emitted laser light is coherent; thus, self-interference (or autocorrelation) in the form of
speckles [126] occurs when the laser beam is reflected from a normal surface, i.e., some spectral
components are amplified and some are eradicated (see Fig. 4.3). This noisy behavior must be
considered during measurement. Coherent light allows the use of interference filters. The filter
acts as a bandpass, which transmits only a certain range of wavelengths, whereas wavelengths
not in the range are blocked, effectively filtering polychromatic light to monochromatic light. As
a side effect, interference filters are angle-dependent and will not work properly when mounted
on wide-angle lenses.

(3) Lens. The employed lens is the main influencing factor of the camera’s field of view. The
lens transmits and refracts light, converging the beam of light to the imaging sensor. Commonly,
the width GW and the height GH of the target are specified in the system requirements as the
object size G. The object distance g is a function of the lens’ focal length f and the size B of
the imaging sensor. Common sensors are rectangular, leading to a sensor width BW and height
BH. Be aware, that the height and width of the object and the sensor are aligned to each other.
Fig. 4.5 shows the simplified model of a lens.

lens model: relation of object distance and focal length

B

b

f f

F F ′

target

sensor

lens

G

g

Fig. 4.5 This simplified lens model consists of a single optical element. The object distance g depends
on the lens’ focal length f , the size G of the target and the size B of the imaging sensor. The sensor
distance b is determined by the camera mount’s flange focal distance, see Table 4.2.

According to [126, 181, 185], the parameters are related via

gH = f

(
GH +BH

BH

)
and gW = f

(
GW +BW

BW

)
, whereby g = max(gH, gW). (4.1)

The lens’ angle of view φ is calculated via

φH = 2 tan−1

(
BH

2f

)
and φW = 2 tan−1

(
BW

2f

)
, whereby φ = max(φH, φW). (4.2)

Considering Eqn. (4.1) and (4.2), the achievable values for the object distance g and angle of
view φ do not only depend on the focal length f , but also on the size B of the imaging sensor!
The dimensionless focal ratio (or F-number) is commonly denoted by 1/#; it describes the
ratio between the focal length f and the diameter d of the aperture, i.e., 1/# = d/f . The
lower this value gets, the more light can pass through the lens; best image results will appear
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Fig. 4.6 The angle of view φ depends on the focal
length f of the lens and the size B of the sensor.
The calculation is based on the presumption, that
f is equal to the sensor distance b. In order to
avoid vignetting effects, d must be greater than
the diagonal of the imaging sensor.
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Fig. 4.7 The Scheimpflug principle ensures a cor-
rect depth of field for a non-parallel orientation
between the subject plane and the image plane,
i.e., both planes enclose the angle ψ. A practical
example is given in Chapter 13.

with f/# = {4, 5.6, 8}. With lower F-numbers, the image is blurred by aberrations; for high
focal ratio, it is blurred by diffraction [13]. A special lens-sensor setup is based on the so called
Scheimpflug principle [128, 181], see Fig. 4.7. This geometric rule describes the orientation of
the plane of focus of a camera when the subject plane is not parallel to the image plane, i.e.,
the depth of field encloses an angle ψ with the image plane.

An advanced compound lens is composed of an array of simple lenses with a common axis,
which allows correction of optical aberrations; however, such lenses are very cost intensive.
For instance, telecentric lenses produce orthographic views of the subject which are free of
perspective. Often lenses with a simple setup are chosen because of economic reasons. Fig. 4.8
gives an overview of optical distortion effects. To summarize, a shorter object distance g requires
a shorter focal length f and/or a sensor with a bigger size B, which causes a greater angle of
view φ, but also incorporates a greater optical distortion.

rectified space projective distortion barrel distortion pincushion distortion

(a) (b) (c) (d)

Fig. 4.8 Optical distortion is mainly caused by the radial components, i.e., distortion is a function of
the displacement from the center. Rectification is the process of transforming the non-uniform lattice to
a Cartesian grid (a). Projective distortion (b) is linear, whereas barrel (c) and pincushion (d) distortions
are non-linear. Practical applications most commonly employ a combination of (b) and (c) when using
wide-angle lenses.
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Fig. 4.9 The plot shows the linear relation between
the focal length f and the object distance g (gW
solid line, gH dashed line) for two common sensor
sizes (1/3” red, 1/2” green). The target size G has
been arbitrarily chosen to be equal to a metric A5
paper size (GW = 210 [mm], GH = 148 [mm]). Note,
that this simplified model becomes more inaccurate
for small values of f ; nevertheless, it allows a good
estimation for the magnitude of g.

Lenses are interfaced to the camera’s body via standardized lens mounts, which are basically
screw threads. The flange focal distance is the distance from rear of the lens to the image plane.
Cheap lenses often require a shorter flange focal distance (CS-mount) than standard industrial
lenses (C-mount). The S-mount appears on imaging systems which are attached directly to a
printed circuit board (PCB). An overview is given in Table 4.1.

type thread flange focal distance

S-mount M12×0.5 unspecified

C-mount 1”× 32 TPI 17.526 [mm]

CS-mount 1”× 32 TPI 12.526 [mm]

Tab. 4.1 Overview of lens mounts used in industrial and scientific applications [197].

(4) Imaging sensor. There are two dominant technologies for imaging sensors available:
CCD (charged coupled device) and CMOS (complementary metal oxide semiconductor); both
types are based on the photoelectric effect. CCD sensors have their sensitivity maximum at
550 [nm] (green, same as humans) and CMOS sensors have their sensitivity maximum between
650 . . . 700 [nm] (red). CCD sensors have one controller for all pixels, whereas CMOS sensor
have an individual controller for each one of their pixels. This enables the acquisition of only
a certain region of interest (ROI) via windowing or the dynamic reduction of the resolution
via binning. CCD sensors acquire images always as a whole data set, but possess a better
responsiveness; hence, they have lower dark noise than CMOS sensors. On the other hand,
CMOS sensors have a higher full-well capacity. If CCD sensors are over-saturated, blooming and
smearing effects occur, which is not possible for CMOS sensors. Furthermore, CMOS sensors
are faster, because all functions are placed on the imaging sensor. Consequently, CCD sensors
are best used in scenarios with bad illumination because of their better noise behavior. CMOS
sensors are best used for fast image acquisition with appropriate lighting.

Sensors with higher resolutions require higher quality lenses and better lighting. High-resolution
images incorporate greater amounts of data with a higher noise level, lower the possible framerate



28 Chapter 4. Machine Vision

size 1/4” 1/3” 1/2” 1/1.8” 2/3” 1” 4/3” full

BW [mm] 3.65 4.80 6.40 7.18 8.80 12.70 17.30 36.00

BH [mm] 2.74 3.60 4.80 5.32 6.60 9.50 13.00 24.00

Tab. 4.2 Selection of available imaging sensor formats [197].

and image processing becomes more computationally expensive. CMOS sensors feature window-
ing and binning, which can effectively reduce the amount of data to be processed [208]. Thanks
to sub-pixel accuracy, low-resolution sensors can be employed in most industrial applications
and still deliver results with acceptable accuracy. The size of an individual pixel depends on the
size of the sensor, Tab. 4.2 gives an overview of available sensor sizes. Note, that the inch-values
do not describe the actual physical size of the sensor.

Depending on the application, monochrome or color sensors are employed. Color sensors only
provide a quarter of the available resolution, because of the RGB Bayer pattern. A further
demosaicing step is required to ensure the data quality, this is described in [111, 185]. Depend-
ing on the application, a HSV (hue, saturation, value) encoding is to be preferred over the
conventional RGB (red, green, blue) color space during image processing [111].

Shutters expose the sensor to the light; there are two types available: the global shutter, which
exposes the complete sensor at once, and the cheaper rolling (or interleaved) shutter, which
exposes only separate lines of the sensor. As a consequence, the last-mentioned is not suitable
for capturing fast moving objects [125, 197].

(5) Interface. The camera’s interface defines the overall architecture of the vision system [56],
see Fig. 4.10. An overview has been given in [185, 199]. Common modern interfaces5 are:

1. USB Vision has a data rate of 350 [MB/s] (USB 3.0), supports a cable length of 8 [m],
has low CPU load, low latency and jitter, enables plug and play and has an energy
management/suspend mode, but multi-camera setups are hard to implement;

2. FireWire has data rates of 32 [MB/s] (IEEE 1394a) or 64 [MB/s] (IEEE 1394b) respec-
tively, supports a cable length of 4.5 [m], has a low CPU load, low latency and jitter, but
suffers from decreasing manufacturer support;

3. Camera Link has data rates of 255 [MB/s] (base), 510 [MB/s] (medium) or 850 [MB/s]
(full), supports a cable length of 10 [m], provides PoCL (Power over Camera Link), but
requires a dedicated framegrabber hardware and inflicts high costs;

4. GigE has a data rate of 100 [MB/s], supports a cable length of 100 [m] (copper) or > 1 [km]
(fiber) respectively, provides PoE (Power over Ethernet) when using copper wires [12],
is based on standard UDP/IP and supports multicast with a flexible architecture, but
inflicts higher CPU load [11].

GenICam is a standard established by the EMVA6 in order to provide a generic programming
interface for controlling arbitrary imaging hardware.

5USB2.0 and CoaXPress are considered as outdated.
6European Machine Vision Association, www.emva.org and www.genicam.org
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(6) System Architecture. As shown in Fig.4.1, a generic machine vision system basically con-
sists of two main parts: the optical (hardware) and the image processing (software) components.
Conventional systems have a camera connected to a computer with an interface described in the
previous paragraph. In a CPS environment, there are more flexible implementations available,
see Fig. 4.10.

1. The embedded vision system7 has a camera connected to an embedded system, which
is either a generic MCU based system or a more specific (industrial) FPGA/ASIC system.
This implementation follows more the CPS understanding of monitoring and control via
distributed intelligent motes within a sensor network. However, it must be considered that
image processing is a computationally intensive task and, therefore, it is not suitable for
low-end embedded systems;

2. A smart camera is attached to a network interface, e.g., GigE. The camera is an imaging
sensor in the physical space. Either the raw data is transmitted to the PC or basic
preprocessing tasks are already carried out on the camera. The GigE interface enables a
dynamic network of cameras, e.g., for monitoring an object from different point of views.

network

embedded vs. conventional vision system architecture in a CPS environment

USB UDP/IP

target

GigE with PoE

l ≤ 5 [m]

l ≤ 100 [m]
T

C
P/

IP

emb. system
power 
supply
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Fig. 4.10 Vision systems are either implemented as decentralized, on-site embedded vision systems,
performing only basic image processing tasks, or as centralized remote vision systems, performing
complex image processing tasks with data acquired from multiple sensors/cameras. The system
architecture is defined by the used interface, which also restricts the maximal cable length l.

4.2 Image Processing

Image processing is an adaptive procedure, the process illustrated in Fig. 4.11 is a possible
implementation. State-of-the-art approaches for the image processing chain are presented in
literature [66, 93, 192]. The sequence of the individual steps is subject to change and depends
on the particular application. This is especially true for the process parameters, which are
mostly based on experience.

Simplifications and assumptions are essential for image processing, strengthening the importance
of adequate verification techniques such as cross-validation. The measurement error propagates

7Embedded Vision Alliance, www.embedded-vision.com
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non-linearly through the whole measurement chain. The non-deterministic behavior causes
interactive effects where errors annihilate each other, may leading to results with higher accuracy.

Many projects at the Chair of Automation utilize image processing as the tool of choice for the
analysis of measurement data, especially for automatic inspection in quality assurance. Detailed
descriptions for the light-sectioning procedure with structured light and associated metric
methods have been given in [181, 188, 203]. This includes the measurement and calibration
procedures.

measurement chain of image processing
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image 
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segmentation 

image 
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Fig. 4.11 The quality of the raw data from image acquisition strongly depends on the setup of the
optical arrangement and the environmental conditions. Preprocessing and segmentation yield features,
which are rectified with parameters acquired from an initial calibration step. Metric objects are fitted
to these rectified features; the measurement results are based on these fitted objects. Note, that each
step implicitly applies simplifications and assumptions.

(1) Image acquisition. The acquisition of single images or sequences of images delivers the
raw data and depends on the chosen interface. GenICam greatly simplifies acquisition because
of the common interface for all technologies. The primary measurement errors originate in this
process. When using a CMOS chip, there’s the possibility to read only a certain region of the
sensor via windowing or artificially reduce the resolution by merging adjacent pixels via binning.
Windowing and binning are performed on hardware level, whereas the related cropping and
resizing operations are performed on software level. MATLAB’s Image Acquisition Toolbox [137]
supports GenICam.

(2) Preprocessing and segmentation. The acquired images are conditioned for further
processing. This includes image enhancement operations such as resizing, filtering, contrast
normalization, thresholding [70] and morphological operations [111]. During segmentation, data
points are grouped to sets of points, which correspond to individual features within a region
of interest (ROI). Features are extracted via edge or contour detection and image moment
computation [199]. Fig. 4.12 reveals the interesting relations between moments applied in
different scientific domains. Moment invariants are of special importance for pattern recogni-
tion. MATLAB’s Image Processing Toolbox [138] and Computer Vision System Toolbox [135]
implement various image processing techniques [66], whereby the last-mentioned also supports
automatic code generation.
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Fig. 4.12 Central moments have counterparts in different domains. The probability in statistics
corresponds to mass in mechanical engineering and illumination in image processing.

(3) Rectification. Considering the systematic error caused by optical distortions (Fig. 4.8),
images must be rectified to achieve accurate results. This is especially the case when deploying
wide-angle or fish-eye lenses [185]. Utilizing the reference calibration information, measurement
data from pixel coordinates is mapped to metric coordinates, as visualized in Fig. 4.13.

system level calibration and coordinate mapping

camera space [pixel] real space [mm]

mapping

calibration

Fig. 4.13 Rectification in image processing is a plane-to-plane mapping process between the camera
space in [pixel] and the metric real space in [mm]. The calibration established a logical relationship
between both spaces via reference points (red), which are known in both spaces, via a suitable
mathematical model. System level calibration effectively cancels out the distortion associated with the
optical components and the inexactness of the mechanical construction. This knowledge allows the
coordinate mapping of any point from one plane to the other plane.

Possible coordinate mapping methods for 2D-planes are [70]:

1. look-up-tables (LUT) via nearest neighbor search or bilinear interpolation;

2. plane-to-plane homography via direct linear transformation (DLT) [53, 70, 87, 93, 157];

3. polynomial control points [67, 70]; and

4. bivariate tensor interpolation [70, 71, 157].

A divide and conquer approach via hierarchical subdivision in the plane, i.e., quad-tree decom-
position, is presented in [70, 71] in order to decrease the computational cost. In case of an
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auto-calibrating measurement system, the calibration procedure is integrated in the measurement
chain. The physical structure that serves as the calibration target is visible in the measurement
scene and the calibration is performed with the acquired measurement image. Nevertheless, the
dimension of the calibration target must be known a-priori.

(4) Image analysis. Abstraction is performed by analyzing the extracted features and assign-
ing geometric objects to these features. The approximation of objects to the sets of extracted
points is performed via minimization of an error function [93]. The combination of numerous
discrete values leads to sub-pixel accuracy, i.e., the achievable accuracy is higher than treating
pixels individually. Elaborate explanations of metric object fitting via Grassmanian manifolds
have been given in [53, 87, 111, 188, 203], this includes fitting of (parallel and/or othogonal)
lines, higher-order polynomial curves, (concentric) conics and splines. Surface description and
abstraction is presented in [69, 199].

(5) Result computation. The final step prepares the identified measurement data and its
associated uncertainty for the superior control system. This includes the computation of inter-
dependencies and relations between fitted objects in spatial or temporal domain as well as data
preparation for machine learning in pattern recognition applications [69, 199]. Spectral analysis
and regularization can be utilized to compress the data for transmission to a supervisory system.

Like any measurement system, two types of errors are associated with machine vision systems:
the random measurement error and the systematic calibration error [188, 203]. The random
error is mainly caused by noise and cannot be avoided completely; nevertheless, providing
a better hardware components and an adequate environmental setup also reduces the noise.
When using a suitable model, the systematic error can effectively be removed. However, it
must be considered, that simpler, i.e., computationally cheap, mapping methods may still
fulfill the system requirements w.r.t. uncertainty. In other words, the application’s accuracy
demands and relation between the method’s achievable accuracy and its complexity must be
reasonably proportional to each other. This is extraordinary important when deploying methods
on embedded systems.
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Instrumentation plays a key role for CPS1. Measurement theory is a ubiquitous topic in
engineering literature and many algorithms in numerical mathematics are somehow related
to processing measured and discretized data [65, 176]. This chapter gives an introduction to
classical measurement theory and explains the problems associated to CPS applications in the
condition monitoring and control domain. The mathematical theory in the next chapters is
a generalized approach to handle discretized data which has been sampled from a continuous
signal. The feedback loop of a control system is effectively a measurement system (Fig. 3.2). The
measurement process acquires data from a physical system in order to determine the system’s
current state. The sensor is the interface between the continuous physical space and the discrete
cyber space, leading to real-time dynamic hybrid systems.

Established literature on digital signal processing (DSP) [22, 23, 170] implicitly assumes a set of
limitations. Only streaming data is handled, i.e., there is no beginning and end of the data. As
a consequence, the conventional DSP models insufficiently describe the signals at the borders
of the support and the Runge phenomenon is ignored. Furthermore, DSP theory is limited to
periodic signals; any non-zero linear portion within a periodic signal would inevitably lead to an
unbounded signal. Any DSP processing chain presumes a digital-analog conversion (DAC) as
the final step. In contrast to the established theory, the new framework is designed to handle

1. finite sets of data with correct formulations at the borders of the support;

2. non-periodic signals with suitable basis functions to reduce the Gibbs error; and

3. a processing chain without the need of digital-analog conversion as the final step.

Considering this, it is important to note that every measurement inflicts a discretization
error when using digital instruments: measurement values are quantified from the continuous
physical space with a finite sample rate and analog-digital converters (ADC) possesses only
a finite resolution. Measurements are subject to noise, most commonly modeled as Gaussian
(normal) distribution in engineering applications. The random error within sensory data is a
physical property and it is impossible to completely avoid noise; this introduces the concept of
measurement uncertainty [105]. Systematic error is effectively compensated through a suitable
model. The observed system is influenced by the measurement. This is known as Heisenberg’s
uncertainty principle in quantum mechanics [92]; however, this is also true in the macroscopic
scale of classical physics. Objectivity implies that measurement results convey information only
related to the system under measurement and not its environment. Considering all these effects,
the true value of a measurement is never known [105].

1A list of common terms in metrology along with their definitions can be found in Appendix A.
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Within this thesis, the forward (or direct) problem is defined as x = f(y), where y is the input
data (measurand), x is the output data (intermediate instrument representation) and f(·) is
the forward operation. The corresponding inverse problem is defined as ŷ = f−1(x), where ŷ is
the estimation of the true value of y and f−1(·) � l(·) is the inverse operation incorporating
contextual knowledge about the associated forward process. Classical measurement literature [55]
does not clearly differentiate between forward and inverse problems.

In contrast to conventional measurement methods, the presented algebraic framework is designed
to process multiple measurement values simultaneously. In a statistical sense, discretizing a
single measurement variable from a continuous signal is equivalent to processing a univariate
random variable. The scalar variables {x, y} ∈ R

(1×1) are univariate random variables, whereas
the vector variables {x,y} ∈ R

(m×1) are multivariate random variables in a generalized model.
The functions are expanded to x � f(y) for the forward problem and ŷ = f−1(x) � l(x) for
the inverse problem.

(a) system identification (b) calibration

(c) measurement (d) simulation

  constraints: 
input output

model = ?

parameters

α̂ = g(x,y)
input output

model

parameters = ?

ŷ = f−1(x)
input = ? output

model

parameters

x̂ = f(y)
input output = ?

model

parameters

f(·)

Fig. 5.1 An instrumentation system is defined by a data tuple consisting of the input data y, the
output data x, the model formulated as the forward operation f(·) and the associated inverse operation
f−1(·) � l(·) as well as the parameters α̂. Every measurement system victim to noise.

Most generally, the design and execution of a measurement system consists of following steps,
see also Fig. 5.1 for a schematic visual representation,

1. The goal of system identification is to find a mathematical model to describe the
functional relation f(·) between the variables x and y under application specific constraints,
see Fig. 5.1 (a). Principally, system identification yields a hypothesis about the system
model, which must then be verified during system validation. Systematic error effects are
only removed when selecting a suitable model;

2. Having the model f(·) available, the calibration is the act of applying a range of known
input values y for the purpose of observing the system’s output x in order to determine
the system parameters, see Fig. 5.1 (b). Depending on the problem’s dimension, the
parameters α̂ are found via the approximation of a curve, a plane or a hyper-plane
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respectively. In this thesis, the calibration procedure is designed to deliver a perturbed
overdetermined system of equations, i.e., m > n, when m is the number of calibration
points and n is the number of variables in the equation;

3. Measurement is the act of quantifying a specific value ŷ to a physical variable x in order
to acquire the current state of the system [55], i.e., the cause of a perturbed observation is
sought, see Fig. 5.1 (c). The measurement function l(·) is applied during cross validation
in order to verify the correctness of the model;

4. During simulation, a value for the output x̂ is predicted for a specific input y, whereby
the model f(·) and the system parameters α̂ are known, see Fig. 5.1 (d). An anomaly is a
significant discrepancy between a predicted value x̂ and the true value x. The concept
of embedded simulation is especially useful for real-time temporal data mining, see also
Section 15.4.

A general approach to acquire a maximum likelihood solution for ŷ is presented in the next
chapters. According to Hadamard [5, 113], a well-posed mathematical model of a physical
phenomenon requires the existence, uniqueness and stability of the solution. Problems that
are not well-posed in the sense of Hadamard are ill-posed. In this vein, a forward problem is
well-posed and an inverse problem is ill-posed, see Fig. 5.2.

forward vs. inverse problem

input: cause/action
 

parameters,
unknowns, ...

output: effect/reaction
 

measurements,
observations, ...

forward problem: well-posed

inverse problem: ill-posed

x = f(y)

ŷ = f−1(x) � l(x)

Fig. 5.2 A well-posed problem always delivers the
very same outputs for the same inputs, i.e., one
and the same cause/action always inflicts the same
effect/reaction. Contrarily, inverse problems are
concerned with determining causes for an observed
effect [45]. This process is ill-posed, because one
effect can be generated by different causes. Regu-
larization adds additional a-prior knowledge to the
problem. The generalized solution ŷ is then a maxi-
mum likelihood estimation for the true value y.

5.1 Calibration and Measurement Model

Contextual knowledge about the system under measurement and the involved physical process
is required for effective formulation of a suitable mathematical model. This includes the a-priori
knowledge about the data’s nature, which is either spatial and/or temporal, the geometry of
the measured system, the regular or irregular placement of sensors, the type of sensed data and
the causality between variables. The problem classes within the thesis’ scope are:

(1) Measurements from an overdetermined set of calibration points. The aim is to
find a mapping between the measured value ŷ and the true value y via a intermediate instrument
representation, see Fig. 5.3 (a). This is especially the case when the sensor employs non-linear
behavior, see Fig. 5.3 (b) and (c). No unique solution exists, which makes the problems ill-posed
by definition; however, a stable solution is possible when adequate constraints are placed on the
solution space, i.e., such problems are well-conditioned. A preferred solution is derived using a
maximum likelihood estimation via least squares approximation. The residual vector r = y − ŷ
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is the difference between the physical value y and its estimation ŷ = B α̂, whereby B is a set of
basis functions and α̂ are the estimators for the coefficients. The cost function K which must
be minimized is then

K = ‖y − B α̂‖22. (5.1)

Using the theory from Section 6.4 and Section 9.1 yields the estimation α̂ for the coefficients

α̂ = B+ y, (5.2)

where B+ is the Moore-Penrose pseudoinverse of B. The basis B depends on the values of x, i.e.,
B = B(x) . Consequently, the estimation for the coefficients α̂ can be computed from a set of
{y,x} calibration points, i.e., the calibration function is defined as α̂ = g(x,y). The mapping
between ŷ and y is then given as a linear operation L � BB+, thus,

ŷ = BB+ y. (5.3)
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Fig. 5.3 The mapping function is a linear transformation between the measured value ŷ and the true
value y. Depending on the application, the problem can be formulated either as a forward or inverse
problem. However, system validation is required to ensure the validity of the models.
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(2) Temporal measurements of a dynamic system are formulated as initial value problems
(IVPs). The continuous forcing function z(x) of an ODE corresponds to the measurement,
whereby at least p ≥ n independent constraints are required to find a unique solution for an
ODE of nth degree. As explained in Section 10.2.1, the continuous measurement model is

n∑
i=1

ai(x)D
(i) y(x) = z(x). (5.4)

(3) Multi-sensor spatial measurements are formulated as boundary value problems (BVPs).
The discrete samples z of the ODE’s forcing function z(x) correspond to the measurement. As
described Section 10.2.2, the cost function

K = ‖Ly − z‖22 (5.5)

must be minimized to acquire the least squares solution, whereby L is a linear differential
operator. A unique solution is ensured by placing independent constraints onto the system,
which are written as

CTy = d and y = Bα, (5.6)

whereby CT is the matrix of constraints and d holds the values of these constraints. This is an
analytic a-posteriori approach, which is preferable in comparison to a-priori approaches such as
Runge-Kutta, which only provide an estimated solution. Acquiring a time series of multi-sensor
spatial measurements yields a PDE. Such problems occur in gradient measurements from inertial
measurement units, e.g., inclinometers or accelerometers.
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Fig. 5.4 The system model f(·) is determined
during system identification and the estimation
of the coefficients α̂ are found during calibration.
The model is verified using cross validation, the
cycle is repeated until a suitable setup is found.
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Fig. 5.5 The calibration points itself are victim
to noise; therefore, their number and positioning
within the measurement range has a significant
effect on the quality of the calibration curve to-
gether with the chosen polynomial degree d.
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The thesis focuses on the use of discrete orthogonal polynomial basis functions. Following
measures influence the overall calibration’s quality when using polynomials (Fig. 5.5):

1. The polynomial degree d has been either identified from the underlying physical phe-
nomenon or estimated incrementally with the process in Fig. 5.4. Selecting an appropriate
degree is an effective regularization technique in the form of a low pass filter;

2. The measurement range defines the input span expressed as the difference between the
range limits. Polynomials tend to be incorrect outside of their support when extrapolated
because of Runge’s phenomenon;

3. The number of calibration points m determine the confidence of the fit. There are
a minimum of m = d+ 1 calibration points required for an exact fit, each further point
increases the d.f. ν, i.e., ν = m− d− 1. Most commonly, m 
 (d+ 1). Underestimated
systems with m ≤ d and parameterized solutions are not covered in this thesis;

4. The number of measurements by calibration point influences the calibration point’s
confidence; measuring a calibration point multiple times reduces the associated standard
error;

5. The positioning of the calibration points effectively improves the quality of the fit.
While equidistant (regular) nodes are easier to produce in a calibration setup, irregular
Chebyshev nodes can produce better results at the borders of the support.

5.2 System Validation

During data acquisition, the set of m data points {x,y} ∈ R
(m×1) is obtained for calibration

purposes. In order to perform system validation, it is required to gather an additional independent
set of n data points {x̃, ỹ} ∈ R

(n×1). The model’s estimator for the coefficients α̂ facilitates the
formulation of the measurement function f−1(·), see Chapter 8. The cross-validation procedure
evaluates the functions at the positions of the known values x̃, yielding the measured values ŷ
(see Fig. 5.6),

ŷ = l(x̃), (5.7)

whereby l(x̃) � l(x̃, α̂) actually takes the estimate for the coefficients α̂ as a second parameter.
The residual r is the difference between the measured points ŷ and the known points ỹ,

r = ỹ − ŷ with ŷ = f−1(x̃). (5.8)

It is important, that the validation points {x̃, ỹ} are not equal to the points originally used
in the calibration {x,y}, because overfitting effects are undetectable this way (Fig. 5.7). The
noise level δ,

δ = ‖r‖2, (5.9)

is an estimate for the perturbation inside the data. If the noise level converges to 0, the measured
value ŷ should become the true validation value ỹ when using a suitable model,

lim
δ→0

ŷ = ỹ, (5.10)
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i.e., all random error effects are removed theoretically. Dividing δ by the number of cross
validation samples n,

δ̃ =
‖r‖2
n

, (5.11)

is an indicator δ̃ of the model’s quality w.r.t. the application, i.e., the standardized error of
each sampled values. Fig. 5.4 visualizes the complete calibration process, which is repeated
until a suitable model and/or parameters are found, i.e., the value of δ̃ falls below a predefined
threshold. Utilization of another measurement principle for the acquisition of {x̃, ỹ} than the
one used in the actual application may also independently verifies the correctness of the model.

Extensive cross validation is required when the analytic nature of the underlying process is
unknown. Bootstrapping and/or jackknifing techniques are alternative approaches for system
validation; unfortunately, generating validation points from artificially shuffled or perturbed
calibration points delivers unreliable results in terms of system identification, because overfitting
effects are hardly detectable, see Fig. 5.7. Furthermore, it is required to test the remaining
residual vector r for normal distribution by applying a generic Kolmogorov-Smirnov test and/or
a specific Anderson-Darling test [17]. Uncorrected systematic error effects are detectable using
this statistical methodology.
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Fig. 5.6 The calibration curve and its coefficients
α̂ respectively are approximated using the cali-
bration points {x,y}. Known validation points
{x̃, ỹ} are measured and the residual vector r is
determined in order to verify the system model.
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Fig. 5.7 Contextual knowledge about the mod-
eled physical process is required to achieve a
suitable curve from the calibration points {x,y}.
Known validation points {x̃, ỹ} enable the detec-
tion of under- and overfitting effects.
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5.3 Uncertainty in Measurements

The methods of statistical uncertainty analysis described in this thesis are of general validity
in metrology. The deviation from the true measurand’s value is composed of random and
systematic errors. These two kinds of errors are assumed to be distinguishable during system
identification. As already argued, significant systematic errors can be widely eliminated with the
employment of a suitable model, while random errors are intrinsic to the process of quantifying
physical properties. Other sources of failures such as errors made by human operators, aging
effects of the equipment, etc. are not dealt within this thesis.

Prior to further discussions, the terms of accuracy and precision are defined to avoid mis-
conceptions in this context. According to [20, 106], accuracy is the closeness of agreement
between a measured quantity value and a true quantity value of a measurand while precision
is the closeness of agreement between indications (or measured quantity values) obtained by
replicate measurements on the same or similar objects under specified conditions, see Fig. 5.8
for a visual comparison. In this vein, noise is a random variation of the value of the measured
signal even under nominal control of the operating conditions, while the bias is a systematic
deviation. Consequently, the goal when setting up a measurement is to remove the bias while
simultaneously minimizing the noise. Unfortunately, the true quantity value is considered
unknowable in practice, which justifies the need of thorough uncertainty analysis.

Most commonly, i.i.d. Gaussian noise is assumed for measurement applications, because:

1. The underlying statistical population of most measurement applications is Gaussian;

2. The central limit theorem states that, given certain conditions, the arithmetic mean of a
sufficiently large number of iterations of independent random variables, i.e., measurements,
each with a well-defined expected value and well-defined variance, will be approximately
normally distributed, regardless of the underlying distribution [17, 210]. Care must be
taken since this condition is not always fulfilled;

3. Least squares approximation is a maximum likelihood predictor if the noise is
Gaussian. A least squares approximation will have a systematic bias if the above condition
is not fulfilled. Least squares regression can be formulated efficiently using linear algebra;

4. The mathematical formulation of uncertainty in measurement applications is simpli-
fied when assuming a Gaussian distribution. The calculation of confidence and prediction
intervals is based on the assumption of normally distributed noise. As shown in Section 5.5,
there is a sound formulation available for deriving the associated Student-t, Fisher-F and
χ2 distributions using only a limited number of samples.

Fig. 5.9 shows the Gaussian probability density function (PDF) significance level α for the
standard deviations {σ, 2σ, 3σ} and Fig. 5.10 shows the Gaussian cumulative distribution
function (CDF) for significance level α = {90%, 95%, 99%}. These levels of significance are
common in most engineering applications.
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Fig. 5.8 The random scatter of measurements w.r.t. the samples’ mean is called the precision error;
it is caused by noise, determined by repeated measurements under stable conditions and described
statistically. Any deviation of the samples’ mean from the true value must be considered to be systematic;
the bias is an estimator for this systematic error. Systematic influences on a measurement should be
avoided in principle and are corrected by a suitable system model in order to achieve high accuracy.
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Guide to Uncertainty in Measurement

The guide to the expression of uncertainty in measurement (GUM) [105] is published by the
JCGM and establishes general rules for evaluating and describing uncertainty in measurements.
The reference guide is in agreement with the German legacy standard DIN1319 - fundamentals
of metrology [37–40] as well as its European successor ENV13005 [46]. The ENV document is
still a pre-standard, but covers all ideas mentioned in the GUM.

Besides the need of expressing the uncertainty for engineering applications [30, 192], there is also
a legislative need of doing so. According to the European Union Council directives 2006/42/EC
on machinery [51] and 2004/22/EC on measurement instruments [49], the uncertainty of
measurements must be stated when determining critical threshold values for safety reasons
and/or when the measurement device is classified by its accuracy. The error of measurement
shall not exceed the maximum permissible error (MPE) value under rated operating conditions
and in the absence of disturbances. Furthermore, measurement instruments must comply with
the directive 2004/108/EC on electromagnetic compatibility (EMC) to avoid interference errors
caused by electromagnetic disturbances.

The quality of the measurement’s result is expressed as an estimate of the measurand along
with an associated measurement uncertainty. The uncertainty reflects the incomplete knowledge
about the measurand. The GUM differentiates two types of error analysis: type A, which is
a stochastic approach, and type B, which is an empiric approach. The type A approach is
summarized in this section.

(1) Univariate Case

The statistical method is based on evaluating data of repeated i.i.d. measurements of one and
the same measurand under constant environmental conditions with Gaussian N (x, μx, σx) noise.
This approach also facilitates the implementation of Monte Carlo simulation [30] for verification
purposes. The simple explicit model is

y = l(x) = x (5.12)

with the measurand x and the uncorrected result y, whereby both x and y are random univariate
variables. It is assumed, that the systematic error has been compensated. A number of m
samples are drawn from x, yielding the vector x = [x1 . . . xm]

T. The sample mean x̄ of x is an
estimator of the first moment μx,

x̄ =
1

m

m∑
i=1

xi, (5.13)

and the sample variance s2x is an estimator for the variance (second moment) σ2
x,

s2x =
1

m− 1

m∑
i=1

(xi − x̄)2 with sx = +
√
s2x, (5.14)

whereby the sample standard deviation is sx. The uncertainty associated to the random error is
equivalent to the standard error of the mean sx̄, i.e.,

sx̄ =
sx√
m
. (5.15)
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The result y with a symmetric (1− α) confidence interval is written as

y = x̄± sx̄ t(ν), (5.16)

where t(ν) is the value of the Student-t inverse cumulative distribution function with ν = m−1 d.f.
and significance level α = 95%. This methodology only covers the simplest case for uncertainty
analysis with Gaussian noise without bias, a detailed description is found in [105].

(2) Multivariate Case

An estimation for the uncertainty in the multivariate case with N (x,μx,Λx) Gaussian noise is
given using a first-order Taylor series expansion of the function

y = l(x), (5.17)

whose vector of input data x is represented as a multivariate random variable with mean μx
and covariance matrix Λx. The derivation is described with Jl(μx), which denotes the Jacobian
matrix of the measurement function l(·) w.r.t. the input data x and evaluated at the expectation
value μx. For easier reading, it is defined that

J � Jl(μx). (5.18)

This approach has been analytically described in [30] and applied in [53, 188]. This section is
presented in concise matrix form, although the GUM does not use this efficient notation. Given
the explicit function y = l(x), the Taylor series expansion is

y = l(μx) + J(x− μx) +O(‖x− μx‖2) (5.19)

and, according to [30, 53], the first-order approximation for the covariance Λy is

Λy ≈ JΛxJ
T. (5.20)

The explicit knowledge of the functional relationship l(·) between x and y is not required for
estimating the covariance Λy of the output data y, as it depends only on the covariance Λx of
the input data x and the Jacobian matrix J, which is in fact a linear operator yielding the first
order polynomial approximation.
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5.4 Covariance Matrix

The computation of the covariance matrix allows to determine the uncertainty’s mapping
from the input to the output from any linear operator. Consider the perturbed input vector
x = [x1 . . . xm]

T with m measured values, whereby xi is the ith sample of x. The output vector
y is computed via

y = Lx, (5.21)

where L is an arbitrary linear operator. The expected value μx is computed with the linear
expectation operator E[·], i.e., E[x] = μx, thus,

E[x] = [E[x1] . . .E[xi] . . .E[xm]]
T. (5.22)

The covariance matrix Λx of the vector x is defined [17] as

Λx = E

[
(x− E[x]) (x− E[x])T

]
, (5.23)

= E

[
(x− μx) (x− μx)

T
]
. (5.24)

The covariance matrix Λy of the vector y is then, using Eqn. (5.23),

Λy = E

[
(y − E[y]) (y − E[y])T

]
,

= E

[
(Lx− E[Lx]) (Lx− E[Lx])T

]
,

= E

[
(Lx− LE[x]) (Lx− LE[x])T

]
,

= LE
[
(x− E[x]) (x− E[x])T

]
LT,

= LE
[
(x− μx) (x− μx)

T
]
LT,

= LΛxL
T. (5.25)

The equation
Λy = LΛxL

T with y = Lx (5.26)

is valid for any linear operation L; as a result, the input’s uncertainty can directly be mapped to
the output. The uncertainty can be estimated a-priori to the measurement during calibration.
If the vector x was acquired from a homoscedastic measurement of i.i.d. samples, then the
variance σ2

x and standard deviation σx is equal for all values in x. This leads to

Λx = σ2
xI, (5.27)

when I is the identity matrix. In this simplified case, the output covariance is then

Λy = LΛxL
T,

= L
(
σ2
xI
)
LT,

= σ2
x LL

T, (5.28)

where LLT is a projection onto the column vectors of the linear operator L.
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5.5 Goodness-of-Fit Statistics

Using χ2 goodness-of-fit statistics is a formal approach do determine the confidence and prediction
intervals of a regression and, therefore, uncertainty bounds. The goodness-of-fit test is the
inverse approach, i.e., it enables to test a regression against a given significance level. A general
linear operation with known input uncertainty is written as

ŷ = L x̂ with Λŷ = LΛx̂L
T, (5.29)

where ŷ is the estimator of the true output variable y, x̂ is the estimator for the true input
variable x and L is a linear operator. According to [210], the χ2 test with r d.f. is formulated as

χ2
(r) ≤ (ŷ − E[ŷ])TΛŷ

−1(ŷ − E[ŷ]), (5.30)

i.e., the scalar product (ŷ − E[ŷ])T(ŷ − E[ŷ]) is standardized with the covariance Λŷ,

χ2
(r) ≤ (Lx̂− E[Lx̂])T

(
LΛx̂L

T
)−1

(Lx̂− E[Lx̂]),

≤ (Lx̂− Lx)T
(
LΛx̂L

T
)−1

(Lx̂− Lx),

≤ (Lx̂− Lx)T
(
σ2
x̂LL

T
)−1

(Lx̂− Lx),

≤ 1

σ2
x̂

(Lx̂− Lx)T
(
LLT

)−1
(Lx̂− Lx). (5.31)

When estimating the population’s variance σ2
x̂ with the sample variance s2x̂, then the χ2

(r)

distribution can be approximated with a Fisher distribution rF(r,ν),

lim
ν→∞

rF(r,ν) = χ2
(r). (5.32)

As a consequence, this leads to the approximation

F(r,ν) ≤ 1

r s2x̂
(Lx̂− Lx)T

(
LLT

)−1
(Lx̂− Lx). (5.33)

If the number or regressors r = 1, then the Fisher-F distribution is equivalent to a squared
Student-t distribution,

F(1,ν) = t2(ν), (5.34)

and, consequently,

t2(ν) ≤
1

s2x̂
(Lx̂− Lx)T

(
LLT

)−1
(Lx̂− Lx),

≤ 1

s2x̂
(x̂− x)TLT(LLT)−1

L(x̂− x). (5.35)

If L is not rank deficient, i.e., non-singular and invertible, the equation simplifies to

t2(ν) ≤
1

s2x̂
(x̂− x)T(x̂− x), (5.36)
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i.e., the goodness-of-fit is operation-independent. A Student-t distribution converges to a
Gaussian distribution Φ with increasing d.f.,

lim
ν→∞

t(ν) = Φ. (5.37)

The χ2 goodness-of-fit test is a special case of the Mahalanobis distance δ,

δ =

√
(x− μx)

TΛx
−1(x− μx). (5.38)

The knowledge of the χ2 goodness-of-fit test is applied in Chapter 8 for determining the prediction
and confidence intervals for the regression.

5.6 Multi-Source Data Fusion

According to [85, 193], multi-source data fusion (MSDF) is the process of combining observations
from a number of different sources (sensors) to provide a robust and complete description of an
environment or physical process of interest. The sensors can be of different type; however, the
definition also encompasses multiple observations of a single sensor over time, which are then
combined. This is of special importance in a CPS environment where the motes of a WSAN
often cover overlapping sections within the physical domain. Meaningful combination of the
measured data is the main goal of MSDF.

The terms data fusion and information fusion are not clearly differentiated in literature, e.g.,
sometimes they refer to merging data from data bases or fusing sensor channels during data
mining. In this thesis, MSDF is the combination of sensory data such that the resulting
information is in some sense better than it would be possible when these sources were used
individually. This includes low-level raw sensor data and intermediate-level preprocessed sensor
data in a single measurement device [76] as well as high-level MSDF used in WSAN applications.
In this vein [146], possible motivations for MSDF are:

1. Limited domain coverage. Multiple diverse sensors may be required to acquire all
properties of a physical phenomenon. The system’s robustness against interference is
increased;

2. Limited spatial coverage. An individual sensor only covers a restricted region and the
measurement range needs to be expanded;

3. Limited temporal coverage. The sample rate of a single sensor may be too slow and a
higher resolution is required;

4. Imprecision and inaccuracy. The uncertainty employed by a single sensor may be too
high and redundant data is required, leading to an increased confidence level;

5. Robustness and reliability. Employing redundant sensor enables the system to provide
information even in case of partial failure.

Considering all these points, synergetic effects may increase the overall quality of the measurement
result. The sensor configuration can be complementary (independent sensory data), competitive
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(using the best sensor data) or cooperative (fusion of the sensor data) [43, 146]. These concepts
also work in a WSAN environment.

State-of-the-art MSDF methods employ a probabilistic approach based on the Bayes theorem [5,
18, 113], i.e., conditional probability for states and their observations. The most popular
implementations of the Bayes filtering techniques are probability grids (look-up-tables for the
conditional probability), Kalman filters (maximum likelihood predictor/update model) and
sequential Monte Carlo techniques (simulation using weighted samples) [193]. Probabilistic
methods are non-deterministic and always require a large population of samples to work properly.
Established alternative approaches are interval calculus (using error bounds), fuzzy logic (with
membership functions) and Shafer-Dampster methods (theory of evidence).

There are several architectural frameworks for MSDF available [84]. The most popular one is
the joint directors of the laboratories (JDL) model, which was originally intended for military
applications [85, 193]. This approach views MSDF in terms of source, object, situation, threat
and process analysis levels with human-machine interaction. Other models are the waterfall
fusion process model and the Boyd model [146].

Several problems and misconceptions are related to MSDF. Employment of multiple sensors is
never a substitute for using sensors with a suitable quality, i.e., errors emerging in the sensor
data cannot be removed and the incorporated uncertainty can only be limited to a lower bound.
Moreover, wrong application of MSDF can yield incorrect results, e.g., when contradictory or
inconsistent data is fused.

The algebraic framework presented in the next chapters is capable of analytically fuse sensor
data based on uncertainty and weighted regression, see Fig 5.11. This is advantageous in
certain applications when being compared to probabilistic methods, because the data of each
measurement can be fused immediately without the need of acquiring multiple samples. This
methodology has been applied in [75, 76] for fusing the views of multiple cameras in order to
extend the measurement range; the associated project is described in Chapter 13.
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Fig. 5.11 Each sensor covers a limited spatial range, whereby the calibration curves overlap at their
boundaries. The uncertainty, i.e., the confidence intervals, incorporated by each curve is analytically
determined during calibration. The curves are fused w.r.t. the inverse of their associated uncertainty,
i.e., the weighting corresponds to their confidence.
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The theory of basis functions has been applied in numerous practical applications. Harker [87]
gives a general overview of basis functions and their synthesis. Suesut [199] proposed a new
concept for combining periodic with polynomial moments for modeling and analyzing 3D surface
data. He implemented a system for the real-time inspection of metal surfaces based on light-
sectioning. Tensor polynomial approximation on an invariant 2D Cartesian grid is applied to
generate a smooth model for the surface. Gugg [69] compared different geometric and periodic
bases for the modeling of surfaces and proposed spectral analysis for pattern recognition based
on machine learning. Neumayr [157] and Gugg [70] implemented a transformation algorithm
for mapping points between a distorted camera space and the associated metric real space
using tensor interpolation based on discrete orthogonal polynomials. Badshah [9] improved the
method of image registration for non-rigid distortion using hierarchical image processing with
multiresolution pyramids. He compared the quality of different basis functions on artificial data
and their behavior w.r.t. Gibbs error. An overview of moments has been given in [9, 163, 199];
according to these sources, moments are classified in three groups [168], which are shortly
discussed in this section.

1. Geometric moments. It has been proven that there is one and only one complete
unitary discrete polynomial basis [163]. Existing implementations are variations of one
and the same solution. The numerically unstable Vandermonde basis is a popular choice
in engineering applications despite its poor characteristics;

2. Polar/radial moments. These rotationally invariant moments consist of an orthogonal
polynomial basis combined with a polar rotation. The Zernike moments and the orthogonal
Fourier-Mellin moments belong to this group [199];

3. Periodic/cyclic moments. These moments are time shift invariant and well suited for
analysis of periodic data, e.g., the Fourier basis and the discrete cosine basis.

The suitability of a basis depends on the nature of the data being analyzed and on the modeled
features, i.e., the selection of the basis is application dependent. Using a suitable basis minimizes
the amount of information redundancy and effectively eliminates some of the problems associated
with Gibbs error and Runge’s phenomenon.

6.1 Nomenclature

Preliminary definitions must be made before establishing the algebraic framework. The term
tensor describes a multidimensional mathematical object in linear algebra, whereby a zero-order
tensor is a scalar, a first-order tensor is a vector and a second order tensor is a matrix.

49
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The term discrete orthogonal polynomials is used ambiguously in literature. Basically, orthogo-
nality describes the idea of a mathematical relation thought of as describing non-overlapping,
uncorrelated or independent objects of some kind. In linear algebra, a set {x,y} ∈ R

(m×1) of
two vectors is orthogonal if and only if the inner/scalar product is zero, i.e., xTy = yTx = 0
while xTx = ξ and yTy = ψ, where ξ and ψ are scalars.

So far, this does not refer to the magnitude of the vectors. In particular, a set {x,y} ∈ R
(m×1)

is called orthonormal if it is an orthogonal set of unit vectors, i.e., xTx = 1 and yTy = 1. If
this set {x,y} ∈ C

(m×1) is complex, it is called a unitary set. The concept can be expanded
to matrices, whereby the rows and columns of the matrix B fulfill the orthogonality condition.
This leads to the nomenclature,

1. orthogonal basis BTB = C, where B ∈ R
(m×n) and C ∈ R

(n×n) is diagonal;

2. orthonormal basis BTB = I, where B ∈ R
(m×n) and I is the identity matrix;

3. unitary basis BTB = I, where B ∈ C
(m×n) is complex;

4. weighted orthogonal basis BTWB = C, where B ∈ R
(m×n), W ∈ R

(m×m) is a weighting
matrix and C ∈ R

(n×n) is diagonal.

Unfortunately, this definitions are often ignored in literature and the terms are used as synonyms
for each other. The majority of methods presented in this thesis is meant to be applied on
real measurement data within the domain of real valued numbers R, although the methods are
general enough to be applied in the complex plane C. This is convenient when converting or
combing geometric and periodic moments by synthesizing basis functions on the complex plane.
The geometric discrete unitary polynomial basis is referred to as DOP (discrete orthogonal
polynomial) basis within this thesis.

