
 

 

 

 

 

 

PhD Thesis 

 

 

Multiscale Modelling and Simulation of Flow Behavior 
of Polymer/Layered Silicate Nanocomposites 

Under Shear Flow 

 

 

 

 

Written by 

 

Ali Gooneie 

 

 

 

 

 

Supervisor: Univ.-Prof. Dr. Clemens Holzer 

 

 

Leoben, February 2017 





 

II 

Acknowledgements 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Clemens Holzer 
for the continuous support of my PhD study and related research, for his patience, and 
motivation. His guidance helped me in all the time of research and writing of this 
thesis. 

My sincere thanks also goes to Dipl.-Ing. Stephan Schuschnigg who provided me an 
opportunity to join his team, and who gave me access to the laboratory and research 
facilities. Without his precious support it would not be possible to conduct this 
research. 

I would like to thank my parents, Nahid and Houshang, for their devoted support of all 
my dreams in my entire life, as a kid, as a teenager, and as a young ambitious man. 
Last but not least, the spiritual support of my lovely wife, Sayna, always motivated me 
to pursue my goals, not only in my PhD research, but also in my life. For this, I would 
like to dedicate my PhD thesis to Nahid, Houshang, and Sayna. 

 

Ali Gooneie, 

Leoben, 03.02.2017 

 



 

III 

Kurzfassung 

Polymer-Nanoverbundwerkstoffe (engl. Polymer nanocomposites (PNCs)) weisen 
ausgezeichnete Eigenschaften auf, aufgrund von Phänomenen, die bei 
unterschiedlichen Längen- und Zeitskalen auftreten. Die Weiterentwicklung dieser 
Materialien beruht auf einem umfassenden Verständnis der Grundlagen ihrer Struktur 
und ihres Verhaltens. Daher kann ihre inhärente multiskalen Natur nur durch eine 
Multiskalen-Analyse reflektiert werden, die für jegliche Mechanismen gelten. Die 
grundlegenden Konzepte der Multiskalen-Simulationen von polymeren Materialien und 
die dazugehörigen Forschungsaussichten werden in dieser Doktorarbeit ausführlich 
behandelt. Es wird gezeigt, dass es trotz aller Bemühungen bisher nicht gelungen ist, 
eine übergreifende Struktur von der Abbildung der Mikrostrukturen bis hin zu 
makroskopischen Modellen zu bilden. 

In dieser Dissertation wurde ein, für die Lösung dieses Problems, theoretisches 
Framework entwickelt, basierend auf gut berechneten mesoskopischen dissipativen 
Partikeldynamik-Modellen (DPD-Modellen) als eine Lösungsmethode. Zuerst wurde die 
dynamische Konformationsveränderung von linearen Polymerketten als Reaktion auf 
die Ausbildung einer stationären Scherströmung untersucht. Im nächsten Schritt 
wurden die Orientierungsmuster von anisometrischen Schichtsilikatteilchen unter 
verschiedenen Scherströmungen charakterisiert. Dabei wurde der Einfluss der 
Wechselwirkungen zwischen Schichtsilikaten und Polymerketten auf den 
Orientierungsprozess genauer betrachtet und analysiert. Zum Schluss wurden diese 
Forschungsergebnisse für die Entwicklung von DPD-Modelle integriert, um ein 
Hochskalierungsverfahren für die mesoskopischen Orientierungsmuster zum 
makroskopischen Flieβen zu entwickeln. Dieses Hochskalierungsverfahren wurde 
erfolgreich anhand von aus der Literatur bekannten Standard-Orientierungsmodellen 
überprüft. Bei dieser Herangehensweise werden die Verläufe des 
Orientierungsprozesses von schwach wechselwirkenden Schichtsilikaten als eine 
Funktion der eingesetzten Scherdehnung anstelle der Zeit angenommen, basierend auf 
Experimenten mit nicht-brownschen Materialien, die belastungsabhängiges anstatt 
zeitabhängiges strukturelles Wachstum vorschlagen. Ausgehend von der Vorstellung, 
dass die Orientierungskinetik einfach die Änderungsrate in Bezug auf die Dehnung 
anstelle der Zeit ist, wurde die angewandte Dehnung ausgewählt, um die 
Orientierungsparameter auf eine grössere Skala durch eine einfache Kombination von 
affinen und nichtaffinen Deformationen zu übertragen. Diese Kombination wurde in 
ihrer einfachsten Form als zufälliges Mischen von DPD-Einheitszellen (Simulation 
nichtaffiner Deformationen) in einer größeren Zelle dargestellt, die eine affine 
Deformation über die Einheitszellen verteilt. Es wurde festgestellt, dass diese 
Vorgehensweise für die Multiskala-Simulationen des Orientierungsprozesses verwendet 
werden können, sofern die Einheitszellen eine genaue Beschreibung der 
Wechselwirkungen zwischen den Komponenten darstellen. Der Vergleich dieser 
Methodik mit dem Modell des Dehnungsreduktionsfaktors weist den Erfolg der 
Multiskalen-Simulation bei der Charakterisierung des Wachstums der Orientierungs-
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parameter abhängig von der Scherdehnung nach. Es hat sich auch herausgestellt, dass 
das Verfahren das Wachstum der Mikrostrukturen nicht erfasst, wenn die Einheitszellen 
das Material nicht exakt darstellen. Die weiteren Herausforderungen, wie Optimierung, 
Erweiterung und Verallgemeinerung des entwickelten Multiskalenalgorithmus, wurden 
ebenfalls angesprochen. 

Schlüsselwörter: Computersimulationen, Rechenverfahren, dissipative Partikeldynamik, 
Multiskalen Modellierung, hierarchische Strukturen, Polymer-Nanokomposit, 
Schichtsilikat, Wachstum der Mikrostrukturen, Morphologie, Orientierung, 
Strömungsfeld 
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Abstract 

Polymer nanocomposites (PNCs) display distinguished characteristics which originate 
from the interplay of phenomena at different length and time scales. Further 
development of these materials critically relies on a comprehensive understanding of 
the fundamentals of their hierarchical structure and behaviors. As such, their inherent 
multiscale nature is only reflected properly by a multiscale analysis which accounts for 
all important mechanisms. The fundamental concepts of multiscale simulations of 
polymeric materials along with relevant research outlooks are thoroughly addressed in 
this thesis. It is explained that in spite of all efforts, a framework for dynamic bridging 
of microstructure evolutions to macroscopic models had been hindered so far. 

In this PhD research, a theoretical framework was developed based on well-credited 
mesoscopic dissipative particle dynamics (DPD) models in order to propose a solution 
to this problem. First, the dynamic conformation change of linear polymer chains in 
response to startup of a steady shear flow was investigated. Second, the orientation 
patterns of anisometric layered silicate particles were studied under various shear 
flows. The influence of the interactions between layered silicates and polymer chains 
on the orientation process was carefully explored. Finally, the results of these works 
were incorporated to develop DPD models in order to build an upscaling method for 
the mesoscopic orientation patterns to the macroscopic flows. This upscaling method 
was tested successfully against the available standard orientation models from the 
literature. In this strategy, the trajectories of the orientation process of weakly-
interacting layered silicates are parametrized as a function of the applied shear strain 
instead of the time, based on the experiments which propose strain-dependent rather 
than time-dependent structural evolutions in such non-Brownian materials. Benefitting 
from the notion that the orientation kinetics is simply the rate of change with respect 
to strain rather than time, the applied strain was selected to pass the orientation 
parameters to an upper scale through a simple combination of affine and nonaffine 
deformations. This combination was pictured in its simplest form to be a random 
mixing of DPD unit cells (simulating nonaffine deformations) in a larger cell which 
distributes an affine deformation over the unit cells. It was noted that this strategy 
could be used to perform multiscale simulations of orientation process provided that 
the unit cells represent a precise description of the interactions between the 
components. A comparison of this methodology with the strain reduction factor model 
showed the success of the multiscale simulation of the evolution of orientation 
parameters against the applied shear strain. It was also shown that the method fails to 
capture the microstructure evolutions if the unit cells do not provide an accurate 
representation of the material. The remaining research challenges which must be 
overcome in order to improve, extend, and generalize the developed multiscale 
algorithm were addressed before closing the discussion. 

Keywords: computer simulations, computational methods, dissipative particle 
dynamics, multiscale modelling, hierarchical structures, polymer nanocomposite, 
layered silicate, microstructure evolution, morphology, orientation, flow field 
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1. Introduction 

1.1 Motivations and Goals 

It is well-established that the development of PNCs relies largely on our understanding of the 
structure–property relationship of the materials which requires a multiscale model to predict 
the material properties from the information of particle properties, molecular structure, 
molecular interactions and mesoscale morphology [229]. The current research in modelling 
and simulation of PNCs is largely limited to individual length and time scale. However, it 
should be noted that some efforts have recently been made to develop multiscale strategies 
for predicting the multiscale level of structure, properties, and processing performance of 
PNCs based on nanoparticle reinforcement [9, 52, 58, 75, 106, 166, 229]. 

The main challenge for PNCs is to predict accurately their hierarchical structures and 
behaviors and to capture the phenomena on length scales that span typically 5 – 6 orders of 
magnitude and time scales that can span a dozen orders of magnitude. For example, a clay 
particle with a diameter of 0.5 mm and 100 layers would have about 85 million atoms. If 
such a particle is dispersed into polymer matrix to form PNCs containing 5 % of clay in 
weight, the system would then have about 3 billion of atoms. Thus, it is too large for 
classical molecular dynamics (MD) and enormously too large for quantum mechanics (QM). 
Moreover, the observable properties of the materials depend on a hierarchy of structures, 
including chemical details at the atomistic level, individual chains, microscopic features 
involving aggregates of chains and clusters of clay platelets, up to continuum phenomena at 
the macroscale. As a result, the complete description of a PNC typically requires a wide 
range of length scales from the chemical bond, at around one angstrom in length, up to 
chain aggregates extending for many hundreds of angstroms and beyond. There is also a 
wide range of time scales, with chemical bond vibrations occurring over tens of 
femtoseconds and, at the other extreme, collective motions of many chains taking seconds 
or much longer. From this point of view, new strategies for multiscale modelling and 
simulation are essential to predict accurately the physical/chemical properties and material 
behavior which links the methods from microscale to mesoscale and macroscale levels. 

With the exception of isolated instances, most of the studies so far have primarily dealt with 
the studies and developments related to the equilibrium aspects of polymer–nanoparticle 
mixtures. However, nonequilibrium effects resulting from filler aggregation and/or external 
fields (such as stress fields involved in the extrusion processing of PNCs) are important for 
many applications of PNCs. The time and length scales which can be probed through 
present-day computer simulations do not necessarily overlap with experimental regimes. 
Moreover, issues unique to PNCs, such as the anisotropy of the fillers, potentially long-
ranged interparticle interactions (mediated by the polymers), and the dynamical and 
rheological response of the polymer matrix, do not have direct counterparts in the 
composites literature pertinent to micron sized and larger particles. Hence, there is a need 
for the development of appropriate theoretical models and computational frameworks which 
can enable the study of nonequilibrium issues as well as the influence of external fields on 
the structure and dispersion of nanoparticles in polymer matrices. 
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The setting up and performing of a multiscale simulation is however difficult when it comes 
to dynamics and rheology of PNCs. Among the multiscale methods, the concurrent approach 
is severely limited when it comes to simulating flow problems because of the fact that these 
methods often necessitate extreme computational costs [126]. For the adaptive resolution 
schemes on the other hand, one should note that the method is fundamentally developed for 
quiescent conditions and the application of flow is yet to be added to these schemes. Even 
for the simulation of equilibrium conditions, these schemes show noticeable discontinuities in 
pressure and density profiles at the transition region between the high and low resolutions 
[156]. Finally, the sequential methods in their current form offer the possibility to 
conveniently couple several methods and benefit from their advantages. However, it should 
be emphasized that this coupling often means a single-step passing of information from one 
method to the other [22, 23, 183, 188, 203, 207, 232]. Thus, for a dynamic simulation of 
microstructure evolutions under flow an innovative strategy is needed to efficiently generate 
and pass the information between the mesoscale and macroscale models. Such a strategy 
principally should utilize a hybrid scheme based on elements from both sequential and 
concurrent approaches to perform the message-passing. In this PhD research, I focus on 
developing an efficient algorithm for accelerated passing of microstructure information and 
flow characteristics between the meso and macro scales. 

1.2 Hypothesis and Approach 

It has been shown before that the dissipative particle dynamics (DPD) method is an 
adequate mesoscopic model to represent both thermodynamic and hydrodynamic 
interactions in soft matter [79, 80, 118]. In this research, it is assumed that DPD provides a 
natural flexibility in the design and testing of PNCs with various initial configurations. The 
main hypothesis of the present thesis is that DPD is also capable to capture the 
microstructure evolutions of PNCs correctly during an applied flow field. For this idea to be 
true, it is necessary that the constituents of the model PNCs, i.e. polymer chains and 
nanoparticles, are simulated both accurately and efficiently. Therefore, an important 
objective of this research is to ensure such criteria and test them for the PNC components 
separately and collectively. The multiscale strategy can only then be constructed on such 
mesoscopic models. In addition, the main idea in the scale bridging approach of the 
developed multiscale method is that the microstructure evolutions in non-Brownian PNCs are 
strain-dependent rather than time-dependent. This hypothesis can reduce the amount of 
simulations significantly and allow for a fast data transfer between mesoscopic and 
macroscopic models. 

In this thesis, I will focus on the formation of anisotropic (preferentially oriented) structures 
of layered silicate nanoparticles within the polymer matrix. For a PNC system, the dynamics 
and orientation of the major constituent, the polymer chains, are critically important to the 
overall microstructure developments of the entire system including the nanoparticles. 
Therefore, it is necessary not only to determine their response to the application of shear 
flows, but also to examine the limitations of the applied modelling technique (i.e. DPD). For 
this reason, DPD models of monodispersed and polydispersed linear polymer chains were 
simulated under shear flows and their results were tested with results from literature. This 
work is described in details in the paper titled “Coupled Orientation and Stretching of Chains 
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in Mesoscale Models of Polydisperse Linear Polymers in Startup of Steady Shear Flow 
Simulations.” The results of this work showed that while the standard DPD models are 
capable to model the dynamics of polymer chains, they need to be improved in future 
research. 

In addition to the dynamics of polymer chains, the interactions between polymer chains and 
layered silicate particles determine the final morphology of the PNCs. Consequently, it was 
necessary to study the influence of these interactions on the orientation patterns developed 
under shear flows in DPD models. A comprehensive study was conducted in order to 
investigate the orientation of layered silicates in uncompatibilized and compatibilized polymer 
melts. The details are explained in the paper titled “Orientation of Anisometric Layered 
Silicate Particles in Uncompatibilized and Compatibilized Polymer Melts Under Shear Flow: A 
Dissipative Particle Dynamics Study.” It was shown that the DPD models were capable to 
correctly predict the morphological evolutions under a variety of shear flows. 

Finally, a simple but effective upscaling strategy was proposed based on previous 
experiments which made it possible to pass the orientation information from the mesoscale 
to the macroscale. In a previous study, a method based on optimization of the action 
functional was proposed to extend the time scale of MD simulations by several orders of 
magnitude [49]. In this method, instead of parameterizing the trajectory as a function of 
time, the trajectory is parametrized as a function of length. Inspired by this method, a 
strategy was developed in this thesis in which the trajectories of the orientation process of 
weakly-interacting layered silicates (the particles have little influence on the movements of 
each other) were parametrized as a function of the applied shear strain instead of the time 
[76]. The idea of using the applied strain was based on the experiments which propose 
strain-dependent rather than time-dependent structural evolutions in such non-Brownian 
materials [109, 112, 133, 189]. Benefitting from the notion that the orientation kinetics is 
simply the rate of change with respect to strain rather than time [205], the applied strain is 
selected to pass the orientation parameters to an upper scale through a simple combination 
of affine and nonaffine deformations. This combination was pictured in its simplest form to 
be a random mixing of DPD unit cells (simulating nonaffine deformations) in a larger cell 
which distributes an affine deformation among the unit cells. It was noted that this strategy 
could be used to perform multiscale simulations of orientation process, provided that the unit 
cells represent a precise description of the interactions between the components [76]. A 
comparison of this methodology with strain reduction factor model (with coefficients based 
on previous experiments from others [134, 179]) was used to examine the success of the 
multiscale simulation of the evolution of orientation parameters against the applied shear 
strain. It was also shown that the method fails to capture the microstructure evolutions if the 
unit cells do not provide an accurate representation of the material, for instance in the case 
of strongly-interacting PNCs. Further details of this technique are provided in the paper titled 
“Dissipative Particle Dynamics Models of Orientation of Weakly-Interacting Anisometric 
Silicate Particles in Polymer Melts under Shear Flow: Comparison with the Standard 
Orientation Models.” 

Before closing this section, it should be noted that the simulations in this research were 
conducted on a 12-core Intel® Xeon CPU workstation with a calculation frequency of 
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2.80 GHz. The simulations were running for approximately 6 months (combined) in order to 
obtain the required results. The computer was equipped with 48 GB of DDR3 RAM. 

1.3 Outline of the Thesis 

In this introduction, an overview to the relevant topics of the thesis is provided. I will start 
by explaining the necessity of multiscale simulation and modelling of materials with emphasis 
on PNCs. The interdependent relation of morphology and rheology is highlighted and the 
standard simulation and modelling techniques of the morphology at the mesoscale are 
explained. Here, I have restricted the mesoscopic simulation techniques to DPD due to its 
use in this thesis. Then, the most important characteristics of multiscale simulation 
techniques are outlined along with proper examples of their use in polymer science. It should 
be noted here that this introduction is, for the most part, a rework of my published research 
papers which follow in the next chapters. The purpose of this rework is to structure the 
thesis appropriately while briefly introducing the most important topics relevant to this 
research. With this declaration, I wish to avoid any ethical conflicts. 

The rest of the thesis consists of five papers and a conclusions section which are categorized 
in three main chapters. In the first chapter, Fundamental Concepts in Multiscale Simulations 
of Polymer Systems, an exhaustive review of the simulation methods in polymeric materials 
is provided with emphasis on PNCs. This paper titled “A Review of Multiscale Computational 
Methods in Polymeric Materials” presents the most up-to-date and comprehensive literature 
review on the topic of multiscale modelling techniques. In this review, the state of the art is 
addressed and the results of the present PhD research are also included. This will help to 
emphasize clearly on the progress resulted by this study in the vast field of multiscale 
modelling and simulation. Furthermore, this research enabled us to find appropriate 
streamlines in this field and spot the advantages and shortcomings of available methods. 
Afterwards, I briefly address the current possibilities in the multiscale simulation of PNCs in 
processing in the paper titled “Multiscale Simulation of Polymer Nanocomposites in 
Processing: Challenges and Outlooks”. In this paper, it is shown that a dynamic 
microstructure development under flow can be envisioned using DPD models. 

The second chapter, Development of Suitable Methods for Multiscale Simulation of 
Polymer/Layered Silicate Nanocomposites Under Shear Flow, includes three research papers. 
It deals with the development of a multiscale method based on DPD simulations which 
accounts for a dynamic evolution of orientation patterns on PNCs. The first paper, “Coupled 
Orientation and Stretching of Chains in Mesoscale Models of Polydisperse Linear Polymers in 
Startup of Steady Shear Flow Simulations”, focuses on the major constituent in a PNC, i.e. 
the polymer chains. It investigates the dynamic conformation change of linear polymer 
chains in response to startup of a steady shear flow. Then, the orientation patterns of 
anisometric layered silicates are thoroughly studied in the second paper titled “Orientation of 
Anisometric Layered Silicate Particles in Uncompatibilized and Compatibilized Polymer Melts 
Under Shear Flow: A Dissipative Particle Dynamics Study”. In this paper, the role of 
interactions between layered silicates and polymer chains on the orientation dynamics are 
explored. Finally, the results of these works are incorporated to develop well-credited DPD 
models in order to build an upscaling method for the mesoscopic orientation patterns to the 
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macroscopic flows. In the paper “Dissipative Particle Dynamics Models of Orientation of 
Weakly-Interacting Anisometric Silicate Particles in Polymer Melts under Shear Flow: 
Comparison with the Standard Orientation Models”, this upscaling method is introduced and 
tested successfully against the available standard orientation models from the literature. 

At the end of the thesis, a short chapter is dedicated in the third chapter to address the main 
outcomes of this study, as well as the remaining challenges which must be overcome in 
order to improve, extend, and generalize the developed multiscale algorithm. 

2. Multiscale Modelling in Materials Science 

Some of the most fascinating problems in all fields of materials science involve multiple 
spatial or temporal scales. Processes that occur at a certain scale govern the behavior of the 
system across several (usually larger) scales. The notion and practice of multiscale modelling 
can be traced back to the beginning of modern science. In many problems of materials 
science this notion arises quite naturally. The ultimate microscopic constituents of materials 
are atoms, and the interactions among them at the microscopic level (on the order of 
nanometers and femtoseconds) determine the behavior of the material at the macroscopic 
scale (on the order of centimeters and milliseconds and beyond), with the latter being the 
scale of interest for technological applications. Therefore, the idea of modelling materials 
across several characteristic length and timescales has obvious appeal as a tool of potentially 
great effect on technological innovation. The advent of ever-more-powerful computers that 
can handle such simulations provides further argument that such an approach can address 
realistic situations and can be a worthy partner to the traditional approaches of theory and 
experiment. 

The challenge in modern simulations of materials science and engineering is that real 
materials usually exhibit phenomena on one scale that require a very accurate and 
computationally expensive description of phenomena on another scale for which a coarser 
description is satisfactory and, in fact, necessary to avoid prohibitively large computations. 
Since a single-scale modelling method would not suffice to describe the entire system, the 
goal becomes to develop models that combine different methods specialized at different 
scales, effectively distributing the computational power where it is needed most. There is 
great hope that a multiscale approach is the answer to such a quest, and it is by definition 
an approach that takes advantage of the multiple scales present in a material and builds a 
unified description by linking the models at the different scales. At the same time, the unified 
approach can retain the accuracy that the individual approaches provide in their respective 
scales, allowing, for instance, for very high accuracy in particular regions of the systems 
where it is required. As effective theories, multiscale models are also useful for gaining 
physical insight that might not be apparent from brute-force computations. Specifically, a 
multiscale model can be an effective way to facilitate the reduction and analysis of data, 
which sometimes can be overwhelming. Overall, the goal of multiscale approaches is to 
predict the performance and behavior of materials across all relevant length and timescales, 
striving to achieve a balance among accuracy, efficiency, and realistic description. 
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2.1 Multiscale Modelling of PNCs 

The incorporation of nanoparticles in polymers has attracted substantial academic and 
industrial interest due to the dramatic improvements in the properties of the matrix 
polymers. However, from the experimental point of view, a thorough structural 
characterization and a tailored fabrication of these hybrid nanostructure materials remain a 
grand challenge. Nanomaterials are both exciting and puzzling at the same time, as they 
involve components at “uncommon” characteristic scales at which conventional theories may 
fail. Understanding the behavior of materials at different scales is important both from the 
standpoint of basic science and future applications. The development of such materials is still 
in its infancy and, as such, largely empirical. Thus, a fine degree of control of the resulting 
macroscopic properties cannot be achieved so far. Moreover, as the ultimate properties of 
these hybrid systems commonly depend on their structure at the nanoscale, it is of particular 
interest to establish the mesoscopic morphology of the final composite and to link this 
characteristic to the material performance. To this purpose, the development of theories and 
the application of computer simulation techniques have opened avenues for the design of 
these materials, and the a priori prediction/optimization of their structures and properties. 

The addition of only 1 - 10 vol% nanoparticles has been shown to enhance various 
properties of the neat polymers [30, 37, 67, 73, 119, 122, 136]. These changes are often 
introduced additionally into the polymer matrix while many advantages of the neat polymer 
such as high processability are still preserved [103, 178]. Therefore, PNCs are ideal 
candidates for multiple applications like medical devices, aerospace applications, automobile 
industries, and coatings. Experience has shown that, besides the filler content, the property 
enhancement in PNCs is directly linked to the nanoparticles arrangement and dispersion 
[103, 149]. A precise morphology control is of great significance in PNCs, otherwise the full 
property potential of these materials could not be achieved. The fact that many of the 
common nanoparticles possess strong van der Waals interactions promotes their aggregation 
and consequently diminishes their effectiveness. On the other hand, the role of polymer-
particle interactions could either facilitate or complicate the aggregation process. Moreover, 
the geometrical characteristics of the nanoparticles, such as aspect ratio and structural 
flexibility, add to the complexity of their impact on the properties since it can alter surface 
energies as well as surface-to-volume ratio [127]. Therefore, the structural characterization 
and the precise evaluation of the fabrication of PNCs are crucial to achieve the desired 
properties. Many studies are devoted to understand the effects of processing conditions on 
the final microstructure and the resulting properties of the PNCs [73, 74, 103, 110, 127, 136, 
149, 184]. The multiscale nature of PNCs simply divulges, if one considers the interplaying 
role of the fabrication stage with macroscopic characteristics and the aforementioned 
submicron phenomena involved in the final performance of PNCs. 

In order to find appropriate predictive tools, several theories and computational methods 
were developed which could introduce new possibilities to design and optimize the structures 
and properties of these materials. At present, no single theory or computational method can 
cover various scales involved in PNCs. As a result, the bridging of length and time scales via 
a combination of various methods in a multiscale simulation framework is considered to be 
one of the most important topics in computational materials research. The resulting 
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multiscale method is preferably supposed to predict macroscopic properties of PNCs from 
fundamental molecular processes. In order to build a multiscale simulation, often models and 
theories from four characteristics length and time scales are combined. They are roughly 
divided into the following scales. 

1. The quantum scale (~10-10 m, ~10-12 s): The nuclei and electrons are the particles of 
interest at this scale and quantum mechanics (QM) methods are used to model their state. 
The possibility to study the phenomena associated with formation and rupture of chemical 
bonds, the changes in electrons configurations, and other similar phenomena are typical 
advantages of modelling at quantum scale. 

2. The atomistic scale (~10-9 m, ~10-9 - 10-6 s): All atoms or small groups of atoms are 
explicitly represented and treated by single sites in atomistic simulations. The potential 
energy of the system is estimated using a number of different interactions which are 
collectively known as force fields. The typical interactions include the bonded and nonbonded 
interactions. The bonded interactions often consist of the bond length, the bond angle, and 
the bond dihedral potentials. The most typically used nonbonded interactions are Coulomb 
interactions and dispersion forces. MD and Monte Carlo (MC) simulation techniques are often 
used at this level to model atomic processes involving a larger group of atoms compared 
with QM. 

