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Abstract

This thesis presents the mathematical models, numerical solution methods
and simulation examples of non-isothermal single phase flow in porous

media and reactive transport.

The Pressure-Temperature-Enthalpy finite element — finite volume scheme
for the single phase flow in porous media and heat transport was imple-
mented in CSMP—++ software library and applied to the simulation of an
underground hot water storage. Application of this scheme to the energy
storage simulations is preferable to the classic Boussinesq approximation,

as it uses a full equation of state/viscosity treatment for water.

In order to study the controls of hydrothermal dolomitisation by means of
reactive transport modelling (RTM) with mineral dissolution/precipita-
tion kinetics and on realistic geometries, the new CSMP++GEM coupled
code was developed, tested and benchmarked against TOUGHREACT.

The prototype implementation of the RTM simulator used the Law of
Mass Action approach for the chemical equilibrium calculations, but was
subsequently replaced by the Gibbs Energy Minimisation method due to

its numerous advantages.

The new coupled code uses a mass conservative transport scheme, an ac-
curate equation of state for the saline water and a feedback on the fluid
properties from chemical reactions, taking into account the alteration of
porosity and permeability due to mineral dissolution/precipitation. Un-
structured grids and explicit faults/fractures representation allow for the

RTM simulations of fault-controlled dolomitisation.

CSMP++GEM was used to simulate the hydrothermal dolomite forma-
tion at the Benicassim outcrop analogue and was able to reproduce major

features of the dolomitisation process.



Kurzfassung

Diese Thesis beschaftigt sich mit mathematischen Modellen, numerischen
Losungsverfahren und Simulationen des nicht-isothermischen Einphasen-

flusses in porosen Medien und Reaktions-Transportprozessen.

Die Druck-Temperatur-Enthalpie Finite Elemente — Finite Volumen Meth-
ode fiir den Einphasenfluss und Warmetransport in porésen Medien wurde
in der CSMP++ Software Library implementiert und erfolgreich zur Simu-
lation eines unterirdischen Heiflwasserspeichers eingesetzt. Zu Energiespe-
ichersimulationen bietet diese Methode wichtige Vorteile gegeniiber der
klassischen Boussinesq Approximation da sie eine volle Zustandsgleichung

von Wasser verwendent sowie volle Viskositatsbehandlung liefert.

Um die Kontrollparameter der hydrothermischen Dolomitisierung mittels
Reaktions-Transport-Simulationen und auf realistischen Geometrien zu
untersuchen wurde der neue gekoppelte CSMP++GEM Code entwickelt,
getestet, und mit TOUGHREACT verglichen.

Die Prototypimplementierung des RTM Simulators nutzt das Massen-
wirkungsgesetz fiir die chemischen Gleichgewichtsrechnungen. Dieser An-
satz wurde jedoch aufgrund zahlreicher Vorteile durch die Gibbs Energie

Minimierungsmethode ersetzt.

Der neue gekoppelte Code benutzt ein massenerhaltendes Transportsys-
tem, eine genaue Zustandsgleichung fiir Salzwasser und Feedback zu den
Fliissigkeitseigenschaften der chemischen Reaktionen, unter Berticksich-
tigung von Anderung der Pordsitit und der Permeabilitat mit Auflosung
und Abscheidung der Mineralien. Unstrukturierte Gitter und die explizite
Darstellung von Verwerfungen und Briichen ermé6glichen RTM Simulatio-

nen von verwerfungsgesteuerter Dolomitisierung.

CSMP++GEM wurde benutzt um die hydro-thermische Dolomitisierung
am Beispiel des Benicassim Aufschlusses zu simulieren und war in der
Lage, die Hauptauswirkungen des Dolomitisierungsprozesses zu repro-

duzieren.
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Chapter 1

Introduction

The object of this work was to contribute to our understanding of complex physical
systems that include single phase flow in porous media, heat transport and chemical
reactions. The first goal was to accurately simulate the flow and heat transport in an
underground hot water storage in three dimensions. The second goal was to study
the controls of the dolomitisation process on realistic geometries.

In the frame of this thesis two computational tools were developed. The first one
is the implementation of the Pressure-Temperature-Enthalpy scheme for single phase
flow and heat transport. The second one is the reactive transport modelling code
CSMP++GEM.

These two codes are both based on the CSMP++ software library and are aiming
for realistic representation of fluid properties and model geometry. Both use the finite
element — finite volume method for the solution of partial differential equations on
unstructured grids, and accurate equations of state for pure and saline waters.

The Pressure-Temperature-Enthalpy scheme was applied to the full working cycle
simulations of a pilot underground hot water storage project in Upper Austria. Alter-
native energy projects are often economically marginal and therefore require precise
numerical methods to assess their efficiency.

The software development of the second project was driven by the necessity to
realistically simulate hydrothermal dolomitisation. More than 60% of the world’s oil
and 40% of the world’s gas reserves are stored in carbonate rocks, more than half
of these rocks are fully or partially dolomitised. Understanding the distribution and
quality of dolomite bodies is a key to the efficient recovery of oil and gas carbonate
reservoirs and reactive transport modelling is a viable tool for these studies.

Hydrothermal dolomites form from fluids elevated in temperature compared to the

host rock. These fluids are usually transported along faults and/or fractures, that



have a complex geometry that can not be accurately captured with standard reactive
transport modelling tools that use corner-point grids.

The purpose of the new CSMP-++GEM reactive transport code development was
to combine the ability to solve flow and transport equations on unstructured grids with
precise numerical methods for chemical speciation calculation including the kinetics
of dolomite precipitation.

The Law of Mass Action (LMA) method was chosen for the prototype implemen-
tation and with this code the ability to perform reactive transport simulations on
unstructured grids with sophisticated geometry was demonstrated.

However, due to the fact that the LMA method has to perform multiple iterations
in order to find a stable mineral assemblage, it was superseded by the Gibbs En-
ergy Minimisation (GEM) method and the coupled CSMP++GEM code was created.
The GEMS3K standalone code that was used in the coupling has the temperature
and pressure dependence of the chemical reaction rates encoded in the thermody-
namic database and is able to compute (meta)stable chemical speciation in complex
heterogeneous systems. The new code was benchmarked against TOUGHREACT
and applied to the RTM simulations of dolomitisation process on a real case study
(Benicassim outcrop, Spain).

This thesis is organized as follows. The second chapter is devoted to the simu-
lation of the non-isothermal single phase flow in porous media with application to
underground hot water storage. The third chapter presents the results of the dolomi-
tisation simulations with the standard LMA approach. The forth chapter gives a
detailed description of the new CSMP++GEM coupled code for reactive transport
simulations. In the last chapter the modelling results of the Benicassim case study
are presented. At the end of this thesis general conclusions are outlined.

Other outcomes of this work are the publications and presentations listed below.

Publications

1. A. Yapparova, S.K. Matthai, T. Driesner, Realistic simulation of an aquifer
thermal energy storage: Effects of injection temperature, well placement and
groundwater flow. Energy 76, 1011-1018 (2014)

Presentations

1. A. Yapparova, J.E. Mindel, M. Maierhofer, S.K. Matthai, Geothermal Simu-
lation Applied to the Optimization of Underground Energy Storage Systems,



Second Sustainable Earth Science Conference and Exhibition (SES 2013), 30
September — 4 October 2013, Pau, France

. A. Yapparova, Reactive transport modelling of carbonate diagenesis on unstruc-
tured grids, International Conference on Numerical and Mathematical Modeling
of Flow and Transport in Porous Media, 29 September 2014 — 3 October 2014,

Dubrovnik, Croatia

. A. Yapparova, T. Gabellone, F. Whitaker, D.A. Kulik, S.K. Matthéi, A new
CSMP++GEM reactive transport code, Goldschmidt 2015, 16 August 2015 -
21 August 2015, Prague, Czech Republic



Chapter 2

Realistic simulation of an aquifer
thermal energy storage: Effects of
injection temperature, well

placement and groundwater flow 1

To optimize the behaviour of an Aquifer Thermal Energy Storage (ATES), to estimate
its efficiency and to identify the optimal well locations, the planned installation was
simulated with a FE-FV simulator with realistic water properties, created on the
basis of the CSMP++ software library.

Simulation results show that storage efficiency increases with the distance between
injection and production wells and decreases with increasing injection temperature.
Results also support a storage design where the storage wells are placed near the
walls. Groundwater flow does not affect storage efficiency significantly, proving that
the double concrete walls act as a sufficient thermal insulator.

The full operation cycle of an ATES with an optimal well placement was simulated:
120 days of hot water injection (charging), 60 days of production (discharging). The
predicted energy and exergy efficiency are 35.6% and 27.4%, respectively. The storage
supplies between ~300 kW and ~120 kW of thermal energy the first 60 days of hot

water production.

Ipublished as: Yapparova, A., Matthii, S.K., Driesner, T.: Realistic simulation of an aquifer
thermal energy storage: Effects of injection temperature, well placement and groundwater flow.
Energy, 76, 1011-1018 (2014)



2.1 Introduction

Among European countries, Austria has one of the highest shares of renewable energy
in final energy consumption (30.9% in 2011) [1]. The engineering target that this
study contributes to is to design a unique innovative storage system for a waste
energy utilization. The pilot site, with near surface geology suitable for an ATES
construction (shallow permeable aquifer and an aquiclude in reachable depth) for
corn drying is located in Upper Austria.

Aquifer thermal energy storage is usually installed as a part of a heating/cooling
system of office buildings [2], supermarkets [3], hospitals [4], including a well-known
example of the cooling system of the German Parliament Buildings [5]. Our applica-
tion, however, has some unique characteristics. First, the aquifer storage is designed
to store excess heat produced by a combined heat and power unit (CHPU) of a bio-
gas plant. Second, the temperature range that the storage operates is much higher
(hot water temperature of 85°C and unperturbed groundwater temperature of 12°C)
than in the building conditioning applications (10-15°C difference). Third, the heat
is usually stored in the aquifer layer sealed by impermeable clay layers on the top and
bottom but unbounded from the sides and therefore can be transported by groundwa-
ter flow, while in our case the storage volume is enclosed inside two vertical concrete
walls.

Numerical simulation is a viable tool for understanding and predicting the be-
haviour of complex systems. Prior to the storage construction the simulator can be
used to assess the feasibility of the project, as well as to help in storage design and
optimization of well locations. Later on the simulator will be applied in monitoring
and well steering.

Like any other modelling area, heat transfer modelling has a trend of going from
simple approximations to more and more sophisticated. The classic Boussinesq ap-
proximation assumes that fluid density depends linearly on temperature only. All
other properties are constant. While this approximation was used about 20-25 years
ago for modelling hot water storage in aquifers due to its simplicity and low compu-
tational costs [6, 7, 8], advances in computer hardware over the last 2 decades now
permit to perform simulations on 3d unstructured grid models with half a million
cells and realistic fluid properties on a standard PC within reasonable time. This is
the first study where the behaviour of an ATES was modelled with a highly accurate
pressure-enthalpy-temperature finite element — finite volume scheme and a full equa-

tion of state/viscosity treatment for water. Unlike in the commonly used Boussinesq



approximation, in our simulations density, viscosity, heat capacity, enthalpy and com-
pressibility of water are re-computed every time step. The finite element — finite vol-
ume method supports the use of unstructured grids, allowing precise representation of
the circular (cylindrical) geometry common to energy storages. In contrast to that,
the finite difference method that is widely used in ATES modelling [2, 9] requires
structured grids, resulting in staircase-like representations of curves and polygonal
(pixelated) heat advection fronts.

Several studies provided sensitivity analyses with respect to different parameters.
Parameters that can influence the performance of the geothermal energy storage in-
clude rock properties, well location and operation conditions and groundwater flow
around the storage. Results of the shallow heat injection and storage experiment pre-
sented in [10] state that the most sensitive parameter is the thermal conductivity of
the solid followed by the porosity, heat capacity of the solid and the longitudinal dis-
persivity. Kim et al. [11] investigated the influence of the distance between injection
and production wells, injection rate and hydraulic conductivity on the performance
of ATES. According to their results the performance of an ATES system primarily
depends on the thermal interference between warm and cold thermal energy stored
in an aquifer that grows as the injector-producer distance decreases. In our study we
performed similar tests — for the closest and the farthest well placements — but for
an energy storage in a closed volume, as well as sensitivity runs for varying injection
temperature.

In many ATES modelling studies groundwater flow has been neglected, which
has been justified by the low flow velocity. To quantify its influence on the storage
efficiency we present numerical experiments and compare results with and without
groundwater flow in the same way that it was done in [12] for a geothermal heat
exchanger and in [9] for a conceptual model of an ATES system.

In our study we investigated the influence of well placement and operation condi-
tions and groundwater flow on the performance of an aquifer thermal energy storage.
We considered two different well placements and a variation in the injection tem-
perature. It is of common sense to inject hot fluid in the upper part of the storage
and produce cold fluid from the bottom to support thermal stratification, but the
optimal position of a "hot” well — in the middle of the storage or closer to the wall
— has remained an open question that we address in our study. The second question
that we had in mind was if groundwater flow can be neglected in simulations of this

particular type of storages.



The paper is structured as follows. First, we give a project overview with a brief
description of the biogas plant facilities and the corn drying system. Second, we
describe the simulation methodology that was used, starting with the mathematical
formulation, numerical scheme and details on software and benchmarking performed.
Third, geology and geometry of the storage as well as rock and fluid properties are
presented, an explanation of well operation modes is given and the overall numerical
experimental setup is established. In the last section we present results and conclu-

sions.

2.2 Project overview

The study represents a performance analysis of a planned biogas plant located in
Upper Austria. Biogas from a fermenter is converted to electricity and heat in the
combined heat and power unit (CHPU), which generates 330 kW of electrical and
500 kW of thermal power. Thermal energy is stored in water heated up to 7' = 85°C
while cooling the CHPU, is used for domestic and fermenter heating and for drying
of corn, crops and woodchips.

During the summer months a certain amount of thermal energy is not used. ATES
connected to a biogas plant is supposed to reduce this energy waste by storing the
excess energy during summer months and using it for corn drying in autumn.

Corn is dried by an air flow, that is heated consequently in two heat exchangers
from the ambient temperature to 75°C. In the first heat exchanger air is pre-heated
to a certain temperature with hot water from the ATES. In the second heat exchanger
excess heat from CHPU is utilized in order to reach the target temperature. ATES

usage is aimed to increase the drying capacity.

2.3 Methodology

2.3.1 Governing equations

Single phase flow in a porous medium is usually described by Darcy’s law [13]:

k
v=——(Vp—opsg), (2.1)
oy

here v is the fluid velocity, k is the permeability, pf is the fluid dynamic viscosity,

p the pressure, p; is the fluid density and g is the gravitational acceleration vector.



Mass balance for a single-phase fluid in a porous medium can be expressed in terms
of the continuity equation [13]:
9(¢py)
ot

where ¢ is the porosity, ¢ is a fluid mass source term. Applying the chain rule for

==V -(psv) +4q (2.2)

computing the total derivative of py = pr(p(t),T'(t)) we get:
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(2.3)

where B is the fluid compressibility. We express porosity change in terms of rock

compressibility 5, [14]:

0¢ Ip

P _1-98ZL 9.4

0 1o (2.4)
By using equations (2.3) and (2.4) to rewrite the left-hand side of (2.2) and in-

serting (2.1) into its right-hand side we arrive at a transient pressure equation:

op k 0
pr((L= )8, +68) 5 =V - (0;—(Vp—pg) =6 2| +q.  (25)
:uf t p=const
Energy conservation equation is written in the form [13]:
oT
(Pp5cps + (1= O)prcyr) 5 =V - (KVT) =V - (vpshy), (2.6)

where T is the temperature, K the thermal conductivity, ¢,; and c,, are the fluid
and rock specific heat capacities, respectively; p, is the rock density, hs is the fluid’s

specific enthalpy.

2.3.2 Numerical scheme

The resulting system of equations (2.1), (2.2), (2.5), (2.6) is solved using a hybrid finite
element - finite volume method [14] implemented within the framework of CSMP++
(Complex Systems Modelling Platform) software library [15]. All fluid properties are
stored in a lookup table to cut computational cost. The accurate, fast and robust
solver SAMG from Fraunhofer Institute is used to solve the arising systems of linear
algebraic equations [16].

The energy conservation equation (2.6) is solved by operator splitting into the

diffusive and advective parts

aigy

ey = V- (KVT), (2.7)
0T i
gy = =V - (voshy), (2.8)



where ¢, is the total heat capacity, ¢,y = (¢prcpr + (1 — @) prcyr).

Following the approach described in [17], we re-write equation (2.8) in terms of
specific fluid enthalpy Ky, using the relation dhy = c,¢dT" on the left-hand side, and
neglecting the rock-related part:

Oh;

o =V (Voshy). (2.9)

opy

We introduce the additional property fluid mass per pore volume m; with units
of density kg - m=3. aaitf in
p=const

the pressure equation (2.5), that describes fluid expansion/compression at constant

This is necessary for calculation of the term ¢

pressure due to changes in temperature only. In the numerical solution, we substitute
pr with my in the left-hand sides of equations (2.2), (2.9) and (2.5) and re-write our

system of governing equations in the following form:

ang — V- (vp)). (2.10)
cpt@Tad;ff = V- (KVT), (2.11)
h
omy O — - (vpshy), (2.12)
dhy
dl = dez‘ff + dT g = dez‘ff + C—, (213)
pf
op k Ops
mfﬂta =V (pf,u—f(Vp pg)) — ¢ e o +q, (2.14)

where 8, = (1 — ¢)8, + ¢Sy is the total system compressibility.

It is important to start transient computations from an initial equilibrated state.
Therefore, the steady state pressure distribution is iteratively computed with fluid
properties from the lookup table. At time step t° we set m§ = p.

Starting from m', hp, T™, p", the computational procedure is conducted as follows.
First, equations (2.10) and (2.12) are solved using an explicit finite volume method,
giving m’}“ and h’}*l. Second, the temperature diffusion equation (2.11) is solved
using an implicit finite element method, to compute TCZ}F}. As a third step, so called

thermal equilibration is performed. Temperature at time step n + 1 is computed via:

n+1
Tl — el hy™ —hi
arf cpr At

new values for fluid properties p"?, h}”“l ntl el gt

KT, BT are obtained from a lookup

table at T and p™. This creates a discrepancy between how much fluid should be



in the finite pore volume at (7™*!, p") and how much it is actually there due to the
in- /outflow. The difference between the fluid density at the given temperature and
pressure and fluid mass per pore volume after the simulated transport is equal to the

numerical approximation of the derivative

+1 +1
ps _ Py

ot At

p=const

(2.15)

As a last step, eq. (2.14) with a special source term for mass correction from (2.15)
is solved using the finite element method to find the pressure p"*! at the next time

step.

2.3.3 Assumptions

We assume instantaneous thermal equilibration between the fluid and the porous
medium. The storage has homogeneous constant rock properties: porosity, perme-

ability, thermal conductivity and specific heat capacity.

2.3.4 Benchmarking

A comparison with TOUGH2 simulator [18] was conducted (Fig. 2.1). Temperature
and pressure ranges correspond to the storage operation conditions. The setup of this
benchmark is the following: 2D 2000m x 1000m rectangulat model, Dirichlet pressure
and temperature boundary conditions (left: p=2[atm|, T=80[°C], right: p=1[atm],
T=50[°C]), rock properties (k = 0.1[Da], ¢ = 0.3, p, = 2650[kg/m?|, cp, = 1000[.J/kg-
K], A = 2[W/m - K], 3 = 107°[Pa~1]), fluid properties taken from an equation of
state of water [19]. The computed temperature profiles at different times are shown
in Figure 2.1. Numerical solution obtained from a CSMP simulation is in a good
agreement with results from TOUGH2, the maximum relative temperature difference
is less than 2%.

2.3.5 Energy and exergy efficiency analysis

For efficiency calculations we follow the approach of Dincer and Rosen [20, 21]. Total

input (output) energy is calculated, using:

¢
E = / Prquepr(T(t) — Tp) dt,

to
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Figure 2.1: Benchmark CSMP vs. TOUGH. Temperature profile along the horizontal
axis after 1600, 1900, 3000 years.

where ¢, is the volume injection (production) rate, T'(t) — current injection (produc-
tion) temperature, Ty — reference temperature. Exergy (energy that is available to

be used) is calculated via:

K T(t
e=F — / Pravcprloln (#) dt.
to 0

2.4 ATES modelling

The storage system is located in the Molasse basin near St. Georgen bei Obernberg
am Inn in Upper Austria. The storage cross section is shown in Figure 2.2. Above
an impermeable clay layer rests a highly permeable gravel layer covered by a small
impermeable loess layer. The groundwater table is it at 15 m depth. It was proposed
to construct a diaphragm concrete wall in the 11 meter thick gravel layer to create a
buffer zone to the natural aquifer. The storage has a cylindrical shape with a radius

of 16.5 meters, total pore volume of the storage is 4045 m?>.

2.4.1 Computational model

The computational domain includes the cylinder-shaped storage with a bounding box
with a side length of 70 m, oriented such that the groundwater flow occurs from left to

right. The computational mesh consists of about half a million tetrahedral cells, with
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Figure 2.2: Storage geology and geometry.

Table 2.1: ATES rock properties

Rock type &, % k107 xm? p,[kg/m?®] ¢, [J/kg- K] K,[W/m-K]
loess ) 1.2 2740 1500 1.15
claymarl ) 1.2 2770 1500 1.16
saturated gravel 43 12000 2650 600 2.6
unsaturated gravel 43 1.2 2350 1000 0.61

concrete walls ) 1.2 2710 1500 1.13

wells represented by line elements. The mesh is refined near the wells and storage
walls. Fluid flow is simulated only in the storage region and in the groundwater region
(coloured blue in Fig. 2.2), but conductive heat transport and pressure are computed

in the entire model domain.

2.4.2 Rock and fluid properties

Table 2.1 summarizes rock properties based on laboratory measurements conducted
by Advanced Drilling Solutions. Fluid properties are taken from the equation of state

of water from [19].

2.4.3 Boundary and initial conditions. Groundwater flow

The groundwater flow direction and rate was taken from a geological digital database
for Upper Austria [22]. We impose an inflow rate of v = 1.44 x 107%m/s on the
left boundary in the groundwater flow region with a fixed temperature of 12°C.

Temperature at shallow depths around 10-20 m below the surface stays approximately

12



the same all over the year [10, 23]. We fix the temperature of the aquifer at 12°C as an
initial condition. We impose Dirichlet boundary conditions for pressure (atmospheric)

and temperature (ambient) on the surface.

2.4.4 Operation modes

We consider a cyclic operation of the storage. During the charging period, water at
temperature T' = 85°C is injected into a "hot” well and the same amount of water
of varying temperature is produced from the ”cold” well. The discharging period
starts right after the charging. Water produced from the "hot” well, is cooled down
to the 12°C by going through the heat exchanger and then re-injected into the ”cold”
well. We study the storage behaviour with two different well placements, representing
the two end member cases: maximum distance between "hot” and ”cold” wells and
minimum distance — with ”hot” well in the middle, see Fig. 2.3. The distance between
a well and the storage wall is 1.5 m, the open hole section of the well is 2 m, well radius
is 0.075 m, see Fig. 2.4. "Hot” wells and the ”cold” well in the first setup are operated
under rate control at ¢ = 0.001 m?/s. In the second setup, all four ”cold” wells have
a quarter of the "hot” well rate. Further on we refer to the first well configuration as

”corner” and to the second as "middle”, "gw” stands for groundwater flow.

Charging Discharging

Figure 2.3: Well placements.

2.5 Results

2.5.1 Injection temperature influence

A total of 6 simulation runs were performed without groundwater flow in order to
estimate the influence of injection temperature on ATES efficiency. Two well place-

ments were considered, with injection well in the upper corner and in the middle of
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Figure 2.4: Storage dimensions. Possible well locations are displayed in lighter color.

Table 2.2: Influence of injection temperature on ATES energy and exergy efficiency

Energy efficiency, % Exergy efficiency, %

corner middle corner middle
80°C  65.3 61.9 47.7 44.2
85°C  64.5 60.6 46.7 42.7
90°C  63.6 59.3 45.7 41.1

the storage (Fig. 2.3). Three injection temperatures (1) 7= 80°C, (2) T = 85°C,
(3) T = 90°C were investigated. The charging for 30 days followed directly by dis-
charging for 30 days was simulated. Figure 2.5 shows average temperatures at the
production wells with respect to different injection temperatures. Table 2.2 contains
the corresponding energy and exergy efficiency values.

For a fixed injection temperature efficiency is higher for the ”corner” well place-
ment, than for the "middle” one. This supports the result from [11], that thermal
interference increases (and storage efficiency decreases respectively) with decreasing
distance between the "hot” and the ”cold” wells.

We observe that for both well placements storage efficiency slightly decreases (and
heat losses increase correspondingly) with increasing injection temperature (”hot”
well). The reason for that is mixing of hot and cold water inside the storage. As
re-injection temperature (”cold” well) is the same (12°C) in all cases, the energy effi-
ciency (ratio of recovered to stored thermal energy) is influenced by the temperature
at the production well only. The degree of thermal interference grows with increasing
temperature difference between the "hot” and ”"cold” wells and efficiency decreases
consequently. However, when we compare two runs with the same well placement
and an injection temperature difference of 5°C at the end of the discharging period,

temperature differs by not more than ~ 1°C.
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Figure 2.5: Average production well temperature during 30 days of discharging for
charging temperatures of 80, 85 and 90 °C.

2.5.2 Groundwater flow influence

The results of 4 different simulations with ”corner” and ”middle” well placements with
and without groundwater flow allow for an evaluation of its influence. In all four cases
injection temperature was 85°C and 120 days of charging were followed by 60 days
of discharging. Figures 2.6 and 2.7 show vertical cross-sections of the temperature
distribution in the middle of the storage for two different well placements and injection
temperature of 85°C after 120 days of charging, figures 2.8 and 2.9 — after 30 days of

discharging. The velocity field in the groundwater flow region is shown in Fig. 2.10.

Temperature, C

25““‘”&‘0‘”“”“7“

10 85

Figure 2.6: Cross-sectional temperature distribution in the ATES after 120 days of
water injection for the "middle” well placement.

Comparing the temperature distributions in a horizontal cross-section through
the middle of the storage, figures 2.11 and 2.12 display the temperature differences

between runs with and without groundwater flow. It can be seen that groundwater
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Figure 2.7: Cross-sectional temperature distribution in the ATES after 120 days of
water injection for the ”corner” well placement.
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Figure 2.8: Cross-sectional temperature distribution in the ATES after 30 days of
water production for the "middle” well placement.
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Figure 2.9: Cross-sectional temperature distribution in the ATES after 30 days of
water production for the ”corner” well placement.
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Figure 2.10: Groundwater flow velocity field around the storage.

Table 2.3: ATES energy&exergy efficiency

Case Energy efficiency, % Exergy efficiency, %
corner 35.9 279
corner gw 35.6 274
middle 34.3 26.2
middle gw 34.2 26.0

flow cools down the left part of the storage wall, but the temperature distribution
inside the storage remains almost unaffected.

Figure 2.13 shows the average temperature at the production well and the output
energy during the discharging period. In table 2.3 efficiency calculations are sum-
marized, reference temperature of 7y = 12°C was assumed. The presence of the
groundwater flow decreases the production temperature by less than 0.5°C, having
a minor effect on storage efficiency. This highlights the advantages of the storage
design with double concrete walls. Reinforced concrete has a thermal conductivity
more than two times smaller and a heat capacity almost three times bigger than
that of the saturated gravel that comprises the aquifer. This difference in material
properties makes the diaphragm wall a good insulator minimizing the heat loss due

to groundwater flow.
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Figure 2.13: Production well temperature and output energy during ATES discharg-
ing for two different placements with and without groundwater flow.
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2.6 Conclusions

Aquifer thermal energy storage with realistic water properties and geological prop-
erties from a pilot site was simulated. The simulation results will be used in an
economical evaluation of the storage efficiency and for optimization of the well place-
ment. Results presented in this paper support the decision of placing the wells near
storage walls because production temperature stays higher for a longer time in this
case. By placing wells as far apart from each other as possible we reduce the mixing
that occurs between the hot and cold water and keep the high temperature region
near injection well. We observed that within the 85+ 5 °C injection temperature fluc-
tuations storage efficiency shows minor changes and production temperature stays
within a £2°C range. From an engineering point of view it is an important sensitiv-
ity result. Hot water that is stored in the aquifer comes from cooling the CHPU and
its temperature varies with time. However our results prove that despite this unavoid-
able slight injection temperature variations it is possible to store and later produce
sufficient amount of thermal energy. Although temperature distributions near the
walls for runs with and without groundwater flow vary significantly, temperature in-
side the storage and well production temperature stay rather the same, which is an
indicator that the double concrete wall is a sufficiently good thermal insulator. Our
groundwater flow comparison runs justify the storage design and the installation of
the diaphragm walls in particular. We predict ATES to be able to provide sufficient
energy supply for a total of 2 months of hot water production. The main conclusion
of this case study is that the overall engineering design of this storage is justified and
the project is feasible. If the storage will be built there will be a unique opportunity
to validate the results.