Many notations in linear algebra originate from MATLAB syntax. The ith row or jth column of
a matrix A is selected via the element vector ek = [0, . . . , 1, . . . , 0]T, i.e., a vector of zeros except
for a 1 on the kth index. The operations are equivalent to the MATLAB syntax:

A(i, :) → xT
i = eTi X, (6.1)

A(:, j) → yj = X ej. (6.2)

Selecting the specific elements u ∈ R
(k×1) from a vector x ∈ R

(m×1) with k < m is denoted by

u = x(1 : k), (6.3)

if k = m, then the operation is u = x(1 : end) = x. Selecting the diagonal elements of a matrix
A ∈ R

(m×m) is denoted by

diag (A) = [a11, a22, . . . , aii, . . . , amm]
T, (6.4)

where diag (I) = 1, when I is the identity matrix and 1 is a vector of ones.
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6.2 Overview

There is one and only one complete unitary discrete polynomial basis [163], which is abbreviated
as G in the thesis. The exact Legendre, the Forsythe, the Chebyshev and the normalized
Krawtchouk polynomials are fundamentally equivalent; the actual differences in performance are
related to their specific numerical implementation. It was shown, that they only distinguish in
the norms of the individual polynomials; the polynomials themselves are identical. Nevertheless,
a short overview is given in order to enhance the conceptual understanding for basis functions.
The symbols p = p(x) describe the polynomial basis functions of nth degree synthesized on m
points of x ∈ R

(m×1) in the discrete and continuous domain respectively.

6.2.1 Geometric/Polynomial Moments

According to [163], the true unitary basis G consists of sums of monomials g. Traditionally,
polynomial bases are synthesized using a three-term relationship; the associated error propagation
is the dominating limiting factor for the achievable accuracy. As a result, the degree of the
polynomial to be generated is restricted as well as the size of the data to be analyzed. Improved
algorithms were introduced in [151, 152]; however, they were limited to regular grids and
introduced errors to low degree polynomials. The algorithm is evaluated in [162] using newly
derived objective quality measures for bases.

In this thesis, the synthesis of a true unitary discrete basis using a generalized recurrence
relationship is presented in Chapter 7. Near-perfect numerical behavior is achieved for the
generation of polynomials computed from arbitrary nodes within the unit circle of the complex
plane. With this approach, polynomial bases of almost arbitrarily degree can be implemented
without noteworthy numerical error. The availability of a unitary basis also enables the
development of understanding w.r.t. spectral propagation of Gaussian noise and noise bandwidth
of polynomial filters. The numerically unstable Vandermonde (Taylor) polynomial basis V is still
state-of-the-art for many engineering problems due to its clear and easy understandable structure.
The Vandermonde basis is explained in Section 6.3 and is used for comparison/verification
purposes throughout in this thesis.

(1) Legendre. The continuous Legendre polynomials are orthogonal over the range x ∈ [−1,+1]
in an integral sense, such that∫ +1

−1

Pp(x)Pq(x) dx =

{
0 if p �= q,

2
2p+1

if p = q.
(6.5)

The polynomials have a uniform weighting. Legendre polynomials do not form an orthogonal
basis when computed at discrete points, which is a great cause of error propagation when
implemented for higher degrees. The associated recursive relationship is

npn(x)− (2n− 1)p1(x) ◦ pn−1(x) + (n− 1)pn−2 (x) = 0 (6.6)

for n ≥ 2 with p0 = 1 and p1 = x. The basis degenerates with increasing degree due to
numerical errors caused by the three-term relationship. Nevertheless, the Legendre polynomials
have become popular in machine vision applications because of their noise sensitivity and the
image reconstruction properties.
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(2) Forsythe. The Forsythe basis is defined in the range x ∈ [0,m− 1] and is generated by the
recurrence relationship

pn(x) = 2 (x− αn) ◦ pn−1(x)− βn pn−2(x), (6.7)

where
αn =

‖x ◦ pn−1‖22
‖pn−1‖22

and βn =
‖pn−1‖22
‖pn−2‖22

, (6.8)

given p−1 = 0 and p0 = 1. The individual polynomials pi, i.e., the column vectors of the
basis, have a non-uniform norm. The basis is orthogonal, but not orthonormal/unitary. The
condition number of the matrix increases with increasing degree due to numerical errors [162].
The Forsythe polynomial basis is fundamentally equivalent to the Chebyshev basis.

(3) Chebyshev. The Chebyshev (also Tchebichef or Tschebyscheff ) polynomials are generated
in the range x ∈ [0,m− 1] from the recurrence relationship,

n tn(x)− (2n− 1) t1(x) ◦ tn−1(x) + (n− 1)

{
1− (n− 1)2

m2

}
tn−2(x) = 0, (6.9)

whereby t0 = 1 and t1 = (2x + 1 −m)/m. The Chebyshev polynomials form a discrete and
orthogonal basis, but they are not orthonormal/unitary. This indicates that the Chebyshev
basis degenerates faster than the Legendre basis. The superiority of the Chebyshev moments
to Legendre and Zernike moments has been proven in [151, 152]. The discrete Chebyshev
polynomials do not have a uniform scaling, where as the Gram polynomials do.

(4) Krawtchouk. The Krawtchouk moments belong to the class of discrete orthogonal
moments [199], whereas the orthogonality condition ensures minimal information redundancy.
No coordinate space transformations are required and the implementation of these moments
does not involve any numerical approximations. Krawtchouk polynomials are scaled to ensure
numerical stability, thus, creating a set of weighted Krawtchouk polynomials. These properties
made the Krawtchouk moments popular for finding pattern features in the analysis of two-
dimensional images.

(5) Gram (-Schmidt). The Gram polynomials are continuous polynomials. They form a
complete and orthonormal/unitary set of basis functions when synthesized from uniformly
spaced nodes. The polynomials are generated via a three-term relationship in a process which is
called a Gram-Schmidt orthogonalization. The recurrence relationship for the Gram polynomials
is

pn(x) = 2αn x pn−1(x)− αn−1

αn−2

pn−2(x), (6.10)

whereby

αn−1 =
m

n

(
n2 − 1/2

m2 − n2

)1/2

(6.11)

and
p0(x) = 1, p−1(x) = 0 and α−1 = 1. (6.12)

The computation is performed for equidistant discrete nodes xk on the real axis,

x = −1 +
2k − 1

m
with 1 ≤ k ≤ m. (6.13)
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These points do not span the full range [−1,+1]. The bases functions are scaled by
√
m yielding

a unitary bases set. Theoretically, the Gram polynomial form an ideal basis; however, the
synthesis via the three-term recurrence relationship introduces serious round-off errors, which
accumulate and prevent the synthesis of high degree polynomials of acceptable numerical quality.

6.2.2 Polar/Radial Moments

(1) Zernike. The Zernike polynomials are a sequence of polynomials that are orthogonal on
the unit disk [199]. Zernike moments can represent properties of an image with no redundancy
or overlap of information between the moments. The moments are synthesized using polar
coordinates; consequently, they are invariant to rotation. Thus, they can be utilized to extract
features from images that describe the shape characteristics of an object. The computation
using a direct method is very time consuming. Zernike polynomials are commonly used in
optical applications in order to correct lens distortion or in adaptive optics where they are used
to effectively cancel out atmospheric distortion.

(2) Fourier-Mellin. The orthogonal Fourier-Mellin moments are better suited for small data
sets (small images) than Zernike moments w.r.t. reconstruction errors and signal to noise
ratio [199].

6.2.3 Periodic/Cyclic Moments

(1) Fourier. This basis is complex and time shift invariant; consequently, it is suitable when
there are periodic structures in the data. The Fourier basis is equivalent to a polynomial basis
where the nodes x are evenly placed on the unit circle on the complex plane [167]. Many
coefficients are required to model data which exhibits a simple linear gradient or sub-harmonics.
This leads to the Gibbs error: the energy associated with the signal which cannot be modeled is
spread over the whole spectrum; as a consequence, perfect reconstruction becomes impossible.
On the other hand, the Fourier basis can model periodic signals with very few coefficients. The
Fourier basis F is synthesized via

F =
1√
m

exp

{
−j

2π(k − 1)(l − 1)

m

}
. (6.14)

Given a vector of data x with m points, the spectrum α (Fourier moments) is computed as
α = Fx. The derivatives of F are also periodic.

(2) Discrete cosine. In contrast to the Fourier basis, the discrete cosine transform (DCT) is a
real basis and not time shift invariant. It is computationally less expensive than the Fourier basis.
The DCT is equivalent to a polynomial basis where the nodes x are placed using Chebyshev
points [167]. The DCT basis C is synthesized via

C =

√
2

m
cos

{
(2k + 1) l π

2m

}
, (6.15)

whereby the basis is orthonormal with CTC = I on m nodes. The most popular application
employing the DCT is the JPEG image and MPEG video compression formats. Portions that
cannot be modeled appear as visible artifacts inside the image or video respectively.
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6.3 Vandermonde Polynomial Basis

The use of the geometric Vandermonde basis is a popular approach in literature and non-
demanding engineering problems. Although theoretically sound, from a numerical point of view,
the Vandermonde basis is poorly conditioned and quickly becomes degenerate as the degree
of the polynomial increases [65, 176]. The maximum polynomial degree which can be used
before the basis collapses is approximately d = 8, depending on the employed computing system.
Consequently, computations with this matrix will have insufficient numerical characteristics.
Furthermore, these moments are not orthogonal when computed at discrete points and they are
not polynomial preserving; these features are important when performing polynomial filtering
such as Savitzky-Golay smoothing [164]. No unique inverse for degenerated matrices exists; that
being so, the Vandermonde basis is not suited for signal synthesis.

Consider a continuous polynomial y = y(x) of degree d, which is defined as a sum of monomials,

y =
d∑

i=0

αi x
i = α0 + α1 x+ α2 x

2 + . . .+ αd−1 x
d−1 + αd x

d. (6.16)

Having a number of m points [xi, yi]
T available, the equation is discretized and rewritten in

concise matrix form,
y = Vα, (6.17)

where y ∈ R
(m×1) is the solution vector, V ∈ R

(m×(d+1)) is the Vandermonde design matrix and
α ∈ R

((d+1)×1) is the coefficient vector. The expanded form of the above equation is⎡⎢⎢⎣
y1
...
ym

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 x1 . . . x

(d−1)
1 xd1

...
... . . . ...

...
1 xm . . . x

(d−1)
m xdm

⎤⎥⎥⎦
⎡⎢⎢⎣
α0

...
αd

⎤⎥⎥⎦ . (6.18)

The basis is complete, when m = d + 1. The common approach to estimate the regression’s
coefficient vector α̂ is the use of the Moore-Penrose pseudoinverse V+ � (VTV)

−1
VT as explained

in Section 6.4,
α̂ = V+y, (6.19)

which is a maximum likelihood estimator [95], thus, E[α̂] = α. Note, that (VTV)
−1

= (VTV)
−T.

The estimator ŷ for the solution vector y is then

ŷ = Vα̂ = VV+y, (6.20)

where VV+ is a projection onto the Vandermonde basis. According to Eqn. (5.26), the covariance
Λŷ of the solution vector ŷ is Λŷ = LΛyL

T with the linear operator L � VV+. Hence,

Λŷ =
(
VV+

)
Λy
(
VV+

)T
, (6.21)

and the covariance Λα̂ of the estimated coefficient vector α̂ is Λα̂ = LΛyL
T with L � V+, thus,

Λα̂ = V+ΛyV
+T. (6.22)



6.4. Moore-Penrose Pseudoinverse 55

The polynomial nature of the Vandermonde basis facilitates the computation of its derivatives.
According to [89], the analytic derivation y′ of the polynomial y = y(x) is

y′ =
dy

dx
= α1 + 2α2 x+ . . .+ (d− 1)αd−1 x

d−2 + dαd x
d−1. (6.23)

The derivation y′ of the solution vector y is simply computed with a weighting matrix W,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 2 . . . 0
...

...
... . . . ...

0 0 0 . . . d

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.24)

However, this methodology does not account for any constraints such as initial or boundary
values! The estimation for the derivative is then

ŷ′ = V α̂′,

= VW α̂,

= VWV+y. (6.25)

The covariance Λŷ′ of the estimation for the derivation ŷ′ is Λŷ′ = LΛyL
T with L � (VWV+),

Λŷ′ =
(
VWV+

)
Λy
(
VWV+

)T
. (6.26)

Despite its bad numerical behavior, the Vandermonde matrix is still a popular choice to solve
numerous engineering problems. For instance, MATLAB’s built-in function for polynomial
regression, polyfit(), as well as the methods provided by the more advanced Curve Fitting
Toolbox [136], use the Vandermonde basis. The computation of the confidence and prediction
intervals of polynomial regression using the Vandermonde basis is explained in Section 8.2.1 for
comparison/verification purposes.

6.4 Moore-Penrose Pseudoinverse

The most general formulation of an overdetermined system of equations is written as

y = Bα, (6.27)

where y ∈ R
(m×1) is the vector of measurement data, B ∈ R

(m×(d+1)) is an incomplete set of
basis functions and α ∈ R

((d+1)×1) are the true, yet unknowable, coefficients of the underlying
curve. The matrix B is rectangular; unfortunately, there is no unique inverse to this matrix.
Premultiplication of both sides with BT yields the normal equation,

BTy = BTBα, (6.28)

whereby the term {BTB} ∈ R
((d+1)×(d+1)) is now a square matrix. Assuming that this term is

non-singular, inversion yields the minimum norm least squares estimate α̂ for the coefficients,

α̂ = (BTB)
−1
BTy. (6.29)
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The Moore-Penrose pseudoinverse B+ of the matrix B is defined [5, 65] as

B+ � (BTB)
−1
BT. (6.30)

A verbose derivation is documented in Section 9.1. The computation using the normal equations
is computationally expensive and numerically unstable [65]. As an alternative approach, applying
QR-decomposition to the linear operation B = QR, where Q is orthogonal with QTQ = I and R
is upper triangular,

y = QRα, (6.31)

and premultiplication of QT,

QTy = QTQRα,

= Rα. (6.32)

The coefficient vector α̂ is then estimated as

α̂ = R+QTy, (6.33)

where α̂ has minimum norm. This is how MATLAB’s polyfit() function implements the
computation of the pseudoinverse. If the basis is complete, then R−1 = R+, and the coefficients
α are

α = R−1QTy. (6.34)

The triangular form of R simplifies the computation of its inverse R−1. Using Eqn. (6.33), the
estimation for the output vector ŷ = B α̂ is

ŷ = BR+QTy,

= QRR+QTy,

= QQTy, (6.35)

if R is full rank. In this case, RR+ = I and QQT is a projection onto Q. Note, that for an
incomplete basis, QQT �= I. Defining the linear operator L � QQT enables the computation of
the estimation’s covariance Λŷ = LΛyL

T w.r.t. the original data y and its covariance Λy,

Λŷ =
(
QQT

)
Λy
(
QQT

)T
,

= QQTΛyQQ
T. (6.36)

Now, consider the projection matrix P � BB+ of the basis B = QR, i.e.,

P = BB+,

= B(BTB)
−1
BT,

= QR((QR)TQR)
−1
(QR)T,

= QR(RTQTQR)
−1
RTQT,

= QR(RTR)
−1
RTQT,

= QRR+QT,

= Q(RR−1)(R−TRT)QT,

= QQT. (6.37)
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Therefore, this derivation is valid for any basis B. The projections P = BB+ = QQT, where BB+

is the projection on B and QQT is the projection on Q; therefore, both projections have the
same range,

range
(
BB+

)
= range

(
QQT

)
. (6.38)

As a matter of fact, there must exist a discrete orthogonal polynomial (DOP) basis set to
perform least squares fitting, which leads to the concept of Gram polynomials G, i.e., the basis
B � G,

y = Gα (6.39)

with the orthogonality properties GTG = I and its inverse G+ = GT. This directly leads to the
estimation α̂ of the coefficients,

α̂ = GTy. (6.40)

The covariance Λα̂ = LΛyL
T of the coefficients is directly computed from the measurement

vector’s i.i.d. noise σ2
y with the linear operator L � GT,

Λα̂ = GTΛyG and Λy = σ2
yI,

= σ2
yG

TG,

= σ2
yI, (6.41)

therefore, Λα̂ = Λy. In other words, the input noise directly maps to the output noise. The noise
is evenly spread over all spectral components, which significantly simplifies the noise estimation
and enables signal reconstruction of high numerical quality.
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State-of-the-art methodologies for the generation of discrete orthogonal polynomials are based
on the classical three-term recurrence relationship from functional analysis [58, 65],

gn = αn (gn−1 ◦ x) + βn gn−2, (7.1)

with the monomial gn of nth degree, the vector x with m arbitrarily spaced nodes and the scalar
recurrence coefficients {αn, βn} of the nth iteration. Different values for {αn, βn} deliver different
kinds of polynomials. The Gram-Schmidt orthogonalization is known to be unstable. The
limiting factor for the three-term recurrence relationship in this formulation is the systematic
propagation of round-off errors; as a consequence, it is virtually impossible to synthesize bases
of higher degree. The currently synthesized nth monomial gn only depends on its last two
predecessors gn−1 and gn−2, the errors propagate from monomials of lower degree to monomials
of higher degree. The central limit theorem cannot be applied and the errors do not behave
according to Gaussian distribution.

7.1 Existence of the Basis

The presented generalized recurrence relationship is usable to synthesize a high quality poly-
nomial basis for arbitrary nodes of virtually unlimited degree [162, 163, 165, 167]. Continuous
polynomials are considered which form an orthogonal basis when evaluated over a discrete
measure. The concept of the conventional three-term recurrence relationship is extended so that
the nth monomial gn is a linear combination of (gn−1 ◦ x) and of all previously generated basis
functions Gn−1. The theoretical proof shows, that there is one and only one unitary discrete
polynomial basis which can be generated from a sum of monomials [162]. The procedure is
stable w.r.t. numerical errors; the maximum error corresponds to the numerical resolution of
the data type being used during generation. Within this thesis, the matrix G refers to this
discrete orthogonal polynomial (DOP) basis. The robust recurrence relationship is formulated
as a vector-matrix algebraic operation,

gn = αn (gn−1 ◦ x) + Gn−1 βn, (7.2)

where Gn−1 = [g0, g1, . . . , gn−1] is a matrix containing the complete polynomial basis, i.e., the
monomials as column vectors, up to degree n − 1, and βn is the corresponding recurrence
coefficient vector. In order to increase readability, it is defined α � αn and β � βn for the
currently synthesized degree n. Two constraints are placed onto the basis functions,

C1 : GT
n−1 gn = 0 and C2 : gTn gn = 1, (7.3)
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where C1 is the orthogonality condition and C2 is the unit norm condition. Using Eqn. (7.2)
with the first constraint C1 : G

T
n−1 gn = 0, yields

0 = GT
n−1 {α (gn−1 ◦ x) + Gn−1 β},

= αGT
n−1 (gn−1 ◦ x) + GT

n−1 Gn−1 β, (7.4)

where GT
n−1 Gn−1 = I is unitary. Solving the above equation for β delivers

β = −αGT
n−1 (gn−1 ◦ x). (7.5)

Using Eqn. (7.2) with the second constraint C2 : g
T
n gn = 1, yields

1 = {α (gn−1 ◦ x) + Gn−1 β}T {α (gn−1 ◦ x) + Gn−1 β},
= α2 (gn−1 ◦ x)T(gn−1 ◦ x) + 2α (gn−1 ◦ x)T Gn−1 β + βT GT

n−1 Gn−1 β, (7.6)

where GT
n−1 Gn−1 = I is unitary,

1 = α2 (gn−1 ◦ x)T(gn−1 ◦ x) + 2α (gn−1 ◦ x)T Gn−1 β + βTβ. (7.7)

Substitution of β from Eqn. (7.5),

1 = α2 (gn−1 ◦ x)T(gn−1 ◦ x)
+ 2α (gn−1 ◦ x)T Gn−1 {−αGT

n−1 (gn−1 ◦ x)}
+ {−αGT

n−1 (gn−1 ◦ x)}T{−αGT
n−1 (gn−1 ◦ x)}, (7.8)

and expansion of the terms yields

1 = α2 (gn−1 ◦ x)T(gn−1 ◦ x)
− 2α2 (gn−1 ◦ x)T Gn−1G

T
n−1 (gn−1 ◦ x)

+ α2 (gn−1 ◦ x)T Gn−1G
T
n−1 (gn−1 ◦ x). (7.9)

Merging of the terms,

1 = α2 (gn−1 ◦ x)T(gn−1 ◦ x)− α2 (gn−1 ◦ x)T Gn−1G
T
n−1 (gn−1 ◦ x), (7.10)

and factorization delivers

1 = α2 (gn−1 ◦ x)T {I− Gn−1G
T
n−1} (gn−1 ◦ x). (7.11)

The projection {I− Gn−1G
T
n−1} is idempotent; therefore, it can be expanded to

1 = α2 (gn−1 ◦ x)T {I− Gn−1G
T
n−1}T {I− Gn−1G

T
n−1}(gn−1 ◦ x) (7.12)

in ordert to solve the above equation for α,

α = ± 1√
(gn−1 ◦ x)T {I− Gn−1GT

n−1}T {I− Gn−1GT
n−1}(gn−1 ◦ x)

. (7.13)
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The ± is irrelevant since it only changes the sign of the moment. The above formula is then
conveniently written as

α =
1

‖{I− Gn−1GT
n−1} (gn−1 ◦ x)‖2

. (7.14)

Complete reorthogonalization is performed by substituting β from Eqn. (7.5) into the recurrence
relationship from Eqn. (7.2), thus,

g⊥n = α (gn−1 ◦ x) + Gn−1 β,

= α (gn−1 ◦ x) + Gn−1 {−αGT
n−1 (gn−1 ◦ x)},

= α (gn−1 ◦ x)− αGn−1 G
T
n−1 (gn−1 ◦ x),

= α {I− Gn−1 G
T
n−1} (gn−1 ◦ x). (7.15)

The term Gn−1 G
T
n−1 is a projection onto the basis function Gn−1 and {I − Gn−1 G

T
n−1} is the

projection onto the orthogonal complement of Gn−1. All correlations in (gn−1 ◦ x) with Gn−1

are removed; this effectively eliminates all quantization (rounding) errors occurring during the
computation. Eqn. (7.15) is a generalized recurrence relationship, whereby the selection of
the nodes x determines the function being synthesized. This truly arbitrary nodes may lie
in the complex plane within the unit circle. The polynomial basis synthesized from a set of
evenly spaced nodes on the real axis in the interval [−1,+1] are called discrete unitary Gram
polynomials and are denoted by G throughout in this thesis. The theorem from Eqn. (7.15) is
proven by applying the projection onto the orthogonal complement onto gn, hence,

g⊥n = {I− Gn−1 G
T
n−1} gn,

= {I− Gn−1 G
T
n−1} {α (gn−1 ◦ x) + Gn−1 β},

= α {I− Gn−1 G
T
n−1} (gn−1 ◦ x) + {I− Gn−1 G

T
n−1}Gn−1 β. (7.16)

The projection of Gn−1 on its own orthogonal complement is a matrix of zeros,

{I− Gn−1 G
T
n−1}Gn−1 = 0. (7.17)

As a consequence, Eqn. (7.16) is equivalent to Eqn. (7.15). The perfect conditioning of the
unitary basis is achieved via normalization,

ĝ⊥n =
g⊥n

‖g⊥n ‖2
=

g⊥n√
g⊥n

Tg⊥n

. (7.18)

Substitution of Eqn. (7.15), and knowing that the projection is idempotent, yields

ĝ⊥n =
α {I− Gn−1 G

T
n−1} (gn−1 ◦ x)√

α2 (gn−1 ◦ x)T {I− Gn−1 GT
n−1} (gn−1 ◦ x)

. (7.19)

The scalar α is cancelled out since α/
√
α2 = sgn (α),

ĝ⊥n =
{I− Gn−1 G

T
n−1} (gn−1 ◦ x)√

(gn−1 ◦ x)T {I− Gn−1 GT
n−1} (gn−1 ◦ x)

. (7.20)
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The normalization is independent from α. Comparison with Eqn. (7.15) reveals that

ĝ⊥n = g⊥n = α {I− Gn−1 G
T
n−1} (gn−1 ◦ x). (7.21)

This is an incremental orthogonalization process which eliminates all correlations with previously
synthesized basis functions. The basis Gn of degree n is acquired by concatenating the existing
basis Gn−1 with the newly generated monomial ĝ⊥n , thus,

Gn =
[
Gn−1, ĝ

⊥
n

]
and GT

nGn = I. (7.22)

The basis fulfills the orthogonality condition for almost arbitrary degree, which is demonstrated
in Section 7.4. As a matter of fact, the condition number should be unity independent of the
synthesized degree n and the number of points m in x, i.e., cond (Gn) = 1.

7.2 Synthesis Algorithm

The theoretical proof from the previous section leads directly to the synthesis algorithm using a
modified Lanczos process with complete reorthogonalization [65]. This is the first algorithm
which synthesizes a unitary polynomial basis for a set of truly arbitrary nodes [89, 162]. This
property is of special importance in measurement applications, where the positioning of sensors
may be defined by the system requirements and/or environmental constraints.

• Initial step. Produce the monomials of degree 0 (constant) and 1 (slope). Generate g0
as a column vector of m ones 1 and normalize the vector to have a 2-norm of 1,

g0 =
1√
m

and g1 =
x− x̄

‖x− x̄‖2 . (7.23)

The vector x has m elements containing the values of the nodes at which the basis functions
are to be generated, x̄ is the arithmetic mean of these values. The polynomial basis G1 of
degree 1 is then concatenated via

G1 = [g0, g1] . (7.24)

• Incremental process. Synthesize monomials of degree n until the target degree d is
reached. Within this thesis, it is defined Gd � G. Combining step two and three equals
the operation formulated in Eqn. (7.15).

1. Computation of the monomial gn of degree n,

gn = g1 ◦ gn−1; (7.25)

2. Complete reorthogonalization of gn w.r.t. Gn−1 via

g⊥n = {I− Gn−1 G
T
n−1} gn, (7.26)

whereby Gn−1 is the existing polynomial basis of degree n − 1. It is important to
note, that the reorthogonalization is performed on the complete existing basis, not
just the previous monomial;
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3. Normalization of the monomial g⊥n via

ĝ⊥n =
g⊥n

‖g⊥n ‖2
; (7.27)

4. Augmentation of the existing polynomials Gn−1 with the new monomial ĝ⊥n ,

Gn =
[
Gn−1, ĝ

⊥
n

]
. (7.28)

The polynomial basis Gn of degree n now contains a linear combination of all lower
degree monomials.

The synthesis algorithm uses only fundamental linear algebra. This property enables the
automatic generation of C code which is functionally equivalent to MATLAB’s model code.
Consequently, this enables the generation of suitable basis functions on embedded systems in
the field as the needs arises, e.g., within a WSAN environment.

7.3 Node Placement

The solution of inverse problems always incorporates the necessity of a-priori knowledge about
the physical processes. In a mathematical sense, this includes the selection of a suitable basis
function for the description of the system’s behavior. Furthermore, when solving ODE/PDE
boundary value problems, constraints are applied at predefined locations. The placement of the
nodes x determines the form of the basis function synthesized; hence, the need for arbitrary
node placement is facilitated. The most important issues are:

1. The design of application specific, customized basis functions for the optimal
inverse solution of physical systems. In this manner, the computation can be improved
w.r.t. noise propagation and numerical efficiency. This is of particular interest when signals
need to be analyzed which are insufficiently described by conventional basis functions;

2. The optimization of covariance propagation and reduction of Runge’s phe-
nomenon. The variance of the solution depends on the placement of the sensors, which
directly corresponds to the placement of the nodes. This means in fact, that with the
very same sensors and with identical noise level, a measurement with a better confidence
interval can be achieved by placing the sensors at the optimal locations and synthesizing
the matching basis functions.

Fig. 7.1 visualizes the synthesized basis functions on the real axis for uniform as well as irregular
node placement. Applications for such basis functions can be found in metric vision for the
description of geometric systems or in the solution of differential equations. Fig. 7.3 shows nodes
on the complex plane and the corresponding basis functions in Fig. 7.2, such a setup is required
for processing of periodic signals. Geometric measurements commonly reside in the real domain
R; therefore, the focus is laid onto real-valued basis functions within this thesis. Nevertheless,
the examples demonstrate that the DOP basis is valid for x ∈ R as well as x ∈ C.
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Fig. 7.1 The nodes x are located on the real axis R with either equidistant (Gram) or irregular
(Chebyshev) spacing. The monomials g0 for the constant term (black), g1 for the slope (red), g2 for
the parabola (green), g3 for the cubic (b) and g4 fourth order (cyan) term are plotted for both setups.
It is clearly visible, that a difference in node placement produces different basis functions.
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Fig. 7.2 The real (blue) and imaginary (red) amplitude (amp.) components of the first three basis
functions. The real and imaginary components are in perfect quadrature to each other and bounded by
one and the same envelope (black); as a result, the function is locally shift invariant and effectively
eliminates the need for all-pass filtering in signal detection.
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Fig. 7.3 The nodes x are located on the complex plane
C within the unit circle for the generation of the basis
functions shown in Fig. 7.2. The placement was per-
formed using polar coordinates, i.e., x = �(x) + �(x) =
r (cos(φ) + i sin(φ)) = r eiφ. The radius r determines
the magnitude envelope for the set of complex basis func-
tions and the angular coordinate φ determines the in-
stantaneous phase. The basis functions model the charac-
teristic envelope of the oscillations and the characteristic
frequencies of a given machine.

7.4 Numerical Quality

There exists numerous objective measures for the quality of basis functions in order to determine
the sources of numerical error. These are a-posteriori measurements, i.e., the quality is evaluated
after the synthesis. According to [89], this approach is to be preferred over a-priori prediction
of the error bound, because a-priori predictions yield unreliable results. The most important
measures for the numerical quality of the bases are:

1. Rank. A matrix B ∈ R
(m×m) is rank deficient when there are linear dependencies within

the matrix, i.e., rank (B) < m; unfortunately, rounding errors degenerate a matrix. A
numerically stable orthogonal basis set must remain full-rank at any given degree;

2. Condition number. A unitary basis B is required to have a condition number of 1, i.e.,
cond (B) = 1. This ensures a minimization of numerical error propagation;

3. Matrix R from QR decomposition. The matrix R reveals the linear correlations within
a basis functions set, i.e., the numerical errors occurring during the synthesis with the
recurrence relationship;

4. Projection onto the orthogonal complement. Perfect reconstruction of a signal is
only possible if the projection onto the orthogonal complement R = {I − BBT} = 0
is a perfect matrix of zeros, see Fig. 7.4. This requires the basis to be complete, i.e.,
B ∈ R

(m×m) with degree d = m− 1;

5. Orthogonality of the complete basis set. The orthogonality condition must be
fulfilled for the complete basis B ∈ R

(m×m) with degree d = m− 1, i.e., R = {I−BTB} = 0,
see Fig. 7.5;

6. Orthogonality of the incomplete basis set. Furthermore, the orthogonality conditions
must also hold for an incomplete basis B̂ ∈ R

(m×(d+1)) with degree d < m − 1, i.e.,
R = {I− B̂TB̂} = 0.

The last three quality measures are the most significant tests for the quality evaluation of
orthogonal bases functions, because those operations actually appear in practical applications.
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projection onto orthogonal complement

Fig. 7.4 The structure of the projection onto the
orthogonal complement’s residual R = {I− GGT}
with a complete DOP basis G of degree d = 100.

orthogonal complement

Fig. 7.5 The structure of the orthogonal comple-
ment’s residual R = {I− GTG}. The values have
a magnitude of 10−16 in both illustrations.

The following operations are suitable to summarize the numerical quality of the matrices into a
single-number performance indicator, which is necessary to objectively compare different kinds
of basis functions with varying parameters. The behavior of the three presented performance
indicators is visualized in Fig. 7.6.

1. Determinant. The determinant of a matrix is only a theoretical quality measure as its
computation is numerically unstable and incorporates high computation costs [65]. The
theoretical estimate for the quality measure is calculated as εdet = {1− detR} = 0;

2. Maximum norm. The max norm is an elementwise norm where the single largest element
within the matrix is selected, i.e., εmax = ‖R‖max = max{|rij|}. Nevertheless, analyzing
only the largest occurring value may leads to an invalid conclusion of the actual quality of
the basis;

3. Frobenius norm. The Frobenius norm is the sum of the squares of all errors in R w.r.t.
the orthogonality of the basis functions, i.e., εF = ‖R‖F =

√
trace (RRT). Consequently,

the Frobenius norm yields the best estimation for the total error and will be used in the
numerical tests.

Model- and Software-in-the-loop testing is performed using MATLAB model code and auto-
matically generated C target code1. The quality of four different kinds of basis function sets is
compared: the Gram polynomials using the classical Gram-Schmidt orthogonalization; a set of
Chebyshev polynomials using the three-term recurrence relationship; a Vandermonde matrix
and the new discrete orthogonal polynomials (DOP) synthesized by the generalized recurrence
relationship.

1A 64-bit Unix based host system was used for the numerical software-in-the-loop experiments. MATLAB’s
numerical accuracy for floating point operations is 2.2204 10−16.
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Fig. 7.6 The graphic demonstrates the behavior of the three proposed measures for the estimation of
the numerical quality of R = {I− GTG}. The error indicators εdet, εmax and εF are plotted up to degree
d = 1000. Obviously, the determinant is numerically unstable and delivers unreliable results, while the
maximum norm is not significant and gives only information about the single largest error within the
residual matrix. The Frobenius norm appropriately scales according to the expected numerical quality.

The number of significant digits η is estimated via

η = − log10(ε). (7.29)

Direct comparison of Fig. 7.4 and 7.5 reveals, that the errors for the orthogonal complement
{I− GTG} are concentrated at the diagonal of the residual matrix, while the projection onto the
orthogonal complement {I − GGT} provides a less clear structure. The numerical differences
are minimal; therefore, only the orthogonal complement is computed for the four sets during
the following numerical experiments. Fig. 7.7 shows the results for the complete sets. Fig. 7.8
compares the results between MATLAB code and the functionally identical C code for the DOP
basis. Fig. 7.9 is for a fixed number of m = 1000 nodes and the degree of the polynomial d is
constantly increasing. The Vandermonde and Gram-Schmidt bases are collapsing at relatively
low degrees, while the Chebyshev basis progressively loses significant digits with increasing
degree.

The results indicate, that the DOP algorithm presented in this thesis is numerically stable even
for extremely high degrees. Furthermore, the automatically generated C can be considered
numerically equivalent, the approximate number of significant digits is < ±0.2 up to degree
d = 500.
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Fig. 7.7 Quality of the complete basis computed as εF = ‖I− BTB‖F on m = d+ 1 nodes.
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Fig. 7.8 Quality of the complete DOP basis in MATLAB model code (MIL) and C target code (SIL).
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Fig. 7.9 Quality of the incomplete basis computed as εF = ‖I− B̂TB̂‖F on m = 1000 nodes.
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7.5 Noise Behavior

Throughout this thesis, it is implicitly assumed that y � ỹ, whereby the observations ỹ are
perturbed by Gaussian noise ε. The perturbations are intrinsic to measurement data y and
explicitly stating this property delivers no additional useful information. However, this section
deals with the analysis of the noise behavior of these observation. Every measurement is subject
to noise; consequently,

ỹ = y + ε = y + δ u, (7.30)

where here y is the true, yet unknown, ideal value. The additive white noise is ε = δ u, where
u is a vector of normalized Gaussian noise and δ is the standard deviation of the noise. The
spectrum α̃ of ỹ is computed as

α̃ = B+ ỹ = B+ (y + δ u), (7.31)

where B+ is the pseudoinverse of a general basis function B. The incorporated noise is ε =
ỹ − y = δ u. Therefore, the difference in the spectrum is

α− α̃ = B+ (y − ỹ) = B+ δ u (7.32)

and computation of any vector norm yields

‖α− α̃‖ = ‖B+ (δ u)‖. (7.33)

If the basis being used is unitary, i.e., B � G with GTG = I, G+ = GT and ‖G‖ = 1, then

‖α− α̃‖ = ‖GT (δ u)‖ = |δ| ‖GT‖ ‖u‖ = ‖y − ỹ‖. (7.34)

The result shows, that the noise has the same norm in the spectral domain as in the spatial/tem-
poral domain, i.e., the transformation is energy preserving. The noise is evenly spread over all
spectral components, since the singular values of G are all 1. The Gaussian noise has a flat
power spectral density for all unitary basis function sets independent of their nature. As a
consequence, Parseval’s theorem is true for all unitary bases. More general, Plancherel’s theorem
states,

xTy = (Gαx)
T(Gαy),

= αT
x G

T Gαy,

= αT
x αy. (7.35)

Parseval’s theorem is a special case where x = y. This, together with the covariance propagation,
allows the evaluation of a basis function’s performance w.r.t. Gaussian noise. Consider the
noise propagation from the spatial/temporal domain to the spectrum. The computation of the
signal’s spectrum α̃ with the unitary basis GT is

α̃ = GTỹ. (7.36)

As shown in Section 5.4, given a linear transformation L � GT and the input covariance matrix
Λỹ, the output covariance Λα̃ = LΛỹ L

T is given by

Λα̃ = GTΛỹ G. (7.37)
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If the signal ỹ is perturbed by i.i.d. Gaussian noise, then the covariance Λỹ of ỹ is

Λỹ = diag
(
σ2
1 . . . σ

2
m

)
= σ2

ỹI (7.38)

and, therefore, the output covariance is simplified to

Λα̃ = σ2
ỹ G

TG = σ2
ỹ I. (7.39)

Consider the propagation from the perturbed input ỹ to the output ŷ of a linear filter F,

ŷ = F ỹ, (7.40)

where ŷ is the filtered signal. The output covariance Λŷ = LΛỹ L
T with L � F is given by

Λŷ = FΛỹ F
T (7.41)

and, for i.i.d. noise Λα̃ = σ2
ỹ I, the equation becomes

Λŷ = σ2
ỹ F F

T. (7.42)

In the special case, where the filtering operation is performed with a unitary basis G, this
transformation fulfills the characteristics of a generalized FIR filter,

ŷ = GGT ỹ with F = GGT, (7.43)

which directly leads to

Λŷ = σ2
ỹ {GGT} {GGT},

= σ2
ỹ G {GTG}GT,

= σ2
ỹ GGT, (7.44)

where GGT is a projection onto the orthogonal basis G. The energy preservation theorems are
also valid for bivariate transformations,

Ω = YΣXT, (7.45)

where X � GX and Y � GY are the DOP basis functions in x- and y-dimension respectively, Σ is
the associated spectrum and Ω is the 2D-field data, e.g., an image. Computing the spectrum
yields

Σ = YT ΩX, (7.46)

since X+T = X and Y+ = YT for unitary bases. The Frobenius norm is unitarily invariant, hence,

‖Σ‖F = ‖YT ΩX‖F = ‖Ω‖F. (7.47)

The energy in the spectrum Σ and the data Ω is equivalent.
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7.6 Upper Error Bound

It is possible to determine an upper bound for the reconstruction error as a functions of the
condition number κ (B) = ‖B‖ ‖B+‖ of the basis function B [163]. The residual vector r is

r = y − ŷ,
= y − BB+y,

= (I− BB+)y. (7.48)

The matrix B is perturbed by the matrix of perturbations E,

B(ε) = B+ εE, (7.49)

where error ε is small. A Taylor (Maclaurin) series expansion of r(ε) yields,

r(ε) = r + ε r′(0) +O(ε2). (7.50)

The first order estimation is

r(ε)− r ≈ ε r′(0) (7.51)

and the relative error in the residual is

‖r(ε)− r‖
‖r‖ ≈ ‖ε r′(0)‖

‖r‖ . (7.52)

According to [163], the upper bound for the error in B is then

‖r(ε)− r‖
‖r‖ ≤ 2 |ε| ‖E‖‖B‖ κ (B) . (7.53)

If a unitary basis G � B is used with cond (G) = 1 and ‖G‖ = 1, then the term simplifies to

‖r(ε)− r‖
‖r‖ ≤ 2 |ε| ‖E‖. (7.54)

The upper error bound depends exclusively on the perturbations of E and not on the basis G.
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In general, regression analysis is a statistical process for the estimation of the relationships among
a dependent and one or more independent variables. As stated in Chapter 5, this is of special
importance during the calibration of measurement instruments, where the functional relation
between the input and the output variable is sought, i.e., the forward problem. Regularization
refers to the process of introducing contextual knowledge about the problem in order to solve
an ill-posed inverse problem and/or to prevent under-/overfitting. The advantage of having an
equation to describe the data is that analytic techniques can be applied to determine properties
of the measurement data and in turn to deduce behavior of the physical process being observed.

Measurement applications deal with overdetermined and perturbed systems of equations. The
system of linear equations is described as

y = Bα, (8.1)

where y ∈ R
(m×1) is the data vector with m values, B is the basis function and α is the coefficient

vector. Most commonly, more measurements are available than theoretically necessary to perform
curve fitting. The estimation α̂ ∈ R

((d+1)×1) of the coefficients α is then computed as

α̂ = B−y, (8.2)

where B− ∈ R
((d+1)×m) is a generalized inverse of the basis function B. Furthermore, the task is

complicated by the fact, that the measurements of the data ỹ are perturbed by noise ε, thus,

ỹ = y + ε. (8.3)

However, as every measurement victim to noise, the nomenclature in this thesis is simplified
by defining y � ỹ as already stated in Section 7.5. Basically, two types of regression are
distinguishable:

1. Global approximation applies the basis functions to the full length of the support;

2. Local approximation applies the basis functions to a limited portion of the data.

Modified basis functions for functionally extending this concept are introduced in Chapter 9.
Regardless which approach is chosen to model the data, regularization must be performed to
avoid overfitting. Within this chapter, spectral regularization techniques are facilitated, because
the geometric nature of the basis functions support this efficient and understandable approach.
Furthermore, this approach is equivalent to the structure of a FIR filter.

71
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8.1 Global Approximation

Given a set of m noisy data points y and the corresponding points x, global approximation
is performed by generating a set of basis functions B of the desired degree d at the nodes
defined by x, whereby polynomials of high degree are necessary to model the signal’s details.
Approximation is achieved by computing the projection onto the basis functions,

ŷ = BB+y, (8.4)

whereby B+ is the least squares minimum norm pseudoinverse. This approach is valid for the
case where the Vandermonde design matrix B � V is used as a basis,

ŷ = VV+y with coefficients β̂ = V+y. (8.5)

Using the discrete orthogonal basis B � G, this operation simplifies to

ŷ = GGTy with coefficients α̂ = GTy, (8.6)

because the orthogonality condition GTG = I implies GT = G+. Clearly, there is a direct rela-
tionship between the coefficients α̂ of the Gram polynomials and the corresponding coefficients
β̂ of the Vandermonde polynomials. The conversion is computed as

β̂ = V+Gα. (8.7)

However, if the Vandermonde matrix V has become degenerate it will not be possible to compute
the corresponding geometric coefficients β̂ due to numerical errors in V+. Regardless of which
basis is chosen, the Runge phenomenon is problematic for global approximation with polynomials
of high degree, i.e., regularization is required to solve this problem. The Runge phenomenon
causes serious oscillations of the curve at the borders of the support and, therefore, extrapolation
is precluded. If the measurement range is well defined, using Chebyshev nodes for x significantly
reduces the Runge phenomenon, but suffers the same limitations as the conventional approach
w.r.t. extrapolation. Depending on the application, local approximation with a limited support
length ls as presented in Section 8.3 is a more robust approach.

8.1.1 Uncertainty in Regression

The output vector y ∈ R
(m×1) with m values and its coefficient vector α ∈ R

((d+1)×1) are related
with the basis B ∈ R

(m×(d+1)) of degree d,

y = Bα. (8.8)

If the basis B ∈ R
(m×m) is complete, i.e., m = d+ 1, then a unique matrix inverse B−1 exists. In

practical measurement applications, the number of measurements m 
 d, i.e., an overdetermined
system of equations has to be solved. The basis B ∈ R

(m×(d+1)) is an incomplete design matrix
in this case; a suitable instance for the generalized inverse B− must be sought, e.g., via QR or
singular value decomposition. The most common approach is the use of the Moore-Penrose
pseudoinverse B+ with

B+ �
(
BTB

)−1
BT, (8.9)
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which is a maximum likelihood least squares estimator with minimum norm, i.e., minimal
variance. The estimated coefficient vector α̂ is then

α̂ = B+y (8.10)

with E[α̂] = α. Substituting this relation into Eqn. (8.8) yields the fitted vector ŷ,

ŷ = B α̂ = BB+y (8.11)

with E[ŷ] = y. The residual vector r is the difference between the measured values y and the
estimation ŷ, i.e.,

r = y − ŷ,
= y − BB+y,

=
(
I− BB+

)
y, (8.12)

where (I−BB+) is the projection onto the orthogonal complement. In order to detect and avoid
systematic errors, the residual vector r must be tested against Gaussian distribution utilizing
a Kolmogorov-Smirnov test and/or an Anderson-Darling test given a significance level α, see
Fig. 8.1. The 2-norm of the residual vector ‖r‖2 is a quality measure for the regression. The
covariance Λy is the expectation value of the residual’s projection,

Λy = E

[
(ŷ − E[ŷ]) (ŷ − E[ŷ])T

]
,

= E

[
(ŷ − y) (ŷ − y)T

]
,

= E

[
(y − ŷ) (y − ŷ)T

]
,

= E
[
rrT

]
. (8.13)

The projection matrix P � BB+ has the properties

1. P is a linear operator, i.e., L � P;

2. P is symmetric, i.e., P = PT;

3. P is idempotent, i.e., P = Pn when n is an integer exponent;

4. if B is unitary, then B � G with G+ = GT and P⊥ = GGT.

An idempotent function y = f(x) does not change the output’s value y if it is executed multiple
times, i.e., y = f(x) = f(f(y)). This is also true for linear operations such as projections. The
covariance of the estimation Λŷ = LΛyL

T with L � P is computed using the projection’s linear
behavior,

Λŷ = PΛyP
T with P � BB+,

=
(
BB+

)
Λy
(
BB+

)T
. (8.14)
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In the case of i.i.d. noise, i.e., Λy = σ2
yI, it is derived

Λŷ = σ2
y

(
BB+

) (
BB+

)T
,

= σ2
y PP

T with P = PT,

= σ2
y P

2 and Pn = P,

= σ2
y P,

= σ2
y BB

+. (8.15)

The covariance Λα̂ = LΛyL
T with L � B+ for the coefficients α̂ is computed in the same way,

Λα̂ = B+ΛyB
+T. (8.16)

8.1.2 Filtering Operation

Global polynomial approximation can be interpreted as a filtering operation for the noisy data
y ∈ R

(m×1) with m points,
α̂ = FGTy, (8.17)

where F ∈ R
((d+1)×(d+1)) is the filtering matrix and GT ∈ R

((d+1)×m) is the DOP basis function.
The filtered signal ŷ ∈ R

(m×1) is then formulated as

ŷ = GFGTy. (8.18)

If the filter is factorizable, it can be defined F � KKT with L � GK, therefore,

ŷ = BKKT BTy = L LTy (8.19)

and P � L LT is a projection onto the filtering basis function. Given the projection P ∈ R
(m×m),

each filtered point ŷi in ŷ is a linear combination of all input values, i.e., the ith row of the
projection matrix P(i, :) can be regarded as the coefficients of a FIR filter for ŷi. This enables
the direct computation of the frequency response. Knowing that the Gaussian input noise is
evenly spread over the complete spectrum yields the noise gain gn = ‖F‖2F. This allows the time
analytic computation of a polynomial filter’s noise behavior. Using a unitary discrete basis
G yields a polynomial preserving filter. In this manner, both low and bandpass filters can be
implemented.

8.2 Confidence and Prediction Intervals

The fitted curve is an approximation to the true curve; as a result, the confidence interval
of a fitted curve is a measure for the goodness-of-fit; an example is plotted in Fig. 8.2. The
concept has been used for a-priori estimation of uncertainty in [72]. The prediction interval
takes the perturbations of new measurement values into account and describes an upper bound
of uncertainty. The discrete multiple regression model with m measurements and degree d is

true: y = Bα+ ε, (8.20)
estimate: ŷ = B α̂, (8.21)
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Fig. 8.1 The residual vector r = (I− BB+)y
must be tested for its Gaussian distribution using
a Kolmogorov-Smirnov (KS) test using a given
significance level α = 95% [17].
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Fig. 8.2 The global approximation curve ŷ (red)
is computed using the measured values y (black
×). The confidence (green) and prediction (blue)
intervals depend on the standard deviation sy.

with the true coefficient vector α ∈ R
((d+1)×1) and the corresponding estimation α̂ ∈ R

((d+1)×1),
the measured solution vector y ∈ R

(m×1) and its estimation ŷ ∈ R
(m×1), the error vector

ε ∈ R
(m×1), and the polynomial basis function set B ∈ R

(m×(d+1)).

It is assumed, that the error ε is i.i.d.; hence, the homoscedasticity condition is fulfilled. The
expectation E[ε] and covariance Λε of the error ε are

E[ε] = 0 and Λε = σ2
ε I, (8.22)

because

Λε =

⎡⎢⎢⎢⎢⎢⎣
cov[ε1, ε1] cov[ε1, ε2] . . . cov[ε1, εm]

cov[ε2, ε1] cov[ε2, ε2] . . . cov[ε2, εm]
...