3. The mesoscopic scale (~10-6 m, ~10-6 - 10-3 s): At mesoscopic scale, a molecule is 
usually described with a field or a microscopic particle generally known as a bead. In this 
way the molecular details are introduced implicitly which provides the opportunity to 
simulate the phenomena on longer length and time scales hardly accessible by atomistic 
methods. A good example for the field-based description of polymer systems is the Flory-
Huggins model for the free energy of mixing in which the details of the system are summed 
up in model parameters. On the other hand, in particle-based models collections of particles 
are accumulated in beads through a coarse-graining procedure. The interactions between 
the beads are then used to characterize the system. Various methods have been developed 
to study the mesoscale structures in polymeric materials including Brownian dynamics (BD), 
dissipative particle dynamics (DPD), lattice Boltzmann (LB), time-dependent Ginzburg-
Landau (TDGL) theory, and dynamic density functional theory (DDFT). 

4. The macroscopic scale (~10-3 m, ~1 s): At this level, the physical system is 
considered as a continuous medium and the discrete atomic and molecular structures and 
their influence on the overall behavior of the system are ignored. The behavior of such a 
system is governed by constitutive laws which are often coupled with conservation laws to 
simulate various phenomena. All functions such as velocity and stress components are 
continuous except at a finite number of locations separating regions of continuity. The 
fundamental assumption at this scale is in representing a heterogeneous material as an 
equivalent homogeneous medium. The most important methods used to simulate systems at 
this scale are finite difference method (FDM), finite element method (FEM), and finite volume 
method (FVM). 

The success of a multiscale simulation lies in an appropriate combination of methods from 
these scales in order to model the material as realistically as possible. This task is often 
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extremely complicated and necessitates a different strategy for every set of 
material/phenomena at hand. 

2.2 Background and Significance of Polymer/Layered Silicate 

Nanocomposites 

In the vast field of nanotechnology, polymer materials reinforced with nanofillers such as 
layered silicates (clay), have become a prominent area of current research and development. 
Generally speaking, nanocomposites are commonly defined as materials consisting of two or 
more dissimilar materials with well-defined interfaces, at least one of the materials being 
nanostructured (having structural features ranging in size from 1 to a few 100 nm) in one, 
two, or three dimensions. The same refers to the spacing between the networks and layers 
formed by polymeric and inorganic components. Depending on the strength of the interfacial 
tension between the polymeric matrix and the layered silicate (modified or not), which 
defines the extent of the separation of the silicate layers, polymer/layered silicate 
nanocomposites (PLNs) can be categorized into two types: (i) intercalated nanocomposites, 
in which the polymer chains are inserted between the layers of the clay such that the 
interlayer spacing is expanded, but the layers still bear a well-defined relationship to each 
other, and (ii) exfoliated nanocomposites, in which the layers of the clay have been 
completely separated, and the individual mineral sheets are randomly distributed throughout 
the polymeric matrix. A schematic representation of these structures is shown in Figure 1. 
The best performance of PLNs, regarding some properties such as the mechanical behavior, 
is generally achieved for systems characterized by a high degree of clay exfoliation within 
the polymeric matrix. 

 

Figure 1: Schematic representation of different types of PLNs (a) intercalated, and (b) 
exfoliated structures. 

The incorporation of non-spherical particles in PLNs has led to the development of advanced 
materials with anisometric properties [1, 30, 149, 184]. PLNs particularly exhibit superior 
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improvement in mechanical properties [67, 71, 119, 122, 220, 226], gas-barrier properties 
[37, 190], solvent resistance [149], and reduced flammability [67, 136, 164, 224] relative to 
their unfilled polymer matrices. This allows for the light-weight PLN to be processed by 
conventional techniques in much the same way as unfilled polymers. However, a well-
dispersed microstructure of tactoids, i.e. the exfoliated structure, must be ensured in order 
to achieve the optimal performance of PLNs [30]. Unfortunately, it is indeed difficult to have 
such structures due to (i) the large aspect ratio of silicate layers, (ii) slow diffusion kinetics of 
polymer chains inside narrow silicate galleries, and (iii) the unfavorable mixing energy of 
silicate particles and polymer chains. Consequently, the fabrication of stable microstructures 
in PLNs has been the topic of many experimental and theoretical studies. 

Melt intercalation is a widely-used commercial method of PLN production which relies on the 
mixing ability of silicate layers with polymer melt. This processing technique is the only 
method addressed in this work. Many approaches have been taken in order to promote the 
intermixing of silicate and polymers. This includes modification of the silicate surface [35, 
123, 220], changing the molecular structure of the polymer [223], and incorporation of 
compatibilizing molecules in the matrix [13, 31, 115]. In compatibilized PLNs, the silicate 
layers are usually modified with surfactant molecules such as alkylammonium. This promotes 
the compatibility of the layers with the compatibilizing molecules. The compatibilizing 
molecules could be polymers such as maleic anhydride grafted polypropylene (MA-g-PP). The 
improved compatibility leads to the improved dispersion of silicate layers in the polymer 
matrix. Such a mechanism is absent in uncompatibilized PLNs resulting in the formation of 
aggregated microstructures. The application of dispersive stresses of shear and/or 
extensional types is also found to help achieve finer dispersions [30, 195]. As a result, the 
evolution of microstructure under flow has always been an intriguing subject. 

The production of PLNs in an efficient and cost-effective manner poses significant 
challenges, which can be appreciated by considering the structure of the clay particles. 
Montmorillonite (MMT) is a prime example of the layered silicates commonly used in 
nanocomposites. These layers organize themselves to form stacks with a regular van der 
Waals gap in between them, called the interlayer region or gallery. Isomorphic substitution 
of some elements within the layers generates negative charges that are counter-balanced by 
alkali or alkaline earth metal cations situated in the interlayers. The lateral dimensions of 
these layers can vary from approximately 200 Å to several micrometers, depending on the 
particular composition of the silicate, while the spacing between the closely packed sheets is 
on the order of 1 nm, which is smaller than the radius of gyration of typical polymers, see 
Figure 2. Consequently, there is a large entropic barrier that inhibits the polymer’s 
penetrating this gap and becoming intermixed with the clay. 
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Figure 2: Schematic representation of hierarchical morphology and characteristic 
dimensions of clays in PLNs. 

To enhance polymer-clay interaction, a cation-exchange process is employed in which 
hydrophilic cations are exchanged by a surface modifier, usually selected from a group of 
organic substances having at least one alkyl group, most commonly quaternary ammonium 
salts. The role of this organic component in organosilicates is to lower the surface energy of 
the inorganic host and improve the wetting characteristic with the polymer. Intuitively, the 
nature and the structure of these “compatibilizers” determine the hydrophobicity of the 
silicate layers and hence their extent of exfoliation. 

Indeed, the real commercial production of such complex systems involves the application of 
severe external flow fields during the processing of the PLNs in order to facilitate the 
exfoliation through convective forces. Extrusion processing is undoubtedly a well-known 
mixing operation which can provide high production rates for industrial purposes. In an 
extruder, the coupling of multiple phenomena including the stress transport from the rotary 
screw to the material bulk as well as the instinctive thermodynamics of the system play a key 
role in the determination of the final microstructure of the PNC. Therefore, it is necessary to 
consider such interactive factors in the modelling and simulation of the extrusion processing 
of PNCs as indeed it is nowadays one of the most common processing machinery in the 
commercial production of the aforementioned systems. However, the complexity of the 
description of such systems which can take all the relevant phenomena into account has 
always hindered the research. 

During the processing of PLNs, the material experiences a variety of flow deformations which 
could cause translation, rotation, bending, and breaking of layered silicates. These 
phenomena influence the properties of the final part which are highly dependent on the 
microstructural characteristics and particles orientation. The modelling of spherical [194, 
195] and non-spherical suspensions such as fibers [168, 169] and sheets [54, 55], has been 
the subject of several publications over the past few decades. The mesoscopic standard 
orientation model is based on the Jeffery’s equation for the motion of a single fiber in an 
infinite Newtonian matrix [88]. Later, it was modified by Folgar and Tucker to account for 
fiber-fiber interactions [59]. Afterwards, Advani and Tucker improved it by the introduction 
of the second-order moment tensor of the probability density function for orientation [5]. 



‎2. Multiscale Modelling in Materials Science 

Ali Gooneie Montanuniversitaet Leoben 11 

More recently, various versions of this model have been developed to account for 
phenomena such as slow orientation kinetics [205] and semiflexibility of the fibers [138]. 

In recent years, the rapid development of the computer technology has made complicated 
numerical simulations possible [125, 180]. Computer simulations have made significant 
contributions to our understanding of shear-induced microstructural evolutions within the 
limitation of the model complexity and the accessible time and length scales [129, 193]. 
Detailed molecular simulations have shown great potential to model complex phenomena at 
an atomistic level [90, 172, 186, 202, 212]. Coarse-graining technique has been successfully 
applied to MD method in order to access longer time and length scales [11, 143 - 145]. 
Anderson et al. [7] utilized coarse-grained molecular dynamics (CGMD) to explore the 
intermolecular interactions that influence mesoscale morphology development in PLNs. 
Sinsawat et al. [185] also used CGMD to investigate aspects of the polymer matrix that 
promote the formation of intercalated or exfoliated structures. More recently, Kalra et al. 
[94] incorporated CGMD to study spherical nanoparticle dispersions in polymer melts under 
shear flows. Such studies have shown the capability of computer simulations to help 
distinguish the phenomena involved in the formation of microstructures in PNCs. 

The unique insights available through simulation of materials at a range of scales, from the 
quantum and molecular, via the mesoscale, to the finite element level, can produce a wealth 
of knowledge. It can significantly reduce the number of experiments, allowing products and 
processes to be optimized while permitting large numbers of candidate materials to be 
screened prior to production. Therefore, multiscale computational approaches covering all 
methods for each length and time scales can play an ever-increasing role in predicting and 
designing material properties, and guiding such experimental work as production and 
characterization. 

Several multiscale computational approaches, spanning different length/time scale domains 
have been proposed in recent years for the characterization of PLNs. Multiscale modelling 
has been shown to be a valuable tool for the characterization and/or prediction of 
macroscopic properties of PNCs with different fillers, such as layered clays, carbon and boron 
nanotubes, fibers, and spheres. In spite of these efforts devoted to the multiscale simulation 
of nanostructured systems, a thorough, systematic and comprehensive study dealing with 
multiscale modelling and simulations of PNCs covering all length scales with the final aim to 
study morphology phenomena and prediction of macroscopic effective property still exists. 

With the ambitious aim of filling this gap, recent efforts in nanocomposites simulation were 
initially concerned with binding energy evaluations for well-characterized polymer/clay 
systems using atomistic MD methods. At the same time, some researches were focused on 
the development and application of mesoscale simulation recipes to polymer blends and 
nanocomposites morphology investigations on one side, and on the integration of these tools 
with both lower scales and higher scales on the other. 

Central to the above described multiscale modelling recipe is the mesoscopic level where 
material time-space spans from nanometers to micrometers in length scale and investigates 
relaxation phenomena up to microseconds in the time domain. In mesoscale modelling, the 
familiar atomistic description of the molecules is coarse grained, leading to beads of material 
(representing the collective degree of freedom of many atoms). These beads interact 
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through pair-potentials which capture the underlying interactions of the constituent atoms. 
The primary output of mesoscale modelling is material phase morphologies with size up to 
the micron level. These morphologies are of interest per se, although little prediction of the 
material properties can be obtained with the mesoscale tools. FEM then comes into play, and 
the material properties of interest can be calculated accordingly by mapping the material 
structures formed at the nano/micrometer scale onto the finite element grid and coupling 
this information with the properties of the pure components that comprise the complex 
system. Using standard solvers, the FEM code can then calculate the properties of the 
realistic structured material. 

In a comprehensive computational procedure to investigate such complex systems, the 
interactions between all individual components (filler, polymer and surface 
modifier/compatibilizer) for each nanocomposite, which occur at a molecular level, must be 
calculated using atomistic simulations as a first step. Similarly, using other MD based 
protocols, the spacings of the clay stacks in PLNs have to be derived. Secondly, the 
information obtained from the atomistic simulations must be expanded by employing 
mesoscale models for the prediction of density profiles and system morphologies. To this 
purpose, the MD data should be mapped onto the corresponding mesoscale models via the 
respective interaction parameters, and the results generated at both length scales have to be 
then compared for consistency. Lastly, the density profiles and the morphologies resulting 
from the mesoscale simulations must be imported into a FEM code, and some characteristic 
macroscopic properties of these systems may be predicted as functions of filler loading 
and/or a given degree of dispersion in PLNs and later compared with the corresponding 
experimental values. 

In this work, an attempt is made to overcome such complications with reasonable 
assumptions which can provide the researchers with a well-defined theme for multiscale 
modelling and simulation of PLNs experiencing external shearing flows. Although several 
issues must be addressed to optimize the production of PLNs, of foremost importance is to 
identify conditions that enable a dynamic passing of morphological information between the 
scales. 

3. Morphology of PNCs 

The properties of PNCs are highly related to their overall morphologies. For example, in clay-
based PNCs, the optimal mechanical performance is generally obtained from exfoliated 
structure other than intercalated structure [30, 103, 184]. The morphology of PNCs depends 
on not only the physics of the components and the interactions among the components but 
also the volume fraction of nanoparticles and processing conditions [184]. Therefore, it is 
important to understand the effects of various factors on the macroscopic morphology of the 
materials, such as the size and shape of nanoparticles, the clustering of nanoparticles, 
polymer architecture, hydrodynamic interactions, and eventually establish the correlations 
between the morphology of the resulting composites and their properties, for instance, 
mechanical properties, gas permeability, electrical conductivity, and rheology. 

The latter is critically important due to the fact that it has an interchangeable relation with 
the morphology and microstructure of PNCs [73, 74, 109, 112, 133, 184, 189]. There are a 
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number of simulations in the literature focusing on this relation [6, 229]. For instance, Paul 
and co-workers [44, 61, 62] examined the effects of polymer rheology and processing 
conditions on the formation of PNCs via melt intercalation processing. Simulation techniques 
are particularly useful when unveiling the physical origins of certain rheological behaviors of 
PNCs [6, 229]. The origins of linear viscoelasticity of PNCs [163], the shear-rate dependence 
of viscosity of PNCs [93], and the dispersion of nanoparticles under applied flows [94, 193] 
are some examples for this application. 

3.1 Rheological Orientation Models 

It is a well-known fact that the local orientation of anisometric particles determines the local 
mechanical and physical properties in a reinforced composite material [1, 21]. Thus, any 
useful prediction of the structural performance or dimensional accuracy of the final part 
necessitates a precise prediction of the flow-induced particle orientation. Consequently, it is 
of great significance to be able to predict the orientation patterns which arise during 
processing of such complex materials. For this reason, several particle orientation models 
have been developed and combined with traditional continuum calculations to simulate 
injection molding [12, 139], compression molding [4, 221], and extrusion processes [8]. 

The standard orientation model is based on Jeffery’s equation for the motion of an ellipsoid 
[88]. This model is applicable to dilute suspensions and has been used in most orientation 
models to account for the hydrodynamic contributions in orientation. If the unit vector 
directed along the fiber axis, p, is used to denote the fiber orientation, the time derivative of 
this vector, ṗ, following the particle can be written as 

p ̇ = W∙p + λ(D∙p - D:ppp), ( 1 ) 

where W =‎ 1
2 (L -‎LT) is the vorticity tensor and D =‎ 1

2 (L +‎LT) is the rate-of-deformation 

tensor. L represents the velocity gradient tensor with components Lij‎=‎
∂vi
∂xj

 where vi is the 

component of velocity in xj direction. λ‎=‎ (r2 -‎1) (r2‎+‎1)⁄  is a constant that depends on the 

particle aspect ratio, r. In Jeffery’s model, the first term corresponds to the fiber rotation due 
to the vorticity of the flow. The second term represents a rotation of the fiber axis toward 
the direction of maximum elongation rate. 

Orientation calculations often use the second- and fourth-order orientation tensors, A2 and 
A4 respectively, introduced by Advani and Tucker [5]. These tensors are given by 

A2 = ∮ ppȥ(p)dp          and          A4 = ∮ ppppȥ(p)dp. ( 2 ) 

Here, ȥ(p) is the probability density function for fiber orientation and the integral is 
performed over all orientation states. In order to model concentrated suspensions of non-
Brownian particles, Folgar and Tucker [60] added the diffusion term to the Jeffery’s 
equation. The Folgar-Tucker (FT) model for the orientation change in terms of the 
orientation tensors can be written as 

Ȧ2 = W∙A - A∙W + λ(D∙A + A∙D - 2A4:D) + 2ωIγ̇(I - 3A). ( 3 ) 

In this equation, Ȧ2 is the material derivative of the second-order orientation tensor. ωI is a 
phenomenological coefficient called the interaction coefficient which models the 
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randomization effect of interactions between particles. γ̇‎=‎ሺ2D:Dሻ12 is the scalar magnitude of 
D typically known as the shear-rate in simple shear flows. The last term in this equation 
represents an isotropic rotary diffusion which models the effect of particle-particle 
interactions on the orientation. A consequence of adding this term to the orientation model is 
that the steady orientation state for large strains does not necessarily depict a perfect 
alignment. 

It has been shown that the kinetics of orientation in materials with anisometric particles such 
as fibers or layered silicates is significantly slower than FT model predicts [179]. To 
overcome this problem and provide a better prediction for the experimental results, a simple 
strategy is to modify the right-hand side of equation ( 3 ) by some factor k<1 [87] 

Ȧ2‎=‎k[W∙A -‎A∙W +‎λ(D∙A +‎A∙D -‎2A4:D)‎+‎2ωIγ̇(I -‎3A)]. ( 4 ) 

In this model, the 1/k is often referred to as the strain reduction factor. The idea behind this 
model, known as the SRF model, was also proved by the work of Sepehr et al. [179] who 
proposed the slip coefficient k to empirically modify the FT model. They suggest that the 
shear strain applied on the fibers γs after time t is γs‎=‎kγ̇t. For short fibers in a polypropylene 

(PP) matrix, they report slip coefficient values in the range of 0.33 to 0.38. 

On a mesoscopic level, Rajabian et al. [168 - 170] developed a rheological model for ellipsoid 
particles in viscoelastic polymeric fluids by adding a dissipation function to the Jeffery’s 
model. They described such dissipations as a function of the overall free energy with respect 
to the conformation tensors ΦA2 and ΦC. The conformation tensors are further formulated 

utilizing two second-order symmetric structure tensors A2 and C, i.e. the orientation tensor 
of the particles (the same as equation ( 2 ) by Advani and Tucker [5]) and the tensor 
describing the extension of polymer molecules, respectively. The evolutions of the 
components of these structure tensors with time is then given by 

χ̇ij‎=‎χikWkj - Wikχkj + λ(χikDkj + Dikχkj - 2Dklχijkl) - 2
3

ሺDlmDmlሻ12‎Λp ቀχilΦχlj  + χljΦχilቁ 

+ 4
9

ሺDlmDmlሻ12‎ΛpχijΦχkk, and 
( 5 ) 

ω̇ij‎=‎-ωjkWik - Wjkωik + ωjkDik + Djkωik - Λm ቀωkjΦωik + ωikΦωkjቁ. ( 6 ) 

The components of the conformation tensors are 

Φωij ‎=‎-
kψT
2

[nmωij-1 - nmb
1-trω

δij - ψpm(npnm)12(δij - χij)], and ( 7 ) 

Φχij ‎=‎-
kψT
2

[npχij-1 - ψpm(npnm)12(trω‎δij - ωij) - 2ψppnp(δij - χij)]. ( 8 ) 

In these equations, np‎=‎
4ϕ
d2l

 and nm‎=‎(1‎-‎ϕ)
ρN0
Mw

 where ϕ, l and d are the volume fraction, 

length and diameter of the particles, respectively. Mw and ρ are the molecular weight and 
density of the polymer and N0 is the Avogadro’s number. ψpm and ψpp are phenomenological 

parameters determined by experiments which denote the interactions between particle-
macromolecule and particle-particle pairs, respectively. Λp and Λm are the mobility 

parameters for the particles and macromolecules. The parameter b is defined by b‎=‎ 2HR0
2

kψT
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where H is the spring constant and R0 is the maximum spring length for the modelled 
polymer chains utilizing the finitely extensible nonlinear elastic (FENE) springs. Here, kψ is 
the Boltzmann’s constant and T is the absolute temperature. In the evolution equations, the 
initial conditions are the equilibrium solutions obtained by solving Φωij=‎0 and Φχij=‎0. The 

governing equations of this mesoscopic model (MM) can be readily solved in the case of an 
imposed flow. Moreover, the model is adaptable to nano-sized particles considering the fact 
that the model addresses the particle-macromolecule interactions in both the free energy 
and mobility coefficients. 

Although these models have proved to be efficient in the prediction of particle orientation, 
they cannot provide a detailed description of the system microstructure but only an average 
evaluation. Furthermore, the influence of aggregating and dispersing mechanisms on the 
formation of oriented structures (and vice versa) is not directly and dynamically included in 
these models. These limitations verify the importance of detailed computer simulations to 
study this field. 

3.2 Simulation at the Mesoscale 

Atomistic simulations of complex systems including polymeric materials provide a detailed 
picture of, for instance, the interactions between components and conformational dynamics. 
Such information is often missing in macroscale models. On the other hand, the description 
of hydrodynamic behavior is relatively straightforward to handle in macroscale methods 
while it is difficult and expensive to treat in atomistic models. Between the domains of these 
scale ranges, there is the intermediate mesoscopic scale which extends the time scale of 
atomistic methods. Simulating the wide range of time scales in a single atomistic model 
needs large-scale computational resources. Consequently, the various mesoscale methods 
are developed to link atomistic and macroscale techniques and compensate for their 
shortcomings. DPD is one such mesoscopic method which enables taking into account the 
influence of hydrodynamics on the morphology developments in PNCs. Here, the details of 
DPD are further discussed due to its indispensable role in this research. 

DPD is a relatively new mesoscopic particle simulation method proposed by Hoogerbrugge 
and Koelman in 1992 [142]. In its core, DPD is similar to MD except that the individual DPD 
particles, i.e. beads, represent the collective dynamic behavior of several molecules. This 
coarse-graining approach as well as softer interaction potentials between DPD beads allow 
for the simulation of dynamic phenomena over longer time scales [72, 79]. 

Benefiting from this advantage, Kim et al. [99] incorporated DPD in order to investigate the 
conformational behavior of a pH-responsive polymer and its effect on the permeability in 
PLNs. By the implementation of plane Couette flow with the Lees-Edwards periodic boundary 
conditions into DPD, the method has been widely used as the standard virtual rheometer in 
particle simulations to obtain steady-state shear properties. It has been utilized in many 
works to study the rheology of different systems including polymer solutions [230], 
surfactant solutions [124], entangled polymer melts [222], and suspensions [15, 28, 56, 
146]. While the method has proved promising in many systems, it still suffers from the 
intrinsic instabilities at very low or very high shear-rates and needs further improvements 
[56, 124]. 
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The rheology of dispersed particles in solutions or polymer melts has already been treated 
with DPD [15, 28, 146, 211]. The presence of non-spherical solid particles with complex 
geometries in the matrix usually leads to more difficult and time-consuming calculations. A 
common method to overcome such problems, the freezing technique, has been employed in 
several works [28]. In the freezing technique, a large solid particle is constructed out of 
smaller spherical particles by aggregating them as a rigid entity. While this approach has 
been shown to entail significant savings in computational costs, it loses an important physical 
characteristic of non-spherical particles with high aspect ratios, i.e. semiflexibility and 
bending of the particles. 

In standard DPD, each bead is subject to the sum of three central, pairwise, additive forces. 
For bead i with the mass mi and position vector ri, the Newton’s equation of motion 
becomes 

mi
d2ri
dt2

‎=‎∑ (Fijω‎+‎FijD‎+‎FijR)j , ( 9 ) 

in which Fijω, FijD, and FijR are respectively the conservative, the dissipative, and the random 

forces between bead i and its neighboring beads within a certain force cutoff radius rcut. 
These forces are defined as [79] 

Fijω‎=‎�ijȤij ቀ1-

rij
rcut

ቁ r̂ij, ( 10 ) 

FijD‎= -ξijȦD(rij)rij[(vi-vj)∙r̂ij]r̂ij, ( 11 ) 

FijR‎=‎σijȦR(rij)rijζijr̂ij. ( 12 ) 

Here, rij is the distance between the beads i and j, r̂ij is the unit vector pointing from the 

center of bead j to that of bead i, Ȥij equals 1 for beads with a distance less than rcut and 

equals 0 otherwise. vi and vj are the velocity vectors of the ith and jth beads, respectively. ζij 

is a Gaussian random number with zero mean and unit variance. �ij is the maximum 

repulsion between bead i and bead j.  ξij and σij are the friction coefficient and the noise 

amplitude between bead i and bead j, respectively. ȦD(rij) and ȦR(rij) are dissipative and 

random weight functions, respectively. DPD simulations often obey the fluctuation-
dissipation theorem in which one of the two weight functions fixes the other one [141]. This 
theory dictates that the random and dissipative terms must be administered in a particular 
way in order to maintain the correct Boltzmann distribution in equilibrium. As a consequent 
of this theory, one has 

ȦD(rij)‎= [ȦR(rij)]2, ( 13 ) 

σij2‎=‎2ξijkBT. ( 14 ) 

These relationships ensure an equilibrium distribution of bead velocities for thermodynamic 
equilibrium. In many studies, the weight functions are 

ȦD(rij)‎= [ȦR(rij)]2‎=‎Ȥij ቀ1-

rij
rcut

ቁ2. ( 15 ) 
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Due to the pairwise nature of the forces involved in DPD framework, all of the beads obey 
Newton’s third law [80]. As a result, the sum of all forces in the system vanishes. 
Furthermore, any given volume of beads in the system is only accelerated by the sum of all 
forces that cross its boundaries. This is the fundamental assumption which results in the 
Navier-Stocks equations. Consequently, DPD formulation conserves hydrodynamics [78 - 80]. 