We hope that this work will encourage further highly realistic simulations of
geothermal storage sites, including eos-based computations of water properties de-
pendent on temperature and pressure, unstructured grid representations of storage
geometry and new thermodynamically rigorous numerical schemes for fluid flow and

heat transport.
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Chapter 3

Reactive transport modelling of
dolomite formation using the Law
of Mass Action approach

A prototype reactive transport modelling code was implemented as part of the CSMP++
software library, which employs finite element — finite volume method for solving par-
tial differential equations on unstructured grids. The Law of Mass Action was used
to calculate the chemical equilibrium between minerals and an aqueous solution.

In this section, an equation derivation for the calcite-dolomite system is given.
After that two test cases are presented: a 1D benchmark of the well-known calcite
dissolution dolomite precipitation test case [24] and a 2D simulation of calcite re-

placement by dolomite on a cross-section model with realistic geometry.

3.1 Introduction

For more than 20 years reactive transport modelling (RTM) has been widely used to
develop an understanding of hydrothermal ore deposit formation, geothermal energy
production and mineral diagenetic processes like dolomite formation [25]. In our
attempt to develop a reactive transport code that will be able to model the formation
of dolomite, we decided to start with a simple prototype implementation using the
Law of Mass Action (LMA) approach.

One of the earliest descriptions of LMA in its modern form was given by Reed
in 1982 [26]. He presented the formulation of Mass action equations and Mass bal-
ance equations and introduced a solution method where the only unknowns were the
so-called component species (that were also called basic or primary species later).

The resulting system of non-linear algebraic equations was solved using the Newton-
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Raphson method. This new approach had significant numerical advantages compared
to methods previously used by Helgeson [27] and others. In principle, the LMA for-
mulation in this form is still used today.

The other big step in the development of RTMs was when the chemical speciation
calculations were coupled with equations for transport of solutes. Among the pio-
neering works is a 1994 paper by Steefel and Lasaga [28], who formulated the coupled
model for transport and reactions (using Reed’s formulation for equilibrium reactions)
and applied it to simulate reactive flow in single phase hydrothermal systems.

One of the first thorough descriptions of different reactive transport models, in-
cluding various mathematical descriptions of reaction systems and methods for cou-
pling reactions and transport, was given by Steefel and MacQuarrie in 1996 [29] and
was largely used in this work.

As stated in the recent review of RTM codes by Steefel et al. [30], many modern
reactive transport codes use the LMA approach coupled with transport modules in
various forms. Among the most widely used codes are PHREEQC, which is also
used as a chemical module in HPx, PHT3D and one of the modules in OpenGeoSys;
TOUGHREACT, HYDROCHEMGEM, CrunchFlow and MIN3P.

The Law of Mass Action approach has its limitations (which will be discussed in
detail in the following chapter), but (1) LMA-based computations are much faster
(when transport-chemistry operator splitting is used) than those based on the Gibbs
energy minimization (GEM) method and (2) LMA is easier to implement than GEM.
That is why LMA is ideal for the prototype implementation.

This chapter is structured as follows. First, I give a short decription of the solution
method. Second, results of a generic 1D model of calcite dissolution — dolomite
precipitation benchmark are presented. In the end, I show the results of a simulation

of dolomitisation process in a 2D realistic geological cross-section.

3.2 Methodology

Reactive transport modelling comprises solution of equations describing fluid flow
in porous media and equations describing chemical reactions between the aqueous
species dissolved in the fluid and the minerals in the solid rock. There are three
possible ways to solve the resulting system of equations [31]: to decouple chemical
reactions from flow and solve two systems separately for every time step once (Se-
quential Non-Iterative Approach), or to solve the chemistry and transport equations

separately and iterate until convergence (Sequential Iterative Approach), or to solve
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all the equations simultaneously (Global Implicit Approach). The Sequential non-
iterative approach (SNIA) was chosen in the current work presented in this chapter
for its simplicity of implementation.

We assume Darcy flow and the steady state pressure equation is solved using the
finite element method implemented in CSMP++. The advection-diffusion equations
for the transport of all mobile aqueous species are solved by means of CSMP++
functionality using the finite element — finite volume method. All transport equations
are solved by operator splitting: the finite element method is used for diffusion-
dispersion, and the explicit finite volume method is used for advective transport.

The chemical reactions solver is implemented as a separate module that performs
chemical equilibrium calculations based on the Law of Mass Action for every finite
volume at each time step independently. All reactions (for aqueous complexes and
minerals) are considered under equilibrium control. The Davies equation was used to
calculate the activity coefficients [24]. The resulting system of non-linear algebraic
equations is solved by the Newton-Raphson method using a KINSOL solver from
SUNDIALS [32].

SNTA coupling of transport and chemistry is performed in the following way. First,
total component concentrations are transported with a time step chosen according to
the CFL condition, i.e advection-diffusion equations are solved for every basic species
one by one on the whole grid. Second, the chemical equilibrium is calculated using

the LMA solver in each finite volume.

3.2.1 Law of Mass Action equations for the calcite-dolomite
system

A general description of the Law of Mass Action method can be found elsewhere
26, 29, 30]. Here I present an equation derivation for our particular system: aqueous
solution with two minerals — calcite and dolomite — under thermodynamic control.

We consider the system of the following reactions:

CaCO; = Ca*t +CO;
CaMg(CO3)y S Ca*t + Mg*t +2C0%
OH S H,O—-HT
HCO; S HT+CO3
COy S —HyO+2H' +CO5”
with equilibrium constants K;, i = 1,5 respectively.
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We choose Ca?t, Mg*t, H*, CO; ", CaCOs, CaMg(CO3), as primary species
(components), and OH~, HCO;, CO, as secondary species. For basic species we

consider the total concentrations in aqueous phase:

TCa2+ = [CCLQJFL
ijg2Jr - [MgQ-Jr]’
Tue = (B - ——1 4+ Lignicor + 2 a2cor
= Ky [HY] ' K, 3 K 3 b
B 1 _ 1 _
T = [COF)+ —[HY[COF) + - (H (00
4 5

Here the activity coefficients have been omitted for sake of simplicity of representation
and the water concentration was assumed to be equal to one.

The next step is to formulate the conservation of mass equations for each basic

species:
Toe2+ + Noacos + Ncarg(cos), = const, (3.1)
Thig2+ + Nearg(COs)s = cONSst, (3.2)
Ty+ = const, (3.3)
Tcog— + Noacos + 2 Neamg(cos), = const, (3.4)

where ncacos and neangcos), are the mineral concentrations (in moles per kilogram
of water) for calcite and dolomite respectively. Mineral concentrations are mathemat-
ical entities used in the calculations and do not have a physical meaning. They are
calculated from the total mineral amount per unit volume of porous media divided
by the total mass of water in this volume.

The mineral concentrations are also unknowns, therefore we need two additional

equations that describe the mineral saturation state:

K, = [Ca™[CO57], (3:5)
K, = [Ca®™][Mg*][CO5T]" (3.6)

If the initial total component concentrations and the mineral amounts are known,
the equilibrium composition can be calculated. Species concentrations can vary by
orders of magnitude, which is why the calculations are usually performed in terms
of logarithms of concentrations. We re-write equations (3.1-3.6) with respect to the
new unknowns z; = In([Ca?*]), zo = In([M¢**]), 23 = In([H]), 24 = In([CO37)),

T5 = NCaCOss T6 = NCaMg(COs), aNd new constants k; = In(kK;), 1 = 1, 5:
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e+ ast+ag—T—ni—ny = 0, (3.7)

e +axg—Ty—ny = 0, (3.8)

" — e ka8 | pmhatustra 4 ge—he s tes = (), (3.9)

e TRt st Ta g pmhetestes 4 g 4 oge — Ty —ny —2ny = 0,  (3.10)
—ki+x1+xs = 0, (3.11)

—ko 4+ 21+ 29 +224 = 0, (3.12)

where T}, T5, T3, T, are the initial total aqueous concentrations of calcium, magne-
sium, hydrogen and carbonate ions respectively; ny, ny are the initial mineral amounts
for calcite and dolomite.

Equations (3.8-3.12) are solved using the Newton-Raphson method, where the

Jacobian matrix is analytically derived:

et 0 0 0 11
0 e*2 0 0 0 1
0 0 e¥3 4 e—k3—x3 €—k4+x3+az4 + 26—k5+2x3+m4 0 0

—|—€_k4 taztes | 4e—k5 +2x3+x4

0 0 67k4+13+x4 + 267k5+213+:r4 e 4 efk4+x3+z4 + 67k5+213+x4 1 2
1 0 0 1 0 0
1 1 0 2 0 0

In order to take the ion activities into account, one needs to simply replace the
species concentrations by the new unknowns a; = 7,¢; in equations (3.8-3.12), where
a; is the activity of the i-th species, ¢; is the concentration and +; is the activity
coefficient. In this work, Davies equation was used to calculate the activity coefficients
[24]:

log 7; = — Az}

(1+ V1)

where A = 0.5 at 25°C, [ is the ionic strength of the aqueous solution and z; is the

VI —0.3]] ,

charge of the ¢-th species.

3.2.2 Benchmarking

We consider a 1D column of a porous medium of 0.5 m length, with the bulk density
o = 1800kg/m? and the porosity ¢ = 0.32. The model geometry is shown in
Figure 3.1. The pore fluid is initially equilibrated with calcite. Standard conditions
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Figure 3.1: Model geometry and setup

Table 3.1: Component and solid initial concentrations

Boundary Initial Units

pH 7.06 9.91 -

Ca** 0.0 1.239 x 107*  mol/kg.,
CcOz 0.0 1.239 x 107*  mol /kgy,
Mg+ 1.x107% 0.0 mol /kgy,
cl- 2.x107% 0.0 mol/kgy,
CaCOs(s) 0.0 217 x 107°  mol/kgsen
CCLMQ(COg)Q(S) 0.0 0.0 TI’LOl/kgsoil

are assumed (1 atm, 25°C). The column is flushed from left to right with MgCl,
solution with a flow rate ¢ = 3 x 107®m/s, resulting in a mean pore velocity v =
9.375 x 107®m/s. As the reaction front progresses, calcite dissolves and dolomite
is formed temporarily as a moving zone. Initial and boundary concentrations for
aqueous species and minerals are presented in Table 3.1. Table 3.2 summarizes the
reactions taken into account and corresponding equilibrium constants. Chloride does
not react with anything, but serves as a tracer.

The model domain is discretized with a mesh size of 0.01 m, a time step At = 200 s
is used in the simulation. The simulation results after 21000 s, compared with the
results from Engesgaard & Kipp[24], are presented in Figures 3.2 and 3.3. These
results are in a good agreement, and both show an increase of the calcite and magne-
sium ion concentrations that coincides with the beginning of the dolomite zone and a
peak in the calcite concentration at the end of the dolomite zone and the beginning
of the calcite zone. The comparison of the chloride concentration profiles highlights

the differences between the transport schemes used in two codes.
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Table 3.2: Chemical reactions with values of the equilibrium constants (in brackets)

CaCOs(s) = Ca* +0035 (-8.47)
CaMg(CO3)a(s) = Ca®* + Mg*t +2C0;  (-17.17)
Ca*t + CO3~ = CaCO;3(aq) (3.23)
Mg**t +C0O3~ = MgCOs(aq) (2.98)
H* + OH- - H,0 (-14.01)
H* +CO3” = HCO; (10.31)
2H* +CO35 = HyO + COy(aq) (16.71)
Cl~ = Cl™
2.5E-05
z 20605
% 1.5€-05 —calcite
E_ ................ calcite
S —— dolomite
i e | R [R— dolomite
% 5.0E-06
001008 o1 0.2 1 03 0.4 05
distance, m

Figure 3.2: Calcite and dolomite profiles after 21000 s of simulation time: solid lines
are the results obtained with CSMP++-, dashed lines from Engesgaard & Kipp [24].

2.0E-03
1.5E-03
1.0E-03

5.0E-04

concentration, mol/kg of water

0.0E+00
0 0.1 0.2 0.3 0.4 0.5

distance, m

Figure 3.3: Aqueous concentration profiles after 21000 s of simulation time: solid lines
are the results obtained with CSMP++-, dashed lines from Engesgaard & Kipp [24].

27



3.3 2D simulation of a geological cross-section

The formation of dolomite was studied in 2D for the chemical system described in
the previous section. A 2D geological cross-section for this simulation is shown in
Figure 3.4. This sketch represents the following hypothetical geological scenario de-
signed to illustrate interactions between permeability and mineralogy contrasts be-
tween units of geologically realistic geometry. The calcite mudstone was eroded and
the quartz sandstones deposited on top of it capped by a calcite sand unit. Sub-
sequently, during deposition of a sequence of quartz sandstone layers, a number of
calcite bioherms were established. Finally this package is capped by a coarse calcite

sand layer.

coarse calciie sand

coarse quartz sandstone 3
calcite bioherm
m m fine quartz sandstone 2

coarse quartz sandstone 2

4.5m

calciie sand

£ m coarse quartz sandstone 1

L calcite mudstone

20m

Figure 3.4: Geological cross-section

3.3.1 Computational model

The model of the geological cross-section has a rectangular geometry, with a height
of 4.5m and a length of 20m and was meshed in ANSYS ICEM CFD, resulting in an

unstructured grid consisting of 18712 triangles with a mesh size of 0.1 m.

porosity

0.15 0,18 0.21 0.24 0.27 0.3
LLLLLLLLLLL L L L

[ I

Figure 3.5: 2D cross-section properties: porosity
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Figure 3.6: 2D cross-section properties: permeability

Rock property values were chosen typical for quartz sandstone and carbonate
rocks. Figures 3.5 and 3.6 represent porosity and permeability distributions, re-
spectively (see also Table 3.3). The sandstone layers have the highest porosity and
permeability and therefore will serve as main flow paths.

We assumed very small amounts of reactive calcite (0.6% of the total rock volume
for the bioherms and 1% for the rest of calcite containing rocks). The rest of the
rock volume was assumed non-reactive. This assumption was made in order to be
consistent with the small mineral amounts used in the 1D benchmark.

Initial calcite amounts in moles per litre of solution were calculated according to

the formula:
o & (1-9)
100 ¢ Vil

where x is the calcite rock volume percentage, ¢ is the porosity, V,,, is the calcite

molar volume (36.93-10721/mol). This calculated initial calcite distribution is shown
in Figure 3.7.

Fluid properties were taken for pure water at standard conditions (25°C, 1 atm).
Water equilibrated with calcite was used as the initial bulk water composition and
M gC'ly solution was injected through the left boundary.

Constant inflow of M gC'l; solution on the left model boundary and constant pres-
sure (atmospheric) on the right boundary were used as flow boundary conditions.
The inflow rate was chosen such that the flow velocity did not exceed 1000 m/yr
(consistent with the velocity used in the 1D benchmark). Fluid pressure distribution

and velocity field are shown in Figure 3.8.
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Figure 3.7: 2D cross-section properties: initial calcite amounts

Table 3.3: Rock properties

porosity [-] permeability [m?] calcite amount [mol/l]

calcite mudstone 0.3 10716 0.63
fine quartz sandstone 1 0.2 10714 0.0
coarse quartz sandstone 1 0.29 10712 0.0
calcite sand 0.2 10713 1.08
coarse quartz sandstone 2 0.25 10712 0.0
calcite bioherms 0.15 1074 0.92
fine quartz sandstone 2 0.2 10713 0.0
coarse quartz sandstone 3 0.3 10712 0.0
coarse calcite sand 0.25 10713 0.81

fluid pressure, Pa

1.01e+05

3.73e+05

2e+b 25e+b 3e+b

velocity magnitude, m/s

2e-5 2585

3e-5 3.375e-05

8912e-10 5e6 le-b 1.5e-5
I\III\III‘III\III\I|I\III\I

Figure 3.8: Fluid pressure and velocity field

30



3.3.2 Results

Calcite dissolution — dolomite precipitation was simulated for a total of 1500 days. In
Figures 3.9 and 3.10 the magnesium ion concentration is shown after 500 and 1500
simulation days, respectively. The flow is initially concentrated in the three horizontal
coarse and fine quartz sandstone layers as well as in the coarse quartz sandstone 1
layer once the flow passes the low-permeability bridge in the calcite sand layer. Very
little flow occurs in the bioherms, fine quartz sandstone 1 and in the mudstone layers

due to their low permeability.

Mg2+, mol/l

0.000e+00 0.0002 0.0004 OOOOél i |[|]\Oi][\]f\

Figure 3.9: Mg?" concentration distribution after 500 days

Mg2+, mol/l

0.000e+00 0.0002 0.0004 0‘0006| i |[|]\Oi][\]f\ 1.074e-03

Figure 3.10: Mg?" concentration distribution after 1500 days

Results in terms of calcite and dolomite molalities are presented in Figures 3.11
and 3.12 after 500 and 1500 days of simulation respectively. Two bioherms closer to
the left boundary get partially dolomitised on the up-flow side, with the rightmost
bioherm only dolomitsed from the bottom as the upstream bioherms obstruct the
flow. Calcite sands get partially dolomitized due to Mg** ions provided from the
permeable sandstone layers. The calcite mudstone layer gets partially dolomitized

after the calcite sand layer has been completely dolomitized in the middle part.
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Figure 3.11: Calcite and dolomite distribution after 500 days
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Figure 3.12: Calcite and dolomite distribution after 1500 days
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3.4 Conclusions

A prototype reactive transport modelling code was implemented in the framework
of the CSMP++ software library. A 1D benchmark was used to verify the method.
After that a 2D simulation was performed and the ability of combining chemistry
with transport with realistic geometry was shown.

The code has a modular structure and can be easily upgraded, for instance, by
implementing another activity model (e.g. the Pitzer model). The code is flexible
since the chemistry solver is independent of the flow computations and can be easily
replaced (e.g with a GEM solver). The chemistry calculations are performed on every
node separately and are thus providing a high potential for parallelization.

On the other hand, the current implementation has its drawbacks, too. First,
the method is very sensitive to the initial guess for the Newton solver and some
initial values can result in negative species concentrations. As a rule of thumb, we
recommend to set an initial guess for a primary species concentration equal to 95%
of the corresponding total primary species concentration, obtained from a previous
transport step.

The second limitation of the method is that the equilibrium mineral assemblage
is difficult to obtain and non-unique solutions can exist. The strategy that was
used in the present work was the following. If after the Newton loop some mineral
concentrations are negative (that means that the solution is undersaturated with
respect to that mineral, but the mineral is already totally dissolved), we exclude the
“most negative” mineral from the system and repeat the computations until we get
a stable composition. This strategy, though providing physically meaningful results,
is computationally very costly.

The following chapters deal with the above mentioned problems as well as in-
clude treatment of kinetically controlled reactions and dependence of porosity and

permeability on mineral dissolution/precipitation.
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Chapter 4

Reactive transport modelling of

dolomitisation using the new
CSMP++ GEM coupled code

The GEMS3K code for solving geochemical equilibria by Gibbs energy minimization
was coupled with the CSMP++ framework that implements the finite element — finite
volume method to solve partial differential equations for single-phase non-isothermal
flow in porous media and transport of solutes.

This chapter starts with the governing equations and numerical solution methods
for the reactive transport model. After that, two sets of benchmarking results are
presented. The first benchmark, also used in the previous chapter, is a well-known 1D
model of dolomitisation by M gCly solution with thermodynamic reactions. In the
second benchmark, CSMP++GEM was compared with TOUGHREACT on a 1D

model of dolomitisation by seawater taking into account mineral reaction kinetics.

4.1 Introduction

Reactive transport modelling (RTM) is an emerging, powerful tool for understanding
natural systems where fluid flow and chemical reactions occur simultaneously. RTM
has been used for many different applications including the prediction of the fate
of C'O,, radioactive and chemical waste, simulation of ore deposition in fractures
and veins caused by the flow of hydrothermal fluids and the accompanying host
rock alteration, geothermal energy production and formation damage near wells in
hydrocarbon reservoirs [33].

RTM has also been used to understand the formation of dolomite by replacement

of calcite, which can be an important control on carbonate reservoir quality. Dolomi-
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tisation is a case of mineral replacement that modifies the volume of the solid phases
[34]. Dolomite is more dense than calcite and thus 1:1 molar replacement generates up
to 13% additional porosity. Dolomitisation can also significantly modify permeabil-
ity by reorganising the pore geometry of the pore network, for example by replacing
allochems and matrix with sucrosic dolomite crystals [35]. Dolomite can also form
as a primary precipitate from supersaturated fluids, leading to porosity occlusion.
With regard to carbonate-hosted petroleum reservoirs, understanding the spatial dis-
tribution of dolomite bodies and the resulting changes in petrophysical properties
(porosity-permeability) is key for accurate estimation of hydrocarbon reserves and
improving recovery efficiency.

Dolomitisation has been simulated using RTM in a number of diagenetic settings,
driven by different fluid circulation systems. These include near surface and shallow
burial reflux of platform-top evaporative brines [36, 37, 38, 39] , intermediate and
deep burial geothermal circulation and compactional flow [40, 41, 42], and high-
temperature fluid expulsion through faults and fractures [43].

Dolomitisation (replacement of calcite CaCO3 by dolomite CaM g(COs3)sz) is a
kinetically controlled, partial equilibrium process [44]. At near-surface conditions
the precipitation rate of dolomite [45] can be a million times slower than that of
calcite (at the same supersaturation) or calcium sulphates, whereas the dissolution
rates of dolomite and calcite are comparable [46]. However, this situation rapidly
changes at elevated temperatures, generating potential for dolomite formation under
hydrothermal conditions [47] (i.e. at temperature 5-10 C higher than that of the
host rock).

Although RTM has more than a 20 years long history [28, 29], only now has
sufficient computational power become available to simulate processes over geologic
spans of time on detailed grids, although full-scale 3-D simulations are still very rare.
Slow dolomitisation processes need to be simulated over geological times (hundreds
of thousands up to millions of years), which implies long computation times, even if
precise and fast numerical methods and algebraic solvers are in use.

When simulating Thermal-Hydrological-Chemical (THC) processes, it is impor-
tant to account for the density dependence on pressure, temperature and salinity, as
well as changes in fluid mass due to chemical reactions such as aqueous and surface
complexation, mineral dissolution or precipitation.

A fully implicit solution of coupled flow-transport-chemistry equations is still

challenging or intractable in many real-world applications. Thus, the sequential
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“operator-splitting” approach for solving equations is implemented in codes that cou-
ple the transport (advection-diffusion) simulator with a chemical equilibrium specia-
tion solver.

The choice of the finite volume method for solute transport is crucial for main-
taining local mass conservation. Unlike the finite element method that is used in
OpenGeoSys code for solving both flow and solute transport (http://opengeosys.org),
in the finite element - finite volume method used in the CSMP++GEM coupling, flux
continuity across the finite volume confining surfaces guarantees the local mass con-
servation. The Integral Finite Differences method (IFD) that is used in TOUGH2
and TOUGHREACT [18] is based on the conservation laws, but only allows the use of
corner point grids that are much less geometrically flexible than unstructured grids.

In codes such as TOUGHREACT (http://esd1.lbl.gov/research/projects/tough/
software /toughreact.html), the chemical speciation solver uses the so-called LMA
(Law of Mass Action) method, which is based on a selection of master species (usu-
ally aqueous ions and water, sometimes minerals) whose amounts enter the material
balance equations directly, and product species whose amounts are defined via the
LMA equations for reactions of formation of product species from master species and
respective equilibrium constants. The systems of material balance and LMA equa-
tions are then solved simultaneously using the Newton-Raphson method [26]. Implicit
in the LMA method are the assumptions that the aqueous solution phase is predomi-
nant in the system; redox state, alkalinity and assemblage of stable phases are known
beforehand; and, if a non-ideal solid solution is involved, its equilibrium composition
can be obtained from the aqueous phase composition.

As stated by Reed [26], the real challenge of the LMA method lies in the selection of
mineral phases, especially solid solutions, to be included into the mass balance. This is
normally done upon checking the saturation indices (SI) over the entire list of minerals
in the process of solving the LMA speciation task many times and adding/removing
individual mineral phases one-by-one. Some LMA algorithms, e.g. the Geochemists
Workbench [33], cannot solve equilibria with gas mixtures, solid solutions or melts
in the material balance because gases, minerals or melt components are treated as
master species.

A complementary Gibbs Energy Minimization (GEM) method [48, 49] finds the
unknown phase assemblage and speciation of all phases from the elemental bulk com-
position of the system by minimizing its total Gibbs energy while maintaining the

elemental material balance. All species (components) in all phases must be provided
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with their elemental formulae and standard Gibbs energy per mole; no separation
into master and product species is needed.

Compared with LMA, the GEM methods do not require any assumptions about
the equilibrium state, and are capable of solving equilibria in complex heterogeneous
chemical systems with many non-ideal multicomponent solution phases [49, 50]. This
makes possible RTM simulations of complex heterogeneous equilibria with intrin-
sic redox states, aqueous electrolyte, non-ideal gas mixtures (fluids), mineral solid
solutions, melts, adsorption and ion exchange. GEM algorithms are already used
for solving chemical speciation in the OpenGeoSys-GEM [51] and CSMP-GEM [52]
coupled RTM codes.

Given these considerations, my motivation was to create a versatile coupled RTM
code (called CSMP++GEM) by combining the best features of the CSMP and GEM
families of codes. Compared with OpenGeoSys-GEM, this coupling uses the finite
element — finite volume method which guarantees local mass conservation and flexible
adaptation to mesh geometries especially along permeability discontinuities such as
fractures and interfaces between contrasting beds. As an advantage over the existing
CSMP-GEM coupled code, my code implements detailed controls on mineral-water
reaction kinetics, which is a crucial issue for modelling reactions such as dolomitisation
[45].

The new CSMP++GEM reactive transport code combines relevant features of the
Complex Systems Modelling Platform (CSMP++) framework [15] and the GEMS3K
standalone code [49] enabling the simulation of THC systems with complex geometry
and complex chemistry across wide ranges of temperatures, pressures and composi-
tions, and for various transport regimes.

CSMP++ is an object-oriented software library written in C++ that uses unstruc-
tured grids to represent model geometry and finite element — finite volume method
to solve partial differential equations. To solve systems of algebraic linear equations
CSMP++ uses the SAMG solver (Fraunhofer, Germany) [16], for being accurate, ro-
bust and fast. Other strengths of CSMP++ are: (1) rigorous treatment of material
interfaces, (2) region based computations and (3) realistic boundary conditions.

GEMS3K (http://gems.web.psi.ch/GEMS3K) is an open-source standalone C++
code for Gibbs energy minimization that computes (partial) equilibruim chemical spe-
ciation in complex heterogeneous multi-phase systems from the elemental bulk compo-
sition of the system, thermodynamic data for temperature and pressure of interest, pa-
rameters of mixing [49, 50], and kinetic rate parameters imposing additional metasta-

bility restrictions for certain phases and components. The initial chemical systems for
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RTM can be set up and tested using the GEM-Selektor v.3 graphical user interface
with built-in thermodynamic and model databases (http://gems.web.psi.ch/GEMS3)
and then exported as sets of GEMS3K input files.

This chapter starts with the problem statement and equations derivation, followed
by the numerical methods description and benchmarking on a simple 1D model. In the
end the results of a comparison of our reactive transport model with TOUGHREACT

are presented.

4.2 Methodology

In this section, I first present the governing equations that describe a single-phase
multi-component flow in fully saturated porous media coupled with chemical reac-
tions. The flow is assumed to be slightly compressible and non-isothermal. Minerals
(calcite, dolomite) are either in equilibrium or under kinetic control; their dissolution
and /or precipitation result in changes in porosity and permeability. We briefly de-
scribe the Gibbs energy minimization method with emphasis on the phase stability
index and on how partial equilibria are controlled by kinetic rates of mineral-water in-
teraction. After the problem statement, we outline the numerical solution procedure

that was used in this work.

4.2.1 Governing equations for single phase flow and reactive
transport in porous media

The chemical composition of the system is defined in terms of the total amounts
of so-called independent components (IC), typically chemical elements and electrical
charge. Each IC can be present in the form of various aqueous ions and molecules
dissolved in water, as well as in different minerals of the solid phase. Aqueous con-
centration ¢; is the total amount of moles of the i-th independent component in all
species dissolved in the aqueous phase per unit volume.

For each IC, the conservation of mass in the following form holds:

d(¢ci)
ot

where ¢ is the porosity, v; is the flow velocity of the i-th independent component,

+V. (CiVi> = ({;, Vi = 1,N, (41)

¢; is the source/sink term that accounts for the exchange of i-th IC between solid
and aqueous phases due to mineral dissolution/precipitation, and N is the number
of independent components. We assume that there are no sources/sinks other than

those caused by chemical reactions.
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Let us define the aqueous solution density p = Ef\il ¢;M;, using M; — the molar
mass of the i-th independent component. The solution mass flux is equal to the sum

of mass fluxes of individual components:

N
pv = g c; M;v;.
i=1

The sum of the product of equations (4.1) by M; yields the continuity equation for

the aqueous phase:

——= + V- (pv) =Q, (4.2)

where v is the solution velocity, and () is the source term that accounts for the mass

exchange between aqueous and solid phases due to chemical reactions:

N
Q= Z qiM;.
i=1

The fluid velocity is related to the fluid pressure by means of Darcy’s law:

v= —S(w —g), (4.3)

where k is the permeability, p is the fluid viscosity, p is the fluid pressure, and g is
the gravity acceleration vector.