... . . . ...
cov[εm, ε1] cov[εm, ε2] . . . cov[εm, εm]

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
σ2
ε1

0 . . . 0

0 σ2
ε2

. . . 0
...

... . . . ...
0 0 . . . σ2

εm

⎤⎥⎥⎥⎥⎥⎦ , (8.23)

whereby cov[εi, εj ] = 0 and cov[εi, εi] = σ2
εi
. The covariance Λε of ε is equivalent to the covariance

Λy of y, i.e.,
Λy = Λε = σ2

ε I and, therefore, σ2
y = σ2

ε . (8.24)

The unbiased multivariate estimator for the populations variance σ2
y with ν = m− d− 1 d.f. is

s2y =
1

ν
(y − ŷ)T(y − ŷ), (8.25)

which is equivalent to the MSE goodness-fit-parameter. Besides the MSE, there are several other
relevant regression parameters, see Table 8.1. These parameters describe the overall quality of
the global approximation. In the following subsections, the confidence and prediction intervals
using the Vandermonde basis V as well as the DOP basis G are derived and compared in terms
of numerical stability.
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parameter name equation comment

SSE sum of squared residuals (y − ŷ)T(y − ŷ)
SSR regression sum of squares (ŷ − ȳ)T(ŷ − ȳ)

SST total sum of squares (y − ȳ)T(y − ȳ) SSE + SSR

R2 coefficient of determination SSR / SST 1 - SSE / SST

DF degrees of freedom m− (d+ 1) also d.f. or ν

R̄2 adjusted R2 1 - (SSE·(m-1)) / (SST·DF) quality of regression

MSE mean square error SSE / DF s2y � MSE

RMSE root mean square error sqrt(MSE) sy � RMSE

Tab. 8.1 Statistical goodness-of-fit parameters according to literature [18, 210]; which are also imple-
mented in MATLAB’s Curve Fitting Toolbox [136]. Most commonly, these acronyms are used instead
of shorter variables names.

8.2.1 Vandermonde Basis

The common basis set used for polynomial regression in literature and applications is the
Vandermonde design matrix. The system of linear equations is

y = Vα+ ε, (8.26)

where y ∈ R
(m×1) is the solution vector, V ∈ R

(m×(d+1)) is the Vandermonde design matrix,
α ∈ R

((d+1)×1) is the coefficient vector and ε ∈ R
(m×1) is the error vector with E[ε] = 0.

The basis is complete when m = d + 1. This approach is analytically fine, but numerically
unstable if polynomial degrees of d > 7 are used [65, 176]. The state-of-the art approach to
estimate the coefficient vector α̂ of the regression is the use of the Moore-Penrose pseudoinverse
V+ � (VTV)

−1
VT,

α̂ = (VTV)
−1
VT y = V+y with E[α̂] = α, (8.27)

which implements a maximum likelihood estimator [95] for α. It is defined, that U � (VTV)
−1

while (VTV)
−1

= (VTV)
−T. The estimator ŷ for the solution vector y is then

ŷ = Vα̂ = VV+y. (8.28)

As a result, the covariance Λα̂ = LΛyL
T with L � (VTV)

−1
VT of the coefficients estimator α̂ is

Λα̂ = ((VTV)
−1
VT)Λy ((V

TV)
−1
VT)

T
and Λy = σ2

yI,

= σ2
y (V

TV)
−1
(VTV)(VTV)

−1
,

= σ2
y (V

TV)
−1 and U � (VTV)

−1
,

= σ2
y U, (8.29)
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while the covariance matrix Λŷ = LTΛyL
T with L � VV+ = V(VTV)

−1
VT for the estimated

solution ŷ is then formulated as

Λŷ = (V(VTV)
−1
VT)Λy (V(V

TV)
−1
VT)

T
and Λy = σ2

yI,

= σ2
y V(V

TV)
−1
(VTV)(VTV)

−1
VT,

= σ2
y V(V

TV)
−1
VT,

= σ2
y VV

+, (8.30)

which is equivalent to Λŷ = LΛα̂L
T with L � V, thus,

Λŷ = VΛα̂V
T. (8.31)

(1) Simultaneous Confidence Intervals for the Coefficients

The relation between all (d + 1) coefficients is considered when computing the simultaneous
confidence intervals. Therefore, a χ2

(d+1) goodness-of-fit test is carried out,

χ2
(d+1) ≤ (α̂− E[α̂])TΛα̂

−1(α̂− E[α̂]),

≤ (α̂−α)T(σ2
y U)

−1
(α̂−α). (8.32)

Estimating σ2
y with s2y and approximating χ2

(d+1) with (d+ 1)F(d+1,ν) yields

s2y (d+ 1)F(d+1,ν) ≤ (α̂−α)TU−1(α̂−α), (8.33)

which described a hyper-ellipsoid with (d+ 1) dimensions.

(2) Non-Simultaneous Confidence Intervals for the Coefficients

When computing the non-simultaneous intervals, each coefficient’s confidence is computed
individually; hence, only 1 d.f. is required for the χ2

(1) goodness-of-fit test. Therefore, χ2
(1) can be

approximated with 1F(1,ν). Selecting one diagonal element of U via u = diag (U) and ui = eTi u
enables the computation of a single coefficient αi from the coefficient vector α,

(αi − α̂i)
2 ≤ F(1,ν) s

2
y ui,

(αi − α̂i)
2 ≤ t2(ν) s

2
y ui,

|αi − α̂i| ≤ t(ν) sy
√
ui,

αi ≤ α̂i ± t(ν) sy
√
ui. (8.34)

Parallel computing yields the non-simultaneous confidence intervals for all coefficients,

α ≤ α̂± t(ν) sy
√

diag (U). (8.35)
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(3) Non-Simultaneous Confidence Intervals for the Regression

The whole regressions is computed via ŷ = Vα̂. However, each coefficient’s confidence is still
computed separately; therefore, the χ2-test has only 1 d.f.,

χ2
(1) ≤ (ŷ − E[ŷ])TΛŷ

−1(ŷ − E[ŷ]),

≤ (ŷ − y)T(VΛα̂VT)
−1
(ŷ − y),

≤ (ŷ − y)T(V(σ2
yU)V

T)
−1
(ŷ − y). (8.36)

Computing only the ith point by selecting the row vector vT
i = eTi V yields

χ2
(1) ≤ (ŷi − yi)

2(σ2
y v

T
i Uvi)

−1
. (8.37)

Approximation of the χ2 distribution with the Student-t distribution simplifies the terms to

(ŷi − yi)
2 ≤ χ2

(1)(σ
2
y v

T
i Uvi),

≤ F(1,ν)(s
2
y v

T
i Uvi),

≤ t2(ν)(s
2
y v

T
i Uvi). (8.38)

Computation of the absolute value delivers

|ŷi − yi| ≤ ±
√
t2(ν)(s

2
y v

T
i Uvi). (8.39)

Consequently, the confidence of one regression point is

yi ≤ ŷi ± t(ν) sy

√
vT
i Uvi. (8.40)

Parallel computing yields the non-simultaneous confidence intervals for all points of the regression,

y ≤ ŷ ± t(ν) sy
√

diag (VUVT). (8.41)

(4) Non-Simultaneous Prediction Intervals for the Regression

For the estimation of the predicted value ỹi of an individual function value yi, the error’s variance
for one observation must also be considered, i.e., the variance σ2

y is added to the term,

χ2
(1) ≤ (ŷi − ỹi)

2(σ2
y v

T
i Uvi + σ2

y)
−1
. (8.42)

Performing the same steps as in the previous section delivers

(ŷi − ỹi)
2 ≤ t2(ν)(s

2
y v

T
i Uvi + s2y). (8.43)

Consequently, the prediction of one regression point is

ỹi = ŷi ± t(ν) sy

√
vT
i Uvi + 1. (8.44)

Parallel computing yields the non-simultaneous prediction intervals for all points of the regression,

ỹ = ŷ ± t(ν) sy
√
diag (VUVT) + 1. (8.45)
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8.2.2 Discrete Orthogonal Basis

A DOP basis G ∈ R
(m×(d+1)) of degree d is composed of a sum of (d+1) uncorrelated monomials.

Orthogonality ensures minimal information redundancy and ensures numerical stability. By
definition [5, 113],

GTG = I and G+ = GT. (8.46)

For applications utilizing regression, the degree d of the basis is d < m − 1, when m is the
number of sampled points. The d.f. are then ν = m− d− 1. Hence, the basis G is incomplete
and, as a consequence, GGT �= I. The solution vector y is

y = Gα+ ε, (8.47)

where α is the coefficient vector and ε is the error vector with E[ε] = 0 and Λε = σ2
ε I. Thanks

to the orthogonality condition, the coefficients α can effectively estimated via

α̂ = GTy with E[α̂] = α. (8.48)

The estimator ŷ for the solution vector y is then

ŷ = G α̂ = GGTy. (8.49)

The covariance matrix Λα̂ = LΛyL
T with LT � GT for the estimated coefficients α̂ is

Λα̂ = GTΛyG and Λy = σ2
yI,

= GT(σ2
yI)G,

= σ2
y G

TG and GTG = I,

= σ2
yI. (8.50)

The covariance matrix Λŷ = LΛyL
T with L � GGT for the estimated solution ŷ is

Λŷ = (GGT)Λy(GG
T)

T
,

= GGT Λy G
TG and GTG = I,

= GGT Λy and Λy = σ2
yI,

= σ2
yGG

T, (8.51)

which is equivalent to Λŷ = LΛα̂L
T with L � G,

Λŷ = GΛα̂G
T. (8.52)

(1) Simultaneous Confidence Intervals for the Coefficients

The relation between all (d + 1) coefficients is considered when computing the simultaneous
confidence intervals. Therefore, a χ2

(d+1) goodness-of-fit test is carried out,

χ2
(d+1) ≤ (α̂− E[α̂])TΛα̂

−1(α̂− E[α̂]),

≤ (α̂−α)T(σ2
yI)

−1
(α̂−α). (8.53)
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Estimating σ2
y with s2y and approximating χ2

(d+1) with (d+ 1)F(d+1,ν) yields

s2y (d+ 1)F(d+1,ν) ≤ (α̂−α)T(α̂−α), (8.54)

which described a hyper-ellipsoid with (d+ 1) dimensions. The solution of this equation is an
inverse problem; however, thanks to the orthogonality condition, the covariance is Λα̂ = σ2

yI.
This reduces the result of the equation to a simple scalar product.

(2) Non-Simultaneous Confidence Intervals for the Coefficients

When computing the non-simultaneous intervals, each coefficient’s confidence is computed
individually; thus, only 1 d.f. is required for the χ2

(1) goodness-of-fit test. Therefore, χ2
(1) can be

approximated with 1F(1,ν),

(α̂i − αi)
2 ≤ F(1,ν) s

2
y,

(α̂i − αi)
2 ≤ t2(ν) s

2
y,

|α̂i − αi| ≤ t(ν) sy,

αi ≤ α̂i ± t(ν) sy. (8.55)

Parallel computing yield the non-simultaneous confidence for all coefficients,

α ≤ α̂± t(ν) sy1. (8.56)

(3) Non-Simultaneous Confidence Intervals for the Regression

The whole regression is computed via ŷ = G α̂. However, each coefficient’s confidence is still
computed separately; therefore, the χ2-test has only 1 d.f.,

χ2
(1) ≤ (ŷ − E[ŷ])TΛŷ

−1(ŷ − E[ŷ]),

≤ (ŷ − y)T(GΛα̂GT)
−1
(ŷ − y),

≤ (ŷ − y)T(G(σ2
yI)G

T)
−1
(ŷ − y). (8.57)

Computing only the ith point by selecting the row vector gTi = eTi G yields

χ2
(1) ≤ (ŷi − yi)

2(σ2
y g

T
i gi).

−1 (8.58)

Note, that gTi gi �= 1, because G is an incomplete basis. Approximation of the χ2 distribution
with the Student-t distribution simplifies the terms to

(ŷi − yi)
2 ≤ χ2

(1)(σ
2
y g

T
i gi),

≤ F(1,ν)(s
2
y g

T
i gi),

≤ t2(ν)(s
2
y g

T
i gi). (8.59)

Computing the absolute value delivers

|ŷi − yi| ≤ ±
√
t2(ν)(s

2
y g

T
i gi). (8.60)
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Consequently, the confidence of one regression point is

yi ≤ ŷi ± t(ν) sy

√
gTi gi. (8.61)

Parallel computing yields the non-simultaneous confidence intervals for all points of the regression,

y ≤ ŷ ± t(ν) sy
√

diag (GGT). (8.62)

(4) Non-Simultaneous Prediction Intervals for the Regression

For the estimation of the predicted value ỹi of an individual function value yi, the error’s variance
for one observation must also be considered, i.e., the variance σ2

y is added to the term,

χ2
(1) ≤ (ŷi − ỹi)

2(σ2
y g

T
i gi + σ2

y)
−1
. (8.63)

Performing the same steps as in the previous section delivers

(ŷi − ỹi)
2 ≤ t2(ν)(s

2
y g

T
i gi + s2y). (8.64)

Consequently, the prediction of one regression point is

ỹi = ŷi ± t(ν) sy

√
gTi gi + 1. (8.65)

Parallel computing yields the non-simultaneous prediction intervals for all points of the regression,

ỹ = ŷ ± t(ν) sy
√
diag (GGT) + 1. (8.66)
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8.2.3 Comparison of Basis Functions

The computation of the confidence and prediction intervals demonstrate the superiority of the
proposed DOP basis over the state-of-the-art Vandermonde basis. The DOP basis is numerically
stable for degrees d < 1000, see also Chapter 7, while the Vandermonde basis collapses when a
degree of d > 7 is used [65]. The MATLAB code in Lst. 8.1 shows how the non-simultaneous
confidence and prediction intervals are computed for both bases. The code for the Vandermonde
basis is equivalent to the implementation of MATLAB’s Curve Fitting Toolbox [136].

1 %% (1) Vandermonde basis
2 % -------------------------------------------------------------
3 yv = V * (V\y); % = V * pinv(V) * y;
4 sv = sqrt( 1/df * (y-yv)T * (y-yv) );
5 %
6 %% Vandermonde confidence interval
7 yv_conf_pos = yv + t * sv * sqrt(diag(V * inv(VT*V) * VT));
8 yv_conf_neg = yv - t * sv * sqrt(diag(V * inv(VT*V) * VT));
9 %
10 %% Vandermonde prediction interval
11 yv_pred_pos = yv + t * sv * sqrt(diag(V * inv(VT*V) * VT) + 1);
12 yv_pred_neg = yv - t * sv * sqrt(diag(V * inv(VT*V) * VT) + 1);
13 %
14 %
15 %% (2) discrete orthogonal polynomials (DOP) basis
16 % -------------------------------------------------------------
17 yg = G*G

T
* y;

18 sg = sqrt( 1/df * (y-yg)T * (y-yg) );
19 %
20 %% DOP confidence interval
21 yg_conf_pos = yg + t * sg * sqrt(diag(G*GT));
22 yg_conf_neg = yg - t * sg * sqrt(diag(G*GT));
23 %
24 %% DOP prediction interval
25 yg_pred_pos = yg + t * sg * sqrt(diag(G*GT) + 1);
26 yg_pred_neg = yg - t * sg * sqrt(diag(G*GT) + 1);
27 %

Lst. 8.1 MATLAB code for the computation of confidence and prediction intervals using
Vandermonde and DOP basis functions respectively.

8.3 Local Approximation

Consider the local approximation on a set of m data points, a support length ls and degree
d. Note, that ls = d is a special case and corresponds to global approximation. The original
approach has been presented in [186]. Local polynomial approximation was introduced to
smooth and evaluate the derivatives of noisy spectrometer data. The smoothing was based
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on fitting a geometric polynomial (Vandermonde basis) of low degree to a data set of limited
length; as a consequence, it is only applicable to low degree approximations due to the numeric
instability. The algorithm has been improved in [164] and extended for cyclic data in [167].

The concept of local approximation is vital for the generation of a regularizing differentiating
linear operator as presented in Chapter 10. The process for generating the local approximation
(smoothing) operator is visualized in Fig. 8.3.

1. Synthesize a unitary basis G ∈ R
(ls×(d+1)) for m = ls of degree d. This is a unitary, but

incomplete basis since d < ls − 1;

2. Compute the local projection matrix P = GGT with P ∈ R
(ls×ls). The center row P

corresponds to computing the projection at the center of the support px=0. These
coefficients are symmetric, implying that the frequency response of the FIR filter is strictly
linear phase. The rows above and below the center correspond to the projection onto the
basis functions at the start and the end of the data, i.e., the end of the support. The
coefficients in this region are asymmetric, the corresponding non-linear phase is responsible
for the Gibbs error, i.e., they tend to oscillate at the end of their support because the
signal cannot be modeled adequately;

3. Generate the global complete band matrix P̄ ∈ R
(m×m), which is a linear transformation,

but not a projection. The top and the bottom of the projection matrix P is placed at the
start and the end of P̄ respectively; note, that P̄ is non-symmetric. The core of the matrix
P̄ is filled diagonally with px=0. Consequently, the core of the approximation is strictly
linear phase and produces no oscillatory behavior. The linear transformation matrix P̄
spans the complete region of m points.

local polynomial approximation

P ∈ R
(ls×ls)

P̄ ∈ R
(m×m)

px=0

top

bottom

center

Fig. 8.3 This example illustrates the synthesis of the linear transformation matrix P̄ on m = 10 nodes,
with support length ls = 5 and a degree d = 5. The local projection matrix P = GGT is of dimension
(ls × ls). The asymmetric top and bottom of P are selected and placed at the start and end of the
support of the band matrix P̄, which is of dimension (m×m). The diagonal elements of P̄ are filled up
with the symmetric center row px=0 of P.
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The process of local polynomial approximation becomes computationally intensive for large
matrices. The process can be adapted by using the coefficient vector px=0 as a convolution kernel,
which significantly reduces the numerical work. Furthermore, this is especially useful in time
series data mining, because streaming data has no beginning and end ; continuous convolution of
the streamed data enables efficient real-time approximation of derivatives and smoothing of the
data within a given support length ls.

8.4 Interpolation of Incomplete Grids

Interpolation is performed by analyzing basis functions evaluated at incomplete sets of nodes
and by subsequent synthesis of the basis functions at the corresponding complete sets of nodes.
Spectra on regular grids can still be computed even when data points are missing; this is true
for all complete basis functions. Consider a complete set of n nodes from the complete data
vector y ∈ R

(n×1), whereby m nodes are known in the incomplete data vector ŷ ∈ R
(m×1), see

Fig. 8.4. The number of missing elements is (n−m) with n > m. Both vectors are related via
the permutation matrix P ∈ R

(m×n),
ŷ = Py. (8.67)

The index of the kth known value of y is ρ(k). P has following structure,

P(i, j) = pij =

{
1 if i = k and j = ρ(k),

0 if otherwise.
(8.68)

The matrix P eliminates the values from y which are generated by interpolation.

y

ŷ
Fig. 8.4 The known vector ŷ is a subset of the
complete vector y, i.e., ŷ ∈ y. The values are
selected with the permutation matrix P.

The spectra of the known and interpolated data must be identical except for the zero entries,
since interpolation does not generate any new information. The complete coefficient vector
α ∈ R

(n×1) and the incomplete coefficient vector α̂ ∈ R
(m×1) are related with the permutation

matrix Q ∈ R
(n×m),

α = Q α̂, (8.69)

whereby Q has the structure,

Q(i, j) = qij =

{
1 if i = bk and j = k,

0 if otherwise,
(8.70)

where bk stores the kth basis functions representing of the known values in ŷ. This is the most
general case of zero padding, where Q inserts zeros at the appropriate places in the spectrum α.
The values for y and ŷ are synthesized from their respective spectra α and α̂, i.e.,

y = Bα and ŷ = B α̂. (8.71)
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Using Eqn. (8.67),

ŷ = Py,

= PBα,

= PBQ α̂, (8.72)

and solving for α̂ in a least squares sense,

α̂ = {PBQ}+ ŷ. (8.73)

Substitution of Eqn. (8.69),

α = Q {PBQ}+ ŷ, (8.74)

yields the interpolated data vector y,

y = BQ {PBQ}+ ŷ. (8.75)

The derivation is completely general for any complete basis function B and/or unitary basis
function G. The theory can be extended to a 2D Cartesian grid, i.e., a uniform lattice. This
enables the implementation of separable (anisotropic) basis functions in x- and y-dimension.
Consider the data matrix Ω̂ ∈ R

(m×n) to be interpolated,

Ω̂ = Ŷ Σ̂ X̂T, (8.76)

where the incomplete bases functions X̂ ∈ R
(n×v) and Ŷ ∈ R

(m×u) are zero patched with the
permutation matrices P and Q,

X̂ = PXQ and Ŷ = PYQ. (8.77)

The Σ̂ ∈ R
(m×n) spectrum of the known data is

Σ̂ = Ŷ+ Ω̂ X̂+T. (8.78)

The interpolated data Ω ∈ R
(u×v), where u > m and v > n, uses the complete basis functions

X ∈ R
(v×v) and Y ∈ R

(u×u),

Ω = Y Σ̂XT,

= Y {Ŷ+ Ω̂ X̂+T}XT, (8.79)

which is in means of dimensions,

(u× v) = (u× u)(u×m)(m× n)(n× v)(v × v).

The complete 2D tensor interpolation process is then written as

Ω = Y Ŷ+ Ω̂ (X̂ X+)
T
. (8.80)

This methodology has be used for the mapping of 2D coordinates from a perturbed camera
space to metric space in [70, 71, 157] and is explained in Section 9.3 as well as in the project in
Chapter 11.
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The concept of basis function and their formulation in linear algebra opens the possibility to
extend their functionality with linear operations. In this chapter, weighted and constrained
basis functions are introduced as well as bivariate extension. Weighting is of special importance
when the nodes on which the basis function is synthesized have qualitative differences, e.g.,
their uncertainty is known. This is useful for analytic multi-source data fusion as published
in [75, 76]. Constrained basis functions incorporate a-priori knowledge about the solution space
and, therefore, they are more accurate while simultaneously being more numerically efficient [69].
Furthermore, constrained basis functions are the theoretical foundation for solving ODE and
PDE using linear differential operators, see Chapter 10. The extension of basis functions to
the 2D space is used in the processing of images and 3D scan data [71, 158] as well as in the
solution of PDE [161]. Bivariate basis functions are independent in x and y dimension, i.e.,
anisotropic bases are usable.

9.1 Weighted Approximation

The weighted cost function K(α) with the coefficient vector α is written as

K(α) = ‖W 1
2 r‖2, (9.1)

where r is the residual vector and W
1
2 is the symmetric square root of the full-rank weighting

matrix W = diag (w1 . . . wm), i.e., the weightings evaluated at the nodes x. W is a real positive
definite matrix, i.e., all eigenvalues of W are real positive. From a measurement application’s
point of view, it makes sense to choose W1/2 � Λ

−1/2
y . The weighting then corresponds to

the inverse of the input signal’s standard deviation, which is effectively usable for uncertainty
weighted multi-source data fusion. Expansion of Eqn. (9.1) yields

K(α) =
(
W

1
2 r
)T (

W
1
2 r
)
,

= rT
(
W

1
2

)T(
W

1
2

)
r,

= rTWr. (9.2)

In the special case, where W = I, the scalar product rTr is computed as the weighting function,
leading to unweighted regression with i.i.d. noise. The concept of weighted regression arises
when the measurements are corrupted by anisotropic noise. In this case, the residual is defined
as r = y − Bα. Consequently,

K(α) = (y − Bα)TW (y − Bα) . (9.3)

86
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The cost function K(α) represents a Mahalanobis distance which must be minimized in order
to acquire a least squares solution. In statistics, this is a direct analogy to a χ2-goodness-of-fit
test, see Section 5.5. Hence,

χ2 ≤ (ŷ − E[ŷ])TΛx̂
−1(ŷ − E[ŷ]) (9.4)

for a variable ŷ ∈ R
(m×1), where the weighting W = Λŷ

−1 is the inverse of the covariance. The
minimization is performed by differentiation,

∂K(α)

∂α
=

∂

∂α

[
(y − Bα)TW (y − Bα)

]
= 0. (9.5)

Deriving K(α) w.r.t. α yields the unit vector ei ∈ R
(m×1), i.e., a vector of m− 1 zeros with a

single one at the ith position,
∂α

∂αi

= ei = [0, . . . , 0, 1, 0, . . . , 0]T. (9.6)

This mathematical formalism is necessary to conserve the correct matrix dimensions. Using the
product rule, the differentiation for a single value yi of the vector y yields

0 =− (Bei)
TW(y − Bα)− (y − Bα)TWBei. (9.7)

Expansion of both terms,

0 =− (Bei)
TWy + (Bei)

TWBα− yTWBei + (Bα)TWBei, (9.8)

and factorization yields

0 =− eTi BTWy + eTi B
TWBα− yTWBei +α

TBTWBei. (9.9)

Each term has a dimension of R(1×1), i.e., the individual terms describe scalars. Therefore, the
terms can be transposed in order to simplify the equation,

0 = 2 eTi B
TWy − 2 eTi B

TWBα. (9.10)

The scalar 2 cancels out,

0 = eTi B
TW(y − Bα). (9.11)

As a consequence, the equation in matrix form is

eTi B
TWy = eTi B

TWBα. (9.12)

Stacking the results for each yi delivers⎡⎢⎢⎢⎢⎢⎢⎢⎣

eT1
...
eTi
...
eTm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(BTWy) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

eT1
...
eTi
...
eTm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(BTWBα), (9.13)

whereby each stack of element vectors equals the identity matrix I. This leads to the normal
equations of weighted regression,

BTW y = BTWBα. (9.14)
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(1) Unweighted Regression

In the special case where W � I, i.e., unweighted regression, the equation simplifies to the
classical normal equation [65],

BTy = BTBα, (9.15)

which is also shown in Section 6.4. The term (BTB) is an invertible square matrix, even when B
is rectangular. Therefore, the estimation α̂ of the true coefficients α is

α̂ = (BTB)
−1
BTy = B+ y. (9.16)

The Moore-Penrose pseudoinverse of the basis B is defined as B+ � (BTB)
−1
BT. The unweighted

approximation ŷ = B α̂ of the true curve y is then

ŷ = BB+ y. (9.17)

When using a unitary basis G � B with G+ = GT, then the equation simplifies to

ŷ = GGT y. (9.18)

(2) Weighted Regression with General Basis B

Solving for the estimation α̂ of the coefficient vector α for the general (weighted) case yields

α̂ =
(
BTWB

)−1
BTW y,

=
(
BTW

1
2W

1
2B
)−1

BTW
1
2W

1
2 y,

=
(
W

1
2B
)+

W
1
2 y. (9.19)

The computation of the pseudoinverse (W
1
2B)

+
is numerically more stable than the inversion of(

BTWB
)−1. Utilizing this result for the polynomial approximation ŷ = B α̂,

ŷ = B
(
W

1
2B
)+

W
1
2y, (9.20)

generates the weighted least squares transformation matrix L, which is defined as

L � B
(
W

1
2B
)+

W
1
2 . (9.21)

The linear operation is derived by substituting L from Eqn. (9.21) into Eqn. (9.20),

ŷ � Ly. (9.22)

(3) Weighted Regression with DOP Basis G

If a unitary basis B � G is used, the weighting is generated in the form

ḠTWḠ = I, (9.23)
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where Ḡ is the weighted unitary basis, such that Ḡ = GU and U is a full rank upper triangular
matrix since G is sorted according to increasing degree. Substitution into the above equation
yields

(GU)TWGU = I, thus, UT GTWGU = I. (9.24)

Since U is full rank, inversion is possible,

GTWG = U−TU−1. (9.25)

A unique Cholesky decomposition exists for real positive definite matrices, i.e., the Cholesky
decomposition of {GTWG} exists if W is real positive definite, since G is unitary. Decomposition
yields

GTWG = KKT, (9.26)

where K is a full rank lower triangular matrix, consequently,

KKT � U−TU−1 with U = K−T. (9.27)

The weighted basis function Ḡ = GU = GK−T is fully defined by this computation. Note,
that the transpose of a lower triangular matrix is an upper triangular matrix. The condition
number of the transformation solely depends on the condition number of W, see also Section
7.6. Substitution of B � Ḡ into Eqn. (9.14) gives

ḠTWy =
(
ḠTWḠ

)
α (9.28)

and, by the definition of the weighted discrete basis functions ḠTWḠ = I, no matrix inversion is
necessary to solve the linear system of equations w.r.t. the coefficient’s estimation α̂,

α̂ = ḠT W y. (9.29)

The weighted approximation ŷ = Ḡ α̂ using a unitary basis is then

ŷ = Ḡ ḠT Wy. (9.30)

Obviously, the weighting has no influence on the result when using complete bases,

W−1 � ḠTḠ with ḠTḠ = I. (9.31)

(4) Alternative: Synthesis of a Weighted DOP Basis

The previous approach assumes that the real positive definite weighting matrix W is full-rank.
In the case, where W is rank deficient, a weighted unitary basis function must be synthesized
from the recurrence relationship. The generalized recurrence relationship from Eqn. (7.2) is

gn = α (gn−1 ◦ x) + Gn−1 β, (9.32)

whereby the constraints C1 for the orthogonality condition and C2 for unit norm condition are
already weighted as following,

C1 : GT
n−1 W gn = 0 and C2 : gTn W gn = cn. (9.33)
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Substitution of the recurrence relationship into the constraint C1 yields

0 = αGT
n−1 W (gn−1 ◦ x) + GT

n−1 WGn−1 β. (9.34)

Since the generated basis functions are already orthogonal w.r.t. weighting function,

GT
n−1 WGn−1 = Cn = diag (c1 . . . cn) . (9.35)

The β recurrence coefficient vector is

β = −αC−1
n GT

n−1 W(gn−1 ◦ x). (9.36)

Using β and the constraint C2 yields the α recurrence coefficient,

α =

√
cn

‖W 1
2 {I− Gn−1 C−1

n GT
n−1 W} (gn−1 ◦ x)‖2

. (9.37)

Using these weighted α and β recurrence coefficients during the synthesis algorithm delivers the
weighted DOP basis functions.

9.2 Constrained Basis Functions

When considering physical structures, there are generally a number of constraints which need to
be placed on the solution [165]. Initial value problems (IVPs) and boundary value problems
(BVPs) are common examples and are discussed in detail in Chapter 10. The homogeneously
constrained DOP basis function Ḡ satisfies the linear equation

CTḠ = 0 where ḠTḠ = I. (9.38)

The matrix CT ∈ R
(p×m) contains p constraints and Ḡ ∈ R

(m×(d+1)) is a DOP basis of degree d
synthesized at m points, i.e., for a full basis m = d+ 1. Each constraint removes a d.f. from
the least squares solution space. Reducing the dimension of the solution space prior to the
estimation’s computation is advantageous both w.r.t. numerical efficiency and noise behavior.
In this section, a procedure is proposed for the synthesis of discrete unitary basis functions,
which can fulfill an arbitrary set of positional (e.g., Dirichlet for BVP) and derivative (e.g.,
Neumann for BVP) constraints. Infinite basis functions fulfill these constraints in Eqn. (9.38),
i.e., the admissible functions are non-unique. The goal is to find a formulation that ensures a
unique solution. The constrained basis function Ḡ is related to the unconstrained basis function
G ∈ R

(m×(d+1)) via the upper triangular matrix X̄ ∈ R
((d+1)×(d+1−p)),

Ḡ = G X̄, (9.39)

i.e., Ḡ is a linear combination of G. Using Eqn.( 9.38) reveals the orthogonality of X̄,

ḠTḠ = X̄TGTG X̄,

= X̄TX̄. (9.40)

Since ḠTḠ = I, it follows that X̄TX̄ = I. The upper triangular structure of X̄ ensures the same
ordering of Ḡ as G w.r.t. the degree. Using Eqn. (9.39) in Eqn. (9.38) yields

CTG X̄ = 0. (9.41)
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The number of independent constraints is p = rank
(
CTG

)
. Applying singular value decomposi-

tion on CTG,
CTG = USVT, (9.42)

and selecting the last (p+ 1)th columns of V yields N ∈ V,

N = V(:, (p+ 1) : end). (9.43)

RQ decomposition1 of N delivers
N = RQ, (9.44)

where R is upper triangular and Q is orthogonal,

QTQ = I, and it follows that RTR = I, (9.45)

since VTV = I and NTN = I, hence,

range (GN) = range (GR) and, therefore, X̄ � R. (9.46)

Synthesizing the matrix R for X̄ with this algorithm ensures the fulfillment of all constraints. It
is worthy to note, that this procedure is valid for all discrete unitary bases, not only polynomials.

In the proposed framework, a constraint is implemented by restricting a linear combination cTi y
of the solution vector y to have a scalar vector di, i.e.,

cTi y = di. (9.47)

This is a general mechanism, since any constrained function can be implemented. Consider
following example: y(0) = y(1), y′(0) = y′(1) and y′′(0) = y′′(1). Given the differentiating
matrices D and D2, the three constraints are formulated as

[1, 0, . . . , 0,−1]y = cT1 y = 0, (9.48)
{D(1, :)− D(end, :)}y = cT2 y = 0, (9.49)

{D2(1, :)− D2(end, :)}y = cT3 y = 0. (9.50)

Given a set of p constraints, the constraining vectors ci ∈ R
(m×1) are concatenated to form

the matrix of constraints C = [c1, . . . , cp] and the corresponding scalars di form the vector
d = [d1, . . . , dp]

T ∈ R
(p×1), such that

CTy = d. (9.51)

9.3 Bivariate Transformation

The methodology of extending basis functions to a 2D regular lattice has been shown in
[162, 164, 168] as well as in the project described in Chapter 11. Furthermore, two worked
examples are appended to this section. Bivariate basis functions are of special importance in
machine vision and measurement of surfaces where the values within the data matrix Ω ∈ R

(m×n)

correspond to illumination or elevation respectively. The data points of Ω lie on an invariant
1The RQ decomposition is not to be confused with the more common QR decomposition.
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Cartesian grid, i.e., a uniform lattice, with m rows and n columns; this structure significantly
simplifies the computation. The geometric surface Ω is formulated as

Ω = YΣXT, (9.52)

where the spectrum Σ is evaluated at the Cartesian grid by the separable basis functions
X � BX in x-dimension and Y � BY in y-dimension respectively. The bivariate transformation
in this formulation supports anisotropic bases, i.e., X ∈ R

(n×(dX+1)) and Y ∈ R
(m×(dY+1)) can be

implemented with different degrees dX and dY, or even as completely different types of basis
functions. This is especially useful when the data is better modeled by different basis functions
along different axes. The following proof makes no assumptions about the nature of the basis
functions and their evaluation at the nodes, except that the bases do not degenerate. The
residual matrix R contains the geometric error,

R = Ω− YΣXT. (9.53)

The values for the measurement Ω are known from the analysis process. The basis functions X
and Y are then synthesized with appropriate degrees dX and dY respectively, whereby dX = n− 1
and dY = m− 1 describe complete bases. The goal is to acquire the spectrum (moments) in
a least squares sense as a maximum likelihood estimation. The cost function K(Σ) of the 2D
tensor polynomial regression is then

K(Σ) = ‖R‖2F = trace
(
RRT

)
,

= trace
(
{Ω− YΣXT} {Ω− YΣXT}T

)
,

= trace
(
YΣXT XΣT YT

)− trace
(
YΣXT Ω

)
− trace

(
ΩXΣT YT

)
+ trace

(
ΩΩT

)
. (9.54)

The differentiation of the cost function K(Σ) w.r.t. the spectrum Σ and setting it equal to zero
transforms the scalar equation to a matrix equation, a detailed description is given in [90],

∂K

∂Σ
= 2

(
YTYΣXTX− YTΩX

)
. (9.55)

This operation directly leads to the approximation Σ̂ of the spectrum Σ,

Σ̂ = (YTY)
−1
YTΩX (XTX)

−1
,

= Y+ΩX+T. (9.56)

Computation of the spectrum in this manner generates an 2D tensor approximation of the surface
Ω̂ = Y Σ̂XT, where the sum of the squares of the vertical distances is minimized. Reconstruction
of the approximated surface Ω̂ at all points on the Cartesian grid is done by substitution of Σ̂
from the above equation,

Ω̂ = YY+Ω (XX+)
T
. (9.57)

This effectively implements a polynomial filter when using incomplete basis functions X̂ and Ŷ
with dX < n− 1 and dY < m− 1. In the case of unitary polynomial bases, X � GX and Y � GY,
the analysis process simplifies to

Σ̂ = YTΩX, (9.58)
which is visualized in Fig. 9.1 for complete bases. The synthesis becomes

Ω̂ = YYTΩXXT. (9.59)
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2D transformation using complete bivariate basis functions

Σ̂YT Ω X

=

yy
x x

(m×m) (m× n) (m× n)(n× n)

Fig. 9.1 The bivariate basis functions X and Y enable 2D transformations along the x- and y-axis
respectively in an anisotropic manner. The analysis process of the data matrix Ω yields the associated
spectrum Σ. This visualization is valid for complete basis functions, whereby m are the number of
points in y-dimension (rows) and n are the number of points in x-dimension (columns).

Example (1): Metal Surface Description

The practical relevance of this example has been presented in the bachelor thesis [69, 168]. Steel
bars are marked permanently with robust 3D embossed digits to enable tracking and tracing
during the complete production process. The embossed digits are placed on the front face of
the steel bars, which is produced during the cutting process of the steel slabs. Unfortunately,
the cut section’s surface is very rough, cragged and rippled. The goal is to compute a surface
approximation to effectively remove the surface flaws which negatively influence the digit
classification while conserving the information about the embossed digits.

The data of the original 3D scan is stored in the matrix Ω ∈ R
(m×n). The metal’s surface Ω̂ is a

low-degree approximation of Ω of same dimensions. The reduced surface Φ is then computed by

Φ = Ω− Ω̂,

= Ω− Ŷ Σ̂ X̂+,

= Ω− ŶŶ+ Ω X̂X̂+, (9.60)

where X̂ and X̂ are incomplete sets of generic basis functions. When using incomplete DOP
basis functions ĜX � X̂ and ĜY � Ŷ in x- and y-dimension, the reduced spectrum Σ̂ is computed
via Σ̂ = ŶTΩ X̂. It is worthy to note in this context, that X̂ ∈ R

(n×(dX+1)) and Ŷ ∈ R
(m×(dY+1))

can be anisotropic, i.e., the computation is valid for different degrees dX �= dY or even different
kinds of basis functions. The reduced surface Φ is then acquired via

Φ = Ω− ŶŶT Ω X̂X̂T (9.61)

when using DOP bases. Conventional image processing techniques are applied after this
approximation step: Φ is binarized and prepared to be classified by an optical character
recognition (OCR) algorithm, the process is visualized in Fig. 9.2. The next example shows an
alternative approach to classical OCR software.
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original 3D scan

metal's surface

reduced surface

binary image

-

optical character recognition (OCR)

classification

optical character recognition from embossed digits using surface descriptors

Ω

Φ = Ω− Ω̂

Ω̂ = ŶŶT Ω X̂X̂T

Fig. 9.2 The left side of the illustration shows the data sets as 2D plots and the right side shows the
corresponding surface plots for better understanding. The metal’s surface is very rough; furthermore,
the original 3D scan data Ω is heavily perturbed. The reduced surface Φ is acquired by subtracting
a low-degree approximation Ω̂ of the metal’s surface from the original surface scan Ω. The process
effectively removes the surface flaws which negatively affect the digit recognition. The binarized image
is then ready to be processed by a conventional OCR algorithm.
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Example (2): Spectral Analysis of Embossed Digits

This example is directly related to the previous example and is described in detail in [69]. The
work investigates the application of DOP basis functions to enable automatic recognition of the
embossed digits. State-of-the-art machine learning algorithms for visual pattern recognition
directly process the image data. In contrast to the conventional approach, the presented method
uses the digits’ spectra to construct a support vector machine (SVM) classifier. An SVM
is described analytically, which makes it superior in comparison to other non-deterministic
machine learning algorithms such as neural networks or meta-heuristics. According to Parseval’s
theorem [153], the energy within the spectrum is equal to the energy in the time/space domain,
i.e., an image’s spectrum contains the same information as the original image. When using
unitary bases, the Gaussian noise is evenly spread over the complete spectrum. Cutting off higher
degree polynomials effectively improves the signal-to-noise ratio via spectral regularization,
which is advantageous in two aspects: the total data to be processed is decreased while the
relevant information, i.e., the features, become more significant.

Fig. 9.3 illustrates the process of spectral analysis and synthesis. The complete image data Ω of
the 3D scan has a resolution of (m× n) = (128 [pixel]× 64 [pixel]) in this worked example. The
image is described by the discrete unitary Gram bases GX � X ∈ R

(n×n) in x-dimension and
GY � Y ∈ R

(m×m) in y-dimension; hence, the analysis is formulated as

Σ = YTΩX. (9.62)

The spectrum Σ contains the coefficients of the bivariate unitary basis functions. The bases are
complete, i.e., dX = n− 1 and dY = m− 1, and, hence, fully energy conservative. Reducing the
degree d = dX = dY of the polynomial approximation is equivalent to low-pass filtering; this
yields the reduced bases X̂ ∈ R

(n×(dX+1)) and Ŷ ∈ R
(m×(dY+1)). As a result,

Σ̂ = ŶTΩX̂, (9.63)

since X̂+ = X̂T and Ŷ+ = ŶT for incomplete unitary bases. The reduced spectrum Σ̂ ∈
R

((d+1)×(d+1)) is fed into the SVM learning algorithm in order to construct a classifier. Numerical
experiments in [69] showed, that a symmetric spectrum of Σ̂ ∈ R

(30×30) holds enough information
for robust digit classification. The spectral compactness C is then

C =
(d+ 1)2

mn
=

302

128 · 64 = 0.1099 ≈ 11%. (9.64)

The result implies, that only approximately 11% of the original data is necessary to recognize
an embossed digit. Moreover, approximately 89% of the Gaussian noise has been eliminated.
This formidably demonstrates the advantages of this approach. The synthesis of the reduced
image Ω̂ is not necessary for the actual machine learning process, nevertheless it demonstrates
the principle of operation. As shown in Fig. 9.3, the synthesis is performed via

Ω̂ = ŶΣ̂X̂T. (9.65)
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=

=

(m×m) (m× n) (m× n)

(m× n)

(n× n)

(m× (d+ 1)) ((d+ 1)× (d+ 1))

((d+ 1)× n)

Σ
spectral analysis 

YT Ω X

Ω̂Ŷ Σ̂
spectral synthesis

support vector machine (SVM)

machine learning

spectral analysis and synthesis for machine learning

Σ̂ = ŶTΩX̂

X̂T

Fig. 9.3 Spectral analysis is performed via Σ = YTΩX using the unitary bases X ∈ R
(n×n) and

Y ∈ R
(m×m). The complete spectrum Σ ∈ R

(m×n) has the same dimensions as the original image
Ω ∈ R

(m×n). Decreasing the degree d of the polynomial bases X̂ ∈ R
(n×(dX+1)) and Ŷ ∈ R

(m×(dY+1))

yields the reduced spectrum Σ̂ = ŶTΩ X̂, which is then used to train the SVM. Synthesis of the
reduced image is computed via Ω̂ = Ŷ Σ̂ X̂T. This approach increased the information density while
simultaneously removing the majority of Gaussian noise.
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The concept of DOP basis functions G enables the efficient synthesis of their derivatives G′.
Both, basis functions and their derivatives, are required in order to solve ordinary differential
equations (ODE) and partial differential equations (PDE) as well as associated inverse problems.
The derivative G′ w.r.t. x can directly be computed from the generalized recurrence relationship
as stated in Eqn. (7.2). The nth monomial gn is generated via

gn = α (gn−1 ◦ x) + Gn−1 β (10.1)

while its derivative g′n is obtained as

g′n = α (g′n−1 ◦ x+ gn−1 ◦ x′) + G′
n−1 β. (10.2)

The lower degree derivatives of the monomials are concatenated to yield G′. Note, that the
derivatives are not orthogonal. The values for α and β are already computed during the synthesis
of the basis function as described in Chapter 7. Consequently, the derivatives G′ are generated
simultaneously with the corresponding basis function G and marginal additional numerical
effort [165].

10.1 Linear Differential Operator

A differentiating matrix D computes the numerical derivatives y′ ∈ R
(m×1) of a vector y ∈ R

(m×1)

for each entry of the m nodes,

y′ = Dy. (10.3)

The matrix D is a linear operator, D ∈ R
(m×m) is required to formulate algebraic methods for

the solution of ODE and PDE. The generation of a sufficiently accurate D is critical to the
quality of the overall solution. Given a set of basis functions G ∈ R

(m×(d+1)) of degree d and
their derivatives G′ ∈ R

(m×(d+1)), they are related by the differentiating matrix D,

G′ = DG. (10.4)

In general, differentiating matrices should be rank-1, and only rank-1, deficient; thus, it should
incorporate a single null vector. However, differentiating matrices generally become degenerate
if computed globally for a large number of points and a high polynomial degree; hence, the
condition number κ = cond (D) increases. This is a fundamental property of such matrices and
cannot be avoided even with methods of high numerical quality [165]. Inevitable numerical
quantification errors introduce a higher-dimensional null-space when the differentiating matrix
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collapses and the rank-1 deficiency cannot be hold. The effect is shown in Fig. 10.1. The
higher-dimensional null space is a problem when solving inverse problems with finite numerical
resolution, because the solution becomes inexact and non-unique.

degree
0 10 20 30 40 50

ra
nk

1

2

3

4

5

6

7

8
rank deficiency of differentiating matrix Fig. 10.1 The plot illustrates the rank deficiency

of the differentiating matrix D when synthesized
according to Eqn. (10.5) as a function of the degree;
double numerical accuracy is used. D is rank-1
deficient until a degree of 33 is reached, i.e., the
process is stable so far. When further increasing the
degree, D degenerates and the dimensionality of the
null space increases as well, which is disadvantageous
for solving inverse problems.

As a consequence to the instability of a global D, a regularizing linear differential operator D̂ is
introduced, which is defined as

D̂ � G′GT = DGGT, (10.5)

where G ∈ R
(ls×(d+1)) is an incomplete DOP basis function of degree d and spans a support

length ls < m, GGT is the projection onto the basis function G. If the basis is complete, then
GGT = I and D̂ = D. The strength of the regularizing linear differential operator is best seen
when estimating derivatives in the presence of noise. Regularization is advantageous in terms
of reducing the numerical effort and simultaneously increasing the stability of the solution.
The procedure is fundamentally the same as the method for local polynomial approximation
presented in Section 8.3.

As already mentioned, the constant vector can be seen as the numerical equivalent to the
constant of integration, i.e., D1 γ = 0. Consider the cost function K,

K = ‖Dy − y′‖22, (10.6)

solving the equation in a least squares manner w.r.t. y yields the estimate ŷ,

ŷ = D+y′ + null (D) γ, (10.7)

where an ideal approximation should be

ŷ = D+y′ + γ 1, (10.8)

i.e., null (D) γ = γ 1 for a perfectly conditioned numerical variational integrator D+. The
constant of integration is represented by the scalar γ or the vector γ respectively. The presented
approach is not limited to spectral regularization, e.g., Tikhonov regularization is implemented
by adding a penalty term to the cost function,

T = ‖Dy − y′‖22 + λ ‖Sy‖22. (10.9)

Tikhonov regularization penalizes outliers via the additional cost function term λ ‖Sy‖22, where
the regularization parameter λ is a positive constant; its selection is commonly an iterative task.
The combination of both approaches, Tikhonov regularization and spectral regularization, has
been described in [165].
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10.2 Ordinary Differential Equations

The class of inverse problems being considered in this chapter are derived from repetitive
measurements of inclinations; associated examples are described in Chapter 12. The m mea-
surements, forming the vector z ∈ R

(m×1), correspond to discrete samples of the continuous
forcing function z(x). They may emanate from m sensors forming a spatial array or from a
time sequence of m measurements from one single sensor. In the case of a chain of sensors, the
physical position of the sensor corresponds to x. In temporal sequences, it is the time points of
the individual measurements which define x. The positions, or nodes, x, where the solutions
are required, are determined by the measurement application’s requirements. As a matter of
fact, the positions of where to solve the ODE cannot be chosen freely. This precludes the use of
variable step size algorithms such as Runge-Kutta methods. A further consequence is that a
general framework for this type of inverse problem has to be capable of computing the solution
for arbitrarily placed nodes.