At every time step during the simulation, the set of positions and velocities of the beads is 
updated utilizing the positions and velocities at the earlier time. In principle, all algebraic 
update algorithms from MD can be used in DPD. However, the dependence of forces on 
velocity in DPD complicates the algorithm. A common approach to solve this problem is to 
use a modified version of the velocity-Verlet algorithm [79, 209, 210]. For bead i with unit 
mass and the overall force fi over a short interval of time ∆t, the algorithm suggests 

riሺt+∆tሻ‎≈‎riሺtሻ +‎viሺtሻ‎∆t +‎ 12 fiሺtሻ(∆t)2, ( 16 ) 

ṽiሺt+∆tሻ‎≈‎viሺtሻ +‎λ‎fiሺtሻ‎∆t, ( 17 ) 

fiሺt+∆tሻ‎≈‎fi(riሺt+∆tሻ,ṽiሺt+∆tሻ), ( 18 ) 

viሺt+∆tሻ‎≈‎viሺtሻ +‎ 1
2
∆t‎(fiሺtሻ + fiሺt+∆tሻ). ( 19 ) 

In this algorithm, the velocity in the next time step is first estimated by a predictor method, 
i.e. ṽiሺt+∆tሻ, and then corrected in the last step, i.e. viሺt+∆tሻ. If the forces were independent 
of velocity, the actual velocity-Verlet algorithm would be recovered for λ‎=‎0.5. The 
parameter λ has been shown to affect the temperature in DPD simulations by Den Otter and 
Clarke [43]. Based on empirical observations, some authors suggest λ‎=‎0.65 would yield an 
accurate temperature control probably due to the cancellation of errors [80]. 

Recently, some modifications for standard DPD formulation have been proposed. Pan et al. 
[146] developed a new formulation of DPD in the spirit of fluid particle model in such a way 
that the dissipative forces were explicitly divided into central and shear components. It 
allowed them to redistribute and balance these forces to obtain the correct hydrodynamics in 
the study of Brownian colloidal suspensions. In order to capture the physics of entangled 
polymer melts, Yamanoi et al. [222] used entanglement forces instead of conservative forces 
and were able to reproduce both static and dynamic properties of linear polymer systems. 
Despite these attempts, the standard DPD has also shown that it is quite capable of 
simulating complex systems such as compatibilized and uncompatibilized PLNs under shear 
flows [76, 77]. Various polymeric systems have been successfully treated in the DPD 
framework such as blood rheology [57, 231], rheology of ultrahigh molecular weight 
polymers [65], lipid bilayers [68], adsorption characteristics of confined PE glycols dissolved 
in water [70], structure of thermoset polymers near an alumina substrate [91, 92], graphene 
structure [97], surfactant aggregation [111], photo degradation process of polymer coatings 
[120], distribution of nanoparticles in lamellar and hexagonal diblock copolymer matrices 
[121, 154], and electrical percolation threshold in packed assemblies of oriented fiber 
suspensions [167]. 
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4. Multiscale Strategies 

The ultimate purpose of a multiscale modelling is to predict the macroscopic behavior from 
the first principles at the quantum scale. Finding appropriate protocols for multiscale 
simulations is on the other hand a very challenging topic. This is due to the fact that 
polymeric materials often exhibit phenomena on one scale that require a precise description 
of other phenomena on another scale. Since none of the methods at individual scales would 
suffice alone to describe an entire multiscale system nor they are designed for such a 
purpose, the goal becomes to develop a proper combination of various methods specialized 
at different scales in a multiscale scheme. 

In general, there are three main categories of multiscale approaches: sequential, concurrent, 
and adaptive resolution schemes. The sequential approach links a hierarchy of computational 
methods in which the operative methods at a larger scale utilize the coarse-grained (CG) 
representations with information obtained from more detailed, smaller scale methods. 
Sequential approaches have also been referred to as serial, implicit, or message-passing 
methods. The second category of multiscale methods, the concurrent approaches, attempt 
to link methods appropriate at each scale together in a combined model, where the different 
scales of the system are considered concurrently and communicate with some type of 
handshaking procedure. Concurrent methods are also called parallel or explicit approaches. 
It is noteworthy that multiscale simulations could principally utilize a hybrid scheme based on 
elements from both sequential and concurrent approaches. More recently, a new concept for 
multiscale simulations has been developed which resembles some characteristics of 
concurrent methods. In this approach, single atoms or molecules can freely move in the 
simulation domain and switch smoothly from one resolution to another, for instance based 
on their spatial coordinates, within the same simulation run. Consequently, these methods 
are generally referred to as the adaptive resolution simulations. Details of such techniques 
are provided in the following sections. 

Finally, it should be noted that there are a number of advanced techniques which allow to 
extend the reach of a single-scale technique such as MD within certain conditions. Such 
methods are also reviewed briefly for the sake of completeness. 

4.1 Sequential Multiscale Approaches 

In sequential approaches, calculations are often performed at a smaller (finer) scale and the 
resulting data are passed to a model at a larger (coarser) scale after leaving out unnecessary 
details for instance by coarse-graining. In some cases the reverse procedure can also be 
done. A sequential multiscale model requires a complete knowledge of the fundamental 
processes involved at the finest scale to yield accurate information. Afterwards, it is also 
necessary to have a reliable strategy to introduce this information into the coarser scales. 
Such a strategy is often achieved by utilizing phenomenological theories which contain a few 
key parameters. These parameters are then used as the linking bridges between the scales 
when their values are determined from the calculated data of the finer scale simulations. 
This message-passing approach can be performed in sequence for multiple scales. It is 
obvious that in this sequential approach the accuracy of the simulations at the coarser scale 
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critically depends on the accuracy of the information from the finer scale simulations. 
Furthermore, the model at the coarser scale must be accurate itself so that it can provide 
reliable results. In this strategy, the relations between the scales must be invertible so that 
the results of the coarser scale simulations can be used to suggest the best choice for the 
finer scale parameters. 

The sequential approach has generally proved effective in systems where the different scales 
are weakly coupled. Therefore, appropriate systems for such a methodology often share a 
common character by which the large-scale variations appear homogeneous and quasi-static 
from the small-scale perspective. The majority of the multiscale simulations that have been 
actually incorporated in materials research are in fact sequential. In order to highlight the 
sequential message-passing in a range of polymeric systems, a few examples are outlined 
here. 

To predict the morphology and mechanical properties of mixtures of diblock copolymers and 
rod-like nanoparticles, Shou et al. [183] coupled the self-consistent field theory with DFT to 
provide input information for the lattice spring model (LSM). In their sequential algorithm, 
the spatial morphology of different phases is mapped onto the coarser-scale lattice and the 
force constants are derived for the three-dimensional network of springs. In similar 
approaches, other methods including LB [203], MC [232], and MD [188, 207], have also 
been used to produce appropriate morphological information for LSM in various systems 
including polymer blends and nanocomposite coatings. Recently, the classical fluids density 
functional theory was linked to MD simulations by Brown et al. [20] to study microphase 
separated states of both typical diblock and tapered diblock copolymers. The fluids density 
functional theory can predict the equilibrium density profiles of polymeric systems. The 
authors used the resulting density profiles of this theory to initialize MD simulations with a 
close to equilibrated structure and could speed up the simulations. In a study on the 
influence of self-assembly on the mechanical and electrical properties of PNCs, Buxton and 
Balazs [22, 23] used a combination of Cahn-Hillard theory and BD at the finer scale to 
produce morphological data. The data were later fed either into LSM in order to determine 
the mechanical properties, or into FDM to calculate the electrical conductivity. 

A number of studies have been devoted to characterize PLNs at different scales, spanning 
from quantum mechanical scale up to the macroscale. One such algorithm was developed by 
Suter et al. [198] starting at the parameter-free density functional level of quantum theory, 
transferring key data through atomistic classical MD to a CG representation. This sequential 
procedure allowed for the study of the intercalation of molten polymers, poly(ethylene 
glycol) and poly(vinyl alcohol), within MMT tactoids and the subsequent larger scale 
assembly of these bridged tactoids, see Figure 3. In a separate study, Scocchi et al. [176] 
used a multiscale method to evaluate rescaled self and mixed DPD energies from binding 
and nonbinding energies of MD simulations. In this manner, they were able to reproduce the 
maximum repulsion parameters for DPD simulations of polyamide (PA)/clay and PP/clay 
nanocomposites and reproduce experimentally observed microstructures. The same 
methodology was also applied in following works and was extended into the macroscale 
realm by linking to FEM in order to derive mechanical properties of PLNs as a function of the 
degree of exfoliation [150, 177]. 
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The most common serial transfer of information from a finer scale method to a coarser one 
can be envisioned in the systematic development of CG models of polymer systems. The CG 
models are often designed to reproduce the configurations of more detailed descriptions in 
atomistic simulations as accurately as possible. In this way, a CG model with much less 
degrees of freedom is achieved which can access longer time scales appropriate for instance 
in dynamics simulations. It is worthy to note that the final conformations of such CG 
simulations could be translated back to its atomistic details based on a specific backmapping 
algorithm. These sequential procedures represent general characteristics of sequential 
multiscale approaches and could also be extended to more complex systems. 

 

Figure 3: Pictorial overview of the intercalation of poly(vinyl alcohol) chains into a clay 
tactoid. The side and top views of the tactoids are illustrated at relevant 
snapshots, for the simulation times shown. In the side views, the macromolecules 
are represented by the green bonds; for the clay CG particles the colors are: 
neutral clay is pink, charged clay is cyan, edge clay is yellow, and sodium is blue. 
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For each time frame, the side view illustrates the bending that the lowermost clay 
sheet undergoes to accommodate the intercalating poly(vinyl alcohol) chain. For 
the top view, the polymers that intercalate into the spacing between the 
lowermost sheets are colored according to their molecule number, such that they 
can be differentiated during visualization. It is observed that the polymer initially 
starts intercalating as short loops (an example is circled in blue at the 0.8 ns 
snapshot), and progresses further into the interlayer and forms a relatively linear 
chain on the clay surface. Reprinted from Suter et al. [198] under the terms of 
the Creative Commons Attribution License. 

4.1.1 Systematic Coarse-Graining Methods 

A serious problem with polymeric materials in a sequential multiscale scheme is that the 
coarse-graining method from atomistic scale to mesoscale or from mesoscale to macroscale 
is not a straightforward procedure. The coarsening from QM to MD follows basic principles 
which can be formulated in a computational framework while it is system-specific at higher 
scales. All approaches are based on the application of a force field that transforms 
information from quantum scale to atomistic simulations. From atomistic simulations to 
mesoscale model, essential features of the system such as the structure and/or 
thermodynamics have to be maintained while reducing the degrees of freedom. The linking 
of scales through the mesoscale is addressed by many authors as the most challenging step 
towards developing reliable multiscale frameworks. Systematic coarse-graining methods are 
therefore developed to address these challenges. 

Systematic coarse-graining methods attempt to extend the length and time scales of 
atomistic MD simulations by replacing several atoms with a single super atom and thus 
reducing the degrees of freedom. These approaches strictly attempt to preserve intrinsic 
properties of polymers such as radius of gyration, diffusion coefficient, etc. As a 
consequence, the results of such CG models can be directly compared with experiments. 
Depending on how many atoms are lumped into a single super atom, i.e. the degree of 
coarse-graining, the systemic coarse-graining methods can be roughly divided into three 
major blocks; (i) low coarse-graining degrees where one or two monomers are coarse-
grained into one super atom, for instance, in an iterative Boltzmann inversion (IBI) scheme, 
(ii) medium coarse-graining degrees where ten to twenty monomers are coarse-grained into 
one blob or bead, for instance, used in the so-called “blob model”, and (iii) high coarse-
graining degrees where the whole chain is mapped to a single soft colloid in super coarse-
graining methods. These variations provide access to a range of length/time scales from 10-

6 s/10-6 m to 10-2 s/10-2 m, particularly precious to simulate dynamic properties of polymeric 
systems [117]. In addition to the reduced number of degrees of freedom, CG models often 
benefit from simpler forms of interactions compared with the detailed models. This feature 
can promote the computational efficiency to a large extend. Besides, the free energy profiles 
of CG models are usually smoother due to the fact that many interaction centers are 
replaced with only a single site. Finally, the parametrization of the CG interactions is simpler 
than that of full atomistic systems since many chemistry-specific details are ignored during 
coarse-graining. Such features of CG models make them particularly appealing for many 
applications in polymer systems. 
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4.1.2 Reverse Mapping 

While the coarse-graining procedure helps accessing longer time scales in simulations, it also 
removes detailed atomistic features necessary for precise evaluations of the structure. Since 
CG models have proved extremely useful in various simulations, such as generating 
equilibrated structures for further analysis and simulation runs [147, 174, 187, 192], there is 
a general tendency towards employing them upon possibility. Consequently, a reverse 
mapping is also needed to reproduce atomistic details such as chemical characteristics from 
the CG model. The reverse mapping procedure is also referred to as fine-graining or 
backmapping in the literature [25, 29]. 

Early attempts for reverse mapping are dated back to Tschöp et al. [204] and Kotelyanskii et 
al. [104]. In general, a reverse mapping operation includes (i) the reconstruction of CG 
particles with possible atomistic structures from a bank of templates, followed by (ii) 
performing energy minimization (EM), MD, or MC simulations to guarantee collectively and 
locally relaxed atomistic structures. In the first step, the fitting templates are often extracted 
from a preceding atomistic equilibrium simulation. The chosen template for a given CG 
particle should not only fit the contour of the underlying CG molecule, but also allow the best 
superposition for the neighborhood CG particles. In order to achieve a high backmapping 
efficiency, the fitting procedure is usually based only on geometrical criteria and no force and 
energy calculations are involved. In some cases where the CG particle represents a complex 
structure with bulky side groups, one must be careful to avoid interlocking of side groups 
[174]. In the second step, it is necessary to run post-processing calculations due to the fact 
that the CG force field is derived from average atomic distributions and therefore may easily 
lead to overlapping structures [84]. Such artefacts could happen more frequently in coarser 
CG models. 

Several backmapping algorithms have been proposed for different polymers in the literature 
[85, 96, 165, 174, 204, 219]. Often, when the CG model is tailored on the atomistic contour 
using atomistic distributions to build up the CG force field, the zoom-in back to the atomistic 
description is a simple geometrical problem [96]. However, a more sophisticated procedure 
must be followed in some cases where the model is particularly coarse or the CG particles 
contain asymmetric atoms and the polymer chain has a specific tacticity [174, 219]. An 
example for the first case was given by Karimi-Varzaneh et al. [96] who used a simple 
backmapping algorithm to reinsert the atomistic details of a PA-66 in its corresponding CG 
model. As for the latter, Wu [219] utilized a special backmapping procedure to capture 
tacticity effects on the structure and dynamics of PMMA melts. Moreover, a general 
backmapping technique to prepare equilibrated polymer melts was proposed by Carbone et 
al. [25] which consists of (i) the generation of continuum random walks characterized by 
different Kuhn lengths and (ii) the insertion of the atomistic units on the parent random walk 
chains. The steps of this approach for PA-66 is shown in Figure 4. The authors showed that 
melts of PE, atactic PS and PA-66 are well-equilibrated with this technique and their long and 
short range structural properties can be successfully compared with previous all-atomistic 
(AA) simulation and experimental data. Some cases with special reverse mapping algorithms 
are also found in literature. For instance, in order to generate realistic amorphous polymer 
surfaces, Handgraaf et al. [82] developed a special mapper which takes the CG structure as 
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input and uses the MC technique to generate the atomistic structure. The mapped atomistic 
structure is later equilibrated by performing a short MD simulation. 

 

Figure 4: Steps of the reverse-mapping procedure for the case of PA-66: (a) insertion of 
the atomistic fragments (colored beads) on the parent random walk (solid black 
line); (b) orientation of the atomistic fragments; (c) final configuration of the 
rebuilt atomistic model. The arrow indicates the direction of the growing chain. 
Reproduced from Carbone et al. [25] with permission of The Royal Society of 
Chemistry. 

It should be noted here that the reverse mapping of a nonequilibrium CG system differs from 
an equilibrium run to some extent. Since molecular deformations are recorded in the CG 
model during the nonequilibrium simulations, a proper backmapping procedure should 
translate these deformations into the atomistic model. Furthermore, the deformation energy 
stored in the polymer chain of the CG model should be passed to the atomistic level. 
Obviously, a simple backmapping cannot meet these requirements since during the post-
processing step, i.e. EM or MD or MC simulations, the energetically unstable deformed 
structure relaxes quickly. A backmapping method was proposed by Chen et al. [29] to 
overcome this problem for polymer models under sheared nonequilibrium conditions. Their 
methodology mixes the general concepts of backmapping with the new idea of applying 
position restraints to preserve the deformed configurations. In order to retain the globally 
stretched configuration from the CG simulation, position restraints with a harmonic potential 
are applied to all those atoms which coincide with locations of CG particles. The globally 
deformed structure is allowed to relax locally through a molecular mechanics approach [14]. 
By changing the position restraint scheme and re-optimizing the structure through an 
iterative procedure, it is possible to minimize the isolation of segments from the rest of the 
chain. The workflow of the backmapping procedure of Chen et al. [29] is illustrated in Figure 
5. 
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Figure 5: The workflow of the backmapping procedure of CG sheared nonequilibrium 
models as proposed by Chen et al. [29]. Notice that schemes 1 and 2 in step 3 
are two variants of the main scheme in step 2 in order to minimize the isolation of 
segments from the rest of the chain. Reproduced from Chen et al. [29] with 
permission of the PCCP Owner Societies. 

Finally, the validity of a reverse-mapped atomistic structure is often tested by comparing 
relevant structural information obtained from atomistic simulations run after the reinsertion 
of the atoms with the original atomistic simulations used to develop the CG force field [25, 
69, 96]. Radial distribution function of a specific chemical group, bond and angle 
distributions, torsion angle distribution, and the number of hydrogen bonds are mostly used 
for such comparisons. In some studies, the results of a reverse-mapped atomistic simulation 
are also directly compared with the available experimental data [25]. 
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4.2 Concurrent Multiscale Approaches 

The concurrent approaches define the system under consideration through a genius 
combination of several methods and solve them simultaneously instead of a hierarchical 
procedure as in sequential approaches. The resolution of the solution is adapted to provide 
an accurate representation of those regions of the system which are of particular interest. A 
common field of application for such strategies is the analysis of crack propagation in 
materials. During the crack propagation the immediate neighborhood of the crack tip, where 
the bond breaking is taking place, demands a higher precision in the models representation 
whereas a coarser model could suffice for further away from this region. An example of the 
concurrent methodology used in the crack analysis is shown in Figure 6. In this multiscale 
simulation, the concurrent approach combines tight binding (TB), MD, and FEM techniques 
to study crack propagation in silicon [3]. The vicinity of the crack should be simulated at a 
finer resolution since it exhibits significant nonlinearity. Therefore, atomistic MD method 
could provide a more precise representation of the crack surrounding whereas FEM can still 
accurately describe the rest of the system further away from the crack. The treatment of 
formation and the breaking of covalent bonds at the atomic scale is not reliable with any 
empirical potential, since bonds between atoms are essentially quantum mechanical 
phenomena arising from the sharing of valence electrons [196]. Consequently, it is 
necessary to include a TB approach in the simulations of a small region in the immediate 
neighborhood of the crack tip, where bond breaking is prevalent during fracture, whereas 
further away from this region the empirical potential description of MD is adequate. 

The concurrent approach is best suitable for the systems with an inherent multiscale 
character. In such systems, the behavior at each scale depends strongly on the phenomena 
at other scales. Moreover, this approach can be of a more general nature due to the fact 
that it does not often rely on any system-specific assumptions such as a particular coarse-
graining model. Therefore, a well-defined concurrent model can be applied to many different 
systems within the limits of common phenomena involved as long as it incorporates all the 
relevant features at each level. In contrast to sequential methods, concurrent models are not 
usually constructed based on a detailed prior knowledge of the physical quantities and 
processes involved. As a result, such models are particularly useful when dealing with new 
emerging problems about which little is known, for instance, at the atomistic level and its 
connection to larger scales. However, the coupling between the different regions treated by 
different methods is a critical challenge remaining in the core of concurrent approaches. A 
successful multiscale model seeks a smooth coupling between these regions. Here, I address 
some of the concepts and strategies developed in the concurrent framework. 
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Figure 6: A hybrid FEM/MD/TB simulation. The FEM, MD, and TB approaches compute 
forces on particles (either FEM nodes or atoms) in their respective domains of 
application. The simulation then uses these forces in a time-stepping algorithm to 
update the positions and velocities of the particles. 

4.2.1 The Concept of Handshaking 

In concurrent simulations, often two distinct domains with different scales are linked 
together benefitting from a region called the “handshake” region. The handshake region 
generally bridges the atomistic and continuum domains of the multiscale model [132, 173]. 
However, there are studies where it has been used to link quantum mechanical TB 
calculations to atomistic domains [19, 132] or atomistic MD models to their equivalent CG 
descriptions [173]. 

The handshake region transfers information from one domain to the other and thus provides 
the possibility to overlap, usually, atomistic and continuum domains. The overlap is defined 
with a field variable, normally the potential energy, taking the form of a weighted 
combination of the magnitude of the same variable in the continuum and atomistic domains. 
The weight is normally a function that decreases monotonically from unity to zero through 
the overlap so that variable starts with a value equal to the same variable in one domain and 
gradually takes on the value of the same variable in the other domain. The form of the 
weighting function is arbitrary rather than an outcome of the formulation. Consequently, the 
modelling quality of the handshake region is strongly dependent on a smooth and gradual 
transition of field variables from one domain to the other domain. In the handshake 
algorithm, it is assumed that the properties of each domain are independent from one 
another. Due to this assumption, one has to be concerned particularly whether or not the 
material properties of both domains are truly equivalent. In addition, physical complications 
in the handshake region might necessitate more complex algorithms to obtain a precise 
representation of it. For instance, nodal displacements of the continuum domain should be 
influenced by the displacements of molecules inside the neighboring atomistic domain if the 
node and the molecules are within the cutoff distance of the molecular interactions. 

FE

MD

MD

TB
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The handshaking approach has been applied to combine TB/MD/FEM in order to study crack 
propagation and crystal impact in silicon [19, 132]. A combination of TB/MD/FEM has also 
been utilized in a handshaking framework to characterize submicron micro-electro-
mechanical systems by Rudd et al. [173]. Based on the works of Abraham et al. [2, 19] the 
unifying theme for such a multiscale model is the total Hamiltonian Htot defined throughout 
the entire system. This Hamiltonian is a function of the atomic positions rj and their 

velocities vj in the TB and MD regions for all j atoms, and the displacements u� and their 

time rates of change u̇� in the finite element (FE) regions for all � nodes. Within this 
framework, it is the Hamiltonian that is partitioned into FE, MD, TB and handshaking 
contributions from FE/MD and MD/TB during the domain decomposition. It is assumed that 
the atomic and nodal displacements do not necessarily fall into a unique domain, but their 
interactions do. In this way, Htot may be written as 

Htot = HFEሺu�,u̇�ሻ + HFE/MD(rj,vj,u�,u̇�) 
+ HMD(rj,vj) + HMD/TB(rj,vj) + HTB(rj,vj), ( 20 ) 

with the Hamiltonian of different contributions depicted with appropriate indices. Rudd et al. 
[173] explain that the FE/MD as well as MD/TB handshakes must successfully address the 
basic issues of (i) matching the degrees of freedom and (ii) defining consistent forces at the 
corresponding interfaces. Despite this similarity, it should be emphasized that each 
handshake obliges a somewhat different approach in order to answer the requirements. This 
is due to the fact that the MD/TB handshake takes place across an interface consisting of 
atoms whereas the interface at the FE/MD handshake is between planes of atoms [173]. 
Equations of motion for all the relevant degrees of freedom are obtained by taking the 
appropriate derivatives of this Hamiltonian in a standard Euler-Lagrange procedure. The time 
evolution of all the variables then marches forward in lock-step using the same integrator. 
Thus, the entire time history of the system may be obtained numerically given an 
appropriate set of initial conditions. Further information can be obtained from the work of 
Rudd et al. [173]. 

4.2.2 Linking Atomistic and Continuum Models 

It is frequently observed in large-scale atomistic simulations that only a small subset of 
atoms actively participate in the evolving phenomenon. This allows for the majority of atoms 
to be effectively represented by continuum models. Hence, a considerable reduction of 
computation and storage resources is guaranteed if only novel multiscale approaches could 
reduce the number of degrees of freedom in atomistic simulations. Various concurrent 
multiscale modelling methods were developed in the last twenty years which couple 
atomistic simulations such as MD with continuum simulations such as FEM. Detailed 
comparative reviews of such approaches can be found in references [34, 126]. The idea 
behind these methods, not unlike all multiscale strategies, is to focus the available 
computation power where it is needed by applying atomistic simulations, whereas an 
approximate solution is provided for the rest of the system by continuum simulations. 
Therefore, both atomistic details as well as the macroscopic properties of materials can be 
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obtained simultaneously from these simulations. Such models are mostly designed for 
crystalline materials such as metals or carbon nanomaterials. Unfortunately, their application 
in polymeric materials is still limited, possibly due to the unfamiliarity of these models to 
polymer researchers. It is noteworthy that some authors have referred to such methods in 
recent reports on polymer simulations [98, 117]. 

Certain categories of problems such as fracture and nanoindentation possess the 
characteristics of localized deformation where it is possible to address the system by a dual-
domain or partitioned-domain approach; one with an atomistic description BA, and the other 
with continuum approximation BC. The two domains are linked by an interfacial region BI 
across which compatibility and equilibrium are enforced. An important distinction among 
various methods is the way they treat the interfacial region. Most methods adopt one of the 
strategies depicted in Figure 7. The interfacial region is shown by the dashed lines. In part 
(a) of the figure, BI has been further subdivided into two parts: (i) the handshake region BH, 
and (ii) the padding region BP. As explained before, the handshake region provides a mixing 
between the two scales. The padding region is continuum in nature and provides the 
boundary conditions to the atoms in BA and BH with a certain range of atomistic interactions, 
rcut. The thickness of this region depends on rcut and the motions of atoms in BP are 
determined from the continuum displacement fields at the position of the padding atoms, in 
different ways for different methods. It is also possible to eliminate the handshake region as 
shown in part (b) of Figure 7. Most models that do not include a handshake region require a 
direct atom-node correspondence along the edge of the FE region to impose the 
displacement compatibility across the interface. This necessitates that the mesh is refined 
down to the atomic scale on the continuum side of the interface and hence introduces 
difficulties in mesh generation. 