The chemical composition of a solution is expressed in terms of equivalent salinity:

x=1-"v
m

where m is the mass of the solution, m,, is the mass of pure water (solvent).
We assume that solution density p = p(p, T, X) depends on pressure p = p(t, x),
temperature 7' = T'(¢,x) and chemical composition X = X(¢,x), and calculate it’s

time derivative:

Y _pop 90T 0p0X _ oy
o~ opor Toror Tox ot PPrge Ty (4.4)
where
L v 19
"= Vop  pop

is the isothermal isosaline fluid compressibility, defined as the relative change of the

solution volume V' (or solution density p) with a change in pressure, and

_0p0T | 0p 0X
X =570t T ox ot
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is the source term that accounts for the temperature and salinity induced solution
density change at constant pressure.
Neglecting the thermal expansion of the rock, we express the porosity change in

terms of isothermal pore compressibility:

_19¢
0¢ _ 0625 319

Porosity changes caused by chemical reactions are discussed below.
Using equations (4.4) and (4.5), we rewrite the left-hand side of (4.2) to first get:

d(¢p) 06
o ‘b + (‘%

= ¢Pﬁf§ +oqrx + p¢5¢a7

and then inserting (4.3) into the right hand side of (4.2), we arrive at the transient

pressure equation:

0 k
P05y + 56y = V- o, (V0 = p8)) +arx +Q. (4.6)

The energy conservation equation is written in the form [53]:

orT

(¢pcpr + (1 — Qb)prcpr)a =V - ((0K; + (1 = ¢)K,)VT) =V - (vpeyT),  (4.7)

where 7" is the temperature, Ky and K, are the fluid and rock thermal conductivities,
cps and ¢y, are the fluid and rock specific heat capacities, respectively; p, is the rock
density. No thermal effects of chemical reactions are taken into account.

Returning to the component transport equation (4.1), we introduce the entity

J = ¢;(v; —v) — the component flux due to the deviation from the mean flow velocity.

V(clvz):VJ—l—V(c@v)

This flux can be described using the Fick’s law J = —DV¢;, and equation (4.1)

can be rearanged in the following form:

d(¢ci)
ot

where D is the diffusion-dispersion coefficient, assumed to be constant and the same

for all species.
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Equations (4.6), (4.7) and (4.8) together with the equation of state form the
total system of equations that describe the non-isothermal slightly compressible single
phase multi-component transport in porous media. In this work, an equation of state
for brine from [54] was used to calculate fluid properties for the seawater salinity

range.

4.2.2 Gibbs energy minimization method and partial equi-
librium kinetics

The GEM IPM3 algorithm [49], as implemented in the GEM software (http://gems.
web.psi.ch), is capable of thermodynamic modelling of partial equilibria controlled by
mineral-water reaction kinetics with multiple reaction pathways. In GEM IPM3, the
chemical system is defined by a bulk composition vector, n®), specifying the input
amounts of chemical elements and charge; the standard Gibbs energy per mole for all
dependent components (DC, chemical species), ¢°, at T, p of interest; the parameters
of (non)ideal models of mixing in solution phases [50], needed to calculate the activity
coefficients ; of DCs indexed with j; and the additional metastability restrictions
(AMR) on mole amounts of some DCs in some phases.

The GEM problem consists in finding the (unknown) equilibrium speciation n(®)
and phase amounts n(?) in the system at given p, T', and bulk composition n®) (i.e
mole amounts of ICs). The number of elements in this n(*) vector is n(N), i.e. the
number of ICs including the charge; the size of the n® vector is n(L), i.e. the total

number of DCs in all phases.
The Gibbs energy minimization problem

¥l Y

Find n(® = {n(z) VES L} such that

G(n') :min{G @) @ €M},
{n € Ry : Anl® = n(b)} : (4.9)

where A = {a;;,7 € N,j € L} is a matrix composed of the stoichiometry coeflicients of
ICs in the formulae of DCs; L is the set of n(L) DC indices; R; is the set of constraints
on n® composed of trivial non-negativity constraints (set Dy), and optional two-side
AMRs (set Dj),
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and sets of indices Dy, D3 are such that L = Dy J D3 [55, 49]. Note that @§x) > 0;
ﬁgz) >0, and ﬁgx) > ng).

The normalized total Gibbs energy of the chemical system is a scalar:

Gn™) =>"n\"p;, jeL,
J

where f1; is the normalized chemical potential of the j-th dependent component, writ-
ten in a simplified dimensionless form as:
95 - .

Hi = R +InCj +invy; + 2, j € L, (4.10)
with g? is the standard chemical potential (Gibbs energy per mole) of j-th DC at p,
T of interest; R is the universal gas constant (8.31451J/K/mol), and C; = f(ng-w))
is the j-th DC concentration relative to the standard concentration scale for the
respective phase. For a DC in k-th condensed non-electrolyte solution phase, and for

the water-solvent in aqueous electrolyte, C; is defined as mole fraction x;:

@ @
Cj =T; = e . jp S lk (411)
d) T Y 9
nl(f ) ij ng'p)

where [;, is the subset of indices of all DCs belonging to the k-th phase. For an

aqueous electrolyte species (not water-solvent), concentration is defined as molality
m; (moles per kilogram of water-solvent),
1000 x;

_ I wel,, 412
T 1R0153 1y VI S e (4.12)

C; =

where jw is the index of water solvent, 18.0153 is the molar mass of water in g/mol,
and [,, is the subset of indices of DCs in the aqueous electrolyte phase. For gas or
plasma or gaseous fluid DCs with indices belonging to the subset [ , the concentration

is partial pressure,

Cj = Z;p, ] € lg,

and for any DC forming a stable pure substance phase, the concentration is unity,

C;=x;=1,j€l, and n(ly) = 1.

The activity coefficient 7; of the j-th DC in its respective phase is obtained from the

chosen model of non-ideal mixing (details in [50]). The non-logarithmic asymmetry
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term = is

(11

=1— Ty, V] € log\jw

for the aqueous species,

[1]

=2 — Tjw — 1/ij, jU) c laq

for the water-solvent, while = = 0 for components of condensed mixtures, gaseous,
and pure-substance phases [55].

The convex set M is called a feasible domain, composed of the system of mass
balance constraints, with an additional set of constraints R;. If only trivial non-
negativity constraints are present in the R; set, i.e. D3 = &, then the speciation
vector n(*) will be the primal solution of the problem (4.9) only if such a dual solu-
tion vector u exists such that Karush-Kuhn-Tucker (KKT) necessary and sufficient

conditions (written in vector-matrix notation) are satisfied:

uw—ATu >0,
AR® = p® 7@ > .
n@(u— AT) =0, (4.13)

where ~ denotes optimal. For components with two-side AMRs (D3 # &), the ex-
tended KKT conditions [55, 49] must be satisfied:

H—= AT@ + Z]\Z 07

An@) — n(b), n@ >0,

(0 = A0)(n — AT +§) =0,
720, )7 =0,

where § is a vector of Lagrange multipliers conjugate to AMRs, and n®, 7® are
vectors of lower- and upper AMRs, respectively. These KKT conditions are used by
the IPM3 algorithm [49] to iteratively find accurate and precise primal 2®*) and dual
u optimal solutions of the GEM problem.

The first condition from (4.13), re-written with indices using (4.10)

Gy 4y + 2= 20, j€ L i€ N, (4.14)

implies that, for a j-th DC present in some equilibrium concentration C; > 0 in its
phase, the primal chemical potential p; must numerically equal the dual chemical

potential 7);:
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M= ayl;, j€L,i€N. (4.15)

After a GEM run has converged (see more about the GEM IPM3 algorithm in
GEMS3K code and its performance compared with LMA codes in [49]), the results,
namely the primal speciation vector 7*), and the dual vector @® of chemical po-
tentials of chemical elements and charge, provide for concentrations, activities and
amounts of all components in each phase.

The stability index €2, of any phase, including any phases absent from the mass
balance, is found as a sum of anticipated mole fractions z; of all DCs belonging to

this phase:
Qk:z@ :Zexp (ﬁj—g}’/RT—lnyj—Ek),j € lg. (4.16)
J J

Equation (4.16) follows from combining equations (4.14, 4.15), with (4.11) or (4.12).

Modelling kinetics as partial equilibrium

In the GEM IPM3 algorithm, the €} index (eq. 4.16), which has the physical meaning
of a saturation index of a (mineral) phase, is used as a criterion for checking the
stability of any phase. If —e < l0g10{2; < € then the non-negative amount of this phase
is in equilibrium with the rest of the system with a numerical tolerance 0 < ¢ < 1. If
1091092 < € then the phase is unstable (under-saturated), but may be kept in the mass
balance by the lower AMR(s) Qﬁm) > 0 set on some of its components. If log;o€; > €
then the phase is over-stable (oversaturated) due to a positive or zero upper AMR(s)
ﬁ;x) > 0 set on some or all of its components.

Overall, the GEM output phase stability index €2, together with input AMRs make
the GEMS3K code a versatile tool for simulating phase metastability and kinetics as
a series of partial equilibrium states. Thus, lower-AMRs allow stepwise simulation of
dissolution of a mineral as long as its €, < 1; upper-AMRs allow stepwise simulation
of mineral precipitation as long as €2, > 1. In this way, it is possible to model the
kinetics of mineral-aqueous reactions and of trace element uptake [56].

In a sequence of partial equilibria, each AMR can be set as a function of the time
step duration At, the time variable ¢, the surface area A;; of k-th solid phase, and the
(absolute) net kinetic rate R, ;. In a stepwise simulation, the mole amount ng ¢ a¢
of the mineral at time ¢ + At is set by the upper AMR 7, 44+ a; for precipitation or by

the lower AMR ny ;. o, for dissolution:

44



Npggpar = Ny + Ap 1Ry At if logio€dy, > €

N poar = Nt — Ape Rt At if logiofl, < —e
The surface area of k-th solid phase is obtained as
Apt = AspMurgpng.t,

where Ag  is the input specific surface area (m?/kg); Mk is the molar mass (kg/mol),
and ny; is the current amount (mol) of the k-th phase.

Implementation of metastability and kinetics differs from code to code. To date
there is no conventional data structure for kinetic rate parameters. Because the
experimental rate constants are typically normalized per unit area, they must be
scaled by the current reactive surface area of the mineral. This depends on many
factors, some of them are external to the chemical system, and some are related to
the particle/pore morphology, initial size distributions, and surface roughness. This
is in focus of current research efforts in the geochemistry of mineral water interfaces
[57, 58, 59]. In RTM, this must be recast into the impact of porosity changes on
transport parameters and on reactive surface areas of minerals.

Kinetic rate laws usually contain the so-called activity product term related to a
particular reaction mechanism, catalysis, inhibition, etc. [60], [46]. Near-equilibrium
kinetic rates also depend on the affinity term based on the phase stability index
Q. Particular forms of this term reflect different nucleation, growth or dissolution
mechanisms [60].

Some relevant kinetic rate equations for dissolution, precipitation, and trace ele-
ment uptake in solid solutions have been implemented in the TKinMet code library
used in the GEM-Selektor and the GEMS3K codes [61], [56]. The mineral-water ki-
netic rate laws are considered in the general form (with input parameters implemented

in Phase definition records):

E = Ak,tRk,t = _Ak,t ; Qk,r,tf(’f; E)k,rf(Ha)k,r,tf(Q)k,r,t (4'17)

where k is the index of solid phase of interest (pure solid or solid solution); ny is the
mole amount of k-th phase at time ¢; Ay, is the current surface area of the phase in m?;
R, 1. is the total precipitation or dissolution rate (in mol/m?/s); N(r)y is the number

of parallel reaction mechanisms or pathways that affect the amount of k-th phase; r
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is the index of a mechanism or pathway (dissolution, nucleation, and precipitation
can be treated simultaneously as different mechanisms); 6y ,.; is the effective fraction
of surface area of k-th phase assigned to the r-th reaction mechanism.

Time-dependent parameters Ay, and 0, may either depend on a built-in model
of particle size/area evolution or be externally controlled from the mass transport
code. In eq. (4.17),

7k:r

f(k, E) = K} Ay, e RT (4.18)

is the reaction rate constant term including the temperature correction, where: kg ;. is
the rate constant at reference temperature (25 °C) in (mol /m?/s) or other appropriate
units, having a positive sign for dissolution and a negative sign for precipitation; T
is temperature in K; Ay, is the Arrhenius factor (1 by default); and Ej, is the
activation energy (J/ mol) of r-th reaction mechanism.

The expression e R in eq. (4.18) occurs in the literature in a different form

E 5T
e~ =" (7~ s15) that involves the reference temperature 298.15 K [46]. Both forms are

connected as: .
- k r Ek:,r' 1 1
" 11
Ay re BT = Akr 7 (T 298.15)’

where
Ek T

A _Ak: e 29815

and By = Ej,.
In eq. (4.17), f(Ila)g,+ is the activity product term that involves a product term:

n(j k,r

7k" pk,'r
|| a]k’r )

where p, is the reaction order parameter; n(j)g, is the number of (aqueous or
gaseous or surface) species from other reacting phases involved; a;, is the activity
(fugacity) of j-th species; b; x,, is the reaction stoichiometry coefficient parameter. The
activity product term also involves for convenience the respective power coefficients
for ionic strength, pH, pe and Eh for the aqueous electrolyte. Note that any activity
dependence of the rate can be disabled, if the respective power coefficient is set to
the default value of zero.

Finally, in eq. (4.17), f(€,) is the affinity term for r-th reaction, which can take
several different forms, all using the current (at time t) k-th phase stability index

(eq. 4.16). The classic affinity term is taken in the form
(1 + Uk, — sz’r)mk*r,

46



where g, and my, are the reaction order parameters (default 1; my, = 0 disables
the affinity term); and wuy, is the empirical parameter (default 0).

In eq (4.17), the net rate Ry, is taken in (mol/m?/s) by default. However, in
many models of mineral dissolution or growth [62, 63], the mean orthogonal velocity

of surface propagation Ry, in (m/s) is considered. Ry is related to Ry as

M
Rrje = VupRe: = p =Ryt
k

where V). is the molar volume in m?/mol; My is the molar mass in kg/mol; and
pr is the density in kg/m? of the mineral phase.

The specific surface area of the mineral is defined as Agy = Ay/my, in (m?/kg) or
Ay = Ai/Vi in (1/m). Upon growth or dissolution, both Agj and Ay values vary
with time because of changing particle size, shape, and surface roughness. Hence,
specific surface areas must be corrected after each time step, either internally in
TKinMet functions, or externally by the reactive transport model.

Some parameters, e.g. the dissolution rate constant, the activation energy, the re-
action type and order constants for parallel mechanisms, can be considered as chemi-
cal properties of the solid phase, kept in the respective Phase definition record in the
GEM-Selektor project database or in the GEMS3K input file. Other, "non-chemical”
parameters, such as the reactive specific surface area assigned to r-th mechanism, are
related to evolving particle or pore size and shape distributions. Such varying param-
eters should come at each time step into TKinMet calculations from the transport
part of the coupled RTM code.

4.2.3 Numerical solution procedure

The resulting system of equations (4.6), (4.7) and (4.8) is solved using a hybrid fi-
nite element - finite volume method [14] implemented within the CSMP++ software
library [15]. The SAMG solver is used for solving the arising systems of linear alge-
braic equations [16]. The chemical speciation calculations are performed using the
GEMS3K software library [49].

My new reactive transport code is written in the C++ programming language. It
has a flexible modular structure and can be configured for particular simulation needs:
stationary or transient pressure with/without gravity, constant, stationary or tran-
sient temperature, implicit or explicit time stepping. Reactive transport simulations

based on 1D, 2D and 3D unstructured grids can be performed.
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A consistent initialization is important for RTM. The initial chemical compo-
sition/speciation is read from the text-format input files exported from the GEM-
Selektor code package [49]. Initial and boundary conditions for pressure and temper-
ature are read from a CSMP++ configuration file. Dirichlet, Neumann and mixed
boundary conditions for pressure and temperature, as well as fluid and heat sources
can be specified. First, initial pressure and temperature distributions across the
model are calculated. Next, chemical speciation is computed for each grid node at
initial pressure-temperature conditions. Finally, fluid properties are computed from
the equation of state for the given pressure, temperature and salinity.

After the model initialization, the main time loop is executed. A flow chart for
a single time step is shown in Figure 4.1, with a detailed description given in the

following subsections.

Update pressure
pn — pn+l.

Calculate density
pn+l|'2:p(pn+1 'Tn‘xn)

!

Update temperature
T = Tn+1

!

Update species concentrations

Advective-diffusive transport
ch— Cn+1ﬂ‘2

v

Chemical equilibrium
oz _, ol

v

Update porosity & permeability

v

Update fluid properties
pn+l.: p(pn+1'Tn+1'xn+1)
IJn_) un+1‘ Cp‘n—’CD‘ML, Bfn_,B'ml

v

Update sources
q n_, q n+l Qn - Qn+1
X ™

Figure 4.1: Flowchart of a single time step as implemented in CSMP++GEM
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Pressure-temperature coupling

The pressure equation (4.6) and the heat transport equation (4.7) are solved in a
sequential order implicitly in time, as represented by the following semi-discrete equa-
tions (4.19) and (4.20) in which constant properties lack upper indices. The rule for
the porosity /permeability update is explained subsequently. The pressure equation

is solved using the finite element method:

n _n/on pn-l—l_pn_ k " n+1 n n n
"M (Bf + Bo) (g =V~ . (Vp"" = p"g) | +arx +Q",  (4.19)

where p° is the initial pressure distribution, p%, 39, u” are the initial fluid properties,
¢°, kO are the initial rock properties, ¢° = 0, Q° = 0.

After the pressure calculation, the density is updated from the equation of state
[54]: p"*t1/2 = p(p"t1, T™, X™) and stored for the further calculation of gzy.

The heat transport equation with the diffusive term is solved using the finite

volume method on a complementary sub—grid [64]:

n.n ..n n -
(@"p" cpp+(1—¢ )Prcpr)T =

=V ((¢"Kf + (1 _ ¢n)KT)VTTL+1) _V- (Vpn C;lf TnJrl)’

(4.20)

with T° — initial temperature distribution.
After the pressure-temperature calculations, the transport-chemistry calculations
are performed. Subsequently, the fluid properties: p"*! cg;rl, pun ﬂ}‘“ are updated

using the equation of state, and new values for ¢5t' and Q™! are calculated.

Transport-chemistry coupling: Sequential Non-iterative Approach

The transport equation (4.8) can be solved using the Sequential Non-Iterative Ap-
proach (SNIA) [31] in two steps:

(’7*’1/2_6@) 1/2 1/2
o Y (v ) - V(DY) = (421)
n+l _ n+l1/2 -
¢n (Ci A(;z ) _ qzn—i-l’ Vi € 1’ N. (422)

This approach allows to use the chemical partial equilibrium solver as a ”black

box” to calculate the values for the chemical source ¢;. The source term ¢; in (4.22)

can be expressed as:

+1
i =1

nt+tl _  nJi
qz (b At )
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where f; is the amount of i-th IC in the solid phase per unit pore volume. The
negative sign indicates that, as the amount of IC in the solid phase decreases, its
amount in the aqueous phase increases, and vice versa.

Calculations are performed in the following way. First, equations (4.21) are solved
using the finite volume method. For each aqueous concentration ¢;, a transport
equation is solved on the whole grid. Subsequently, equations (4.22) are solved using
the GEM IPM3 algorithm implemented in the GEMS3K code. Chemical speciation
calculations are performed for each finite volume independently. The new values for

rz-i-l

" are computed from:

C
(cn—l—l’fn—&—l) _ F(cn+1/2 _’_fn)’

where I denotes the GEMS3K solver that takes as an input the vector of total
concentrations (the sum of aqueous and solid concentrations) and yields the vectors
of aqueous and solid concentrations: ¢ = (¢;...¢jc) and £ = (f1 ... fic), respectively.

A new CSMP++ data structure — the Array Variable — was implemented to store
the vectors c and f associated with the nodes. This tree-like structure allows efficient

advective-diffusive transport and chemical speciation computations.

Porosity /permeability feedback from reactions

The complete discrete form of the equation for species transport would be:

(bn—HC?Jrl o (bncgz N _(bn—&—lfin+1 o ¢nfzn
At At '

V- (V,-c?“) -V (Dch“) =

(4.23)

In this work, we use a simplification by assuming porosity to be constant during the
transport/chemistry computations, and solving the following equation instead:
gl o finﬂ — fn

n ) . sntly . ~nt+ly . gn )
o AT + V. (viel™) =V - (DVeErT) ¢ T

Following the transport step and the chemical equilibration step, the porosity is up-
dated using the formula:

Nmin

n+1 __ 2 n+1
¢ - 1 - V;nert - Vminp
=1

where V¢ is the volume fraction of the non-reactive rock , V,Z:;ll is the new volume

fraction of the i-th mineral, calculated by multiplication of f/"*! by the mineral molar

volume, N,,;, is the number of minerals.
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The updated value of permeability is calculated using the Kozeny-Carman corre-
lation [65]:

(1-¢") ()
(1= 1 )

The new porosity and permeability values are used in the pressure calculation
(4.19) at the next time level.

In order to maintain the mass balance, the species concentrations ¢; and f; are re-

kn—H — kn

(4.24)

scaled with respect to the new porosity, before being used in the transport calculations

in the following time step:

Cn—i— 1 _ ¢n én+1
7 - 7 )
¢n+1
fn+ 1 _ an fnJr 1
% - ¢n+1 % :

Calculation of ¢rx and (@)

After the transport and chemistry calculations are finished, source terms can be
determined. The fluid expansion source is calculated from the change in fluid density

due to temperature and salinity changes:

@it = —gnt! prtt =ttt
At
(pn-i-l’Ttn—i-l7 Xn+l) - p(pn—i-l,Tn?Xn)

_ _4n+l P
¢ At )
where density is calculated from the equation of state.

The chemical source is calculated using the output data from GEMS3K:

g SN — M,

n+1l __
Q - At 9

where f""!'M; is the new mass of the i-th IC in the solid phase, f7*M; is its value at

the previous time step.

Property values placement

As described above, porosity is updated based on the mineral amounts that are stored
on the nodes, as a consequence of finite volume- (nodal-) based chemical calculations.
There is no easy conservative way to interpolate or extrapolate porosity from the

nodes to the elements and back. For this reason, we keep both the nodal and the
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elemental porosity. For the permeability update, we first interpolate porosity to the
elements, and then calculate the new permeability values using equation (4.24).

The transient pressure equation (4.6) is solved using linear finite elements. Within
the finite element — finite volume framework of CSMP++, fluid properties are stored
on the nodes (density, viscosity, fluid compressibility, fluid thermal expansion coeffi-
cient), whereas the material properties (rock compressibility, permeability) are stored
on the elements. In order to increase the accuracy of the finite element solution of

pressure equation, the following properties:

po(Br + Bs)
— the total system mass compressibility,
A= ,(:JE
7
— the mass conductivity,
k
p—Pg
7

— the mass gravity term, are stored on the element integration points. This process

is exemplified for a calculation of mass conductivity in the left part of the Figure 4.2.

P1 M

Pz, M3

Figure 4.2: Mass conductivity is placed on finite element integration points (left).
Total mass heat capacity is placed on the finite volume sector integration points
(right). Finite elements are dashed line triangles, finite volume of the dual mesh is
drawn in solid lines

The advection-diffusion heat transport equation (4.7) is solved using the finite
volume method, where the finite element integral corresponding to diffusion is accu-

mulated into the same solution matrix [66].
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Table 4.1: Calcite-dolomite benchmark: aqueous and solid boundary and initial con-
centrations

Boundary Initial Units
Ca?t 1-1077 1.22-107%  mol/kguater
Cco% 1-1077 1.22-107%  mol/kgwater
Mg*  1-10%  1-107  mol/kguater
Cl~ 2-1073 1-1077 mol [ kGuater
Clalcite 0.0 2.17-107°  mol/kgsoria
Dolomite 0.0 0.0 mol /kgsoiid

The total mass heat capacity, C; = ¢pc,r + (1 — ¢)prCpyr, is stored on the finite
volume sector integration points; the values for fluid mass heat capacity pc,; are
taken upstream. Figure 4.2 illustrates calculation of the first, fluid-related term in
total mass heat capacity (¢pc,r): porosity ¢, density p and fluid heat capacity c,y
are placed on the nodes; each finite volume sector has one integration point where
¢; = ¢ipcys is stored. The second, rock-related term ((1 — ¢)p,c,,) is interpolated

from the finite elements to sector integration points.

4.3 Benchmarking results

In order to verify our new reactive transport code, we first compared it to the
OpenGeoSys-GEM coupled code (that also uses GEM-IPM3 as chemical solver) on
well-known calcite dissolution — dolomite precipitation benchmark from [51], which
ignores mineral dissolution/precipitation kinetics.

After that, we benchmarked CSMP++4GEM against TOUGHREACT on a 1D

dolomitisation model that accounts for kinetics of dolomite.

4.3.1 Dolomitisation by MgCl, with equilibrium reactions

The test model is a 1D porous medium column of 0.5m length, with the bulk density
py = 1800 kg/m? and the porosity ¢ = 0.32. Fluid pressure of 1bar and temperature
of 25°C are assumed. The pore fluid is initially equilibrated with calcite. The col-
umn is flushed from left to right with MgCl, solution at a flow rate ¢ = 3-107%m/s,
with a diffusion-dispersion coefficient D of 2 - 1078 m?/s. Initial and boundary con-
centrations for aqueous species and minerals are presented in Table 4.1. Chloride
does not react with solids, but serves as a tracer. Both calcite and dolomite are

equilibrium-controlled minerals.
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The model domain is discretized into 100 elements of equal length (Az = 0.005m)
and a time step At = 200 s is used in the simulation. As the reaction front progresses,
dolomite is formed temporarily as a moving zone, and calcite is dissolved. Simulation
results after 21000s, compared with the results from [51] for the concentrations of
ions and minerals, are presented in Fig. 4.3 and 4.4 respectively. The results are
consistent; minor deviations are due to different numerical methods that were used
for transport calculations: the finite element method (OpenGeoSys) and the finite
volume method (CSMP++).
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Ca2+ CSMP++GEM
Ca2+ OpenGeoSys-GEM
== Mg2+ CSMP++GEM
=== Mg2+ OpenGeoSys-GEM
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5.0E-04
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Figure 4.3: The calcite-dolomite benchmark: concentrations of Ca**, M¢** and CI~
ions after 21000s
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Figure 4.4: The calcite-dolomite benchmark: concentrations of calcite and dolomite

after 21000s
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Table 4.2: Rock properties

porosity 0.4 -
permeability 1-10712 m?

rock compressibility 1-10710  pPgt
rock density 2710 kg/m?
rock specific heat capacity 1000 J/kg- K
total thermal conductivity 2 W/m- K

diffusion-dispersion coefficient 3-10"' m?/s

4.3.2 Dolomitisation by seawater with mineral kinetics

Following the previous work on 1D reactive transport simulations of dolomitisation in
reflux systems using TOUGHREACT [38], we created a more realistic 1D benchmark
in order to compare these results with those obtained using the CSMP++GEM code.
The goal was to simulate changes in mineralogy that a calcite column undergoes

during the flow-through of seawater, taking into account the kinetics of dolomite.

Description

The simulation model is a 10m-long vertical column, with a cross section of 1m?,
divided into 50 cells (Az = 0.2m). Rock properties are listed in the Table 4.2. The
initial mineral composition was 99% calcite and 1% dolomite. Calcite was under
equilibrium control, whereas ordered dolomite was under kinetic control.

The normal seawater composition (0.35% salinity), taken from Nordstrom [67], is
supersaturated to both calcite and dolomite. The initial water composition was de-
rived from this modern seawater by equilibrating it with calcite and ordered dolomite.
The boundary water injected at the top of the column was modern seawater equili-
brated with calcite only. Because the precipitation rate of dolomite is very slow at
these conditions (5-6 orders of magnitude less than the dissolution rate of calcite or
dolomite), we assumed that at the required large time step lengths, calcite would
dissolve or precipitate instantly, and thus should be considered as an equilibrium-
controlled phase.

A thermodynamic database suitable for both CSMP++GEM and TOUGHRE-
ACT was not available, and therefore we used two different databases presenting
quite close equilibrium constants for dolomite and calcite (see Table 4.3). The PSI/-
Nagra thermodynamic database ([68]) was used to prepare the CSMP++GEM input
in GEM-Selektor and in the simulation runs, whilst the THERMODDEM database
([69]) was used in TOUGHREACT simulations.
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Table 4.3: Thermodynamic data comparison: equilibrium constants at 1 bar, 25°C

logK PSI/Nagra THERMODDEM
CaCO; 1.8490 1.8470
CaMg(CO3);  3.5680 3.5328

Table 4.4: Initial water compositions for CSMP++GEM and TOUGHREACT runs
at 1 bar, 30°C: basic species molalities

CSM++GEM  TOUGHREACT

pH 7.117 7.037

Ca**  3.874-1072 3.666 - 1072
Mg**  2.644-1072 2.871-1072
HCO; 1.594-1073 1.652-1073
Na®  4.839-107! 4.854 107"
K+ 1.055- 1072 1.058 - 1072
SOi~ 29171072 2.926 - 1072
Cl- 5.649 - 107! 5.657 - 107!

The extended Debye-Huckel activity model with parameters derived by Helgeson
et al. [70] was used in both software packages. Initial and boundary water compo-
sitions for CSMP++GEM and TOUGHREACT at 30°C are listed in Table 4.4 and
Table 4.5.