10.2.1 Continuous Measurement Model

In this class of problems, the forcing function z(x), the input, is considered to be perturbed,
since it is formed from measurements which are subject to noise. Furthermore, only the values
in the vector z change from one measurement to the next. The associated measurement model
consist of an nth order ODE of the form

an(x) y
(n) + an−1(x) y

(n−1) + . . .+ a1(x) y
′ + a0(x) y = z(x), (10.10)

where y = y(x) is a function of x, y(i) is the ith derivative of y w.r.t. x, ai(x) are the coefficient
functions and z(x) is the forcing function. Additionally, a minimum of n independent initial-,
inner- or boundary value constraints are required to ensure that there is a unique solution to the
differential equation; moreover, the method is capable of dealing with overconstrained systems,
i.e., there are p ≥ n independent constraints. The constraints correspond to the function value
y(x) or its derivatives y(i)(x) at specific x locations. Both, Dirichlet and Neumann boundary
conditions, are special cases of such constraints. The nature of the constraints determines if the
system is considered to be an initial value (IVP), boundary value (BVP) or inner value problem.

The numerical solution of an inverse problem requires the discrete approximation of a continuous
system. Properties of the continuous operations are derived, which must be fulfilled by the cor-
responding discrete operators. The continuous domain differentiating operator D is defined such
that D(i) y ≡ y(i). The discrete equivalent of the linear differentiating operator is implemented
using polynomial interpolation. The properties of D w.r.t. a polynomial are essential to the
desired behavior of numerical differentiation. Defining a power series approximation for y with
coefficients βi,

y =
m∑
i=0

βi x
i, (10.11)

and applying the differentiating operator D yields

y′ = D y =
m∑
i=1

i βi x
i−1. (10.12)
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By definition of the derivative, the constant portion of the polynomial differentiates to zero;
hence, the constant coefficient β0 vanishes. It is assumed, that D is composed of formulae which
are consistent, in the sense that in the limit they define a derivative. If this is the case, then the
matrix D satisfies the following properties, such that D is a consistent discrete approximation to
the continuous operator D:

1. The matrix D must be exactly rank-1 deficient; i.e, its null space is of dimension one;

2. The null space of D must be spanned by the constant vector γ 1; equivalently, the row-sums
of D are all zero,

D1 γ = 0. (10.13)

These conditions are fundamentally important to linear differentiating operators as already
discussed in Section 10.1. They ensure that the differentiating matrix D is consistent with the
continuous domain definition of the derivative. The general notion of a linear differentiating op-
erator for treating ODE is used according to [116]. Substitution of the continuous differentiating
operator D for the differentials y(i) in Eqn. (10.10),

an(x)D
(n) y + an−1(x)D

(n−1) y + . . .+ a1(x)D y + a0(x) y = z(x), (10.14)

and factoring y to the right,{
an(x)D

(n) + an−1(x)D
(n−1) + . . .+ a1(x)D + a0(x)

}
y = z(x), (10.15)

yields the linear differential operator L for the continuous equation, which is now defined as

L � an(x)D
(n) + an−1(x)D

(n−1) + . . .+ a1(x)D + a0(x). (10.16)

Consequently, Eqn. (10.10) is rewritten as

Ly = z(x), (10.17)

whereby a constraint at the point x is formulated as

D(i) y(x) = di. (10.18)

The continuous linear differential operator L in Eqn. (10.16) is discretized as the matrix L,

L � An Dn + An−1 Dn−1 + . . .+ A1 D+ A0, (10.19)

where Ai = diag(ai(x)) and the matrix Di ∈ R
(m×m) is a local discrete approximation with

support length ls to the continuous differentiating operator D(i). As a result, L ∈ R
(m×m) is a

regularizing differential operator.

10.2.2 Efficient Numerical Solution

Consider the residual vector r, which is computed via

r = Ly − z, (10.20)
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where y ∈ R
(m×1) is the vector of function values with m nodes, z ∈ R

(m×1) is the vector of
measured inclinations and L ∈ R

(m×m) is a linear differential operator as defined in Eqn. (10.19).
The goal is to acquire the function values y from the perturbed measurements z via the relation
z ≈ Ly, which represents a perturbed ODE. Such a problem is ill-posed, because it incorporates
an infinite number of solutions. Furthermore, the measurement’s output is known, where actually
the input which caused this output is sought. By definition, this is an inverse problem [202].
The problem to be solved is defined by the cost function K = ‖r‖22 = ‖rTr‖2,

K = ‖Ly − z‖22, (10.21)

which must be minimized to acquire the least squares solution. In order to ensure a unique
solution, constraints must be placed onto the system, which are

C1 : CTy = d and C2 : y = Gα, (10.22)

where C1 defines the matrix of constraints CT ∈ R
(p×m) and the vector d ∈ R

(p×1) contains
the values of the p constraints, i.e., C1 describes the physical structure of the observed system.
Note, that an ODE of nth degree requires at least p ≥ n constraints in order to acquire a unique
solution; therefore, the condition

rank

[
L

CT

]
≥ n (10.23)

must be fulfilled. C2 defines the incomplete orthogonal basis function G ∈ R
(m×(d+1)) of degree d

and the vector of the associated coefficients α ∈ R
((d+1)×1). For instance, the basis functions may

consist of the eigenfunctions of the structure being monitored. In this case, the method delivers
a reconstructed curve as a linear combination of the system’s modes. This leads naturally to
the use of truncated basis functions as a means of spectral regularization. Solving the algebraic
equation from Eqn. (10.21) with C1 and C2 provides the most general solution of the inverse
problem. Substitution of C2 : y = Gα in C1 : C

Ty = d yields

CTGα = d (10.24)

and solving for the estimate α̂ of the coefficients α,

α̂ = {CTG}+d+ Nγ, (10.25)

where {CTG}+ ∈ R
((d+1)×p) is the pseudoinverse of the least squares solution, N ∈ R

((d+1)×p) is an
orthonormal basis set of the null space of {CTG}, i.e., NTN = I and range(N) = range(null(CTG)),
the vector γ ∈ R

(p×1) contains the coefficients of the basis set N. Substitution of the coefficient
vector’s estimate α̂ into C2 : ŷ = G α̂ gives the curve’s estimate ŷ,

ŷ = G {CTG}+d+ GNγ, (10.26)

and using ŷ in the cost function K from Eqn. (10.21) yields

K = ‖LG {CTG}+d+ LGNγ − z‖22. (10.27)

Solving the equation for γ in a least squares sense,

γ = {LGN}+
(
z − LG {CTG}+d

)
, (10.28)
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where {LGN}+ ∈ R
(p×m). Substitution of γ into Eqn. (10.25),

α̂ = {CTG}+d+ N {LGN}+
(
z − LG {CTG}+d

)
, (10.29)

and combining this with C2 : ŷ = G α̂ yields the final result for the curve reconstruction ŷ,

ŷ = G {CTG}+d+ GN {LGN}+
(
z − LG {CTG}+d

)
. (10.30)

For easier reading, it is defined,

K � G {CTG}+ and P � GN {LGN}+ (10.31)

with K ∈ R
(m×p) and P ∈ R

(m×m). Substitution of the terms,

ŷ = Kd+ P (z − LKd) ,

= Kd+ P z + PLKd, (10.32)

and collecting for d as well as z yields

ŷ = (K− PLK) d+ P z,

= (I− PL) Kd+ P z, (10.33)

whereby it is defined that

H � (I− PL) K (10.34)

with H ∈ R
(m×p). Therefore, the equation is rewritten in concise form,

ŷ = Hd+ P z, (10.35)

where yh � Hd is the homogeneous solution and yp � P z is the particular solution. The final
solution for the inverse problem, i.e., the curve reconstruction ŷ, is then formulated as

ŷ = yh + yp. (10.36)

The matrices K, H and P are independent from the measurement data; they are determined by
the kind of the sensors being used and their positioning on the structure. As a consequence, these
matrices as well as the homogeneous solution yh can be computed a-priori during the calibration
procedure. Only the particular solution yp must be computed during the measurement’s run-
time. As a matter of fact, the necessary operation to solve such a perturbed differential equation
is reduced to a single matrix-vector multiplication and a vector addition, i.e.,

ŷ = yh + P z, (10.37)

where only the vector of measurements z is subject to change with each new measurement.
The exact number of floating point operations (FLOPS) is known a-priori, which makes this
approach suitable for real-time applications by definition [214]. Given m measurement values,
the resulting computational cost W (m) is

W (m) = m+m2, (10.38)
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which is of O(m2) complexity. Knowing, that the vector of measurements z is perturbed,
facilitates the computation of the reconstructed curve’s covariance Λŷ = L Λz L

T with the linear
operation L � P, i.e.,

Λŷ = PΛz P
T. (10.39)

As an alternative, the error vector ε can be computed for each measurement as the difference
between the forward and inverse problem,

ε = z − L (yh + P z) . (10.40)

Applying a Kolmogorov-Smirnov test onto ε reveals if the error is Gaussian and if all systematic
errors have been removed. Unfortunately, the residual r = y − ŷ cannot be computed since
the values of the true curve y remain unknown to the measurement system. Nevertheless,
evaluating Eqn. (10.40) yields additional information on the suitability of the model for the
specific measurement. The complete process is shown in Fig. 10.2.

curve reconstruction from gradients: ODE of nth degree with              constraints on m nodes

x1 x2 x3 x4 xm

placement of m nodes at x positions defined by the application
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preparatory (offline) computation

run-time (online) computation
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1.) sample m inclination measurements z from           with noisez(x)

measurement system's requirements
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yp = P z

ŷ = yp + yh

2.) solve particular solution

3.) solve inverse problem

4.) estimate error propagation Λŷ = PΛzP
T

ls,D, L,P,K,H

Fig. 10.2 There is an array of m sensors mounted on a large physical structure at the defined positions x.
A number of p ≥ n constraints are placed on the system which enable preparatory computations. During
run-time computation, the curve reconstruction ŷ is computed as a maximum likelihood estimation
for the true curve y in real-time from the perturbed inclinometer measurements z. This is an inverse
problem associated to an ODE of nth degree.
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10.2.3 Homogeneous Initial Value Problem

Homogeneously constrained initial value problems (IVPs) are a special subclass of the presented
problem. Consider the cost function K from Eqn. (10.21),

K = ‖Ly − z‖22, (10.41)

whereby the constraint C1 is simplified and C2 remains unchanged,

C1 : CTy = 0 and C2 : y = Gα. (10.42)

In other words, the system is unconstrained. Substitution of C2 into K yields

K = ‖LGα− z‖22. (10.43)

Solving for the estimate of the coefficients α̂ gives

α̂ = {LG}+z. (10.44)

A unique solution exists since null(LG) = 0. The simplified computation for the reconstruction
ŷ of the curve y is, using C2 : ŷ = G α̂,

ŷ = G {LG}+z (10.45)

for a homogeneously constrained IVP.
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11 | Opto-Electronic Perpendicular

Structural health monitoring of large-scale underground constructions is a safety and mainte-
nance issue [81, 172]. This project features a feasibility study of a long-range opto-electronic
perpendicular (OEP) utilizing electro-active glass targets to be installed into shafts, tunnels
and/or roadways as an alternative to common inclinometer based approaches. An exactly
aligned laser beam serves as reference axis to enable the measurement of relative movements
caused by geological activities.

This project covers the monitoring aspect of CPS. The systems components are shown in the
block diagram in Fig. 11.1. The measurement stations are spatially distributed within the
physical domain. The cameras are sensing the dynamic behavior of the physical system. The
measurement principle is sketched in Fig. 11.2 and 11.3. The measurement process is carried
out on the embedded mini PC within the cyber domain, the mapping process is performed using
bivariate discrete unitary polynomials and hierarchical subdivision. The measurement results
are sent to a server (supervisory system) for further processing. The system architecture can
be described as a wired sensor chain, i.e., the simplest form of a sensor network with a-priori
known topology.

cam

target

block diagram

target
...

network

T
C
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Fig. 11.1 The measurement system consists of n measurement stations (clients) in the field and a
centralized supervisory system (server). Each measurement station contains an active-glass target, a
USB camera and an embedded mini PC. The PC controls the target’s transparency mode (actuator),
acquires the images from the camera (sensor) and measures the location of the laser spot on the target.
The processed results are forwarded to the server, which generates reports and stores the data in a
data base (DB).
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measurement principle: pre movement

reference laser beam

measurement station 1
(transparent)

measurement station 2
(transparent)

measurement station 3
(active)

measurement station  

...

n

wall mount

x

y

z

Fig. 11.2 A set of n consecutively aligned measurement stations is mounted onto the underground
structure’s wall. A reference laser beam impinges upon each target, whereby the active target is
opaque and the other targets are transparent. A laser spot is projected onto the active target; its
location is measured by a metric vision system. When initializing the measurement system, a reference
measurement is carried out. The system covers a distance of several 100 [m]; however, the total
achievable measurement range is determined by the environmental conditions. The required number n
of measurement stations is application dependent.

measurement principle: post movement

measurement station 1
(transparent)

measurement station 2
(transparent)

measurement station 3
(active)
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previous location
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Fig. 11.3 Geological activities inflict movement of the underground structure’s wall. The measurement
stations move accordingly; the difference between the new and the previous location is an indicator of
how much movement has appeared since the last reference measurement. If the measured value exceeds
a given threshold, maintenance tasks are triggered to ensure the structural integrity of the monitored
object.
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Structural deformation measurement via efficient tensor
polynomial calibrated electro-active glass targets

Christoph Gugg, Matthew Harker and Paul O’Leary

University of Leoben, Chair of Automation, Peter Tunner-Strasse 27, 8700 Leoben, Austria

ABSTRACT

This paper describes the physical setup and mathematical modelling of a device for the measurement of structural
deformations over large scales, e.g., a mining shaft. Image processing techniques are used to determine the
deformation by measuring the position of a target relative to a reference laser beam. A particular novelty is
the incorporation of electro-active glass; the polymer dispersion liquid crystal shutters enable the simultaneous
calibration of any number of consecutive measurement units without manual intervention, i.e., the process is
fully automatic. It is necessary to compensate for optical distortion if high accuracy is to be achieved in a
compact hardware design where lenses with short focal lengths are used. Wide-angle lenses exhibit significant
distortion, which are typically characterized using Zernike polynomials. Radial distortion models assume that
the lens is rotationally symmetric; such models are insufficient in the application at hand. This paper presents
a new coordinate mapping procedure based on a tensor product of discrete orthogonal polynomials. Both lens
distortion and the projection are compensated by a single linear transformation. Once calibrated, to acquire
the measurement data, it is necessary to localize a single laser spot in the image. For this purpose, complete
interpolation and rectification of the image is not required; hence, we have developed a new hierarchical approach
based on a quad-tree subdivision.
Cross-validation tests verify the validity, demonstrating that the proposed method accurately models both the
optical distortion as well as the projection. The achievable accuracy is e ≤ ±0.01 [mm] in a field of view of
150 [mm]× 150 [mm] at a distance of the laser source of 120 [m]. Finally, a Kolmogorov Smirnov test shows that
the error distribution in localizing a laser spot is Gaussian. Consequently, due to the linearity of the proposed
method, this also applies for the algorithm’s output. Therefore, first-order covariance propagation provides an
accurate estimate of the measurement uncertainty, which is essential for any measurement device.

Keywords: structural deformation, electro-active glass, discrete orthogonal polynomials, tensor approximation,
tensor interpolation, quad-tree search

1. INTRODUCTION

Structural deformations occur regularly in large scale technical installations. For instance, mines and tunnel
systems are subject to deterioration through geological activities; cargo ships are bent by heavy swell and
a bridge’s structure is influenced by the weather conditions. Vertical structures, e.g., dams and shafts, are
sometimes monitored using a telependulum∗, this device consists of a pendulum anchored at the top and having
a large mass damped in an oil bath at the bottom. The steel wire of the pendulum forms the reference line
and the position of anchors mounted in the wall are measured with respect to the wire. The device is, however,
restricted to monitoring in the vertical direction. Additionally, the device is mechanical and therefore subject to
damage, in particular the wire is subject to damage in the normal working conditions of a mine. Theodolites, e.g.
from Leica †, have a typical accuracy of 0.2 [mm] at a distance of 120 [m] in a field of view of 100 [mm]×100 [mm]
when used with a corner cube reflector.1 The apparatus presented in this paper is an order of magnitude better.
The main disadvantage of a theodolite is, however, that it requires a large angular space if it is to measure a

Further author information: http://automation.unileoben.ac.at
Christoph Gugg: E-mail: christoph.gugg@unileoben.ac.at, Telephone: +43 / (0)3842 / 402-5315

∗ c©Huggenberger AG, Horgen, Switzerland, www.huggenberger.com
† c©Leica Geosystems AG, Unterentfelden, Switzerland, www.leica-geosystems.com
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series of reflectors correctly over a long range. This, for example, would mean that there may be no obstructions
to the optical beam in a large portion of a shaft or tunnel.

(a) measurement unit’s optical arrangement (b) electro-active glass target

Figure 1: The optical arrangement (a) of the electro-active glass target (b) and the digital camera: the laser
spot occurs when the beam impinges upon the target plate on its path. The camera detects this laser spot, ergo
its relative location changes can be measured.

The optical arrangement of a single measurement unit is shown in Figure 1, the principle architecture of
the device presented in this paper is shown in Figures 2 and 3. A reference laser beam is projected along the
direction in which the monitoring is to be performed. Targets are mounted at desired intervals on the structure
such that the electro-active glass portion of the target intersects the laser beam. In transparent mode, the
polymer dispersion liquid crystal (PDLC) glass transmits the laser beam so that the laser can be seen by other
targets along the structure. In the opaque mode the glass scatters the laser light and the position of where the
laser beam penetrates the plane of glass can be measured. Clearly, if the target moves, the point of penetration
of the laser will also move, this is the basis measurement mechanism. Each measurement unit consists of a PDLC
glass plate and a camera, see Figure 1. The camera observes the surface of the glass plate to determine the point
of penetration of the laser.

Figure 2: The instrument’s alignment is composed of several sequentially arranged wall-mounted measurement
units. The reference laser radiates a laser beam along a structure to enable the measurement of its movements.

The accuracy of the measurement device depends on the accuracy of the mapping from the camera pixel
coordinates to the plane of the plate of glass. Both the projection, classically described by a homography ,2

and all the distortions associated with the optical arrangement have an influence on the obtained accuracy.
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Consequently a large portion of this work is concerned with the modelling of lens distortions and the correction
of projections. Additionally to enable a compact design, it is desirable to use lenses with a short optical length,
which unfortunately exhibit large optical distortions, e.g., the fish eye effect. A homography alone is insufficient
to obtain a mapping of satisfactory accuracy. Extensions of homographies to compensate for radial distortions
would correct a portion of the optical distortion, however, they can not deal with non-radial distortions which
are relevant at the accuracy which is to be obtained by the new device.

(a) glass in opaque mode (b) glass in transparent mode

Figure 3: Electro-active glass allows the installation of a series of measurement units in a consecutive order.
Measurements are carried out more accurately on opaque glass, whereas the transparent glass lets the laser
beam pass.

Optical distortion of lenses is classically modelled using Zernike moments .3 Zernike moments are a tensor
product of a cyclic basis function set, e.g., the Fourier basis, and a radial polynomial which is subject to con-
straints. The constraints on the polynomial ensure that the model is Cn continuous at the origin. The Zernike
moments are effectively moments around the optical axis which is perpendicular to the lens. Consequently, they
can not be used to compensate for both the projection and optical distortion. The projection maps the optical
distortion to an axis which does not correspond to the optical axis. Polynomial control points as proposed in the
literature,4,5 are numerically unstable at higher degrees and/or at high accuracies, this fact is demonstrated in
the testing section. In this paper we propose a new approach to a polynomial tensor mapping. Gram polynomi-
als6 are used since they exhibit high numerical accuracy even at high degrees and large numbers of nodes. Tensor
polynomial approximation is used during calibration and an inverse tensor interpolation is used to determine the
measurement result.7–9

The main contributions of this paper are:

1. A new optical arrangement for alignment measurement at multiple locations. The optical target uses an
electro-active PDLC glass which can be switched between transparent and opaque. This arrangement
enables the usage of multiple targets with respect to a single reference laser beam.

2. A calibration procedure which uses tensor polynomial approximation at selected nodes, whereby it imple-
ments the polynomial interpolation for interstitial points. This would enable a tensor polynomial interpo-
lation from the real world coordinate to the camera coordinates. In this manner calibration is performed
at a limited number of points, while it simultaneously enables a high precision mapping of the complete
frame.

3. A quad-tree implementation of a search in the real world coordinates for the point corresponding to the
observed laser point in the camera. This procedure implements an inverse tensor polynomial interpolation.
This is necessary since tensor polynomial interpolation is by nature not bijective. The combination of
approximation, interpolation and quad-tree search in this manner implements an efficient and high precision
mapping from the camera coordinates to the real world coordinates. The mapping is capable of correcting
for the projection and any type of optical distortion, as it is not restricted to radial distortion.

4. Extensive testing verifies that both the analytic and statistical properties of measurement device are as
predicted. The comparative tests show that the new method is superior for this type of application.
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2. CALIBRATION AND MEASUREMENT ARRANGEMENT

The mapping of a point’s coordinates from camera space to real space and vice versa is a commonly encountered
problem in image processing. The goal is the transformation of a camera point p = [xc, yc]

T in [pixel] to its
corresponding real point q = [xr, yr]

T in [mm]. The required coordinate mapping function q = f(p) is derived
through a mathematical model, which is capable of describing the projection and, at the application at hand,
the non-linear optical distortion.

Figure 4: The image’s calibration points P in [pixel] are selected and matched to their corresponding real world
calibration points Q in [mm] in order to derive the calibration data and approximate the mapping function.

The calibration arrangement consists of a theodolite mounted on a precision xy table, which is composed of
two orthogonal linear drives in a vertical installation. The theodolite is used to generate the reference laser beam.
It has been chosen because of its ability to easily correct the direction of the laser beam. The xy table moves the
theodolite to multiple real points on a regular orthogonal grid Q = [q1, . . . , qn]. Capturing the images of the laser
spot’s positions with the camera yields the corresponding calibration pattern, i.e. the matrix of camera points
P = [p1, . . . ,pn]. Obviously, the matrices Q and P do have the same dimensions. The center coordinates of the
laser spots pi are determined through conic fitting by approximating an ellipse based on contours. The generated
grid must be sufficiently large so that the distortion of the optics and the projection associated with he optical
arrangement can be characterized with the desired accuracy. All targets in the measurement system see the same
grid of points during calibration, consequently, all targets are referenced to one and the same coordinate frame,
effectively the coordinate frame of the xy table. In the calibration process, tensor polynomial approximation is
used to determine the mapping from real world coordinates to camera coordinates.

Figure 5: A non-linear camera space leads to a more complex mapping process during measurement, since the
deployed model is also based on non-linear projections. By utilizing the calibration data, the coordinate mapping
process delivers the real space coordinates of one laser spot q by assigning a metric value to the camera space
point p.
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During measurement, a fixed laser projector generates the required beam of light. The targets are sequentially
switched to opaque and during this period the position at the opaque target is determined. The location of the
laser spot in the camera coordinate frame is determined first in pixel coordinates. The corresponding patch in the
real world coordinate frame in which the laser spot lies is determined using the duality of the calibration points
in both frames. This issue needs some thoughtful analysis for systems which have high accuracy demands. The
presented system achieves an accuracy of e ≤ ±0.01 [mm] over a field of view of 150 [mm]×150 [mm] at distances
of 120 [m]. A quad-tree search is then performed to locate the point q in the real world which corresponds most
closely to the point p in the pixel frame. Three main factors determine the reachable calibration quality: the
real world’s calibration points Q were produced with limited preciseness, the camera space’s calibration points
P can only be acquired with a certain accuracy and the used mathematical models are approximation methods.

3. CALIBRATION VIA TENSOR APPROXIMATION

The concept is to apply discrete unitary Gram polynomial basis functions to model the projection, i.e., a bivariate
tensor product approximation is computed for image regularization. Such bases are suitable when the data, as
in this case, is predominantly geometric in nature. However, the derivation provided in this section is completely
generic and independent of the type of basis function used. Furthermore, due to the orthogonality, Gaussian
noise is evenly spread over all spectral components. The polynomial decimation and tensor regularization serve
to reduce the noise power significantly, resulting in registration that is not influenced by such disturbances.
For the application at hand, we have used a rectangular calibration pattern; hence, the distorted images of
the calibration points can be modelled by a set of double-indexed coordinates (xij , yij), which can be written
concisely in matrix form as,

Xr = [xij ] and Yr = [yij ] . (1)

The grid points can therefore be modelled by bivariate tensor polynomials in the following manner,

Xr = BvSxB
T
u and Yr = BvSyB

T
u , (2)

where Bu and Bv represent discrete polynomials in the parameter space (u, v) and Sx and Sy represent the
respective spectra of the transformations (i.e., the coefficient matrices). In this vein, the coordinates (xij , yij)
are nodes in a system of curvilinear coordinates defined by bivariate polynomials. The nature of these curvilinear
coordinates can be elucidated by as description of their coordinate curves. For a fixed u, say the kth value of u,
the (discrete) coordinate curve takes the form defined by the vectors,

xk = BvSxB
T
uek and yk = BvSyB

T
uek, (3)

where the ek are coordinate vectors. Thus if we define uk as the kth row of Bu then the coordinate curve takes
the form,

xk = BvSxuk and yk = BvSyuk, (4)

which is therefore polynomial in nature. Similarly, the lth v-coordinate curve is given as,

xT
l = vTl SxB

T
u and yT

l = vTl SyB
T
u , (5)

where vl is the lth row of Bv. For each target, we have a set of measured calibration points, represented
in matrix form as X̂r and Ŷr. In order to approximate the grid of points, we note that the sum of squared
Euclidean distances from the measured points to the modelled points is given as,

m∑
i=1

n∑
j=1

d2ij =
∥∥∥X̂r − Xr

∥∥∥2
F
+
∥∥∥Ŷr − Yr

∥∥∥2
F
. (6)

Thus we define the cost function for the approximation as the least squares functional,

K (Sx, Sy) =
∥∥∥X̂r − BvSxB

T
u

∥∥∥2
F
+
∥∥∥Ŷr − BvSyB

T
u

∥∥∥2
F
. (7)
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The partial derivatives with respect to the unknown spectra are given as,

∂K

∂Sx
= 2

(
BT
v X̂rBu − BT

v BvSxB
T
uBu

)
, (8)

∂K

∂Sy
= 2

(
BT
v ŶrBu − BT

v BvSyB
T
uBu

)
. (9)

Equating the partial derivatives to zero and solving yields the expressions for the approximating spectra,

Sx = (BT
v Bv)

−1BT
v X̂rBu(B

T
uBu)

−1 and Sy = (BT
v Bv)

−1BT
v ŶrBu(B

T
uBu)

−1. (10)

However, due to the orthonormality of Bu and Bv, these expressions simplify to,

Sx = BT
v X̂rBu and Sy = BT

v ŶrBu. (11)

Finally, substituting these expressions back into the model equations of the distorted grid, we obtain the least
squares approximation,

Xr = BvB
T
v X̂rBuB

T
u and Yr = BvB

T
v ŶrBuB

T
u . (12)

Clearly, if Bu and Bv are complete sets of basis functions, then BuB
T
u = I and BvB

T
v = I, and the approximated

grid is exactly the measured grid. However, using a truncated set of functions, we obtain a least squares ap-
proximation of the grid. For example, using only polynomials up to degree two, the grid is then modelled by
biquadratic functions. Furthermore, the matrices BuB

T
u and BvB

T
v represent orthogonal projections onto the

basis functions.

Once calibration is thus addressed, there remains the task of identifying a laser spot in the calibrated im-
age. One possible approach would be the complete interpolation of the curvilinear coordinate system established
above. This would entail interpolation of the m × n grid of points onto a s × t grid of points whereby s and t
would necessarily be much larger than m and n. By the aforementioned derivation, this approximation would
take the form,

Xc = B̃vB̄
+
v X̂r(B̄

+
u )

TB̃T
u and Yc = B̃vB̄

+
v Ŷr(B̄

+
u )

TB̃T
u . (13)

where, B̄u and B̄v are respectively submatrices of the matrices B̃u and B̃v which are discrete polynomials for the
entire s× t grid, and the exponent + denotes the Moore-Penrose pseudo-inverse.

Figure 6: The goal is to map the point p = [xc, yc]
T from the camera space to its real space pendant q = [xr, yr]

T .
The known calibration points coordinates are stored in the tensor Zr = {Xr,Yr}. The geometry is described by
deploying a set of discrete orthogonal Gram polynomials in x and y direction. The reduced functions Xr and Yr

are the known portions of the complete bases Xc and Yc. The performed interpolation yields the complete grid
Zg = {Xc,Yc}. The point q can now be located in the resulting discrete real space with the resolution k.

Since the task is to localize a single point in curvilinear coordinates, this is a particularly inefficient approach
due to unacceptable computation and memory requirements. Further, since we can only localize the point up to
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the nearest interpolated grid point, its localization accuracy depends on the chosen resolution k. For instance,
a field of view of 150 [mm] × 150 [mm] would lead to a full grid of 150, 000 [μm] × 150, 000 [μm] for a resolution
of k = 1000, it’s not reasonable to compute tensors of this size. Consequently, the classical tensor polynomial
interpolation7 can’t be used in this application. The following section proposes a concept to handle the problem
in a much more economic manner.

4. MEASUREMENT VIA QUAD-TREE INTERPOLATION

As was pointed out earlier, it is not practical to compute the complete grid which would be necessary to obtain
the required accuracy. However, since it is only required to locate a single point, namely the laser point p, it can
be accomplished far more efficiently by introducing a hierarchical subdivision algorithm for interpolation. The
approach has been employed in the past for non-rigid registration10–12 and quad-tree decomposition13–15 is used
to partition an image into patches with similar levels of information content. As a matter of fact, this is the first
application of a quad-tree search to improve the efficiency of tensor polynomial interpolation. In the following,
we show that it is unnecessary to compose the full interpolation matrices Xc and Yc. Firstly, it is noted that the
spectra of the complete interpolation grid are computed according to Equation 13 as,

S̄x = B̄+
v X̂r(B̄

+
u )

T and S̄y = B̄+
v Ŷr(B̄

+
u )

T. (14)

These matrices are, however, only of size equal or lesser than m × n, i.e., the size of the calibration grid. As
with extracting coordinate curves in the curvilinear coordinate system, we may also easily extract single points;
namely, the point indexed (l, k) has the coordinates,

xlk = eTk B̃vS̄xB̃
T
uel and ylk = eTk B̃vS̄yB̃

T
uel. (15)

Similarly by defining the kth row of B̃v as ũk and the lth row of B̃u as ṽl, this simplifies to,

xlk = ṽTl S̄xũk and ylk = ṽTl S̄yũk. (16)

Since the vectors ũk and ũk are respectively m- and n-vectors, this computation is efficient; the computational
overhead lies in the computation of S̄x and S̄y. This method of coordinate extraction can subsequently be used to
localize the laser point in the interpolated grid. The process starts with the a-priori knowledge of the location of
the calibration points. The area enclosing the point is quartered and the quarter containing the sought point is
selected. The four corners’ locations are calculated utilizing the basis function vectors uk and vl. Once again, the
resulting rectangle is quartered and the procedure starts anew. The recursion stops when the desired accuracy
is reached, namely at the iteration w when the distance,(

x
(w)
kl − xc

)2
+
(
y
(w)
kl − yc

)2
, (17)

is smaller than a given tolerance. Search trees are commonly employed to reduce the amount of data to be
processed significantly. In this application, the quad-tree search (QTS) algorithm allows the efficient evaluation
of the mapping function only at specific locations. This implementation is, however, different to common
approaches, which use this idea to find certain elements in existing data structures. The resulting depth of
the quaternary search tree τ is related to the number of possible locations inside the interpolated grid n, i.e.

τ = log4 n. (18)

An alternative approach is to locate the patch, bounded by four calibration points, in which the laser spot
is observed. Then for this section of the coordinate frame, the bivariate tensor polynomial interpolation is
performed, for brevity this method is called basis function sectioning (BFS). Experimental testing shows that
this method yields comparable results to the QTS approach, however, it is significantly slower in computation.
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(a) single basis function (b) quad-tree search

Figure 7: (a) The point’s position is described by the basis function vectors xp and yp. (b) The section of Zr

containing the sought point is selected. The process incrementally approximates the point’s location through
quartering of the investigated area until the desired accuracy is reached.

5. EXPERIMENTAL VERIFICATION

In order to enable the evaluation of random error effects, the computation of the standard error is necessary.16

This value describes the approximate 95% confidence interval for the mean of the sample values. Consequently,
the underlying data must be normally distributed for the estimation. This condition is tested through the
usage of the non-parametric Kolmogorov Smirnov test (KS-test), which checks the goodness of fit between one-
dimensional empirical data and its expected reference continuous parent distribution. The test quantifies the
distance between both cumulative distribution functions.17 If the difference between the measured data and
the expected distribution stays within a defined confidence interval, then the data is assumed to be normally
distributed and the null-hypothesis H0 is accepted. The tests showed, that this is always true for the camera
coordinates p. As a consequence, due to the proposed method’s linear nature, this condition also holds for the
mapped coordinates q. This can be shown through the first order covariance propagation:

Λq = ∇fΛp∇fT . (19)

This basically illustrates, that under the condition, that the mapping function f is a linear transformation, the
output has the same type of distribution as the input, whereby Λ is the covariance.18

Table 1: Measurement results utilizing a lens with f = 3.6 [mm], a field of view of 150 [mm]× 150 [mm].

method: degree ēx/[mm] ēy/[mm] ēxy/[mm]

homography d = 1 3.4920 2.1580 4.5597
polyCtrlPts d = 2 3.4600 2.1214 4.5473

d = 4 0.3085 0.2423 0.4393
tensorBFS d = 2 2.7969 1.4894 3.3621

d = 4 0.1160 0.0374 0.1379
d = 6 0.0063 0.0014 0.0074

tensorQTS d = 2 2.7966 1.4888 3.3614
d = 4 0.1154 0.0316 0.1316
d = 6 0.0067 0.0020 0.0079

During the experiments, an interlaced cross validation matrix is produced to verify the quality of the inter-
polation through a set of independent test points. Only even degrees d are deployed, since the camera space has
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axis symmetry. A wide-angle lens with f = 3.6 [mm] is used, thus a polynomial degree of up to d = 6 is chosen.
The error ēx is the mean error in x dimension, the error ēy is the mean error in y dimension and the error ēxy is
the mean geometric inaccuracy in x and y dimensions over all inspected points. This is documented in Table 1.
Although the results delivered by the two tensor interpolation methods are of similar quality, the computational
efficiency of the quad-tree search approach is far superior than the idea of basis function sectioning.

6. CONCLUSIONS

The proposed use of a polymer dispersion liquid crystal electro active glass has performed well. A positional
measurement accuracy of e ≤ ±0.01 [mm] for a 95% confidence, verified using a Kolmogorov Smirnov test, was
obtained. The architecture of the system permits the measurement to be performed for structures extending
of several 100’s of metres. The measurement accuracy has been achieved despite the use of lenses with a very
short focal lengths and exhibiting significant optical distortions. This has been made possible by a new tensor
polynomial approximation and interpolation method used to perform the mapping between the camera coordinate
frame and the real world frame. The quad-tree search implements an efficient and accurate computation algorithm
for the mapping. The possible use of short focal lengths has in turn enabled a very compact hardware design for
the measurement units.
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Geo-mechanical effects are likely to cause structural deformations during underground construc-
tions and mining operations [213]. Ground subsidence occurs in scenarios where subsurface voids
(e.g., cavities) are collapsing. Incidents and accidents related to this topic are discussed in [112].
Geological models for manifestation and magnitude prediction of the subsidence are available
in [15, 112]. In this section, the focus is laid on effects caused by mining and tunneling. Mine
subsidence is the movement of the ground surface as a result of readjustments of the overburden.
Sinkholes are caused by abrupt depression in the ground surface (bump), whereas troughs are
progressive long-term effects (squeeze). Full extraction mining techniques which intentionally
cause the extracted void to collapse such as retreat room-and-pillar mining [26] and longwall
mining will most likely result in surface subsidence. Mining and tunneling-induced subsidence
is localized to the surface above the mined area, which makes this area eligible for structural
health monitoring (SHM). The goal is to monitor the deformation caused by the excavation and
its impact on surrounding/overlying facilities such as building, bridges, rails and roads.

Instabilities are characterized by the assessment of pattern, depth and rate of movement/change.
The use of inclinometers in tunneling projects as an alternative approach to conventional
geodetical measurements for displacement monitoring was shown in [206]. On overview for
applying inclinometers in structural and geomechanical monitoring systems is given in [129].
An inclinometer measures angles of slope/tilt and belongs to the class of inertial measurement
units (IMU). IMUs are commonly used for movement detection including navigation, vibration
analysis and subsurface deformation. Modern IMUs are MEMS-based sensors, which are highly
sensitive and have a long term stability [62]. Stationary systems of in-place inclinometers employ
a fixed chain of sensors; it is ideal for permanent and continuous SHM [42].

The sensor chain is situated in a protective casing. The inclinometer casing is installed either in
a horizontal borehole/trench (Fig. 12.1 (a)) or a vertical borehole (Fig. 12.1 (b)) that passes
through a suspected zone of movement [129]. It may also be attached directly to or embedded
in a structure. An initial reference measurement is required to compensate for the inevitable
inexactness such as twists and bends during installation. As a matter of fact, a horizontal
alignment should be slightly inclined towards the open end to allow water drainage from the
hole. The sensors measure the inclination of the casing. Movement of the ground deflect the
casing, causing the sensors to undergo changes in inclination [42, 144]. Combination of all tilts
yields the profile of lateral deflection, i.e., a gradient curve. This provides implicit information
about the strain, i.e., tension or compression, of the material. Relative vertical and horizontal
movements are determinable if a-priori knowledge about constraints are given.
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chain of inclinometers in (a) horizontal and (b) vertical alignment
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Fig. 12.1 A horizontal alignment of the sensor chain enables the detection of compression caused by a
vertical force whereas a vertical alignment of the sensor chain enables the detection of displacement
caused by a horizontal force. A combination of both alignments is required to monitor all occurring
effects. Constraints ensure a unique solution for the curve reconstruction.

Networks of spatially distributed sensor nodes enable condition monitoring of large-scale struc-
tures in order to ensure safety for men and assets. Chains of inclinometers are connected
to dataloggers in a conventional measurement system. Dataloggers acquire, consolidate and
prepare the data for transmission, but they do not apply any abstract models [78]; the raw tilt
data is forwarded to a supervisory system, either as a data stream or in a sequence of data
packages consolidating multiple measurements. Near real-time processing is usually a system
requirement in safety relevant SHM applications [81]; furthermore, the physical stability of
network connections cannot be guaranteed in harsh subsurface environments. In contrast to a
datalogger, an independent CPS mote must perform on-site computation in order to implement
a reactive system which can operate without supervision. In this project, an individual mote is
composed of an embedded system with a chain of inclinometers connected to it, see Fig. 12.1.
The goal is to detect and localize damage in complex structures as well as to provide both long-
term monitoring and rapid analysis in response to severe events. The application requires the
real-time solution of an inverse problem on an embedded system; this increases the information
density, lowers the bandwidth demands and reduces the post-processing effort.

Inclinometers measure the tilt, which is the first local derivative of the subsidence profile in
a mathematical sense, i.e., the form of the curve directly corresponds to the subsidence of
the ground. Reconstruction of this curve, i.e., the original profile, involves the solution of
an ODE with perturbed values. This is, by definition, an inverse problem [202]. Contextual
knowledge about the problem is required; in this vein, the implementation of constraints is
application specific, e.g., a building’s concrete base or a bridge’s pillars. These fixed points
in the structure correspond to boundary values. The curvature is the second derivative of
the surface profile and is an indicator for the tilt’s rate of change. In practical applications,
the inclinometer measurements are often only interpreted qualitatively by a human operator
without a suitable model, i.e., only simple threshold checks are performed. Without a model, it
is virtually impossible to analyze the data from a spatially distributed CPS.

The theoretical framework for this particular project has been established in [162, 165]. The
process is divided in an initial preparatory computation and a cyclic run-time computation,
ensuring high efficiency for repeated measurements. The method is suitable for perturbed and
unperturbed as well as overconstrained ODE. The numerical solver is implemented with model
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based design and uses only fundamental linear algebra; consequently, this approach supports
automatic code generation for embedded targets. A complete in-the-loop verification process is
presented in the following publications. The method is compared with state-of-the-art techniques
via model-in-the-loop and the functional equivalence of the produced C code is tested with
software-in-the-loop. A laboratory prototype verifies the model as well as it’s deployment on an
embedded system via processor-in-the-loop testing and real measurement data. The validity of
the model was also verified independently in [177] using light sectioning and laser time-of-flight
distance measurements on a laboratory setup.

measurement principle and system concept

network 
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Fig. 12.2 The measurement principle involves a chain of m inclinometers which deliver the measured
inclinations z = [z1 . . . zm] at the locations of x. The goal is the reconstruction of the curve y = y(x)
from the perturbed z values, i.e., the first derivation. The constraints are formulated as CTy = d and
ensure a unique solution. The sensors are connected to the embedded system via a serial bus, e.g.,
RS485, effectively forming a CPS mote. See Fig. 10.2 for the corresponding methodology.
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1. NUMERICAL ODE SOLVER
Measurement data is continuously processed by cyber-

physical systems in condition monitoring applications,
e.g. sensor networks with inclinometers. The presented
numerical ordinary differential equation (ODE) solver
runs on independent and decentralized embedded sys-
tems thanks to its real-time capability and computa-
tional efficiency. ODEs can be formulated as a least
squares problem with linear constraints [1],

Ly = g given CT y = d, (1)

where y is the solution vector, g is the discrete per-
turbed forcing function vector, the matrix C and the
vector d are the discretized constraints. The discrete
linear differential operator L is defined as

L � An Dn + An−1 Dn−1 + . . .+ A1 D+ A0, (2)

where An = diag(an(x)) with an(x) are the coefficient
functions at the node locations x and the matrix Dn

is a local approximation with support length ls to a
continuous differential operator of nth degree; at least n
initial-, inner- or boundary-values are required for the
n nodes to ensure that there is a unique solution. A
solution for y with β parameters is computed by

y = {CT}− d+ null
{
CT
}
β, (3)

where {CT}− is a generalized inverse of CT. In general,
yc � {CT}− d is a function which fulfills the constraints.
The matrix Nc � null

{
CT
}

contains an orthonormal
vector basis set for the null-space of CT, i.e. CT Nc β =
0 . Furthermore, yc and Nc form a complete orthogonal
basis function set, hence y = yc + Nc β. Substituting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the term for y in Ly = g yields,

L {yc + Nc β} = g. (4)

The above equation is solved using a least squares ap-
proach to obtain the unique global minimum of

min
β

‖LNc β + Lyc − g‖22. (5)

The errors are globally evenly distributed. There is
no implicit direction of integration, which may lead to
an accumulation of errors as with typical initial value
problem approaches such as Runge-Kutta. By defin-
ing M � Nc {LNc}+, where {·}+ denotes the pseudo
inverse, the homogeneous solution yh is computed as,

yh = yc −MLyc = (I−ML)yc. (6)

The final solution for y is then,

y = M g + yh. (7)

Due to the model’s linearity, the solution’s covariance
Λy is computed as Λy = MΛg M

T, where Λg is the forc-
ing function’s covariance. Both, M and yh, can be com-
puted a-priori during calibration, i.e. they need not to
be computed during the measurement’s run-time. Only
the sensor data g changes with each measurement. The
solution of the inverse ODE is reduced to a single ma-
trix multiplication and a vector addition. The compu-
tational complexity is O(n2); it is independent of the
equation being solved and the sensor nodes’ placement.
Model based design and automatic code generation sup-
ports the straight-forward integration of the algorithm
on an embedded system. Functionally equivalent C
code is generated via MATLAB Coder Toolbox from
the model and verified via software-in-the-loop (SIL)
and processor-in-the-loop (PIL) testing for the Atmel
8-bit AVR RISC-based ATmega328 microcontroller.

2. REFERENCES
[1] P. O’Leary and M. Harker. A framework for the

evaluation of inclinometer data in the measurement
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Scope of this Work

Measurement data is continuously processed by cyber-physical

systems in condition monitoring applications, e.g., sensor net-

works with inclinometers. We present an efficient numerical

ordinary differential equation (ODE) solver that executes on

embedded systems in real-time.

Structural Condition Monitoring via Inclinometers
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Structural condition monitoring is required during subsurface con-

structions. Geo-mechanical effects such as ground subsidence

are monitored using inclinometer sensors. Reconstruction of the

ground displacement from the orientation of the inclinometers

is an inverse problem. Additionally, there are points where con-

straints are placed on the construction, for example pillars, which

in turn define initial-, inner- or boundary values.

The goal is to formulate an algebraic framework, which can be

translated to functionally equivalent C code.

Numerical ODE Solver for Real-Time Applications

ODEs can be modeled as a least squares problem with linear

constraints in the form,

Ly = g subject to CT y = d, (1)

where y is the solution vector, g is the discrete perturbed forcing

function vector, L is the discretized linear differential operator,

the matrix C and the vector d are the discretized constraints.

The ODE’s solution for y is then efficiently computed as

y = M g + yh. (2)

The online solution of the inverse ODE is reduced to a single

matrix multiplication and a vector addition.

Both, the constrained linear differential operatorM and the ODE’s

homogeneous solution yh, can be computed offline with high-

precision arithmetic as a preparatory step. Only the sensor data

g changes with each measurement during run-time. The compu-

tational complexity is O(n2); it is independent of the equation

being solved and the placement of the sensor nodes.

preparatory (offline) computation run-time (online) computation

define system's constraints CTy = d

determine linear diff. operators             
with optimal support length
                  
solve homogeneous solution yh

acquire perturbed measurements g

compute particular solution
                 and
solve inverse problem

yp = M g

y = yp + yh

estimate error propagation Λy = MΛg M
T

L,M, ls

The system’s uncertainty can be estimated from the solution’s co-

variance Λy, which is directly computable from the forcing func-

tion’s covariance Λg via Λy = MΛgM
T.

Code Generation and In-the-Loop Verification
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The C code is generated via the MATLAB Coder Toolbox from

the model-in-the-loop (MIL) system and verified via software-

in-the-loop (SIL) and processor-in-the-loop (PIL) testing for the

Atmel 8-bit ATmega328 based Arduino Uno microcontroller.

Conclusions and Results
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Numerical testing with an inverse boundary value problem of

n = 10 nodes revealed a MIL error of < 10−9 between the

analytical and numerical solution, a SIL error of < 10−13 of the

C code and a PIL error of < 10−7 between a 32-bit PC and the

8-bit microcontroller. A sample rate of > 550 [Hz] is reachable

on the embedded system for the run-time computation. This

proofs the real-time capability and numerical efficiency of the

new numerical ODE solver, making it suitable for deployment

even on a low-performance and power-saving embedded system

directly in the field.
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Abstract—This paper presents a mathematical model
and partitioning for a software system for the solution of
inverse problems involving arrays of sensors. Handling the
data from the array of sensors as vectors and matrices,
while defining the inverse problem as a least squares
computation with linear constraints, leads naturally to the
use of matrix algebra for the solution of the system of
equations. The matrix algebra is also well suited for the
use of automatic code generation to support the rapid
development of embedded code. The full functionality
of the proposed methods was demonstrated with an
inclinometer based system for the monitoring of structural
deformation.

I. DEFINITION AND INTRODUCTION

There are many different definitions for what consti-
tutes a cyber physical system (CPS) [1]–[10]. The most
succinct and pertinent to this paper is the definition
given be the Institute of Electrical and Electronics
Engineers (IEEE) [1] as well as the Association for
Computing Machinery (ACM)1: A CPS is a system
with a coupling of the cyber aspects of computing and
communications with the physical aspects of dynamics
and engineering that must abide by the laws of physics.
This includes sensor networks, real-time and hybrid
systems.

In this paper we present a matrix algebra formula-
tion for the solution of inverse problems which utilize
the ordinary differential equation (ODE) describing the
physical behavior of the system, together with their
naturally occurring constraints. This ensures that the
solution computed from the sensor data abides by the
laws of physics describing the system being monitored.
Such inverse problems are of general interest when
monitoring critical infrastructure [11]. An introduction
to inverse problems in measurement can be found
in [12].

The method is applied to the measurement of struc-
tural deformations [13] and geo-mechanical monitoring.
A good overview of applications can be found in
Machan and Bennett [14]. Further applications, in the
monitoring of rigid structures, can be found in [15]–
[17]. None of the cited literature deals with the solution

1ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS) (iccps.acm.org)

of over constrained systems. This paper extends on the
work previously published [18], [19] by developing a
procedure which works for both homogeneous and non-
homogeneous arbitrary constraints. Additionally a sys-
tem partitioning and software architecture is presented
for the implementation of a CPS for monitoring critical
infrastructure.

II. MATHEMATICAL MODEL AND SOFTWARE

ARCHITECTURE.