The coupling between the BA and BC regions requires compatibility conditions in each 
direction. This means providing some prescription for finding the displacements of atoms in 
BP, from the nodal displacement information in BC, as well as a way to determine the 

displacement boundary conditions for the BC nodes along the edge of the mesh closest to 
the BA. Compatibility can be imposed in a strong or weak sense. Strong compatibility is 
imposed by the continuum on the atoms when the padding atoms move in the same as the 
finite elements in which they reside. In the other direction, the strong compatibility is 
imposed by the atomistic region on the continuum by defining a subset of nodes that 
coincide with some of the atoms in BA. The displacement boundary condition is therefore 
imposed on BC with the motion of the overlaying atoms from BA. In the weak compatibility, 
displacement boundary conditions are enforced only in some average sense, or with some 
type of penalty method approach. Strong compatibility introduces complexity in mesh 
generation near the interface while it also yields relatively more accurate results [126]. 
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Figure 7: A generic interface in a coupled atomistic/continuum problem. The finite cutoff 
radius of the atoms means that an atom like 1 cannot ‘see’ into the continuum, 
while atom 2 can. Thus there is the need for a ‘padding’ region as discussed in 
the text. The model on the left includes a handshake region, BH , while the model 
on the right does not. Padding atoms are shown as blue squares, handshake 
atoms as black circles and regular atoms as blue circles. 

The simulation algorithm often finds the equilibrium by either minimizing an energy 
functional or driving the set of forces on all degrees of freedom to zero. Consequently, there 
are two major categories of the governing formulation i.e. the energy-based and the force-
based approaches. The disadvantage of the energy-based approach is that it is extremely 
difficult to eliminate the non-physical side effects of the coupled energy functional. This 
problem, often referred to as the “ghost forces”, stems from trying to combine two energy 
functionals from different models into a single coupled energy expression [10, 126, 181]. 
The force-based approaches, on the other hand, have no well-defined total energy functional 
and are considered to be non-conservative in general. These approaches can be numerically 
slow and unstable and could converge to unstable equilibrium states. However, force-based 
methods can eliminate the ghost forces due to access to the direct definition of the forces. 

Several methods are proposed in literature to correct the ghost forces artifact in energy-
based models. These methods take various actions in order to eliminate or at least mitigate 
for ghost forces [45, 100, 116, 140, 182]. One such approach with general characteristics is 
the deadload ghost force correction [181]. In this approach, the ghost forces are explicitly 
computed and the negative of these forces are added as deadloads to the affected atoms or 
nodes. The deadload ghost force correction has shown great promise in some static 
simulations [126]. However, the deadload correction is only an approximation for the 
simulations where ghost forces change during the calculation progress. 
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The general algorithm for energy-based methods defines the total potential energy of the 
entire system Utot as the sum of the potential energies of the atomistic UA, continuum UC 
and handshake UH regions, as 

Utot‎=‎UA + UC + UH, ( 21 ) 

and minimizes it to reach equilibrium. These energies are described by [126] 

UA‎=‎∑ EααאBA  -‎∑ fααאBA ∙uα, ( 22 ) 

UC‎≈‎∑ ∑ ȦqVeW ቀΔሺre
qሻቁNq

q=1
Ne
e=1 ‎-‎f ̅Tu, ( 23 ) 

UH‎≈‎∑ (1-Θሺrαሻ)αאBH Eα+∑ ΘሺrecentሻW(Δሺrecentሻ)eאBH , ( 24 ) 

where the energy, spatial coordinates, displacement and applied forces of atom α are shown 
by Eα, rα, uα, and fα, respectively. Ne is the number of elements, Ve is the volume of element 
e, Nq is the number of quadrature points in the numerical integration, re

q is the position of 

quadrature point q of element e in the reference configuration, and Ȧq is the associated 
Gauss quadrature weights. f ̅and u are the vector of applied forces and nodal displacements 
in the FE region, respectively. W is a function of the deformation gradient Δ. recent is the 
coordinates of the Gauss point in element e which is taken at the centroid of the triangular 
elements in this specific case shown in Figure 7. One should notice that the energy of the 
continuum region is approximated due to the fact that a continuous integral has been 
replaced by a discrete numerical method. Consequently, the handshake region is also 
approximated since it also uses such a numerical approach for the continuum energy 
contribution. In the energy equation for the handshake region, both the continuum and 
atomistic energies are used in a weighted fashion according to a function Θ which varies 
linearly from one at the edge of BH closest to the continuum region, to zero at the edge 
closest to the atomistic region. Indeed, for methods with no handshake region, UH is taken 
zero and only the continuum and atomistic regions contribute to Utot. Moreover, one should 
note that the padding atoms have no contribution to the formulation of the potential energy. 
Therefore, these atoms only provide an appropriate boundary condition for the atoms in BA. 

The force-based methods are based on two independent potential energy functionals. The 
first one calculates an energy functional Uatom assuming the entire system is modelled using 
atoms. The second energy functional UFE, on the other hand, provides a description of the 
system if it was modelled entirely in a FEM framework. The forces for the all α atoms, fα, and 
all i nodes, fi, are simply found by differentiating the corresponding energies with respect to 
the atomic or nodal displacements, uα and ui respectively, as 

fα = ∂Uatom
∂uα

, ( 25 ) 

fi‎=‎
∂UFE

∂ui
. ( 26 ) 

It is important to note that the difference between energy-based and force-based methods 
stems from the fact that in the second approach one does not attempt to minimize the 
combined energy functional. 
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4.2.3 Applications of Concurrent Methods to Polymeric Materials 

In this part, I give several examples for the applications of coupled atomistic/continuum 
models in polymeric systems. In the studies outlined here, one can find applications of the 
methods explained so far; either it is directly used, or a modified version is developed to 
capture the correct physics involved, or a concept is borrowed to propose new models for 
polymers. 

 

Figure 8: Construction of initial polymer domain from amorphous cells. Reprinted from Tan 
et al. [199]. Copyright 2016, with permission from Elsevier. 

Generally, it is more difficult to model polymers than crystalline materials due to their semi-
crystalline nature. A methodology to solve this problem was formulated by Theodorou and 
Suter [200, 201] in which a parent chain of atoms is attached to a cell known as an 
Amorphous Cell (AC). The AC is then subjected to deformations assuming periodic boundary 
conditions on all sides of the cell. Tan et al. [199] incorporated the concept of AC and 
developed it based on the adaptive scaling resolution ideas and introduced the Pseudo 
Amorphous Cell (PAC) multiscale approach for amorphous polymers. PAC algorithm includes: 
(i) the construction of a configuration of polymer chains in the domain, (ii) linearization of 
molecular mechanics equations for regions with small deformations, (iii) reduction of the 
number of degrees of freedom in small deformation regions, and (iv) coupling of linear and 
nonlinear molecular mechanics equations. In their method, the regions with large 
deformations are represented with nonlinear molecular mechanics and thus provide a finer 
solution, see Figure 8. The authors showed that PAC can successfully simulate the 
nanoindentation of amorphous polymers and the indentation force was predicted with a 
good precision comparable to a full molecular mechanics simulation [199]. Later Su et al. 
[197] applied the PAC approach to correlate the displacements of atoms within a 
representative volume element (RVE) of amorphous material to the deformation of the RVE. 

The ground idea of projection methods was first introduced in details by Hughes et al. [86] 
as the variational multiscale methods (VMS) which allows a complete model to be described 
by orthogonal subscale models. Utilizing this property, Codina [33] presented a method to 
deal with numerical instability of the Stocks problem due to the incompressibility constraint 
and convection. He proposed using orthogonal subscales in FEM through the pressure 
gradient projection. This approach has been developed recently by Castillo and Codina [26, 
27] to present VMS stabilized formulations for the stationary three-field incompressible flow 
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problem for viscoelastic fluids as well as fluids with nonlinear viscosity. The authors were 
able to successfully capture the distributions of streamlines in a sudden contraction flow as 
shown in Figure 9 for an Oldroyd-B fluid at Re of 1 at various Weissenberg numbers (We). It 
was observed that the size of the vortex appearing in the bottom corner decreases as We 
increases. 

In a recent MD study of brittle fracture in epoxy-based thermoset polymers under 
mechanical loading, Koo et al. [102] introduced an EM step into the virtual deformation test 
to maintain the system temperature at zero. They stated in the paper that this idea was 
borrowed from quasicontinuum (QC) method which bridges atomistic scale to continuum 
scale by decoupling temperature effects. The possibilities of incorporating multiscale 
approaches to connect MD and FEM such as QC in investigations of structure at epoxy-silica 
interface are also emphasized by Büyüköztürk et al. [24]. 

Jo and Yang [89] utilized an atomistic/continuum model to predict the mechanical properties 
of semicrystalline poly(trimethylene terephthalate) (PTT). Their approach includes an EM 
process similar to energy-based methods. The system for semicrystalline PTT consists of an 
amorphous matrix described as a continuum, and a spherical inclusion representing the 
crystalline phase modelled in atomistic detail. The crystallinity of PTT can be controlled by 
varying the volume fraction of an inclusion. 

In order to model the compressive behavior of carbon nanotube PNCs, Li and Chou [113, 
114] developed a multiscale strategy in which the nanotube is modelled at the atomistic 
scale, and the matrix deformation is analyzed by the continuum FEM. Their methodology is 
similar to other atomistic/continuum coupling themes except for the fact that they adopt a 
so-called truss rod model to correctly represent van der Waals interactions at the interface. 
Figure 10 illustrates the truss rods connecting carbon atoms with nodes in finite elements. 
The multiscale scheme developed by Li and Chou was later incorporated by Montazeri and 
Naghdabadi [128] to study the stability of carbon nanotube PNCs with a viscoelastic matrix. 
They coupled molecular structural mechanics to FEM and simulated the buckling behavior of 
the system. 
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Figure 9: Distributions of streamlines near the corner for (a) We = 0, (b) We = 0.5, (c) We 
= 2.5, (d) We = 3, (e) We = 4 and (f) We = 5. Reprinted from Castillo and 
Codina [27]. Copyright 2016, with permission from Elsevier. 

 

 

Figure 10: Illustrations of truss rods connecting nodes in finite elements with carbon atoms: 
(a) on the nanotube lateral surface and (b) on the nanotube end cap region. 
Reprinted from Li and Chou [114]. Copyright 2016, with permission from Elsevier. 

A multiscale simulation strategy was proposed by De et al. [36] to determine the mesoscale 
velocity evolution in polymer fluids with large stress relaxation times. In such systems the 
use of a constitutive equation of viscosity is not sufficient to produce the correct rheology. 
The authors introduced a scale bridging concept in which small parts of the system were 
simulated with MD. These parts could communicate with each other through a continuum 
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approach. The passing of information is schematically shown in Figure 11. As it is observed, 
the continuum approach provides accurate means of interpolating between these points. 
They described the coupling of atomistic and continuum regions in a Lagrangian framework 
so that the memory effects, and the consequent dependence of properties on the overall 
deformation are included in the calculations. 

 

Figure 11: Schematic representation of the proposed multiscale method. The stresses 
calculated from the MD simulations are used in the coarse grained methods, while 
the coarse grained methods yield velocity profiles which are used in the next set 
of MD simulations. Reprinted with permission from De et al. [36]. Copyright 2016 
by The American Physical Society. 

4.3 Adaptive Resolution Simulations 

It was already discussed in the concurrent multiscale approaches that there is a category of 
systems in which the phenomenon of interest is focused in a subregion of the entire domain. 
Consequently, it would be computationally efficient if the irrelevant AA representation of 
molecules far from this subregion were replaced with an alternative less expensive model. 
However, the common feature and limitation in all concurrent methods (introduced so far) is 
that the regions of the system treated at different resolution levels are fixed and do not 
allow for particle exchange. The relatively new class of multiscale simulation approaches, i.e. 
the adaptive resolution simulations, provides this possibility. Several papers have been 
devoted to address different aspects of these methods in recent years showing their 
increasing popularity [81, 105, 156, 218, 228]. It should be noted that these methods can be 
principally considered to be concurrent since they often couple the simultaneous run of two 
techniques with different levels of resolution using a transition region. Furthermore, the 
transition region usually uses an either force or energy interpolation criterion to link different 
resolutions somewhat similar to the concurrent methods. However, in adaptive resolution 
simulations, an atom or a molecule is free to smoothly switch its resolution within the same 
simulation run depending on its spatial coordinates. Therefore, it allows for an adaptive 
modification of the resolution within the coexisting models which promotes the accuracy 
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where needed and provides the required precision. In concurrent approaches, on the other 
hand, different scales are coupled often by a step-wise transfer of information between 
different methods, for instance I refer to Youn Park et al. [225]. Therefore, some authors 
introduce adaptive resolution simulations as a separate class of multiscale approaches to 
emphasize these different aspects [98]. Here, I also follow this notion. 

 

Figure 12: Typical scheme of an adaptive resolution simulation: a high-resolution region, 
where molecules are described at the atomistic level, is coupled to a low-
resolution region where a simpler, CG model is employed. These two subregions 
of the system are interfaced via a transition region, in which the molecule’s 
representation smoothly changes from one to the other, depending on their 
positions. It is on this last region and its properties (i.e., the way molecules 
change resolution) that the complexity of adaptive resolution schemes 
concentrates. Reprinted from Potestio et al. [156] under the terms of the Creative 
Commons Attribution License. 

The adaptive resolution simulations often divide a domain into an AA and a CG region and 
link them using a transition region, see Figure 12, hence are sometimes referred to as the 
double-resolution simulation methods. Examples for the appropriate systems to investigate 
with such a strategy include the studies of macromolecules embedded in a solvent (see 
Figure 13) [157], and liquids near surfaces [137]. The transition region allows for a smooth 
interpolation from a given representation of the molecule’s structure/interaction to another 
depending on the properties that have to be preserved in the CG region. A complete 
methodology should address the interactions between the atoms or molecules in different 
domains as well as the property change in crossing the transition region. Moreover, it is 
central to adaptive resolution simulations that the molecules should be free to diffuse from 
any region of the simulation box to any other. Other constraints could include thermal 
equilibrium and uniform density profile across the entire domain which along with certain 
region-specific properties lead to a formulation of an adaptive resolution scheme. 

The Adaptive Resolution Scheme (AdResS) was developed by Kremer and co-workers [41, 
157 - 162] as the first effective and computationally efficient method to simulate a system 
where an AA and a CG model are simultaneously employed in different subregions of the 
simulation domain. These subregions are interfaced in such a way to allow atoms and 
molecules to freely diffuse from one region to the other. AdResS is principally based on the 
assumption that Newton’s third law should be satisfied everywhere in the simulation domain. 
Additionally, the method assumes that a molecule in the CG region loses completely its 
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atomistic details and interacts with other molecules, either in AA or CG regions, only via its 
center of mass. An interpolation scheme for the force field across the domain defining the 
force fαβ acting between molecules α and β can be formulated considering the 

aforementioned assumptions as 

fαβ = ȥሺRαሻ ȥ(Rβ) fαβχχ + (1 - ȥ(Rα) ȥ(Rβ)) fαβωG, ( 27 ) 

where Rα and Rβ are the center of mass coordinates of molecules α and β, respectively. fαβχχ 

and  fαβωG are the atomistic and CG forces acting on molecule α due to the interaction with 

molecule β, respectively. Here, ȥ is a spatial interpolation function that goes from 1 in the AA 
region to 0 in the CG region smoothly. In the transition region, atomistic details are explicitly 
integrated and the CG force is computed between the centers of mass of the molecules and 
then redistributed to the atoms weighted by the ratio of the atom’s mass to the mass of 
molecule [64]. In the CG region, the CG force is directly applied to the center of mass 
coordinates of the molecules and there is no need to conserve the molecules internal 
structure. When a molecule enters the CG region its atomistic details are removed and 
reintroduced again, through some sort of reservoir of equilibrated atomistic structures, as 
soon as it approaches the transition region. 

 

Figure 13: A schematic plot of a solvated generic polymer. The solvent is modelled on 
different levels of detail. Solvent molecules within a certain radius from the 
polymer’s center of mass are represented with a high resolution while a lower 
resolution is used for the more distant solvent. The high resolution sphere moves 
with the polymer’s center of mass. The polymer beads are represented smaller 
than the solvent molecules to preserve clarity. Reprinted from Praprotnik et al. 
[157] with the permission of AIP Publishing. 

The central requirement of satisfying Newton’s third law in AdResS is demonstrated to rule 
out any form of potential energy interpolation and vice versa [42]. Consequently, energy-
conserving simulations in the microcanonical ensemble cannot be performed using AdResS. 
Due to the non-conservative nature of the forces in the transition region, molecules receive 
an unreal excess energy when crossing this region. This energy can be removed utilizing a 
local thermostat in order to keep the temperature constant everywhere in the system. The 
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equilibrium configurations of the system are then sampled according to Boltzmann 
distribution [63, 152, 157 - 159, 162]. 

The different resolution of the utilized models typically results in a pressure difference 
between the corresponding regions which further leads to a non-uniform density profile in 
the system. Kremer and co-workers [64, 131, 151] modified the CG potential by introducing 

a thermodynamic force fth which counterbalances the high pressure of the CG model. This 
force is obtained in an iterative procedure as 

fi+1th ‎=‎fith‎-‎
ρi(r)׏
ρ*kT

, ( 28 ) 

where ρ* is the reference molecular density, kT is the system’s isothermal compressibility and 
ρi(r) is the molecular density profile as a function of the position in the direction 

perpendicular to the CG/AA interface. The iterative procedure converges once the density 
profile is flat, i.e. ׏ρ(r)‎=‎0. The resulting thermodynamic force produces a flat density profile 
and preserves the thermal compressibility of the system as well as the structure of the 
system in the CG region. Principally, this method allows one to use any arbitrary CG force 
field, with pressure and structure completely different from the target atomistic ones. 
Consequently, the AA region behaves as an open system that exchanges energy and 
molecules with a reservoir and thus producing the molecule number fluctuations, the 
pressure and all other thermodynamically relevant quantities the same as if the AA region 
were simply cut from a large AA simulation [64]. This condition can be established 
irrespective of the specific model used in the CG region only because of the thermodynamic 
force. 

AdResS provides the possibility to perform numerical experiments in which the spatial 
extension of correlations in the system is investigated. Particularly, the structural properties 
of the AA region can be monitored as a function of its size in order to examine their 
dependency on the interactions with molecules in the bulk region. For instance, Lambeth et 
al. [108] used this notion to study the ordering degree of the hydrogen bond network of a 
molecule with both hydrophilic and hydrophobic bonds solvated in water as a function of the 
size of the AA region. The same strategy has also been applied to investigate the extent of 
spatial correlations in low-temperature para-hydrogen [153, 155]. In some systems, it is 
critical to have access to a large number of particles, for instance, to correctly reproduce the 
solvation free energies in mixtures. Thus, a standard AA simulation could lead to extremely 
costly computations in such cases. Naturally, AdResS has shown to be a viable candidate for 
these systems as well, as evidenced in some works on methanol-water mixtures [130], and 
triglycine in aqueous urea [131]. 

4.4 Extending Atomistic Simulations 

Besides the methods that are explicitly designed to link computational techniques from 
different realms together, there are some approaches to extend the reaches of a specific 
technique such as MD. As it was noted before, MD plays a critical role in the modelling of 
materials problems because MD simulations can follow the actual dynamical evolution of the 
system along its deterministic pathway. However, MD is strictly limited to very short time 
scales due to its full atomistic representation of the molecules. Therefore, some researchers 
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studied different methods to address the time scale problem including hyperdynamics [213 - 
215], parallel replica dynamics [216], and temperature-accelerated dynamics [191]. These 
methods are based on the transition state theory in which the system trajectory is simulated 
to find an appropriate pathway to escape from an energy well [83, 213]. The simulation 
walks through this pathway with a process that takes place much faster than the direct MD. 

The hyperdynamics approach is designed to accelerate MD simulations without any prior 
knowledge of neither the location of the dividing surface, i.e. the surface in the phase space 
separating the initial and final states, nor the states through which the system may evolve. 
For this purpose, the energy of the system in regions other than at the dividing surfaces is 
raised by applying a bias potential which leads to an accelerated transition from one 
equilibrium state to another equilibrium state [213]. The parallel replica dynamics method 
was incorporated for a system with infrequent events in which successive transitions are 
uncorrelated [216]. In such a system, running a number of independent MD simulations in 
parallel gives the exact dynamical evolution between the states. For a system with correlated 
crossing events, the state-to-state transition sequence is still correct. However, the error 
associated with the simulation time should be eliminated. Finally, in the temperature-
accelerated dynamics method, the state-to-state transition is accelerated by increasing the 
temperature followed by filtering out the transitions that should not have occurred at the 
original temperature [191]. Consistent with other accelerated dynamics methods, the 
trajectory of the system is allowed to wander on its own to find an appropriate escape path. 
Consequently, no prior information is required about the nature of the involved phenomena 
[213]. 

The accelerated dynamics methods are formulated in order to find transition pathways 
between two known equilibrium states via effective MD simulations. Other approaches to 
extend atomistic simulations are also available which often require no preconceived 
mechanism or transition state. One such method attempts to find the transition pathway by 
minimizing the average value of the potential energy along the path rather than trying to 
find the path with the lowest barrier [49 - 51]. Another approach utilizes statistical sampling 
of the dynamical paths i.e. MC sampling of MD trajectories introducing transition path-
sampling methods [18, 32, 38, 53, 101]. In addition to these methods, an alternative finite-
temperature string method is proposed that represents transition paths by their intrinsic 
parameterization to efficiently evolve and sample paths in the path space [46 - 48, 171]. The 
string method performs a constrained sampling of the equilibrium distribution of the system 
in hyperplanes normal to the transition pathways of a CG potential. The collection of the 
hyperplanes is parametrized by a string that is updated self-consistently until it approximates 
locally the correct coordinate associated with the phenomenon. The region in these planes in 
which the equilibrium distribution is concentrated determines a transition tube in the 
configuration space in which a transition takes place with high probability. Finally, some 
works try to find dynamical paths that could connect an initial state to a final state in general 
terms [17, 39, 40, 148, 175, 217, 227]. Such methods often offer good numerical stability, 
efficient parallelizability, and high quality trajectories. 

A class of methods attempts to address the systems with a free-energy surface which may 
possess multiple local minima separated by large barriers. These strategies are generally 
known as the methods to escape the free-energy local minima [107]. One such method 
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combines the ideas of CG dynamics on the free-energy surface with those of adaptive bias 
potential methods [107]. The method allows the system to escape from local minima in the 
free-energy surface and at the same time achieves a quantitative determination of the free-
energy surface through the integrated process. This method has especially found application 
in biological systems [95, 135, 208]. 

In a category of systems an inherent dispersity in some characteristic details results in a 
natural disparity in time scales. A well-known example of such a case is the Born–
Oppenheimer approximation [16], in which the electron motion is separated from that of the 
nuclei because of the large disparity between their masses. Another scenario for the 
separation of time scales occurs when some subset of forces present in the system is much 
stronger compared with the rest of the forces, while the masses of the constituents are 
about the same. In order to deal more efficiently with such systems, various integration 
algorithms with multiple time steps have been developed [206]. This idea is particularly 
useful in polymers in which the bond vibrations usually occur at a much faster rate than 
bond translation and rotations. Consequently, the configuration space as well as the forces 
can be divided into fast and slow components. This separation yields a set of coupled 
equations of motion for the evolution of the fast and slow degrees of freedom. Instead of 
solving this set of equations simultaneously, the multiple-time-step integration uses a small 
time step Δt to advance the fast processes by n steps while holding the slow variables fixed. 
The slow processes are then updated using a time step of nΔt. In the case that an analytic 
solution of high-frequency motions is available, this solution can be incorporated into an 
integration scheme for the entire system. Therefore, a time step can be defined based on 
the slow processes and used for the simulation of entire system with a much smaller number 
of cycles [206]. 

Finally, a method based on optimization of the action functional was proposed by Elber et al. 
[49] to extend the time scale of MD simulations by several orders of magnitude. In this 
method, instead of parameterizing the trajectory as a function of time, the trajectory is 
parametrized as a function of length. Instead of solving the Newton equations in MD 
simulations, an action term, i.e. the stochastic difference equation with respect to time, is 
optimized. 
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5. Fundamental Concepts in Multiscale Simulations of 
Polymer Systems 

 

In this chapter, I focus on the current status of multiscale simulation methods in polymer 

science. The existing possibilities are addressed and special attention is paid to polymer 

nanocomposites. Moreover, the shortcomings of various approaches are discussed and 

research directions are reviewed. 

Two papers are presented in this chapter. They are: 

5.1 A Review of Multiscale Computational Methods in Polymeric 

Materials 

[Gooneie A., Schuschnigg S., Holzer C.: A Review of Multiscale Computational Methods in 

Polymeric Materials, Polymers 9 (1), 2017, pp. 16] 

 

5.2 Multiscale Simulation of Polymer Nanocomposites in 

Processing: Challenges and Outlooks 

[Gooneie A., Mattausch H., Witschnigg A., Schuschnigg S., Holzer C.: Multiscale simulation of 

polymer nanocomposites in processing: Challenges and outlooks, Key Engineering Materials 

651, 2015, pp. 533–538] 
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Abstract: Polymeric materials display distinguished characteristics which stem from the interplay of
phenomena at various length and time scales. Further development of polymer systems critically
relies on a comprehensive understanding of the fundamentals of their hierarchical structure and
behaviors. As such, the inherent multiscale nature of polymer systems is only reflected by a
multiscale analysis which accounts for all important mechanisms. Since multiscale modelling is a
rapidly growing multidisciplinary field, the emerging possibilities and challenges can be of a truly
diverse nature. The present review attempts to provide a rather comprehensive overview of the
recent developments in the field of multiscale modelling and simulation of polymeric materials.
In order to understand the characteristics of the building blocks of multiscale methods, first a brief
review of some significant computational methods at individual length and time scales is provided.
These methods cover quantum mechanical scale, atomistic domain (Monte Carlo and molecular
dynamics), mesoscopic scale (Brownian dynamics, dissipative particle dynamics, and lattice
Boltzmann method), and finally macroscopic realm (finite element and volume methods). Afterwards,
different prescriptions to envelope these methods in a multiscale strategy are discussed in details.
Sequential, concurrent, and adaptive resolution schemes are presented along with the latest updates
and ongoing challenges in research. In sequential methods, various systematic coarse-graining
and backmapping approaches are addressed. For the concurrent strategy, we aimed to introduce
the fundamentals and significant methods including the handshaking concept, energy-based,
and force-based coupling approaches. Although such methods are very popular in metals and carbon
nanomaterials, their use in polymeric materials is still limited. We have illustrated their applications
in polymer science by several examples hoping for raising attention towards the existing possibilities.
The relatively new adaptive resolution schemes are then covered including their advantages and
shortcomings. Finally, some novel ideas in order to extend the reaches of atomistic techniques
are reviewed. We conclude the review by outlining the existing challenges and possibilities for
future research.
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1. Introduction

Polymeric materials display distinguished characteristics which range from the angstrom level of
an individual bond, to tens of nanometers of the chain gyration radius, to micrometers, millimeters and
larger in melts, blends, solutions and polymer nanocomposites (PNCs). The corresponding time scales
of the dynamics relevant to different material properties span an even wider range from femtoseconds
to seconds or even hours for large-scale ordering processes such as phase separation in blends. In order
to highlight the inherent multiscale nature of polymer systems, two interesting cases from the literature
are briefly outlined. Indeed, many other examples from various fields of polymer science can be found
elsewhere [1–13]. We believe that the selected examples should suffice to serve the purpose as well as
the brevity.