Kinetic rate of dolomite precipitation was taken in the following form:
r=rA(l - Q)"

where k is the rate constant, A is the reactive surface area, € is the mineral saturation

ratio,  and n are empirical parameters, and the values of corresponding parameters,

Table 4.5: Boundary water compositions for CSMP++GEM and TOUGHREACT
runs at 1 bar, 30°C: basic species molalities

CSMP++GEM TOUGHREACT

pH 7.626 7.528
Ca?*  1.040-1072 1.041 - 1072
Mg**  5.489-1072 5.508 - 1072
HCO; 1.710-1073 1.913-107°
Na*  4.839-107! 4.854 -1071
K+ 1.055 - 1072 1.058 - 102
SO 2.917-1072 2.926 - 102
Cl~ 5.649 - 107! 5.657 - 1071
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Table 4.6: Kinetic rate parameters for ordered dolomite
CSMP++GEM TOUGHREACT

kas - 4.58 1071 mol/m? - s
kas 10000 - mol/m? - s
A 11.22 - -

E, 133.47 - 10 133.5 - 10 J/mol
kat 30°C  1.129-107'8 1.113-10°18 mol /m? - s
A 1000 1000 m? kg

n 2.26 2.2 -

0 1 1 -

were taken from Arvidson and Mackenzie [45]. This ensures that simulations are
consistent with previous RTM simulations of dolomitisation [38, 40, 36, 37].
TOUGHREACT has the following built-in temperature correction for the rate
constant:
o —Ea, 1 1

K=kKeR (=—

T 298.15)7
whereas in CSMP++GEM we used a slightly different but equivalent formulation:

K = /%OAG%TG,
where F, is the activation energy, k° and k° are rate constants at 25°C, A is the Ar-
rhenius parameter, R is the universal gas constant. Kinetic parameters for dolomite
precipitation are listed in Table 4.6, and values for the rate constant at 30 °C are com-
pared. A constant reactive surface area of 1000m?/kg was assumed, corresponding
to small dolomite rhombs (2.5um).

The system was assumed to be isothermal; simulations were performed at 30, 40
and 50°C. Dirichlet boundary conditions for pressure at the top and the bottom of
the column were assigned, resulting in a flow rate of ~ 1m/yr (2.79+£0.25x 10~%m/s).
Essential conditions for the flow simulation are listed in Table 4.7. In TOUGHREACT
runs, top and bottom cells were infinite volume cells; in CSMP++GEM, Dirichlet
boundary conditions were assigned for species concentrations at both column ends. In
CSMP++GEM simulations, thermophysical properties of seawater were taken from
the equation of state for brine from [54]. In TOUGHREACT, the EOS7 module
(water, brine, air) was used [71].

In our simulations, we used two different time steps. In the main time loop, we

used a time step of 10 years, and in the inner loop (solute transport and chemistry)
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Table 4.7: Essential conditions for the flow simulation

initial pressure 101325 Pa
initial temperature 30°C
pressure top 101623 Pa

pressure bottom 201375 Pa

a time step duration was chosen according to the Courant—Friedrichs-Lewy (CFL)
condition. This is a necessary condition for convergence of SNIA, as with a At = CF'L
the fluid will move no more than one cell at a time, so it is guaranteed that in the
subsequent chemistry calculation, the fluid will react with the rock before it leaves
the cell.

Results

We performed three sets of simulations for 30, 40 and 50°C in CSMP++GEM and
TOUGHREACT, and compared the results after 10kyrs. Figures 4.5 and 4.6 show
the results at 50°C. Within the first meter of the column some boundary effects
occurred, due to the fact that the boundary water was slightly undersaturated with
respect to calcite and therefore a higher amount of calcite (compared to the rest of

the column) dissolved in the first few cells adjacent to the column top.
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Figure 4.5: Results of the simulation at 50°C: changes in mineral amounts after
10kyrs

Results using the two different simulators are similar and minor differences can
be explained by (1) different numerical methods for flow and transport (finite dif-
ference method in TOUGHREACT and finite element - finite volume method in
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Figure 4.6: Results of the simulation at 50 °C: porosity after 10kyrs

Table 4.8: Amount of calcite disssolved and dolomite precipitated [mol/m?] in simu-
lations at three different temperatures: average values across the column after 10kyrs

Calcite Dolomite

CSMP++4+GEM TOUGHREACT CSMP++GEM TOUGHREACT
30°C 0.91 0.79 0.46 0.39
40°C 8.03 7.06 4.03 3.55
50°C 68&.1 61.5 34.2 31.0

CSMP++GEM), (2) different numerical methods for chemical reactions (Law of Mass
Action in TOUGHREACT and Gibbs energy minimization in CSMP++GEM), (3)
different thermodynamic databases and small differences in aqueous activity models
and mineral kinetic rate models, (4) differences in equations of state for the aqueous
fluid.

Apart from the first meter from the top, the changes in mineral amounts are
almost constant across the column. After the first few years of injection, the water
composition becomes approximately the same along the whole column. Consequently,
the kinetic rate of dolomite precipitation and the resulting rate of calcite dissolution
are constant, indicating flow rates are high relative to reaction rates. The amount of
dissolved calcite is approximately two times greater than the amount of precipitated
dolomite, consistent with the stoichiometric assumption, i.e. that two moles of calcite
are consumed to form one mole of dolomite.

The porosity evolution is shown in Fig. 4.6. After such a short (in geological time
scale) period of time, the change in porosity is minor; the slight increase is due to the

differences in molar volumes of calcite and dolomite.
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Table 4.9: Change in porosity in simulations at three different temperatures: average
values across the column after 10kyrs

CSMP++GEM TOUGHREACT

30°C 4.6-107° 3.9-107°
40°C 3.7-107° 3.3-107°
50°C 3.3-107* 2.8-107*

Table 4.10: Saturation indices of dolomite for boundary water at calcite equilibrium
at different temperatures

CSMP++GEM TOUGHREACT

30°C  0.8837 0.8885
40°C  0.9704 0.9671
50°C 1.0515 1.04

Tables 4.8 and 4.9 compare the results for simulations at 30, 40 and 50 °C, pre-
senting the average values of calcite dissolved, dolomite precipitated, and porosity
increase across the column after 10kyrs of simulation time. The changes of mineral
amounts and change in porosity increase by a factor of 89 with a change of 10 de-
grees in temperature. These results agree with the saturation indices for dolomite
(boundary water) at different temperatures (Table 4.10), and with the acceleration
of dolomite precipitation rates at increasing temperature (eq. 4.18). At all three tem-
peratures, calcite dissolution is driven by dolomite growth, and the ratio between the
amount of calcite dissolved and dolomite precipitated remains approximately equal
to 2. After such a short time calcite remains dominant (98.6% of mineral phase after
10 kyrs) and dolomitisation rate is limited by reactive surface area.

For the 50°C case, we ran a simulation for 200 kyrs, and compared the results
in two cells at distances of 1 and 5 meters from the top of the column (see Fig. 4.7
and 4.8). The time of the complete calcite dissolution increases with the distance
from the top of the column. The highest porosity value coincides with the time to
total calcite replacement, after which porosity starts to decrease.

After a period of very slow dolomitisation at the start of the replacement phase,
the dolomite precipitation rate increases non-linearly with the increase in reactive
surface area (the dolomite saturation index stays constant) and porosity increases
from 40% to 47% in CSMP++GEM and to 50% in TOUGHREACT from an ini-
tial value of 40%. Post-replacement dolomite cement is observed down to 5m depth

from the injection point. During the overdolomitisation phase (primary precipita-
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tion of dolomite cement), porosity reduces to 42% in CSMP++GEM and to 47% in
TOUGHREACT at the distance of 1m from the top of the column, whilst there is
barely any change (< 1%) in the middle of the column.
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Figure 4.7: Results of the simulation at 50 °C: changes in mineral amounts (top) and
changes in porosity (bottom) plot over time of 200kyrs at x=1m from the column top

Although our results are in a good agreement during the first 50 kyrs of simulation
time (replacement of the first 2-3% of calcite), they progressively diverge thereafter as
the precipitation rate increases with the increasing dolomite reactive surface area and
the differences between the kinetic rates in two codes get more prominent. The time
point of complete calcite replacement is about 25kyrs delayed for the TOUGHREACT
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simulation compared to CSMP++GEM. In the middle of the column the match
between the two codes is closer than at the distance of 1m.

This example shows how even small differences in numerical methods, activity
models and kinetic rates can lead to significant differences between model predictions

over geological times.
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Figure 4.8: Results of the simulation at 50 °C: changes in mineral amounts (top) and
changes in porosity (bottom) plot over time of 200kyrs at x=5m from the column top
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4.4 Conclusions

A new reactive transport code CSMP++GEM was developed and benchmarked
against OpenGeoSys-GEM and TOUGHREACT calculations. Small differences (es-
pecially regarding calcite dissolution) are due to differences in numerical methods for
flow (FE-FV vs FD) and chemistry (LMA vs GEM), equations of state, kinetic rate
models.

Calcite dissolution is a reactive transport phenomenon driven by a slow dolomite
precipitation. The models show that the rate of dolomitisation by replacement of
calcite increases by factor of 9 with an increase of 10°C in temperature.

The CSMP++GEM code correctly represents all qualitative effects of dolomitisa-
tion. At the replacement stage, the amount of precipitated dolomite is equal to the
half of the dissolved calcite; porosity increases in the whole model during the mole
per mole replacement, but is subsequently plugged by dolomite cementation in the
first few cells close to the model top.

Our results demonstrate the importance of running reactive transport simulations
with the time step constrained by the CFL condition, as otherwise the resulting min-
eral amounts may be overestimated (smaller time steps) or underestimated (large time
steps). The use of the Sequential Iterative Approach can increase solution accuracy,
but the simulation time will grow proportionally to the number of SIA iterations.
Adaptive time stepping, if implemented in the numerical integration of kinetic rates,
similar to [72], might make the numerical solution more stable.

Kinetic rates of mineral precipitation/dissolution depend on the mineral satura-
tion index, time and mineral reactive surface area. Specific surface area correction
upon growth or dissolution dependent on the particle/pore size distribution, parti-
cle/pore size evolution and shape factor should be implemented in the future, which
will make the model more realistic.

Our results illustrate the challenges faced when comparing RTM software that
uses different methods for transport and chemistry and different thermodynamic
databases. We believe that our match is reasonably close, but it can be seen that the
discrepancy grows proportional to the increasing amount of precipitated dolomite.

The new coupled CSMP++GEM code can now be used to simulate more complex
systems that include reactive transport and flow in faults. It is therefore suitable for

modelling of the hydrothermal dolomitisation.
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Chapter 5

Reactive transport modelling of
dolomitisation of the Benicassim
case study

The new coupled reactive transport code CSMP++GEM was applied to study the
fault-controlled dolomitisation at the Benicassim outcrop.

This section contains an overview of this Benicassim case study and previous
research that was conducted there. After that two sets of reactive transport simulation
results are presented: a temperature sensitivity study on a homogeneous model and
a comparison between two different flow scenarios. Reactive transport modelling in
this area was previously conducted by Corbella et al. [43] using a different model,

that did not have a permeability update due to porosity evolution.

5.1 Introduction

Hydrothermal dolomites form by ingress of Mg-rich fluids with temperature elevated
(usually by 5-10°C) relative to the host carbonate rock, mostly around faults or high-
permeability zones, often in association with mineral ores or hydrocarbon reservoirs
(73, 47]. A mole-per-mole replacement of calcite by dolomite would result in a vol-
ume loss, generating an increase in porosity up to 13% [44]. On the contrary, post-
replacement dolomite cementation (“overdolomitisation” [74]) can occlude the pores
and significantly reduce porosity. The porosity evolution of the rock is connected to
its permeability evolution in a non-linear fashion. The flow velocity can be enhanced
in the dolomitised region, or completely blocked if cement precipitation closes all

pathways. Prediction of the spatial distribution of dolomite bodies and assessment
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of their petrophysical properties is important for a predictive understanding of the
recovery of oil and gas in carbonate reservoirs.

Reactive transport modelling (RTM) has been applied to study the formation
of dolomites in low-temperature reflux systems [36, 37, 38, 39] and early burial
dolomitisation by geothermal convection [40, 41|, as well as structurally controlled
hydrothermal dolomitisation [75]. In order to show the capabilities of the newly cre-
ated CSMP++4GEM reactive transport code, hydrothermal dolomite formation on
a realistic geometry, based on geological and geochemical data from the Benicassim
case study, was simulated. The Benicassim outcrop is an excellent example of fault-
controlled hydrothermal dolomitisation that was extensively studied before [43, 76,
77, 78].

In this section we present the results of the RTM simulations in the Benicassim
study area, performed using the CSMP++GEM code and based on the previous
research of the study area, investigating the controls of temperature and flow via the

permeability distribution on dolomitisation.

5.1.1 The Benicassim case study

The Benicassim area is located in the southern part of the Maestrat Basin, on the
east coast of Spain (see Fig. 5.1). There are two major sets of extensional large-scale
faults that controlled the sediment deposition and fluid circulation in this area: the
Campello (NW-trending) and Benicassim (NE-trending) faults. The Lower Creta-
ceous (Aptian-Albian) Benassal Formation cropping out in the Benicassim area is a
1500 m thick succession consisting almost entirely of shallow-marine carbonates which
have been partially replaced by dolomites [43].

The spatial distribution of the dolomitised geobodies was mapped, the rocks were
characterized and a sequence stratigraphic analysis was performed by Martin-Martin
et al. [77]. Reactivity of dolomitising fluids was studied and the possible sources
of magnesium were evaluated by Gomez-Rivas et al. [76], as well as the various
flow scenarios that can provide the plausible driving mechanism for dolomitisation
[78]. Despite these extensive studies, the mechanisms of dolomite formation in the
Benicassim area are still not clear, nonetheless the provided data gives robust bound-
ary conditions for a modelling study.

Dolomitisation in the Benicassim area is a fault-controlled process [77]. The
stratabound dolostone geobodies, which develop preferentially in high-permeability
grain-dominated facies, are up to 150 m thick and extend up to 7km away from the

fault zones [43]. Analysis based on field observations and regional geology suggests
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Figure 5.1: (a) Simplified map of the Iberian Peninsula showing the location of the
Iberian Chain and Maestrat basin; (b) Paleogeographic map of the Maestrat basin
during the Late Jurassic - Early Cretaceous rifting cycle showing thickness of syn-rift
deposits and main fault traces. The black square indicates the location of the study
area, while the black asterisks show the location of dolostones of the same age and
type in the Maestrat basin. Figure taken from Gomez-Rivas et al. [76]

that the dolomitisation occured at burial depths less then 1000m [77]. The dolo-
stones in Benicassim are interpreted to be of hydrothermal origin with replacement
temperatures higher than 60°C [77, 78].

There are two major requirements for dolomitisation: a driving mechanism for the
fluid flow and a source of fluids rich in magnesium. Fluid and heat flow simulations
performed by Gomez-Rivas et al. [78] suggest that a long-term fluid circulation is
the most plausible fluid flow scenario as it provides the flow rates (meters per year to
tens of meters per year) as well as the temperature gradient necessary for the dolomi-
tisation in Benicassim over a long period of time. Geochemical and geological data
suggests that seawater or seawater-derived brines served as a source of magnesium for
dolomitisation and that the most likely fluid drive mechanism was thermal convec-
tion which also focused fluids through seismic-scale faults. From the faults the fluids
would have spread and flowed along high-permeability beds. The dolomitising brines
could have been generated by interaction of the infiltrated seawater with basement
fluids [76].

The stratabound geometry of the dolomite bodies is explained by the permeability
differences between layers, due to differences in the original depositional facies and

early diagenesis [76, 43]. This conceptual model for dolomitisation in the Benicassim
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area was proposed by Corbella et al. [43] and is shown in Figure 5.2.

SSW Campello NNE
fault S

[_1 Post-rift sediments (Late Cretaceous) === Hydrothermal dolomite

[ Syn-rift sediments (Early Cretaceous) === Marls and clays (local seals)

[ Pre-ift sediments (Permian to Jurassic) / Basement faults

[_1 Basement rocks (Palaeozoic) —s>— Fluid flow field of thermal convection

Figure 5.2: Sketch illustrating the conceptual model for the genesis of the Benicassim
and Maestrat Basin dolomitisation. Thermal convection during the Late Cretaceous
post-rift period was the driving force for the transportation of seawater-derived fluids
along faults and layers. These fluids also flowed through basement and pre-rift sed-
iments. Fluid fluxes would have been higher in high-permeability beds, which were
preferentially dolomitised. The model is approximately 25 km long and 6 km thick.
The dashed line indicates the detachment level of large-scale faults. Figure taken
from Corbella et al. [43]

5.2 Methodology

The new CSMP++GEM reactive transport code was applied to simulate dolomitisa-
tion in the Benicassim case study. CSMP++ allows flow simulations with transient
pressure including gravity, the use of a mass conservative transport scheme and an ac-
curate equation of state for saline water, and calculation of the porosity/permeability
evolution feedback. GEM is responsible for precise chemical speciation calculations
at different temperatures and pressures, taking into account kinetics of mineral dis-
soluion /precipitation. The two codes, coupled together, provide a powerful tool for

realistic reactive transport simulations on unstructured grids.

5.2.1 Reactive transport model setup

The model geometry was adapted from Corbella et al. [43] (see Fig. 5.3). It is a 2D
rectangular model, 1310 m long and 190 m high, with a 22.5m wide permeable fault
in the middle and horizontal layers with a thickness of 45, 30, 40, 30 and 45 m.

The CAD model was meshed in ANSYS ICEM CFD. Two triangular meshes were

created, a coarse and a fine one (see Fig. 5.4). The coarse mesh consists of 1128

67



fault

200'* low-k bed T
A‘I 50‘ high-k bed ==
E1o00p low - bed o
™ 50‘ high-k bed =

= low-k bed =
0 0 200 400 600 (m) 800 1000 1200

Figure 5.3: Idealized 2D model geometry of Benicassim. Figure taken from Corbella
et al. [43]

Table 5.1: Rock properties for the Benicassim model

Mudstone—wackestone Packstone—grainstone Fault

porosity, [%)] 10 30 45
permeability, [m?] 1-107 3-10713 5810713

triangular elements with 629 nodes. The fine mesh has 4614 triangular elements with
2446 nodes.
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Figure 5.4: Coarse mesh (top) and fine mesh (bottom)

Rock property values based on petrographical observations for mudstone— wacke-
stone, packstone-grainstone and the fault zone were adapted from Corbella et al.
[43]. Porosity and permeability values are presented in Table 5.1.

The system was assumed isothermal and simulations were conducted at 70 and
100°C and an initial pressure of 110 bar. Initial and injected (boundary) waters were
derived from normal modern seawater from Nordstrom et al. [67]. For the initial water

composition seawater was equilibrated with calcite and dolomite. For the boundary
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Table 5.2: Aqueous solution compositions for the Benicassim model at 70 and 100 °C,
110 bar

Boundary 70°C  Boundary 100°C  Units

SI dolomite 1.192 1.332 -

pH 7.418 7.343 ]
COx(gas) 277 293 ppm
Ca?* 1.001 - 1072 9.847-1073 mol/ kg,
Mg 5.49 - 1072 5.49 - 1072 mol [k
HCO;3 1.053-1073 6.19-10~* mol kg,
Na™* 4.839 107! 4.839 - 1071 mol /kgy,
Kt 1.055 - 1072 1.055 - 1072 mol/kgy,
SO;~ 2.917-1072 2.917 - 1072 mol [ kg
cl- 5.65-1071 5.65-107! mol [ kg,

water seawater was equilibrated with calcite only. In our case only the boundary
water plays an important role as the initial formation water is displaced by injected
water within the first years of simulation. Unlike in the LMA codes, the GEM input
consists of the total mole amounts of Independent Components (chemical elements),
but for the sake of representation simplicity we present it in molal total concentration
of main ions and pH (see Table 5.2).

An initial mineral rock composition of 99% calcite and 1% dolomite was as-
sumed. The rate of calcite dissolution is orders of magnitude higher than the rate of
dolomite precipitation, especially at high temperatures, which is why in our simula-
tions dolomite was a kinetically controlled mineral, while calcite was under thermody-
namic control. The specific reactive surface area for dolomite was set as 10000 cm?/g,
which based on geometric calculations corresponds to fine thombs of 2.5um diameter.

An accurate calculation of the initial state is very important for reactive transport
simulations. Initial model equilibration was performed in multiple steps. First, the
pressure at the top model boundary was set to 110 bar and the gravitational pressure
distribution was calculated. Then fluid properties were updated from the equation of
state and the chemical equilibrium was calculated in all the nodes. Second, pressure
at the top boundary was released and specific boundary conditions for pressure were
applied (dependent on the flow scenario). After that, the chemical equilibrium was
calculated and fluid properties were updated one more time.

Simulations were carried out for time periods of tens of thousands of years with
a time step of 10 years for the pressure loop and a CFL timestep for the transport-

chemistry loop. Fluid properties were taken from the equation of state for brine
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Table 5.3: Mean values of fluid properties across the model at 70 and 100 °C at initial
pressure distribution

70°C 100°C Units

Density  1006.2 987.5 kg/m?
Viscosity 4.49-10"* 3.15-107* Pa-s

from [54].

Temperature influence on dolomitisation

Two simulations, at 70 and 100 °C were performed on the coarse mesh with homo-
geneous rock properties (packstone—grainstone, see Table 5.1) in order to assess the
temperature influence on the dolomitising capacity of fluids. The rock properties on
the left boundary were fixed during the entire simulation (porosity 30%, permeability
310713 m?, zero dolomite amount).

Both simulations started with an average lateral flow velocity of 1.66 - 107" m/s
(5.24m/yr, similar to the value of 6m/s used in Corbella et al.[43]). This flow
velocity was achieved by applying a pressure gradient across the model by assigning
a super hydrostatic pressure on the left and a hydrostatic pressure on the right model
boundaries. Due to the significant fluid density and fluid viscosity differences at 70
and 100 °C (see Table 5.3) two different pressure difference values were used Aprgoc =

3.3bar and Apigooc = 2.3 bar.

Fluid flow scenarios

The two fluid flow scenarios were compared in an attempt to reproduce the stratabound
dolomitisation that is observed in the Benicassim outcrop. These simulations were
performed on the fine mesh with layered rock properties (after Corbella et al.[43])
at 100°C as at this temperature the dolomitising capacity of seawater is the highest
[43].

The rock properties on the left boundary were fixed during the entire simulation
(porosity and permeability according to the layer properties, zero dolomite amount).
Due to the fact that the chemistry calculations are node-based, the boundaries be-
tween the layers are going through the cells and there is a transition zone between
each pair of layers, where the rock properties are averaged. For the porosity the vol-
ume based average was used. The use of harmonic average for permeability results in

the transition zone permeability being closer in value to the higher permeability layer

70



(fault or packstone—grainstone). The initial porosity and permeability distributions
are shown in Figure 5.5.With the boundary between the layers going through the
cells, initial mineral amounts were assigned node-based on each side of the boundary

line respectively.
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Figure 5.5: Initial porosity (top) and permeability (bottom) distribution for the
Benicassim model. The actual boundaries between the layers and the fault are marked
with black lines.

Effects of layering on dolomitisation

The first fluid flow scenario is flow from left to right. A hydrostatic pressure distri-
bution was calculated in the whole model, then the pressure on the right boundary
was fixed and an additional constant pressure difference (Apigooc = 2.3 bar) was ap-
plied across the model, by setting the higher pressure boundary condition on the left
boundary. The top and bottom boundaries were assigned no-flow boundary condi-
tions. The resulting initial average lateral velocity was 1.7 - 10~"m/s (5.4m/yr) in
the high-permeability layers and 5.6 - 1079m/s (0.18 m/yr) in the low-permeability
layers. This contrast is similar to the values of 6 m/yr and 0.06 m/yr used in Corbella
et al. [43].
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Dolomitising fluids entering through the fault

Based on the long-term fluid circulation model by Gomez-Rivas et al. [78], this
scenario was designed to study the effects of fluid inflow at the base of the fault zone.
The pressure on the left and right boundaries was hydrostatic and fixed, an additional
pressure increment of 2.9 bar (with respect to hydrostatic pressure) was assigned at
the bottom of the fault to simulate a constant inflow. The top boundary and the rest
of the bottom boundary was no-flow. This setup resulted in the initial average flow
velocities of order of 1077 m/s in the high-permeability layers, 1078 = 102m/s in
the low-permeability layers and of order of 107%m/s in the fault (see Fig. 5.6). High
velocities in the fault result in a small CFL constraint, for this reason this simulation
was running much slower than with the previous setup and only 2.5kyrs could have

been simulated.

fluid pressure, Pa

E1.3199+07

—1.260e+07

velocity Magnitude, m/s

—1.170e+07
2.777e-09 7.9e-9 6.3e-8 Ll H?ﬁ—? o li?.(l)flli‘ie—()é E
1.100e+07

Figure 5.6: Fault injection: initial pressure distribution and velocity field

5.3 Results

5.3.1 Temperature influence on dolomitisation

Simulation results for the homogeneous permeability simulation for both temperatures
after 25kyrs are presented in Figures 5.7 and 5.8. Initial total volumes of calcite
(69.3%) and dolomite (0.7%) together comprise the 70% of the total volume (30%
initial porosity). At 100°C the dolomitisation process proceeds much faster than at
the lower temperature, which agrees with the difference in the dolomite saturation
index values for injected waters — 1.192 at 70 °C versus 1.332 at 100 °C and reflects the

kinetic equation for dolomite precipitation, which is temperature-dependent. Calcite
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dissolution is driven by dolomite precipitation, therefore the calcite and dolomite

fronts advance with the same speed (see Fig. 5.7).

calcite, % total volume
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Figure 5.7: Calcite and dolomite amounts after 25kyrs of simulation time at 70°C
(top) and 100°C (bottom).

The porosity evolution reflects the changes in mineral amounts (see Fig. 5.8),
with an increase from 30% up to 39% in the zone where all calcite gets replaced by
dolomite. The permeability increases with porosity according to the Kozeny-Carman
correlation (defined in the previous chapter) and leads to the minor flow acceleration
as dolomite front progresses.

An interesting effect observed is that the dolomitisation front is significantly in-
clined at the higher temperature. This can be explained by comparing the fluid
salinity distribution at different temperatures (see Fig. 5.9). At 100°C the salinity
difference between the fluids behind the front and ahead of the front is twice as much
as that at 70°C.
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Figure 5.8: Porosity and permeability after 25kyrs of simulation time at 70°C (top)
and 100°C (bottom).
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Figure 5.9: Fluid salinity after 25kyrs of simulation time at 70°C (top) and 100°C
(bottom).

This fluid salinity distribution affects the fluid density and viscosity, resulting in
the density and velocity fields shown in Figure 5.10. At the higher temperature an
additional density driven flow gradient appears, making the fluid behind the front
move upwards and in general making the fluid in the upper part move faster in the

horizontal direction.
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Figure 5.10: Fluid density and vertical velocity after 25kyrs of simulation time at
70°C (top) and 100°C (bottom).

At 100°C the cross-section gets completely dolomitised by about 51kyrs. By the
same time only one third of the model at 70°C is totally dolomitised (see Fig. 5.11
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and 5.12). After all calcite has been replaced by dolomite, dolomite continues to
precipitate as a cement from the injected water, causing the porosity to decrease near

the injection boundary. As a consequence permeability also decreases.
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Figure 5.11: Calcite and dolomite amounts after 51kyrs of simulation time at 70°C
(top) and 100°C (bottom).

For the simulation at 70 °C, the overdolomitisation occurs in the first 70 m of the
model; at the distance of 20 m from the left boundary porosity is reduced down to
34.6% after 51kyrs of simulation, at the distance of 40 m to 37.8% and at the distance
of 60m to 38.8%, compared to the value of 39% after the complete replacement.

For the simulation at 100 °C the overdolomitisation occurs in the first 100 m of
the model; at the distance of 20 m from the left boundary porosity is reduced down to
30% after 51kyrs of simulation, at the distance of 40 m to 36.2% and at the distance
of 60m to 38.2%, compared to the value of 38.9% after the complete replacement.
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Figure 5.12: Porosity and permeability after 51kyrs of simulation time at 70 °C (top)
and 100°C (bottom).



Figure 5.13 shows calcite and dolomite amounts and the porosity evolution in a
node at a distance of 192.5 m from the left boundary and 100 m from the top boundary
for the simulations at 70°C and 100°C. The graphs highlight the differences in
the kinetic rates of dolomite precipitation at different temperatures: at the higher
temperature the curves are steeper than at the lower temperature. It takes 11kyrs
to dolomitise the corresponding finite volume at 100°C and 31kyrs at 70°C. At the
time of complete replacement the dolomite amount (9.48 mol/m?) is approximately
equal to the half of the initial calcite amount (18.76 mol/m?). It corresponds to
the highest porosity value — 38.9% for 100°C and 39% for 70°C. At this distance
no overdolomitisation occurs at both temperatures and the dolomite amount stays

constant after the complete calcite replacement.
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Figure 5.13: Plot over time at the distance of 192.5m from the left boundary and 100m
from the top boundary: calcite and dolomite amounts (top) and porosity evolution

(bottom) at 70°C (solid lines) and 100°C (dashed lines).
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5.3.2 Effects of layering on dolomitisation

The results of the simulation with layered rock properties and flow from left to right
at 100°C after 45 and 90kyrs are presented in Figure 5.14. During the first 45kyrs
the high-permeability layers are preferentially dolomitised, however after 90kyrs the
low-permeability layers get dolomitised as well. Calcite is mostly dissolved in the
high-permeability layers were the flow is concentrated, but also near the boundaries
between the high- and low-permeability layers. Replacement dolomitisation near
the boundaries increases the porosity and therefore the permeability and enhances
the flow from the high-permeable layers into the low-permeable layers. This effect
is more prominent in the middle layer that gets the inflow both from the upper
and the lower high-permeable layers. After the dolomitising front reaches the fault
and dolomitises it completely, the low-permeable layers start to dolomitise next to
the fault. After complete calcite replacement, dolomite continues to precipitate and
reduces the porosity near the left boundary. The high-permeable layers get completely
dolomitised within the 90kyrs. At the time of the complete replacement of calcite by
dolomite porosity increases to 38.9% in the high-permeability layers (initial value —
30%), to 21.5% in the low-permeability layers (10% initial porosity) and to 52% in
the fault (from 45% initial).