A schematic diagram for the architecture proposed
for the monitoring of large structures with an array
of sensors is shown in Fig. 1. Starting from the left
in this figure: there is an array of sensors mounted
on a large physical structure. The sampled sensor data
can be concatenated to form a vector of measurement
values m. These are spatially and temporally discrete
observations of a continuous system. Obtaining the
desired measurement result y from m is an inverse
problem associated with an ODE. Now concatenating
a time sequence of n measurements yields a matrix
M = [m1 . . .mn]; whereby the vertical and hori-
zontal directions correspond to the spatial and time
domains respectively. Consequently, starting from M
it is possible to perform both spatial and temporal
processing simultaneously. This corresponds to inverse
partial differential equations (PDE).

Handling the data in this manner and defining the
inverse problem as a least squares computation with
linear constraints, leads naturally to the use of matrix
algebra for the solution of the system of equations.

A. Inverse problems for ODEs

The aim is to reconstruct the response of the sys-
tem y, given: the linear differential operator [20] L
describing the behavior of the sensors; an algebraic
description [19] Ay = d for the constraints implicitly
defined by the physical structure of the system; and a
set of basis functions B suitable to model the modes
of the system, i.e., a linear combination of the modes
describes the deformation B z = y. The problem to be
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solved is,

min
y

‖ Ly −m‖22, (1)

given Ay = d, (2)

and y = B z. (3)

The matrix of basis functions B is orthonormal, i.e.,
BT B = I. There is a numerically very efficient direct
algebraic solution to this set of equations: defining
H � B {AB}+, P � Bc {LBc}+ and K � (I− PL) H,
yields,

y = Kd+ Pm. (4)

The constrained basis functions Bc fulfill the constraints
in a homogeneous manner, their derivation and gen-
eration are described in [19]. The matrices K and P
can be computed a-priori, consequently solving the in-
verse problem only requires the computation of Eqn. 4.
The exact number of computations and the memory
requirements are known in advance, making the solution
suitable for real-time computations. This portion of the
computation is performed on the embedded system,
enabling each node to independently determine if a
measurement reveals a problem with the system being
monitored. In this manner each node can notify the ap-
propriate users via web-services of a potential problem
independent of the availability of the cloud.

B. Inverse problems for PDEs

To enable long-term monitoring and trend analysis,
each measurement m is sent via a TCP/IP link to the
supervisory system, see Fig. 1. The individual results
are now concatenated to form a matrix M. The most
general formulation for the PDE describing Y in terms
of M is,

M = Qs YQT
t + Gs Y + YGT

t + E. (5)

The subscripts s and t indicate that the matrix is
operating in the spatial or time domains respectively.
Solving this equation for Y given M is an inverse PDE
problem. For many cases, e.g., surface reconstruction
from gradient fields [21], there are very efficient numer-
ical solutions to this equation. An example of surface
reconstruction with regularization from a sequence of
measurements is shown in Fig.4. this computation has
the fundamental structure,

Y = Vs MVT
t −W. (6)

III. EXPERIMENTAL TESTING

The experimental setup2 used to test the methods
proposed in this paper is shown in Fig. 2. It consists of
a deformable beam of length l = 1540mm with a series
of 14 inclinometers which measure the local gradients.

2The raw sensor data, the reference measurements and the
code to perform the reconstruction are made available at
http://www.mathworks.at/matlabcentral/fileexchange/authors/321598.

A digital serial bus connects the chain of sensors to an
ARM based embedded computing platform. The system
software has been partitioned according to the structure
shown in Fig. 1. Automatic code generation has been
used to generate the C-code required to solve the inverse
problem involving the ODE. This portion of the system,
i.e., solving Eqn. 4 in real-time, is embedded on the
ARM processor. The results of the computation are
made available via a TCP/IP connection and via a web-
server.

The data from the embedded system were acquired
and concatenated on a supervisory system. Here the
matrix equation (Eqn. 6) is solved to implement si-
multaneous reconstruction and filtering. The result is
a surface representing the deformation of the structure
as a function of time.

A. Inverse problems for ODEs

For these measurements the left end x = 0 of
the beam was fixed at y1 = 0mm and the right end
x = 1540mm at y14 = 80mm to simulate homo-
geneous and non-homogeneous constraints respectively.
Then the beam was subjected to three different deforma-
tions, the local gradients were measured and the curves
were reconstructed from these gradients while fulfilling
the constraints. Additionally, mechanical calipers were
used to perform reference measurements, enabling a
verification of the measurement method. The recon-
structions from the three measurements, together with
their reference mechanical measurements are shown in
Fig. 3. There is an excellent agreement between the
curve reconstruction from gradients and the reference
data.
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Fig. 3. Three independent measurements with different deformations
of the beam. The continuous lines correspond to the reference
mechanical measurements and the dashed lines are the respective
reconstructions from the gradient data. The left end of the beam was
fixed at y1 = 0mm and the right end at y14 = 80mm to simulate
homogeneous and non-homogeneous constraints respectively.
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B. Inverse problems for PDEs

In an additional test n = 100 measurements were
made and concatenated to form a measurement matrix
M. The PDE corresponding to reconstruction in the
spatial domain and low-pass filtering in the time domain
was implemented with the following equation:

Y = {K [d . . .d] + PM} F. (7)

The matrix F � B(:, 1 : j)BT(:, 1 : j) is the projection
onto a set of discrete orthogonal polynomials truncated
to have j basis functions. The results for the simultane-
ous reconstruction and filtering are shown in Fig. 4.
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Fig. 4. Surface reconstruction from n = 100 sequential measure-
ments of local gradients, 10 intermediate contours are shown on the
surface.

IV. CONCLUSION

This paper has presented a mathematical model and
partitioning for a software system for the solution of
inverse problems involving arrays of sensors. Handling
the data in the proposed manner and defining the
inverse problem as a least squares problem with linear
constraints, leads naturally to the use of matrix algebra
for the solution of the system of equations. The full
functionality of the proposed methods was demonstrated
with an inclinometer based system for the monitoring
of structural deformation.
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A

An Algebraic Framework for the Real-Time Solution
of Inverse Problems on Embedded Systems

Christoph Gugg, Matthew Harker, Paul O’Leary and Gerhard Rath

This article presents a new approach to the real-time solution of inverse problems on embedded systems.
The class of problems addressed corresponds to ordinary differential equations (ODEs) with generalized
linear constraints, whereby the data from an array of sensors forms the forcing function. The algebraic
discretization of the problem enables a one-to-one mapping of the ODE to its discrete equivalent linear dif-
ferential operator, together with an additional matrix equation representing the constraints. The solution of
the equation is formulated as a least squares (LS) problem with linear constraints. The LS approach makes
the method suitable for the explicit solution of inverse problems where the forcing function is perturbed by
noise. The algebraic computation is partitioned into a initial preparatory step, which precomputes the ma-
trices required for the run-time computation; and the cyclic run-time computation, which is repeated with
each acquisition of sensor data. The cyclic computation consists of a single matrix-vector multiplication, in
this manner computation complexity is known a-priori, fulfilling the definition of a real-time computation.
Numerical testing of the new method is presented on perturbed as well as unperturbed problems; the results
are compared with known analytic solutions and solutions acquired from state-of-the-art implicit solvers.
In all performed numerical tests the new method was both faster and more accurate for repeated solutions
of the same ODE. The solution is implemented with model based design and uses only fundamental linear
algebra; consequently, this approach supports automatic code generation for deployment on embedded sys-
tems. The targeting concept was tested via software- and processor-in-the-loop verification on two systems
with different processor architectures. Finally, the method was tested on a laboratory prototype with real
measurement data for the monitoring of flexible structures. The measurement arrangement consists of an
embedded system with a chain of 14 inclinometer sensors connected to it, two additional nodes implement
a total of four constraints. The problem solved is: the real-time overconstrained reconstruction of a curve
from measured gradients. Such systems are commonly encountered in the monitoring of structures and/or
ground subsidence.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-Time
and Embedded Systems; G.1.7 [Ordinary Differential Equations]: Boundary value problems; I.2.2 [Au-
tomatic Programming]: Program transformation

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: cyber-physical systems, embedded systems, inclinometers, measure-
ment, numerical solver, ordinary differential equations, inverse problems, constraints, model based design,
automatic code generation, in-the-loop verification

1. MOTIVATION AND PROBLEM STATEMENT
The original motivation for this work was the development of a large scale cyber-
physical system (CPS) to monitor ground subsidence and possible deformation of struc-
tures during the construction of the new City-Circle Line subway in Copenhagen, Den-
mark. Very stringent geo-mechanical monitoring requirements have been established
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for underground construction projects in urban areas following an accident on March 3,
2009 in Cologne, Germany: the building of the city’s archive collapsed into a Stadtbahn
tunnel under construction on the Severinstraße, killing two people1. The monitoring
concept consists of a large number of vertical holes sunk along the planned path of
the tunnel distributed over a distance of approximately 15 [km]. Each of these holes is
equipped with a series of rods, and each rod is equipped with a pair of inclinometers,
effectively forming a chain of inclinometers. Chains of inclinometers are used in the
monitoring of ground subsidence [Machan and Bennett 2008] and for measuring the
deformation of structures [O’Leary and Harker 2012]. Determining the ground move-
ment from the orientation of the rods is an inverse problem. Additionally, there are
points where constraints are placed on the construction, for example pillars, which in
turn define initial-, inner- or boundary values for the inverse problems. Reconstructing
the deformation under these circumstances requires the solution of an inverse bound-
ary value problem for each chain of rods. Consequently, it is necessary to solve a large
number of inverse initial-, inner- or boundary value problems in real-time for different
sets of measurement data. Each chain of inclinometers is equipped with an embedded
system that acquires and processes the data from the sensors, forming an independent
sensor node. The individual sensor nodes are part of a larger sensor network. Decen-
tralized processing of measurement data introduces an implicit form of parallelism
thanks to distributed computing. The network’s bandwidth demands are lowered due
to the higher information density.

Necsulescu also identified the necessity of solving inverse problems in critical infras-
tructure monitoring [Necsulescu and Ganapathy 2005]. Lee [Lee et al. 2012] identified
that predictable real-time solutions of complex systems, with an understandable con-
currency, are a key issue for future developments of CPS. He points out that this issue
was inadequately dealt with in the past. There are numerous engineering and scien-
tific applications which require the real-time solution of inverse problems, e.g. [Loh
and Dickin 1996]. Therefore, this is clearly an area of research which is of significance.

2. SCOPE OF THE ARTICLE
This article develops a new method for the numerical solution of inverse problems
based on a matrix algebraic approach. It provides global least squares solutions to
inverse initial-, inner- or boundary value problems. The method has been developed
specifically with the aim of solving inverse problems associated with measurement
systems in an efficient manner, whereby multiple measurements are performed over
time and repeated solutions of the same equation are required. The goal is to directly
embed the solver onto the sensor node’s hardware. The main contributions of the arti-
cle are:

(1) A new algebraic approach to the numerical solution of inverse problems is derived.
The method splits the calculations into two portions: a preparatory (offline) com-
putation and a run-time (online) computation. The run-time computation is re-
peatedly performed with each new measurement. Solving the inverse problem at
run-time is reduced to one matrix multiplication and one vector addition. In this
manner, the exact number of floating point operations (FLOPs) is known a-priori,
W (n) = 2n2, where n is the number of measurement points. Additionally, the mem-
ory requirements are known in advance. Consequently, a strict upper-bound O(n2)
can be determined for the execution time on a given processor. This makes the
method, by definition, suitable for real-time applications. Furthermore, the covari-
ance propagation for perturbations of the sensor inputs to the solution is derived.

1An article relating to the incident can be found at http://www.ksta.de/html/artikel/1266930835566.shtml
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This enables the computation of a confidence interval for the solution. The run-
time computational complexity of estimating the confidence is O(n).
Extensive model-in-the-loop (MIL) testing of the method on a personal computer
(PC) is presented to validate the method. The results of a classical Runge-Kutta
type approach are compared with those obtained using the new approach. The
results demonstrate the accuracy of the method and its numerical efficiency.

(2) A model based design (MBD) approach is presented which enables the system
formulation at an abstract level. The presented model only utilizes fundamental
linear algebra operations such as matrix multiplication and vector addition; con-
sequently, automatic generation of C code becomes possible. Software-in-the-loop
(SIL) verification is used to proof the functional equivalence of the model and the
generated code. Embedded targeting enables the deployment of the code directly
onto a microcontroller. The results computed by the embedded processor are com-
pared to the results computed by the model running on a PC via processor-in-
the-loop (PIL) verification. The viability of the model is demonstrated on a very
limited, yet cheap and available, 8-bit microcontroller. Furthermore, a laboratory
setup with a chain of inclinometers mounted on a flexible structure demonstrates
the applicability of the model for real measurement data.

3. CONTINUOUS MEASUREMENT MODEL
The measurement model is central to this article: it defines the class of problem which
is being solved. Furthermore, it defines the requirements for the MBD environment.
The aim is to use MBD to automatically generate the functionally equivalent code
which is capable of solving any example of this problem on an embedded system in
real-time.

The class of inverse problems being considered in this article consist of an ordinary
differential equation (ODE) of degree m of the form

am(x) y(m) + am−1(x) y
(m−1) + . . .+ a1(x) y

′ + a0(x) y = g(x), (1)

where y is a function of x, y(i) is the notation for the ith derivative of y with respect
to x, ai(x) are the coefficient functions and g(x) is the forcing function. Additionally, a
minimum of m independent initial-, inner- or boundary values are required to ensure
that there is a unique solution to the equation. The n measurements, forming the vec-
tor g, correspond to discrete samples of the forcing function g(x). The n measurements
may emanate from n sensors forming a spatial array or from a time sequence of n mea-
surements from one single sensor. In this class of problems, the forcing function g(x),
the input, is considered to be perturbed, since it is formed from measurements which
are subject to noise. Only the forcing function g(x) changes from one measurement to
the next. The task is to recompute y(x) for each new measurement g(x). This type of
problem occurs, for example, in the monitoring of structures [Burdet and Zanella 2002;
Golser 2010; Harker and O’Leary 2013a].

The new method can, however, deal with overconstrained systems, i.e., there are
p independent constraints whereby p > m. The initial-, inner- or boundary values
correspond to constraints on the function value y(x) or its derivatives y(i)(x) at specific
x locations. Both Dirichlet and Neumann boundary conditions are special cases of such
constraints. The nature of the constraints determines if the system is considered to be
an initial value (IVP) or boundary value (BVP) or inner value problem.

One peculiarity of this class of inverse problems is: that the abscissae, i.e., the po-
sitions where the solutions are required, is determined by the measurements; these
positions are called the nodes. In the case of a chain of sensors, the physical position of
the sensor corresponds to the abscissae x. In temporal sequences, it is the time points
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of the individual measurements which define the abscissae. Consequently, we are not
free to select the positions of where the ODE is to be solved. This precludes the use of
variable step size algorithms. A further consequence is that a general framework for
this type of inverse problem has to be capable of computing the solution for arbitrary
nodes.

4. THEORY OF ORDINARY DIFFERENTIAL EQUATIONS
Some preliminary theory is required if an objective evaluation of previous work is to
be performed. The numerical solution of an inverse problem requires the discrete ap-
proximation of a continuous system. Consequently, we can derive properties of the con-
tinuous operations which must be fulfilled by the corresponding discrete operators. We
first define the continuous domain differential operator D such that, D(i) y ≡ y(i). Most
commonly, the discrete implementation of the differentiating matrix is implemented
using polynomial interpolation. The properties of D with respect to a polynomial are
essential to the desired behavior of numerical differentiation. Defining a power series
approximation for y with coefficients ci,

y =

m∑
i=0

ci x
i. (2)

Applying the differential operator D yields,

y′ = Dy =

m∑
i=0

i ci x
i−1 =

m∑
i=1

i ci x
i−1. (3)

By definition of the derivative, the constant portion of the polynomial differentiates
to zero, hence the constant coefficient c0 vanishes. We assume that D is composed of
formulae which are consistent, in the sense that in the limit they define a derivative.
If this is the case then the matrix D should satisfy the following properties, such that
D is a consistent discrete approximation to the continuous operator D:

(1) The matrix D must be rank-1 deficient; i.e, its null space is of dimension one.
(2) The null space of D must be spanned by the constant vector 1α; equivalently, the

row-sums of D are all zero,

D1α = 0. (4)

These conditions ensure that the differentiating matrix D is consistent with the con-
tinuous domain definition of the derivative. Given that, interpolating polynomials are
unique, the formula for the derivative should be independent of the particular polyno-
mials chosen for interpolation. However, differences do lie in the numerical behavior
of different formulas; regardless, a given set of nodes, x, should uniquely define the
differentiating matrix of a given polynomial degree of accuracy.

For the purpose of treating ODEs, we use the general notion of a linear differen-
tial operator [Lanczos 1997]. Specifically, by substituting the continuous differential
operator D for the differentials y(i) in Eqn. (1) yields,

am(x)D(m) y + am−1(x)D
(m−1) y + . . .+ a1(x)Dy + a0(x) y = g(x). (5)

Factoring y to the right yields,{
am(x)D(m) + am−1(x)D

(m−1) + . . .+ a1(x)D + a0(x)
}
y = g(x). (6)

The linear differential operator L for the continuous equation can now be defined as,

L � am(x)D(m) + am−1(x)D
(m−1) + . . .+ a1(x)D + a0(x). (7)
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Consequently, Eqn. (1) is written as,

Ly = g(x). (8)

5. OVERVIEW OF NUMERICAL ODE SOLVERS
The Taylor matrix uses the known analytical relationship between the coefficients, s, of
a Taylor polynomial and those of its derivatives, ṡ, to compute a differentiating matrix
D for the solution of ODEs [Kurt and Cevik 2008]. The matrix D together with the
matrix of basis functions arranged as the columns of the matrix B are used to compute
numerical solutions to the differential equations. The method of the Taylor matrix
was extended to the computation of fractional derivatives [Keskyn et al. 2011]. The
most serious problem associated with the Taylor matrix approach is that it requires
the inversion of the Vandermonde matrix, a process which is numerically unstable.
The errors in the differentiating matrix are strongly dependent on the degree of the
polynomial, i.e., the number of nodes and the node placement.

A Chebyshev matrix approach was presented by Sezer [Sezer and Kaynak 1996] and
others [Welfert 1997; Weideman and Reddy 2000; Driscoll et al. 2008; Jewell 2013]. The
approach is fundamentally the same as for the Taylor matrix, whereby the Chebyshev
polynomials are used as an alternative to geometric polynomials. The advantage of
defining polynomials on the Chebyshev points is that they deliver stable polynomials
and differentials. The main disadvantage, however, is that the numerical solution to
the differential equations is restricted to the locations of the Chebyshev points; this
lacks the generality needed for inverse problems2 being considered here.

Synthesizing differentiating matrices for arbitrary nodes is an issue one might as-
sume has been sufficiently dealt with in literature. However, a closer examination of
literature and textbooks shows that some clarification is still necessary. Most books
on spectral and pseudo-spectral techniques, e.g., [Fornberg 1998], approach differenti-
ation matrices from the view point of simulation and do not consider the connotations
of inverse problems. In a simulation, it is in general possible to select the position of
the nodes, so that they are well suited to the solution method, e.g., it is possible to use
either the Chebyshev or Legendre collocation nodes. This luxury is not given with in-
verse problems; the placement of the sensors may be arbitrary and or the time points
for which solutions are required are evenly spaced. Consequently, it is necessary to
generate differentiating matrices for truly arbitrary nodes.

There are a number of papers [Welfert 1997; Weideman and Reddy 2000] which ex-
plicitly claim to compute differentiating matrices using global methods for arbitrary
nodes and there are some toolboxes which suggest this is possible [Jewell 2013]. The
published code for all these methods generate degenerate differentiating matrices with
null spaces of dimensions higher than one. That is, they do not fulfill the prereq-
uisites defined in Section 4. In contrast, the local polynomial approximation to dif-
ferentiation [Savitzky and Golay 1964] with correct end-point formulas [Burden and
Faires 2005] generates a consistent matrix. The poor behavior of high order polyno-
mial interpolation and differentiation is due to Runge’s phenomenon, which will be
always be present due to the uniqueness of interpolating polynomials; hence, approx-
imations of relatively low degree are preferable to global approaches. The published
methods [Welfert 1997; Weideman and Reddy 2000] work reliably only for very small

2This is not dismissing the Chebyshev methods, it simply points out that they are limited in their applica-
tions. Furthermore, the methods in this article work for truly arbitrary node placements. Consequently, the
Chebyshev polynomials are only a special case.
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problems3, n ≤ 10; this is not sufficient to address most real inverse problems encoun-
tered in engineering applications. We conclude that global techniques for computing
differentiating matrices are not applicable to large scale inverse problems.

Finite difference methods [Strikwerda 2004; Smith 1985] rarely deal with higher
degree approximations, typically 3 or 5 point formulas are used. The issue of correct
end point formulas is sacrificed for the advantage of band diagonal matrices. In gen-
eral, these techniques deal with Dirichlet and possibly Neumann boundary conditions.
However, they provide no method of implementing general boundary conditions of the
form

D(i) y(xj) = d, (9)

where D(i) represents the ith derivation of y evaluated at the point x = xj with the
value d. There may be p ≥ m such constraints.

A new matrix approach for the solution of inverse problems, associated with monitor-
ing of structures using inclinometers, was presented [O’Leary and Harker 2012] and
generalized in [Harker and O’Leary 2013a]. It was proven that ODEs can be formu-
lated as a least squares problem with linear constraints, of the form:

Ly = g subject to CT y = d, (10)

whereby L is the discretized linear differential operator, y is the solution vector sought
(function values), g is the discrete forcing function (measurement values), C defines the
type of constraints and d are the values of the constraints. The least squares solution
makes the method suitable for problems where the forcing function g(x) is perturbed.

The continuous linear differential operator L in Eqn. (7) is discretized as the matrix
L, such that

L � Am Dm + Am−1 Dm−1 + . . .+ A1 D+ A0, (11)

where Ai = diag(ai(x)), the matrix Di is a local discrete approximation with support
length ls to the continuous differential operator D(i). Care is taken to implement the
correct end-point formulas, ensuring the degree of approximation is constant for the
complete support. The details of generating these matrices can be found in [Harker and
O’Leary 2013a], as can the explanation for the generation of the constraints CT y = d.
Furthermore, MATLAB toolboxes are available [Harker and O’Leary 2013b; 2013c] for
all the functions required in this article.

6. SOLVING THE INVERSE PROBLEM
Previously the problem in Eqn. (10) was solved using an efficient and accurate solution
which is found in [Golub and Van Loan 1996, Chapter 12]. In this paper we take a
different approach to partitioning the numerical computations, which takes advantage
of the fact that the inverse problem is to be solved repeatedly. Fundamentally, the
new approach delivers exactly the same explicit solution; however, through the new
partitioning of the computation it is possible to ensure that the numerical work W (n)
and the memory required are run-time are known exactly in advance. Consequently, an
exact upper-bound for the execution time can be determined, this by definition makes
the solution suitable for real-time applications4.

The computation of the solution is separated into two portions:

3This can be verified by running the available code with n = 20. Testing the resulting D matrix or its
singular values reveals that a null space of higher dimension is present. As a consequence, the matrix does
not fulfill the necessary prerequisites.
4A real-time system is defined as any information processing activity or system which has to respond to
externally generated input stimuli within a finite and specified period [Young 1982].
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(1) The preparatory computations which can be performed offline. They are character-
istic for the equation being solved and change neither with the acquisition of new
measurement data, nor with new values for the boundary conditions. These com-
putations need not be performed on the embedded system and may be computed
with higher precision arithmetic on a host system if necessary.

(2) The online computation, which must be performed repeatedly with each new set
of sensor data. This is the solution which is computed explicitly on the embedded
system in real-time.

6.1. Preparatory Computations
The constraints on the solution are defined by,

CT y = d. (12)

Each column of C, together with the corresponding row of d, defines a constraint. Con-
sequently, p = rank {C } is the number of linearly independent constraints. Addition-
ally, the constraints must be consistent, i.e., d ∈ range

{
CT }. A minimum of p ≥ m

constraints are required to ensure a unique solution to an ODE of degree m. We now
define the matrices: P, such that range {P } = range {C }, i.e., P is the Moore-Penrose
pseudo inverse of CT, hence P = {CT}+; F, an orthonormal basis function set for the
null-space of CT, i.e., FT F = I and range {F } = null

{
CT}; and H � P + FR, where R is

an arbitrary matrix. In this manner the solution for y can be parameterized as,

y = Hd+ Fβ, (13)

where β is the parameter vector. It is important to realize that neither H nor F are
unique. Any function which fulfills the constraints is a valid selection for yc. A function
yc which fulfills the constraints can be defined as,

yc � Hd, (14)
= {P+ FR} d. (15)

The matrix R is arbitrary, consequently the values can be selected so that yc fulfills
additional conditions without altering the solution for y. In Fig. 1 three different solu-
tions for the constraints y(0) = 1 and y(1) = 0 are shown, to demonstrate this fact. It
may be advantageous for a specific problem to select a particular solution for yc which
has desirable properties; for example, when solving the ODE for a cantilever it may
be appropriate to select a polynomial solution for yc, since the solution to the ODE
is known to be a polynomial. More formally: the matrix H =

{
CT}− is a generalized

inverse [Ben-Israel and Greville 2003] of CT. A generalized inverse A− of a matrix A
fulfills the condition,

AA− A = A. (16)
The Moore-Penrose pseudo inverse is the particular generalized inverse, where R = 0;
it yields an inverse which minimizes the 2-norm of the solution vector; alternatively,
a QR decomposition can be used to compute a generalized inverse which leads to a
solution vector with a minimum number of nonzero entries. The selection of an appro-
priate solution for yc is more important when solving inverse problems, since it has
implications for the implementation of regularization.

The orthonormal basis functions F for the null-space of CT are also not unique. They
can be obtained directly from CT by applying QR decomposition and partitioning Q
according to the rank {R }. Alternatively, constrained basis functions, e.g. constrained
polynomials, can be used to implement a set of orthogonal basis functions F, Fig. 2
shows an example of such admissible functions for the constraints y(0) = 1, and
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Fig. 1: Three different solutions to the con-
straints y(0) = 1 and y(1) = 0.
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Fig. 2: The first four discrete orthogo-
nal constrained polynomials for the con-
straints y(0) = 1 and y(1) = 0, i.e., the first
4 basis functions from F.

y(1) = 0. In the case of inverse problems constrained basis functions offer a method
of implementing spectral regularization [O’Leary and Harker 2012]. The MATLAB li-
brary required to generate discrete orthogonal constrained polynomials is available
at [Harker and O’Leary 2013b].

CT F = 0 and hence CT Fβ = 0. (17)

Substituting Eqn. (13) for y in Ly = g now yields an unconstrained algebraic equation
for the ODE,

L {Hd+ Fβ} = g. (18)

In the class of inverse problems being considered in this article, the forcing function
g is formed from the measurement values which are perturbed, i.e., is subject to noise.
Consequently, the solution of Eqn. (18) is formulated as a least squares problem to
obtain the unique global minimum of

min
β

‖LHd+ L Fβ − g‖22. (19)

The least squares approach has been selected since it delivers a maximum likelihood
solution in the case that g is perturbed by Gaussian noise. A further advantage of
the global least squares formulation is that the solution has no implicit direction of
integration. Avoiding a direction of integration eliminates the problem of accumulation
of errors, as are typical with IVP approaches such as Runge-Kutta. Additionally, the
least squares approach yields a solution which is globally minimum with respect to
all errors in Eqn. (19), i.e., it is also minimizing the consequences of the errors in
the numerical computations. Consequently, the method is suitable for solving both
perturbed and unperturbed problems. Now solving the minimization problem defined
by Eqn. (19) yields,

β = {L F}+ {g − LHd}+ Kγ, (20)

where K is an orthonormal vector basis set for the null-space of L F, i.e., KT K = I and
span {K} = null {L F}. This equation is now expanded into three relevant terms,

β = {L F}+ g − {L F}+ LHd+ Kγ. (21)

A non-empty vector basis set K indicates that the linear differential operator L is not
sufficiently constrained to ensure a unique solution, i.e., there is no unique solution to
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the problem being posed. The requirement for a unique solution is

rank

[
L
CT

]
= n, (22)

where n is the number of nodes. This is a method of determining if the problem is
well defined. Alternately, the singular values of the matrix can be used to determine
if the problem is numerically well posed. We will now assume that the problem is
well posed: with this, the term involving γ vanishes. Now back-substituting for β in
Eqn. (13), yields,

y = F {L F}+ g + Hd− F {L F}+ LHd. (23)

Defining the following abbreviations:

M � F {L F}+ and N � {I−ML} H, (24)

yields,

y = Nd+M g (25)
= yh + yp. (26)

The homogeneous portion of the solution yh = Nd is only dependent of the constraint
values and the particular solution yp = M g is only dependent on the forcing function,
i.e., the measurement values. In the problems considered in this paper the constraint
values do not change from one measurement to the next. Consequently, yh can be
computed a-priori and made available as a vector of constraints for the run-time com-
putation.

6.2. Run-Time Computation
Both M and yh are computed a-priori. A standard PC with higher precision arithmetic
can be used for these computations. In this manner, the final errors in M and yh are
dominated by the rounding effects of converting the double precision values to single
precision for the embedded computation, should the embedded system not support
double precision arithmetic. Substituting M and yh into Eqn. (23) yields,

y = M g + yh. (27)

Only the vector of sensor data g changes with each measurement. Consequently, the
run-time solution of the inverse problem is reduced to a single matrix multiplication
and a vector addition. This makes the repeated computation of the solution very effi-
cient. Given n measurement values, the computational cost W (n) is,

W (n) = 2n2. (28)

For example, a sensor chain with n = 21 inclinometers would require W (n) = 882
FLOPs to solve the inverse problem. The computation effort reduces to

W (n) = n2. (29)

if the processor architecture being used supports a multiply-accumulate5 operation.
Both the exact number of FLOPs and memory required are known prior to the run-time
computation. This enables the computation of a strict upper bound for the execution
time of the equation. Consequently, the method is, by definition, suitable for real-time

5See for example the specifications for the ARM Cortex Microcontroller Software Interface Standard (CM-
SIS) at http://www.arm.com/products/processors/cortex-m/.
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applications. The computational complexity, O(n2), is independent of the placement of
the nodes, the equation being solved and the support length selected.

6.3. Error Estimation and Confidence Interval
There is uncertainty associated with the solution of any inverse problem. Regulariza-
tion is used to control this uncertainty. The aim now is to quantify the uncertainty
associated with the solution presented here. The are two primary sources of possible
errors involved in the computation of y in Eqn. (27):

(1) Errors in the values contained in M and yh. The numerical testing (see Section 7)
demonstrates that these errors are negligible, when computed in double precision,
in comparison to realistic perturbations of g. For some embedded systems it is
necessary to reduce the values from double to single precision. Software-in-the-
loop (SIL) and processor-in-the-loop (PIL) testing are used to quantify these errors.
In Section 9 it is experimentally verified that these errors can be ignored.

(2) The errors at run-time are dominated by the perturbations of g, these errors are
orders of magnitude larger than the residual numerical errors in M and yh. Con-
sequently, only errors in g are considered for the covariance propagation. There is
also an approximation error in M based on the choice of the interpolating functions.
These may not be insignificant depending on the nature of the solution y.

The following computation assumes that only the forcing function g is subject to
Gaussian perturbation. The covariance Λy associated with the computation of y using
Eqn. (27), can be explicitly [Brandt 1998] calculated as

Λy = MΛg M
T, (30)

where Λg is the covariance of the forcing function. In practical applications we de-
termine the magnitude of the noise component for each sensor, using dedicated noise
measurements. In this case, and assuming that the noise is independent identically
distributed (i.i.d.) Gaussian noise with standard deviation σg, then,

Λg = σ2
g I, (31)

where σg is a measured value. Substituting this into Eqn. (30) yields,

Λy = σ2
g MMT. (32)

An upper-bound estimate within a given confidence interval for the vector of standard
deviations for y, is computed as,

σy = σg s, (33)

where M = (mij) and the individual elements of the unscaled standard deviation s

are si = (
∑n

j=1 m
2
ij)

1/2, i.e. the square root of the diagonal elements of (MMT). This
term can be computed a-priori; consequently, the run-time computational complexity
for determining the standard deviation of each solution point is O(n).

Alternatively, the error vector ε can be computed for each measurement as the dif-
ference between the forward and inverse problem, i.e.,

ε = g − L (M g + yh) . (34)

A Kolmogorov-Smirnov test can be applied to ε to determine if it is Gaussian. This
yields additional information on the suitability of the model for the specific measure-
ment. Given the standard deviation, the confidence interval with a specific degree of
certainty is computable via the inverse Student-t distribution [Brandt 1998].
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7. MODEL-IN-THE-LOOP TESTING
The aim of this section is to verify the numerical accuracy and efficiency of the new
method on a PC, embedded testing is presented later. We have chosen to solve unper-
turbed problems for the first tests, since these enable the comparison with analytical
solutions and with standard engineering approaches such as Runge-Kutta methods6.
The unperturbed tests enable the separation of the errors involved in computing M and
yh from those resulting from the perturbation of g. It is difficult to define a truly ob-
jective method of comparing solution approaches which are fundamentally different7.
Each approach has its own weaknesses and strengths. The tests have been devised to
reflect, as close as possible, the conditions which are to be expected from the applica-
tion specific method.

7.1. Test A: Initial Value Problem 1
The ODE (details can be found in [Adams 2006]) is a third order (m = 3) non-
homogeneous ODE with constant coefficients ai and p = 3 constraints. The equation
is

y(3) + 3 y′′ + 3y′ + y = 30 e−x given (35)
y(0) = 3, y′(0) = −3, y′′(0) = −47

in the interval 0 ≤ x ≤ 8. The analytical solution to this equation is

y(x) = (3− 25x2 + 5x3) e−x. (36)

In the case of the inverse problems being addressed, the position of the solution
points is determined by the measurement. To simulate this condition, the ode45
solver [Shampine and Reichelt 1997] in MATLAB has been used to solve this dif-
ferential equation. This is a variable step size method which yields both a vector of
abscissae x consisting of n = 77 points and the solution vector y. Exactly those n = 77
points on the abscissae and a support length ls = 9 was used for the test of the new
method. Using the ode45 solver in addition to the analytical solution enables the com-
parison of the new method with well established techniques. The results of the three
computations are shown in Fig. 3. The residual errors, i.e., the difference between the
analytical solution, the new method and the ode45 solutions are shown in Fig. 4. The
2-norm of the residual errors |ε|2 and the computation time for k = 10000 iterations8 for
the solution of the ODE are given in Table I for the ode45 method as well as the new
method. The first observation is that the residual numerical errors for the new method

Table I: The 2-norm of the residual errors |ε|2 and the computation time for k = 10000
iterations for the solution of the ODE, for the ode45 method and new method (New).
These computations were performed with an Intel Core 2 Duo CPU P8600 at 2.4 [GHz]
with 2.9 [GB] RAM.

method |ε|2 time (k = 10000)
ode45 1.79 10−3 29.823728 [s]
New 1.14 10−7 0.061681 [s]

6The MATLAB ode45 implementation of a Runge-Kutta method was used for this purpose.
7To support independent verification of our results, we have made the MATLAB code available which we
used to generate all the results presented in this section, see http://www.mathworks.com/matlabcentral/
fileexchange/45947.
8It is not the absolute times which are important, since they will change from one platform to another. It is
the relative speed which shows the potential performance of the new method.
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Fig. 3: The plot shows the analytic solution
from Eqn. (36), the solution with the new
method with ls = 9 as well as the solution
by a Runge-Kutta ode45 method. All so-
lutions are evaluated at exactly the n = 77
points provided by the ode45 method.
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Fig. 4: Residual errors: difference of the
new numerical solution vs. the analyti-
cal solution and the solution by a Runge-
Kutta ode45 method vs. the analytical so-
lution. The new method is approximately
4-orders of magnitude more accurate than
the ode45 method, for exactly the same
abscissae.

are approximately 4-orders of magnitude smaller than with the ode45 method and the
computation is almost 500 times faster. Reducing the error bound for the Runge-Kutta
method will improve the numerical accuracy, but at the expense of computational ef-
fort. In order to reduce the error by 4-orders of magnitude in the Runge-Kutta solution,
an even higher degree Runge-Kutta method must be formulated, which in turn would
require unreasonably high computational effort. The very small errors are significant:
since, when computing the confidence interval for the solution, they can be neglected
when they are small in comparison with the perturbations of the forcing function.

The comparison of speed is somewhat subjective, since we have no insights into how
much function-call-overhead is involved in the MATLAB implementation; neverthe-
less, it does show the potential speed of the new approach. This test demonstrates the
ability of the new method to compute solutions to the ODE at arbitrary given nodes
with a very high accuracy.

7.2. Test B: Alternative Node Placement for Initial Value Problem 1
In this test the same ODE is solved as in Test A, however, a reduced number of n = 20
evenly spaced nodes has been selected for the new method since systems sampling
in time in general use even spacing. The results are shown in Fig. 5 and 6. The new
method achieves the same solution quality, in terms of accuracy, as the ode45 method,
however with a significantly reduced number of nodes. This corresponds to an accurate
solution of the inverse problem with a small number of sensors.

7.3. Test C: Initial Value Problem 2
The second example is a second order (m = 2) ODE with variable coefficients ai(x) and
p = 2 constraints. This demonstrates the ability of the method to deal with variable
coefficients and with solutions which are irrational functions. The equation is,

2x2 y′′ − x y′ − 2y = 0 given (37)
y(1) = 5, y′(1) = 0
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Fig. 5: The plot shows the analytic solution
from Eqn. (36), the solution with the new
method with ls = 9 and n = 20 as well
as the solution by a Runge-Kutta ode45
method with n = 77.
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Fig. 6: Residual errors: difference of the
new numerical solution with n = 20 vs.
the analytical solution and the solution by
a Runge-Kutta ode45 method with n = 77
vs. the analytical solution.
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Fig. 7: The plot shows the analytic solution
from Eqn. (38), the solution with the new
method with ls = 15 and n = 69 evenly
placed nodes as well as the solution by a
Runge-Kutta ode45 method with n = 69
variably placed nodes.
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Fig. 8: Residual errors: difference of the
new numerical solution vs. the analyti-
cal solution and the solution by a Runge-
Kutta ode45 method vs. the analytical so-
lution.

in the interval 1 ≤ x ≤ 10. The analytical solution to this equations is

y(x) = x2 +
4√
x
. (38)

The solution’s appearance would not suggest that this is a demanding problem. How-
ever, the analytical solution is the sum of a polynomial and an irrational function.
Computing good estimates for the derivatives of such functions can require a high de-
gree of polynomial approximation. The solution obtained using the new method, the
analytical solution and the result of the ode45 solver are shown in Fig. 7. The high
density of nodes at the start of the interval produced by the ode45 method indicates
that the method required disproportionately many steps for finding a solution with suf-
ficient accuracy. The new method is once again more accurate than the ode45 solver.

7.4. Test D: Selecting a Support Length for Initial Value Problem 2
In this test, the same ODE is solved as in Test C. As pointed out in Section 5, there
is an issue in selecting the support length ls (or degree) of the local approximation for
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the differentiating matrix D. This matrix and the linear differential operator L have
been implemented for all odd support lengths in the range 3 ≤ ls ≤ 25 and the IVP
was solved for each of these implementations. The relative error was computed for the
corresponding solutions as

ε(ls) =
|ya − y|2
|ya|2

, (39)

where ya is the sampled analytical solution and y is the solution computed with the
new method. The log10(ε) vs. ls is shown in Fig. 9. This result shows that there is
a minimum in the relative error for ls = 15, indicating that there is a justification
for implementing local approximation to derivatives for specific problems with high
numbers of nodes9. The dependence of ε on ls is a function of the equation being solved.
There will be no solution that is optimal for all cases. With the proposed method the
necessary ls is determined during the preparatory computations and not at run-time.
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l
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10
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)

Fig. 9: The relative error ε has a minimum for ls = 15.

7.5. Test E: Inverse 3-Point Boundary Value Problem
The following test is an over constrained first order (m = 1) 3-point inverse BVP10;
however, with p = 4 constraints at 3 locations on the abscissae. It belongs to the class
of inverse multi-point BVPs11. The constraints implemented are both: homogeneous
and non-homogeneous; as well as Dirichlet and Neumann boundary conditions. This
example has been chosen to demonstrate the numerical efficiency and behavior of the
method with respect to a perturbed inverse BVP. Furthermore, it demonstrates the
ability of the algebraic framework to deal with generalized constraints. Synthetic data
is produced for a function and its analytic derivatives, in this manner the result of the
reconstruction can be compared with the function from which the data was derived.

The problem being considered is to reconstruct a curve y from multiple local mea-
surements of the curve’s gradients g while fulfilling a set of constraints CTy = d, which
are not restricted to the ends of the support, i.e., inner constraints are also present.

9Many books [Burden and Faires 2005; Lapidus and Pinder 1999; Strikwerda 2004] discuss the possibility of
implementing approximations of higher degree; however, they never actually show comparative numerical
results for practical problems.
10At least one of the constraints is interior, since the constraints are not restricted to the boundaries.
11Although we have been able to find a number of publications on methods relating to multi-point
BVPs [Welsh and Ojika 1980; Agarwal et al. 2003], there is very little literature available on inverse multi-
point BVPs, e.g. [Kurylev 1993]. There are no general approaches available at the present time.
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Fig. 10: First order (m = 1) constrained test function and its analytical derivatives: this
function fulfills all p = 4 constraints specified in Eqn. (41) and (42). The homogeneous
and non-homogeneous Dirichlet and Neumann constraints are marked at the three
locations [0, 0.7895, 1] in the top and bottom plots respectively.

Furthermore, the measurements are perturbed by white noise. The ODE is

y′(x) = g(x) + ε, (40)

where ε is the error caused by the forcing function’s perturbation. This equation is
subject to the homogeneous and non-homogeneous Dirichlet boundary conditions,

y(0.7895) = 0 and y(1) = −0.1 (41)

as well as the non-homogeneous and homogeneous Neumann boundary conditions,

y′(0) = 1 and y′(1) = 0. (42)

A synthetic test function which fulfills these conditions was generated by combining
an arbitrary polynomial of 4th degree,

y(x) = 1.1x4 + 0.4x3 + 0.5x2 − 1.2x− 0.3, (43)

with the four constraints, this yields an 8th degree polynomial12 which also fulfills the
constraints:

yc(x) =− 0.46985x8 + 0.41127x7 + 0.34891x6 + 0.03827x5

+ 1.0323x4 − 1.5886x3 − 0.88426x2 + x+ 0.011895. (44)

The first derivative of Eqn. (44) can be computed analytically, making it a suitable
test function for constrained curve reconstruction from gradients. The function g(x),
its analytical gradient g′(x) and the constraints are shown in Fig. 10.

The analytical gradient is evaluated at n = 21 points13. Then in a Monte Carlo sim-
ulation, with k = 10000 iterations, the gradients are perturbed by artificial Gaussian
noise with a standard deviation of 1% of the maximum value of Dy(x). For each simu-
lation, a reconstruction is performed with the appropriate M and yh and the statistics
are computed. The result of solving this problem using the proposed method is shown
in Fig. 11, together with the error bars corresponding to the standard deviation of
the reconstructed values observed in the Monte Carlo simulation. The error bars have
been magnified by a factor of 10 to increase the visibility.

In Fig. 12, the bias of the reconstruction is shown, i.e., the difference between the
analytical solution and the mean of the Monte Carlo simulations. Additionally, the

12The theory behind this computation can be found in [Harker and O’Leary 2013d].
13For example, these would correspond to the positions of the inclinometers on a structure being monitored.
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Fig. 11: Comparison of the analytical solu-
tion and the result of the reconstruction
from the perturbed gradients. The two
Dirichlet boundary conditions are marked
on the reconstruction, the two Neumann
conditions are not shown. The error bars
correspond to the standard deviations, i.e.,
an estimate for the 68.3% confidence inter-
val. They are obtained from a Monte Carlo
simulation with k = 10000 iterations. The
error bars have been magnified by a factor
of 10 to increase the visibility.
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Fig. 12: Top: Bias of the reconstruction,
i.e., the difference between the mean re-
construction from the k = 10000 Monte
Carlo iterations and the analytical solu-
tion (the result is scaled by 105 to make the
error visible.). Bottom: The standard de-
viation of the reconstruction as predicted
(P) by the covariance propagation accord-
ing to Eqn. (33) and the results from the
Monte Carlo simulations (MC) (the result
is scaled by 103).

standard deviation of the result as predicted by Eqn. (33) and the results of the Monte
Carlo simulation are compared. These results verify that the solution is, for all in-
tents and purposes, bias free and the predicted uncertainty is correct. The method has
been successfully applied to an inverse three-point boundary value problem, with two
Dirichlet and two Neumann boundary conditions. Not only is the problem solved, but
in addition the uncertainty of the solution is delivered by the new method.

7.6. Summary of the Numerical Testing
The implications of the above test can be summarized as follows:

(1) The new method is capable of solving both perturbed and unperturbed inverse
problems, including initial-, inner- and boundary value problems.

(2) The method enables the formulation and solution of problems with constraints
on arbitrary derivatives of the solution function. Consequently, both Dirichlet and
Neumann boundary conditions can be dealt with. The constraints can be both ho-
mogeneous (d = 0) and non-homogeneous (d �= 0).

(3) The method exhibits significantly smaller numerical errors than the Runge-Kutta
ode45 approach, while being significantly faster. Reducing the error bound for the
ode45 will improve the numerical accuracy, but at the expense of computational
effort. The numerical errors are so small that they can be neglected when solving
inverse problems where the perturbation of the forcing function is significant.

(4) The separation of the solution into a preparatory (offline) and run-time (online)
computation makes the method suitable for embedding in real-time systems.

8. AUTOMATIC CODE GENERATION
The aim of the code generation is, given the definition of specific inverse problem in
terms of a measurement model (see Section 3), to automatically generate the code re-
quired to solve the problem on an embedded computing system. That is, the problem is
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defined as a symbolic definition of a differential equation together with a suitable set
of constraints and a source of data. The system will then solve any ODE, regardless
of its nature (IVP, BVP, etc.) from this specification. A similar concept of automatic
code generation (ACG) for the embedding of convex optimization was explained in lit-
erature [Mattingley and Boyd 2012]. Furthermore, it was shown, that numerical ODE
solvers can be deployed on FPGAs using VHDL in [Huang et al. 2013]. During MBD,
the system is designed on an abstract model level based on the system’s requirements
while ensuring the consistency of the system’s physical representation. ACG is the
task of converting the models and their algorithms to usable code, effectively automat-
ing the time-consuming and error-prone process of low-level programming. Basically,
there are three low-level target languages for embedded systems: multi-purpose ANSI-
C code, which is the focus of this article; hardware description language (HDL) for field
programmable gate arrays (FPGA) or application specific integrated circuits (ASIC);
and IEC 61131-3 compliant languages such as structured text (ST) for programmable
logic controllers (PLC).

Code deployment is the integration of code on the embedded systems. In most cases,
the architecture of the development (host) system (x86 or x64) is largely different from
the embedded (targeted) system (ARM, ATmel, etc.). There are two approaches for
solving this issue compilation of code on the target system if an OS and an appropriate
compiler is present; or cross compilation on the host system via processor virtualiza-
tion, a popular tool to perform this task is the LLVM compiler infrastructure.

After MBD is complete, so called production code is generated. The process strips
out all parameters needed during testing and optimizes the code for performance (low
memory usage, high computational speed) or safety (data consistency, robust algo-
rithms).

8.1. Embedded Target Hardware
The goal is to show that even highly abstract and complex mathematical models are
deployable on the simplest embedded hardware, demonstrating the scalability of the
method. The open-source Raspberry Pi or the proprietary BeagleBone Black are pop-
ular entry-level embedded systems for target programming. The WAGO PFC-200 is
an IEC 61131-3 compliant industrial PLC with open source software. These three sys-
tems are based on 32-bit ARM processors and they run an embedded Linux derivative
as operating system (OS); in the case of the WAGO device it’s a real-time OS. The au-
tomated resource management is the main advantage of embedded systems with an
OS. The low end of the systems is represented by the fully open source Arduino Uno
platform. The utilized Atmel 8-bit AVR RISC-based ATmega328 microcontroller has
no dedicated OS, the program logic is directly stored on the chip’s 32 [kB] flash mem-
ory as firmware. The Arduino Uno has been chosen for experimental PIL testing, see
Section 9. A laboratory experiment featuring the BeagleBone Black is presented in
Section 10.

8.2. MBD Software for Code Generation
Most engineering and scientific software for designing mathematical models has the
functionality to automatically generate standard ANSI-C code from its application-
specific syntax, e.g., LabVIEW, Maple or Mathematica. This is usually necessary, be-
cause most industrial controllers are only programmable with C. A short survey on
tools for ACG has been given by Rafique et al. [Rafique et al. 2013]. This article is fo-
cused on the usage of MATLAB and its Coder toolbox, because it is the standard soft-
ware for mathematical MBD. Code generation fully supports linear algebra. Neverthe-
less, the presented approach is so simple, that a C code parser could be implemented
manually without much effort. Two test cases confirmed the correct functionality of
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algebraic functions generated by MATLAB Coder: C code was generated for QR decom-
position and singular value decomposition. Compiling the code with Microsoft Visual
Studio 2010 for the 32-bit host development system delivered an executable program,
which successfully validated the code via SIL verification. Deploying the same code on
the Arduino Uno confirmed the correct functionality via PIL verification.