As the first example, PNCs are considered due to their importance to many applications.
The incorporation of nanoparticles in polymers has attracted substantial academic and industrial
interest due to the dramatic improvements in the properties of the host polymers. The addition of
only 1–10 vol % nanoparticles has been shown to be able to enhance various properties of the neat
polymers [14–20]. These changes are often introduced into the polymer matrix while many benefits of
the neat polymer including rather easy processability are still preserved [21,22]. Therefore, PNCs are
ideal candidates for multiple applications like medical devices, aerospace applications, automobile
industries, coatings, etc. Experience has shown that the property enhancement in PNCs is directly
linked to the nanoparticles arrangement and dispersion [21,23]. A precise morphology control is of
great significance in PNCs, otherwise the full property potential of these materials cannot be achieved.

Ali Gooneie Montanuniversitaet Leoben 42



Polymers 2017, 9, 16 3 of 80

The fact that many of the common nanoparticles possess strong van der Waals interactions promotes
their aggregation and consequently diminishes their effectiveness. On the other hand, the role of
polymer-particle interactions can either facilitate or complicate the aggregation process. Moreover,
the geometrical characteristics of the nanoparticles, such as aspect ratio and structural flexibility,
add to the complexity of their impact on the properties since it can alter surface energies as well as
surface-to-volume ratio [24]. Therefore, the structural characterization and the detailed evaluation
of the fabrication of PNCs are crucial to achieve the desired properties. Many studies are devoted to
understand the effects of processing conditions on the final microstructure and the resulting properties
of the PNCs [19–21,23–27]. The multiscale nature of PNCs simply divulges if one considers the
interplaying role of the fabrication stage with macroscopic characteristics and the aforementioned
submicron phenomena involved in the final outcome of PNCs.

A fascinating field of application for multiscale methods is in biological systems [3,4,7].
For instance, we take a single hair strand. It is well known that hairs, i.e., keratin fibers, exhibit a
complex structure [28]. Filaments with a diameter of approximately 8 nm are tightly packed in a
matrix, filling the approximately 2 nm gap in between which are later assembled into a so-called
macrofibril. Often, several hundred filaments form one macrofibril. Various macrofibrils can be
categorized based on how packed they are. These macrofibrils constitute the main part of the hair
cells in the cortex. The remaining volume of the cell is comprised of the remnants and pigment
granules. The cross-section of a hair typically has almost 100 cells, contained by a cell-membrane
structure. Finally, the cortex is encapsulated by the cuticle which forms the surface of a hair fiber.
It is of significance to be able to find the relation between the mechanical properties of these fibers
and the structure of the keratin proteins, temperature, humidity and deformation rate. Obviously,
such analysis necessitates a multiscale approach to capture the precise behavior of the hair mechanics
as suggested by Akkermans and Warren [28].

In order to find appropriate solutions to these questions, several theories and computational
methods were developed which could introduce new possibilities to design, predict and optimize the
structures and properties of materials. At present, no single theory or computational method can cover
various scales involved in polymeric materials. As a result, the bridging of length and time scales
via a combination of various methods in a multiscale simulation framework is considered to be one
of the most important topics in computational materials research. The resulting multiscale method
is preferably supposed to predict macroscopic properties of polymeric materials from fundamental
molecular processes. In order to build a multiscale simulation, often models and theories from four
characteristics length and time scales are combined. They are roughly divided into the following scales.

1. The quantum scale (~10−10 m, ~10−12 s): The nuclei and electrons are the particles of interest
at this scale and quantum mechanics (QM) methods are used to model their state. The possibility
to study the phenomena associated with formation and rupture of chemical bonds, the changes
in electrons configurations, and other similar phenomena are typical advantages of modelling at
quantum scale.

2. The atomistic scale (~10−9 m, ~10−9–10−6 s): All atoms or small groups of atoms are explicitly
represented and treated by single sites in atomistic simulations. The potential energy of the system
is estimated using a number of different interactions which are collectively known as force fields.
The typical interactions include the bonded and nonbonded interactions. The bonded interactions often
consist of the bond length, the bond angle, and the bond dihedral potentials. The most typically used
nonbonded interactions are Coulomb interactions and dispersion forces. Molecular dynamics (MD)
and Monte Carlo (MC) simulation techniques are often used at this level to model atomic processes
involving a larger group of atoms compared with QM.

3. The mesoscopic scale (~10−6 m, ~10−6–10−3 s): At mesoscopic scale, a molecule is usually
described with a field or a microscopic particle generally known as a bead. In this way the molecular
details are introduced implicitly which provides the opportunity to simulate the phenomena on longer
length and time scales hardly accessible by atomistic methods. A good example for the field-based
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description of polymer systems is the Flory-Huggins model for the free energy of mixing in which the
details of the system are summed up in model parameters. On the other hand, in particle-based models
collections of particles are accumulated in beads through a coarse-graining procedure. The interactions
between the beads are then used to characterize the system. Various methods have been developed to
investigate the mesoscopic structures in polymeric systems including dissipative particle dynamics
(DPD), Brownian dynamics (BD), lattice Boltzmann (LB), dynamic density functional theory (DDFT),
and time-dependent Ginzburg-Landau (TDGL) theory.

4. The macroscale (~10−3 m, ~1 s): At this scale, the system is treated as a continuous medium
and the discrete characteristics of atoms and molecules are ignored. The behavior of such a system is
governed by constitutive laws which are often coupled with conservation laws to simulate various
phenomena. All functions such as velocity and stress components are continuous except at a finite
number of locations which separate continuity regions. The fundamental assumption at this scale is
in replacing a heterogeneous material with an equivalent homogeneous model. The most important
methods used to simulate systems at this scale are finite difference method (FDM), finite element
method (FEM), and finite volume method (FVM).

Although several review papers are available on the topic of multiscale simulations in
materials [1–12,29–31], a comprehensive discussion of its various aspects in polymer science is still
needed. Some reports approach the objective by introducing different case studies and never actually
detailing various categories of multiscale methods, while some others focus only on a specific topic in
multiscale simulations such as coarse-graining or concurrent simulations. Here, we aim to provide
an opportunity for the interested reader to explore how such techniques might be applied in their
own area of specialty by focusing on the core concepts of major trends in this field all in one place.
Consequently, we outline the basics of the methods and illustrate each one with a few examples from
the vast field of polymeric systems. We organize the review as follows. In Section 2, we introduce
some of the most significant computational methods used so far to model different scales. This part is
not intended to provide detailed description of each method. Instead, we aim to emphasize different
approaches, challenges, restrictions, and opportunities that models of each scale could generally
possess. Since such models are the building blocks for the multiscale methods, it is important to note
how they convey their characteristics into a multiscale approach. We strongly advice the interested
reader to refer to relevant literature, some significant ones introduced here, for further information.
In Section 3, we discuss in detail various ideas to link scales in a multiscale package. Four major blocks
are presented in this part: Sequential Multiscale Approaches, Concurrent Multiscale Approaches,
Adaptive Resolution Simulations, and Extending Atomistic Simulations. This section is the core of the
paper and therefore we attempt to deliver the most recent advances in each instance. In every case,
the applications in polymer science are highlighted to serve the topic. It was a serious concern of ours
to cite the outstanding studies that could cover from the classic fundamental works up to the latest
publications. We hope this eases further pursue of the relevant works. It should be noted that the topic
at hand is massive and there might be some significant studies which are left out despite our attempts.
Finally, we conclude the review by emphasizing the current challenges and future research directions.
Overall, the present review is meant to put forth the major directions in multiscale simulation strategies
in polymer science.

2. Simulation Methods

In general, computational methods are categorized into either particle-based or field-based
approaches [32,33]. The particle-based methods incorporate particles to represent the building blocks
of polymers such as atoms, molecules, monomers, or even an entire polymer chain. These particles
(and their combinations in the form of bonds, angles, dihedrals and so on) often interact with
each other through certain forces which form a force field altogether [34]. By the application
of a statistical mechanical sampling method, the particles are allowed to move within a certain
thermodynamic ensemble and hence simulate a desired process [35]. Perhaps the most well-known
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particle-based techniques are MD and its coarser versions such as DPD. In the second category, i.e.,
the field-based approaches, the system is typically described in terms of effective potentials, collective
dynamic variables, and density fields which determine the degrees of freedom of the model [36].
Therefore, a reduced representation of the system is developed based on some phenomenological
approximation [32]. The famous Flory approximation of the free energy of a polymer is a good
example of the field-based strategy [37]. Another valuable field-based method is the polymer
reference interaction site model (PRISM) which attempts to realize the polymer structure in terms
of density correlation functions [38]. Other examples of such methods include density functional
theory (DFT) [38–40], self-consistent field theory (SCFT) [32,33,38], and phase-field techniques [41–43].
In this section, we outline the details of some of the most important methods at different scales.
These methods mainly belong to the particle-based approaches due to their relevance to the rest of
the discussion as well as to our own research interest. For more details on the field-based methods,
the reader is referred to the cited literature.

2.1. Quantum Mechanics

A precise treatment of atomistic scale phenomena requires the solution of the Schrödinger
wave equations for all electrons and nuclei on the basis of a quantum scale modelling [44]. In QM,
the time-independent form of the wave equation φ(r)k for a particle in an energy eigenstate Ek in a
potential U(r) having coordinates vector r and mass m is

− h2

8π2m
∇2φ(r)k + U(r)φ(r)k = Ekφ(r)k, (1)
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In 1927, Born and Oppenheimer [45] proposed a strategy to separate the wave functions of
the light electrons from the heavy nuclei considering that the electrons typically relax to some
orders of magnitude faster than the nuclei. This strategy, known as the adiabatic Born-Oppenheimer
approximation, assumes that the electrons always remain in their ground state irrespective of the
positions of the nuclei by adiabatically adjusting to the movements of the nuclei. As a result of this
assumption, one can define the wave function φ in Equation (2) as the product of two independent
wave functions. In this approach, one function describes the dynamics of the electrons̟ and the other
function describes the dynamics of the nuclei ϕ. This can be shown as

φ(rel1
, rel2

, . . . , reli
, rn1

, rn2 , . . . , rnj
) = ̟(rel1

, rel2
, . . . , reli

) ϕ(rn1
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). (3)
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Consequently, the corresponding wave function of the electrons with the eigenstate energy Ekel
is
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and the corresponding wave function of the nuclei with the eigenstate energy Ekn is
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It is worthy to note at this point that the use of the adiabatic Born-Oppenheimer approximation
is justified only when the energy gap between ground and excited electronic states is larger than
the energy scale of the nucleus motion. This assumption has been shown to fail in materials
with zero energy gaps such as metals [46,47] and the free-state graphene [48]. Despite this, the
adiabatic Born-Oppenheimer approximation has proved effective in the atomistic simulations of some
metallic [49] and graphene-based systems [50] as well.

The quantum mechanical many-body problem was formulated by Kohn and Sham [40] in the
density functional theory (DFT). In DFT, electrons were replaced by effective electrons with the same
total density moving in the potential generated by the other electrons and ion cores. Later, DFT
was modified by Car and Parrinello [51] which allowed for the movements to be incorporated into
the DFT scheme, thus leading to the so-called ab initio MD (AIMD). Such methods have found
useful applications in polymer science such as the simulation of mechanics of polyethylene (PE)
macromolecules [52–54], conduction in polymers [55–57], polymerization [58,59], crystal structures [60],
disordered conformations of poly(tetra fluoro ethylene) chains [61], and diffusion in polymers [62].

2.2. Atomistic Techniques

Atomistic scale simulations often benefit from Equation (5) to predict the initial atomic
configurations assuming that the electrons are instantaneously equilibrated during the movements
of the nuclei. The approximation methods of this equation are mainly divided into stochastic and
deterministic approaches. The stochastic approaches are often referred to as MC methods which are
well-credited to evaluate equilibrium states for certain distribution functions or to solve the equations
of motion in their corresponding integral form. The deterministic approaches are typically referred to
as MD which are mainly used to discretely solve the equation of motion. In general, simulations at
this scale provide an atomistic picture of the interactions between components and conformational
dynamics which could help uncover the underlying phenomena. By the way of illustration, we consider
an example of the application of MD to PNCs in the work of Piscitelli et al. [63] who investigated the
functionalization of sodium montmorillonite (Na-MMT) using three aminosilanes characterized by
different lengths of the alkyl chains. It is known that the presence of negative charges on the surface of
each MMT layer as well as counteracting cations such as sodium or potassium located in the vicinity
of the platelets within the galleries produce highly polar pristine structures of Na-MMT [14,21,23].
These structures further lead to their incompatibility with the majority of polymers. Consequently, a
simple dispersion of Na-MMT in a polymer results in the formation of aggregated structures within the
matrix which is followed by the deterioration of the property enhancement in these PNCs. In order to
avoid these structures, chemical functionalization of Na-MMT platelets like silylation reaction is often
performed [14]. The X-ray diffraction (XRD) patterns of Piscitelli et al. [63] indicated that the silylation
reaction results in the Na-MMT galleries to open up regardless of the type of the aminosilane. However,
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it was observed that the d-spacing in the modified Na-MMT was reduced as the organic chain of the
aminosilane molecule became longer. This outcome might not be expected before the experiments and
therefore MD was incorporated to illuminate the underlying phenomena. The simulations revealed the
increasing tendency of aminosilane molecules with increasing their length to interact among themselves
by intermolecular hydrogen bonding as well as hydrophobic interactions. These interactions could
eventually lead to the bridging of aminosilane molecules between two Na-MMT layers for longer
chains. This situation not only does not improve the d-spacing of the modified Na-MMT compared
with the unmodified nanoparticles, but also acts against any attempts from polymer macromolecules
to open up the layers. As observed in these simulations, MD can play a key role in the understanding
of molecular mechanisms involved in the intercalation process in polymer/clay nanocomposites.
Without a thorough vision of such molecular processes in aminosilane-functionalized Na-MMTs, the
designed PNC would fail due to this general belief that longer organic chains normally result in higher
interlayer spacing. In the following, MC and MD techniques are revisited.

2.2.1. Monte Carlo

In general, the MC methods include a large number of stochastic computer experiments by
incorporating uncorrelated random numbers. MC can be used to mimic stationary ensembles
by exploring a multitude of states in the corresponding phase space. Therefore, one can obtain
pseudo-time-averaged statistical data by calculating ensemble averages along trajectories in the phase
space assuming the ergodic system behavior [64–66]. It should be noted that the MC methods are
not restricted to the atomistic scale but can be used at any scale if an appropriate probabilistic model
is provided.

MC methods often consist of three characteristic steps. These steps are: (i) translation of the
physical phenomena under investigation into an analogous probabilistic or statistical model; (ii) solving
the resulting probabilistic model by a large number of numerical stochastic sampling experiments; and
(iii) analyzing the generated data utilizing statistical methods. The sampling method can follow either
a simple sampling algorithm or a weighted sampling algorithm. The simple sampling uses an equal
distribution of the random numbers while the weighted sampling develops random numbers based
on a distribution which is accommodated to the problem being investigated. The weighted sampling
algorithm is the underlying principle of the so-called Metropolis MC algorithm [67].

In Metropolis MC for canonical and/or microcanonical ensembles with N atoms, a new
configuration of the atoms is achieved by randomly or systematically choosing one atom and moving
it from its initial position i to the temporary trial position j. Consequently, the initial state Γi of the
system in the corresponding phase space is changed to the trial state Γj. This displacement alters
the Hamiltonian of the system from H(Γi) to H(Γj) according to the particular interactions being
considered in the model. Therefore, the change in the system Hamiltonian ∆H(Γi→j) is

∆H(Γi→j) = H(Γj) − H(Γi). (6)

If the imposed movement of the chosen atom brings the system to a lower state of energy, i.e.,
∆H(Γi→j) < 0, the movement is accepted and the displaced atom remains in its new position.
Otherwise, the imposed movement is only accepted with a certain probability pi→j which is
proportional to

pi→j ∝ exp

(
−

∆H(Γi→j)

kBT

)
, (7)

Ali Gooneie Montanuniversitaet Leoben 47



Polymers 2017, 9, 16 8 of 80

where kB is Boltzmann’s constant, and T is temperature. In Metropolis MC, a random number ζ
between 0 and 1 is generated and used to test the new configuration. The imposed movement is

accepted only if ζ ≤ exp
(
−∆H(Γi→j)

kBT

)
. If the movement is not accepted, the initial position is

assumed to be the new position and the entire procedure is repeated by considering another randomly
chosen atom.

The Metropolis MC also suggests using the same strategy for the grandcanonical ensemble where
the number of initial atoms might change. For this purpose, the change in the system energy due
to the exchange of an arbitrarily chosen atom by an atom of a different kind is taken into account to
determine whether the new configuration is accepted or not. The methodology is the same as before.

As a final remark on MC, it should be noted that the original MC methods were intrinsically
designed to simulate the equilibrium states of a system. The extension of the MC predictions to the
simulation of microstructure evolution was first promoted by the incorporation of Ising lattice model
in Potts-type MC models [68–70]. In the sense of using an internal kinetic measure such as the number
of MC steps, this class of MC models is often referred to as kinetic MC models [71–75].

MC simulations have been utilized to describe a variety of phenomena in polymeric materials.
Its application covers a wide range of problems including study of polymer degradation [71,73],
development of surface morphology in thin films [76–80], heterophase interfaces [81–94],
crystal growth and melting [95–98], morphology evolution [99–106], fracture behavior [107],
diffusion [108–111], study of polymer melt viscoelasticity by nonequilibrium MC [112,113], and
prediction of phase diagrams [114,115].

2.2.2. Molecular Dynamics

The MD method is a deterministic simulation technique for the simulation of many-body
interaction phenomena at the atomistic scale. It is based on substituting the quantum mechanical
expression for the kinetic energy in Equation (5) by the classic momentum term and solving it for a
nucleon using Newton’s law of motion. Consequently, the simulation of a many-body system would
require the formulation and solution of equations of motion of all constituting particles. The equation
of motion of a particle i is

mi
d2ri

dt2 = fi, (8)

where mi is the particle mass and ri is the particle position vector. fi is the force acting on the
ith particle at time t which is obtained as the negative gradient of the interaction potential U, i.e.,
fi = −∇U = −( ∂U

∂x i + ∂U
∂y j + ∂U

∂z k). The underlying potentials are often quantified in terms
of the relative position of two or more particles. This means that these potentials together with
their parameters, i.e., the so-called force field, describe how the potential energy of a many-body
system depends on the coordinates of the particles [34,116]. Such a force field can be obtained by QM,
empirical methods, and quantum-empirical methods. It should be noted that the criteria for selecting
an adequate force field should address the necessary precision in the system description, transferability,
and computational speed.

The overall algorithm of MD is to simulate the evolution of particle configurations based on an
adequate force field by integrating the equations of motion over discrete steps in time. The procedure
is simply to calculate the position and velocity of every particle at present and a time step later.
The system of equations of motion of N particles can be solved by utilizing FDM. The Verlet technique
is possibly the most common integration scheme among all [117,118]. Utilizing the Taylor expansion,
it uses the positions ri(t) and accelerations ai(t) at time t, and positions ri(t − ∆t) from the previous
time step t − ∆t, to calculate the new positions ri(t + ∆t) at the next time t + ∆t according to

ri(t + ∆t) ≈ 2ri(t) − ri(t − ∆t) + ai(t)(∆t)2. (9)
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The velocities vi(t) and vi

(
t + 1

2 ∆t
)

at times t and t + 1
2 ∆t can be estimated as

vi(t) ≈ ri(t + ∆t) − ri(t − ∆t)
2∆t

, (10)

vi

(
t +

1
2

∆t
)

≈ ri(t + ∆t) − ri(t)
∆t

. (11)

A typical interaction potential U may consist of a number of bonded and nonbonded interaction
terms. The bonded interactions may include bond stretching, bond angle bending, dihedral angle
torsion, and inversion interaction potentials described by various functions such as harmonic functions.
The nonbonded interactions contain electrostatic and van der Waals contributions and may consist of
various potential types such as Lennard-Jones potential, Buckingham potential, Coulombic potential,
etc. The concept of using interaction potentials makes it possible to carry out atomistic MD simulations
which reveal the atomistic mechanisms and intrinsic structural properties by considering a relatively
large number of particles.

While MD is shown to be a promising and reliable method in atomistic scale modelling,
it has statistical limitations. A comparison of MC and MD methods suggests that in a phase
space with 6N degrees of freedom, N being the total number of particles, MC allows one to
investigate many more states than MD. Therefore, the validity of ensemble averages obtained by
MD is limited to the assumption of system ergodicity; an assumption which is not unambiguously
proven [64]. Still, the great power of MD is its proficiency to predict microstructure dynamics
along its deterministic trajectory at an atomistic level. Applications of MD in the field of polymeric
materials include topics such as macromolecular dynamics [119–124], intercalation phenomena in
polymer/clay nanocomposites [63], structure of interfaces [125–127], polymer membranes [128,129],
crystal structures [130–132], diffusion phenomena [133–136], segregation phenomena [137], tribological
properties and crack propagation [138–140], thin films and surfaces [141–144], liquid crystalline
polymers [145,146], rheology of polymeric systems [147–150], application of elongational flows
on polymers using nonequilibrium MD [151,152], and the simulations of reactive systems such as
crosslinking and decomposition of polymers using the ReaxFF force field [153–156].

2.3. Mesoscale Techniques

Atomistic simulations of complex systems including polymeric materials provide a detailed
picture of, for instance, the interactions between components and conformational dynamics.
Such information is often missing in macroscale models. On the other hand, the description of
hydrodynamic behavior is relatively straightforward to handle in macroscale methods while it is
challenging and expensive to address in atomistic models. Between the domains of these scale
ranges, there is the intermediate mesoscopic scale which extends the time scale of atomistic methods.
To show the importance of the time scale in the observed phenomena in soft matters, we take the
lipid bilayers as an example. Bonds and angles of lipid molecules fluctuate within a time scale
of a few picoseconds [157]. If the time scale is increased by an order of magnitude, trans-gauche
isomerizations of dihedrals take place [158]. By further increasing the time scale to a few nanoseconds,
the phospholipid molecule rotates around its axis. Moving on to longer time scales, two lipids can
switch places in a bilayer on a time scale of tens of nanoseconds. Moreover, the individual lipid
molecules orient and form membranes protrusions [159]. The peristaltic motions and undulations
take place on a scale of 100 ns [160]. Finally, the steady transverse diffusion of lipids dominates on
a time scale of 2 ms [161]. Simulating such a wide range of time scales in a single atomistic MD
model needs large-scale computational resources. Consequently, the various mesoscale methods
are developed which attempt to link atomistic and macroscale techniques and compensate for their
shortcomings. Here, we briefly review BD, DPD and LB techniques which are often used at this scale.
In addition to these methods, we also refer the interested reader to the stochastic multiparticle collision
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model developed by Malevanets and Kapral [162] to investigate complex fluids such as polymers.
This method was recently coupled with MD and an adaptive resolution hybrid model was achieved
which is particularly interesting to study transport and hydrodynamic properties [163].

2.3.1. Brownian Dynamics

The motions of colloidal particles in dilute dispersions are a common example to introduce the
BD method. Since the solvent molecules are often much smaller than the colloidal particles, the
characteristic time of the motions of the solvent molecules is much smaller than that of the particles.
Therefore, if one observes such dispersions based on the characteristic time of the solvent molecules
in a MD framework, the suspended particles seem quiescent. In this case, a very long simulation
time is necessary in order to observe the motions of particles. Hence, performing MD simulations is
unrealistic when it is necessary, for instance, to trace a particle in time in order to calculate the diffusion
coefficient. BD method overcomes this difficulty by replacing the explicit solvent molecules in MD
with an implicit continuum medium. In BD simulations, the effects of the solvent molecules on the
colloidal particles are defined by dissipative and random forces.

If the dispersion is dilute enough to neglect the hydrodynamic interactions between particles,
the Brownian motion of particle i is generally described by the Langevin equation as [164]

mi
d2ri

dt2 = fi − ξvi + fB
i . (12)

In this equation, mi, ri and vi are the mass, position and velocity vectors of the particle i, fi is the sum
of the forces exerted on particle i by the other particles, and ξ is the friction coefficient. Here, fB

i is the
random force inducing the Brownian motions of the particle due to the motions of solvent molecules.
The random force should be independent of the particle position and velocity and is described by its
stochastic properties 〈

fB
i (t)

〉
= 0, (13)

〈
fB

i (t) · fB
i (t

′)
〉

= Aδ(t − t′), (14)

where δ(t − t′) is the Dirac delta function and A = 6ξkBT. The position and velocity of each particle
in time is therefore described as

ri(t + ∆t) = ri(t) + mi
ξ

vi(t)
(

1 − e
− ξ

mi
∆t
)

+ 1
ξ

fi(t)
(

∆t − mi
ξ

(
1 − e

− ξ
mi

∆t
))

+ δrB
i (t + ∆t), (15)

vi(t + ∆t) = vi(t)e
− ξ

mi
∆t

+ 1
ξ

fi(t)
(

1 − e
− ξ

mi
∆t
)
+ δvB

i (t + ∆t). (16)

The terms δrB
i (t + ∆t) and δvB

i (t + ∆t) represent a random displacement and velocity change due to
the random forces. One can utilize a two-dimensional normal distribution to sample these terms based
on random numbers [165]. Consequently, the positions and velocities of the particles can be updated
in every time step during the simulations. It should be noted that the momentum is not conserved
in the formulation of BD due to the random noise terms. As a result, BD cannot reproduce correct
hydrodynamics and is limited to the prediction of diffusion properties [164,166,167].