Figure 5.15 shows the time evolution of calcite and dolomite amounts and porosity
for two nodes in the middle of the upper high-permeability layer (vertical distance
from the top boundary — 65 m, horizontal from the left boundary — 18.3m and 49.1m).
Overdolomitisation occurs up to 50 m from the left boundary in the high-permeability
layers. At the distance of 18.34 m porosity reduces to 15.6% (from the maximum value
of 38.9% after the complete replacement) after 100kyrs, while at the distance of 49.1m
the change in porosity is less than 1%.

Figure 5.16 shows the time evolution of calcite and dolomite amounts and porosity
for two nodes in the middle of the upper low-permeability layer (vertical distance from
the top boundary — 25m, horizontal from the left boundary — 18.3m and 28.0 m).
Overdolomitisation occurs in the first 30m of the low-permeability layer. At the
distance of 18.3m porosity decreases to 15.6% from the complete replacement value
of 21.5% and almost does not change at the distance of 28 m (< 1%).

Figures 5.15 and 5.16 illustrate how the dolomitising front progresses in the lay-
ers with different rock properties. In the high-permeability layer the front reaches
18.3m within the first thousands of years, whereas it takes about 20kyrs in the low-

permeability layer. This can be explained by the differences in flow velocities and in
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Figure 5.14: Layered rock properties: flow from left to right at 100°C. Calcite and
dolomite amounts and porosity distribution after 45kyrs and 90kyrs of simulation
time
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Figure 5.15: Plot over time in the high-permeability layer at the distance of 18.3m
(solid lines) and 49.5m (dashed lines) from the left boundary and 65m from the top
boundary: calcite and dolomite amounts (top) and porosity evolution (bottom)
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Figure 5.16: Plot over time in the low-permeability layer at the distance of 18.3m
(solid lines) and 28 m (dashed lines) from the left boundary and 25m from the top
boundary: calcite and dolomite amounts (top) and porosity evolution (bottom)
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the initial amount of calcite (69.3% of the total volume in the high-permeability layer
and 89.1% in the low-permeability layer).

5.3.3 Dolomitising fluids entering through the fault

The results of the simulation with layered rock properties at 100°C and the fault
injection after 2.5kyrs are presented in Figure 5.17. First, calcite is replaced by
dolomite in the fault, close to the injection region. The subsequent increase in poros-
ity and permeability in the dolomitised region drives the flow upwards to the lower
high-permeability layer where it starts to spread laterally, driving dolomitisation.
Some dolomitisation also occurs in the lower low-permeability layer at the boundary
with the fault, due to the porosity /permeability enhancement following dolomitisation

along the fault.
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Figure 5.17: Fault injection at 100°C: calcite and dolomite amounts and porosity
distribution after 2.5kyrs of simulation time
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Due to the fast calcite replacement in the fault, porosity is increased up to 52% by
2.5kyrs, however after 2kyrs, due to post-replacement dolomite cementation, porosity
is reduced back to 45% close to injection region.

The obtained pattern of dolomitisation resembles true patterns observed in nature
[79]. The dolomite distribution is more irregular and patchy close to the fluid-feeding
fault where dolomitisation affects facies with different initial permeabilities differently.
Stratabound dolomite bodies tend to develop in high permeability layers away from
the fault. This pattern, known as “Christmas-tree” pattern, has been described in
the Benicassim case study [43].

The “Christmas-tree” dolomitisation pattern is observed after the 2.5kyrs, how-
ever no predictions can be made whether this structure will be preserved later on, or

all the layers will be eventually dolomitised like in the flow scenario above.

5.4 Conclusions

Reactive transport simulations of dolomite formation in the Benicassim area were
performed using the new CSMP++GEM coupled code. The results presented here
show the capabilities of the code and give an insight into the dolomitisation process.

Unlike the software used in the previous simulations from Corbella et al. [43],
our RTM code has a porosity and permeability evolution feedback. The permeability
evolution during the replacement phase makes the dolomitisation a self-accelerating
process. This feature could be one of the reasons why in our simulations it takes
much less time to dolomitise the cross-section completely (90kyrs to dolomitise a
1300m cross-section vs. 0.5Myrs to dolomitise half of it).

Corbella et al. have assumed that both calcite and dolomite are kinetically con-
trolled minerals, and in their simulations calcite dissolution and dolomite precipita-
tion did not occur simultaneously: calcite was dissolved preferentially in the high-
permeability beds whereas dolomite was mostly precipitated in the low-permeability
beds. Our results show a behaviour that is more compatible with what has been
observed in experiments: calcite dissolution is controlled by the slow rate of dolomite
precipitation and the flow velocity as the dolomitising front advances faster in the
high-permeability layers.

Fluid temperature is one of the main controls of the dolomitisation process. Re-

sults presented in this section agree with the results from Corbella et al. [43]. At
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100 °C dolomitisation happens three times faster than at 70 °C. However, it is possi-
ble that at higher temperatures we need to use kinetics for calcite dissolution as the
rates of calcite dissolution is almost as high as the rate of dolomite precipitation.

The simulation results with the fixed fluid pressure on the left and on the right
model boundaries and no fault injection show stratabound dolomitisation during the
first 45kyrs, with dolomite replacing preferentially the high permeability layers, later
on all the layers get dolomitised. Fixed pressure on the bottom of the fault seems to
be a more realistic fluid flow scenario that could predict the formation of stratabound
dolomite bodies, however the corresponding simulations are computationally very
costly.

We have used the same value for the dolomite specific reactive surface area for all
the rock types and this value was constant during the simulation. Future work will
include more realistic models of specific surface area evolution, that can address the
changes in the size and shape of dolomite grains during the calcite replacement.

A more realistic boundary condition for the fluid flow would be the volumetric
fluid source. Due to the node-based chemistry calculations the boundaries between
different rocks were going through the middle of the cells. In the future the split
boundaries could be used to represent the material boundaries more precisely. In order
to achieve a better understanding of the hydrothermal dolomite formation process a
complete flow system needs to be taken into account, including the hydrothermal

convection, and the simulations need to be carried on in 3D.
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Chapter 6

Conclusions

The work presented in this thesis contributes to the advancement of realistic simula-
tions of non-isothermal fluid flow in porous media coupled with transport of solutes
and chemical reactions. The developed codes — the Pressure-Temperature-Enthalpy
scheme and the CSMP++GEM reactive transport code — share common features: so-
phisticated numerical methods for flow and transport, the use of accurate equations
of state for pure and saline water, full account of fluid properties and their change
with pressure, temperature and salinity, and the use of unstructured grids.

The Pressure-Temperature-Enthalpy scheme for the single phase non-isothermal
flow in porous media implemented in CSMP++ was utilized to simulate the full
working cycle of an underground hot water storage and assess its efficiency. Though
neglected in many energy storage studies, groundwater flow influence on the energy
losses through the storage walls was investigated. A sensitivity study for different in-
jection temperatures showed minimal differences in the produced water temperature,
that would have not been captured by a simpler solution scheme, thus highlighting
the importance of precise flow and heat transport computations.

The new CSMP++GEMS coupled code is a powerful tool for reactive transport
modelling. It stands out from RTM codes due to the combination of the finite element
— finite volume method for the solution of flow and transport equations and the Gibbs
energy minimisation method for chemical equilibrium calculations.

In codes like TOUGHREACT, the fluid properties are dependent on the brine
mass fraction that changes due to the flow only and no feedback of chemical reactions
is taken into account. Our simulations capture even slight changes in fluid salin-
ity caused by mineral dissolution/precipitation that influence the fluid density and
viscosity and therefore affect the flow.

The RTM simulator presented in this thesis can be used to check the existing

conceptual models of dolomitisation, by trying to reproduce the patterns observed
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in the case studies and outcrop analogues. Still, RTM simulations are constrained
by the lack and uncertainty of the geochemical data, especially the rate constants
at lower temperatures and mineral reactive surface area. The next big step in the
dolomitisation simulations is to reproduce the experimental results.

The development of the CSMP++GEM code has just started, there are still many
improvements to be made. These include the implementation of the Pitzer activity
model and new realistic rules of porosity /permeability and grain size/shape evolution.
The use of split boundaries would allow precise material boundaries representation.

The TOUGHREACT code has been widely used in reactive transport modelling
applications over the last 20 years, even though it has well-known drawbacks, includ-
ing results being strongly dependent on time stepping. The CSMP++GEM simulator
on the other hand has demonstrated itself reliable through benchmarking and sim-
ulation results. However, it will take years of testing and application modelling to
make changes in users minds and prove that there are alternative options for RTM.
And this work is a small step on this way.

The computational power is growing at an exponential rate and unlike 20 years
ago detailed numerical simulations of Thermal-Hydrological-Chemical processes are
now possible. Nevertheless, these coupled simulations are still challenging and new.
Two codes presented in this thesis allow for realistic numerical simulations of complex
systems, but they are still very slow. New efficient numerical methods and paralleli-

sation are needed to move towards the full-scale simulations.
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Appendix A

Source code of the Law of Mass
Action approach for reactive
transport modelling implemented

in CSMP++

This appendix contains the C++4 code listings of the reactive transport code based
on the Law of Mass Action approach (LMA-RTM), that was presented in Chap-
ter 3. This code was used for 1D benchmarking and a 2D simulation of the ge-
ologically realistic cross-section. The LMA-RTM simulator is a verification case
(CalciteDissolution_ VVCase) within the CSMP++ framework and the chemical cal-

culations part is implemented in ChemicalEquilibrium Visitor.

A.1 CalciteDissolution VVCase.h

#ifndef CALCITEDISSOLUTION_VVCASE_H
#define CALCITEDISSOLUTION_VVCASE_H

#include ”Test.h”

// Model construction
#include ”ModellD.h”
#include ”ANSYS_Model3D .h”

// File I/O and Initialization
#include ”ComputationalSettings.h”
#include ”InputDataManager.h”

// finite elements

#include ”"PDE _Integrator.h”

#include "NumlIntegral NT_op_-N_dV .h”
#include ”Numlntegral dNT _op_.dN_dV .h”
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#include "NumlIntegral NT_lhsop_N_dV .h”
#include ”NumlIntegral SetRHS_to_Zero.h”
#include " PointSource_rhsop.h”

#include ” VelocityAndVolumeFlux.h”

// finite wvolumes
#include <ExplicitNodeCenteredFiniteVolumeTransport .h>

// wisitors
#include ” ConductivityVisitor .h”
#include 7 ChemicalEquilibriumVisitor.h”

// Solver
#include ”SAMG_Solver.h”
#include ”LUdcmp_Solver.h”

// Output
#include ”"VTU _Interface.h”

using namespace std;
using namespace csmp;

namespace csmp

{

class CalciteDissolution_.VVCase : public Test

{

public:
CalciteDissolution_VVCase (const charx prefix);
void CalculateDispersion (Model<1U>& model);
virtual void run ();

}s
} // csmp

#endif // CALCITEDISSOLUTION.VVCASE_-H

A.2 CalciteDissolution VVCase.cpp

#include ” CalciteDissolution_-VVCase.h”
using namespace std;

namespace csmp

{
CalciteDissolution_.VVCase :: CalciteDissolution_VVCase
(const charx prefix)

{
this—>setName (” CalciteDissolution_VVCase”);
prefix_=prefix;

}
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void CalciteDissolution_VVCase:: CalculateDispersion (Model<1U>& model)

{

}

Index velocity_key = model. Database (). StorageKey
Index porosity_key = model. Database (). StorageKey
Index dispersion_key = model. Database (). StorageKey
Index dispersivity_key = model.Database (). StorageKey

(”dispersivity”);

VectorVariable <1U> velocity_vector;

ScalarVariable porosity ,dispersion, dispersivity;

const vector<Element< 1U>x>::const_iterator modelElementsEnd

( model.Region(”Model” ). ElementsEnd () );

for ( vector<Element<lU>x*>::const_iterator it

( model.Region(”Model” ). ElementsBegin () );
it !'= modelElementsEnd; ++it )

{

(xit)—>Read(velocity_key , velocity_vector);
(xit)—>Read(dispersivity_key , dispersivity );
dispersion = dispersivity ()*xvelocity_vector [0];
(¢it)—>Store(dispersion_key , dispersion);

void CalciteDissolution_-VVCase ::run()

{

std::string regions_name (this—>getName());
std::string config_ name (this—>getName ());
std::string vars_name (this—>getName()+”.txt”);

double64 length (0.5), dx;
size_t n_elements (50);
dx = length /(double64)n_elements;

("velocity”);
(" porosity”);
(”dispersion”);

ModellD model(” Line” , length, n_elements, vars_.name.c_str ());

const PropertyDatabase<1U>& pd_ref(model.Database());

//reference to the models property database.

InputDataManager <1U> model_configuration
ComputationalSettings run_settings;
model_configuration. ConfigureFromFile( model, config_-name.c_str (),

false, true,

true, true, true, true, run_settings );

static VTU _Interface<1U> vtu(model);
// output properties

list <string> output_props;

list <string> region_names;

output_props
output_props
output_props

output_props.

.push_back
.push_back
.push_back

”

fluid _pressure” );
velocity”);
dispersion” );
push_back (?H_1p” );

”

(
(
(7’
(
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output_props.push_back (”Ca_2p” );

output_props.push_back (”Mg_2p” );

output_props.push_back (?C0O32m” );

output_props.push_back (”Cl.1m” );

output_props.push_back (”CaCO3” );
(7

output_props.push_back (”CaMgCO32” );

7

output_props.push_back 1p )
output_props.push_back

("T_
(" T_
output_props.push_back (”T-
(7T
("T-

H_
"T_Ca_ 2p
Mg. ;
output_props.push_back (”T_CO3_ 2m’ );
output_props.push_back(”T_Cl_.1m
ConductivityVisitor <1U> conductivity_visitor ( model, ”conductivity”
"permeability” , ”fluid_viscosity” );
model. Accept (conductivity_visitor );

//SAMG_Solver solver;
LUdcmp_Solver solver;

//! steady state pressure
PDE _Integrator<1U, Region> steady_state_pressure( &solver );

NumIntegral dNT op_dN_dV<1U> p_conductance( pd_ref,

"conductivity”, ”fluid _pressure”, ”fluid_pressure” );
PointSource_rhsop <1U> nodal_fluid_src( pd-ref,
"nodal.fluid -source”, ”fluid _.pressure” );

VelocityAndVolumeFlux<1U> velocity ( model,
"conductivity”, ”"porosity”, "fluid _pressure”, false );

steady_state_pressure.Add( &p-conductance );
steady_state_pressure.Add ( &nodal_fluid_src );
steady_state_pressure.AddPostProcess( &velocity );

model . Apply (steady_state_pressure);

vtu.OutputDataToVTU( ( string (config_-name) + ” _Properties” ).c_str (),
output_props, model.Region(”Model”), 0);

//! transport

ExplicitNodeCenteredFiniteVolumeTransport <1U,
ExplicitStencilProcessor >

transportl (”Model” , model, ”porosity”, ?T_Ca_2p”, ”velocity”
"nodal.fluid .source” , false);

ExplicitNodeCenteredFiniteVolumeTransport <1U,
ExplicitStencilProcessor >

transport2 (”Model” , model, ”porosity”, ?T_Mg2p”, ”velocity”
"nodal.fluid _source” , false);

ExplicitNodeCenteredFiniteVolumeTransport <1U,
ExplicitStencilProcessor >
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transport3 (”Model” , model, ”porosity”, "T_H_1p”, ”velocity”,
"nodal._fluid .source”, false);

ExplicitNodeCenteredFiniteVolumeTransport <1U,
ExplicitStencilProcessor >

transport4 (”Model”, model, ”porosity”, ?T_-CO32m”, ”velocity”,
"nodal.fluid .source”, false);

ExplicitNodeCenteredFiniteVolumeTransport <1U,
ExplicitStencilProcessor >

transport5 (”Model”, model, ”porosity”, ?T_Cl-1lm”, ”velocity”,
"nodal.fluid .source”, false);

//! diffusive transport

LUdcmp_Solver solverl;

//!1Ca

PDE_Integrator<1U, Region> diff_transportl( &solverl );
NumIntegral dANT _ op_dN_dV<1U> dispersionl( pd_ref, ”dispersion”,
"T_Ca2p”, "T_Ca_2p” );

NumlIntegral NT _lhsop_N_dV <1U> capacitance_lhsl( pd.ref, "unity”,
"T_Ca2p”, "T_Ca_2p” );

capacitance_lhsl.LumpedFormulation (true );
capacitance_lhsl.MultiplyWithTimeIncrement (true);

NumIntegral NT_op_N_dV <1U> capacitance_rhsl ( pd_ref, ”unity”,
b2 T,Ca,2p” );
capacitance_rhsl.MultiplyWithTimeIncrement (true);

diff_transportl .Add( &dispersionl );
diff_transportl.Add( &capacitance_lhsl );
diff_transportl.Add( &capacitance_rhsl );

// Mg

PDE_Integrator<1U, Region> diff_transport2( &solverl );
NumlIntegral dNT op_dN_dV<1U> dispersion2( pd_ref, ”"dispersion”,
77r]:‘71\/[g72p?77 ”Tng72p77 )7

NumIntegral NT _lhsop_ N_dV<1U> capacitance_lhs2( pd_ref, ”unity”,
7 Tng72p” , ” Tng72p” );

capacitance_lhs2 . LumpedFormulation (true);

capacitance_lhs2 . MultiplyWithTimelncrement (true);

NumlIntegral NT_op_N_dV <1U> capacitance_rhs2( pd_ref, ”unity”,
R Tng72p” );
capacitance_rhs2 . MultiplyWithTimeIncrement (true);

diff _transport2.Add( &dispersion2 );
diff _transport2.Add( &capacitance_lhs2 );
diff _transport2.Add( &capacitance_rhs2 );

//!H
PDE_Integrator<1U, Region> diff_transport3( &solverl );
NumIntegral ANT _op_.dN_dV<1U> dispersion3( pd_ref, ”dispersion”,
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” T7H71p77 , b2 T7H71p77 ) ;

NumIntegral NT _lhsop N_dV<1U> capacitance_lhs3( pd_ref, ”unity”,
»T H.1p”, "T.H.1p” );

capacitance_lhs3 . LumpedFormulation (true);
capacitance_lhs3 . MultiplyWithTimeIncrement (true);

NumIntegral NT_op_N_dV <1U> capacitance_rhs3 ( pd_ref, ”unity”,
”T,H,lp” ),
capacitance_rhs3 . MultiplyWithTimelncrement (true);

diff _transport3.Add( &dispersion3 );
diff_transport3.Add( &capacitance_lhs3 );
diff_transport3.Add( &capacitance_rhs3 );

//1C03

PDE _Integrator<1U, Region> diff_transportd( &solverl );
NumIntegral dANT op_dN_dV<1U> dispersiond ( pd_ref, ”dispersion”,
"T_CO32m” , "T_-CO32m” );

NumlIntegral NT _lhsop_N_dV <1U> capacitance_lhs4 ( pd.ref, "unity”,
"T_CO32m” , "T_-CO32m” );

capacitance_lhs4 . LumpedFormulation (true );
capacitance_lhs4 . MultiplyWithTimeIncrement (true);

NumIntegral NT_op_N_dV <1U> capacitance_rhs4 ( pd_ref, ”unity”,
"T_CO32m” );
capacitance_rhs4 . MultiplyWithTimeIncrement (true);

diff_transport4 .Add( &dispersiond );
diff_transport4 .Add( &capacitance_lhs4d );
diff_transport4 .Add( &capacitance_rhs4 );

//!1Cl

PDE_Integrator <1U, Region> diff_transportb( &solverl );
NumlIntegral dNT op_dN_dV<1U> dispersion5( pd_ref, ”"dispersion”,
"T_Cl.lm” , ?"T_Cl.1m” );

NumIntegral NT _lhsop_ N_dV<1U> capacitance_lhs5( pd_ref, ”unity”,
"T_Cl.lm” , ?T_Cl.1m” );

capacitance_lhs5 . LumpedFormulation (true);
capacitance_lhsb . MultiplyWithTimelncrement (true);

NumlIntegral NT_op_N_dV <1U> capacitance_rhs5( pd_ref, ”unity”,
"T_Cl.1lm” );
capacitance_rhs5 . MultiplyWithTimeIncrement (true);

diff_transport5.Add( &dispersion5 );
diff _transportb5.Add( &capacitance_lhs5 );
diff _transportb5.Add( &capacitance_rhs5 );

//! get nodal rock properties

model . ExtrapolateElementToNodeProperty (” porosity”, "nodal_porosity”,
false); //false — by wvolume, true — by distance
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//! initial equilibration
ChemicalEquilibriumVisitor <1U> reactor( model );
reactor. SetInitialProperties ();

vtu.OutputDataToVTU( ( string (config.-name) + ” _Properties_equil” )
.c_str (), output_props, model.Region(”Model”), 0);

cin. get ();
double64 time_increment;
double64 total_time ;
double64 global_time = 0.;
size_t saved = 1;
time_increment = 200.;
total_time = 50000;
size_t timestep = 0;

while ( global_time <= total_time )

{

CalculateDispersion (model );

)

diff _transportl.Timelncrement (1./time_increment )
diff _transport2.Timelncrement (1./time_increment );
diff_transport3.Timelncrement (1./time_increment );
diff transport4 . Timelncrement (1./time_increment );
diff_transport5.Timelncrement (1./time_increment )
model. Apply (diff_transportl);

model . Apply (diff_transport2);

( )
model . Apply (diff_transport3);

( )

( )

)

)

model. Apply (diff_transport4
model. Apply (diff_transporth

)

)

// advecting basis species
//
transportl . AdvectVariable(time_increment ,
transport2. AdvectVariable (time_increment ,
transport3 . AdvectVariable (time_increment ,
(
(

false, false

: )
, false, false)

, false, false);
transport4 . AdvectVariable (time_increment , )
)

transportb.AdvectVariable(time_increment ,

, false, false
, false , false

(sl evlienlllen B en)
Tt Ot Ot Ut Ut

vtu.OutputDataToVTU( ( string (config.name) + ” _Properties_before
ggggggg react” ).c_str (), output_props, model.Region(”Model” ), timestep );

reactor . Equilibrate ();

vtu.OutputDataToVTU( ( string(config_.name) + ” _Properties_after
ggggggg react” ).c_str (), output-props, model.Region(”Model”), timestep);

timestep++;

global_time += time_increment;

}
}

Y//end csmp
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A.3 ChemicalEquilibriumVisitor.h

#ifndef CHEMICAL_EQUILIBRIUM_VISITOR_H
#define CHEMICAL_EQUILIBRIUM_VISITOR_H

Jxx @file ChemicalFEquilibriumVisitor.h

x  @author Alina Yapparova

x  @brief Water—Calcite at equilibrium

x @details computes water—calcite equilibrium ,

all reactions are modeled using equilibrium constants,

x the resulting system of non—linear equations is solved

wsing KINSOL from SUNDIALS software library
x  @date 03.07.2013

*/

#include ”"Model.h”
#include 7 Visitor .h”
#include ”ErrorHandler.h”

#include <kinsol/kinsol.h>

#include <kinsol/kinsol_dense.h>
#include <nvector/nvector_serial .h>
#include <sundials/sundials_types.h>
#include <sundials/sundials_.math.h>

#define NEQ 6  // number of equations (NPRIM+NMIN)
#define NMIN 2 // number of minerals at equilibrium
#define NPRIM 4 // number of primary species
#define NSEC 2 // number of secondary species

#define ONE RCONST(1.0)
#define ZERO RCONST(0.0)
#define TOL 1.e—20

namespace csmp {

typedef struct
{
double H_1p;
double n_cc, n_d;
double T H_1p, T CO32m, T _Ca2p, T -Mg2p, T.Cl.lm;
double a_Ca 2p, a Mg2p, a H1lp, a.CO32m, a OH.1lm, a HCO3.1lm;
bool flag cc, flag_d;
} xUserData;

template<size_t dim>
class ChemicalEquilibriumVisitor: public Visitor <dim> {
public:
ChemicalEquilibriumVisitor ( Model<dim>& sg );
“ChemicalEquilibriumVisitor ();

void Equilibrate ();
void SetInitialProperties ();
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virtual void Visit( Node<dim>x );

private:

}

ChemicalEquilibriumVisitor ();
Model<dim>& model_;
bool equil_flag;

Index nphi_key_, FV_ key_, H_1p_key_, Ca_2p_key_, Mg 2p_key_,
HCO3_ 1m key_, Cl.1m_key_, T_H_1p_key_., T_CO3_2m key_, T_Ca_2p_key_,
T _Mg_2p_key_, T_-HCO3_1m_key_, T_Cl_-1m_key_., CaCO3_key_,

CaMgCO32 key_, CO2.key_, CO3_2m_key_;

ScalarVariable phi, FV, H_.1p, Ca_2p, Mg2p, HCO3.lm, OH1lm, Cl.1m,
T H.1lp, T-Ca2p, T-Mg2p, THCO3.lm, T_CO32m, T_Cl.lm, CaCO3,
CaMgCO32, CO2, CO32m;

const double pure_water_density;
const double calcite_density;
const double calcite_molar_mass;

//! KINSOL related wvariables

N_Vector C, C_init; // concentrations of primary species
N_Vector scale, scale_init; // scaling vector (=1 in our case)
int mset, flag;

void xkmem, xkmem_init;

UserData data;

//! KINSOL related functions

int check_flag(void xflagvalue , char xfuncname, int opt);
void PrintOutput(N_Vector y);

void PrintFinalStats(void sxkmem);

Y /) csmp

#endif //CHEMICAL_EQUILIBRIUM_VISITOR_H

A.4 ChemicalEquilibriumVisitor.cpp

#inc

lude ”ChemicalEquilibriumVisitor.h”

namespace csmp {

stat
stat
stat
void
void
void
std :
void
void

ic int func(N_Vector y, N_Vector f, void xuser_data);

ic int func_init (N_Vector y, N_Vector f, void xuser_data);

ic int jac(long int N, N_Vector y, N_Vector f, DIsMat J,
xuser_data , N_Vector tmpl, N_Vector tmp2);
TotalConcentrations (N_Vector C, std::vector<double>& result );
TotalActivities (N_Vector C, std::vector<double>& a,

:vector <double>& result );

ActivityCoefficients (N_Vector C, std::vector<double>& a,
xuser_data);

template<size_t dim>
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ChemicalEquilibriumVisitor<dim >:: ChemicalEquilibriumVisitor
( Model<dim>& model ):
Visitor <dim>( MODEL, NODE ),
pure_water_density (1.e3), // kg/m3
calcite_density (2710.), // kg/m3
calcite_molar_mass (100.09e¢e-3), // kg/mol
model_ (model),

nphi_key_ (model.Database (). StorageKey ( ”nodal_porosity” ) ),
FV _key_ (model.Database (). StorageKey ( 7finite _.volume”) ),
H_1p_key_ (model.Database (). StorageKey ( "H_1p” ) ),
CO3_2m _key_ (model.Database (). StorageKey ( 7C0O32m” ) ),
Ca_2p_key_ (model . Database (). StorageKey ( 7Ca_2p” ) ),
Mg_2p_key_ (model.Database (). StorageKey ( ”Mg_2p” ) ),
HCO3_1m_key- (model.Database (). StorageKey ( ”HCO3_1m” ) ),
Cl.1m_key_ (model. Database (). StorageKey ( 7Clilm” ) ),
T _H_1p_key- (model. Database (). StorageKey ( ?T_H_1p” ) ),
T_CO3_2m _key_ (model.Database (). StorageKey ( "T_CO32m” ) ),
T_Ca_2p_key._ (model . Database (). StorageKey ( "T_Ca_2p” ) ),
T _Mg_2p_key_ (model . Database (). StorageKey ( "T_Mg_2p” ) ),
T_-HCO3_1m_key_ (model.Database (). StorageKey ( ”T_HCO3.1m” ) ),
T_Cl.1m_key_ (model.Database (). StorageKey ( ?T-Cl-lm” ) ),
CaCO3_key_ (model.Database (). StorageKey ( 7CaCO3” ) ),
CaMgCO032 key_ (model . Database (). StorageKey ( 7CaMgCO32” ) )
{

ErrorHandler &err (ErrorHandler :: Instance ());