Fig. 13: MBD is an iterative approach. Each step requires verification to ensure that
the (sub)system’s requirements are met. In this article, model-in-the-loop (MIL) ver-
ifies the correctness of the algebraic framework on model level, software-in-the-loop
(SIL) verifies the functional equivalence of the generated C code on code level and
processor-in-the-loop (PIL) verifies the correct computation on the employed microcon-
troller on binary level. This graphic shows the process for the Arduino platform.

8.3. Targeting and Verification Process
The ACG process is completely general, the illustration in Fig. 13 shows the procedure
for the Arduino platform. Following steps must be carried out:

Model-in-the-loop (MIL): The system is identified, designed and simulated on ab-
stract model level in an artificial environment, producing MATLAB model code (*.m).
This is an efficient way to estimate model parameters with varying configurations.
This includes the determination of the optimal support length ls, computation of the
constrained linear differential operator M and the homogeneous solution yh. Further-
more, changes in the requirements can easily be implemented in this early design
stage.

Code generation: The MATLAB Coder toolbox is a sophisticated parser engine. It
converts the model code (*.m) into C code (*.c) and the associated header files (*.h).

Code compilation for SIL: MATLAB Coder features the ability to replace model func-
tion calls with calls for MATLAB executables (*.mex). Such functions are wrappers
around compiled C code, which can be directly called from the MATLAB development
environment.

Software-in-the-loop (SIL): The model and the generated C code must be functionally
equivalent, i.e., a certain input must deliver the same output on all abstraction layers.
This is especially relevant when the target language misses certain features of the
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model language, e.g. shorter bit-lenghts of variable types or no support for floating
point operations. The consistency of the model must be ensured on all levels.

Code compilation for PIL: The C code (*.c/*.h) is imported into the Arduino IDE.
The header (*.h) files must be included in the Arduino project’s main (*.ino) file. The C
code is cross-compiled for the Arduino platform delivering a (*.hex) file, which is stored
directly on the ATmega328’s flash memory as firmware.

Processor-in-the-loop (PIL): The code runs on the embedded real-time system. The
outcome is not necessarily the same as during simulation, because the hardware plat-
form used during MIL and SIL is different from the PIL target.

9. SOFTWARE- AND PROCESSOR-IN-THE-LOOP TESTING
In Section 7, the viability of the new method was shown during MIL. In this section,
the test cases are directly executed on the Arduino Uno for PIL verification. The micro-
controller features 2 [kB] SRAM and a processing power of 16 million instructions per
second (MIPS). The 23 general purpose I/O lines, the 6-channel 10-bit A/D converter
and the operating voltage of 1.8 − 5.5 [V] makes it a well suited setup for acquiring
and processing sensor data. The problem size must be scaled down in order to fit the
Arduino Uno’s limited system resources. An Arduino Uno double variable requires
4 [B] of memory, so theoretically, the ATmega328 chip stores up to 512 double variables
in its memory of 2 [kB]. Obviously, operations and other variables also require memory
space, therefore the problem size has been shrunk to 10 input signals. This corresponds
in means of problem size to the Arduino Uno’s 6 analog I/O ports, which are usable to
connect sensors to the device. However, the problem classes are still the same.

The constrained linear differential operator M has then a size of (10 × 10) and the
homogeneous solution vector yh has a size of (10 × 1). Both, M and yh, are computed
a-priori during offline calibration. Only the measurement vector g with size (10 × 1)
changes its values from one measurement to the next. Consequently, the result of the
online computation, i.e. the solution vector y, is of size (10× 1).

9.1. Initial Value Problem 1
The test case in Section 7.1 has been modified to have n = 10 evenly spaced nodes in
the interval 0 ≤ x ≤ 0.1 with a support length of ls = 5. The computation time on the
Arduino Uno is t = 1.788 [ms], i.e., a sample rate of > 500 [Hz] is possible. The error
plots of the numerical computations are shown in Fig. 14 and 15.

9.2. Initial Value Problem 2
The test case in Section 7.3 has been modified to have n = 10 evenly spaced nodes in
the interval 1 ≤ x ≤ 2 with a support length of ls = 5. The computation time on the
Arduino Uno is t = 1.228 [ms], i.e., a sample rate of > 800 [Hz] is possible. The error
plots of the numerical computations are shown in Fig. 16 and 17

9.3. Inverse 3-Point Boundary Value Problem
The test case in Section 7.5 has been modified to have n = 10 evenly spaced nodes in
the interval 0 ≤ x ≤ 0.1 with a support length of ls = 5. New constraints have been
defined to conserve the test case’s characteristics:

y(0.0556) = 0, y(0.1) = −0.1, (45)
Dy(0) = 1, D y(0.1) = 0. (46)

The computation time on the Arduino Uno is 1.796 [ms], i.e., a sample rate of > 550 [Hz]
is possible. The error plots of the numerical computations are shown in Fig. 18 and
19. In contrast to the previous test cases, here the SIL verification delivered an error
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Fig. 14: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.6771 10−4, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
4.6749 10−4.
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Fig. 15: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
3.1999 10−7. The result is scaled by 107 to
increase the visibility.

1 1.5 2
10

−15

10
−10

10
−5

10
0

x

lo
g
1
0
(
ε
)

 

 

M
A

Fig. 16: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.9541 10−4, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
4.9568 10−4.
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Fig. 17: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
5.4520 10−7. The result is scaled by 107 to
increase the visibility.

vector with norm of |ε|2 = 3.3866 10−14, i.e., the C code’s result is slightly different than
the MATLAB model code’s result.

10. LABORATORY TESTING
The introduced algebraic model is tested on a laboratory setup, see Fig. 20. A chain of
equally spaced one-dimensional inclinometers is mounted on a b = 1.8 [m] long flexible
structure. The arrangement consists of 14 sensors with an additional 2 screw clamps,
effectively forcing 2 pairs, i.e. p = 4, of homogeneous Dirichlet and Neumann con-
straints at the structure’s ends. These leads to a total of n = 16 points for the com-
putation, i.e., the vector of measurement data g is of size (16 × 1). In order to vary
the structure’s bending, a square metal profile with feed size h = 20 [mm] is placed
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Fig. 18: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.7958 10−10, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
2.3902 10−8.
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Fig. 19: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
2.3673 10−8. The result is scaled by 108 to
increase the visibility.

chain of inclinometers with boundary constraints

RS232

RS485
ξ1 = 530 [mm]

ξ2 = 890 [mm]

ξ3 = 1160 [mm]

b = 1800 [mm]

ξi

b

h = � 20 [mm] y(1800) = 0

y′(1800) = 0

y(0) = 0

y′(0) = 0

metal profile

Fig. 20: The illustration shows the chain of inclinometers mounted on a flexible struc-
ture. Each of the 14 sensors is connected to an industrial RS-485 bus. This bus is con-
verted to a RS-232 serial interface, which enables the connection of the BeagleBone
Black. The 2 screw clamps force the homogeneous boundary values at the structure’s
ends.

between the structure and the supporting mounting platforms at the ξi positions. The
results for these tests are shown in Fig. 21 to 26. Note, that the reference data has been
acquired with calipers and hardly represents the true value; however, it is a good ba-
sis for comparisons. The constrained linear differential operator M is of size (16× 16).
M and the homogeneous solution yh are computed in a preparatory step. The online
computation is carried out by a BeagleBone Black. The hardware features a RISC pro-
cessor based on the ARMv7 Cortex A8 platform with 1 [GHz] (2000 MIPS) and 512 [MB]
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Fig. 21: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ1 = 530 [mm] are shown.
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Fig. 22: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 4.245 [mm].
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Fig. 23: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ2 = 890 [mm] are shown.
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Fig. 24: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 2.636 [mm].
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Fig. 25: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ3 = 1160 [mm] are shown.
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Fig. 26: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 3.114 [mm].
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memory. The measurement data g is acquired via the built-in RS232 serial interface,
the results y are transmitted to a centralized database. The WAGO PFC-200 would
be an industrial-ready alternative hardware solution with similar architecture for this
application. It features a variety of bus interfaces such as Modbus, Profibus and CAN
bus.

11. CONCLUSION AND OUTLOOK
It can be concluded, from the numerical and experimental tests, that the newly pro-
posed algebraic method outperforms previous solutions, both in accuracy and speed,
for the class of problems being considered. The separation of the computation into an
initial preparatory and a cyclic run-time portion yields a highly efficient numeric solu-
tion. The computation complexity of the explicit solution is only a function of the num-
ber of nodes (sensors) used. The automatic generation of C code, and the verification of
its correct functionality on multiple embedded architectures has been demonstrated.
The generation of C code also facilitates the use of the method in conjunction with com-
mercial programmable logic controllers (PLCs), for the control of industrial plants and
machinery. Here, the method was applied to a linear array of sensors. Presently, the
tools are being extended to two-dimensional arrays and the resulting two-dimensional
fields of data.
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13 | Laser Guided Miner

Continuous miners are used for underground mining tasks with high productivity, e.g., for
mining coal or salt deposits, and/or as road headers. A continuous miner operates in a room and
pillar system, where the mine is divided into a network of rooms (work areas) cut into the seam.
The pillars ensure the structural stability of the mine, i.e., the pillars support the roof. Hence,
the mining process must always consider the spatial requirements of these pillars. The presented
navigation concept allows manual or autonomous control of the continuous miner in an accurate
manner [29]. Autonomous control is required when the work safety cannot be guaranteed, e.g.,
during deep cover retreat mining [26] or in the presence of a hazardous atmosphere.

The optical instrument’s principle of operation is sketched in Fig. 13.1 and 13.2. A reference
laser plane is projected vertically onto the rear end of the continuous miner. The distance
between the laser source and the miner is up to 300 [m], which is necessary because of the high
advance during the cutting process. The location of the projected laser line is measured by
two large-scale position sensitive detectors (PSD), which are mounted onto the machine with a
given height difference. Knowing the location of the laser line on both measurement devices,
the included yaw angle ψ between the reference laser beam and the machines principal axis can
be determined.

Fig. 13.3 visualizes the measurement principle and Fig. 13.4 shows the system’s components in
a block diagram. The PSD consists of a housing with a glass window and integrated optical
components. The four cameras are connected to a common controller, which has an USB
interface to a measurement computer. The measurement data is processed locally and sent to a
supervisory system.

principle of operation (top view)

reference laser plane

machine's principal axis

laser 
source

distance: up to 300 [m] driving direction
measuring devices (PSD)

device distance

continuous miner

ψ = arctan
Δx

d

ψyaw

d

Fig. 13.1 The yaw angle ψ is included between the machine’s principal axis and the reference laser
plane. The continuous miner can be remotely controlled from distances up to 300 [m].
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Fig. 13.2 The height difference between both measurement devices (PSD) allows to measure the
displacement between both laser lines. The device distance d is known a-priori.
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Fig. 13.3 An optical system utilizing four cameras with overlapping fields of view is used to implement
the large-scale PSD. The measurement range is 1 [m], the laser plane impinges upon the target bar.

block diagram
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camera 1 target 
bar

USB (                )l ≤ 5 [m]
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T
C

P/
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supply
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Fig. 13.4 The PC processes the measurement data acquired from the multi-camera controller, generates
reports and forwards the information to a database (DB) or a remote supervisory system over network.
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The system requirements demand the PSD to have a measurement range of 1 [m]; furthermore,
a compact hardware design is required. As shown in Fig. 13.3, the measurement principle is
based on four cameras, which significantly reduces the object distance in comparison to using
a single camera in a conventional arrangement. Each camera observes a section of the target
bar, the raw data for the sensor fusion emerges from the overlapping sections, see Fig. 13.5 and
13.6. The mathematical approach is based on uncertainty weighted multi-source data fusion.
The idea is, that the measurements at the center of a camera’s field of view are more accurate
than at the borders of the support. The measurements are weighted by this uncertainty and
fused accordingly. Two alternative approaches for implementing a large-scale PSD without data
fusion are shortly presented in the next subsections.

fields of view of individual cameras

overlapping
sections

camera 1 camera 2 camera 3 camera 4

measurement range: 1 [m]

laser line acquired 
by two cameras

ca
m

er
a 

[i
d]

x, y

Fig. 13.5 Each camera observes a section of the 1 [m] long target bar. A single laser line is sensed by
two adjacent cameras when the laser line is located in the overlapping sections, i.e., fields of view.

calibration 
curve 1

multi-camera sensor fusion

calibration 
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calibration 
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overlapping
section

camera 1 camera 2 camera 3 camera 4

calibration 
curve 3
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y
=

f
(x
)
[m

m
]

Fig. 13.6 Each of the four cameras yields a separate polynomial calibration curve. The goal is to
analytically fuse the curves w.r.t. their uncertainty in order to achieve an extended measurement range
while conserving a compact hardware design.
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Alternative (1): Optical Fibers

The idea is to have a target bar with equidistant bore holes. Optical fibers are glued into these
holes with the front ends facing the laser plane. The individual fibers are bundled and the rear
ends face a single camera in a predefined pattern, see Fig.13.7. When the laser plane impinges
upon an optical fiber’s front end, the light is transported to the corresponding optical fiber’s rear
end. The measurement procedure matches the illuminated spot with the associated position
on the target bar. The drawbacks of this design is the amount of optical fibers to be handled:
when covering a 1 [m] measurement range in a 5 [mm] grid, a total number of 200 fibers are
required; the cut, place and glue process is time consuming and error prone; and setup is fragile
and almost impossible to repair in the field.

alternative approach 1: measurement principle using optical fibers
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side view:

bundle of optical fibers

single camera with 
wide-angle lens 

glass window

target with equally spaced optical fibers  

measurement range: 1 [m]

top view:

Fig. 13.7 PSD based on optical fibers.

Alternative (2): Scheimpflug Principle

Conventionally, a camera’s principal axis is orthogonal to the image plane. An optical setup
following the Scheimpflug principle (Chapter 4) enables a depth of field that is not orthogonal
to the camera’s principal axis, i.e., the subject plane is not parallel to the image plane. In
this application, it would have been possible to reach a compact hardware design with a single
camera. This setup incorporates several downsides: the lenses are application specific, i.e., they
are non-standard, expensive and have a long lead time; and the camera’s resolution must be
high enough to cover the complete field of view adequately, see Fig. 13.8.

alternative approach 2: measurement principle using Scheimpflug's rule
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Fig. 13.8 Optical PSD with a single camera utilizing the Scheimpflug principle.
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Abstract—This paper presents the development of a large scale
optical position sensitive detector. The device is designed for
the precise guidance of machines with respect to a reference
laser plane in large working areas. The 1D detector has a mea-
surement range of 1 [m] and, with the present implementation,
a position measurement standard deviation of s < ±0.6 [mm]
in a 95% confidence interval. With this length it is orders of
magnitude larger than all presently available position sensitive
detectors. The instrument is based on a multi-camera image
processing concept. An aluminum bar serves as the target for
the laser. The target’s surface is specially prepared to ensure
optimal scattering of the laser light. Presently, four cameras with
overlapping fields of view are deployed to observe the scattered
light. Additional optical components reduce the susceptibility to
extraneous light sources. Each camera is calibrated using Gram
polynomials and the data from the four cameras is fused to give
a consistent measurement over the complete measurement range.
The linear nature of the computation’s algebraic framework
offers the advantage that the error propagation can be computed
analytically. Weighted polynomial approximation determines the
calibration coefficients and weighted polynomial interpolation is
used to determine the measurement results. Complete testing of
the instrument is presented, whereby cross validation ensures the
correct determination of errors. A Kolmogorov-Smirnov test is
performed to determine the statistical nature of the measurement
errors.

I. INTRODUCTION

The original motivation to develop a large scale position

sensitive detector (PSD) was the automatic guidance of road-

headers in the extraction of alkaline salts in mining. The

machines need to be positioned over distances of approx.

300−500 [m] during their operations. The alignment is solved

most effectively with the assistance of a reference laser, see

Fig. 1. However, significant lateral displacements may occur

during facilitating roads and structuring pillars. Testing on

retro-reflector-targets and PSDs in outdoor turbulent environ-

ments [1] has shown, that accuracies of approx. 10 [mm] can

be achieved over distances of 300 [m]. This indicates, that the

instrument’s required accuracy can be accomplished even in

the presence of extraneous disturbances. Another constraint

is that applications in mining commonly employ weak lasers

for safety reasons: it must be assumed, that workers are

crossing the laser beam’s path. The laser light is further

weakened through the dusty and moist environment created

by the salt mining process. Optical PSDs and/or lateral-

effect photo-diodes are utilized in many cases to support

the alignment of stationary mechanical [2] components, for

laser beam riding techniques [3] and in the positioning of

tunnel boring machines [4]–[6]. The working range of the

systems is limited by the physical size (i.e. length) of the

PSD and/or the associated optics. Large area silicon PSDs

from Hamamatsu [7] are limited in size to approx. 35 [mm]
on a side, 1D thin film PSDs [8] are limited to approx.

80 − 100 [mm] and PSDs which use a detection board and

image processing are limited in size to approx. 110 [mm] on

a side [4]–[6]. This paper describes the development of a

new large scale PSD which has a measurement range of 1 [m]
and, in the present implementation, a standard deviation of the

measured position error of s < ±0.6 [mm] in a 95% confidence

interval. This is one order of magnitude larger than presently

available comparable solutions.

reference 
laser plane 

instruments 

machine’s 
main axis 

distance: up to 300 [m] 

movement 
direction 

ϑ 

laser 
a 

Fig. 1: Two measurement devices must be installed at different

highs onto one mining machine. The distance a between them

is known a-priori; therefore, it is possible to determine the

angle ϑ between the machine’s main axis and the reference

laser plane. This information is used to guide the machine on

the planned route.

The main contributions of this paper are:

1) An innovative optical design which deploys multiple

cameras with overlapping fields of view to observe the

laser light scattered from a specially prepared target. The

test device is limited to four cameras, but the system is

fundamentally arbitrary in the number of usable sensors;

2) A calibration and measurement procedure is developed,

analyzed and tested which ensures the fusion of the

individually acquired data from each of the four cameras

into a single consistent displacement measurement;

3) The covariance propagation is calculated for the calibra-

tion and measurement computations, thereby enabling

the application of weighted polynomial approximation

and interpolation. This methodology ensures optimally

conditioned basis functions, consequently minimizing

the effects of Gaussian noise on the accuracy of the

measurement device;
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4) The system is calibrated and the accuracy is determined

using a cross validation approach. A Kolmogorov-

Smirnov test verifies the statistical nature of the mea-

surement error.

II. PRINCIPLE OF OPERATION

The schematic for the principle of operation is shown in

Fig. 2. The housing of the device has a glass window through

which the laser light enters the instrument, this is illustrated in

Fig. 3. The glass is coated with a special foil, which functions

as a hot mirror and reflects up to 95% infrared light with a

wavelength above 750 [nm]. This eliminates a large portion of

the unwanted optical energy emerging from incandescent light

sources. The laser beam impinges upon a 1 [m] long aluminum

target bar, whose formerly glossy surface has been sand-

blasted to improve the Lambertian properties of the laser’s

scattering. The aluminum is anodized with a red color matched

approximately to the wavelength of the laser. The anodized

layer functions as a bandpass optical filter reducing the energy

towards the blue end of the visible light’s spectrum.

laser plane 

camera array 
overlapping sections 

m
easurem

ent range: 1 [m
] field of view 

glass window with 
hot mirror foil 

target bar 

object distance 

Fig. 2: Schematic of the optical arrangement: the four RGB

cameras with the overlapping fields of view are shown to-

gether with the coated glass and the red anodized sandblasted

aluminum target. The object distance is 125 [mm], which leads

to a field of view of approx. 300 [mm] for each camera.

Therefore, each overlapping section is approx. 50 [mm]. This

hardware configuration delivers maximum red light sensitivity.

The two end cameras have slightly different optical conditions;

the effect of this can be seen in Fig. 5 and Fig. 6.

The combination of the hot mirror and anodized aluminum

significantly improves the conditions within the device for

the accurate position detection of the laser line on the target.

The installation of multiple cameras with wide-angle lenses

enables a compact design for the instrument. RGB sensors

are employed; therefore, a monochromatic laser should deliver

illumination in the sensor’s red channel but not in either of

the green or blue channels. This property further improves

the spectral selectivity of the device. The images from all

cameras are synchronously acquired through a common con-

troller. The acquired laser line’s position is then mapped from

the individual pixel coordinates of each camera to a global

real world coordinate frame via the polynomial calibration

curves. Covariance weighted least squares approximation is

used during the calibration process to determine the required

Gram polynomial coefficients. The aim is to achieve a uniform

region of uncertainty surrounding the complete range of the

measurement. In the regions of two overlapping fields of

view there are two results for the position of the laser line,

a covariance weighted average fuses the two results into a

combined result with an improved covariance.

housing 

glass window 

laser plane 

laser 

up to 300 [m] 

Fig. 3: The laser light enters the measurement instrument

through the glass window. Other external environmental light

sources are kept outside via the housing. The laser beam

impinges upon the target bar, the occurring laser line can then

be measured by a set of cameras. The device’s dimensions are

relatively compact considering the measuring range of 1 [m].

III. COVARIANCE WEIGHTED POLYNOMIAL

APPROXIMATION OF A LASER LINE

The wide-angle lenses have significant fisheye distortion,

which causes the formerly straight laser line to be observed

as a curve. This curve can be approximated by an even-

degree polynomial. Each camera delivers a region of interest

C corresponding to the view of the target with m rows and n
columns, whereby i is the row index and j is the column index,

i.e. a pixel’s illumination value is cij . This portion in each

image is used to detect the position of the laser line, together

with its covariance. The first moment xi, i.e. the center of

gravity, of each row is computed by:

xi =

∑n
j=1 jcij∑n
j=1 cij

thus x = [x1 . . . xm]
T
. (1)

The variance σ2
i of each row is approximated by the second

moment around the measured values x, i.e. the moment of

inertia:

σ2
i =

n∑
j=1

cij(j − xi)
2 thus σ2 =

[
σ2
1 . . . σ

2
m

]T
. (2)

Fig. 4 shows a typical example. The diagonal covariance

matrix Σ is defined through the values of σ2:

Σ = diag
(
σ2
)
= diag

(
σ2
1 , . . . , σ

2
m

)
. (3)
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The observed laser line is described by a weighted least

squares polynomial approximation to the first moment x; the

corresponding cost function K is:

K = ‖W(x− y)‖22 , (4)

whereby the local weighting matrix is designed as W = Σ− 1
2 ,

the term (x − y) describes the difference between the data

points x and the approximated polynomial y = Gα. The set

of discrete orthogonal Gram polynomial basis functions G has

a degree d = 2 and α is the coefficient vector [9]. Expanding

Equation 4 yields

K (α) =
∥∥∥Σ− 1

2 (x− Gα)
∥∥∥2
2
, (5)

=
[
Σ− 1

2 (x− Gα)
]T[

Σ− 1
2 (x− Gα)

]
, (6)

= (x− Gα)T
(
Σ− 1

2

)T

Σ− 1
2 (x− Gα), (7)

= (x− Gα)TΣ−1(x− Gα). (8)

The minimization is carried out through the differentiation of

K with respect to the vector α and setting the equation to 0.

∂K(α)

∂α
=

∂

∂α

[
(x− Gα)TΣ−1(x− Gα)

]
. (9)

Note, that differentiating α delivers a vector of ones, which is

denoted by 1. This formalism is necessary in order to conserve

the correct matrix dimensions. Performing the differentiation

in Equation 9 returns

0 =− (G1)TΣ−1(x− Gα)

− (x− Gα)TΣ−1G1. (10)

Expanding leads to

0 =− (G1)TΣ−1x+ (G1)TΣ−1Gα

− xTΣ−1G1 + (Gα)TΣ−1G1 (11)

and furthermore

0 =− 1TGTΣ−1x+ 1TGTΣ−1Gα

− xTΣ−1G1 +αTGTΣ−1G1. (12)

Each term now describes a scalar and can therefore be

transposed in order to simplify the equation by merging equal

expressions.

0 =− 2(1TGTΣ−1x) + 2(1TGTΣ−1Gα), (13)

which leads to

0 =− 2
(
1TGTΣ−1(x− Gα)

)
. (14)

Elimination of the constant delivers

0 =1TGTΣ−1x− 1TGTΣ−1Gα. (15)

Consequently, the normal equation in matrix form is

1TGTΣ−1x = 1TGTΣ−1Gα. (16)

Premultiplication of 1 delivers

1(1TGTΣ−1x) = 1(1TGTΣ−1Gα) (17)

and leads to 11T = I, i.e. the identity matrix, which can be

ignored in this case. Solving the equation

GTΣ−1x = GTΣ−1Gα (18)

for the coefficients α yields

α =
(
GTΣ−1G

)+
GTΣ−1x, (19)

whereby A+ � (ATA)−1AT and denotes the Moore-Penrose

pseudo inverse. Utilizing this result for the polynomial approx-

imation generates the weighted least squares transformation

matrix L:

y = Gα = G
(
GTΣ−1G

)+
GTΣ−1x � Lx. (20)

The measurement’s result is the value p of the polynomial’s

y midpoint, i.e. it is only necessary to compute this relevant

point using the appropriate portion lT of the transformation

matrix L, consequently

p = eT
ty = eT

t Lx = lTx, (21)

whereby et is a coordinate vector and t = m−1
2 +1 under the

condition, that the number of rows m is odd. Equation 20 is a

linear operation, the corresponding covariance propagation is

Σ̂ = LΣLT, (22)

see Fig. 4 for an example. Based on the matrix Σ̂, the variances

σ̂2 of each fitted point y is determinable:

σ̂2 = diag(Σ̂) = (L ◦ L)σ2, (23)

where ◦ is the Hadamard product, off-diagonal elements of Σ̂
do not have any meaning in this context. The variance of the

point p is then λ2 = eT
t σ̂

2, this information is required for

the calibration of the device.

σ̂2Σ̂σ2

ro
w

s 
[p

ix
el

] 

columns [pixel] columns [pixel2] 

ro
w

s 
[p

ix
el

2 ] 

ro
w

s 
[p

ix
el

2 ] 

ro
w

s 
[p

ix
el

2 ] 

(a) (b) (c) (d) 

y
σ

Fig. 4: A typical image of a laser line along with the first mo-

ment x (red), its standard deviation σ (green) and polynomial

approximation y (blue) is shown in (a). The variance σ2 of the

local position of the line is illustrated in (b). The covariance

matrix Σ̂ of the complete polynomial fit is presented in (c)

along with the variance σ̂2 of the polynomial estimate in (d).
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IV. CALIBRATION VIA POLYNOMIAL APPROXIMATION

The calibration process delivers the coefficients of four in-

dividual sets of calibration curves {z(1), z(2), z(3), z(4)}.They

are computed by combining the individually acquired cam-

era space coordinates {p(1),p(2),p(3),p(4)} along with their

variances {λ2
(1),λ

2
(2),λ

2
(3),λ

2
(4)} with the global real space

coordinates in q. The complete device is calibrated using

h equidistant calibration points, in this case h = 99 points

were defined. The position of the points ensures that each

camera has > h/3 points for calibration, i.e. here a minimum

of approx. 33 were used for the application. The respective

polynomial coefficients z(k) are determined using a weighted

least squares approximation by minimizing the according cost

function H(k):

H(k) =
∥∥V(k)(p(k) − z(k))

∥∥2
2
. (24)

The global weighting matrix is designed as V(k) = Λ
− 1

2

(k)

and the covariance matrix is Λ(k) = diag(λ2
(k)). Polynomial

interpolation is utilized to determine the mapping z(k) for

intermediate points. Exact details of the least squares fitting

an interpolation can be found in [9]. A single polynomial is

defined as z = Gβ, whereby the matrix G represents the Gram

polynomial of degree d = 6. The submatrix Ḡ is generated

by extracting the rows of G corresponding to the matching

calibration points, i.e. the known portions of G. The coefficient

vector β is calculated analogously to Equation 4.

z = Gβ = G
(
ḠTΛ−1Ḡ

)+
ḠTΛ−1p � Mp. (25)

As in Equation 22, it is possible to compute the covariance

matrix of the fitted polynomial z thanks to its linear nature:

Λ̂ = MΛMT and λ̂2 = diag(Λ̂) = (M ◦M)λ2 (26)
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Fig. 5: From left to right are the four individual camera

calibration curves {z(1), z(2), z(3), z(4)}, which map the re-

spective [pixel] coordinates to real world coordinates in [mm].
A 10 [mm] raster has been used, resulting in 99 equally spaced

calibrations points. The confidence intervals are scaled by a

factor of 30 to make them visible.
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Fig. 6: The covariance matrices {Λ̂(1), Λ̂(2), Λ̂(3), Λ̂(4)} corre-

spond to calibration curves in Fig. 5. Note the asymmetry of

{z(1), z(4)} and {Λ̂(1), Λ̂(4)} caused by the optical conditions

at the ends. The weighting at the borders of the support

is amplified to acquire a better mapping over the whole

measurement range.

Fig. 7: The multi-camera controller VRmagic MFC-12M-4 is

capable of acquiring four images synchronously. Each sensor

deploys its own calibration curve as shown in Fig. 5. The

extended field of views are caused by deploying wide-angle

lenses, however this is also the reason for serious non-linear

distortions and results in the error propagation shown in Fig.6.

V. MEASUREMENT VIA POLYNOMIAL INTERPOLATION

The individual calibration curves with their uncertainties for

each camera can be seen in Fig. 5 and Fig. 6. The calibration

curves are stored in the form of lookup tables with a real space

resolution of 1 [mm]. The detected laser line position in [pixel]
is mapped to the nearest neighbor element in the lookup table,

the value and its variance for the corresponding real world

coordinate in [mm] are retrieved. In areas with overlapping

fields of view A and B, the mapping delivers two results qA
and qB for the position, each with its variance λ2

A and λ2
B . This

effect is caused by the optical arrangement and is illustrated

in Fig. 2. A variance weighted average is applied to fuse both

results into a single position q̂ with superior accuracy than the

individual values:

q̂ =
λ−1
A qA + λ−1

B qB

λ−1
A + λ−1

B

. (27)

VI. EXPERIMENTAL VERIFICATION

The complete prototype PSD is shown in Fig. 8, together

with a prism on a linear drive’s stage for system calibration and

verification. The cross validation experiment was performed

at 98 measurement points between the 99 equidistant cali-

bration points, i.e. they are located where the largest error

is to be expected. The measurement’s standard deviation s is
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Fig. 8: The prototype PSD, showing the four cameras, the glass window with coated hot mirror foil and the red anodized

aluminum target bar. A prism mounted on a linear drive’s stage redirects the laser plane generated by the construction laser to

cover the whole measurement range of 1 [m] for system calibration as well as cross validation experiments. The setup matches

up with the draft in Fig. 2.

computed as a metric of quality, i.e measurement accuracy.

Furthermore, the Gaussian distribution of the data was proven

by applying a non-parametric Kolmogorov-Smirnov test with

a 95% confidence interval on the samples [10]. The tests

showed, that this is always true for the camera coordinates

p. As a consequence, due to the proposed method’s linear

nature, this condition also holds for the mapped coordinates

q [11]. Following hardware components were deployed in the

experimental setup and Fig. 8 shows their assembly:

1) The red sandblasted anodized aluminum target bar with

a horizontal dimension of 1 [m];
2) The multi-camera controller VRmagic MFC-12M-4 [12]

with four 1/3” RGB CMOS sensors, a resolution of

752 × 480 [pixel], a fixed aperture size of f2 and an

adjustable exposure time te. The wide-angle lenses have

a focal length of 2.1 [mm]. The controller with the

individually attached sensors is shown in Fig. 7;

3) A linear drive composed of two parts: the controller

iTK Pollux Drive Typ-3 [13] and the linear axis

THK KR5520A+1280LH0-0000 [14], featuring an us-

able length of 1.1 [m] an accuracy of ±0.1 [mm];
4) The class 3A telecentric construction laser AGL

TCL2000 with a power of 4 [mW] and a wavelength of

635 [nm]. The generated laser beam has a thickness of

approx. 12 [mm]. The laser oscillates on a frequency of

50 [Hz] and thereby generates the laser plane. The device

is shown in Fig. 9;

5) A 10 [mm] thick window glass with coated hot mir-

ror foil 3M Silver 20 [15] with 72% IR reduction,

te = 200 [ms] and Bruxsafol LX-70 [16] with 95%
IR reduction, te = 50 [ms]. For a comparison see

Fig. 10 [17]. Although the exposure times are fixed in

this setup, they need to be dynamically adapted in the

real application when the machine is moving away from

the laser source.

Fig. 9: The oscillating construction laser AGL TCL2000 gener-

ates a laser line of approx. 12 [mm] thickness with a frequency

of 50 [Hz], i.e. one phase has a duration of 20 [ms].

Fig. 10: The illustration shows clearly, that both types of hot

mirror foils have non-identical light transmission rates. As a

consequence, different exposure times te for the cameras must

be set depending on the used foil.
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The relationship between pixel dimensions, i.e. resolution,

and the error in detecting the position of a sharp edge in

an image was investigated in [18], [19]. It was determined

that a subpixel accuracy of a factor 10 . . . 20 can be achieved

reliably. In this experimental setup 1 [pixel] in the camera

corresponds to approx. 0.4 [mm] in the real space, i.e. with

subpixeling an accuracy of at least 0.04 [mm] is theoretically

possible. The observed experimental results in Table I

gave a 95% confidence interval of < ±0.6 [mm], therefore

it is concluded, that the camera’s resolution is not the

limiting factor in this system. The primary uncertainty is the

illumination associated with the laser, i.e. small variations in

the width of the laser line and the distribution of intensities

within the generated line.

In order to verify the effectiveness of the weighted polynomial

approximation, the resulting measurement standard deviation

sw is compared to a conventional, i.e. unweighted, fit’s

standard deviation sc. This approach utilizes the mean σ2

and λ2 of the variances σ2 and λ2. Multiplication with the

identity matrix I delivers the values for the weighting matrices

W and V.

sw/ [mm] sc/ [mm]

local weighting W = Σ− 1
2 W = σ2I

global weighting V = Λ− 1
2 V = λ2I

no glass ±0.507 ±0.594
Silver 20 ±0.552 ±0.728
LX-70 ±0.532 ±0.608

TABLE I: Cross validation results for the standard deviation

in a 95% confidence interval under laboratory conditions. This

table summarizes the obtained results of 98 equally spaced

cross validation points.

Interpretation of the results in Table I leads to following

insights: the weighted polynomial approximation is superior to

its conventional pendant. The hot mirror foil LX-70 establishes

a better measurement environment with respect to extraneous

light. In direct comparison, the hot mirror foil Silver 20
absorbs too much light.

VII. CONCLUSION

This work has demonstrated the feasibility of deploying

multi-sensor imaging systems in large scale measurement

devices. The new position sensitive detector delivers a mea-

surement standard deviation of s < ±0.6 [mm] in a 95%
confidence interval over a measurement range of 1 [m]. The

present system is limited to four cameras; however, the alge-

braic framework utilizing weighted polynomial approximation

is capable of metrically fusing the data of an arbitrary number

of sensors and has proved viable for real-time measurements.

It also delivers the covariance propagation from the individual

camera to the final single result. This will be of growing

importance in future measurement systems due to the increas-

ing availability of low cost hardware and cheap computation

power.
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Analytic Multi-Source Data Fusion and its
Application to a Large-Scale Optical PSD

Christoph Gugg, Paul O’Leary and Matthew Harker

Abstract—This article introduces an analytic algebraic frame-
work for multi-source data fusion (MSDF) utilizing covariance
weighted discrete orthogonal polynomials (DOP). The approach
is implemented and tested in a prototype for a large-scale optical
position sensitive detector (PSD). The device is designed for the
precise guidance of machines with respect to a reference laser
plane in large working areas. The 1D detector has a measurement
range of 1m and, with the present implementation, a position
measurement standard deviation of s < ±0.6mm in a 95%
confidence interval at a distance of 300m. With this length it
is orders of magnitude larger than all presently available PSDs.
The instrument’s concept is based on a multi-camera image
processing setup, enabling a relatively compact hardware design.
An aluminum bar serves as the target for the laser. The target’s
surface is specially prepared to ensure optimal scattering of the
laser light. Presently, four cameras with wide-angle lenses and
overlapping fields of view monitor the scattered light; however,
the theoretical framework supports the fusion of data from
an arbitrary number of sensors. Additional optical components
reduce the susceptibility to ambient light sources. Each camera
is calibrated using Gram basis functions and the data from
the four cameras is fused to give a consistent measurement
over the complete measurement range. The linear nature of
the computation offers the advantage that the error propagation
can be derived analytically. Weighted polynomial approximation
determines the calibration coefficients and weighted polynomial
interpolation is used to obtain the measurement results. Complete
testing of the instrument is presented, whereby cross validation
ensures the correct quantification of errors. A Kolmogorov-
Smirnov test is performed to prove the Gaussian nature of the
measurement data and its error.

Index Terms—multi-source data fusion, position sensitive de-
tector, weighted discrete orthogonal polynomials, uncertainty
estimation, subsurface working area, guidance system.

I. INTRODUCTION

THIS article presents a new generic analytic approach

to multi-source data fusion (MSDF) and calibration for

consistent measurements. The method provides an analytic

framework for the computation of the complete system’s

covariance propagation and, as a consequence, enables the

determination of confidence envelopes through the complete

calibration and measurement procedures. The approach is

particularly well suited for merging data from multiple sensors

within a single instrument and places no fundamental limit

on the number of sensors used. A large-scale, yet compact,

optical position sensitive detector (PSD) with an extended

measurement range is designed based on this theory. The
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device employs an array of imaging sensors with partially

overlapping fields of view, which are effectively used for the

signal fusion.

A. Measurement Devices for Displacement Detection

PSDs and laser pointing devices are commonly employed

for automatic positioning and alignment applications. Such

instruments typically cover measurement ranges of several

cm. Conventional optical PSDs or lateral-effect photo-diodes

are utilized to support the alignment of stationary mechanical

components [1], for laser beam riding techniques [2] and in

the positioning of tunnel boring machines [3]–[5]. However,

the working ranges of the named systems is limited by the

physical size of the PSD and the associated optics. Large

area silicon PSDs from Hamamatsu [6] are limited in size

to approximately 35mm on a side, thin film PSDs [7] are

limited to approximately 80 − 100mm and PSDs which use

a detection board and image processing are limited in size to

approximately 110mm on a side [3]–[5].

B. Concepts for Multi-Source Data Fusion

With the emergence of cyber physical systems and its

multi-modal sensor arrangements, much has been written on

MSDF; overviews can be found in [8]–[10]. The hierarchical

Joint Directors of Laboratories (JDL) fusion model [11] deals

with data fusion in decision support systems. The model

is predominantly feature and pattern based. It contains no

concrete proposals for data fusion at the signal-processing

level. The paper by Liu et al. [12] presents a survey of

data fusion methods in non-destructive testing. Grouping is

possible based on the techniques used: optimization methods,

multiresolution analysis (MRA) approaches, heuristic methods

and probabilistic methods (see [12, Table II]). None of the

introduced techniques include analytic approaches for cali-

bration and measurement, which is necessary for an esti-

mation of uncertainty. Fuzzy methods [13] are not suitable

for instrumentation due to the non-analytic nature of their

membership functions; similarly, this is also the case for neural

network data fusion [14] where the network has non-linear

behavior. Dempster-Shafer theory [15] delivers a framework

for merging evidence to obtain a level of belief in a result: it is

a probabilistic approach applicable to determining the validity

of a hypothesis; however, this is not the case presented in

a measurement instrument. This criterion for exclusion also

applies for Bayesian theory [10]. Covariance estimation [16]

has been used to merge the results from collections of single

measurements; however, no provision is made for the inclusion
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of calibration transfer curves. A confidence based approach

has also been published, but used a fuzzy definition of confi-

dence [17].

C. Contributions of this Work

This article describes the development of a new PSD, which

covers fields of applications where large-scale measurements

of up to 1m are required. Underground facilities such as mines,

shafts and tunnels are investigated, because automatic ma-

chines often depend on accurate laser guidance systems [18]–

[20]. The harsh environmental conditions provide a rich testing

field. Some initial portions of this article were presented

in [21]. The following main contributions are made:

1) A compact hardware concept for a large-scale optical

PSD is present. An array of cameras with overlap-

ping fields of view monitor a specially prepared target,

thereby extending the instrument’s measurement range.

2) A methodology for analytic MSDF for the calibra-

tion and measurement process of an instrument with

multiple sensors is established. The fusion process is

implemented by employing uncertainty weighted dis-

crete orthogonal polynomials (DOP). It is possible to

determine the expected uncertainty a-priori. The model

is fundamentally arbitrary w.r.t. the number of sensors

used.

3) The experimental prototype is calibrated and the accu-

racy is determined using a cross validation approach.

In this implementation, the laboratory setup uses four

individual cameras. The suitability of the mathematical

model is verified and the statistical nature of the mea-

surement error is validated.

II. HARDWARE DESIGN OF THE INSTRUMENT

A. Environmental Conditions and Constraints

(a) construction laser (b) reference laser plane

Fig. 1. The class 3A telecentric industrial construction laser AGL TCL2000
in (a) with a power of 4mW and a wavelength of 635 nm generates the
reference laser plane in (b). The oscillating frequency of the rocking mirror
is 50Hz, thereby generating the laser line in Fig. 2. Measurement results for
the environmental conditions are available for up to 200m [22].

The presented application uses a reference laser plane for

the guidance system, see Fig. 1. The PSD is installed on

an automated mining machine and detects this plane. The

machine needs to be positioned accurately over distances of up

to 300m. As shown in Fig. 2, the laser beam’s diameter/width

is a function of the distance between the laser source and

the target. This is mainly caused by the dust concentration

in the mine (see Fig. 3) and the resulting diffraction of the

laser light. The dust concentration is homogeneous except for

local peaks. Fig. 4 shows how the power and the distance

of the laser depend on the distance. Only relatively weak

lasers are permitted in subsurface working areas [23]. The

presence of external white light sources negatively influences

the measurement’s quality. Hot mirror foils are therefore

attached to the instrument’s window to reflect up to 95%

of the IR/NIR portions of the visible spectrum. The system

specification of the PSD requires a measurement range of 1m

and relatively compact hardware dimensions.
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Fig. 2. A total of eight measurements are presented w.r.t. the laser pattern as a
function of distance. These measurements were performed in a salt mine [22]
which offers typical operating conditions. The top four images show the
observed laser pattern at 50m, 100m, 150m and 200m respectively. The low
four images show the corresponding laser lines when the oscillating mirror
is active. The width of the laser line increases linearly from approximately
10mm to approximately 40mm.
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Fig. 3. The dust concentration has been measured in an underground
environment over a distance of 200m [22].
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Fig. 4. The intensity of the laser light (red) and the width of the resulting
laser line (blue) have been measured over a distance of 200m [22].
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camera array: 

target bar: 

Fig. 5. Schematic of the optical arrangement: four cameras with wide-angle lenses provide an extended measurement range of 1m. The object distance
between the cameras and the target is 125mm, which leads to a field of view of approximately 300mm for each camera. The width of an overlapping section
is approximately 50mm. The two end cameras have different optical conditions.

housing 

glass window 

laser plane 

laser 

up to 300 [m] 

Fig. 6. The laser light enters the measurement instrument through the glass
window. The laser beam impinges upon the target inside the housing, whereby
the projected laser line is imaged by a set of cameras.

3M Silver 20 

Bruxsafol LX-70 

Fig. 7. Two samples of the 10mm thick window glass have been coated with
different kinds of hot mirror foils in order to remove the IR and NIR portions
of visible light with a wavelength > 750 nm from the acquired measurement
data: 3M Silver 20 [24] with 72% IR/NIR reduction and Bruxsafol LX-70 [25]
with 95% IR/NIR reduction.

B. Optical Arrangement of the Multi-Camera Setup

In order to achieve a compact hardware design, an array

of cameras with overlapping fields of view are used; see the

schematic in Fig. 5. The housing of the device is sketched in

Fig. 6, the mentioned hot mirror foil (see Fig. 7) is attached to

the window. The images from all cameras are synchronously

acquired through a common controller as shown in Fig. 8. The

wide-angle lenses cause non-linear optical distortion. RGB

sensors are employed; therefore, a monochromatic laser with

a wavelength of 635 nm should deliver illumination in the

sensor’s red channel but not in either of the green or blue

channels. In the regions of two overlapping fields of view,

there are two results for the position of the laser line, which

are used for the MSDF.

Fig. 8. The multi-camera controller VRmagic MFC-12M-4 [26] is capable
of acquiring four images synchronously with its 1/3” RGB CMOS sensors.
The resolution of each sensor is 752 × 480 pixel. The focal length of the
wide-angle lenses is f = 2.1mm and the aperture size is f/2.

C. Laboratory Prototype

4 

3 

2 

1 

target bar 

multi-camera controller 

laser line 

object distance 

camera array 

3

2

1

camera array 

Fig. 9. The vertical section of the laboratory prototype shown in Fig. 10.
The sensors are connected to the common controller shown in Fig. reffigCam-
eraController. The laser line is projected onto the target bar.

The vertical section of the prototype PSD is shown in Fig. 9,

the complete arrangement is pictured in Fig. 10. The laser

beam impinges upon a 1m long aluminum target bar, whose

surface has been sand-blasted to improve the Lambertian

properties of the laser light’s scattering. The aluminum is

anodized with a red color matched approximately to the

wavelength of the laser light. The anodized layer functions

as a bandpass optical filter reducing the energy towards the

blue end of the visible spectrum. To summarize, the spectral

selectivity of the device is improved by following measures:
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camera array 

linear drive 

glass with hot mirror foil 

target bar 

prism 

laser line 

laser plane 

1 2 3 4 

Fig. 10. The prototype PSD, showing the four cameras, the glass window with coated hot mirror foil and the sand-blasted red anodized aluminum target
bar. A prism mounted on a linear drive’s stage redirects the laser plane generated by the construction laser to cover the whole measurement range of 1m
for system calibration as well as cross validation experiments. The linear drive is composed of two parts: the controller iTK Pollux Drive Typ-3 [27] and the
linear axis THK KR5520A+1280LH0-0000 [28], featuring an usable length of 1.1m an accuracy of ±0.1mm.

1) hot mirror foil has been attached to the glass window;

2) only the red channels of the RGB sensors are used;

3) the aluminum target bar is anodized with red color.

III. ANALYTIC ALGEBRAIC MODEL

Following tasks need to be solved to enable consistent

calibration and measurement processes with estimations for

the confidence bounds:

• An algorithm for the synthesis of discrete orthogonal

polynomials (DOP) is presented.

• In each acquired image, the laser line’s position and its

uncertainty is estimated, enabling the usage of uncertainty

weighted DOP for the laser line’s approximation.

• The system is calibrated using the information of the laser

lines’ positions and uncertainties in each camera’s field

of view with the weighted DOP approach. The computed

coefficients are saved for analytic interpolation.

• A numeric and an analytic solution for the measurement

procedure is presented. The measurement results of the

individual cameras are merged as a linear operation, i.e.

the confidence envelopes are determinable.

A. Synthesis of Discrete Orthogonal Polynomials
Gram [29] proposed what is now known as the Gram-

Schmidt orthogonalization process to generate orthogonal

polynomials [30]. The Gram-Schmidt process is, however,

numerically unstable [31, Chapter 5] and will only deliver

polynomials up to degree of d ≈ 20 without significant

error. Considerable research has been performed on discrete

polynomials and their synthesis [32]–[39]. Nevertheless, none

of these papers present a method which is capable of syn-

thesizing discrete orthogonal polynomials of high quality for

arbitrary nodes located within the unit circle on the complex

plane. Here, a Lanczos process with complete reorthogo-

nalization [31, Chapter 9], [40] is used to synthesize the

polynomials. The procedure can be summarized as follows:

Given a vector x of m nodes with mean x̄: the two Gram

basis functions g0, g1 are computed,

g0 = 1/
√
m, g1 =

x− x̄

‖x− x̄ ‖2
and G = [g0, g1] . (1)

The remaining polynomials are synthesized by repeatedly

performing the following computations:

1) Compute the polynomial of the next higher degree,

where ◦ is the Hadamard product,

gm = g1 ◦ gm−1 (2)

2) and perform a complete reorthogonalization,

gm = gm − GGT gm, (3)

=
{
I− GGT

}
gm (4)

by projection onto the orthogonal complement of all

previously synthesized polynomials1.