If the dispersion is not dilute and the hydrodynamic interactions between the particles are not
negligible, the above equations should be modified. Ermak and McCammon [168] have introduced
such effects into BD. In their method, the diffusion tensor is utilized to re-write the Langevin equation.
Recently, Ando et al. [169] suggested to use Krylov subspaces for computing Brownian random
noise vectors. Their method facilitates performing large-scale BD simulations with hydrodynamic
interactions. They showed that only low accuracy is required in the Brownian noise vectors to
accurately evaluate dynamic and static properties of model polymer and monodisperse suspensions.
BD has been incorporated to study a variety of phenomena including particle dispersions [170–177],
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polymer solutions [178–181], confined suspensions [182], peeling behavior of polymer molecules from
a surface [183], and translocation of complex molecules through nanopores [184,185].

2.3.2. Dissipative Particle Dynamics

DPD is a relatively new mesoscopic particle simulation method proposed by Hoogerbrugge and
Koelman in 1992 [186]. Fundamentally, DPD is similar to MD except for the fact that individual DPD
particles (which are often referred to as beads in the literature) represent the dynamic behavior of
several atoms or molecules. This coarse-graining strategy along with the softer potential functions
incorporated to represent bead-bead interactions allow for the simulation of dynamic processes over
longer time scales [187,188].

In DPD, the motion of each bead is dominated by three pairwise forces. For bead i with the mass
mi and position vector ri, the Newton’s equation of motion becomes

mi
d2ri

dt2 = ∑
j
(FC

ij + FD
ij + FR

ij), (17)

in which FC
ij , FD

ij , and FR
ij are respectively the conservative, the dissipative, and the random forces

between bead i and its neighboring beads within a certain force cutoff radius rcut. These forces are
defined as [187]

FC
ij = Aijχij

(
1 −

rij

rcut
)r̂ij, (18)

FD
ij = −ξijω

D(rij)rij[(vi − vj)·r̂ij]r̂ij, (19)

FR
ij = σijω

R(rij)rijζij r̂ij. (20)

Here, rij is the distance between the beads i and j, is the unit vector pointing from the center of bead j
to that of bead i, χij equals 1 for beads with a distance less than rcut and equals 0 otherwise. vi and vj

are the velocity vectors of the ith and jth beads, respectively. ζij is a Gaussian random number with
zero mean and unit variance. Aij is the maximum repulsion between bead i and bead j. ξij and σij

are the friction coefficient and the noise amplitude between bead i and bead j, respectively. ωD(rij)

andωR(rij) are dissipative and random weight functions, respectively. DPD simulations often obey
the fluctuation-dissipation theorem in which one of the two weight functions fixes the other one [189].
This theory dictates that the random and dissipative terms must be administered in a particular way
in order to maintain the correct Boltzmann distribution in equilibrium. As a consequent of this theory,
one has

ωD(rij) =
[
ωR(rij)

]2
, (21)

σij
2 = 2ξijkBT. (22)

These relationships ensure an equilibrium distribution of bead velocities for thermodynamic
equilibrium. In many studies, the weight functions are

ωD(rij) =
[
ωR(rij)

]2
= χij

(
1 −

rij

rcut

)2

. (23)

Due to the pairwise nature of the forces involved in DPD framework, all of the beads obey
Newton’s third law [190]. As a result, the sum of all forces in the system vanishes. Furthermore, any
given volume of beads in the system is only accelerated by the sum of all forces that cross its boundaries.
This is the fundamental assumption which results in the Navier-Stokes equation. Consequently, DPD
formulation conserves hydrodynamics [187,190,191]. If the random force was not pairwise as in BD
formulation see Equation (12), momentum would not be conserved [164,165].
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At every time step during the simulation, the set of positions and velocities of the beads is updated
utilizing the positions and velocities at the earlier time. In principle, all algebraic update algorithms
from MD can be used in DPD. However, the dependence of forces on velocity in DPD complicates the
algorithm. A common approach to solve this problem is to use a modified version of the velocity-Verlet
algorithm [117,118,187]. For bead i with unit mass and the overall force fi over a short interval of time
∆t, the algorithm suggests

ri(t + ∆t) ≈ ri(t) + vi(t) ∆t +
1
2

fi(t)(∆t)2, (24)

∼
vi(t + ∆t) ≈ vi(t) + λ fi(t) ∆t, (25)

fi(t + ∆t) ≈ fi(ri(t + ∆t),
∼
vi(t + ∆t)), (26)

vi(t + ∆t) ≈ vi(t) +
1
2

∆t (fi(t) + fi(t + ∆t)). (27)

In this algorithm, the velocity in the next time step is first estimated by a predictor method, i.e.,
∼
vi(t + ∆t) and then corrected in the last step, i.e., vi(t + ∆t). If the forces were independent of
velocity, the actual velocity-Verlet algorithm would be recovered for λ = 0.5. The parameter λ has
been shown to affect the temperature in DPD simulations by Den Otter and Clarke [192]. Based on
empirical observations, some authors suggest λ = 0.65 would yield an accurate temperature control
probably due to the cancellation of errors [190].

In recent years, modified versions of DPD formulation have been developed. For instance,
Pan et al. [193] formulated DPD by borrowing ideas from fluid particle model. This approach enabled
an explicit separation of dissipative forces into central and shear components. As a further consequence
of this methodology, the hydrodynamics of Brownian colloidal suspensions were correctly captured by
redistributing and balancing the forces. In another study, Yamanoi et al. [194] replaced the conservative
forces with entanglement forces in the force field to reproduce the physics of entangled polymers.
In this way, they could successfully simulate static as well as dynamic behavior of linear polymer
melts. Despite these efforts, the standard DPD has also shown quite capable of simulating complex
systems such as compatibilized and uncompatibilized polymer/clay nanocomposites under shear
flows [195,196]. Various polymeric systems have been successfully treated in the DPD framework
such as blood rheology [197–199], rheology of ultrahigh molecular weight polymers [200], lipid
bilayers [161], adsorption characteristics of confined PE glycols dissolved in water [201], crosslinking
of thermoset resins and formation of a network in the bulk [202], structure of thermoset polymers near
an alumina substrate [203], graphene structure [204], surfactant aggregation [205], photo degradation
process of polymer coatings [71], distribution of nanoparticles in lamellar and hexagonal diblock
copolymer matrices [206,207], surface segregation and self-repairing systems [208–210], and electrical
percolation threshold in packed assemblies of oriented fiber suspensions [211].

2.3.3. Lattice Boltzmann

While BD and DPD techniques borrow ideas from MD to tackle the challenges at the mesoscale,
some other methods such as lattice gas cellular automata (LGCA) and LB incorporate kinetic theory
concepts. In this part of the paper, we briefly point out the fundamental ideas of LGCA at first and
afterwards introduce LB as a pre-averaged version of LGCA.
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LGCA was initially designed to overcome the computational limitations in the study of fluids
at high Reynolds numbers (Re) [212]. In this method, the particles of fluid are bound to move on the
nodes of a discrete lattice at discrete time steps. At each time step particles can move from one lattice
node to a neighboring node according to a set of prescribed velocity vectors {

̚
ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

k} which connect the
neighboring nodes. In addition, only single occupancy is allowed for each possible velocity at a given
node. The dynamics has two steps according to LGCA: (i) a propagation step, and (ii) a collision step.
In the propagation step, also known as the streaming step, the particles move from their current node
to an empty neighboring node with respect to their velocity. In the collision step, the particles collide
and scatter according to certain rules which honor the mass and momentum conservation. In this way
the Navier-Stokes equations are simulated correctly provided that the lattice and the velocity space are
chosen carefully [164,165]. Although LGCA is unconditionally stable, it does not allow as large Re as it
was initially thought [166].

LB inherits the discretized lattice dynamics based on propagation and collision steps from LGCA.
However, it incorporates a one-particle distribution function as the relevant dynamic variable instead
of the particle-based dynamics in LGCA. Initially, the collisions in LB is modelled by pre-averaging
the collision schemes in the underlying LGCA model [213]. The resulting collision mechanism is then
presented by a linearized collision matrix in which the distribution function relaxes toward a local
equilibrium distribution [214,215]. In the LB scheme, thermal noises are not present which makes it
much more efficient in comparison with LGCA for hydrodynamic problems. On the other hand, the
intrinsic stability of LGCA is lost in LB. It should be noted that both LGCA and LB methods suffer
from Galilean invariance problems and should be corrected for these limitations [166].

The particle distribution function Ψi(r, t) used in LB gives the density of particles at node r at time
t moving with velocity
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̚

Λ
Λ -

Θ
Έ Θ

i in the i-direction. The lattice in which this density moves is characterized by
both the sets of constructing nodes and the velocity subspace {

̚
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k}. The velocity subspace determines
the neighboring nodes to which a given density will be able to move in a time step. The lattice
symmetry and the minimum allowed set of velocities should satisfy the requirement of a minimum
set of symmetry properties. Otherwise, the underlying anisotropy of the lattice might affect the
hydrodynamic behavior of the system. Figure 1 shows two lattice examples often used in two- and
three-dimensional LB simulations. These lattices define 9 and 19 allowed velocities (including the
quiescent state) and are thus named D2Q9 and D3Q19, respectively.

̚খ ሼখ ሽ

 

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
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Figure 1. Two typical lattices often used in LB simulations: (a) D2Q9; and (b) D3Q19.

The densities Ψi(r, t) are the elementary dynamical variables in LB. The macroscopic local density
ρ(r, t) and velocity v(r, t) at position r can be evaluated based on Ψi(r, t) as

ρ(r, t) = ∑
k

Ψk(r, t), (28)
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ρ(r, t) v(r, t) = ∑
k
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kΨk(r, t), (29)

in which the summation is performed over all allowed velocities. It is obvious that the local macroscopic
properties can be evaluated with time, if the evolution of the particle distribution function is known.
In LB the elementary two-step evolution (i.e., propagation and collision) of the particle distribution
function after a time step ∆t can be written in a condensed format as

Ψi(r +
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k∆t , t + ∆t) = Ψi(r, t) + ∑
k

Λik(Ψk(r, t) − Ψ
eq
k (r, t)), (30)

where the index k spans the velocity subspace, Ψ
eq
k (r, t) is the equilibrium distribution function and

Λik is the collision matrix. The simplest form of the collision matrix was proposed by Bhatnagar, Gross,
and Krook (BGK) as Λik = − 1

τ
δik where τ is the collision time [216,217]. This method produces

reasonably accurate solutions despite its simplicity [164]. The simplified form of Equation (30), i.e., the
BGK-LB method, consequently is

Ψi(r +
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k∆t , t + ∆t) = Ψi(r, t) +
1
τ
(Ψ

eq
i (r, t) − Ψi(r, t)). (31)

The equilibrium distribution function Ψ
eq
i (r, t) needs to be defined before one can use Equation (31)

to simulate a system. This is done by requiring that mass and momentum must be conserved [166].
A suitable form for the equilibrium distribution is often a quadratic function in velocities as [164]
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s is the speed of sound, and wi is the weighting constant. For D2Q9 lattice,
wi is
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and for D3Q19 lattice, it is defined as
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In the algorithm of BGK-LB method, one also needs to provide precise description of the
boundaries of the system [164,165]. The discrete distribution function of LB on the boundaries
has to be taken carefully so that it represents correct macroscopic boundaries of the system. LB has
found various applications in polymer science [218], for instance, polymer solutions [133,178,219,220],
simulation of complex flows [221,222], polymer electrolyte fuel cells [223], liquid crystals [224–226],
deformation of droplets containing polymers and nanoparticles [227], and thermal conductivity and
permeability of fibrous materials [228,229].

2.4. Macroscale Techniques

At the macroscopic scale, it is a common practice to disregard the discrete atomistic and
molecular structures and assume that the material is continuously distributed throughout its volume.
This approach is applicable provided that the behavior of the collections of atoms and molecules of the
materials can be homogenized based on a proper understanding of the structures at the finer scales.
Consequently, this scale is often referred to as the continuum scale in the literature. The continuum
material is often assumed to possess average physical properties such as density, heat capacity, thermal

Ali Gooneie Montanuniversitaet Leoben 54



Polymers 2017, 9, 16 15 of 80

conductivity, etc. and can be subjected to body forces such as gravity and surface forces such as contact
between two bodies.

In general, the macroscale methods obey several fundamental laws [2,30]. These laws are
(i) conservation of mass; (ii) equilibrium, based on Newton’s second law; (iii) the moment of
momentum law, in which the moment is equal to the time derivative of angular momentum
with respect to a reference point; (iv) conservation of energy; and finally (v) the conservation of
entropy. Although these principles define the fundamentals for a macroscale model, they still
need to be completed with suitable constitutive laws and the equations of state to provide all the
information necessary in order to solve a macroscopic problem. It is noteworthy that the derivation
of proper constitutive equations for polymeric systems has been an intriguing topic ever since the
viscoelasticity concepts were introduced [230]. Various models are put forward with advantages as
well as shortcomings often as a result of being limited to a certain class of either polymer systems or
phenomena. Moreover, the implementation of usually complex viscoelastic constitutive equations
results in extremely heavy calculations.

The continuum models often lead to a set of partial differential equations. In simple cases, it might
be possible to find a closed-form analytical solution for the problem. However, it is often necessary
to utilize appropriate numerical approaches to evaluate the solution due to the complexity of the
involved phenomena. Finite difference method (FDM) is the simplest numerical method developed so
far from a mathematical point of view. This simplicity comes with the price of losing flexibility for
use with complicated geometries and phenomena compared with more elaborate numerical schemes
such as finite element method (FEM) and finite volume method (FVM). It should be emphasized that
all of these approaches are merely mathematical methods to estimate the solution of a set of partial
differential equations and do not include a definite physical meaning in their bare core. Hence, they
are not solely limited to the macroscale phenomena and the founding ideas behind them can also be
applied to other scales. These numerical schemes ultimately transform the set of partial differential
equations into a system of linear algebraic equations and solve it using either direct approaches, such
as Gauss’ method, or iterative approaches, such as Gauss-Seidel method [231].

It should be noted that the macroscale techniques do not always deal with a continuous medium.
For instance, smoothed particle hydrodynamics (SPH) is one such particle-based method which has
been applied to study a number of phenomena including viscoelastic flows [232,233]. Moreover,
the thermodynamically consistent version of SPH is named smoothed dissipative particle dynamics
(SDPD) and has been implemented in multiscale frameworks to link the macroscopic SPH to the
mesoscopic DPD method [234–236]. In its essence, SPH utilizes particles moving with the flow which
make it possible to evaluate hydrodynamic properties at particle positions by a weighted averaging of
the local values. Therefore, every particle is practically “smoothed” over a finite volume with fixed
mass. For this part of the paper, we focus our attention to two widely-used mathematical methods in
macroscale calculations, i.e., FEM and FVM.

2.4.1. Finite Element Method

FEM is a powerful method to solve equations in integral form. Two possibilities exist for the
application of FEM. In the first case, there exists an integral form of the physical problem. This integral
form can be a result of a variational principle, the minimum of which corresponds to the solution,
or more generally an integral equation to solve [231]. In the second case, an integral formulation must
be obtained from an initial system of partial differential equations by a weak formulation, also called
the weighted residual method [231].
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A prerequisite of utilizing FEM is to decompose the spatial domain under consideration into a
set of elements of arbitrary shape and size. This discretization is often called a grid or a mesh. In the
decomposition procedure, the only restriction is that elements cannot overlap nor leave any zone of
the domain uncovered. The definition of a mesh for FEM is more free compared with FDM for which
the grid follows a coordinate system. For each element in FEM, a certain number of points, called
nodes, must be defined which can be situated either on the edges of the element or inside it. The nodes
are then used to construct the approximations of the functions under consideration over the entire
domain by interpolation.

The approximation of a function u(r), where r is the vector of spatial coordinates, on a geometric
domain meshed with finite elements is obtained as a linear combination of interpolation functions
ψn(r) associated with the mesh. If uh(r) is the approximation of the function u(r) under consideration,
it can be expressed in the form of a sum over the nodes of the domain by

uh(r) = ∑
N
n=1 unψn(r), (35)

in which N is the total number of nodes. The interpolation functions ψn(r) can be of diverse forms
with different degrees of continuity and differentiability. In the standard FEM, these functions are
defined locally at the level of each element. Therefore, if the node n belongs to element e, and if ψe

n
is used to denote the restriction of ψn within the element, for every coordinate vector r outside the
element e, one has

ψe
n(r) = 0, (36)

and for every coordinate vector r inside the element e,

uh(r) = ∑
N
n = 1 unψn(r) = ∑

n∈ e
unψe

n(r). (37)

The last sum is performed only over the nodes that constitute the element e. Consequently, the
interpolation used for approximation is locally defined at the level of each finite element. This way of
decomposition and approximation thus distinguishes the standard FEM from other methods using
interpolation functions defined over the entire domain. Moreover, in the standard FEM, the coefficients
un are the values of the function uh at the nodes of the mesh. As a result, the interpolation functions
must satisfy two conditions in addition to Equation (36). First, if n and p are two nodes of the same
element e, and rp is the position vector of the node p, then

ψe
n(r

p) = δnp, (38)

where δnp is the Kronecker delta function. Second, to exactly represent constant functions, for all r

inside the element e including the borders

∑n∈ eψ
e
n(r) = 1. (39)

In most cases, the integral form of the problem should be also constructed from partial differential
equations. For a simple case where the problem is limited to solve one partial differential equation
of the form R(u) = 0 on domain Ω, one can utilize the weighted residual method to obtain the
equivalent integral form. In the context of FEM, R(u) is often called the residual value. Obviously, the
solution of the problem zeros the residual and simultaneously satisfies the boundary conditions at ∂Ω.
The basic idea in FEM is to search for functions u which zero the integral form

Φ(u) =
∫

Ω
ρ R(u) dV = 0, (40)
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for every weighting function ρ belonging to a set of functions {Sρ}, while u satisfies the boundary
conditions at ∂Ω. The equivalence between R(u) = 0 on Ω and Equation (40) is only true if the set
{Sρ} has infinite dimensions and is composed of independent functions [231]. Otherwise, if {Sρ} is
finite as in FEM, the solution u which satisfies Equation (40) is only an approximate solution to the
problem.

It should be noted that the weighted residual method is not the only method which can be used
to search for a function that zeros the residual R(u) on Ω. For instance, the least-squares method can
be applicable in some cases despite its limitations. The principle of least-squares consists of searching
for the function u that minimizes the integral

f(u) =
∫

Ω
(R(u))2 dV, (41)

and that respects the boundary conditions. However, it is often difficult to employ the boundary
conditions in this formalism. Furthermore, the order of derivatives in R cannot be reduced which leads
to high differentiability conditions on the finite element discretization [231]. For these reasons, the
method of weighted residuals is often preferred.

For the discretization of the obtained integral form, N independent weighting functions ρ1, ρ2,
ρ3, . . . , ρN are utilized. There are different approaches to define the type of ρi functions. The most
used approach is the Galerkin method which defines the weighting functions precisely the same as the
interpolation functions ψn of the approximation by finite elements [231]. Therefore, Equation (40) can
be written as

Φ(u) =
∫

Ω
ψn R(∑

N
n=1 unψn) dV = 0. (42)

This integral equation is later turned into a sum of finite series over the nodes of the domain.
The boundary conditions are usually implemented into this integral form benefitting from the
divergence theorem [231]. In the algorithm of FEM, for every element e a mapping can be defined
between the element in physical space and a reference element, which allows defining the interpolation
functions universally for the diverse elements regardless of their coordinates [231]. This notion
facilitates programming profoundly.

FEM has been implemented in several simulation packages and consequently can be easily used
by both academic and industrial communities, in a variety of applications. To name a few instances
in polymer science, we note the prediction of the failure behavior of adhesives [237,238], the study
of elastic modulus of polymer/clay nanocomposites [239], the prediction of temperature distribution
in a tissue-mimicking hydrogel phantom during the application of therapeutic ultrasound [240], the
wall slippage in the extrusion of highly-filled wood/polymer composites [241,242], the torsional
friction behavior in hydrogels [243], permeation analysis in polymer membranes [244], viscoelastic
flow analysis [245–247], and droplet deformation [248]. A significant improvement of the precision
of FEM was achieved by Patera [249] when it was combined with spectral techniques. The resulting
algorithm is generally known as the spectral element method (SEM). SEM is more stable and accurate
than FEM under a relatively broad range of conditions [250]. Due to its power and versatility, SEM
has shown to be a promising candidate to solve the viscoelastic models in the simulations of complex
polymer flows [251,252].
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2.4.2. Finite Volume Method

FDM and FEM are admittedly the two most important classes of numerical methods for partial
differential equations. However, they both suffer from serious shortcomings. The main defects of FDM
are: (i) the considerable geometrical error of the approximation of curved domains by rectangular grids;
(ii) the lack of an effective approach to deal with natural and internal boundary conditions; and (iii) the
difficulty to construct difference schemes with high accuracy unless the difference equation is allowed
to relate more nodal points and thus further complicating the incorporation of boundary conditions.

Classic FEM methods, i.e., Galerkin FEM (GFEM), perform successfully in fields such as solid
mechanics and heat conduction where the problem is governed by self-adjoint elliptic or parabolic
partial differential equations. Unfortunately, this success did not continue in the field of fluid
dynamics. The reason was ascribed to the convection operators in the Eulerian formulation of the
governing equations which render the system of equations non-self-adjoint [253]. Consequently,
solutions to non-self-adjoint fluid dynamic problems by GFEM often suffer from node to node
oscillations. This problem has motivated the development of alternatives to the GFEM which preclude
oscillations without requiring mesh or time step refinement. The streamline-upwind/Petrov-Galerkin
(SUPG) [254,255] and the least-squares finite element [231,256] methods are two examples of such
approaches. Some authors also attempted to develop a strategy in FEM which employs a least-squares
method for first-order derivatives and a Galerkin method for second-order derivatives in the governing
Navier-Stokes equations [257]. Nevertheless, the simplicity of calculations and development of
simulation algorithms is usually hindered by such approaches.

As a result, the search for a simple yet accurate alternative to FEM was carried out benefiting from
FDM concepts and coupling it with finite element spaces in order to derive the so-called generalized
differences methods (GDM) [253]. GDM provides several advantages such as small geometrical errors,
easy handling of natural boundary conditions, and maintaining conservation of mass. With GDM,
one is supplied with a method with the computational effort greater than classic FDM and less than
FEM while the accuracy is higher than FDM and nearly the same as FEM. Due to its advantages, in
particular its inheritance of the mass conservation law, GDM was rapidly developed in computational
fluid dynamics (CFD) most popularly called FVM. FVM is also referred to as the finite control volume
method which is a discrete estimation of a certain control equation in an integral form [258–260].
Hence, FVM is basically equivalent to GDM with piecewise constants and piecewise linear elements.
Using FVM to develop numerical algorithms for nonlinear equations is in fact generalizing the classical
difference schemes to irregular meshes. The equivalence of FDM and FVM has been shown in simple
cases for instance by Rappaz et al. [231].

Although FVM has been applied to many applications including magnetohydrodynamics [261–263],
structural dynamics [264,265], and semiconductor theory [266,267], its main field of application has
been CFD mainly due to its conservative nature. Consequently, we restrict ourselves to this field in
the rest of this section. Similar to FDM and FEM, FVM changes a set of partial differential equations
with a system of linear algebraic equations. In order to do this, FVM utilizes a two-step discretization
procedure [268]. First, the partial differential equations are transformed into balance equations
by integration. In this transformation the surface and volume integrals are changed into discrete
algebraic equations over individual elements benefitting from an integration quadrature. A set of
semi-discretized equations is then produced. Second, the local values of the variables in the elements
are approximated by using suitable interpolation profiles. For a general scalar variable ϑ, one can write
the steady state conservation equation as

∇·(ρvϑ) = ∇·(Dϑ∇ϑ) + Qϑ, (43)
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where ρ is the fluid density, v is the fluid velocity vector, Dϑ is the diffusion coefficient of ϑ, and Qϑ

is the generation/destruction of ϑ in the control volume per unit volume. By integrating the above
equation over the element e and utilizing the divergence theorem, one finds

∮

∂Ve

(ρvϑ)·dS =
∮

∂Ve

(Dϑ∇ϑ)·dS +
∫

Ve

Qϑ dV, (44)

in which S represents the surface vector, and ∂Ve shows that the integration is performed over all
the surfaces surrounding the volume Ve. The semi-discrete steady state equation for e can be finally
simplified to [268]

∑ε∼neighboring cells of e (ρvϑ − Dϑ∇ϑ)ε·Sε = Qϑ
ε Vε, (45)

by using the mid-point integration approximation. The summation is performed over the faces
surrounding element e with its neighboring cells. Here, Qϑ

e is the contribution of element e to Qϑ.
If one denotes the convection and diffusion flux terms by Jϑ,C and Jϑ,D, respectively, one can write
Equation (45) in the form

∑ε∼neighboring cells of e (Jϑ,C + Jϑ,D)ε·Sε = Qϑ
ε Vε, (46)

where Jϑ,C = ρvϑ and Jϑ,D = −Dϑ∇ϑ. In FVM, the transported variable ϑ is conserved in the
discretized solution domain since the fluxes at a face of an element are calculated using the values
of the elements which share that face [268]. As a result, for any mutual surface of two elements, the
outwards flux from a face of an element is precisely equal to the inwards flux from the other element
through that same face. Consequently, such fluxes are equal in magnitude but with opposite signs.

To get the fully-discretized steady state finite volume equation for element e, one needs to adjust
proper interpolation profiles. The interpolation profiles are often different for diffusive and convective
terms due to the distinct physical phenomena that these terms represent. For the diffusive term, a linear
interpolation profile is often used [268]. The selection of an interpolation profile for the convective
terms could be more challenging. The simplest interpolation scheme, i.e., the symmetrical linear profile
or the central difference scheme, could be applied here. Despite its simplicity, this scheme can result in
unbounded unphysical behavior at high Peclet numbers (Pe) due to the fact that it cannot describe
the directional preference of convection [268]. Consequently, the upwind scheme was introduced
to account for this directional preference and provide a better stability at the cost of the accuracy.
This is due to the fact that the upwind scheme has a first order of accuracy whereas the linear scheme
has a second order of accuracy [269]. In order to enhance the precision and stability of advection
schemes, higher-order upwind biased interpolation profiles were incorporated in the calculations.
Such higher-order schemes often produce at least a second-order accurate solution, while they are
unconditionally stable. An example of such attempts is the quadratic upstream interpolation for
convective kinematics (QUICK) scheme developed by Leonard [270]. In this method, the value of the
dependent variable is interpolated at each element face using a quadratic polynomial biased towards
the upstream direction. Further details can be found elsewhere [268].