//! initialize KINSOL related wvariables
// Create vector for a solution
C = N_VNew_Serial (NEQ);
if (check_flag ((void *)C, "N_VNew_Serial”, 0)) err.notice (ERROR,
”ChemicalEquilibriumVisitor <dim >:: ChemicalEquilibriumVisitor” ,
"solution.vector._bad_memory_allocation” );
scale = N_VNew_Serial (NEQ);
if (check_flag ((void *)scale, "N_VNew_Serial”, 0)) err.notice (ERROR,
”ChemicalEquilibriumVisitor<dim>:: ChemicalEquilibriumVisitor” ,
”scale.vector _bad_memory_allocation”);
// set scaling to one
N_VConst_Serial (ONE, scale);

// Initialize and allocate memory for KINSOL
kmem = KINCreate ();
if (check_flag ((void #)kmem, ”"KINCreate”, 0)) err.notice (ERROR,
”ChemicalEquilibriumVisitor <dim >:: ChemicalEquilibriumVisitor” ,
”solver .bad _memory._allocation”);

flag = KINInit (kmem, func, C); /+x C passed as a template %/
if (check_flag(&flag, ”"KINInit”, 1)) err.notice (ERROR,
”ChemicalEquilibriumVisitor <dim >:: ChemicalEquilibriumVisitor” ,
error.in.solver.initialization”);

// Attach dense linear solver

flag = KINDense (kmem, NEQ);
if (check_flag(&flag , "KINDense”, 1)) err.notice (ERROR,
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”ChemicalEquilibriumVisitor <dim >:: ChemicalEquilibriumVisitor” ,
7error.in.linear._solver_initialization”);

// Indicate exact Newton

mset = 1;

flag = KINSetMaxSetupCalls (kmem, mset);

if (check_flag(&flag, "KINSetMaxSetupCalls”, 1)) err.notice (ERROR,
?ChemicalEquilibriumVisitor<dim >:: ChemicalEquilibriumVisitor” ,
7error .in.Newton_solver_initialization”);

// Allocate memory for UserData

data = (UserData) malloc (sizeof xdata);
}
template<size_t dim>
ChemicalEquilibriumVisitor<dim >::” ChemicalEquilibriumVisitor ()
{

N_VDestroy_Serial (C);

N_VDestroy_Serial (scale);

KINFree(&kmem ) ;

free (data);

}

template<size_t dim>
void ChemicalEquilibriumVisitor<dim>:: SetInitialProperties ()
{
const typename vector<Node<dim>#*>::const_iterator
modelNodesEnd ( model_. Region (”Model” ).NodesEnd () );
for ( typename vector<Node<dim>x>::const_iterator n(
model_.Region (”Model” ). NodesBegin () );
n != modelNodesEnd; ++n )

{
(*n)—>Read (T_H_-1p_key_, T_H_1p);

if ((*n)—>Status(T_-H_1p_key.) != DIRICH)

(¥n)—>Read (H_1p_key_., H_1p);
(¥n)—>Read (T-Ca_2p_-key_, T_-Ca_2p);
(#¥n)—>Read (T_-Mg_2p_key_., T_-Mg-2p);
(#¥n)—>Read (T_-CO3_2m_key_, T_CO3_2m);
(¥n)—>Read (CaCO3_key_, CaCO3);

double64 coeff = 1.8/0.32; // converting mol/kg of soil
to mol/kg of water
CaCO3() x= coeff;

C_init = N_VNew_Serial (NPRIM-1);

scale_init = N_VNew_Serial (NPRIM—1);

N_VConst_Serial (ONE, scale_init);

kmem_init = KINCreate ();

KINInit (kmem_init, func_init, C_init); /* C passed as a template x/
KINDense (kmem_init , NPRIM—1);

data—>T_Ca_2p = T_Ca22p() ;
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data—H_1p = logl0(H-1p());
data—>T_CO32m = T_CO32m ();
data—>n_cc = CaCO3();

KINSetUserData (kmem_init , data);

NV_Ith_S(C_init, 0) = logl0(T_-Ca2p());
NV_Ith_S(C_init, 1) = logl0(T.CO3.2m());
NV_Ith_S(C_init , 2) = CaCO3();

flag = KINSol(kmem_init , /* KINSol memory block x/
C_init , /x initial guess on input;
solution wvector x/
KIN_ LINESEARCH, /x global stragegy choice x/

scale_init , /x scaling wvector, for the
variable cc x/
scale_init ); /x scaling wvector for function

values fval */

Ca_2p () = NV_Ith_S(C_init, 0);

C032m() = NV_Ith.S(C_init, 1);

CaCO3() = NV_Ith_S(C_init, 2);

realtype K1 = —8.47, K2 = —17.17, K3 = 14.01, K4 = —10.31,
K5 = —16.71;

H.1p() = logl0(H-1p());
realtype I, A, a_Ca_2p, a.CO32m, a HCO3.1lm, a OH.1lm, a_H_1p;

OH.lm() = loglO(pow(10., — H.1p() — K3));

HCO3.1m() = logl0 (pow(10., H.1p() + CO32m() — K4));

I = 0.5%x ( pow(10., Ca2p())*4 + pow(10. ,H 1p()) +
pow(10.,C032m())*x4 + pow(10., OHm()) + pow(10., HCO31lm()) );
A= —0.5%(sqrt (I)/(14+sqrt(I)) — 0.3%I);

a_Ca_2p = 4xA;

a_CO32m = 4xA;

a-HCO3.lm = A;

a_OH_1m = A;

a_H_1p =A;

// ’cause H_1p is actually pH here

T H_1p () = pow(10., H.1lp() — a_H_.1p) — pow(10., — H_1p()

— K3 — a.OH_.1m) + pow (10., H.1p() + CO32m() + a-CO32m — K4 —
a-HCO3_1m)+ 2%pow (10., 2+xH_Ip() + CO32m() + a-CO32m — K5);
Ca_2p () = pow( 10., NV_Ith_ S(C_init, 0) );

CO32m () = pow( 10., NV_Ith . S(C_init, 1 ) );

(*n)—>Store (Ca_2p_key_, Ca_2p);
(#¥n)—>Store (CO3_2m_key_, CO32m);

// and back to mol/kg of soil

CaCO3() /= coeff;
(*n)—>Store (CaCO3_key_-, CaCO3);
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(#¥n)—>Store (T_-H_1p_key_, T_H_1p);

N_VDestroy_Serial (C_init );
N_VDestroy_Serial(scale_init );
KINFree(&kmem-_init );

(¥n)—>Read (H_1p_key_., H.1p);
(¥n)—>Read (T-Cl-1lm_key_, T_Cl.-1lm );
(#¥n)—>Read (T_-Mg_2p_key_., T_-Mg2p);

realtype K3 = 14.01;

H.1p() = logl0(H-1p());

realtype I, A, a.OH.lm, a_H_1p;

OH.lm() = loglO(pow(10., — H.1p() — K3));

I =0.5x ( pow(10., T-Mg2p())*4 + pow(10.,H_1p())
+ pow (10., OH1m()) + pow(10., T_Cl.lm()) );
A = —0.5%(sqrt (I)/(1+sqrt(I)) — 0.3xI);

a_OH_1m = A;
a_H_1p = A;
T H_1p () = pow(10., H.1lp() — a_H_.1p) — pow(10., — H_1p()

— K3 — a OH.1m);
(¥n)—>Store (T_-H_-1p_key_-, T_H_1p);

}
}
}

template<size_t dim>
void ChemicalEquilibriumVisitor<dim>:: Equilibrate ()
{
printf(”\n_Equilibrating _water_with_calcite\n”);
model_. Accept( xthis );

}

template<size_t dim>
void ChemicalEquilibriumVisitor <dim>:: Visit ( Node<dim>x n )

{

ErrorHandler &err (ErrorHandler :: Instance ());
n—>Read (nphi_key_., phi);

n—>Read (H_1p_key_, H_1p);

n—>Read (Ca_2p_key_, Ca_2p);
n—>Read (Mg_2p_key_, Mg 2p);
n—>Read (CO3_2m_key_, CO32m);
n—>Read (CaCO3_key_, CaCO3);
n—>Read (CaMgCO32_key_, CaMgCO32);

n—>Read (T_H_1p_key., T H_ 1p);
n—>Read (T_Ca_2p_key_, T_Ca_2p);
n—>Read (T-Mg_2p_key_, T_Mg_2p);
n—>Read (T-CO3_2m_key_, T_-CO32m);
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n—>Read (T_-Cl.-1lm_key_, T_Cl.1m);

n—>Store (Cl_-1lm_

key_, T_Cl.1m);

equil_flag = false;
data—>flag_cc = true;

data—>flag_d =

double64 coeff =

true;

1.8/0.32;

// converting mol/kg of soil to mol/kg of water
CaCO3() x= coeff;
CaMgCO32() *= coeff;

int iter = 0;

std :: vector<double> a (NPRIMHNSEC, 0.);

if (n—>Status(H-

while (!equil_
{
//! initial
NV_Ith_S(C,
NV_Ith_S(C,
NV_Ith_S (C,

1p_key_) != DIRICH)
flag && iter <3)

concentrations
0) = logl0(0.95%*T_Ca2p()); //! also possible

—_
~—
Il

2) = logl0(H-1p()); //! dont use T_H_1Ip as

an initial guess, because it can be negative!

NV_Ith_S(C,
NV _Ith_S(C,
NV_Ith_S(C,

3) = logl0(CO32m()); //! T-CO3
4) = CaCO3();
5) = CaMgCO32 ();

J/printf(?\ nlnitial guess:\n”);
//PrintOutput (C);

//! UserData

data, total concentrations of basic species

and molar number of Calcite

data—>n_cc =

CaCO3 () ;

data—>n_d = CaMgCO32();

data—>T_Ca_2p = T_Ca2p() ;
data—>T Mg 2p = T -Mg2p() ;
data—T _H_1p = T H_1p() c

data—>T_C0O32m = T_CO32m();
data—>T_Cl.lm = T_Cl.1lm ();

KINSetUserData (kmem, data);

// Call KINSol to solve problem

flag = KINSol (kmem, /x KINSol memory block x/
C, /+ initial guess on input;
solution wvector x/
//KIN.NONE,
KIN_LINESEARCH, /* global stragegy choice x/
scale , /x scaling wvector,
for the wariable cc *x/
scale ); /* scaling vector

for function values fval x/
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if (flag != KIN.SUCCESS && flag != KIN_INITIAL_GUESS_OK)
err.notice (ERROR, ”ChemicalEquilibriumVisitor <dim >:: Visit” ,
"KINSOL. failed” );

//printf(”\nComputed solution:\n”);

//PrintOutput (C);
if ( NV_.Ith_S(C, 4) < TOL && NV _Ith_S(C, 5) < TOL)
{
if ( NV_.Ith_.S(C, 4) < NV_Ith_S(C, 5))
data—>flag_cc = false;
else
data—>flag_d = false;
}
else
if ( NV_.Ith.S(C, 4) < TOL )
data—>flag_cc = false;
if ( NV_.Ith_S(C, 5) < TOL)
data—>flag_d = false;
}

//Print final statistics and free memory
//PrintFinalStats (kmem);

if (NV_Ith_S(C, 4) > —TOL && NV_Ith_S(C, 5) > —TOL)
equil_flag = true;

iter++;

}

// calculate activity coefficients
ActivityCoefficients (C, a, data);

std :: vector<double> result (NPRIM, 0.);
//TotalConcentrations (C, result);
TotalActivities (C, a, result);

T_Ca2p() = result[0];

T Mg 2p () = result [1];

T_H_1p( = result [2]

T CO32m() = result [3];

n—>Store (T_H_1p_key_, T H.1p);
n—>Store (T_Ca_2p_key_, T_Ca_2p);
n—>Store (T_-Mg_2p_key_, T_Mg_2p);
n—>Store (T_-CO3_2m_key_, T_-CO32m);

Ca_2p () = pow( 10., NV_Ith_S(C, 0) );
Mg_2p () = pow( 10., NV_Ith.S(C, 1) );
H 1p() = pow( 10., NV_Ith_ S(C, 2) );
CO32m () = pow( 10., NV_Ith_-S(C, 3) );
CaCO3() = NV_Ith_S(C, 4);
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CaMgCO32() = NV_Ith_S(C, 5);

n—>Store (H_1p_key_, H_.lp);
n—>Store (Ca_2p_key_, Ca_2p);
n—>Store (Mg_2p_key_, Mg2p);
n—>Store (CO3_2m_key_, CO32m);

// and back to mol/kg of soil
CaCO3() /= coeff;
CaMgCO32() /= coeff;

n—>Store (CaCO3_key_., CaCO3);
n—>Store (CaMgCO32 key_, CaMgCO32);

}
}
Vi
x Check function return wvalue ...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns a flag so check if
* flag >= 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/

template<size_t dim>
int ChemicalEquilibriumVisitor<dim>::check_flag (void *flagvalue
char xfuncname, int opt)

{

int xerrflag;

/+* Check if SUNDIALS function returned NULL pointer —
no memory allocated */
if (opt = 0 && flagvalue — NULL) {
fprintf(stderr ,
" \nSUNDIALS ERROR: .%s () -failed .—_returned .NULL_pointer\n\n”
funcname );
return (1);

}
/x Check if flag < 0 x/
else if (opt = 1) {
errflag = (int x) flagvalue;
if (xerrflag < 0) {
fprintf(stderr ,
"\nSUNDIALS ERROR: %s () -failed .with_flag = %d\n\n" ,
funcname, xerrflag);
return (1);
}
}
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/x Check if function returned NULL pointer — no memory allocated x/
else if (opt = 2 && flagvalue =— NULL) {
fprintf(stderr ,
" \nMEMORY ERROR: .%s () -failed .—_returned .NULL_.pointer\n\n” ,
funcname ) ;
return(1);

}

return (0);

}
/x

x System function
*/
static int func(N_Vector C, N_Vector f, void suser_data)
{
UserData data;
data = (UserData)user_data;

realtype xcd, *fd;

//! equilibrium constants

//! log(K)s actually
realtype K1 = —8.47, K2 = —17.17;

//! basic(primary) species concentrations
realtype H_1p, Ca_2p, Mg2p, CO32m, CaCO3, CaMgCO32;

//! total initial concentrations of basic species

realtype T_Ca_2p_init = data—>T_Ca_2p,
T_Mg_2p_init = data—T_Mg_2p,
T_H_1p_init = data—T_H_1p,
T_CO3_2m_init = data—>T_CO3_2m;

//! and mineral mole numbers

realtype CaCO3_init = data—>n_cc;

realtype CaMgCO32_init = data—>n_d;

std :: vector<double> result (NPRIM, 0.); // lenght, value
std :: vector<double> a (NPRIMHNSEC, 0.);
ActivityCoefficients (C, a, data);

realtype a_Ca_2p, a_Mg 2p, a_.CO3_2m;
a_-Ca_2p = a[0];

aMg2p = a[l];

a_.C032m = a[3];

TotalActivities (C, a, result);

realtype T_Ca_2p = result [0],
T_Mg_2p = result [1],
T_H_1p = result [2],
T_CO32m = result [3];

cd = NVDATAS(C);
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fd = NVDATAS(f);

Ca_2p = cd[0];
Mg_2p = cd[1];
H_1p = cd[2];
CO32m = cd[3];
CaCO3 = cd[4];
CaMgCO32 = cd [5];

fd[0] = T_-Ca2p + CaCO3 + CaMgCO32 — T_Ca_2p_init —
CaCO3_init — CaMgCO32_init ;

fd[1] = T-Mg-2p + CaMgCO32 — T_Mg_2p_init —
CaMgCO32_init ;
fd[2] = T_H_1p — T_H_1lp_init;

fd [3] = T_-CO32m + CaCO3 + 2xCaMgCO32 — T_CO3_2m_init —
CaCO3_init — 2xCaMgCO32_init ;

if (data—>flag_cc)
fd[4] = Ca2p + a_Ca_2p + CO32m + a_CO32m — Kl;
else

fd [4] = CaCO3;

if (data—>flag_d)
fd [5] = Ca2p + a_Ca_2p + Mg2p + a_Mg_2p + 2xCO3_2m
+2%xa_C0O32m — K2;

else
fd [5] = CaMgCO32;

return 0;

}

static int func_init (N_Vector C, N_Vector f, void xuser_data)
{

UserData data;

data = (UserData)user_data;

realtype xcd, xfd;

//! equilibrium constants

//! log(K)s actually

realtype K1 = —8.47, K3 = 14.01, K4 = —10.31, K5 = —16.71, K6 = —3.23,
K7 = —2.98;

//! basic(primary) species concentrations

realtype H_1lp, Ca_2p, Mg2p, CO32m, CaCO3, CaMgCO32, T_Ca_2p, T_Mg2p,
T_CO32m;

realtype OH_.lm, HCO3_lm;

//! total initial concentrations of basic species
realtype T_Ca_2p_init = data—>T_Ca_2p,
T_CO3_2m_init = data—>T_CO3_2m,
CaCO3_init = data—>n_cc;
H_1p = data—H_1p;
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cd = NV.DATAS(C);
fd = NVDATAS(f);

Ca_2p = ¢cd[0];
CO32m = cd[1];
CaCO3 = cd[2];

//lactivity calculations

realtype I, A, a_Ca2p, a.CO32m, a HCO3_1m;
OH.lm = loglO(pow(10., — H_1p — K3));

HCO3.1m = logl0 (pow (10., H_1p + CO32m — K4));

I = 0.5 ( pow(10., Ca2p)*4 + pow(10.,H_1p) +
pow(10.,C0O32m)*4 + pow(10., OH.1lm) + pow(10., HCO3.lm) );
A= —0.5%(sqrt (I)/(1+sqrt(I)) — 0.3x1);

a_Ca_2p = 4xA;

a_.CO32m = 4xA;

a_HCO3_.1m = A;

T_Ca_2p = pow (10., Ca2p) + pow(10., Ca2p + a_Ca_2p +
CO32m + a_-CO32m — K6);
T_CO32m = pow(10., CO32m) + pow(10., H_.1p + CO32m +

a-C032m — K4 — a_ HCO3.1m) + pow(10., CO32m + a_CO3_2m +
2xH_ 1p — K5) + pow(10., Ca2p + a_Ca_2p + CO32m + a_CO3_2m
— K6);

fd[0] = CaCO3 + T_-Ca_-2p — CaCO3_init — T_Ca_2p_init;
fd[1] = CaCO3 + T_-CO32m — CaCO3_init — T_-CO3_2m_init;
fd [2] Ca_2p + a_Ca_2p + CO32m + a_.CO32m — Ki;

return 0;

}

static int jac(long int N, N_Vector C, N_Vector f, DIsMat J,
void *user_data , N_Vector tmpl, N_Vector tmp2)

{

//! basic(primary) species concentrations
realtype H_1lp, Ca2p, Mg2p, CO32m, CaCO3, CaMgCO32;

realtype *xcd, x*fd;
cd = NVDATAS(C);

UserData data;
data = (UserData)user_data;

//! equilibrium constants
//! log(K)s actually

realtype K3 = 14.01, K4 = —10.31, K5 = —16.71, K6 = —3.23, K7 = —2.98;
Ca_2p = cd[0];
Mg_2p = cd[1];
H_ 1p = cd[2];
CO32m = cd[3];
CaCO3 = cd[4];
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CaMgCO32 = cd [5];
, 0) = log(10)*(pow(10., Ca_2p) + pow(10., Ca_2p

0

)i
DENSEELEM(J, 0, 3

0

0

) = log (10)*pow (10., Ca_2p + CO32m — K6);
DENSEELEM(J, 0, 4) = 1.;
DENSEELEM(J, 0, 5) = 1.;
DENSEELEM(J, 1, 1) = log(10)*(pow(10., Mg2p) + pow(10., Mg2p
+ CO32m — K7));
DENSEELEM(J, 1, 3) = log(10)*pow(10., Mg2p + CO32m — K7);
DENSEELEM(J, 1, 5) = 1.;

DENSEELEM(J, 2, 2) = log(10)#(pow(10., H_Ip) + pow(10., —H_1p — K3)
+ pow(10., H_.1p + CO322m — K4) + 4xpow(10., 2xH_1p + CO32m — K5));
DENSEELEM(J, 2, 3) = log(10)*(pow(10., H.1p + CO32m — K4)

+ pow (10., CO32m + 2+H_1p — K5));

DENSEELEM(J, 3, 0) = log(10)*pow(10., Ca2p + CO32m — K6);
DENSEELEM(J, 3, 1) = log(10)*pow(10., Mg 2p + CO32m — K7);
DENSEELEM(J, 3, 2) = log(10)*(pow(10., H.1p + CO3.2m — K4)

+ 2xpow (10., CO322m + 2xH_1p — K5));

DENSEELEM(J, 3, 3) = log (10)*(pow(10., CO3.2m)

+ pow(10., H.1p + CO3.2m — K4) + pow(10., CO32m + 2+H_1p — K5)
+ pow(10., Ca_2p + CO32m — K6)+ pow(10., Mg2p + CO32m — K7));
DENSEELEM(J, 3, 4) = 1.;

DENSEELEM(J, 3, 5) = 2.;

I+ 1

if (data—>flag_cc)

DENSEELEM(J, 4, 0) = 1.;
DENSEELEM(J, 4, 3) = 1.;
}
else

DENSEELEM(J, 4, 4) = 1.;

if (data—>flag_d)
{
DENSEELEM(J, 5, 0) = 1.;
DENSEELEM(J, 5, 1)
DENSEELEM(J, 5, 3) = 2.;
}
else
DENSEELEM(J, 5, 5) = 1.;

I
=

return 0;

}
Vi

x Print solution

*/

template<size_t dim>
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void ChemicalEquilibriumVisitor <dim >::PrintOutput (N_Vector C)

{

printf (7 \nCa+2\t=\t%e”, NV_Ith_.S(C,0));
printf (" \nMg+2\t=\t%e”, NV_Ith_S(C,1));
printf (7 \nH+\t=\t%e" , NV_Ith_-S(C,2));

printf (7 \nCO3—2\t=\t%e” , NV_Ith_S(C,3));

printf (7 \nCaCO3.mole._number.=%e.SI.=%e”, NV_Ith_S(C,4),
NV_Tth_8 (C,0)+ NV _Ith_S (C,3));

printf (”\nCaMgCO32_mole _number.=_%e .SI_.=%e”, NV_Ith_ S(C,5),
NV_Ith_S(C,0)+ NV_Ith_S (C,1)+2xNV_Ith_S (C,3));

}
Vi

x Print final statistics
*/
template<size_t dim>
void ChemicalEquilibriumVisitor <dim>::PrintFinalStats (void xkmem)
{
long int nni, nfe, nje, nfeD;
int flag;

flag = KINGetNumNonlinSolvIters (kmem, &nni);
check_flag(&flag , ”KINGetNumNonlinSolvIters”, 1);
flag = KINGetNumFuncEvals (kmem, &nfe );
check_flag(&flag , "KINGetNumFuncEvals” , 1);

printf(”\nFinal_Statistics...\n”);
printf(?nnic.. = %5ld____nfe__..=.%51d _\n”, nni, nfe);

realtype fnorm, steplength ;

flag = KINGetFuncNorm (kmem, &fnorm );
printf (”\nfnorm.=_%e” , fnorm);

flag = KINGetStepLength (kmem, &steplength);
printf(”\nsteplength . =_%e\n\n”, steplength);

}

void TotalConcentrations (N_Vector C, std::vector<double>& result)
{

realtype =xcd;

cd = NVDATAS(C);

realtype H_1p, Ca_2p, Mg2p, CO32m, CaCO3, CaMgCO32;

realtype T_Ca_2p, T_-Mg2p, T_H.1lp, T_-CO32m;

// equilibrium constants, log(K)s actually

realtype K1 = —8.47, K2 = —17.17, K3 = 14.01, K4 = —10.31, K5 = —16.71,
K6 = —3.23, K7 = —2.98;

//! reactions

//  CaCO3 = + Ca_2p + C03-2m (K1)

//  CaMgCO32 = + Ca_2p + Mg_2p + 2C0O3_-2m (K2)

// OH_Ip = H20 — H_1p (K3)

// HCO3-1Im = H_1p + C03-2m (K4)

/) Cog = H20 + 2+H_1p + C03.2m (K5)
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(K6)
(K7)

Ca_2p + CO3_2m
Mg_2p + CO3-2m
Cl_1p
., Ca2p) + pow(10., Ca2p + CO32m — K6);

*

)

// CaCOS8_aq =

// MgCO3.aq =

// Cl =

Ca_2p = cd[0];
Mg2p = cd[1];
H_1p = cd[2];
CO32m = cd[3];
CaCO3 = cd[4];
CaMgCO32 = cd [5];
T_Ca_2p = pow (10
T Mg_2p = pow (10
T_H_1p = pow (10
T_CO32m = pow (10.
result [0] = T_Ca_2p;
result [1] = T_-Mg_2p;
result [2] = T_H_1p;
result [3] = T_-CO32m;

Mg 2p) + pow (10.,

H.1p) — pow(10.,
+ pow (10.,

+ 2%pow (10.

CO32m) + pow (10
+ pow (10
+ pow (10
+ pow (1

}

void ActivityCoefficients (N_Vector C,

void *user_data)

{

//Davies activity model

std ::

Mg 2p + CO32m — KT7);

— H.1lp — K3)

H.1p + CO3.2m — K4)
, 2«H_1p + CO32m — K5);
H.1p + CO32m — K4)
CO32m + 2xH_1p — K5)
Ca_2p + CO32m — K6)

0., Mg2p + CO32m — K7);

vector <double>& a,

// log gamma = —Axz "2x(sqrt(I)/(1+sqrt(I)) — 0.3%1I)

/) A=1005

realtype xcd;
cd = NV.DATAS(C);

UserData data;
data = (UserData)user_data;

H-1

= C

realtype
Ca_2p

Mg _2p
H_1p
C0O32m

E
I;
I;
I;

)

o

o
(eFieNyePye N o]

[0
[1
[2
[3

o

realtype K3 = 14.01, K4 =
OH.lm = loglO(pow(10.,

HCO3_.1m = logl0 (pow(10.,

— H_
H_1lp + CO32m — K4));

Ca2p, Mg2p, CO32m, OH.lm, HCO3.1lm, Cl.1m,

~10.31;

Ip — K3));

Cl.lm = logl0(data—>T_Cl.1m);

I = 0.5%(pow (10.,

pow(10.,C032m)*4 + pow(10.,

Ca_2p)*4 + pow(10.,
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}

+ pow (10., Cl.1m));
A= —0.5%(sqrt (I)/(1+sqrt (1)) — 0.3%I);

al0] = 4xA; //a_Ca_2p
al[l] = 4%xA; //a-Mg_2p
al2] = A; //a_H_1p
al[3] = 4*A //a-CO3_2m
al4] = A, //a-OH_1m
al[b] = A; //a_-HCOS3_1m

void TotalActivities (N_Vector C, std::vector<double>& a,
std :: vector <double>& result)

{

realtype xcd;

cd = NVDATAS(C);

realtype H_1p, Ca_2p, Mg2p, CO32m, CaCO3, CaMgCO32;

realtype a_ H 1p, a_Ca2p, aMg2p, a.CO32m, a OH.1lm, a HCO3.1lm;
realtype T_Ca2p, T Mg2p, T H1lp, T_CO32m;

// equilibrium constants, log(K)s actually
realtype Kl = —8.47, K2 = —17.17, K3 = 14.01, K4 = —10.31, K5 = —16.71,
K6 = —3.23, K7 = —2.98;

//! reactions

//  CaCO3 + Ca-2p + C03-2m (K1)
//  CaMgCOS52 + Ca_2p + Mg_2p + 2C0O3-2m (K2)
// OH_1p = H20 — H_1p (K3)
// HCO3-1m = H_1p + C03-2m (K/})
/) Co2 —H20 + H_1p + HCO3.Im (K5)
// H2C03 = H_1p + HCOS3-1m (K6)
// CaCOS8.aq = Ca-2p + c03-2m (K7)
// MgCO3.aq = Mg_2p + CO3-2m (K8)
//  Cl = Cl_1p

Ca_2p = ¢cd[0]
Mg_2p = cd[1]
H_1p = cd[2]
CO32m = cd[3];
CaCO3 = cd[4]
CaMgC032 = cd [5]

a_-Ca_2p = af
a_Mg_2p = a]
a_H_1p = a|
a_.C032m = a]
a.OH.lm = a]
a.HCO3.Im = a|

T_Ca_2p = pow(10., Ca2p) + pow(10., Ca2p + a_Ca_2p + CO32m +
a_-C032m — K6);

T_Mg_2p = pow (10., Mg2p) + pow(10., Mg2p + a_ Mg 2p + CO32m +
a-C032m — K7);

T_H_1p = pow(10., H.1lp) — pow(10., — H.1lp — a_H_1p — K3 —
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a_OH.1m) + pow(10., H.1lp + a H.1p + CO32m + a_CO32m — K4 —
a_HCO3_.1m) + 2xpow (10., 2xH_1p + 2xa_H_1p + CO32m + a_.CO32m — K5);
T_CO3_2m = pow (10., CO32m) + pow(10., H.1lp + a_H_1p + CO32m +
a_C032m — K4 — a HCO3_.1m) + pow(10., CO32m + a_CO32m + 2+«H_1p
+2xa_H_1p — K5);

result [0] = T_Ca_2p;
result [1] = T_-Mg_2p;
result [2] = T_H_1p;

result [3] = T-CO32m;

}

template class ChemicalEquilibriumVisitor <1U>;
template class ChemicalEquilibriumVisitor <2U>;
template class ChemicalEquilibriumVisitor <3U>;

} //csmp
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Appendix B
CSMP++GEM source code

This section contains the complete C++ code listing of the new CSMP++GEM
reactive transport simulator described in detail in Chapter 4 and applied to the RTM
simulations of the Benicassim case study in Chapter 5. The KozenyCarmanVisitor
class is created specifically for the calculation of the porosity /permeability update on
the node-by-node basis and can be replaced by another visitor with the same function.
The chemical equilibrium calculations are performed using the GEMS3K standalone
code, with its function calls wrapped in the GEMS3K_Visitor within the CSMP++
library. The RTM_ Simulator class contains all the auxiliary functions (e.g. fluid and
rock properties update) as well as the main time loop with transient pressure and

temperature, transport of solutes and chemical equilibrium calculations.