3) Normalize the vector,

gm =
gm

‖ gm ‖2
(5)

4) and augment the matrix of basis functions G,

G = [G, gm] . (6)

This procedure2 yields a set of orthonormal polynomials up to

degree d = 1000 without error, from a set of arbitrary nodes

located within the unit circle on the complex plane. However,

in this article only real nodes are used. Although in [41]

the Lanczos process is used to compute discrete orthogonal

polynomials, the authors seem to have overseen the possibility

(necessity) of using complete reorthogonalization at each step

of the polynomial synthesis.

B. Approximation of a Laser Line
Each camera delivers a region of interest C corresponding to

the view of the target with m rows and n columns, whereby

i is the row index and j is the column index, i.e. a pixel’s

illumination value is cij . The first moment xi of each row i
is computed by

xi =

∑n
j=1 jcij∑n
j=1 cij

, (7)

1It is important to note that the reorthogonalization is w.r.t. the complete
set of basis functions, not just the previous polynomial.

2A toolbox to implement this procedure is available online http://www.
mathworks.com/matlabcentral/fileexchange/41250.
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hence

x = [x1, . . . , xm]
T

in pixel. (8)

The variance σ2
i of each row i is approximated by the second

moment around the measured values x

σ2
i =

n∑
j=1

cij(j − xi)
2, (9)

hence

σ2 =
[
σ2
1 , . . . , σ

2
m

]T
in pixel2. (10)

Fig. 11 shows an example. The diagonal covariance matrix Σ
is defined through the values of σ2:

Σ = diag
(
σ2
)
= diag

(
σ2
1 , . . . , σ

2
m

)
. (11)

The cost function K of the weighted least squares polynomial

approximation is

K = ‖W(x− y)‖22 , (12)

whereby the laser’s weighting matrix W is designed as the

inverse of standard deviations, i.e.

W = Σ− 1
2 . (13)

The term (x − y) represents the residuum between the data

points x and the approximated polynomial y and the term is

minimized for a maximum likelihood estimation [42], whereby

y = Gα. (14)

The set of discrete orthogonal Gram polynomial basis func-

tions G has a degree d = 2 and α is the coefficient vector [43].

Expanding Eqn. 12 yields

K (α) =
∥∥∥Σ− 1

2 (x− Gα)
∥∥∥2
2

=
[
Σ− 1

2 (x− Gα)
]T[

Σ− 1
2 (x− Gα)

]
= (x− Gα)T

(
Σ− 1

2

)T(
Σ− 1

2

)
(x− Gα)

= (x− Gα)TΣ−1(x− Gα). (15)

Minimization is performed by

∂K(α)

∂α
=

∂

∂α

[
(x− Gα)TΣ−1(x− Gα)

]
= 0. (16)

Note, that taking the derivative K(α) w.r.t. α delivers a

coordinate vector ei for each measurement value xi, whereby

∂α

∂αi
= ei = [0, . . . , 0, 1, 0, . . . , 0]

T
, (17)

i.e. the ith element is 1 and the other elements are 0. This for-

malism conserves the correct matrix dimensions. Performing

the differentiation in Eqn. 16 for an individual xi returns

0 =− (Gei)
TΣ−1(x− Gα)

− (x− Gα)TΣ−1Gei. (18)

Expansion of both terms yields

0 =− (Gei)
TΣ−1x+ (Gei)

TΣ−1Gα

− xTΣ−1Gei + (Gα)TΣ−1Gei (19)

and furthermore

0 =− eT
iG

TΣ−1x+ eT
iG

TΣ−1Gα

− xTΣ−1Gei +α
TGTΣ−1Gei. (20)

The terms have dimensions of (1× 1), i.e. each one describes

a scalar and can therefore be transposed in order to simplify

the equation.

0 = eT
iG

TΣ−1(x− Gα). (21)

Consequently, the equation in matrix form is

eT
iG

TΣ−1x = eT
iG

TΣ−1Gα. (22)

Stacking the results for each xi delivers⎡⎢⎢⎢⎢⎢⎢⎣

eT
1
...

eT
i
...

eT
m

⎤⎥⎥⎥⎥⎥⎥⎦ (GTΣ−1x) =

⎡⎢⎢⎢⎢⎢⎢⎣

eT
1
...

eT
i
...

eT
m

⎤⎥⎥⎥⎥⎥⎥⎦ (GTΣ−1Gα), (23)

whereby each stack of element vectors is the identity matrix

I. This leads to the normal equations

GTΣ−1x = GTΣ−1Gα. (24)

Solving for the coefficient vector α yields

α =
(
GTΣ−1G

)+
GTΣ−1x, (25)

whereby + denotes the Moore-Penrose pseudo inverse. Utiliz-

ing this result for the polynomial approximation

y = Gα = G
(
GTΣ−1G

)+
GTΣ−1x (26)

generates the weighted least squares transformation matrix L

L � G
(
GTΣ−1G

)+
GTΣ−1. (27)

The linear operation is derived by substituting L from Eqn. 27

into Eqn. 26

y = Gα � Lx. (28)

The measurement’s result is the value p of the polynomial’s

y midpoint, i.e. it is only necessary to compute this relevant

point using the appropriate portion lT of the transformation

matrix L.

p = eT
ty = eT

t Lx = lTx, (29)

whereby et is the coordinate vector at t = m−1
2 + 1 when

m is odd. The point p now represents the laser line’s camera

coordinates in pixel. The covariance matrix Σ̂ for the vector

y is by definition

Σ̂ = E

[
(y − E[y])(y − E[y])

T
]
, (30)

where E[y] is the expected value of y [44]. If y = Lx, then

Σ̂ = E[(Lx− E[Lx])(Lx− E[Lx])T
]

= E[(Lx− LE[x])(Lx− LE[x])T
]

= LE[(x− E[x])(x− E[x])
T
] LT

= LΣLT. (31)
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Based on the matrix Σ̂, the uncertainty, i.e. variance σ̂2 of

each fitted curve y, is directly determinable:

σ̂2 = diag(Σ̂) = (L ◦ L)σ2. (32)

The variance λ2 of a relevant point p is then

λ2 = eT
t σ̂

2. (33)

Concatenating these single points for each laser line in an

individual camera’s field of view delivers the vectors

p and λ2, (34)

which are required for system calibration.
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Fig. 11. An example image of a laser line with the first moment x (red),
its standard deviation σ (green) and polynomial approximation y (blue) is
shown in (a) along with the relevant point p. The shown experimental data
delivers a standard deviation of approximately 10mm. The variance σ2 of the
local position of the line is illustrated in (b). The covariance matrix Σ̂ of the
complete polynomial fit has been analytically computed from the experimental
data and it is presented in (c) along with the variance σ̂2 and in λ2 (d) of
the polynomial estimate.

C. System Calibration via Polynomial Approximation

The overall system uses k = 1, . . . , 4 sensors in this

specific implementation. The individually acquired camera

space coordinates are then

{p(1),p(2),p(3),p(4)} in pixel (35)

along with their variances

{λ2
(1),λ

2
(2),λ

2
(3),λ

2
(4)} in pixel2. (36)

They are combined with the real space coordinates in q, i.e. the

resulting calibration points in Fig. 12. The device’s complete

measurement range of 1m is calibrated using n = 101
equidistant calibration points, i.e.

q = [q1, . . . , qn]
T
= [q1, . . . , q101]

T
, (37)

which is equivalent to a calibration spacing of 10mm. The

main source of error and its corresponding uncertainty is

related to the laser line’s width. One standard deviation

is approximately 10mm at minimum measurement distance.

Therefore, no further gain in accuracy can be achieved by

reducing the step spacing. Increasing the spacing will lead

to an increase of the uncertainty of the calibration and is

considered undesirable. The position of the points ensures that

each camera k has m(k) > n/3 points for calibration, i.e.

here a minimum of approximately m(k) ≈ 33 were used. The

coefficients β(k) for the polynomial z(k) of the kth camera

are determined using a weighted least squares approximation

by minimizing the according cost function H(k):

H(k) =
∥∥V(k)(p(k) − z(k))

∥∥2
2
, (38)

which can be solved as shown for Eqn. 12. The system’s

weighting matrix V(k) and the covariance matrix Λ(k) are

V(k) = Λ
− 1

2

(k) and Λ(k) = diag
(
λ2
(k)

)
. (39)

A single polynomial is defined as

z(k) = Gβ(k). (40)

Optical distortions are best modeled by even degree polyno-

mials, therefore the matrix G represents a Gram basis set of

degree d = 6. The kth coefficient vector β(k) is then

β(k) =
(
GTΛ−1

(k)G
)+

GTΛ−1
(k)p(k). (41)

The kth transformation matrix M(k) is

M(k) � G
(
GTΛ−1

(k)G
)+

GTΛ−1
(k), (42)

consequently leading to

z(k) = Gβ(k) � M(k)p(k). (43)

As shown in Eqn. 30, the covariance matrix Λ̂(k) of the fitted

polynomial z(k) is computable by

Λ̂(k) = M(k)Λ(k)M
T
(k) (44)

and therefore each calibration curve’s, z(k), variance ω2
(k) is

the diagonal of the covariance mattrix Λ̂(k)

ω2
(k) = diag(Λ̂(k)) = (M(k) ◦M(k))λ

2
(k). (45)

The calibration process yields four individual sets of calibra-

tion curves

{z(1), z(2), z(3), z(4)} in mm (46)

and they are visualized in Fig. 13 along with their variances

{ω2
(1),ω

2
(2),ω

2
(3),ω

2
(4)} in mm2. (47)

The confidence interval/standard deviation is

ω(k) =
√
ω2

(k) in mm, (48)

the individual curves are shown as weighting functions in

Fig. 14. The resulting covariance matrices are then

{Λ̂(1), Λ̂(2), Λ̂(3), Λ̂(4)} in mm2 (49)

and they are visualized in Fig. 15. During measurement, either

numeric or analytic polynomial interpolation is utilized to

determine the mapping z(k) for intermediate points z̃(k). Exact

details of the least squares fitting an interpolation can be found

in [43]. Note, that this derivation is completely general for an

arbitrary number of sensors.
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Fig. 12. The real space coordinate vector q features a 10mm spacing,
resulting in n = 101 equally spaced calibration points. The initial image
acquisition and preprocessing yields m(k) > n/3 ≈ 33 individual calibration
points for each of the k = 1, . . . , 4 cameras.
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Fig. 13. From left to right are the four individual camera calibra-
tion curves {z(1),z(2),z(3),z(4)}, which map the respective pixel co-
ordinates to real world coordinates q in mm. The standard deviations
{ω(1),ω(2),ω(3),ω(4)} have been scaled by a factor of 35 for better
visibility.
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Fig. 14. The standard deviations {ω(1),ω(2),ω(3),ω(4)} can be repre-
sented as weighting functions. They share some common characteristics with
membership functions, however these curves have been derived analytically
without any subjective assumptions.
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Fig. 15. The illustration shows the covariance matrices
{Λ̂(1), Λ̂(2), Λ̂(3), Λ̂(4)}. The asymmetry of {Λ̂(1), Λ̂(4)} is caused
by the optical conditions at the borders of the measurement range.
Note, that ω2

(k)
is the diagonal of the covariance matrix diag(Λ̂(k)), i.e.

ω2
(k)

= diag(Λ̂(k)).

D. Measurement via Polynomial Interpolation
The measurement is performed for each camera k, therefore

the notation is simplified in this section. During calibration,

the Gram polynomials are synthesized for m = m(k) known

p values from the vector p = p(k) and the corresponding

coefficients β = β(k) are determined for each camera’s curve

z = z(k) .

1) Numerical Solution: The numerical solution for interpo-

lation is based on the introduction of a resolution factor ρ > 1
and ρ ∈ N during the synthesis of the DOP basis G. The

number of used nodes m̃ for the measurement’s interpolation is

higher than the number of known nodes m for the calibration’s

approximation, i.e. m̃ = ρm. The submatrix Ḡ is generated

by extracting the known portions of G, i.e. the matching

calibration points at q. In Matlab R©, the syntax corresponding

to the process would be

Ḡ = G(q, :). (50)

The linear operator M from Eqn. 42 is adapted as following

M̃ � G
(
ḠTΛ−1Ḡ

)+
ḠTΛ−1, (51)

whereby the dimensions of the matrices are (m̃×m) for M̃,

(m̃ × m̃) for G, (m × m̃) for Ḡ and (m ×m) for Λ−1. The

resulting curves z̃ = M̃p are stored in the form of lookup

tables with a real space resolution of 1mm, when ρ = 10
and the original calibration spacing was 10mm. The detected

laser line position in pixel is mapped to the nearest neighbor

element z̃ in the lookup table z̃. The approach has a run-

time of O(m̃2), implementing a binary search tree structure

improves the computational efficiency and lowers the run-time

to 2O(m̃ log2(m̃)).

2) Analytic Solution: The synthesis process (see Sec-

tion III-A) yields the coefficient vectors γ and δ as required

for the three term relationship [40],

gm(p) = γm−1 p gm−1(p)− δm−1 gm−2(p). (52)

This recurrence is used during measurement to compute the

Gram polynomials at a point p̃ between the nodes, i.e. between

the calibration points p. The vector of polynomial values at a

point p is formed by

g = g(p) = [gm(p) . . . g0]
T
. (53)

Now given the weighted polynomial coefficient vector β from

the calibration process, the corresponding z̃ value is computed

by using p̃ as the function’s parameter,

z̃ = z(p̃) = g̃Tβ and g̃ = g(p̃), (54)

whereby z̃ is a single mapped point in mm. The recurrence

relationship enables interpolation between the nodes up to

degree of d ≈ 35 without error. The process is linear;

consequently, given the covariance Λβ of the coefficient vector

β, the covariance Λz of the calibration coefficients z can be

computed for the interpolation as

Λz = g Λβ g
T. (55)

In comparison to the numerical approach, the computation’s

runtime is linear w.r.t. the degree d of the interpolated poly-

nomial, i.e. O(d). Thus, the computation is faster and more

accurate.
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E. Algebraic Data Fusion

In neighboring cameras A and B with overlapping fields

of view, the calibration delivers two results z(A) and z(B) for

the same positions, each with its variance ω2
(A) and ω2

(B), see

an example in Fig. 16. An uncertainty weighted average is

applied to fuse both results into a single curve with superior

accuracy than the individual values. A curve z(k) is composed

of three parts:

1) z(k,l), the left overlapping section;

2) z(k,m), the middle section without overlap and;

3) z(k,r), the right overlapping section.

This means the vector can be concatenated as

z(k) =
[
z(k,l), z(k,m), z(k,r)

]T
, (56)

and the same is true for the corresponding variance vectors

ω2
(k) =

[
ω2

(k,l),ω
2
(k,m),ω

2
(k,r)

]T

. (57)

(a) laser line in camera A

(b) laser line in camera B

Fig. 16. The physical position of the laser line on the target bar is
simultaneously imaged by two neighboring cameras A and B when it’s located
in the overlapping fields of view.

The number of elements is usually m(A) �= m(B), but the

number or right nodes m(A,r) in the left section A is equal

to the number of left nodes m(B,l) in the right section B,

i.e. m(A,r) = m(B,l). Note, that A is assumed to be the left

boundary section and therefore has no left overlapping nodes

z(A,l). The vectors z(A,r) and z(B,l) are fused by a weighted

average based on the inverse of their standard deviations

ω(A,r) and ω(B,l).

z(AB) = Ω−1
(AB)

(
Ω−1

(A,r)z(A,r) + Ω−1
(B,l)z(B,l)

)
, (58)

whereby

Ω(AB) = diag
(
ω(A,r) + ω(B,l)

)
(59)

as well as

Ω(A,r) = diag
(
ω(A,r)

)
, (60)

Ω(B,l) = diag
(
ω(B,l)

)
. (61)

The combined weighting matrices, i.e. the fusion matrices, are

F(AB) � Ω−1
(AB)Ω

−1
(A,r), (62)

F(BA) � Ω−1
(AB)Ω

−1
(B,l). (63)

respectively. Eqn. 58 can then be rewritten as

z(AB) = F(AB)z(A,r) + F(BA)z(B,l). (64)

The fused calibration curve z̄ is then⎡⎢⎢⎢⎣
z(A,m)

z(AB)

z(B,m)

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
I 0 0 0 . . .
0 F(AB) F(BA) 0 . . .
0 0 0 I . . .
...

...
...

...
. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
z(A,m)

z(A,r)

z(B,l)

z(B,m)

...

⎤⎥⎥⎥⎥⎥⎦ (65)

and in concise form

z̄ = F
[
z(A), z(B), . . .

]T
. (66)

The approach forms a mathematical framework for the uncer-

tainty weighted data fusion of an arbitrary number of sensors.

The model delivers the result in Eqn. 68 for the specific

solution utilizing k = 1, . . . , 4 cameras. The complete fused

curve z̄ for this application is then

z̄ = F
[
z(1), z(2), z(3), z(4)

]T
. (67)

IV. EXPERIMENTAL VERIFICATION

A. Achievable Accuracy

The relationship between pixel dimensions, i.e. resolution,

and the error in detecting the position of a sharp edge in an

image was investigated in [45], [46]. It was determined, that

a subpixel accuracy of a factor 10, . . . , 20 can be achieved

reliably. In this experimental setup, 1 pixel in the camera cor-

responds to approximately 0.4mm in the real space, i.e. with

subpixeling an accuracy of at least 0.04mm is theoretically

possible. The observed experimental results in Table I gave

a 95% confidence interval of < ±0.6mm. It is concluded,

that the camera’s resolution is not the limiting factor in this

system. The primary uncertainty is the illumination associated

with the laser, i.e. small variations in the width of the laser

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(1)
z(12)
z(2)
z(23)
z(3)
z(34)
z(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 0 0 0 0
0 F(12) F(21) 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0
0 0 0 0 F(23) F(32) 0 0 0 0
0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 F(34) F(43) 0
0 0 0 0 0 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(1,m)

z(1,r)
z(2,l)
z(2,m)

z(2,r)
z(3,l)
z(3,m)

z(3,r)
z(4,l)
z(4,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(68)

173



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 63, NO. 5, MAY 2014 9

line and the distribution of intensities within the generated line.

Furthermore, testing on retro-reflector-targets and PSDs in out-

door turbulent environments [47] has shown, that accuracies of

approximately 10mm can be achieved over distances of 300m.

This indicates that the instrument’s required accuracy can be

accomplished even in the presence of ambient disturbances.

B. Cross Validation of the Measurement

The cross validation experiments were performed under

laboratory conditions with different glass window configura-

tions. The 100 measurement points q̃ are located between the

101 equidistant calibration points q, i.e. where the largest

error is to be expected. The norm of the measurement’s

standard deviation s is computed as a metric of quality. The

resulting measurement standard deviation sw is compared to

a conventional, i.e. unweighted, fit’s standard deviation sc to

verify the methodology. The conventional approach utilizes the

mean σ2 and λ2 of the variances σ2 and λ2.

TABLE I
THE CROSS VALIDATION RESULTS IN A 95% CONFIDENCE INTERVAL FOR

THE STANDARD DEVIATION OF THE WEIGHTED (sw ) AND CONVENTIONAL

(sc) POLYNOMIAL APPROXIMATION ARE SHOWN AS ABSOLUTE AND

RELATIVE (TO THE COMPLETE MEASUREMENT RANGE) VALUES.

approximation weighted conventional

laser’s weighting W = Σ− 1
2 W = σ2I

system’s weighting V = Λ− 1
2 V = λ2I

standard deviation sw sc

absolut:
no glass ±0.507mm ±0.594mm
Silver 20 ±0.552mm ±0.728mm
LX-70 ±0.532mm ±0.608mm

relativ:
no glass ±0.051% ±0.059%
Silver 20 ±0.055% ±0.073%
LX-70 ±0.053% ±0.061%

The results in Table I prove, that the weighted polynomial

approximation is up to 24% better than its conventional

pendant when using the hot mirror foil LX-70. It establishes a

better measurement environment w.r.t. ambient light than the

hot mirror foil Silver 20. The error plot of the LX-70 setup is

shown in Fig. 17; the norms of the resulting error vectors εw
(weighted) and εc (conventional) are

‖εw‖2 = 2.5mm and ‖εc‖2 = 3.0mm.
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Fig. 17. The standard deviation of the uncertainty weighted regression (red) is
smaller than the standard deviation of the conventional polynomial regression
(blue). A glass window coated with LX-70 was used for the measurement.

C. Remapping and Linearization Error

Merging the calibration curves of all cameras in Fig. 13 into

a combined output yields the fused mapping function. Remov-

ing the linear portion delivers the linearization error in Fig. 18.

The graph demonstrates the suitability of the mathematical

model. The reduced standard deviation at the overlapping

regions is an indicator of the superior measurement quality

in this sections.
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Fig. 18. The linearization error (red) of the combined curve is shown. The
two central measurement ranges possess a systematic error. The measurement
becomes more accurate in the overlapping fields of view, which is indicated
by reduced standard deviations (blue).

D. Kolmogorov-Smirnov Test for Gaussian Distribution
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Fig. 19. The KS-test checks the goodness of fit between one-dimensional
empirical data (blue) and its expected reference continuous parent distribution
(red). The test quantifies the distance between both cumulative distribution
functions.

The normal distribution of the data was proven by apply-

ing the non-parametric Kolmogorov-Smirnov test (KS-test)

with a 95% confidence interval on the samples [48]. All

performed operations are linear, therefore the results possess
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Gaussian distribution [49]. Normal distribution is required for

mean/variance point estimators and the Student-t confidence

interval estimator. The KS-test’s results of the errors are

visualized in Fig. 19.

V. CONCLUSION AND OUTLOOK

The growing usage of cyber physical systems increases the

importance of adequate data fusion techniques for (partly)

redundant data acquired from multi-modal sensors over the

time and/or space domain. This article has demonstrated,

that uncertainty weighted discrete orthogonal polynomials

are suitable for fusing data originating from an arbitrary

number of sources. The accuracy is > 20% better than

the conventional, i.e. unweighted, approach. The established

mathematical framework is computationally stable, efficient

and universally applicable; consequently, it enables its de-

ployment into highly integrated, low-cost embedded target

hardware such as (virtual and/or wireless) sensor networks.

The synergistic effect of combining the individual sensors

leads to an increased quality of the overall measurement. For

the experimental position sensitive detector, an uncertainty of

< ±0.6mm or < ±0.06% in a 95% confidence interval is

achievable for a measurement range of 1m over distances

of up to 300m. The a-priori knowledge of the calibration’s

covariance allows the analytic estimation of the measurement’s

uncertainty within a given confidence interval - which is in fact

essential for the system architecture of measurement devices.
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14 | Active Laser Target V2

Tunnel boring machines (TBM) excavate several [km] long tunnels with a circular cross section
and diameters of up to 19.25 [m]1. TBMs are used as an alternative to conventional drilling
and blasting methods; the disturbance to the surrounding ground is limited; thus, making the
approach suitable for rural as well as urbanized areas. TBMs have large overhead costs (i.e.,
construction and transportation); hence, this method is only appropriate for projects of a certain
dimension. A detailed description of the boring process is given in [15, 112].

Highest accuracy and precision is required to control and navigate a TBM along the planned
route. State-of-the-art control systems utilize a laser theodolite total station and photo-sensory
targets with retro-reflectors/motor-prisms. The target units are mounted on defined reference
points on the TBM. The theodolite continuously monitors their position and the control-system
determines the TBM’s position geometrically. Further sensors such as inclinometers or gyroscopes
deliver additional information about horizontal and vertical deviation of the machine [142].

Navigation of machinery in underground construction projects is a challenge due to the harsh
environmental conditions such as heat, dust and especially vibrations. The original Active
Laser Target (ALT) presented in [157, 158] was a feasibility study to develop a fully integrated
measurement device for optical displacement analysis of TBMs. A reference laser beam impinges
upon two parallel aligned targets, the position of the laser spots enable the computation of the
TBM’s pitch and yaw angles. The measurement principle avoids the use of fragile mirror-like
targets at exposed positions in the working area; it is visualized in Fig. 14.1 together with the
pitch-yaw-roll angles of the device in Fig.14.2. The corresponding laboratory prototype is shown
in Fig. 14.3 and the xy-table used for calibration is shown in Fig. 14.4. Following improvements
are introduced in the second iteration (ALTv2) of the system design:

1. The aluminum target is sandblasted to increase the Lambertian reflectance and the
target is anodized red to improve the absorption of non-red spectra of visible light. These
measures increase the robustness of the measurement process w.r.t. the optical properties
of the measurement instrument;

2. The use of Gigabit Ethernet (GigE) cameras with Power over Ethernet (PoE)
support eliminates the need of a mini PC inside the housing controlling the originally
employed USB2.0 cameras. The instrument can be remote-controlled from a supervisory
system; GigE with PoE supports cable lengths of up to 100 [m], IP67 connectors are
available. The used standard C-mount lenses are mechanically better suited for an
industrial environment than their S-mount counterparts;

3. The cameras are controlled over a UDP/IP network with the GenICam standard, which
1Herrenknecht AG, www.herrenknecht.com
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178 Chapter 14. Active Laser Target V2 (ALTv2)

reduces the programming effort thanks to the common interface. Additional cameras
can be flexibly added to the measurement system and/or defect devices can simply be
replaced;

4. The software is implemented using object-oriented programming (OOP), this facili-
tates functional decomposition, code reusability and event-driven control of the hardware
components. The class diagrams of the calibration and measurement process are shown in
Fig.14.5 and 14.6 respectively;

5. The system level calibration process incorporates a theodolite mounted on an xy-
table, see Fig. 14.4. An estimation for the achievable accuracy can be given with
the integrated cross validation procedure. The measurement process is designed to be
robust w.r.t. to vibrations; plausibility checks are performed over consecutive iterations;

6. The optical components have been chosen with the goal to minimize non-linear dis-
tortions. The coordinate mapping between the camera space in [pixel] and the metric
real space in [mm] is solved with a linear projective (homographic) transformation. Trans-
formations involving higher-order tensor products tend to be computationally intensive
and less robust in comparison to homography, especially when extrapolating the functions
over the borders of their support. The remaining systematic error is within the tolerated
error bounds.

rear ta
rget

(aluminum)
fro

nt ta
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measurement principle

laser spots reference laser beam

target distance

ψ
φ

x

y

z

Fig. 14.1 The reference laser beam impinges upon
the parallel aligned front (glass) target and the
rear (aluminum) target. The pitch φ and yaw ψ
angles are determined from the position of the
projected laser spots.

pitch-yaw-roll angles

roll
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driving 
direction
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y

z
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φ

ψ

Fig. 14.2 The TBM’s orientation is determined
by the pitch φ and yaw ψ angles, the roll angle is
measured separately with an inclinometer. The
device’s axis and the TBM’s principal axis are
coaxially aligned.

The software has been implemented in MATLAB using the Image Acquisition Toolbox as
well as the Image Processing Toolbox. In an OOP sense, special focus was laid on functional
decomposition and common interfaces. The software framework supports the interchange of
certain support classes with alternative implementations thanks to defined interfaces, e.g., for
projects with different system requirements. The class diagram of the calibration procedure is
shown in Fig. 14.5. Although class diagrams only show the static behavior of a program, the
four main classes are ordered sequentially:
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laboratory setup

front target 
(glass)

rear target 
(aluminum)

rear camera

target distance:
 d = 386 [mm]

front camera

GW = 160 [mm]

GH = 110 [mm]

f = 8 [mm]

Fig. 14.3 The front and rear targets are ob-
served by a pair of GigE cameras. The lenses
have a focal length f = 8 [mm], which leads to
a target distance d = 386 [mm] when consider-
ing the measurement range of (GW × GH) =
(160 [mm]× 110 [mm]).

theodolite and vertical xy-table

x

y

coordinate
system

reference 
laser beam

Fig. 14.4 The theodolite is mounted on a verti-
cal xy-table; it follows a calibration pattern. The
image acquisition of the cameras and the move-
ment of the xy-table/theodolite are synchronized
via event-based programming including callback
functions and notifications.

1. Acquisition. The xy-table moves the theodolite according to a predefined calibration
pattern. The cameras are synchronized to this movement and acquire images from each
calibration node. The raw images are stored for documentation and/or for recomputing
calibrating coefficients with a different set of parameters;

2. Process. Basic image improvement/filtering operations are performed, the laser spots are
segmented and the center coordinates (features) are extracted. The most robust technique
is the computation of the laser spot’s center of gravity; an alternative method is conic
fitting;

3. Model. The model’s coefficients for the front (f) and rear (r) target {Hf,Hr} are determined
separately. The quality increases with increasing number of calibration nodes; however,
there is a lower bound for the uncertainty;

4. Evaluation. The cross validation points are remapped using {Hf,Hr}, the residual is an
indicator for the calibration’s quality and the achievable accuracy. The calibration can be
repeated with other parameters if the results are not satisfying. A calibration report is
generated for documentation.

The calibration procedure is designed to be carried out under laboratory conditions with a
MATLAB based development system. Having the model parameters available, the measurement
process is relatively simple. The support classes from the calibration procedures are reused in
the current implementation of the measurement process, see Fig. 14.6. Alternative application
dependent implementations in other languages such as C++/C# or even C for an embedded
vision system are also possible. Note, that in this case the process parameters must be kept
consistent with the original calibration.
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Acquisition

top level class diagram: calibration procedure
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Fig. 14.5 Class diagram of the initial calibration procedure.

Measurement

top level class diagram: measurement procedure
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Fig. 14.6 Class diagram of the iterative measurement procedure.
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Abstract—Underground construction projects require accurate
techniques for machine guidance control. This paper presents an
advanced design of a fully integrated active laser target (ALT),
which is employed as an optical displacement and orientation
sensor. The instrument is mounted on a tunnel boring machine
(TBM) and delivers the TBM’s pitch and yaw angles to a remote
host system. The optical arrangement of the device includes a
semitransparent glass target and an opaque aluminum target,
whereby measures are taken to increase the sensitivity of red
light. A red reference laser beam is projected onto both parallel
targets; the positions of the laser spots are observed by two Power
over Ethernet (PoE) enabled Gigabit Ethernet (GigE) cameras.
A robust plane-to-plane mapping using projective transformation
is presented together with a cross validation procedure, which
evaluates the quality of the calibration. An a-priori estimation
of measurement uncertainty can be given. The system level
calibration process yields two sets of transformation coefficients,
such that the distortion associated with the optical components
and the inexactness of the mechanical construction are effec-
tively canceled out. Multiple images are acquired for a single
measurement and analyzed statistically to deliver a statement of
measurement uncertainty in order to compensate for mechanical
vibrations during the machine’s operation.

I. INTRODUCTION

The paper is a direct successor to the work presented in [1],

which describes the design and manufacturing of a machine

vision based measurement device for guiding tunnel boring

machines (TBMs), called the ’Active Laser Target’ (ALT).

Besides this particular application, such measurement devices

are used for shooting range simulation [2], positioning of

machines [3] and/or large objects [4]. Measurement principles

include the use of retroreflectors [5], position sensitive detec-

tors [6], camera imaging systems [3] and laser beam rider1

techniques [7]. Commonly, TBMs are controlled via remote

theodolites in combination with two to six retroreflectors

mounted at key positions on the machine [8]. The TBM’s abso-

lute position is then determined via triangulation [9] within an

accuracy of ±10 [mm], whereby a single measurement takes up

to 45 [s] to complete [10]. Due to the TBM’s slow movement,

these measurement are performed only on demand. The harsh

environmental conditions of underground constructions are

not ideal for such complex measurement arrangements using

mirrors and other fragile components; therefore, the first

generation of the ALT was a feasibility study to develop a fully

integrated measurement device without the need of additional

1This technology is closely related to military applications.

exposed parts. The second, improved generation of the ALT,

the ’ALTv2’, is presented in this paper; new contributions are:

(1) The paper’s main focus is the formulation of a calibration

procedure which yields calibration data, i.e., the transfor-

mation matrices; furthermore, the integrated cross validation

procedure systematically uses a set of real measurements to ac-

quire an estimation of the expected measurement uncertainty;

(2) Multiple images are sampled during the measurement

process for statistical analysis to give a confidence interval

for the measurement. Coordinates are mapped via projective

transformation utilizing the calibration data. The linear method

is valid for automatic programming and, thus, suitable for

deployment on an embedded vision system;

(3) The software architecture is implemented with object-

oriented programming (OOP), enabling functional decompo-

sition and reusability of code for future measurement applica-

tions. Furthermore, OOP enables an event-driven calibration

procedure for hardware synchronization between the cameras

and the xy-table;

(4) The system architecture is completely re-engineered. The

original ALT utilized USB cameras and, as a consequence,

required an integrated computer. The new concept uses cam-

eras with a Gigabit Ethernet (GigE) interface and Power over

Ethernet (PoE) energy supply; cable lengths of up to 100 [m]
are supported. The remote host uses the GenICam2 standard

to acquire images;

(5) Underground constructions exhibit an atmosphere with

dust, moisture and ambient sources of white light. The optical

components are selected with the goal to compensate for these

external influences and to increase the overall robustness of the

machine vision system.

II. PRINCIPLE OF OPERATION

A remote ’Leica TPS1200’ theodolite [9] is used as laser

source, its ’PinPoint R300’ laser unit has a wavelength of

λ = 670 [nm] within the red spectrum of light. The theodo-

lite’s accuracy is ±0.1 [mgon] for angle measurements3. The

reference laser beam is projected onto the device; in turn,

the measurement system delivers the included horizontal yaw

angle ψ and vertical pitch angle φ between the laser beam

and the machine’s principal axis, see Fig. 2. The roll angle is

2EMVA Generic Interface for Cameras (GenICam), www.genicam.org
3Gon is the common unit for angles in geodesy, 1◦ � 0.9 [gon].
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pf → qfpr → qr

d

Fig. 1. The laser beam enters the measurement device via the semitransparent glass window. The front laser spot pf is projected onto the backside of this
window, which appears as the front target. pf is detected by the front camera and mapped to qf, whereas the rear laser spot pr is projected onto the rear target,
detected by the rear camera and mapped to qr respectively. Both targets are aligned parallel, hence the differences Δx and Δy are simply determinable. The
pitch φ and yaw ψ angles are calculated through the position of both laser spots and the known target distance d.

of no particular interest in this application. The front (f) laser

spot pf on the front target and the rear (r) leaser spot pr on

the rear target are imaged by two opposed cameras, see the

illustrated measurement principle in Fig. 1. Fig. 3 shows the

housing of the prototype and images of both laser points. The

image processing yields the center coordinates within in the

camera space in [pixel], these coordinates are then mapped to

the corresponding metric real space coordinates qf and qr in

[mm] via a projective transformation,

{pf,pr} [pixel]
mapping−−−−→ {qf, qr} [mm]. (1)

The targets are aligned parallel; hence, the horizontal differ-

ence Δx and the vertical difference Δy are calculated as[
Δx

Δy

]
= qr − qf =

[
xr

yr

]
−
[
xf

yf

]
. (2)

The front and rear target are separated by the known target

distance d. The yaw ψ and pitch φ angles are computed via

ψ = arctan
Δx

d
and φ = arctan

Δy

d
. (3)

Both angles are delivered to a supervisory system.

III. OPTICAL ARRANGEMENT & SYSTEM ARCHITECTURE

Contractors in underground construction projects have little

space to install their equipment; therefore, a compact hardware

design is one of the design goals. The target distance d
determines the outer dimensions of the device, whereby d
directly depends on the object distance g and the space

required by the camera l, i.e., d ≥ g+l, see Fig 4. Furthermore,

the width (W) and height (H) of the target (GW × GH), i.e.,

the measurement range, the sensor size (BW × BH) and the

lens’ focal length f give an estimate of the object distance

g [11],

g(W,H) = f

(
G(W,H) +B(W,H)

B(W,H)

)
. (4)

The object distance is separably approximated for both dimen-

sions, where g = max(gH, gW). A compact hardware design

(b)

top view: yaw

Δx

d

ψ

x

z

side view: pitch

φ

d

Δy

z

y

(b)

(a)

(a)
(f)

(f) (d)

(d)

(c)

(c)

(e)

(e)

Fig. 2. The laser source (a), most commonly a theodolite, generates a
reference laser beam (b). The laser beam impinges upon the device’s (c) front
semitransparent glass window (d) and the transmission portion illuminates a
spot on the rear opaque aluminum target (e). Both targets are parallel to each
other and orthogonal to the machines principal axis (f). Utilizing the target
distance d and the horizontal difference Δx yields the yaw angle ψ, whereas
utilizing d and the vertical difference Δy yields the pitch angle φ.

requires the value of g to be small; given the target size, g
is shortened by using a lens with a small f and a relatively

large sensor. Consequently, selecting appropriate components

reduces non-linear optical distortions to a minimum:

1) the mono CCD camera ’Basler acA1300-30gm’ [12]

with a resolution of 1296 [pixel]×966 [pixel] @ 30 [fps],
a chip size of (BW ×BH) = 4.86 [mm]× 3.62 [mm] and

a PoE enabled GigE interface with GenICam support;

2) the C-mount lens ’Kowa LM8JCM’ [13] with f =
8 [mm], a distortion of −0.3 [%] and a minimal focus

distance gmin = 100 [mm].

The architecture of the components is sketched in Fig. 5.

Following measures are take to maximize the selectivity of

red light and to suppresses ambient white light:

1) the rear aluminum target is sandblasted to improve the

Lambertian reflectance; and

2) it is anodized red to provide the highest reflectance rate

for the red laser relative to other wavelengths;
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(c)

(a)
pf

pr

Fig. 3. The aluminum housing (a) of the device is sealed from dust and
moisture. There are two IP65 connectors for power supply and network
connection. The instrument’s coordinate system is visualized at the glass
window, which also acts as front target. The target’s measurement range is
(GW × GH) = (160 [mm] × 110 [mm]). The hexagonal pattern is screen
printed on the inside of the window; it has a dot diameter of 0.5 [mm] and a
dot distance of 1 [mm]. This pattern determines the visibility of the laser spot
on the front target pf (b) as well as the rear target pr (c).

3) the front semitransparent glass target has a hot mirror

foil applied to it, which reflects the infrared portions of

white light;

4) an optical interference filter, matched to the wavelength

of the laser, is mounted between the camera’s sensor and

the lens.

Another option would be the use of color sensors and exclu-

sively selecting the red channel. However, the Bayer pattern

reduces the usable resolution.

(d)  (e) (a)

(b)

(c) 

g l
d

Fig. 4. The front camera (a) and rear camera (b) are connected to the
PoE switch (c), which is in turn connected to the external power supply and
remote host. The front glass target (d) is coated with hot mirror foil, the rear
aluminum target (e) is sandblasted and red anodized. The object distance g
and the space required by the camera l determine the lower bound of d. In
this application, d < 400 [mm].

IV. CALIBRATION PROCEDURE

The goal of the calibration process is to generate two

independent matrices {Hf,Hr} of calibration coefficients for

the front (f) and rear (r) target to formulate the transformation

function stated in Eqn. (1). According to Fig. 6, the set Q of

m metric real space calibration nodes in [mm] is combined

with the camera space calibration nodes {Pf,Pr} in [pixel] to

acquire a plane-to-plane mapping function. Possible methods

are lookup tables, polynomial approximation [14], [15] or

projective transformation [16]. The latter is chosen, because

P

PC

DB

N

(a) 
(b) 

(d) (e) 
(c) 

R

Fig. 5. The components described in Fig. 4 are connected to a remote
host (PC) and power supply (P), whereby the GigE interface supports cable
lengths of up to 100 [m]. Images are acquired via the GenICam standard; the
PC saves the data to a database (DB) and generates (hardcopy) reports (R).
The measurement system is accessible from outside via network (N).

a homographic transformation is robust, supports extrapola-

tion and the mapping is computationally cheap. During data

acquisition, a set of camera space evaluation nodes {P̃f, P̃r}
corresponding to the n real space evaluation nodes stored in

Q̃ is also acquired for the cross validation in order to evaluate

the calibration quality, i.e., the residuals between the measured

points {Q̂f, Q̂r} and the original points stored in Q̃.

acquire 
data

process 
images

fit
model 

evaluate
model

accuracyend

start

sufficient insufficient

Q̃Q

{Hf,Hr}

{Pf,Pr} {P̃f, P̃r}

{Q̂f, Q̂r}

Fig. 6. The calibration process yields separate homography matrices {Hf,Hr}
for the front and rear target by combining Q with {Pf,Pr}. The integrated
evaluation process enables an objective judgment of the accuracy to be
expected by comparing Q̃ with {Q̂f, Q̂r}. If the accuracy is insufficient, new
data can be acquired with different parameters and/or more calibration points.
A design of experiments test plan helps to find suitable parameters.

A. Data Acquisition and Image Processing
The non time-critical calibration procedure is implement

as OOP in MATLAB. This includes the control of the two

cameras via GenICam as well as the control of a vertical xy-

table based on two orthogonal ’iTK ST9’ linear drives [17],

which move the theodolite and its laser unit. Fig. 7 illustrates

the system level calibration and Fig. 8 shows the associated

sequence diagram of the data acquisition process.

B. Model for Projective Transformation
The affine coordinates p = [a, b]

T
in [pixel] and q = [x, y]

T

in [mm] have homogeneous equivalents π = [α, β, γ]
T

and
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(a) (c) (b) (d) 

{Pf, P̃f}{Pr, P̃r} {Q, Q̃}

Fig. 7. During system level calibration, the rear target (a), the front target
(b) and the vertical xy-table (c) must be aligned parallel to each other, i.e.,
the laser beam (d) is orthogonal to all planes. The xy-table moves a theodolite
in a vertical plane according to a predefined pattern {Q, Q̃}, the movement
is synchronized to the image acquisition, see Fig. 8. System level calibration
corrects errors associated with the optical arrangement and the mechanical
construction.

:xy-table :camera

acquireImage()

moveToNextNode()

time ...

moveToFirstNode()

(�

(�

Fig. 8. The temporal behavior of data acquisition depends on the hard-
ware components. The xy-table has only limited acceleration and velocity;
therefore, reaching different points of the calibration pattern takes various
amounts of time. The acquisition of images via the GigE interface has no
distinct duration, e.g it is influenced by the network traffic. Synchronization
of the tasks is achieved via OOP event-based (�) control.

ω = [ξ, υ, ζ]
T

. The coordinate systems4 are related via a non-

bijective mapping of R3 → R
2, i.e.,

p =

[
α

γ
,
β

γ

]T
and q =

[
ξ

ζ
,
υ

ζ

]T
, (5)

where {γ, ζ} are the homogeneous components. Singularities

appear if these values are 0, i.e., points at infinity. The

transformation is given by

ω = Hπ, (6)

where H is the (3 × 3) homography matrix. Eqn. (6) is

expressed in matrix form⎡⎢⎣ξυ
ζ

⎤⎥⎦ =

⎡⎢⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎥⎦
⎡⎢⎣αβ
γ

⎤⎥⎦ . (7)

H may be divided by a non-zero real scalar, leading to

eight unknown variables. Four non-collinear points in the

real and camera space are required to solve this equation,

i.e., each known point yields two equations. The common

approach to compute H is the direct linear transformation

(DLT) algorithm [16]. The DLT algorithm does not differ-

entiate between statistically invariant constants as well as

the linear and quadratic parts of the error. Residualization

4This section is valid for the front and rear target.

based on orthogonal matrix projections delivers a reduced error

structure for the linear system of equations. This efficient non-

iterative computation of H can be found in literature [18].

Using the information stored in the set Q of known real space

coordinates (Fig. 9) and the sets {Pf,Pr} of acquired camera

space coordinates (Fig. 10), we compute {Hf,Hr} separately

for the front and rear target, i.e.,

{Q,Pf} → Hf and {Q,Pr} → Hr. (8)

Overdetermined systems are solved in a least-squares sense

using singular value decomposition (SVD).

x [mm]
-50 0 50

y 
[m

m
]

-50

0

50

calibration nodes (real space)

Fig. 9. The calibration pattern is stored in the set Q of real coordinates.
The total number m of calibration points influences the achievable accuracy,
whereby at least 4 independent points are required. In this example, m =
8× 5 = 40 calibration nodes are arranged in a regular 20 [mm] grid.
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Fig. 10. The positions of the points stored in the set Pr of rear nodes (◦)
and the set Pf of front nodes (♦) correlating to the set of points stored in
Q (Fig. 9) are not equal; hence, the computation of separate transformation
matrices Hf and Hr is required.

C. Cross Validation

During data acquisition, the set of n independent real eval-

uation nodes Q̃ delivers the sets {P̃f, P̃r} of camera evaluation

nodes. Mapping these coordinates back to the real space, yields
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the measured sets {Q̃f, Q̃r}. The residual matrices {Rf,Rr} are

separately determined for the front and rear target via

Rf = Q̃− Q̂f and Rr = Q̃− Q̂r. (9)

A residual matrix R = [(q̃1 − q̂1) . . . (q̃n − q̂n)] can be split

up in x and y dimensions, i.e.,

R =

[
(x̃1 − x̂1) . . . (x̃n − x̂n)

(ỹ1 − ŷ1) . . . (ỹn − ŷn)

]
. (10)

The Euclidean distance between a validation point q̃j and a

measured point q̂j is equivalent to the vector 2-norm,

rj = ||q̃j − q̂j)||2 =
√
(x̃j − x̂j)2 + (ỹj − ŷj)2. (11)

Concatenating the rj values yields the residual vector r =
[r1 . . . rn]. The standardized 2-norm ‖ r ‖2 /n is an indicator

of the achievable accuracy. Note, that increasing the number

m of calibration nodes in Q also increases the quality of

the transformation; unfortunately, the measurement uncertainty

can only be decreased to a lower bound. The results for

this particular cross validation setup (Fig. 11 and 12) using

m = 40 calibration points and n = 95 evaluation points

are shown in Table I. Conventional triangulation has an

accuracy of ±10 [mm]; however, the new approach is not

directly comparable to state-of-the-art solutions because of

the completely different measurement principle. Projective

transformation does not compensate non-linear distortions,

leading to a remaining systematic error r̄. Taking a look at the

standard deviations and the 2-norms reveals quality differences

between the front and the rear target. This is mainly caused

by the image processing, as the front laser spot is far more

exposed to external influences than the rear laser spot, see

Fig. 3. The Gaussian nature of the residuals can be verified

statistically with a Kolmogorov-Smirnov and/or an Anderson-

Darling test.
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Fig. 11. According to Fig. 6, a set P of m calibration nodes (◦) and and
a set P̃ of n evaluation nodes (�) are acquired. In this example, n = 95
evaluation nodes are placed between m = 40 calibration nodes, i.e., where
the biggest error is to be expected. This is done separately for both targets.

x [mm]

y
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m
]

q̂j =

[
x̂j

ŷj

]

q̃j =

[
x̃j

ỹj

]

(x̃j − x̂j)

(ỹj − ŷj)

rj =
√

(x̃j − x̂j)2 + (ỹj − ŷj)2

Fig. 12. The residuals {Rf,Rr} are the differences between the real evaluation

points Q̃ and the measured values {Q̂f, Q̂r}. The Euclidean distance rj
between two associated points q̃j and q̂j is a measure of quality.

value front target rear target

systematic error r̄ 0.3511 [mm] 0.3175 [mm]

standard deviation sr 0.2152 [mm] 0.1977 [mm]

standard error sr̄ 0.0221 [mm] 0.0203 [mm]

standardized 2-norm ‖ r ‖2 0.0422 [mm] 0.0383 [mm]

TABLE I
CROSS VALIDATION RESIDUALS WITH m = 40 AND n = 95.

V. MEASUREMENT PROCEDURE

The measurement process shown in Fig. 13 utilizes the

transformation matrices {Hf,Hr} to map the two camera

points {pf,pr} to their corresponding real points {qf, qr}, see

Eqn. (1). A measurement rate of 1 [Hz] has been specified for

the measurement instrument, whereby the selected camera is

capable of acquiring 30 [fps]. Depending on this desired mea-

surement rate, a robust measurement result can be achieved

by taking a number of n > 1 individual images into account

per camera for one measurement result. This is of particular

importance, as the machine is victim of vibrations, shock and

other sources of mechanical stress negatively influencing the

measurement. According to the JCGM Guide to the Expression

of Uncertainty in Measurement (GUM) [19], we can determine

a confidence interval as following using a set Q of n measured

points qj ,

Q = [q1 . . . qn] =

[
x1 . . . xn

y1 . . . yn

]
=

[
xT

yT

]
. (12)

The mean values in x and y dimension are computed via

x̄ =
1

n
(xT 1) and ȳ =

1

n
(yT 1), (13)

where 1 = [1 . . . 1]
T

is a vector of ones. For repeated measure-

ments of single values, the degree of freedom is ν = n − 1.