In recent years, the application of FVM in CFD has been significantly accelerated, mostly
because of the emerging open source software packages such as OpenFOAM® (Open Source Field
Operation and Manipulation) [271,272]. Analysis of viscoelastic fluids [273–279], viscoelastic two-phase
flows [280], mold filling in water-assisted injection molding of viscoelastic polymers [281], gas
permeation in glassy polymer membranes [282], blood flow [283], development of droplet and
co-continuous binary polymer microstructures [284] are some examples of FVM applications in
polymer science.

3. Multiscale Strategies

The ultimate purpose of a multiscale modelling is to predict the macroscopic behavior from the
first principles at the quantum scale. Finding appropriate protocols for multiscale simulations is on
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the other hand a very challenging topic. This is due to the fact that polymeric materials often display
phenomena on one scale that necessitate a precise description of other phenomena on another scale.
Since none of the methods discussed before is sufficient alone to describe a multiscale system nor they
are designed for such a purpose, the goal becomes to develop a proper combination of various methods
specialized at different scales in a multiscale scheme. This scheme is also supposed to effectively
distribute the computational power where it is needed most. By definition, such a multiscale approach
can take advantage of the various methods it envelops at multiple scales and reaches the length and
time scale that the individual methods fail to achieve. At the same time, this approach can retain the
precision provided by the individual methods in their respective scales. Moreover, the multiscale
approach should be flexible enough to allow for high accuracy in particular regions of the systems as
required. Therefore, the overall objective of multiscale models is to predict the behavior of materials
across all significant length and time scales while preserving a balance among precision, efficiency,
and realistic description.

In general, there are three main categories of multiscale approaches: sequential, concurrent,
and adaptive resolution schemes. The sequential approach links a series of computational schemes
in which the operative methods at a larger scale utilize the coarse-grained (CG) representations
based on detailed information attained from smaller scale methods. Sequential approaches are also
known as implicit, serial, or message-passing methods. The second group of multiscale approaches, the
concurrent methods, are designed to bridge the suitable schemes of each individual scale in a combined
model. Such a model accounts for the different scales involved in a physical problem concurrently and
incorporates some sort of a handshaking procedure to communicate between the scales. Concurrent
methods are also called parallel or explicit approaches. It is noteworthy that multiscale simulations
could principally utilize a hybrid scheme based on elements from both sequential and concurrent
approaches. More recently, a new concept for multiscale simulations has been developed which
resembles some characteristics of concurrent methods. In this approach, single atoms or molecules can
freely move in the simulation domain and switch smoothly from one resolution to another, for instance
based on their spatial coordinates, within the same simulation run. Consequently, these methods are
generally referred to as the adaptive resolution simulations. Details of such techniques are provided in
the following sections. Finally, there are a number of advanced techniques which allow for extending
the reach of a single-scale technique such as MD within certain conditions. Such methods are also
reviewed for the sake of completeness before closing the discussion of multiscale strategies.

3.1. Sequential Multiscale Approaches

In sequential approaches, calculations are often performed at a smaller scale (the more detailed,
finer scale) and the resulting data are passed to a coarser model at a larger scale after leaving out
unnecessary details for instance by coarse-graining. However, it will be shown that in some cases the
reverse procedure can also be done. A sequential multiscale model requires a thorough understanding
of the fundamental processes dominating the finest scale to yield accurate information. Afterwards,
it is also crucial to have a well-founded approach to introduce this information into the coarser scales.
Such a strategy is usually achieved by utilizing phenomenological theories which contain some key
parameters. These parameters are then used as the linking bridges between the scales when their
values are determined from the calculated data of the finer scale simulations. This message-passing
method can be performed in sequence for multiple length scales. It is obvious that in this sequential
approach the accuracy of the simulations at the coarser scale critically depends on the accuracy of
the information from the finer scale simulations. Furthermore, the model at the coarser scale must be
accurate itself so that it can provide reliable results. In this strategy, the relations between the scales
must be invertible so that the results of the coarser scale simulations can be used to suggest the best
choice for the finer scale parameters.
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The sequential approach has generally proven effective in systems where the different scales
are weakly coupled. Therefore, appropriate systems for such a methodology often share a common
character by which the large-scale variations appear homogeneous and quasi-static from the small-scale
perspective. The majority of the multiscale simulations that have been actually incorporated in
materials research are in fact sequential. In order to highlight the sequential message-passing in
a range of polymeric systems, a few examples are outlined here. To predict the morphology and
mechanical properties of mixtures of diblock copolymers and rod-like nanoparticles, Shou et al. [285]
coupled the self-consistent field theory with DFT to provide input information for the lattice spring
model (LSM). In their sequential algorithm, the spatial morphology of different phases is mapped
onto the coarser-scale lattice and the force constants are derived for the three-dimensional network
of springs. In similar approaches, other methods including LB [286], MC [287], and MD [288,289],
have also been used to produce appropriate morphological information for LSM in various systems
including polymer blends and nanocomposite coatings. Recently, the classical fluids density functional
theory was linked to MD simulations by Brown et al. [290] to study microphase separated states of
both typical diblock and tapered diblock copolymers. The fluids density functional theory can predict
the equilibrium density profiles of polymeric systems. The authors used the resulting density profiles
of this theory to initialize MD simulations with a close to equilibrated structure and could speed up the
simulations. In a study on the influence of self-assembly on the mechanical and electrical properties of
PNCs, Buxton and Balazs [291,292] used a combination of Cahn-Hillard theory and BD at the finer
scale to produce morphological data. The data were later fed either into LSM in order to determine the
mechanical properties, or into FDM to calculate the electrical conductivity.

A number of studies have been devoted to characterize polymer/clay nanocomposites at different
scales, spanning from quantum mechanical scale up to the macroscale. One such algorithm was
developed by Suter et al. [293] which starts with the quantum theory, and transfers the key information
through atomistic classical MD to a CG representation. This sequential procedure allowed for the study
of the intercalation of molten polymers, poly(ethylene glycol) and poly(vinyl alcohol), within MMT
tactoids and the larger scale ordering of these bridged tactoids, see Figure 2. In a separate multiscale
study, Scocchi et al. [294] evaluated the rescaled energies of a CG DPD model from the energy values of
their atomistic MD counterparts. Using this information, they could calculate the maximum repulsion
coefficients for the corresponding DPD models of polyamide (PA)/clay and polypropylene (PP)/clay
nanocomposites and reproduce experimentally observed microstructures. The same methodology was
also applied in following works and was extended into the macroscale realm by linking to FEM in
order to derive mechanical properties of polymer/clay nanocomposites as a function of the degree of
exfoliation [295,296]. The DPD parameters of their work derived from MD simulations, were recently
shown to be capable to capture the orientation dynamics of clays in polymer melts under various
shearing flows, see Figure 3 [195].

The most common serial transfer of information from a finer scale method to a coarser one can
be envisioned in the systematic development of CG models of polymer systems. The CG models are
often designed to reproduce the configurations of more detailed descriptions in atomistic simulations
as accurately as possible. In this way, a CG model with much less degrees of freedom is achieved
which can access longer time scales appropriate for instance in dynamics simulations. It is worthy
to note that the final conformations of such CG simulations could be translated back to its atomistic
details based on a specific backmapping algorithm. These sequential procedures represent general
characteristics of sequential multiscale approaches and could also be extended to more complex
systems. Furthermore, these fields have witnessed a large amount of research activities in recent years.
As a result, more details are provided on these topics to help the reader familiarize oneself with the
underlying challenges and possibilities.
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Figure 2. Pictorial overview of the intercalation of poly(vinyl alcohol) chains in a clay tactoid. The side
and top views of the tactoids are illustrated at several snapshots. The macromolecules are shown by
the green bonds in the side views. The color code for the clay particles are: pink: neutral clay; cyan:
charged clay; yellow: edge of the clay; and blue: sodium. The bending of the lowermost clay due
to the intercalation process of poly(vinyl alcohol) chains can be observed in the side view snapshots.
For the top view, the intercalating polymers are colored based on their molecule number, to make the
visualization easier. One can see that the polymer initially starts intercalating as short loops (for an
instance see the blue circled chain at the 0.8 ns snapshot), and progresses further into the interlayer.
Reprinted from Suter et al. [293] under the terms of the Creative Commons Attribution License.
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Figure 3. Snapshots of the clay platelets with time experiencing various flow directions. The applied
shear-rate is 0.148 in DPD units and the flow of each row is defined in the figure; the velocity direction is
shown by Vdirection and the velocity gradient direction by Gdirection. Reprinted from Gooneie et al. [195].
Copyright 2016, with permission from John Wiley & Sons Inc.

3.1.1. Systematic Coarse-Graining Methods

A serious problem with polymeric materials in a sequential multiscale scheme is that the
coarse-graining method from atomistic scale to mesoscale or from mesoscale to macroscale is not a
straightforward procedure. The coarsening from QM to MD follows basic principles which can be
formulated in a computational framework while it is system-specific at higher scales. All methods are
based on the application of a force field which transforms information from quantum scale to atomistic
simulations. From atomistic simulations to mesoscale model, critical features of the system such as
the structure and/or thermodynamics have to be preserved while the degrees of freedom is reduced.
The linking of scales through the mesoscale is addressed by many authors as the most challenging step
towards developing reliable multiscale frameworks. Systematic coarse-graining methods are therefore
developed to address these challenges. It is noteworthy that some mathematical aspects of various
coarse-graining methods for equilibrium [297] and nonequilibrium [298] systems were addressed
recently in details.

Systematic coarse-graining strategies attempt to extend the length and time scales of atomistic
MD simulations by replacing several atoms with a single super atom and thus reducing the degrees
of freedom. These approaches strictly attempt to preserve intrinsic properties of polymers such as
radius of gyration, diffusion coefficient, etc. As a consequence, the results of such CG models can
be directly compared with experiments. Depending on the number of atoms that are lumped into
a single super atom, i.e., the degree of coarse-graining, the systemic coarse-graining methods are
roughly divided into three major blocks; (i) low coarse-graining degrees where one or two monomers
are coarse-grained into one super atom; for instance, in an iterative Boltzmann inversion (IBI) scheme;
(ii) medium coarse-graining degrees where ten to twenty monomers are coarse-grained into one blob
or bead, for instance, used in the so-called “blob model”; and (iii) high coarse-graining degrees where
the whole chain is mapped to a single soft colloid in super coarse-graining methods. These variations
provide access to a range of time and length scales from 10−6 s (10−6 m) to 10−2 s (10−2 m), particularly
precious to simulate dynamic properties of polymeric systems [299]. In addition to the reduced number
of degrees of freedom, CG models often benefit from simpler forms of interactions compared with
the detailed models. This feature can promote the computational efficiency to a large extend. Besides,
the free energy profiles of CG models are usually smoother due to the fact that many interaction
centers are replaced with only a single site. Finally, the parametrization of the CG interactions is
simpler than that of full atomistic systems since many chemistry-specific details are ignored during
coarse-graining. Such features of CG models make them particularly appealing for many applications
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in polymer systems. In the next sections, several methods for coarse-graining as well as various
remaining challenges are discussed.

Low Coarse-Graining Degrees

Low degrees of coarse-graining with one or two monomers lumped into a single super atom are
carried out by either parameterized or derived approaches [300]. The parameterized approaches utilize
all-atomistic (AA) simulations to calculate some target property, such as a pair distribution function,
and then the coarse-graining potentials are evaluated to reproduce the target quantities. One should
note that the CG potentials can hardly reproduce all the original AA system specifications. On the
other hand, in the derived methods the CG pair potentials are calculated in AA simulations from the
direct interactions between the groups of atoms enveloped in super atoms. In these methods, the
contribution of multibody interactions to the effective CG potentials is less significant in comparison
with pair potentials. Consequently, the derived methods are often used to describe systems in which
multibody interactions do not play a significant role. Examples of derived methods are the pair
potential of mean force (pPMF) [301,302], the effective force CG (EFCG) [303], and the conditional
reversible work (CRW) [300,304,305]. In the rest of this part, we focus on parametrized approaches
since the derived methods are generally considered to be better-suited for small molecules even though
they have recently found some applications in larger molecules [306,307].

The parameterized methods are divided into structure-based and force-based methods depending
on the target quantities. As specified in the name, structure-based methods construct the CG
potentials in order to reproduce a structural property of the AA system such as pair distribution
functions [36,308–318]. The IBI method is undoubtedly the most significant example of such
methods [308,319]. Other structure-based methods include the Kirkwood-Buff IBI method [320],
the inverse Monte Carlo (IMC) method [309,310,313], the relative entropy method [321–324], and the
generalized Yvon-Born-Green theory [325]. All of these methods are principally similar to the IBI
method with minor differences in their optimization or mapping schemes. The force-based approaches,
on the other hand, attempt to match the force distributions on a super atom from both the CG and AA
representations. There are mainly two variations to force-based methods namely the force-matching
method [3,326–331], and the multiscale coarse-graining method [328,329,332–335]. For the sake of
completeness, we should mention that in some works a combination of the methods is used to derive
the CG model. For instance, we refer to the recent study of Wu [336] who utilized a combination of IBI
and CRW to find the CG potentials for morphological simulations of poly(vinyl chloride)/poly(methyl
methacrylate) and PS/poly(methyl methacrylate) blends.

In the IBI method, one often assumes that the probability distribution function pR depends on
pair distance r, bond length l, bond angle θ, and dihedral angleΌ gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧

. These parameters are further
taken to be independent from each other so that pR(r, l, θ,Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧

) = pR(r) × pR(l) × pR(θ) × pR(Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧
)

and the CG potential function becomes UCG(r, l, θ,Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧
) = UCG(r) + UCG(l) + UCG(θ) + UCG(Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧

).
Through the simple Boltzmann inversion one has UCG(q) = −kBT ln pR(q) with q = r, l, θ,Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧

.
The iterative algorithm in IBI compares the probability distribution functions of the CG model with
the corresponding target probability distribution functions of AA simulations pR

target, and improves the
calculated CG potential functions in a step-wise manner according to [299,337,338].

UCG
i+1(q) = UCG

i (q) + kBT ln
pR

i (q)

pR
target(q)

(47)

The potential correction term, i.e., the second term on the right hand side of the equation, is
sometimes multiplied by a relaxation factor between zero and one to avoid overshooting in the
numerical procedure. The number of iterations required to reach satisfactory property reproduction
in IBI is system-specific and depends on various factors like polymer structure, the definition
of the super atom, the degree of coarse-graining, etc. and can take from a few to hundreds of
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iterations to converge [327]. Li et al. [339] used such a strategy to reproduce viscoelastic properties of
cis-polyisoprene. In their work, the authors reproduced CG distribution functions and those obtained
from AA simulations. In this way, they could optimize the potential functions for the four independent
parameters separately.

The IBI method is not the only way to optimize a CG model based on AA simulations. Here we
take a quick look at two other methods namely IMC and force-matching methods. IMC or the Newton
inversion method incorporates rigorous statistical mechanical arguments to update the potential
functions of the CG model [309,310,313]. The optimization procedure in IMC poses an interdependent
updating algorithm for pair potentials in multicomponent systems whereas in IBI method these
potentials are updated separately which could lead to convergence problems. However, this feature is
often computationally very expensive [327]. In the force-matching method, a variational approach
is used to construct the CG potentials based on the recorded forces from AA simulations [3,326–331].
In this method, the difference between the average AA force on a particle and the corresponding
force in the CG counterpart is minimized in order to find the optimized CG force field. Thus, the
force-matching approach actually projects the full many-body force field onto the definitive potential
functions of the CG force field [340]. Due to the fact that the CG force field is merely an approximation
of the AA force field, the force-matching method may or may not reproduce the structural properties
of the AA system perfectly. The incorporation of higher-order interactions in the definition of the CG
force field could resolve this problem at the cost of lower computational efficiencies [341]. It should be
noted that IBI and similar methods are usually not helpful in systems with a diluted component since
the interactions between the diluted molecules cannot be readily obtained. In such cases one should
compute the effective potentials for these interactions with more rigorous sampling schemes such as
thermodynamic integration or umbrella sampling [306,342–344].

In the coarse-graining procedure, there is usually more than one way to define super atoms.
Several important issues regarding the definition of super atoms should be addressed carefully, i.e.,
the shape of the super atom, the position of the center of a super atom on a molecule, the number
of atoms which are enveloped by it, as well as the number of different super atoms associated with
a molecule. The super atom is defined to be a spherical particle in most studies, but there are also
some works which offer generalizations for anisotropic potentials [345,346]. This enforces additional
complexity on the definition of potential functions as well as the performance of CG simulations
only for a slightly increased accuracy. Therefore, it is generally advised to achieve higher precisions
by incorporating additional spherical super atoms to characterize the molecules instead of utilizing
non-spherical super atoms [299]. Considering the other parameters mentioned for the definition of
super atoms, there is no general rule applicable for different cases. There are various ways to define
the super atoms to represent a CG model of a system. However, it is crucial to ensure that the final CG
model is capable to reproduce the static, dynamic or thermodynamic properties correctly before it is
further applied. To give an example, we consider the various possibilities to develop CG models of
polystyrene (PS), which has been extensively studied with different approaches in the definition of
super atoms as illustrated in Figure 4. Müller-Plathe and his co-workers [347–349] adopted the CG
structure shown in Figure 4a and could successfully reproduces the gyration radius and the Flory
characteristic ratio of PS in melts at 500 K. Nevertheless, the entanglement length was estimated to be
much smaller than the experiments. Spyriouni et al. [350] modified the CG potential functions of this
model and could predict the correct entanglement length of PS melts as well as the packing length and
the tube diameter. Still, the isothermal compressibility was largely different from experimental values
indicating the poor transferability of the developed potentials to pressures other than the one used in
AA simulations. Another CG representation was developed by Sun and Faller [351,352] as depicted
in Figure 4b which could obtain the entanglement length at 450 K in agreement with experimental
observations. The mapping scheme shown in Figure 4c was developed by Qian et al. [353] which
yields potentials capable of reproducing the isothermal compressibility as well as structural properties
of the PS melts from 400 to 500 K. Finally, in order to include the tacticity effects on the structural
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and dynamic properties of PS, Harmandaris et al. [354,355] and Fritz et al. [356] used the CG models
shown in Figure 4d. This model has been applied to study both the mechanical properties of PS
glasses [357,358] and the dynamic properties of PS melts [359,360]. These works manifest the influence
of the definition of super atoms on the final outcome of the simulations. Consequently, a CG model
should be tested and validated for its predictive features and merits before any further use [361].

 

Figure 4. Different definitions for the super atoms of CG PS utilized by (a) Müller-Plathe and
co-workers [347–349]; (b) Sun and Faller [351,352]; (c) Qian et al. [353]; and (d) Harmandaris et al. [354,355].
Reprinted from Li et al. [299] under the terms of the Creative Commons Attribution License.

The fact that several atoms are replaced with a super atom in CG models changes the entropy due
to the deleted degrees of freedom. This leads to an altered internal dynamics after coarse-graining.
This notion becomes more important as the degree of coarse-graining increases. In addition to this
altered entropy, the coarse-graining procedure changes the amount of the surface of each molecule
available to its surrounding molecules due to the fact that it simplifies a cluster of atoms into a spherical
super atom. Consequently, the hydrodynamic radius of the CG super atom is strongly dependent
on the coarse-graining methodology and in every case, it is different from its AA counterparts.
Since the friction coefficient is related to the hydrodynamic radius according to Stokes’s law [362],
the coarse-graining procedure also changes the internal friction coefficient between monomers which
leads to incorrect dynamic behavior of CG models [363–365]. Therefore, it is necessary to rescale the
dynamics in order to simulate the correct behavior [366]. The dynamic rescaling can be performed
utilizing a time-mapping factor defined, for instance, as the ratio of the friction coefficients [359,360],
the ratio of decorrelation times utilizing the autocorrelation function [339], or numerically derived
from the ratio of the mean square displacements (MSD) [354], between AA and CG models. In spite
of these efforts, the correct definition of a time-mapping factor is still a challenge due to the fact that
different modes of motions in a system should be scaled with different characteristic scaling factors,
giving rise to the so-called “dynamical heterogeneity” issue [367–369].

Finally, the transferability and thermodynamic consistency of developed CG models should
be ensured. In a coarse-graining procedure such as IBI, the effective potential functions are often
evaluated based on target distribution functions, which are themselves derived for a specific set of
thermodynamic conditions resembling a certain ensemble. Therefore, the derived potential functions
from one state are not transferable to another state in most cases [337,370]. All CG models are
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state-dependent and should not be transferred to another state without re-parametrization. The “state”
contains information about temperature, density, concentration, system composition, phase, etc. as well
as chemistry-specific details of the system. An example for the thermodynamic inconsistency of CG
models and AA simulations is the missing long-range interactions between the super atoms leading to
overestimations of the pressure. To compensate for such effects, some studies add a linear attractive tail
function into the pair potential and recover the correct pressure for CG polymer systems [319,371,372].
Consequently, the effective potential functions should be optimized individually for each state of
the CG system. Despite this general consideration, there are some instances in the literature where
the effective potential functions of the CG model possess a range of transferability into a subset of
thermodynamics states [353,373–375]. For instance, the effective CG potentials of homopolymer melts
show a remarkable transferability over a large range of temperatures [376–378]. Such studies state
that the definition of super atoms largely influences the transferability of the effective CG potentials
derived by the IBI method. An interesting topic in the transferability of CG models is to find a
methodology to derive CG potentials which are both thermodynamically and structurally consistent
with the underlying AA description [317,318,338,344,379–382]. Such a method could ensure a certain
state transferability for the constructed CG potentials. Using calibration methods in order to improve
the transferability of derived CG potentials is also an interesting possibility. Recently, inspired by ideas
from uncertainty quantification and numerical analysis, Patrone et al. [383] used a Bayesian correction
algorithm [384] to efficiently generate transferable CG forces. Their method uses functional derivatives
of CG simulations to rapidly recalibrate initial estimates of forces anchored by standard methods such
as force-matching.

Medium Coarse-Graining Degrees

Since the definition of the super atom is not unique, it is possible to lump several monomers
of the polymer chain into one single super atom. In this way, the approachable length and time
scales of the CG simulations are significantly extended. Based on this idea, Padding and Briels
lumped 20 monomers along a PE chain in a single spherical blob and developed the so-called “blob
model” [385–387]. The potential functions of the blob model are optimized systematically based on
AA simulations in a similar fashion to IBI. However, due to the larger number of lumped monomers in
comparison with techniques for low coarse-graining degrees, the dihedral interactions between the
blobs are negligible. Therefore, the potential functions of the blob model usually consist of nonbonded
and bonded (i.e., bonds and bond angles) interactions. Padding and Briels write these interactions as

UCG
nonbonded (r) = c0e

−( r
b0

)2

, (48)

UCG
bond (l) = c1e

−( r
b1

)2

+ c2e
−( r

b2
)2

+ c3lµ, (49)

UCG
angle (θ) = c4(1 − cos θ)ν, (50)

in which UCG
nonbonded (r), UCG

bond (l), and UCG
angle (θ) are the potentials of nonbonded, bond and angle

interactions, respectively. c0 to c4, b0 to b2, µ and ν are fitting parameters derived from AA simulations.
The potential functions for nonbonded and bonded interactions Equations (48) and (49), respectively
are optimized against AA results for the blob representation of PE illustrated in Figure 5. Blob model
has been applied in a number of studies including the investigation of transient and steady shear
flow rheological properties of polymer melts [388], chain dynamics of poly(ethylene-alt-propylene)
melts [389], and entangled star PE melts [390]. In the blob model, it is also necessary to rescale the
dynamics to capture the behavior of the polymer chains correctly. The rescaling can be performed
by adjusting the friction coefficient of the Langevin equation to the simulated value from the AA
model [386]. Based on this rescaling strategy, the correct diffusion coefficients and scaling laws of
the zero-shear viscosity of PE polymer melts were predicted correctly in the blob model as shown in
Figure 6 [386].
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Figure 5. Potential functions for nonbonded (circles) and bonded (squares) interactions from AA
simulations. The solid lines are fitted with Equations (48) and (49). Reproduced from Padding and
Briels [385] with the permission of AIP Publishing.

 

Figure 6. (a) Center-of-mass self-diffusion coefficient, Dcm; and (b) zero-shear viscosity versus
molecular weight, Mw , for PE melts at 450 K. Reproduced from Padding and Briels [386] with the
permission of AIP Publishing. For further information regarding the various sets of data shown in
figure refer to the cited work and the references within it.

Another exciting method used to perform CG simulations with medium coarse-graining degrees
is DPD which was introduced in Section 2.3.2. The conservative force in DPD algorithm was shown
by Groot and Warren [187] to be connected to the Flory-Huggins parameters between components.
This notion was further generalized to consider bead-size effects [391], variable bead volumes [392], as
well as polymer blends [200]. The consideration of variable bead volumes in DPD facilitates the way to
simulate more complex polymeric systems where beads can represent various functional chemical units
with different volumes rather than polymers constructed from a single bead type [202]. In addition,
an elaborate systematic strategy for parameterization of chain molecules in DPD simulations was
recently proposed by Lee et al. [205] which successfully combines top-down and bottom-up approaches
and benefits from experimental infinite dilution solubilities of the compounds to map the repulsion
interaction parameters. There are rather simple relationships in the literature using which one can find
the appropriate DPD conservative forces for all-fluid systems [202,203]. However, such relations cannot
help in DPD studies where a fluid is interacting with a solid substrate. As a consequence, some authors
developed an iterative approach to optimize the repulsive forces of DPD versus AA simulations based
on a comparison of the density profiles of fluid particles on the solid substrate [201–203]. An example
of such analysis is shown in Figure 7 for the parametrization of epoxy-alumina interactions as utilized
by Kacar et al. [203]. A similar coarse-graining strategy was also incorporated by Johnston and
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Harmandaris [393] to study model polystyrenes on a gold surface. In their methodology, the authors
developed a hierarchical multiscale model in which DFT, MD, and CG models were combined to
describe the interfacial properties.