B.1 main.cpp

#include ” GEMS3K_Visitor.h”
#include ”RTM_Simulator.h”
#include <iostream>

using namespace std ;
using namespace csmp;

int main(int argc, char xxargv)

{

try

{
RTM_Simulator<3U> rtm3d (argv );
rtm3d.run ();

}

catch (csmp:: Exception& e)

{
e.Out ();

return —1;

}
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return 0;

}
B.2 KozenyCarmanVisitor.h

#ifndef KOZENY_CARMAN_VISITOR H
#define KOZENY_CARMAN_VISITOR.H

/% @file KozenyCarmanVisitor.h
@author Alina Yapparova
@brief Kozeny—Carman porosity/permeability corelation

@details computes permeability from given porosity
Qdate 27.04.2015

*/

#include ” Visitor .h”
#include ”Model.h”

namespace csmp {

template<size_t dim>
class KozenyCarmanVisitor: public Visitor <dim>

{
public:
KozenyCarmanVisitor ( Model<dim>& model, Index poro_new_key ,
Index poro_key, Index perm_key );
"KozenyCarmanVisitor ();

virtual void Visit( Element<dim>x* e);
virtual void Visit( Model<dim>* m);

private:
KozenyCarmanVisitor ();

Model<dim>& model;

Index poro_new_key, poro_key, perm_key;
ScalarVariable phi_new, phi, k_new, k;

}s

}//csmp
#endif

B.3 KozenyCarmanVisitor.cpp

#include "KozenyCarmanVisitor.h”

namespace csmp {

template<size_t dim>
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KozenyCarmanVisitor<dim >:: KozenyCarmanVisitor ( Model<dim>& model,
Index poro_new_key, Index poro_key, Index perm_key):

Visitor <dim>( MODEL, ELEMENT ),

model (model),

poro_new_key (poro_new_key),

poro_key (poro_key),

perm_key (perm_key)

{
}

template<size_t dim>
KozenyCarmanVisitor<dim >::” KozenyCarmanVisitor (){}

template<size_t dim>
void KozenyCarmanVisitor<dim >:: Visit ( Model<dim>% m ){}

template<size_t dim>
void KozenyCarmanVisitor<dim>:: Visit ( Element<dim>x e )
{
k = e—>Read (perm_key );
phi = e—>Read (poro_key );
phi_new = e—>Read(poro_new_key );
if (phinew() = 0.)
knew() = 0.;
else if (phi() = 1.)
knew () = k();
else
k_new() =

k()*(1—phi())*(1—phi())/(1—phinew())/
(1—phi,new8

* phi_new ()* phi_new () phi_new ()
/phi();

)
/phi()/phi
_key, k_new);

e—>Store (per

}

template class KozenyCarmanVisitor <1U>;
template class KozenyCarmanVisitor <3U>;

}//esmp
B.4 GEMS3K Visitor.h

#ifndef GEMS3K_VISITOR_H
#define GEMS3K_VISITOR_H
/xx Q@Qfile GEMSSK_Visitor.h

@author Alina Yapparova

@brief Aqueous equilibrium calcuation

@details computes equilibrium concentrations of aqueous ions,

complexes and minerals using GEMSSK library

@date 01.07.2014

¥ OX X X X X

*/

#include 7 Visitor .h”
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#include ”Model.h”

//GEMSSK
#include ”../../../support_libraries/gems3k/source/nodearray.h”

namespace csmp {

template<size_t dim>
class GEMS3K _Visitor: public Visitor <dim>
{
public:
GEMS3K _Visitor ( Model<dim>& model, const char*x system _file_list_name ,
const charx recipes_file_list_name );
“GEMS3K _Visitor () ;

void SetlnitialProperties ();
virtual void Visit( Node<dim>* n);
virtual void Visit( Model<dim>x m);
int GetnIC ();

int GetnPH();

int GetnPS();

int SetTime(double timestep, double totaltime , int step);

int Nbyldx(int idx);
int IdxbyN(int idx);

private:
GEMS3K _Visitor ();

Model<dim>& model;
const Index recipe_index_key;
TNodeArray* na;

int nIC, nPH, nPS;

int nNodes;

int node_index;

long intx recipe_index;

double dt, time;
int step;

Index p_key, T_key, X_key, nphi_key, inert_vol_key , vol_key,
fv_key , Q_key, abPS_old_key, abPS_key, abSP_old_key, abSP_key,
q_chem _key, q_.chem _prev_key, axPH _key, avPH _key, amPH key,

pH key, pe_key, Eh_key;

ArrayVariable xabPS_node, *abSP_node, #*bIC_node, xq_chem_node,
xq_chem_prev_node , xaxPH_node, xavPH_node, xamPH _node;

ScalarVariable X, solution_volume
fv, Q, pH.node, pe_node, Eh_node;

, inert_volume , nphi, nphi_new,
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}s

}//csmp
#endif

B.5 GEMS3K_Visitor.cpp

#include "GEMS3K _Visitor.h”

namespace csmp {

template<size_t dim>
GEMS3K _Visitor<dim >:: GEMS3K _Visitor ( Model<dim>& model,
const charx system_file_list_name ,
const charx recipes_file_list_name ):
Visitor <dim>( MODEL, NODE ),
model (model),
recipe_index_key (model.Database (). StorageKey(”recipe.index”))

{
model . Region (” Model” ). RenumberNodes () ;

nNodes = model.Region (”Model” ). Nodes ();
na = new TNodeArray( nNodes );

recipe_index = new long int[nNodes];
ScalarVariable ind;

const typename vector<Node<dim>*>::const_iterator modelNodesEnd (
model . Region (” Model” ). NodesEnd () );
for ( typename vector <Node<dim>*>::const_iterator n(
model . Region (” Model” ). NodesBegin () ); n != modelNodesEnd; ++n )
{

node_index = (*n)—>Idx();

(¥*n)—>Read (recipe_index_key , ind);

recipe_index [node_index] = static_cast<int>(ind ());

}

//! Read GEMS input files
if ( na—>GEM._init( system _file_list_name ,
recipes_file_list_name , recipe_index , false ) )
{
cout << ”Error_occured._during._reading._the_files?”
cin.get ();

}

nIC = GetnlIC ();
nPH = GetnPH ();

nPS = GetnPS ();

abPS_node = new ArrayVariable(nIC—1, 0.);
abSP _node new ArrayVariable(nIC—1, 0.);
bIC_node = new ArrayVariable (nIC—1, 0.);
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axPH_node = new ArrayVariable (nPH-nPS, 0.);
avPH _node = new ArrayVariable (nPH-nPS, 0.);
amPH node = new ArrayVariable(nPH-nPS, 0.);

}

template<size_t dim>
GEMS3K Visitor<dim >::~” GEMS3K _Visitor ()
{
delete na;
delete [] recipe_index;
delete abPS_node;
delete abSP_node;
delete bIC_node;
delete axPH_node;
delete avPH_node;
delete amPH_node;

}

template<size_t dim>
int GEMS3K_Visitor<dim >::GetnIC ()

{
}

template<size_t dim>
int GEMS3K_Visitor<dim >::GetnPH()

{
}

template<size_t dim>
int GEMS3K Visitor<dim >::GetnPS ()

{
}

template<size_t dim>
int GEMS3K Visitor<dim >::SetTime (double timestep, double totaltime ,

return na—>pCSD()—>nICb; //! number of independent components;

return na—>pCSD()—>nPHb; //! number of phases;

return na—>pCSD()—>nuPSb; //! number of phases solutions;

int n)

{
dt = timestep;
time = totaltime;
step = n;
return 0;

}

template<size_t dim>

void GEMS3K _Visitor<dim>:: SetInitialProperties ()

{
p_key = model. Database (). StorageKey (” fluid .pressure” );
T _key = model. Database (). StorageKey (” temperature” );
X_key model. Database (). StorageKey (” fluid -salinity”);
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nphi_key = model. Database (). StorageKey (”nodal_porosity” );
abPS _key = model. Database (). StorageKey (”abPS” );

abSP _key = model. Database (). StorageKey (”abSP” );

axPH _key = model. Database (). StorageKey (”7axPH” ) ;

avPH _key = model. Database (). StorageKey (7avPH” );

amPH _key = model. Database (). StorageKey (?amPH” ) ;

vol_key = model. Database (). StorageKey (” solution .volume” );
inert_vol_key = model.Database (). StorageKey(”inert._volume” );
fv_key = model. Database (). StorageKey (” finite .volume” );
Q-key = model. Database (). StorageKey (” chemical _source” );
pH _key = model. Database (). StorageKey (?pH” );

pe_key = model. Database (). StorageKey (" pe” );

Eh _key = model. Database (). StorageKey (”Eh” );

//! Initial equilibration

long int NodeStatusCH_;

long int Mode = NEED_GEM_AIA;

//forcing AIA mode for initial equilibration

cout<<”\nGEMS3K Visitor:: SetInitialProperties ()
w—.-initial_equilibration”<<endl;

const typename vector<Node<dim>*>::const_iterator modelNodesEnd (
model . Region (” Model” ). NodesEnd () );

for ( typename vector<Node<dim>*>::const_iterator n(

model . Region (” Model” ). NodesBegin () ); n != modelNodesEnd; ++n )
{

node_index = (*n)—>Idx ();

//! setting up pressure and Temperature at each node
na—>pNodT1 () [(node_index)]—>TK = (*n)—>Read (T -key) + 273.15;
//!from Celsius to Kelvin

na—>pNodT1 () [(node_index)|—>P = (xn)—>Read(p-key);

//! calculating equilibrium by calling GEMS3K,
// getting the status back

NodeStatusCH_ = na—>RunGEM( node_index , Mode);
if ( !( NodeStatusCH. — OK.GEM_ATA ||
NodeStatusCH. — OK_.GEM_SIA ) )

{

cout << ”"Error._occured._during.re—calculating._equilibrium ,

MMMMMMMMMMMMMM node._.index.=."<<node_index <<”_Status.=."<<
NodeStatusCH_ <<endl;
cin.get ();

for (int i=0;i<nlC—1;i++)

{
(xabPS_node) (i) = nodel_bPS(node_index, 0, i);
//!phase 0 — aqueous phase
//! abSP is set up in GEMS in wunits of mass or moles
per pore volume
(xabSP_node) (i) = nodel_bSP(node_index, i);
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}

//! new solution wvolume, normalized. can be used to control
the scheme accuracy — should be always around 1[1]
solution_volume () = nodel_vPS(node_index, 0)%1000.;
//scaled from m3 to liters

(#¥n)—>Store (abPS_key, xabPS_node);
(¥n)—>Store (abSP_key, xabSP _node);

nphi() = (*n)—>Read(nphi_-key );
inert_volume () = 1. — nphi();
//! store mineral amounts (in moles) and mineral volumes
for (int i=0;i<nPH-nPS;i++)
{
(*axPH_node) (i) = nodel_ xPH(node_index, i4+nPS)*nphi();
(*avPH.node)(i) = nodel_vPH (node_index, i4nPS)*nphi()*1000.;
// wvolume fraction in liters per liter
(*amPHnode) (i) = nodel . mPH(node_index, i+nPS)*nphi();
// minerals mass in kg per liter
inert_volume () —= (xavPH_node)(1);

n)—>Store (axPH _key, *axPH_node);
n)—>Store (avPH key, xavPH_node);
n)—>Store (amPH key, xamPH_node);
n)—>Store (inert_vol_key , inert_volume );

//! Store pH, pe and Eh

pH_node () = nodel_pH (node_index);
pe_node () = nodel_pe (node_index);
Eh_node () = nodel_Eh (node_index );
(#*n)—>Store (pH_key, pH_node);
(¥n)—>Store (pe_key, pe_node);
(¥n)—>Store (Eh_key, Eh_node);

//! calculate salinity and store it

//! X =1 — mass_of_-pure_water/mass_of_solution
//! salinity molar mass of water in kg/mol
X() = 1. — nodel xPA(node_index, 0)x

0.01801528/nodel . mPS(node_index , 0);
(¥n)—>Store (X _key, X);

//! and solution wvolume (should be 1 liter)
(¥n)—>Store(vol_key , solution_volume);

//! chemical source

Q() = 0

(*n)—>Store (Q-key, Q);

//model. Region (” Model”).N(Nbyldz (k))—> Store (Q-key, Q);

if (recipe_index[node_index] = 0)

{
(*n)—>Status (abPS_key, DIRICH);

cout<<”\n.node_index _=."<<node-index;
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}

template<size_t dim>
void GEMS3K_Visitor<dim >:: Visit ( Model<dim>x m ) {}

//! SNIA
template<size_t dim>
void GEMS3K_Visitor<dim >:: Visit ( Node<dim>x n )
{
node_index = n—>Idx ();
long int NodeStatusCH_;
//long int Mode = NEED_GEM_SIA;
long int Mode = NEED_GEM_AIA;
bool accept_GEMS _results;

if (recipe_index [node_index]) // do not equilibrate boundary nodes

//! bIC = abPS + abSP
n—>Read (abPS_key, xabPS_node);
n—>Read (abSP_key, *abSP_node);

//! setting up pressure and Temperature at each node
na—>pNodT1 () [(node_index)]—>TK = n—>Read (T _key) + 273.15;
//!from Celsius to Kelvin

na—>pNodT1 () [(node_index)|—>P = n—>Read(p_key );

//! setting up initial bulk composition at each node
(*bIC_node) = (xabPS_node) + (xabSP_node);
for (int i=0;i<nlC—1;i++)

nodel_bIC (node_index, i) = (*xbIC_node)[i];

NodeStatusCH_ = na—>RuwGEM( node_index , Mode);

if ( !( NodeStatusCH. = OK.GEM_AIA ||
NodeStatusCH. = OK_.GEM_SIA ) )
{

cout << ”Error._occured._during.re—calculating
uuuuuuuuuuuuuuu equilibrium , _node.index =."<<node_index<<” _Status.=
_______________ ’<< NodeStatusCH_ <<endl;

accept _GEMS _results = false;

else
accept GEMS _results = true;

if (accept_GEMS_results)
{
for (int i=0;i<nlC—1;i++)
{
//! assign new wvalues to abSP
(¥abSP_node) (i) = nodel_bSP (node_index, i);
//! and abPS
(¥xabPS_node) (i) = nodel_bPS(node_index, 0, i);
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}

//!read old amPH
n—>Read (amPH key, xamPH node);
//! calculate chemical source @ =
//sum_i (mPH_old — mPH new) _i
Q() = n->Read(Q key):
fv. = n—>Read (fv_key);
for (int i=0;i<nPH-nPS;i++)
Q() += (*amPH_node) (i)xfv ();

//! read old nodal porosity

nphi = n—>Read (nphi_key );

//! read inert volume fraction
inert_-volume = n—>Read(inert_vol_key );

//! calculate new nodal porosity
//nphi_new = 1 — inert_volume — sum_i (avPH_new_i)
nphi_new () = 1.;
for (int i=0;i<nPH-nPS;i++)
{
(*avPH_node)(i) = nodel_-vPH(node_index, i4+nPS)%1000.;
nphi_new () += (xavPH_node)(i);

}

nphi_new () = (1.—inert_volume ())/nphi_new ();

for (int i=0;i<nPH-nPS;i++)

{
//! mineral amounts (for output)
(*axPH node) (i) = nodel xPH(node_index , i4+nPS)x
nphi_new ();
//! new mineral volumes are used to re—calculate
//porosity
(*avPH_node) (i) %= nphi_new ();
(*amPH_node) (i) = nodel . mPH (node_index, i+nPS)x
nphi_new (); // minerals mass in kg per liter
Q() —= (xamPH.node) (i)xfv ();

if ( nphinew() <= 0. )
throw csmp:: Exception (FATALERROR,
" GEMS3K_Visitor :: Visit ()7,
"Porosity.is.zero_or.negative”);

//.’ scale concentrations to the mew porosity
//(for mass conservation)
for (int i=0;i<nIC—1;i++)
{
(*abSP_node) (i) *= nphi()/nphi_new ();
(xabPS_node) (i) %= nphi()/nphi_new ();
}

//! store new wvalues:

//! abSP
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n—>Store (abSP_key, xabSP_node);

//! abPS
n—>Store (abPS_key, xabPS_node);

//! mineral amounts

n—>Store (axPH_key, xaxPH_node); //in mol/m3
n—>Store (avPH _key, xavPH_node); // wolume fraction
n—>Store (amPH key, xamPH_node); // mass

n—>Store (nphi_key , nphi_new); // new porosity

//! Store pH, pe and Eh

pH_node () = nodel pH (node_index);
pe_node() = nodel_pe (node_index);
Eh_node() = nodel_Eh (node_index);
n—>Store (pH_key, pH_node);
n—>Store (pe_key, pe_node);
n—>Store (Eh_key, Eh_node);

//! salinity molar mass of water in kg/mol
X() = 1. — nodel_xPA(node_index, 0)x
0.01801528/nodel_mPS(node_index, 0);
n—>Store (X key, X);

//! store chemical source

n—>Store (Q-key, Q);
//! new solution wvolume, normalized
solution_volume () = nodel_vPS(node_index, 0)%1000.;

//scaled from m3 to liters
n—>Store (vol_key , solution_volume);

}
B.6 RTM_Simulator.h

#ifndef RTM SIMULATORH
#define RTM SIMULATORH

/xx @file RTM_Simulator.h

x  @author Alina Yapparova

x  @brief General Reactive Transport Modelling Simulator

x @details uses GEMSSK library for chemical speciation calculations and
x sequential iterative approach for chemistry—transport coupling

x  @date 06.11.2014

*/

// model

#include ”ANSYS_Model3D.h”
#include ”ModellD.h”
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// File I/O and Initialization
#include " ComputationalSettings.h”
#include "InputDataManager.h”

// finite elements

#include "PDE _Integrator.h”

#include "NumlIntegral NT _lhsop_ N_dV .h”
#include "NumlIntegral NT op_ N_dV .h”
#include "Numlntegral dNT op_dN_dV .h”
#include "Numlntegral dNT_op-dV .h”
#include " PointSource_rhsop.h”

#include ”NumlIntegral SetRHS_to_Zero.h”
#include ” VelocityAndVolumeFlux.h”

// finite wvolumes
#include <ExplicitNodeCenteredFiniteVolumeTransport

// wisitors

#include ” ConductivityVisitor.h”
#include ”ComputeGravityTermVisitor.h”
#include ” GEMS3K_Visitor.h”

#include ”"KozenyCarmanVisitor.h”

// eos
#include ” Brine.h”

// Solver
#include ”SAMG _Solver.h”
J/#include "LUdecmp_Solver.h”

// Output
#include ” VTU _Interface.h”

#include <time.h>

#include "iostream”
using namespace std;

namespace csmp
{
template<size_t dim>
class RTM_Simulator
{
public:
RTM_Simulator (charxx argv );
"RTM_Simulator ();
int run_old ();
int run();
int test_transport ();
int test_pressure_temperature ();
private:
const charx geometry_name_;
const charx config_file_name_;
const charx vars_name_;
const charx system _file_list_name_;
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const charx recipes_file_list_name_;
list <string> output_props_;

Model<dim>* model;

PropertyDatabase<dim>x pd_ref;

VTU _Interface<dim>* vtu;

ComputationalSettings run_settings;
//LUdecmp_Solver xp_solver , xpt_solver, =xt_solver;
SAMG _Solver xp_solver , xpt_solver, xt_solver;

//! equation of state
double64 temperature, pressure, salinity;
Brine seawater;

//! pde_integrator is used to solve the transient pressure

//equation using finite elements

PDE _Integrator<dim, Region>% transient_pressure;

MathOperatorLHS<dim> xpt_capacitance_lhs , *pt_conductance,

xvelocity ;

MathOperatorRHS<dim> xpt_capacitance_rhs , *pt_gravity ,
xnodal _fluid_src, xfluid_expansion_src ,
xchemical_src;

//! an instance of a FV transport class is used to solve for
//the species transport
NodeCenteredFiniteVolumeTransport<dim> xtransport_abPS;

//! and heat transport
NodeCenteredFiniteVolumeTransport<dim> xheat_transport ;

//! time wariables

double64 time_increment;
double64 total_time;
double64 global_time ;
time_t start ,end;

size_t timestep, sia_counter;
bool accept_GEMS_results, tstep_accept;
double eps, min_err, max_err, err;

int nIC, nPH, nPS;

Index p_key, T key, X_key;

Index velocity_key , dispersion_key , dispersivity_key;
Index phi_key, phi_old_key, nphi_key, fv_key, rho_key,
rho_TX _key, beta_fluid_key , beta_rock_key , beta_tot_key,
k_key , mu_key, lambda_key, lambda_tot_key, gravity_key,
mass_gravity_key , tx_source_key , chemical_source_key ,
vol_key;

Index rho_rock_key , cp_fluid_key , cp.rock_key, cp_tot_key ,
K _fluid_key , K_rock_key, K_tot_key, vel mult_key;

Index abPS_old_key, abPS_key, q_chem_key, q-chem_prev_key ,
abSP _old_key , abSP_key;
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}s

ScalarVariable phi, nphi, fv, rho, rho.TX, beta_fluid ,
beta_rock , beta_tot, k, mu, lambda, lambda_tot, tx_source,
chemical_source, T, rho_rock, cp_fluid, cp_rock, cp_tot,
K_fluid , K_rock, K_tot;

VectorVariable<dim> gravityVector, velocityVector;

int SteadyStatePressureCalculator ();

int SteadyStatePressureWithGravityCalculator ();
int InitializeTransientPressureWithGravity (bool
gravity=true);

int UpdatePressure(double64 time_increment , bool
gravity=true);

int SteadyStateTemperatureCalculator ();
int InitializeTransientTemperature(bool implicit=true);
int UpdateTemperature(double64 time_increment );

int UpdateFluidProperties ();

int CalculateDispersion ();

int CalculateTotalCompressibility ();

int CalculateMassConductivity ();

int CalculateMassGravityTerm ();

int CalculateDensityTX ();

int CalculateFluidExpansionSource ();

int SetChemicalSourceToZero ();

int CalculateTotalHeatCapacity ();

int CalculateTotalThermalConductivity ();
int CalculateVelocityMultiplier ();

int CreateAndInitializeRTM_Variables(bool implicit=true);
int UpdateTransport(double64 time_increment );

int SetQChemToZero ();

int DivideQChemWithTimelncrement (double time_increment );
int CopyFromTo(Index from_key, Index to_key);

int BackUp(Index new_key, Index old_key);

double CalculateL2Error ();

Y //end csmp
#endif //RTM.SIMULATOR_H

B.7 RTM _ Simulator.cpp

#include ”RTM_Simulator.h”

using namespace std;

namespace csmp
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{

template<size_t dim>
RTM_Simulator<dim >:: RTM_Simulator (char*x argv )
:geometry _name_(argv[l]), vars name_(argv[2]),
config_file_name_(argv[3]),

[ER -

[ER -

system_file_list_name_(argv[4
recipes_file_list_name_(argv]|

eps(l.e—4),
temperature (25.),
pressure (1l.eb),
salinity (0.0),

1)
51)

seawauter(temperau‘mlre7 pressure , salinity)

model = new ANSYS Model3D(geometry_name_, geometry name._,
vars_name., true, true, true);

pd_ref = &(model—>Database ());
//reference to the models property database.

InputDataManager<dim> model_configuration;
model_configuration . ConfigureFromFile (xmodel,

config _file_name_ ,

false ,

true, true, false, true, true, run_settings );

vtu = new VTU _Interface<dim>(xmodel);

//pt_solver = new LUdcmp_Solver ();
pt_solver = new SAMG_Solver ();
pt_solver —>SolverSettings()—>ExplicitSecondary (true);

pt_solver —>SolverSettings

>Set_ioutl (—1);

0-
pt_solver —>SolverSettings()—>Set_idmp (—1);
0-

pt_solver —>SolverSettings

//! main variables

>Set_mode_mess (—3);

p_key = model-—>Database ().StorageKey (”fluid_pressure”);
T _key = model—>Database ().StorageKey (”temperature”);
X_key = model-—>Database ().StorageKey (”fluid_salinity”);

phi_key = model—>Database (). StorageKey (”porosity”);
phi_old_key = model—>Database ().StorageKey (” porosity.old”);
nphi_key = model—>Database ().StorageKey (”nodal_.porosity”);
k_key = model—>Database (). StorageKey (”permeability”);

//! fluid properties calculated from equation of state

rho_key

density”);

mu_key
viscosity”);
beta_fluid_key
compressibility”);
cp_fluid_key
heat.capacity” );

model—>Database ().StorageKey (7 fluid
model—>Database (). StorageKey (”fluid
model—>Database ().StorageKey (”fluid

model—>Database ().StorageKey (”fluid

//! output main variables
output_props._.push_back(” fluid _pressure” );
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»

output_props_.push_back(” velocity”);
output_props_.push_back(” temperature” );
output_props_.push_back(” fluid .salinity” );
output_props_.push_back(” fluid _density” );

}

template< >
RTM_Simulator<1U>::RTM_Simulator (char*x argv )
:vars_name_(argv|[1l]), config_file_.name_(argv[2]),
system_file_list_name_(argv([3]), recipes_file_list_name_(argv[4]),
eps(l.e—9),
temperature (25.),
pressure (l.e5),
salinity (0.0),
seawater (temperature, pressure, salinity)

double64 length (atof(argv[5])), dx; // 9.99, 10, 0.5
size_t n_elements (atoi(argv([6])); //999, 1000, 50

if (length = 0.0 || n_elements = 0.0)
throw csmp:: Exception (FATALERROR,
"RTM_Simulator<1U>:: RTM_Simulator ()" ,
7invalid .input._parameters:._model_length _or_number.of
____________ elements” );

dx = length /(double64)n_elements ;
model = new ModellD (” Line” , vars_name_, length, n_elements);

pd_ref = &(model—>Database ());
//reference to the models property database.