The variances s2x and s2y as well as the standard deviations of

the means (standard error) sx̄ and sx̄ are

s2x =
1

ν
(x− x̄)

T
(x− x̄) and sx̄ =

√
s2x
n
, (14)

s2y =
1

ν
(y − ȳ)

T
(y − ȳ) and sȳ =

√
s2y
n
. (15)
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The complete measurement result q̂ including its confidence

interval is then

q̂ =

[
x̄± t(ν,0.95) sx̄

ȳ ± t(ν,0.95) sȳ

]
. (16)

t(ν,0.95) is the Student-t value of the inverse cumulative

distribution function (ICDF) for a symmetric 95 [%] confidence

interval, whereby t(n−1,0.95) = 2.05 for n = 30. Conse-

quently, an uncertainty of < ±1 [mm] is achievable during

the measurement process. This is a valid approach, as the

Gaussian nature of the measurement was confirmed during the

calibration process. Having the results for {q̂f, q̂r} available

for the front and the rear target, the angles {ψτ , φτ} for

the current iteration τ are calculated according to Eqn. (3).

Plausibility checks are implemented with a feedback loop

of previous measurement results. The mapping operation is

a low-dimension matrix vector multiplication; consequently,

the measurement process can be implemented in common

programming languages such as C/C++, Java or C# for the

final product. As long as the device remains in development,

the MATLAB solution fulfills the requirements w.r.t. the

sampling rate of 1 [Hz].

acquire 
images

process 
images

apply
model 

end

start

process
terminate cycle

{Hf,Hr}

initialize

compute
results

{Pf,Pr}

{Qf,Qr}

{q̂f, q̂r}

{ψτ−1, φτ−1}

{ψτ , φτ}

Fig. 13. A number of n images are acquired for each target and measurement.
The camera space coordinates {Pf,Pr} are mapped to the real space coordi-
nates {Qf,Qr}, which are statistically analyzed to compute the measurement
results {q̂f, q̂r} and the angles {ψτ , φτ} of the current iteration τ . They are
compared with the angles of the previous iteration {ψτ−1, φτ−1} to perform
a plausibility check and enable trend analysis.

VI. CONCLUSION

The fully integrated optical measurement device is ro-

bust in terms of machine vision and mechanic vibrations,

making it suitable for underground construction projects. It

was demonstrated, that the deployed projective transformation

model is reasonably accurate with an uncertainty estimation of

< 0.6 [mm] for a calibration setup using m = 40 calibration

points and n = 95 cross validation points. The measure-

ment procedure is computationally cheap. An uncertainty of

< ±1 [mm] is expected within a 95 [%] confidence when using

n = 30 individual images for a single measurement result

while still ensuring a sampling rate of 1 [Hz]; in comparison,

triangulation using retroreflectors has an associated uncertainty

of ±10 [mm]. The use of electro-active glass is an option for

the front semitransparent glass target. The robustness of the

system could be further increased by installing a second pair

of redundant cameras for mutual monitoring of the laser spots.

Besides the control of a TBM, the measurement device would

be usable to control other large machinery working in harsh

environments such as continuous miners or bolter miners.
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Abstract—During product engineering of a measuring instru-
ment, the question is which measures are necessary to achieve
the highest possible measurement accuracy. In this context, a
measuring instrument’s target uncertainty is an essential part of
its requirement specifications, because it is an indicator for the
measurement’s overall quality. This paper introduces an algebraic
framework to determine the confidence and prediction intervals
of a calibration curve; the matrix based framework greatly
simplifies the associated proofs and implementation details. The
regression analysis for discrete orthogonal polynomials is derived,
and new formulae for the confidence and prediction intervals are
presented for the first time. The orthogonal basis functions are
numerically more stable and yield more accurate results than
the traditional polynomial Vandermonde basis; the methods are
thereby directly compared. The new virtual environment for
measurement and calibration of cyber-physical systems is well
suited for establishing the error propagation chain through an
entire measurement system, including complicated tasks such as
data fusion. As an example, an adaptable virtual lens model for
an optical measurement system is established via a reference
measurement. If the same hardware setup is used in different
systems, the uncertainty can be estimated a-priori to an individual
system’s calibration, making it suitable for industrial applications.
With this model it is possible to determine the number of required
calibration nodes for system level calibration in order to achieve a
predefined measurement uncertainty. Hence, with this approach,
systematic errors can be greatly reduced and the remaining
random error is described by a probabilistic model. Verification
is performed via numerical experiments using a non-parametric
Kolmogorov-Smirnov test and Monte Carlo simulation.

Keywords—regression, discrete unitary polynomials, measure-
ment uncertainty, uncertainty estimation, virtual calibration

I. INTRODUCTION AND MOTIVATION

It is required to calibrate devices for measurements on sys-
tem level when their behavior cannot be described analytically.
A set of n a-priori known calibration nodes x is provided and
the measuring instrument acquires the corresponding measured
quantity values y. The goal is to establish a mathematical
relation y = f(x) between both data sets, i.e., a regression.
The process yields the characteristic calibration curve of a
measurement system. This approach is completely general for
most types of sensors, no matter the physical phenomenon
serving as a basis for a measurement. Each measurement
induces an inevitable measurement error ε. According to the
ISO/BIPM Guide to the Expression of Uncertainty in Mea-
surement (GUM) [1], no measurement result is valid without a
statement about its associated uncertainty. The instrument’s un-
certainty is a key indicator for the measurement’s quality, i.e.,
the achievable accuracy. Although measurement uncertainty
cannot be avoided, it can be limited to an acceptable amount

within the laws of physics. The calibration process can be time-
consuming and, therefore, be expensive. Consequently, esti-
mating the expected uncertainty before the actual calibration
procedure is performed is of great interest. The main parameter
for the uncertainty, which can be influenced by the operator, is
the number of calibration nodes n. It is possible to determine
n for achieving a required target measurement uncertainty.
Due to the growing importance of cyber-physical systems [2]–
[4], connecting virtual and physical space through a suitable
mathematical model becomes vital for efficient measurement
applications. In this context, the main contributions of this
paper are:

1) A general derivation of non-simultaneous confidence
and prediction intervals for unitary polynomial Gram
basis functions and a direct comparison to the com-
mon Vandermonde basis. The Gram polynomials
yield more stable and accurate estimates than tradi-
tional methods. The matrix based approach to regres-
sion and error analysis facilitates a straightforward
implementation of error propagation throughout an
entire measuring system;

2) Numerical experiments with a Monte Carlo simula-
tion and Kolmogorov-Smirnov tests to demonstrate
how the number of calibration points affects the
overall measurement uncertainty. The mathematical
framework is verified with artificial and real data sets
acquired from a machine vision application employ-
ing distorted optical lenses.

Note that this paper only covers a polynomial approach for
curve fitting, other methods like piecewise, exponential or
rational fitting techniques are not part of the scope.

II. CONVENTIONAL POLYNOMIAL REGRESSION AND

ASSOCIATED CONFIDENCE AND PREDICTION INTERVALS

The state-of-the art approach for determining a measuring
system’s calibration curve is regression with polynomials of
degree d. For sensors with linear behavior, d = 1, and for
sensors with non-linear behavior, d > 1. For n > d + 1, the
approach delivers an overestimated system of linear equations
of the form

y = Xβ + ε, (1)

when y = [y1, . . . , yi, . . . , yn]
T

is the solution vector of
measured quantity values; X is the polynomial basis set of

degree d; β = [βd, βd−1, . . . , β0]
T

is the coefficient vector; and

ε = [ε1, . . . , εi, . . . , εn]
T

is the error vector. It is assumed, that
the error ε is independent, identically distributed (i.i.d.) with
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Gaussian noise and uncorrelated to x. Hence, the homoscedas-
ticity condition is fulfilled, i.e., the variance is constant within
the data set. In most applications1, a Vandermonde basis set
with the design matrix

X =

⎡⎢⎣x
d
1 x

(d−1)
1 . . . x1 1

...
...

. . .
...

...

xd
n x

(d−1)
n . . . xn 1

⎤⎥⎦ (2)

is employed. The basis X is complete, when d = n − 1,
but commonly n 
 d. This approach is analytically fine,
but numerically unstable if polynomial degrees of d > 7 are
used [5], [6]. The exponential growth of the condition number
κ(X) is visualized in Fig. 1. The common approach to estimate
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Fig. 1: The Vandermonde basis is numerically unstable for
degrees of d > 7 and the system of equations becomes ill-
conditioned. For the data set shown in Fig. 2, the condition
number of X is approximately κ(X) = 3000 for d = 10. The
logarithmic plot illustrates the exponential growth of κ(X). On
the other hand, a unitary polynomial basis G ensure a condition
number of κ(G) = 1 at any given degree.

the coefficient vector β̂ of the regression is the usage of the

Moore-Penrose pseudo inverse X+ � (XTX)
−1

XT,

β̂ = X+y with E[β̂] = β, (3)

when X+ is a maximum likelihood estimator [7] for the
generalized inverse. The operator E[·] is the expected value.
The estimator ŷ for the true solution vector y is then

ŷ = Xβ̂ = XX+y with (4)

E[ŷ] = E[Xβ̂] = XE[β̂] = Xβ = y. (5)

In literature [8]–[10], the confidence and the prediction for
one point of the regression utilizing a Vandermonde basis is
computed via

1) non-simultaneous confidence interval:

yi ≤ ŷi ± t(ν) s
√
xiVxT

i , (6)

2) non-simultaneous prediction interval:

ỹi ≤ ŷi ± t(ν) s
√
xiVxT

i + 1, (7)

when using a maximum likelihood estimation (MLE) with or-
dinary least squares (OLS) for linear regression. This approach

1MATLAB’s Curve Fitting Toolbox also uses a Vandermonde basis.

is justifiable via the Gauss-Markov theorem [8]: within the
class of linear unbiased estimators, the least squares estimator

has minimum variance2. The matrix V = (XTX)
−1

. t(ν) is the
inverse cumulative distribution function (ICDF or quantile) of
the Student-t distribution with ν degrees of freedom (d.f.). For
each regressor (constraint) one d.f. is lost, consequently,

ν = n− d− 1, (8)

when d is equal to the number of fitted parameters. In the
case of regression, d is the degree of the fitted polynomial, see
also Fig. 4 for a visualization of the effect of increasing d.f.
on the Student-t factor. In other words, the d.f. represent the
number of additional measurements, i.e., there are no d.f. for a
complete basis and there are infinite confidence and prediction
intervals in this case. For easier readability, a symmetric (1−
α) = 95% confidence interval with significance level α = 5%
is chosen for all ICDFs in this paper. The sample standard
deviation s is an estimator for the population’s true standard
deviation σ, see Eqn. 16. Both, t(ν) and s, act as scaling factors
for the intervals, see Fig. 2 for an example.
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Fig. 2: The plot shows the function y = x3 with artificial
Gaussian error N (ε, 0, 0.01) in the interval [−1,+1] with
n = 21 calibration nodes (black), which has been generated
with Monte Carlo simulation. The calibration curve (red solid)
is computed via polynomial regression with degree d = 3.
The 95% confidence (green dashed) and prediction (blue
dotted) intervals are estimators for the expected measurement
uncertainty. Both intervals form envelopes around the curve.

III. REGRESSION USING MATRIX ALGEBRA

In most literature [8]–[10], the formulas for the confidence
and prediction intervals in Eqn. 6 and 7 are derived for the
univariate case with Vandermonde basis. In this section, the
theoretical background for derivations in the multivariate case
is established.

2This concept is also known as best linear unbiased estimator (BLUE).
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A. Multivariate Descriptive Statistics

In matrix notation, the expected value of a vector u is

E[u] = [E[u1], . . . ,E[ui], . . . ,E[un]]
T

(9)

and the covariance matrix Λv of a vector v is

Λv = E

[
(v − E[v])(v − E[v])

T
]
. (10)

If v = Lu, when L is an arbitrary linear operator, then the
output’s covariance Λv is directly computable from the input’s
covariance Λu, because E[L] = L.

Λv = E[(Lu− E[Lu])(Lu− E[Lu])T
],

= E[(Lu− LE[u])(Lu− LE[u])T
],

= LE[(u− E[u])(u− E[u])
T
] LT,

= LΛuL
T. (11)

It is assumed, that the error ε is i.i.d and uncorrelated to x.
The multivariate Gaussian probability density function (PDF)
is N (ε, 0,Λε), i.e., the expectation and covariance of the error
are

E[ε] = 0 and Λε = σ2I, (12)

because cov[εi, εj ] = 0 when i �= j. Hence,

Λε =

⎡⎢⎢⎣
cov[ε1, ε1] cov[ε1, ε2] . . . cov[ε1, εn]
cov[ε2, ε1] cov[ε2, ε2] . . . cov[ε2, εn]

...
...

. . .
...

cov[εn, ε1] cov[εn, ε2] . . . cov[εn, εn]

⎤⎥⎥⎦ (13)

=

⎡⎢⎢⎣
σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

⎤⎥⎥⎦ = σ2I. (14)

The covariance of ε is equivalent to the covariance of y, i.e.,

Λy = Λε = σ2I. (15)

When working with artificial data generated by Monte Carlo
simulation, it’s recommended to verify this condition for both
covariances via the Kolmogorov-Smirnov test, see Fig. 3. The
unbiased multivariate estimator s2 for the population’s variance
σ2 with ν d.f. is

s2 =
1

ν
(y − ŷ)T

(y − ŷ) (16)

and the estimator for the standard deviation σ is s = +
√
s2.

B. Multivariate Goodness-of-Fit Test

The χ2 goodness-of-fit test with r d.f. for the multivariate
variable v̂ = Lû with E[v̂] = v and E[û] = u is

χ2
(r) ≤ (v̂ − E[v̂])

TΛv̂
−1(v̂ − E[v̂]), (17)

i.e., the vector product (v̂ − E[v̂])
T
(v̂ − E[v̂]) is standardized

with the covariance Λv̂ . Utilizing Eqn. 11 delivers

χ2
(r) ≤ (Lû− E[Lû])T(LΛûL

T
)−1

(Lû− E[Lû]),

≤ (Lû− Lu)T(LΛûL
T
)−1

(Lû− Lu). (18)
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Fig. 3: The non-parametric Kolmogorov-Smirnov test (KS-
test) [9] verifies the Gaussian nature of the noise ε and the
regression’s residual r = |y− ŷ| on a given significance level
α, typically (1 − α) = 95%. The test’s principle is based on
comparing the sample’s (blue) cumulative distribution function
(CDF) with the CDF of the standard normal distribution (red).

When estimating σ2 with s2, then the χ2
(r) distribution can

be approximated with the quasi-standardized Fisher-F distri-
bution rF(r,ν), because

lim
ν→∞ rF(r,ν) = χ2

(r). (19)

If the number or regressors r = 1, then the Fisher-F distribu-
tion is equivalent to a squared Student-t distribution

F(1,ν) = t2(ν). (20)

Note that F(1,ν) �= F(ν,1). A Student-t distribution converges
to a Gaussian distribution Φ when ν → ∞, this is shown for
the ICDF in Fig. 4,

lim
ν→∞ t(ν) = Φ. (21)
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Fig. 4: During measurements, only a finite number n of
sample values is acquired. The Student-t distribution takes
care of this inexactness. With increasing d.f., the Student
factor t(ν) decreases. Theoretically, if n → ∞, then the value
of the Student’s ICDF (blue) converges to the corresponding
Gaussian ICDF (red dashed) at a given significance α = 5%.

C. Fundamental Matrix Operations

When computing the non-simultaneous bounds, it is nec-
essary to select individual rows of the basis sets. The ith

row of a matrix U is selected via the coordinate vector
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ei = [0, . . . , 1, . . . , 0]
T
, i.e., a vector of zeros except for an

1 on the ith position. The operation is ui = eT
iU, which

is equivalent to the MATLAB syntax ui = U(i, :). For the
parallel computation of individual values it is required to select
the diagonal elements of an arbitrary n×n matrix U, which is

denoted by diag (U) = [u11, u22, . . . , uii, . . . , unn]
T
. For the

identity matrix I, the operation delivers a vector of ones, i.e.
diag (I) = 1.

IV. DISCRETE UNITARY POLYNOMIAL BASIS FUNCTIONS

O’Leary et al. [11]–[13] introduced a numerically stable
and computationally efficient discrete unitary basis G derived
from Gram polynomials. It is proven, that there is one and only
one unitary polynomial basis which can be generated from a
sum of uncorrelated monomials by a recurrence relationship.
The exact Legendre, Chebyshev and normalized Krawtchouk
polynomial basis sets are equivalent and only the norms of the
individual polynomials are different, i.e. the weighting of the
inner product. The orthogonality condition ensures minimal
information redundancy. For applications utilizing regression,
the degree d of the basis is d < n − 1, when n is the
number of sampled points, i.e., a filtering operation via spectral
regularization is performed. Hence, the basis G is incomplete3

and GGT �= I. By definition, an incomplete unitary discrete
basis posses following traits,

GTG = I and G+ = GT. (22)

The orthogonality measure P⊥ = GTG − I should be exactly
a matrix of zeros. However, due to numerical errors, this is
not exactly the case, i.e. P⊥ ≈ 0. However, P⊥ is a measure
for the quality of the generated basis function G. The number
of significant digits can be estimated by η = log10(‖P ‖F),
when ‖ · ‖F is the Frobenius norm. For a basis G with d = 100,
there are still η ≈ 14.5 significant digits. The solution vector
y is formulated as

y = Gα+ ε, (23)

where α is the coefficient vector and ε is the i.i.d. error vector
with E[ε] = 0 and Λε = σ2I. Thanks to the orthogonality
condition, the coefficients α can effectively estimated via

α̂ = GTy with E[α̂] = α. (24)

The estimator ŷ for the solution vector y is then

ŷ = Gα̂ = GGTy. (25)

V. CONFIDENCE AND PREDICTION INTERVALS FOR A

DISCRETE ORTHOGONAL BASIS

The covariance matrix Λα̂ for the estimated coefficients α̂
is computed from Λy by utilizing Eqn. 11 and Eqn. 24,

Λα̂ = LΛyL
T with L = GT,

= GTΛyG and Λy = σ2I,

= GT(σ2I)G,

= σ2GTG and GTG = I,

= σ2I. (26)

3If G is complete with d = n− 1, then G−1 = G+ = GT and GGT = I.

Using Eqn. 25, the covariance matrix Λŷ for the estimated
solution ŷ can be derived from Λy by

Λŷ = LΛyL
T with L = GGT,

= (GGT)Λy(GG
T)

T
,

= GGTΛyG
TG and GTG = I,

= GGTΛy and Λy = σ2I,

= σ2GGT. (27)

A. Simultaneous Confidence Intervals for the Coefficients

The interactive relation between all (d + 1) coefficients
is considered when computing the simultaneous confidence
intervals. Therefore, a χ2

(d+1) goodness-of-fit test as presented

in Eqn. 17 is carried out with r = d+ 1 d.f.,

χ2
(d+1) ≤ (α̂− E[α̂])

TΛα̂
−1(α̂− E[α̂]), (28)

χ2
(d+1) ≤ (α̂−α)T

(σ2I)
−1

(α̂−α).

Estimating σ2 with s2 and approximating χ2
(d+1) according to

Eqn. 19 with (d+ 1)F(d+1,ν) yields

s2 (d+ 1)F(d+1,ν) ≥ (α̂−α)T
(α̂−α), (29)

which described a hyper-ellipsoid with (d + 1) dimensions.
The solution of this equation is an inverse problem. Thanks to
the orthogonality condition, the covariance is Λα̂ = σ2I. This
reduces the computation to a scalar product. The focus of this
paper lies on the numerical solution of the non-simultaneous
intervals.

B. Non-Simultaneous Confidence Intervals for the Coefficients

When computing the non-simultaneous intervals, each co-
efficient’s confidence is computed individually; hence, only
r = 1 d.f. is required for the χ2

(1) goodness-of-fit test.

Therefore, χ2
(1) can be approximated with 1F(1,ν). With this

simplifications, Eqn. 29 yields

(α̂i − αi)
2 ≤ F(1,ν) s

2,

(α̂i − αi)
2 ≤ t2(ν) s

2,

|α̂i − αi| ≤ t(ν) s,

αi ≤ α̂i ± t(ν) s. (30)

Parallel computing delivers the individual non-simultaneous
confidence intervals for all coefficients

α ≤ α̂± t(ν) s 1. (31)

C. Non-Simultaneous Confidence Intervals for the Regression

The complete curve’s regression is computed via ŷ = Gα̂.
However, each coefficient’s confidence is still computed sepa-
rately, therefore the χ2

(1) test has r = 1 d.f.,

χ2
(1) ≤ (ŷ − E[ŷ])

TΛŷ
−1(ŷ − E[ŷ]),

≤ (ŷ − y)T
(GΛα̂G

T)
−1

(ŷ − y),
≤ (ŷ − y)T

(G(σ2I)GT)
−1

(ŷ − y),
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computing only the ith point via gi = eT
iG yields

χ2
(1) ≤ (ŷi − yi)

2(σ2 gig
T
i )

−1
, (32)

approximation of the χ2
(1) distribution with the t(ν) distribution

simplifies the terms to

(ŷi − yi)
2 ≤ χ2

(1)(σ
2gig

T
i ),

≤ F(1,ν)(s
2gig

T
i ),

≤ t2(ν)(s
2gig

T
i ). (33)

Computing the absolute value delivers

|ŷi − yi| ≤ ±
√
t2(ν)(s

2gigT
i ) (34)

and the confidence yi of one regression point ŷi is then

yi ≤ ŷi ± t(ν) s
√
gigT

i . (35)

Parallel computing yields the non-simultaneous confidence
intervals y for all points of the regression

y ≤ ŷ ± t(ν) s
√

diag (GGT). (36)

D. Non-Simultaneous Prediction Intervals for the Regression

For the estimation of the predicted value ỹi of an individual
function value yi, the error’s variance for one observation must
also be considered, i.e., the variance σ2 is added to the second
term of Eqn. 32.

χ2
(1) ≤ (ŷi − ỹi)

2(σ2 gig
T
i + σ2)

−1
, (37)

performing the same steps as in the previous section delivers

(ŷi − ỹi)
2 ≤ t2(ν)(s

2gig
T
i + s2) (38)

and the prediction ỹi of one regression point ŷi is then

ỹi ≤ ŷi ± t(ν) s
√
gigT

i + 1. (39)

Parallel computing yields the non-simultaneous prediction in-
tervals ỹ for all points of the regression

ỹ ≤ ŷ ± t(ν) s
√

diag (GGT) + 1. (40)

The influence of the t(ν) and s factors on the intervals has

already been explained in Sec. II. The terms
√
gigT

i and√
gigT

i + 1 respectively further decrease the confidence and
prediction intervals with increasing d.f., the effect is shown in
Fig. 5.

VI. VIRTUAL OPTICAL CALIBRATION MODEL

There are industrial implementations of optical mea-
surement systems [14]–[16] using the provided basis func-
tions [17], [18] in univariate as well as bivariate formulations.
In this paper, a virtual lens model is established. Based on
this model, the lower bounds of uncertainty for an optical
measuring system can be estimated. The process steps are:

1) A physical lens and camera setup is utilized to
acquire the initial reference data. Wide-angle lenses
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Fig. 5: The plot shows the mean of the matrix operation√
diag (GGT), when G is a basis of degree d = 3. The value of

the Gram confidence factor decreases with increasing number
of calibration nodes or d.f. respectively.

cause significant non-linear distortion, and as a conse-
quence, rectification of the camera space is required.
The center coordinates Dx and Dy of LEDs organized
in a two-dimensional array act as calibration nodes,
see Fig. 6.

2) The virtual lens model Mx and My is synthesized
using the reference data via a bivariate tensor product,

Sx = GT
yDxGx and Mx = GySxG

T
x, (41)

Sy = GT
yDyGx and My = GySyG

T
x, (42)

where Sx and Sy are the spectra of coefficients, Gx

and Gy are the polynomial basis sets, see Fig. 7
for a visualization. The model’s variance s2 can be
estimated by Eqn. 16 using this data.

3) Having the reference model Mx and My available,
the number of calibration points n can be varied
for an uncertainty estimation. Therefore, if the same
hardware setup is used in different systems, the
uncertainty can be estimated a-priori to the system’s
initial calibration. Each calibration node must have
noise s repeatedly added to it, which is accomplished
via Monte Carlo simulation.

4) For each number of calibration nodes, the uncertainty
can be estimated by the confidence and prediction
intervals. The target measurement uncertainty defined
in the requirements specification is the upper limit,
see Fig. 8. Note that in this example using wide-
angle lenses, the biggest distortion is to be expected at
the acquired image’s borders. Known cross-validation
points are utilized to verify the model.

VII. CONCLUSION

Possible fields of application for discrete orthogonal poly-
nomials can be found in the solutions of initial value prob-
lems (IVPs), boundary value problems (BVPs), ordinary dif-
ferential equations (ODEs) or partial differential equations
(PDEs). Their numerical stability and computational efficiency
is superior to conventional techniques. Furthermore, the high
degree polynomials enable various applications such as ge-
ometric object modeling, surface description or the optimal
fitting of highly non-linear calibration curves. The introduced
algebraic framework enables the estimation of uncertainty
for the mentioned applications. Especially in cyber-physical
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systems, multi-modal sensing is of growing importance and
the proposed method enables uncertainty based multi-sensor
data fusion.

(a) reference target with LEDs

camera

target

(b) camera setup with target

Fig. 6: For this example, the reference measurement is carried
out on an orthogonal 25 [mm] grid in metric real space with
7 × 8 LEDs, see (a). The LEDs’ center coordinates act as
calibration nodes for the model building. The distortion caused
by the wide-angle lens is clearly visible. In this setup, an M-
mount lens with a focal length of f = 4.2 [mm] and a 1/3”
monochrome CCD sensor with 1296 × 966 [pixel] resolution
was deployed to capture the target, see (b).

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

lens model

xDim (normalized)

yD
im

 (
no

rm
al

iz
ed

)

Fig. 7: The reference measurement enables the formulation
of a virtual lens model Mx (blue) and My (red). Each row
and column features a number of calibration nodes nr and
nc. For better demonstration, only few calibration points have
been produced for this visualization. The model’s uncertainty
(gray) has been scaled by a factor of k = 40 to make it visible.
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15 | Outlook

The theory of DOP basis functions is completely general. It was shown in Part III, that
the concept is eligible to describe various engineering problems and yields solutions of high
numerical quality. The method is fully scalable and can be deployed on embedded system as
well as on high-performance computing (HPC) systems. This chapter provides insights about
continuative and related problems without the claim of completeness. The goal is to create an
impression where future developments may take place. This includes abstract mathematical
concepts such as the numerical solution of PDEs and Sturm-Liouville problems. Decomposition
of large problems enables parallel computing, which is a requirement for utilizing modern HPC
architectures as well as embedded FPGAs, e.g., for real-time time series/sequence data mining,
which will be a strategic field of research for the Chair of Automation in the future.

15.1 Sturm-Liouville Problems

A Sturm-Liouville problem is a second order ODE. The structure is basically an eigenproblem,

− d

dx

[
p(x)

dy

dx

]
+ q(x) y = λw(x) y (15.1)

in the finite interval x1 ≤ x ≤ xn, where p(x), q(x) and w(x) are real-valued strictly positive.
Additionally, there are two boundary conditions which are most commonly formulated as,

a1 y(x1) + a2 y
′(x1) = 0, (15.2)

b1 y(x2) + b2 y
′(x2) = 0. (15.3)

When implementing Sturm-Liouville problems in a discrete manner, following properties must
be considered [89]:

1. All eigenvalues are real and there is no largest eigenvalue, i.e., there are an infinite number
of eigenvalues and λm → ∞ as m → ∞. Given a set of n discrete points x, there can be
theoretically only n eigenvalues;

2. The mth eigenfunction has m zeros on the interval a < x < b. However, given n points,
only functions with a maximum of n/2 zeros are describable without aliasing;

3. The eigenfunctions are orthogonal w.r.t. the weighting function,
∫ b

a
Φi(x)w(x)Φj(x) = δij .

The general Sturm-Liouville problem in Eqn. (15.1) with its corresponding boundary value
conditions can be directly discretized as

{DPD− Q} y = −λWy with CT y = 0, (15.4)
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whereby P = diag(p(x)), Q = diag(q(x)) and W = diag(w(x)). Unfortunately, a direct solution
of this equation is numerically unstable due to aliasing.

A weighted and constrained basis function Ḡ is introduced. It fulfills the orthogonality condition
ḠTWḠ = I and the boundary condition CTḠ = 0. These basis functions are admissible functions
to the Sturm-Liouville problem. The number of zeros in the basis functions increase from left
to right in the matrix. The number of zeros in the basis function is limited; in order to avoid
aliasing, the basis function is truncated to the k = n/2 basis functions, i.e., Ĝ = Ḡ(:, 1 : k). The
eigenfunctions are now found as linear combinations of these admissible functions, i.e., y = Ĝα.
Substitution into Eqn. (15.4) yields

{DPD− Q} Ĝα = −λWĜα. (15.5)

Premultiplication with ĜT gives

ĜT {DPD− Q} Ĝα = −λα, (15.6)

since ĜTWĜ = I. Defining L = ĜT {DPD+ Q} Ĝ yields a standard eigenvector problem,

{L+ λ I} α = 0. (15.7)

Solving this equation for the eigenvalues λi and the associated eigenvectors αi. Substitution of
an eigenvector αi into the relation

yi = Ĝαi (15.8)

yields the ith eigenfunction yi of the system.

15.2 Partial Differential Equations

It was shown in Chapter 10 how to reconstruct the curve ŷ from a set of m perturbed inclination
measurements z ∈ R

(m×1),
ŷ = yh + P z. (15.9)

Concatenation of k individual measurement vectors zi ∈ R
(m×1) yields the measurement matrix

Z = [z1 . . . zk]. The vertical dimension corresponds to the spatial domain and the horizontal
dimension corresponds to the temporal domain, i.e., Z ∈ R

(m×k). This formalism enables
simultaneous processing of measurement data in both dimensions; hence, this corresponds to
an inverse PDE when reconstructing the plane in a least squares sense. The most general
formulation for the PDE describing the function values over time Y in terms of Z is

Z = Us YUT
t + Vs Y + YVT

t + E. (15.10)

The subscripts indicate the spatial (s) and time (t) domain respectively for the basis functions
U and V. There are efficient methods available for the solution of such problems, e.g., surface
reconstruction from gradient fields [90]. The approach is especially useful to analyze the dynamic
behavior of objects measured by chains of inclinometers, e.g., structural health monitoring of
regions subject to ground subsidence over time.
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15.3 Model Based Production

As argued in Section 2.2.1, the concept of cyber-physical production systems (CPPS) will be
essential for future complex industrial process control. The manufacturing of products is a
physical process and, therefore, adequate process models are required. Ultimately, this enables
the implementation of a reactive/operational control loop directly on the production machine
as well as a strategic/predictive control loop as part of a supervisory system, which consolidates
the production data of multiple machines. The idea is summarized with the term model based
production, it is based on three fundamental pillars:

1. Cyber-physical systems provide the necessary system architecture as well as the infras-
tructure. This includes complexity management, interface definitions between the system’s
components as well as communication protocols for the agents within the network;

2. Model based design enables the formulation of physical processes on abstract model
level. Continuous physical models are discretized and deployed on embedded systems
without the need of detailed knowledge about the target platform;

3. Temporal data mining relies on the concept of cognition. The mathematical models are
based on physical phenomena, i.e., cause and effect; this causality is the main difference
to classical data mining approaches which are merely based on correlation.

It is important to note that the concept is not limited to the manufacturing of classical piece
goods. The Chair of Automation’s goal is to execute the concept on a variety of machines, e.g.,
on heavy machinery from the mining and tunneling industry, injection molding machines for
the processing of polymers or on offshore drilling platforms from the petroleum industry.

15.4 Temporal Data Mining

The focus of this thesis was laid onto CPS from a bottom-up perspective, i.e., from sensor level
(physical domain) to supervisory level (socio domain). The supervisory system’s purpose is to
acquire data from distributed sensor motes mounted on the facility to be monitored. The Chair
of Automation’s vision is to establish a new field of research regarding the real-time analytics of
machine data emanating from a WSAN. From this point of view, this is a top-down approach.
Systems for condition monitoring and machine diagnostics rely on data mining (DM) techniques,
which is by definition [25, 64, 86] a methodology for knowledge discovery in large amounts of
data. CRISP-DM provides a formal, yet generic framework for industrial DM projects [25], the
phases and subtasks are visualized in Fig. 15.4. In literature as well as applications, DM is
mostly related to knowledge discovery in data bases (KDD); the static data is free from temporal
references. The data sets are analyzed statistically in order to find correlations [86, 115, 132];
however, this approach is not suitable for time-critical tasks based on physical processes.

In this vein, analysis of dynamic data, i.e., logically ordered sequences and/or chronologically
ordered time series, is a DM problem of different nature [4, 48, 77, 118, 191], so called temporal
data mining. The data stream emerges from a mechanical installation equipped with numerous
sensors, most likely a mechatronic system, see Fig. 15.1 for an example. Hence, the underlying
physical phenomena must be considered to derive suitable mathematical models with signif-
icance [82, 169]. In contrast to classical DM, these models enable the discovery of causality
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between data sets. Ultimately, predictive control loops can be implemented using this concept
for preventive maintenance, whereby the goal is to find anomalies within the data stream [57].
An anomaly is an unexpected behavior, i.e., a discrepancy in comparison to frequent patterns.
This requires the automatic recognition of the machine’s operating states and reliable predictions
using embedded simulation. Anomalies can occur on different time scales [28], which facilitates
the need of hierarchical scale-space decomposition. The phenomenology approach is based
on five cognition steps: awareness, feeling, perception, reasoning and judgment. The system
architecture must implement these process steps for knowledge discovery in streaming data.

mechatronic system 1

system architecture for time series / sequence data mining in cyber-physical systems

network

mechatronic system 2

mechatronic system 3

mechatronic system n

...

DM

local data 
repository

global data 
center

physical space cyber space socio space

fleet report

machine reports

...

strategic/
predictive 

control loop

KPIs

Fig. 15.1 A conventional reactive control loop controls the mechatronic system based on the machine’s
sensors. The sensor data as well as the control signals are transmitted to a local data repository.
The global data center consolidates the data from numerous mechatronic systems via network. Key
performance indicators (KPIs) as well as machine and fleet reports are generated based on the mined
data for knowledge representation. Using this information, decisions are made which proactively
influences the machine’s operation. The illustration features a stylized bucket wheel reclaimer as an
example.

The proposed solution is based on lexical analysis, i.e., the concept of natural language known
from compiler theory. Symbolic approximation is used to embed semantic information about the
system into the predictive model. The majority of the machine’s operating states is extracted
from the (cleansed) streaming data during the initial exploratory phase and stored in a lexical
definition. However, this process requires thorough a-priori knowledge about the machine and
its associated processes, which is formally described via a machine definition.

Each sensor requires at least one dedicated single channel lexical analyzer (SCLA), see Fig. 15.2.
Multiple linear operations can be applied to data emerging from a single sensor, whereby each
operation is implemented by an SCLA. Combining individual SCLAs yields a multi channel
lexical analyzer (MCLA), which can be implemented as a systolic array for parallel processing, see
Fig. 15.3. The initial phase is supervised in order to establish a dictionary with human-readable
text.
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The run-time process is composed of following steps:

1. Linear differential operation. The temporal data emerges from a physical system;
thus, it is victim to perturbations. A regularizing linear differential operator (LDO) is
required to process the raw data from the continuous data stream. Suitable LDOs can be
synthesized using the theory in Chapter 10. In order to save network bandwidth, sampled
values are commonly transmitted on value-change. This generates a non-equally spaced
time basis;

2. Symbolization. Clustering groups of similar signals enables their classification utilizing
lexical definitions; therefore, the machine’s operating states can be identified. It is supposed,
that a semi-positive definite distance measure exists between these clusters. Clustering
can be achieved via statistical methods such as histogram analysis, principal component
analysis and/or well-known machine learning methods such as k-means clustering, self-
organizing maps, Bayesian networks or support vector machines [77]. Abstraction of these
operation classes leads to their symbolic representation;

3. Lexical compression. Lexical compression yields tokens with predicates and introduces
the requirement of dynamic time warping [180] for signal alignment as well as symbolic
regularization. The predicates store information about the length and temporal position
(index) of the symbol. The process allows complete backtracking, i.e., full reconstruction
is supported despite the compression. This directly corresponds to the concept of LEX1

and symbolic aggregate approximation (SAX) [114, 124];

single channel lexical analyzer

linear differential 
operation

symbolization
lexical 

compression

processed 
data symbols tokens

SCLA lexical 
definition

data 
stream

L

Fig. 15.2 Process model of the SCLA.

4. Token merge. The MCLA implements a setup of multiple, parallel SCLAs. Each SCLA
generates tokens from streaming sensor data. Tokens of the same class are merged for
each time slot, effectively forming chronologically ordered merged tokens, whereby their
meaning is stored in the MCLA lexical definition;

5. Textual mapping. Each combination of tokens has a specific meaning within this
context, i.e., human-readable text from the dictionary is mapped to a permutation of all
sets of tokens. The process is implemented as a first-in-first-out (FIFO) buffer of limited
length;

6. Statistical evaluation. All possible combinations of tokens are statistically evaluated
as events. Multiple individual events may refer to a single operating state. Furthermore,

1The LEX and YACC Page, dinosaur.compilertools.net
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statistically irrelevant events are referred to as don’t cares while unknown, yet significant
events which have net been identified during the exploratory phase, are referred to as
don’t knows. This methodology facilitates the generation of reports with high information
density.

multi channel lexical analyzer
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...

token 
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text
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token 
permut-
ations statistical 
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Fig. 15.3 Process model of the MCLA.

The SCLA architecture is suitable to implement multiple SCLAs in a parallel manner as a systolic
array within an MCLA. Depending on the application’s intended use, two target platforms for
hardware acceleration are available:

1. An FPGA provides a low-level implementation on an embedded system using multiple DSP
slices. The logic blocks are described using HDL; ideally, MBD supports the programming
task by avoiding low-level coding. FPGAs enable highly efficient hardware implementations
w.r.t. energy consumption and computational performance. SoC platforms such as Xilinx
Zynq2 allow to merge FPGA with MCU designs, which is required to perform real-time
data analytics on the embedded system. This configuration is suitable to be integrated
directly on the mechatronic system, e.g., as an extensions to an existing PLC system;

2. An HPC system is a high-level implementation using a PC platform with multi-core
processors, hyper-threading technology and general purpose GPUs (GPGPUs). Paral-
lel programs are written in high-level abstract languages such as MATLAB’s Parallel
Computing Toolbox [139] with integrated specialized application programming interfaces
(APIs) such as nVidia’s CUDA3 or Khrono’s OpenCL4. The separated CPU and GPU
memory, the communication overhead between individual CPUs and GPUs and possible
interlocks between co-processors must be considered during the implementation [47]. This
configuration is meant to be integrated as part of the supervisory system.

The real-time analytics of machine data is of growing importance for new business models such
as smart services. Constructors as well as operators are interested in the behavior of their
equipment over the complete life cycle. Data mining of streaming data is an enabler technology
to identify technical as well as economic key performance indicators (KPIs).

2Xilinx Zynq-7000 SoC, www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
3Compute Unified Device Architecture, developer.nvidia.com/cuda-zone
4Open Computing Language, www.khronos.org/opencl/
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cross industry standard process for data mining (CRISP-DM) methodology
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Fig. 15.4 CRISP-DM reference model [25].
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Cyber-physical systems (CPS) describe the abstract idea of independent, yet connected and
collaborating devices. This concept of communicating mechatronic systems will definitely play
a key role in future engineering applications across all branches of industry, no matter if the
term CPS will remain as such. Wireless sensor actuator networks (WSAN) are the source of the
machine data; although it is a promising technology, there are still no standardized protocols for
network communication available. The CPS architecture relies on the existence of a supervisory
system to consolidate the data of all motes; the growing computational performance of embedded
systems may facilitates the implementation of swarm intelligence, which effectively abolishes the
need of supervision and relies purely on self-organization of the agents. Ubiquitous computing
and condition monitoring enables the complete life cycle analysis of assets together with total
cost of ownership, i.e., total process transparency. However, establishing compatibility to legacy
systems will remain a challenge because of missing standard interfaces.

The importance of physical phenomenology and adequate mathematical models was demon-
strated throughout in this thesis. In order to understand the processes, it is required to fuse
interdisciplinary knowledge. Structured design methodologies facilitate functional decomposition.
Assisting technologies and new programming paradigms such as the presented model based
design (MBD) approach help engineers to concentrate on the problem to be solved rather than
the actual implementation; consequently, this also simplifies the way engineers from different
fields are working together. Nevertheless, there is still unused potential, e.g., implementing a
fully automatized embedded targeting procedure is a highly complex and time-consuming task.
MBD eliminates the need of manually coding functions in low-level programming languages,
but necessary organizational issues such as code management remain unchanged.

Model based production relies on machine to machine communication, whereby computational
systems are directly embedded into the manufacturing process for data acquisition. At a given
point, it will not make any sense to just increase the performance of the computing system to
achieve improvements. Efficient mathematical models with high numerical quality and stability
enable the forward and inverse solution of ODE and PDE, which effectively enables adaptive
control. Inverse problems require regularization to acquire a maximum likelihood estimation;
incorporation of contextual knowledge is the key for the formulation of regularizing linear
operators. Inductive reasoning is the task of deriving information about a machine type from
numerous exemplary machines in the field, which incorporate similar, yet slightly different
behavior w.r.t. operation characteristics.

The correct functionality of the devices was demonstrated on laboratory prototypes together
with in-the-loop verification of the algebraic framework on model, software and processor level.
The deployment of a WSAN in a harsh environment and its combination with a supervisory
system for temporal data mining is of special interest for applications in the heavy industry.
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A | Terms in Metrology

The following list represents a selection of common terms in metrology, the definitions are
cited from ISO/IEC Guide 99-2007: International vocabulary of metrology (VIM) - Basic and
general concepts and associated terms [20, 106] and the German terms were translated via DIN
1319 Grundbegriffe der Messtechnik [37–40]. The used notation is: english term [German
translation]: description.

1. metrology [Metrologie]: science of measurement and its application;

2. measurement [Messung]: process of experimentally obtaining one or more quantity
values that can reasonably be attributed to a quantity;

3. measurand [Messgröße]: quantity intended to be measured;

4. measurement unit [Maßeinheit]: real scalar quantity, defined and adopted by convention,
with which any other quantity of the same kind can be compared to express the ratio of
the two quantities as a number;

5. measurement principle [Messprinzip]: principle of measurement, physical phenomenon
serving as a basis of a measurement;

6. measurement method [Messmethode]: generic description of a logical organization of
operations used in a measurement;

7. measurement procedure [Messverfahren]: detailed description of a measurement ac-
cording to one or more measurement principles and to a given measurement method, based
on a measurement model and including any calculation to obtain a measurement result;

8. measurement result [Messergebnis]: set of quantity values being attributed to a mea-
surand together with any other available relevant information. The complete measurement
result is composed of the measured quantity value and the associated uncertainty;

9. measured quantity value [Messwert]: quantity value representing a measurement result;

10. true quantity value [wahrer Wert einer Größe]: true unknown value of a quantity value;

11. reference quantitiy value [Referenzwert]: quantity value used as a basis for comparison
with values of quantities of the same kind;

12. measurement accuracy [Messgenauigkeit]: closeness of agreement between a measured
quantity value and a true quantity value of a measurand;

13. measurement trueness [Messrichtigkeit]: closeness of agreement between the average
of an infinite number of replicate measured quantity values and a reference quantity value;
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14. measurement precision [Messpräzision]: closeness of agreement between indications
or measured quantity values obtained by replicate measurements on the same or similar
objects under specified conditions;

15. measurement error [Messabweichung]: measured quantity value minus a reference
quantity value;

16. systematic measurement error [systematische Messabweichung]: component of mea-
surement error that in replicate measurements remains constant or varies in a predictable
manner;

17. measurement bias [Bias der Messung]: estimate of a systematic measurement error;

18. correction [Korrektion]: compensation for an estimated systematic effect;

19. random measurement error [zufällige Messabweichung]: component of measurement
error that in replicate measurements varies in an unpredictable manner;

20. measurement repeatability [Wiederholpräzision]: measurement precision under a set
of repeatability conditions of measurement;

21. repeatability condition of measurement [Wiederholbedingung von Messungen]: con-
dition of measurement, out of a set of conditions that includes the same measurement
procedure, same operators, same measuring system, same operating conditions and same
location, and replicate measurements on the same or similar objects over a short period of
time;

22. measurement reproducibility [Reproduzierbarkeit]: measurement precision under re-
producibility conditions of measurement;

23. reproducibility condition of measurement [Messbedingungen für Reproduzierbarkeit]:
condition of measurement, out of a set of conditions that includes different locations,
operators, measuring systems, and replicate measurements on the same or similar objects;

24. measurement uncertainty [Messunsicherheit]: non-negative parameter characterizing
the dispersion of the quantity values being attributed to a measurand, based on the
information used;

25. standard measurement uncertainty [Standardmessunsicherheit]: measurement uncer-
tainty expressed as a standard deviation;

26. target measurement uncertainty [Höchstwert der Messunsicherheit]: measurement
uncertainty specified as an upper limit and decided on the basis of the intended use of
measurement results, e.g., as part of the system requirements;

27. expanded measurement uncertainty [erweiterte Messunsicherheit]: product of a
combined standard measurement uncertainty and a factor larger than the number one.
Commonly, an inverse of a suitable cumulative distribution function is used;

28. calibration [Kalibrierung]: operation that, under specified conditions, in a first step,
establishes a relation between the quantity values with measurement uncertainties provided
by measurement standards and corresponding indications with associated measurement
uncertainties and, in a second step, uses this information to establish a relation for
obtaining a measurement result from an indication;
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29. metrological traceability [metrologische Rückführbarkeit]: property of a measurement
result whereby the result can be related to a reference through a documented unbroken
chain of calibrations, each contributing to the measurement uncertainty;

30. verification [Verifizierung]: provision of objective evidence that a given item fulfills
specified requirements;

31. validation [Validierung]: verification, where the specified requirements are adequate for
an intended use;

32. measurement model [Modell der Messung]: mathematical relation among all quantities
known to be involved in a measurement;

33. measurement function [Messfunktion]: function of quantities, the value of which, when
calculated using known quantity values for the input quantities in a measurement model,
is a measured quantity value of the output quantity in the measurement model;

34. input quantity in a measurement model [Eingangsgröße des Modells der Messung]:
quantity that must be measured, or a quantity, the value of which can be otherwise
obtained, in order to calculate a measured quantity value of a measurand;

35. output quantity in a measurement model [Ausgangsgröße des Modells der Messung]:
quantity, the measured value of which is calculated using the values of input quantities in
a measurement model;

36. influence quantity [Einflussgröße]: quantity that, in a direct measurement, does not
affect the quantity that is actually measured, but affects the relation between the indication
and the measurement result;

37. measuring instrument [Messgerät]: device used for making measurements, alone or in
conjunction with one or more supplementary devices;

38. measuring system [Messsystem]: set of one or more measuring instruments and often
other devices, including any reagent and supply, assembled and adapted to give information
used to generate measured quantity values within specified intervals for quantities of
specified kinds. A measuring system may consist of only one measuring instrument;

39. measuring transducer [Messumformer]: device, used in measurement, that provides an
output quantity having a specified relation to the input quantity;

40. sensor [Messaufnehmer/Sensor]: element of a measuring system that is directly affected
by a phenomenon, body, or substance carrying a quantity to be measured;

41. detector [Detektor]: device or substance that indicates the presence of a phenomenon,
body, or substance when a threshold value of an associated quantity is exceeded;

42. measuring chain [Messkette]: series of elements of a measuring system constituting a
single path of the signal from a sensor to an output element;

43. adjustment of a measuring system [Justierung eines Messsystems]: set of operations
carried out on a measuring system so that it provides prescribed indications corresponding
to given values of a quantity to be measured;

44. measuring interval/range [Messbereich]: set of values of quantities of the same kind
that can be measured by a given measuring instrument or measuring system with specified
instrumental measurement uncertainty, under defined conditions;
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45. sensitivity of a measuring system [Empfindlichkeit]: quotient of the change in an
indication of a measuring system and the corresponding change in a value of a quantity
being measured;

46. selectivity of a measuring system [Selektivität]: property of a measuring system, used
with a specified measurement procedure, whereby it provides measured quantity values for
one or more measurands such that the values of each measurand are independent of other
measurands or other quantities in the phenomenon, body, or substance being investigated;

47. resolution [Auflösung]: smallest change in a quantity being measured that causes a
perceptible change in the corresponding indication;

48. discrimination threshold [Ansprechschwelle]: largest change in a value of a quantity
being measured that causes no detectable change in the corresponding indication;

49. stability of a measuring [Messbeständigkeit]: property of a measuring instrument,
whereby its metrological properties remain constant in time;

50. instrumental drift [Messgerätedrift]: continuous or incremental change over time in
indication, due to changes in metrological properties of a measuring instrument;

51. calibration diagram [Kalibrierdiagramm]: graphical expression of the relation between
indication and corresponding measurement result;

52. calibration curve [Kalibrierkurve]: expression of the relation between indication and
corresponding measured quantity value.
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