InputDataManager<1U> model_configuration;
model_configuration.ConfigureFromFile (xmodel, config_file_ name_
false, true, true, false, true, true, run_settings );

vtu = new VTU_Interface<1U> (xmodel);

pt_solver = new SAMG_Solver ();

//pt_solver = new LUdcmp_Solver ();

pt_solver —>SolverSettings()—>ExplicitSecondary (true);
pt_solver —>SolverSettings()—>Set_ioutl (—1);

pt_solver —>SolverSettings()—>Set_idmp (—1);

pt_solver —>SolverSettings()—>Set_mode_mess (—3);

//! main variables

p-key = model—>Database ().StorageKey (”fluid_pressure”);
T_key = model—>Database ().StorageKey (”temperature”);
X_key = model—>Database ().StorageKey (”fluid._salinity”);

phi_key = model—>Database (). StorageKey (”porosity”);
phi_old_key = model—>Database ().StorageKey (” porosity.old”);
nphi_key = model—>Database ().StorageKey (”nodal_porosity”);
k_key = model—>Database (). StorageKey (”permeability”);
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//! fluid properties calculated from the equation of state

rho_key = model—>Database (). StorageKey (”fluid
uuuuuu density”);
mu_key = model—>Database ().StorageKey (”fluid

gggggg viscosity”);
beta_fluid_key
uuuuuu compressibility”);
cp_fluid_key
______ capacity”);

model—>Database (). StorageKey (7 fluid

model—>Database ().StorageKey (”fluid_heat

//! output main variables
output_props_.push_back(” fluid .pressure” );
output_props_.push_back(”velocity”);
output_props_.push_back(” temperature” );
output_props_.push_back(” fluid -salinity” );
output_props._.push_back(” fluid -density” );
}

template<size_t dim>
RTM Simulator<dim >::” RTM _Simulator ()
{
//! clean memory here!
delete model;
delete vtu;

delete transport_abPS;
delete heat_transport;
delete pt_solver;

delete transient_pressure;
delete pt_capacitance_lhs;
delete pt_conductance;
delete velocity;

delete pt_capacitance_rhs;
delete pt_gravity;

delete nodal_fluid_src;
delete fluid_expansion_src;
delete chemical_src;

}

//! Steady State Pressure without gravity, can be used to run 1d
// (or pseudo 1d) benchmarks
template<size_t dim>
int RTM_Simulator<dim >::SteadyStatePressureCalculator ()
{
//! conductivity wvisitor
ConductivityVisitor<dim> conductivity_visitor ( xmodel,
"conductivity”, ”permeability”, ”fluid._viscosity” );
(*model ). Accept(conductivity_visitor);

//! steady state pressure

p_solver = new SAMG_Solver ();

// supresses SAMG output

p-solver —>SolverSettings()—>ExplicitSecondary (true);
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p-solver —>SolverSettings()—>Set_ioutl (—1);

p-solver —>SolverSettings()—>Set_idmp (—1);

p-solver —>SolverSettings()—>Set_mode_mess(—3);

//p-_solver = new LUdcmp_Solver();

PDE_Integrator<dim, Region> steady_state_pressure( p-_solver );
steady_state_pressure.Verbose(false );

NumlIntegral dNT _op_dN_dV <dim, Element<dim>> p_conductance (
xpd_ref , ”conductivity”, ”fluid_pressure”, ”fluid _pressure” )
PointSource_rhsop <dim, Element<dim>> nodal_fluid_src
xpd_ref , ?nodal_fluid _source” , ”fluid .pressure” );

(

VelocityAndVolumeFlux<dim, Element<dim>> velocity ( *model,
"conductivity”, "nodal_porosity”, ”fluid._pressure”, false );

steady_state_pressure.Add( &p-conductance );
steady_state_pressure .Add( &nodal_fluid_srec );
steady_state_pressure.AddPostProcess( &velocity );

(*model ). Apply (steady_state_pressure);

delete p_solver;
return 0;

}

//! Steady State Pressure with gravity

//! used for initial state calculation

template<size_t dim>

int RTM_Simulator<dim >::SteadyStatePressureWithGravityCalculator ()

{

lambda_key = model—>Database ().StorageKey
("conductivity” );
lambda_tot_key = model—>Database ().StorageKey (”mass

ceooconductivity”);

gravity_key = model—>Database (). StorageKey (” gravity
ceooterm” )
mass_gravity_key = model—Database (). StorageKey (”"mass_gravity

coooterm” );

CalculateMassConductivity ();
CalculateMassGravityTerm ();

//! steady state pressure

p_solver = new SAMG_Solver ();

// supresses SAMG output

p-solver —>SolverSettings()—>ExplicitSecondary (true);

p-solver —>SolverSettings()—>Set_ioutl (—1);

p-solver —SolverSettings()—>Set_idmp (—1);

p-solver —>SolverSettings()—>Set_mode_mess (—3);

//p_solver = new LUdcmp_Solver();

PDE_Integrator<dim, Region> steady_state_pressure( p_solver );
steady_state_pressure.Verbose(false );
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NumIntegral dNT_op_dN_dV <dim, Element<dim>> p_conductance (

xpd_ref , "mass_conductivity”, ”fluid._pressure”, ”fluid_pressure” );

NumlIntegral dNT op_dV <dim, Element<dim>> p_gravity ( *pd_ref

"mass_gravity cterm” , 7 fluid _pressure” );

VelocityAndVolumeFlux<dim, Element<dim>> velocity ( xmodel,

?conductivity”, "nodal_porosity”, ”fluid_pressure”, ”fluid
cooodensity”, false );

steady _state_pressure.Add( &p_conductance );
steady_state_pressure.Add( &p-_gravity );
steady_state_pressure.AddPostProcess( &velocity );
(*model ). Apply (steady_state_pressure);

delete p_solver;
return O0;

}

// transient pressure with gravity

template<size_t dim>

int RTM_Simulator<dim >::InitializeTransientPressureWithGravity (
bool gravity)

rho_TX key = model—>Database ().StorageKey (”fluid
ceoodensity JTX? ) ;

beta_rock_key = model—>Database ().StorageKey (”rock
eee—compressibility”);

beta_tot_key = model—Database (). StorageKey (”total
ceoocompressibility”);

tx_source_key = model—>Database ().StorageKey (”fluid
——..expansion.source” );

chemical_source_key = model—>Database ().StorageKey (”chemical
ceoosource” );

vol_key = model—>Database (). StorageKey (”solution
ceoovolume” )

fv_key = model—>Database ().StorageKey (”finite
—eoovolume” );

transient_pressure = new PDE _Integrator<dim, Region>( pt_solver );

transient_pressure —>Verbose (false );

pt-capacitance_lhs = new NumlIntegral NT _lhsop_N_dV<dim , Element<dim>>(
xpd_ref, 7total_compressibility”, ”fluid_pressure”, ”fluid._pressure” );

pt_capacitance_rhs = new NumlIntegral NT op_N_dV<dim, Element<dim>>(
xpd_ref , "total_compressibility”, ”fluid .pressure” );

pt_-conductance = new Numlntegral dNT_op_.dN_.dV <dim, Element<dim>>(
xpd_ref , "mass_conductivity”, ”fluid_pressure”, ”fluid_pressure” );
pt_conductance—>MultiplyWithTimelIncrement (true);

if (gravity)

pt-gravity = new Numlntegral dNT_op_.dV <dim, Element<dim>>( xpd_ref,
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"mass_gravity .term” , ” fluid _pressure” );
pt_gravity —>AddAccumulateLater ();
pt_gravity —>MultiplyWithTimeIncrement (true);

}

nodal_fluid_src = new PointSource_rhsop <dim, Element<dim>>( xpd_ref ,
"nodal.fluid _source”, ”fluid_pressure” );

nodal_fluid_src —>MultiplyWithTimeIncrement (true);

nodal_fluid_src —>LumpedFormulation (true );

nodal_fluid_src —>AddAccumulateLater ();

//! important: this source is not multiplied by dt

fluid _expansion_src¢ = new PointSource_rhsop <dim, Element<dim>>(
xpd_ref , ”fluid _expansion_source” , ”fluid .pressure” );

fluid _expansion_src —>LumpedFormulation (true );
fluid_expansion_src —>AddAccumulateLater () ;

//! important: this source is not multiplied by dt

chemical_src = new PointSource_rhsop <dim, Element<dim>>( xpd_ref ,
”chemical_source”, ”fluid _pressure” );
chemical_src—>LumpedFormulation (true);
chemical_src—>AddAccumulateLater ();

if (gravity)
velocity = new VelocityAndVolumeFlux<dim, Element<dim>>( xmodel,

”conductivity”, "nodal_porosity”, ”fluid_pressure”, ”fluid
MMMMMMMMM density”, false );
else
velocity = new VelocityAndVolumeFlux<dim, Element<dim>>( *model,
"conductivity”, "nodal_.porosity”, ”fluid._pressure”, false );

transient_pressure —>Add( pt-conductance );
transient_pressure —>Add( pt_capacitance_lhs );
transient_pressure —>Add( pt_capacitance_rhs );
if (gravity)

transient_pressure —>Add( pt_gravity );
transient_pressure —>Add( nodal_fluid_src );
transient_pressure —>Add( fluid_-expansion_src );
transient_pressure —>Add( chemical_src );
transient_pressure —>AddPostProcess( velocity );

//! for the initial calculation of fluid expansion source
BackUp(rho_key , rho_-TX _key);

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: UpdatePressure (double64 time_increment ,
bool gravity)

{

CalculateTotalCompressibility ();
CalculateMassConductivity ();
if (gravity)
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CalculateMassGravityTerm ();
CalculateFluidExpansionSource ();

transient_pressure —>Timelncrement (time_increment );
(*model ). Apply (xtransient_pressure);

SetChemicalSourceToZero ();

//! unless set up in the config file
//CalculateDispersion ();
return 0;

}

template<size_t dim>
int RTM_Simulator<dim >::SteadyStateTemperatureCalculator ()
{

t_solver = new SAMG _ Solver ();

//t_solver = new LUdcmp_Solver();

K_fluid_key = model-—>Database ().StorageKey (”fluid._thermal
ceececonductivity”);

K_rock_key = model—>Database ().StorageKey (”rock._thermal
ceoeconductivity” );

K_tot_key = model—>Database (). StorageKey (”total_thermal

cewoconductivity” );
CalculateTotalThermalConductivity ();

PDE _Integrator<dim, Region> steady_state_temperature( t_solver );
NumlIntegral dNT _op_dN_dV<dim, Element<dim> > t_conductance (
xpd_ref, 7total_thermal_conductivity”, ”temperature” ,
”temperature” );

NumIntegral SetRHS _to_Zero<dim> t_rhs (xpd_ref, ”temperature” );

steady_state_temperature .Add(&t_conductance );
steady_state_temperature.Add(&t_rhs);

(*model ). Apply (steady_state_temperature);

delete t_solver;
return O0;

}

template<size_t dim>

int RTM_Simulator<dim >::InitializeTransientTemperature (bool implicit)

{
rho_rock_key = model-—>Database (). StorageKey (”"rock_density”);
cp-rock_key = model-—>Database ().StorageKey (”rock._heat._capacity”);
cp_tot_key = model—>Database (). StorageKey (”total_heat_capacity”);

K_fluid_key = model—>Database ().StorageKey (” fluid._thermal
ceooconductivity” );

K_rock_key = model—>Database ().StorageKey (”rock._thermal
eeececonductivity”);
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K_tot_key = model—>Database (). StorageKey (”total_thermal
ceoeconductivity” );

velocity_key = model—>Database ().StorageKey (”velocity”);
vel_mult_key = model-—>Database ().StorageKey (”velocity._.multiplier”);

if (!implicit)

//! for explicit transport

heat_transport = new ExplicitNodeCenteredFiniteVolumeTransport<dim,
ExplicitStencilProcessor> (”Model” , *model, ”total_heat_capacity”,

"total _thermal_conductivity”, "temperature” , "heat_transfer.velocity”,
"nodal_heat_source” , false);

}

else

{
heat_transport = new NodeCenteredFiniteVolumeTransport<dim> (”Model” ,
xmodel , "total_heat_.capacity”, ”"total_thermal_conductivity”,
"temperature”, ”velocity”, "nodal_heat_source” , false, false, NULL,
"velocity omultiplier”);
heat_transport —>GetSolverSettings (). SetSolverInstance (1);
// supresses SAMG output
heat_transport —>GetSolverSettings (). ExplicitSecondary (true);
heat_transport —>GetSolverSettings (). Set_ioutl (—1);
heat_transport —>GetSolverSettings (). Set_idmp (—1);
heat_transport —>GetSolverSettings (). Set_mode_mess(—3);

}

// supresses csmp transport output
heat_transport—>Verbose (false );

// if p,T are tested without transport, uncomment this
//heat_transport—>Finite Volume (” finite wvolume”);

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >::UpdateTemperature (double64 time_increment )
{

CalculateTotalHeatCapacity ();

CalculateTotalThermalConductivity ();

CalculateVelocityMultiplier ();

bool update_pore_volumes=true;
heat_transport —>AdvectVariable (time_increment , 0.9, true,
update_pore_volumes );

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: UpdateFluidProperties ()

{
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const typename vector<Node< dim>*>::const_iterator modelNodesEnd (

model—>Region (”Model” ). NodesEnd () );

for ( typename vector<Node<dim>x>::const_iterator

model—>Region (”Model” ). NodesBegin () );
it !'= modelNodesEnd; ++it )
{

temperature = (*xit)—>Read(T_key);
pressure = (xit)—>Read(p_key);
salinity = (xit)—>Read (X_key);

rho () = seawater.Density ();

mu () = seawater. Viscosity ();
beta_fluid () = seawater. Compressibility ();
cp-_fluid () = seawater . HeatCapacity ();
(¢it)—>Store(rho_key, rho);

(xit)—>Store (mu_key, mu);
(xit)—>Store(beta_fluid_key , beta_fluid);
(¥it)—>Store(cp_fluid_key , cp_fluid);

}

return 0;

}

template<size_t dim>

int RTM_Simulator<dim >:: CalculateDispersion ()

{

//! caclulate dispersion from
Index velocity_key =
Index porosity_key =
Index dispersion_key =
Index dispersivity_key =
("dispersivity”);

VectorVariable<dim> velocity_v

ScalarVariable porosity ,dispersion ,

dispersivity

model—>Database (). StorageKey
model—>Database (). StorageKey
model—>Database (). StorageKey
model—>Database (). StorageKey
ector ;

dispersivity ;

("velocity”);
(" porosity”);
(”dispersion” );

const typename vector<Element< dim>%>::const_iterator modelElementsEnd (
model—>Region (" Model” ). ElementsEnd () );
for (typename vector<Element<dim>*>::const_iterator it (
model—>Region (”Model” ). ElementsBegin () );

it !'= modelElementsEnd; ++it )

{

(¢it)—>Read(velocity_key ,
(xit)—>Read(porosity_key ,

(#it)—>Read(dispersivity_key ,

velocity_vector);
porosity );
dispersivity );

dispersion = dispersivity ()*xvelocity_vector [0]* porosity ();

(¥it)—>Store(dispersion_key ,

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: Calculat

{

dispersion );

eTotalCompressibility ()
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//! beta_tot() = rho * phi x (beta_fluid(p, T) + beta_rock);
const typename vector<Element< dim>*>::const_iterator modelElementsEnd (
model—>Region (?”Model” ). ElementsEnd () );

for ( typename vector<Element<dim>*>::const_iterator it (
model—>Region ("Model” ). ElementsBegin () );

it != modelElementsEnd; ++it )
{

beta_rock () = (xit)—>Read(beta_rock_key);

for (size_-t ip=0;ip<(xit)—>IntegrationPoints (); ++ip)

{
(#it)—>PropertyValueAtIntegrationPoint ( nphi_key, ip, nphi );
(xit)—>PropertyValueAtIntegrationPoint ( rho_key, ip, rho );
(xit)—>PropertyValueAtIntegrationPoint ( beta_fluid_key , ip,
beta_fluid );
beta_tot () = rho() * nphi() * ( beta_fluid() + beta_rock() );
(xit)—>Store( ip, beta_tot_key, beta_tot );

}

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: CalculateMassConductivity ()

{
//! lambda =k / mu;
//! lambda_tot = rho * k / mu;
const typename vector<Element< dim>%>::const_iterator modelElementsEnd (
model—>Region (”Model” ). ElementsEnd () );
for ( typename vector<Element<dim>#*>::const_iterator it (
model—>Region (”Model” ). ElementsBegin () );
it !'= modelElementsEnd; ++it )
{
k() = (xit)—>Read(k_key );
for (size_t ip=0;ip<(xit)—>IntegrationPoints (); ++ip)
{
(xit)—>PropertyValueAtIntegrationPoint ( rho_key, ip, rho );
(¢it)—>PropertyValueAtIntegrationPoint ( mu.key, ip, mu );
lambda () = k() /mu();
lambda_tot () = rho()*k()/mu();
(xit)—>Store( ip, lambda_key, lambda );
(xit)—>Store( ip, lambda_tot_key , lambda_tot );
}
}
return 0;
}

template<size_t dim>
int RTM_Simulator<dim >:: CalculateMassGravityTerm ()

//! gravity term wvisitor

ComputeGravityTermVisitor<dim> gravity_visitor ( *model, ”gravity._term”
"permeability”, ”fluid._viscosity”, ”fluid._density” );

(*model). Accept (gravity_visitor );
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}

const typename vector<Element< dim>*>::const_iterator modelElementsEnd (
model—>Region (?”Model” ). ElementsEnd () );
for ( typename vector<Element<dim>*>::const_iterator it (
model—>Region (”Model” ). ElementsBegin () );
it != modelElementsEnd; ++it )
{

for (size_t ip=0;ip<(xit)—>IntegrationPoints (); ++ip)

{
(xit)—>Read(ip, gravity_-key , gravityVector);
(#it)—>PropertyValueAtIntegrationPoint ( rho_key, ip, rho );
(xit)—>Store( ip, mass_gravity_key, gravityVectorxrho() );

}
}

return O0;

template<size_t dim>
int RTM_Simulator<dim >:: CalculateDensityTX ()

{

}

//! update density (p-new, T-old, X_old)

const typename vector<Node< dim>*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );

for ( typename vector<Node<dim>x>::const_iterator it (
model—>Region (”Model” ). NodesBegin () );

it !'= modelNodesEnd; ++it )

{
temperature = (xit)—>Read (T key );
pressure = (xit)—>Read(p_key);
salinity = (xit)—>Read (X_key);
rho TX () = seawater.Density ();

(¢it)—>Store(rho.TX_key, rho.-TX);
}

return 0;

template<size_t dim>
int RTM_Simulator<dim >:: CalculateFluidExpansionSource ()

{

//! q_tx = — phixSectorVolumex(rho (p_new, T_new, X _new) —

rho TX (p_new, T_old , X _old))

const typename vector<Node< dim>x*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );

for ( typename vector<Node<dim>#>::const_iterator it (
model—>Region (”Model” ). NodesBegin () );

it !'= modelNodesEnd; ++it )
{
(¢it)—>Read (nphi_key , nphi);
(xit)—>Read(fv_key , fv);
(#it)—>Read(rho_key , rho);
(xit)—>Read (rho_TX _key, rho TX);

tx_source () = —nphi()*(rho() — rho.TX())x*xfv();
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(xit)—>Store(tx_source_key , tx_source);

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >::SetChemicalSourceToZero ()

{
//! q-chemical = 0.
const typename vector<Node< dim>*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );
for ( typename vector<Node<dim>*>::const_iterator it (
model—>Region (”Model” ). NodesBegin () );
it !'= modelNodesEnd; ++it )
{

chemical_source () = 0.;

(%it)—>Store(chemical_source_key , chemical_source);

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: CalculateTotalHeatCapacity ()
{
//! cp_tot = phixrhoxcp_fluid + (1—phi)xrho_rockxcp_rock
const typename vector<Element< dim>%>::const_iterator modelElementsEnd (
model—>Region (”Model” ). ElementsEnd () );
for ( typename vector<Element<dim>#*>::const_iterator it (
model—>Region (”Model” ). ElementsBegin () );

it !'= modelElementsEnd; ++it )
{
rho_rock () = (xit)—>Read(rho_rock_key );
cp_rock () = (xit)—>Read(cp-rock_key );
for (size_t iSector=0;iSector <(xit)—>FV_Stencil()—>Sectors ();
iSector++)
{
nphi () = (xit)—>PropertyValueAtSectorIntegrationPoint (
iSector , 0U, nphi_key );
rho () = (xit)—>PropertyValueAtSectorIntegrationPoint (
iSector , 0U, rho_key );
cp-fluid () = (xit)—>PropertyValueAtSectorIntegrationPoint (
iSector , 0U, cp-_fluid_key );
cp-tot () = (1—nphi())*rho_rock ()*xcp-rock () +

nphi()xrho ()* cp_fluid ();
(xit)—>Store( iSector , 0U, cp-tot_key, cp_-tot );
¥

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: CalculateTotalThermalConductivity ()
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//! K = phixK_f + (1—phi)xK_r
const typename vector<Element< dim>%>::const_iterator modelElementsEnd (
model—>Region (”Model” ). ElementsEnd () );
for ( typename vector<Element<dim>*>::const_iterator it (
model—>Region ("Model” ). ElementsBegin () );
it != modelElementsEnd; ++it )
{

// this is a simple version, as K_fluid is constant and read
//from the config input file
(xit)—>PropertyValueAtBaryCenter ( nphi_key, nphi );

K_rock () = (xit)->Read(K_rock_key);
(#it)—>PropertyValueAtBaryCenter (K_fluid_key , K_fluid);
K_tot() = nphi()*K_fluid () + (1—nphi())*xK_rock ();

(xit)—>Store(K_tot_key, K_tot);
// the more sophisticated version can be wused:
//for (size_t ip=0;ip<(xit)—>IntegrationPoints (); ++ip)
/74
// (xit)->PropertyValueAtIntegrationPoint( K_fluid_key , ip,
//K_fluid );
//  (xit)=>Store( ip, K_tot_key, K_tot + phi()x K_fluid ());
//}

}

return 0;

}

template<size_t dim>
int RTM_Simulator<dim >:: CalculateVelocityMultiplier ()
{
//! vel_mult = rhoxcp_fluid
const typename vector<Node< dim>*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );
for ( typename vector<Node<dim>*>::const_iterator it (
model—>Region (”Model” ). NodesBegin () );
it !'= modelNodesEnd; ++it )
{

(#it)—>Read(rho_key , rho);
(xit)—>Read(cp-fluid_key , cp-_fluid);
(xit)—>Store(vel_mult_key , rhoxcp_fluid ());

}

return O0;

}

template<size_t dim>

int RTM_Simulator<dim >:: CreateAndInitializeRTM_Variables (bool implicit)

{
model—>CreateProperty (”7abPS”, "mol/1”, ARRAY, NODE, nIC-1);
// the last IC is charge
model—>CreateProperty (”q-chem”, ”"mol/1”, ARRAY, NODE, nIC-—1);
model—>CreateProperty (”abSP”, ”"mol/1”, ARRAY, NODE, nIC-—1);
//! this property is used for output only (mineral amounts)
model—>CreateProperty (7axPH”, "mol/1” , ARRAY, NODE, nPH-nPS);
// first nPS components are phases—solutions
model—>CreateProperty (7avPH”, ”X” | ARRAY, NODE, nPH-nPS);
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}

//volumes of solid phases
model—>CreateProperty (?amPH”, “kg/1”, ARRAY, NODE, nPH-nPS);
//masses of solid phases

abPS_key = model—>Database (). StorageKey (”abPS”);
gq-chem _key = model—>Database (). StorageKey (”q_chem” );
abSP _key = model—>Database (). StorageKey (”7abSP”);

if (limplicit)

}

//! for ezxzplicit transport

transport_abPS = new ExplicitNodeCenteredFiniteVolumeTransport<dim,
ExplicitStencilProcessor> (”Model” , *xmodel, ”"nodal_.porosity”,
"dispersion”, 7abPS”, ”velocity”, "q.chem” , false);

else

{

}

transport_abPS = new NodeCenteredFiniteVolumeTransport<dim>
("Model” , xmodel, ”"nodal_.porosity”, ”dispersion”,
"abPS” , "velocity”, "q.chem”, false, false);

transport-abPS—>GetSolverSettings (). SetSolverInstance (2);
// supresses SAMG output

transport_abPS—>GetSolverSettings (). ExplicitSecondary (true);
transport_abPS—>GetSolverSettings (). Set_ioutl (—1);
transport_abPS—>GetSolverSettings (). Set_idmp (—1);
transport_abPS—>GetSolverSettings (). Set_-mode_mess (—3);
//transport_abPS—>GetSolverSettings (). Set_nztyp (0);

// supresses csmp transport output
transport_abPS—>Verbose (false );

// calculate the volumes of finite volumes
transport_abPS—>FiniteVolume (” finite .volume” );

output_props_.push_back (”abPS”
output_props._.push_back (”axPH”
output_props_.push_back (”avPH”
output_props_.push_back(

b
)

)
);
)
)

2 m I )H”

b

return 0;

template<size_t dim>
int RTM_Simulator<dim >::SetQChemToZero ()

{

//! mineral source = 0;

ArrayVariable g-chem_node(nIC—-1, 0.);

const typename vector<Node<dim>x*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );

for ( typename vector<Node<dim>*>::const_iterator n(
model—>Region (”Model” ). NodesBegin () ); n != modelNodesEnd; ++n )

{
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}

(#¥n)—>Store (q-chem_key, q_-chem_node);

}

return 0;

template<size_t dim>
int RTM_Simulator<dim >::CopyFromTo(Index from_key, Index to_key)

{

}

ArrayVariable temp(nIC-1, 0.);
const typename vector<Node<dim>x*>::const_iterator modelNodesEnd (
model—>Region ("Model” ). NodesEnd () );
for ( typename vector<Node<dim>x>::const_iterator n(
model—>Region (”Model” ). NodesBegin () ); n != modelNodesEnd; ++n )
{

(¥n)—>Read (from_key , temp );

(#*n)—>Store (to_key , temp);

}

return 0;

template<size_t dim>
int RTM_Simulator<dim >::BackUp(Index new_key, Index old_key)

{

}

ScalarVariable temp;
if (new_key.place
{
const typename vector<Node<dim>x*>::const_iterator modelNodesEnd (
model—>Region (”Model” ). NodesEnd () );
for ( typename vector<Node<dim>%>::const_iterator n(
model—>Region (”Model” ). NodesBegin () ); n != modelNodesEnd; ++n )

{

NODE)

(*n)—>Read (new_key , temp);
(*n)—>Store (old_key , temp);
}
}
else if (new_key.place = ELEMENT)
{
const typename vector<Element<dim>*>::const_iterator
modelElementsEnd ( model—>Region (" Model” ). ElementsEnd () );
for ( typename vector<Element<dim>#%>::const_iterator n(
model—>Region (?”Model” ). ElementsBegin () );
n != modelElementsEnd; ++n )
{
(*n)—>Read (new_key , temp);
(*n)—>Store (old_key , temp);
}
}

return 0;

//! main function. SNIA for transport and chemistry
template<size_t dim>
int RTM_Simulator<dim >::run ()
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//! create an instance of gems3k wvisitor

GEMS3K Visitor<dim> gems3k_visitor (xmodel,

this—>system _file_list _name_

this—>recipes_file_list _name_);

nIC = gems3k_visitor.GetnIC ();

nPH = gems3k_visitor .GetnPH ();

nPS = gems3k_visitor.GetnPS();

//! create and initialize wvariables for chemical species
bool implicit_transport = true; //default=true
CreateAndInitializeRTM_Variables (implicit_transport);

//! porosity interpolated to the elements
model—>InterpolateNodeToElementProperty ("nodal_porosity”, ”porosity”);

//! Kozeny—Carman wvisitor fro porosity/permeability feedback
KozenyCarmanVisitor<dim> KozenyCarman_visitor (*xmodel, phi_key ,
phi_old_key , k_key );

output_props_.push_back(”recipe._index”);
vtu—>OutputDataToVTU ( string (config_file_name_) +

(
7 _Default_Properties” ).c_str (), output_props.,
model—>Region (”Model” ), 0);

bool transient_temperature = false;

bool constant_temperature = true;

bool transient_pressure = true; //true
bool pressure_with_gravity = true; //true

//! initialization
//! get fluid properties from eos
UpdateFluidProperties ();
//! calculate steady state temperature if necessary
if (!constant_temperature && !transient_temperature )
SteadyStateTemperatureCalculator ();
//! calculate steady state pressure using those fluid properties
if (pressure_with_gravity)
SteadyStatePressureWithGravityCalculator ();
else
SteadyStatePressureCalculator ();

//! calculate initial equilibrium state at initial
// pressure/temperature conditions
gems3k _visitor.SetInitialProperties ();

//! and recalculate fluid properties
UpdateFluidProperties ();
//! and pressure
if (pressure_with_gravity)
SteadyStatePressureWithGravityCalculator ();
else
SteadyStatePressureCalculator ();
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//! and chemical equilibrium
gems3k_visitor.SetInitialProperties ();

//! debug output, comment out if needed
output_props_.push_back(” fluid _expansion._source” );
output_props_.push_back(” chemical _source” );
output_props_.push_back(”solution.volume” );
output_props_.push_back(”nodal_porosity”);
output_props_.push_back(” porosity”);
output_props_.push_back(” permeability” );
output_props_.push_back(”inert._volume” );

(

(

(

(

(

(

7
”
”

7

output_props_.push_back (” fluid .viscosity”);
output_props_.push_back(”nodal_fluid .source”);
output_props_.push_back(” cfl”);
output_props-.push_back 7’pH )3

) e )
77 h )

kM

output_props_.push_back
output_props_.push_back

//! initial output

vtu—>OutputDataToVTU( ( string(config_file_name_) +
_Initial_Properties” ).c_str(), output_props.,
model—>Region ("Model” ), 0);

//! initialize transient pressure/temperature calculators
if (transient_pressure)

InitializeTransientPressureWithGravity (pressure_with_gravity );
if (transient_temperature)

InitializeTransientTemperature (implicit_transport );

//! q.chem is the mineral dissolution/precipitation source,
// in SNIA is always equal to zero
SetQChemToZero () ;

time_increment = run_settings.NearestOutputTime (0.0);
total_time = run_settings.Duration ();

cout<<”\n_Running RTM_simulation_for_a_total_time._=."<<total_time <<
? _with_a_time_increment _=_"<<time_increment<<endl;

double64 dt, time;
global_time
timestep =

0.;
1

while ( global_time < total_time )

{

if (transient_pressure)

//1. update pressure

UpdatePressure (time_increment , pressure_with_gravity );
//2. calculate rho(p_new, T_old, X_old) for the fluid
//exrpansion source

CalculateDensityTX ();

}

else
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{

if (pressure_with_gravity)
SteadyStatePressureWithGravityCalculator ();
else
SteadyStatePressureCalculator ();
}

// 8. update temperature, if necessary
if (transient_temperature)
UpdateTemperature (time_increment );

// 4. transport+chemistry are calculated with smaller dt=cfl
dt = 0.9xtransport_abPS—>AnisotropicCourantIncrement ();
cout<<”’\n_CFL_transport=."<<dt;

time = 0.;
while (time < time_increment)
{
if (time_increment — time < dt)
dt = time_increment — time;

// 4.1 calculate transport of chemical species
transport_abPS—>AdvectVariableSingleStep (dt, true, true);

// 4.2 calculate chemical equilibrium with GEMS
gems3k_visitor.SetTime(dt, time, timestep);
model—>Accept (gems3k_visitor);

time += dt;

}

// 5. porosity interpolated to the elements

//(only used for the output)

BackUp(phi_key , phi_old_key);

//back up the porosity for Kozeny—Carman Visitor
model—>InterpolateNodeToElementProperty ("nodal_porosity”,
"porosity”);

// 6. permeability feedback
model—>Accept (KozenyCarman _visitor );

//if (transient_pressure || transient_temperature)
// 7. update fluid properties from equation of state
UpdateFluidProperties ();

// 8. output
vtu—>OutputDataToVTU( ( string (config_-file_name_) +

” _Properties” ).c_str (), output_props., model—>Region (”Model”),
timestep );

timestep++;

global_time += time_increment ;
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return 0;

}

template class RTM_Simulator<1U>;
template class RTM_Simulator<3U>;

Y// end csmp
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