 

Figure 7. Number density profile from atomistic MD simulations. Molecular center-of-mass of a
particular bead is used in computation of the profiles. Vertical line is the location of the substrate
surface and defines the integration boundaries. A pictorial representation of the atomistic simulation
box snapshot is given as the inset picture. Reprinted with permission from Kacar et al. [203]. Copyright
2016 American Chemical Society.

The distribution functions become broader as more atoms are coarse-grained into one super
atom since more degrees of freedom are smeared out through averaging. Accordingly, the potential
interactions become increasingly soft and therefore unphysical bond-crossings may occur in such
systems. Such bond-crossings result in unrealistic predictions of the dynamics in the modelling of
long polymer chains by reducing the number of entanglements. Hence, it is important to avoid the
bond-crossing phenomenon in CG models. There are three main routes available to avoid (or to reduce
in some cases) the bond-crossings in CG models. The first method was developed by Padding and
Briels [385] for the blob model. They introduced an algorithm which prevents bond-crossings by
considering a bond as an elastic band and applying the energy minimization (EM) criteria to predict
the possible entanglement positions. The second method was proposed by Pan et al. [394] who added
segmental repulsive forces to the force field in order to decrease the frequency of bond-crossings.
Similar ideas were also put forward by Yamanoi et al. [194] and Sirk et al. [395]. While these approaches
are promising, they are computationally expensive. Moreover, some parameters used in these models
such as the cutoff distance of the segmental repulsions are physically ambiguous and need further
explanation to avoid arbitrary choices. The third method was introduced by Nikunen et al. [396] who
could prevent bond-crossings by incorporating simple topological constraints. Using this approach,
Rouse as well as reptational dynamics [397] were simulated correctly for short and long chains,
respectively. In spite of these attempts, there are still serious computational limitations regarding these
methods which necessitate careful selection and implementation of such approaches [398].

High Coarse-Graining Degrees

The coarse-graining methods discussed so far often lump a few atoms up to several monomers into
a single super atom. Since the polymer chain length is typically much longer than these coarse-graining
limits, super coarse-graining models are necessary to approach extremely large spatial and temporal
scales of polymers. In such models, an entire polymer chain is often represented by a single particle.
The dynamics of polymer chains is strictly defined by the dynamics of the centers of mass of these
particles and all the high-frequency motions associated with macromolecules are dropped out. Based on
these ideas, a super CG model was developed by Murat and Kremer [399] in which polymer chains
were replaced by soft ellipsoidal particles. The size and shape of the particles is determined based
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on the conformations of the underlying chains. The internal energy of a particle with a given size is
characterized by the probability of occurrence of that particle. Furthermore, the density of monomers
within each particle is calculated from all conformations that have the same size. The spatial overlap
of the monomer density distributions of two particles defines the interaction between them. For a
large number of contacting particles, the interactions between the particles forces them to adjust the
equilibrium size distribution. Their simulations showed that the generic Gaussian random walk scheme
appropriately defines the behavior of the chains in the melt [399]. They argue that a large number of
long chains can be simulated within a reasonable computation time on a single workstation processor
due to the fact that the internal degrees of freedom of the chains are severely smeared out [399].
Extensions of this method are available in which a chain of such soft particles can be considered for
the simulations of high molecular weight polymers [400–403]. For instance, Zhang et al. [403] used
such a strategy in combination with the mapping of the density distributions onto a lattice in the
framework of MC schemes and could develop a particle-to-mesh approach for high molecular weight
polymers. The authors propose that such a grid-based scheme could be a viable candidate to produce
equilibrated models of long polymer chains useful in the setting of a general multiscale study [403].

An interesting super CG model was developed by Kindt and Briels [404] in which a single particle
was ambitiously used to study the dynamics of entangled polymer chains. In this model, a set of
entanglement numbers are used for each pair of particles to describe the deviation of the CG model
(with the ignored degrees of freedom) from the equilibrium state. Such deviations give rise to transient
forces in the system. The displacements of the particles are governed by these transient forces as well as
the conservative forces derived from the potential of mean force. This deviation-displacement analysis
is performed for any given configuration of the centers of mass of the polymers. Due to the core role
of the transient forces in the simulation strategy, it has been called the “transient force model” [405].
The authors applied this model to a melt of C800H1602 chains at 450 K and examined radial distribution
functions, dynamic structure factors, and linear and nonlinear rheological properties. In general, they
could achieve good qualitative, and to a large extent quantitative, agreement with experiments and
more detailed simulations. Figure 8 illustrates typical linear and nonlinear rheological properties
for C800H1602 chains at 450 K calculated by Kindt and Briels [404]. The surprising observation that a
single particle could capture the correct reptation behavior was qualitatively linked to the transient
forces being quadratic in the deviations of entanglement numbers and thus resembling the confined
motions of a chain in a tube [405]. This model has been further applied to study rheological properties
of various polymer systems [406–412].

 

ʹ ″
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Figure 8. (a) Storage G′ and loss G′′ moduli (full and dashed lines, respectively); and (b) the flow
curve for C800H1602 melt at 450 K. Reprinted from Kindt and Briels [404] with the permission of
AIP Publishing. The solid line in (b) is derived in equilibrium simulations using the Cox-Merz rule.
The circles and squares are simulation results under shear benefitting from linear background and
variable flow field methods, respectively. For further information regarding the data shown in figure
refer to the cited work and the references within it.
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Based on analytical calculations through the Ornstein-Zernike equation [413], a super
coarse-graining model was developed by Guenza and her co-workers [363–365,414–419] which does
not need any further optimization against a more detained model. This model provides analytical
expressions for various thermodynamic and physical quantities which are especially useful when
dealing with rescaling issues. As it was noted before, once a molecule is coarse-grained its entropy as
well as accessible surface to the surrounding molecules are changed. The entropy change becomes
important in such super CG models in comparison with low coarse-graining degrees such as IBI. The
present model provides analytic expressions for the scaling factors from each contribution as [363,365]

sentropy = Rg

√
3MNc

2kBT
, (51)

sfriction =
ξ

Nξm
, (52)

with sentropy and sfriction as the rescaling factors for the entropy and surface changes, respectively.
Here, M is the molecular weight of the chain with radius of gyration Rg, and Nc is the number of
monomers per chain. ξ and ξm are the friction coefficients of the super CG and freely-rotating chain
systems, respectively.

3.1.2. Reverse Mapping

While the coarse-graining procedure helps accessing longer time scales in simulations, it also
removes detailed atomistic features necessary for precise evaluations of the structure. Since CG models
have proven extremely useful in various simulations, such as generating equilibrated structures for
further analysis and simulation runs [350,420–422], there is a general tendency towards employing
them upon possibility. Consequently, a reverse mapping is also needed to reproduce atomistic details
such as chemical characteristics from the CG model. The reverse mapping procedure is also referred to
as fine-graining or backmapping in the literature [423,424].

Early attempts for reverse mapping are dated back to Tschöp et al. [425] and Kotelyanskii et al. [426].
In general, a reverse mapping operation includes (i) the reconstruction of CG particles with possible
atomistic structures from a bank of templates; followed by (ii) performing EM, MD, or MC simulations
to guarantee collectively and locally relaxed atomistic structures. In the first step, the fitting templates
are often extracted from a preceding atomistic equilibrium simulation. The chosen template for a given
CG particle should not only fit the contour of the underlying CG molecule, but also allow the best
superposition for the neighborhood CG particles. In order to achieve a high backmapping efficiency,
the fitting procedure is usually based only on geometrical criteria and no force and energy calculations
are involved. In some cases where the CG particle represents a complex structure with bulky side
groups, one must be careful to avoid interlocking of side groups [420]. In the second step, it is necessary
to run post-processing calculations due to the fact that the CG force field is derived from average
atomic distributions and therefore may easily lead to overlapping structures [427]. Such artefacts could
happen more frequently in coarser CG models.

Several backmapping approaches are proposed for different polymers in the literature [420,425,428–431].
Often, when the CG model is constructed based on the atomistic simulations, the zoom-in back to the
atomistic description is simply a geometrical problem [430]. However, a more sophisticated procedure
must be followed in some cases where the model is significantly coarse or the CG particles include
asymmetric atoms and the polymer chain shows a specific tacticity [420,431]. An example for the
first case was given by Karimi-Varzaneh et al. [430] who used a simple backmapping algorithm to
reinsert the atomistic details of a PA-66 in its corresponding CG model. As for the latter, Wu [431]
utilized a special backmapping procedure to capture tacticity effects on the structure and dynamics of
poly(methyl methacrylate) melts. Moreover, a general backmapping technique to prepare equilibrated
polymer melts was proposed by Carbone et al. [424] which consists of (i) the generation of random
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walk chains with various Kuhn lengths; and (ii) the insertion of atoms on the underlying random
walk chains. The steps of this approach for PA-66 are shown in Figure 9. The authors showed that
well-equilibrated melts of PE, atactic PS and PA-66 can be achieved using this method. The structural
properties of such relaxed melts were shown to be in good agreement with previous AA simulations
and experimental data on short as well as long spatial ranges. Some cases with special reverse mapping
algorithms are also found in literature. For instance, in order to generate realistic amorphous polymer
surfaces, Handgraaf et al. [432] developed a special mapper which takes the CG structure as input and
uses the MC technique to generate the atomistic structure. The mapped atomistic structure is later
equilibrated by performing a short MD simulation.

 

Figure 9. Reverse-mapping procedure for PA-66: (a) insertion of the atomistic segments (colored beads)
on the underlying random walk chain (solid black line); (b) re-orientation of the atomistic segments;
(c) final configuration of the reconstructed atomistic chain. The arrow indicates the grow direction of
the chain. Reproduced from Carbone et al. [424] with permission of The Royal Society of Chemistry.

It should be noted here that the reverse mapping of a nonequilibrium CG system differs from an
equilibrium run to some extent. Since molecular deformations are significant in the CG model due to
the nonequilibrium simulations, a proper backmapping procedure should translate these deformations
into the atomistic model. Furthermore, the atomistic model must also contain information about the
stored deformation energy in the CG model of the polymer. Obviously, a simple backmapping cannot
meet these requirements since during the post-processing step, i.e., EM or MD or MC simulations, the
energetically unstable deformed structure relaxes quickly. A backmapping method was proposed by
Chen et al. [423] to overcome this problem for polymer chains experiencing sheared nonequilibrium
conditions. Their methodology mixes the general concepts of backmapping with the new idea of
applying position restraints to preserve the deformed configurations. In order to preserve the stretched
chain configuration obtained in the CG simulation, position restraints with a harmonic potential are
applied to all the atoms coinciding with CG particles locations. The globally deformed structure is
allowed to relax locally using a molecular mechanics approach [433]. By changing the position restraint
scheme and re-optimizing the structure through an iterative procedure, it is possible to minimize
the isolation of segments from the rest of the chain. The workflow of the backmapping procedure of
Chen et al. [423] is illustrated in Figure 10.
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Figure 10. The workflow used in the backmapping procedure of nonequilibrium CG simulations as
proposed by Chen et al. [423]. Notice that schemes 1 and 2 in step 3 are two variants of the main scheme
in step 2 in order to minimize the isolation of segments from the rest of the chain. Reproduced from
Chen et al. [423] with permission of the PCCP Owner Societies.

Finally, the validity of a reverse-mapped atomistic structure is often tested by comparing relevant
structural information simulated using atomistic models based on the reverse-mapped configurations
with the original AA simulations initially used to develop the CG force field [424,430,434]. Radial
distribution function of a specific chemical group, bond and angle distributions, torsion angle
distribution, and the number of hydrogen bonds are mostly used for such comparisons. In some
studies, the results of a reverse-mapped atomistic simulation are also directly compared with the
available experimental data [424].

3.2. Concurrent Multiscale Approaches

The concurrent approaches define the system under consideration through a genius combination
of several methods and solve them simultaneously instead of a hierarchical procedure as in sequential
approaches. The resolution of the solution is adapted to provide an accurate representation of those
regions of the system which are of particular interest. A common field of application for such
strategies is the analysis of crack propagation in materials. During the crack propagation the immediate
neighborhood of the crack tip, where the bond breaking is taking place, demands a higher precision in
the models representation whereas a coarser model could suffice for further away from this region.
An example of the concurrent methodology used in the crack analysis is shown in Figure 11. In this
multiscale simulation, the concurrent approach combines tight binding (TB), MD, and FEM techniques
to study crack propagation in silicon [435]. The vicinity of the crack should be simulated at a finer
resolution since it exhibits significant nonlinearity. Therefore, atomistic MD method could provide
a more precise representation of the crack surrounding whereas FEM can still accurately describe
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the rest of the system further away from the crack. In order to provide a reliable description of the
underlying physics, the formation as well as the rupture of covalent bonds must be treated with
quantum mechanics rather than empirical potentials. This is due to the fact that bonds are principally
the sharing of valence electrons at a quantum mechanical scale [436]. Consequently, it is crucial to
apply a TB modelling to a small region in the immediate vicinity of the crack tip, where bond breaking
prevails during fracture, while the empirical potential description of MD is adequate further away
from this region.

 

FE

MD

MD

TB

Figure 11. A hybrid FE/MD/TB simulation. The FE, MD, and TB approaches compute forces on particles
(either FE nodes or atoms) in their respective domains of application. These forces are then incorporated
to calculate the updated positions and velocities of the particles in a time-stepping algorithm.

The concurrent approach is best suitable for the systems with an inherent multiscale character.
In such systems, the behavior at each scale depends strongly on the phenomena at other scales.
Moreover, this approach can be of a more general nature due to the fact that it does not often rely on
any system-specific assumptions such as a particular coarse-graining model. Therefore, a well-defined
concurrent model can be applied to many different systems within the limits of common phenomena
involved as long as it incorporates all the relevant features at each level. In contrast to sequential
methods, concurrent models are not usually constructed based on a detailed prior knowledge of the
physical quantities and processes involved. As a result, such models are particularly useful when
dealing with new emerging problems about which little is known, for instance, at the atomistic level
and its connection to larger scales. However, the coupling between the different regions treated by
different methods is a critical challenge remaining in the core of concurrent approaches. A successful
multiscale model seeks a smooth coupling between these regions. Here, we address some of the
concepts and strategies developed in the concurrent framework.

3.2.1. The Concept of Handshaking

In concurrent simulations, often two distinct domains with different scales are linked together
benefitting from a region called the “handshake” region. The handshake region generally bridges
the atomistic and continuum domains of the multiscale model [437,438]. However, there are studies
where it has been used to link quantum mechanical TB calculations to atomistic domains [438,439], or
atomistic MD models to their equivalent CG descriptions [437].

The handshake region transfers information from one domain to the other and thus provides the
possibility to overlap, usually, atomistic and continuum domains. This overlap is defined with a field
variable, often the potential energy, taking a weighted form of the magnitude of the same variable in
each domain. The weighting is usually in the form of a function which decreases monotonically from
one to zero in the overlap. As a result, the control variable has its corresponding values in each domain
with a gradual transition between the domains. The form of the weighting function is not determined
by the formulation and is arbitrary. Consequently, the modelling quality of the handshake region is
strongly dependent on a smooth and gradual shift of control variables from one domain to the other
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domain. In the handshake algorithm, it is assumed that the properties of each domain are independent
from one another. Due to this assumption, one has to be concerned particularly whether or not the
material properties of both domains are truly equivalent. In addition, physical complications in the
handshake region might necessitate more complex algorithms to obtain a precise representation of it.
For instance, nodal displacements of the continuum domain should be influenced by the displacements
of molecules inside the neighboring atomistic domain if the node and the molecules are within the
cutoff distance of the molecular interactions.

The handshaking approach has been applied to combine TB/MD/FEM in order to study crack
propagation and crystal impact in silicon [438,439]. A combination of TB/MD/FEM has also been
utilized in a handshaking framework to characterize submicron micro-electro-mechanical systems
by Rudd et al. [437]. Based on the works of Abraham et al. [439,440] the unifying theme for such a
multiscale model is the total Hamiltonian Htot defined throughout the entire system. This Hamiltonian
is a function of the atomic positions rj and their velocities vj in the TB and MD regions for all j atoms,

and the displacements uα and their time rates of change
·
uα in the finite element (FE) regions for all α

nodes. Within this scheme, the Hamiltonian is divided into FE, MD, TB and handshaking contributions
from FE/MD and MD/TB during the domain decomposition. It is assumed that the atomic and nodal
movements are not necessarily exclusive to a single domain, but their interactions are. In this way,
Htot may be written as

Htot = HFE(uα,
.
uα) + HFE/MD(rj, vjuα,

.
uα)+ HMD(rj, vj) + HMD/TB(rj, vj) + HTB(rj, vj) , (53)

with the Hamiltonian of different contributions depicted with appropriate indices. Rudd et al. [437]
explain that the FE/MD as well as MD/TB handshakes must successfully address the fundamental
issues of (i) matching the degrees of freedom and (ii) defining consistent forces at the corresponding
interfaces. Despite this similarity, it should be emphasized that each handshake obliges a somewhat
different approach in order to answer the requirements. This is due to the fact that the MD/TB
handshake occurs across an interface of atoms whereas the interface at the FE/MD handshake is
between planes of atoms [437]. Appropriate derivatives of this Hamiltonian function can be used to
define the equations of motion in a standard Euler-Lagrange routine. The time evolution of all the
variables can then proceed to the next step using the same integrator. The interested reader is referred
to the work of Rudd et al. [437] for further information.

3.2.2. Linking Atomistic and Continuum Models

It is frequently observed in large-scale atomistic simulations that only a small subset of atoms
actively participate in the evolving phenomenon. This allows for the majority of atoms to be effectively
represented by continuum models. Hence, a considerable reduction of computation and storage
resources is guaranteed if only novel multiscale approaches could reduce the number of degrees of
freedom in atomistic simulations. There is a tremendous amount of concurrent multiscale modelling
methods developed in the last twenty years which couple atomistic simulations such as MD with
continuum simulations such as FEM [441,442]. The idea behind these methods, not unlike all multiscale
strategies, is to focus the available computation power where it is needed by applying atomistic
simulations, whereas an approximate solution is provided for the rest of the system by continuum
simulations. Therefore, both atomistic details as well as the macroscopic properties of materials
can be obtained simultaneously from these simulations. Such models are mostly designed for
crystalline materials such as metals or carbon nanomaterials. Unfortunately, their application in
polymeric materials is still limited, possibly due to the unfamiliarity of these models to polymer
researchers. Although some authors have referred to such methods in recent reports on polymer
simulations [32,299], the fundamentals of the methods are not brought to discussion. We believe
that the basic ideas of these methods can be extended to study polymeric materials. Here a brief
description of these methods is provided with emphasis on the fundamentals. At the end of this section,
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several studies in polymeric systems are listed where such methods or a modified version of them are
incorporated to address the phenomena. It is our hope that it will help guide future improvements.

Certain categories of problems such as fracture and nanoindentation possess the characteristics
of localized deformation where it is possible to address the system by a dual-domain or
partitioned-domain approach; one with an atomistic description BA, and the other with continuum
approximation BC. The two domains are linked by an interfacial region BI across which compatibility
and equilibrium are enforced. An important distinction among various methods is the way they
treat the interfacial region. Most methods follow one of the strategies demonstrated in Figure 12.
The interfacial region is shown by the dashed lines. In part (a) of the figure, BI has been further
subdivided into two parts: (i) the handshake region BH , and (ii) the padding region BP. As explained
before, the handshake region provides a mixing between the two scales. The padding region is
continuum in nature and provides the boundary conditions to the atoms in BA and BH with a certain
range of atomistic interactions, rcut. The thickness of this region depends on rcut and the motions
of atoms in BP are calculated, in different ways for different methods, based on the continuum
displacement fields at the positions of the padding atoms. It is also possible to eliminate the
handshake region as shown in part (b) of Figure 12. Models that do not use a handshake region
mostly incorporate a direct atom-node correspondence at the edge of the FE region to impose the
displacement compatibility across the interface. This necessitates that the mesh is refined down to the
atomic scale on the continuum side of the interface and hence introduces difficulties in mesh generation.

 

Figure 12. Schematic representation of generic interfaces used in coupled atomistic/continuum
simulations: (a) with the handshake region; and (b) without the handshake region. Atom 1 does
not influence the continuum directly (while atom 2 does) because of the finite cutoff length. Padding,
handshake, and regular atoms are depicted by blue squares, black circles, and blue circles, respectively.

The coupling between the BA and BC domains necessitates compatibility conditions in each
direction. Therefore, the displacements of atoms in BP must be determined from the nodal
displacements in BC. Moreover, the displacement boundary conditions need to be defined for the BC

nodes at the edge of the mesh closest to the BA. The compatibility criteria can be either strong or weak.
The strong compatibility is when the padding atoms move in the same as the finite elements in which
they reside. In this type of compatibility, subsets of nodes are defined that coincide with some of the
atoms in BA. The displacement boundary condition is therefore imposed on BC with the motion of
the overlaying atoms from BA. The weak compatibility, on the other hand, utilizes some sort of an
averaging or penalty method to enforce the displacement boundary conditions. Strong compatibility
introduces complications in mesh definition near the interface while it also yields relatively more
accurate results [442].
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The simulation algorithm often finds the equilibrium by either minimizing an energy functional or
driving the set of forces on all degrees of freedom to zero. Consequently, there are two major categories
of the governing formulation i.e., the energy-based and the force-based approaches. The major
drawback of the energy-based method is that it is extremely complicated to remove the non-physical
artifacts of the coupled energy functional. This problem, often referred to as the “ghost forces”, stems
from trying to combine two energy functionals from different models into a single coupled energy
expression [442–444]. The force-based approaches, on the other hand, have no well-defined total energy
functional and are considered to be non-conservative in general. These approaches can be numerically
slow and unstable and could converge to unstable equilibrium states. However, force-based methods
can eliminate the ghost forces due to access to the direct definition of the forces.

Several methods are proposed in literature to correct the ghost forces artifact in energy-based
models. These methods take various actions in order to eliminate or at least mitigate for ghost
forces [445–449]. One such approach with general characteristics is the deadload ghost force
correction [444]. In this approach, the ghost forces are explicitly computed and the negative of these
forces are added as deadloads to the affected atoms or nodes. The deadload ghost force correction has
shown great promise in some static simulations [442]. However, the deadload correction is only an
approximation for the simulations where ghost forces change during the calculation progress.

The general algorithm for energy-based methods defines the total potential energy of the entire
system Utot as the sum of the potential energies of the atomistic UA, continuum UC and handshake
UH regions, as

Utot = UA + UC + UH , (54)

and minimizes it to reach equilibrium. These energies are described by [442]

UA = ∑
α∈BA

Eα − ∑
α∈BA

fα·uα, (55)

UC =
Ne

∑
e=1

Nq

∑
q=1

ωqVeW(∆(r
q
e )) − f

T
u, (56)

UH ≈ ∑
α∈BH

(1 − Θ(rα))Eα + ∑
e∈BH

Θ(rcent
e )W(∆(rcent

e )), (57)

where the energy, spatial coordinates, displacement and applied forces of atom α are shown by Eα, rα,
uα, and fα, respectively. Ne is the number of elements, Ve is the volume of element e, Nq is the number
of quadrature points in the numerical integration, r

q
e is the position of quadrature point q of element

e in the reference configuration, andωq is the associated Gauss quadrature weights. f and u are the
vector of applied forces and nodal displacements in the FE region, respectively. W is a function of the
deformation gradient ∆. rcent

e is the coordinates of the Gauss point in element e which is taken at the
centroid of the triangular elements in this specific case shown in Figure 12. One should notice that the
energy of the continuum region is approximated due to the fact that a continuous integral has been
replaced by a discrete numerical method. Consequently, the handshake region is also approximated
since it also uses such a numerical approach for the continuum energy contribution. In the energy
equation for the handshake region, both the continuum and atomistic energies are used in a weighted
fashion according to a function Θ which varies linearly from one at the edge of BH closest to the
continuum region, to zero at the edge closest to the atomistic region. Indeed, for methods with no
handshake region, UH is taken zero and only the continuum and atomistic regions contribute to Utot.
Moreover, one should note that the padding atoms have no contribution to the formulation of the potential
energy. Therefore, these atoms only provide an appropriate boundary condition for the atoms in BA.

The force-based methods are based on two independent potential energy functionals. The first one
calculates an energy functional Uatom assuming the entire system is modelled using atoms. The second
energy functional UFE on the other hand, provides a description of the system if it was modelled
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entirely in a FEM framework. The forces for all α atoms, fα, and all i nodes, fi, are simply found by
differentiating the corresponding energies with respect to the atomic or nodal displacements, uα and
ui respectively, as

fα =
∂Uatom

∂uα
, (58)

fi =
∂UFE

∂ui
. (59)

It is important to note that the difference between energy-based and force-based methods stems
from the fact that in the second approach one does not attempt to minimize the combined energy
functional. In the following, some relevant approaches which are used to link atomistic and continuum
models are discussed.

Quasicontinuum Approach

Quasicontinuum (QC) method is a particularly interesting approach by Tadmor et al. [450–452]
which seamlessly couples the atomistic and continuum realms. In QC approach, the atomistic
description of the system is systematically coarsened by the introduction of kinematic constraints
designed carefully so that the full atomistic resolution is preserved where required, for instance
in the vicinity of large deformations, and to treat collectively large numbers of atoms in regions
further away. QC was firstly developed to investigate defects in solids considering the interaction
of dislocations [444,450,451,453–456]. However, it has also found applications in fracture and crack
mechanics [457,458], and nanoindentation [459].

In QC method, there is no handshake region. Since there is no separation of the domains in QC,
there are no needs for separate sets of material data in this multiscale approach. This is a significant
advantage of QC. The calculation domain is partitioned into non-overlapping cells similar to the FEM.
These cells then cover the constituting molecules of the material while their vertices coincide with some
representative atoms from the molecules. The local density of such representative atoms is larger in
regions with high deformations compared with the regions experiencing low deformations. Figure 13
shows an example for the selection of representative atoms in the vicinity of a crack. QC takes the
degrees of freedom in a cell the same as the degrees of freedom of the representative atoms of that cell.
In addition, the movement of molecules is usually calculated from the representative atoms utilizing
interpolation functions. QC also approximates the average energy of a cell from its representative
atoms. The method eventually looks for the arrangement of representative atoms which minimizes the
potential energy of the domain.

 

∑
≈ ∑ Ν ഥ

Ν ഥ

Figure 13. For an irregular domain which includes a crack, part (a) shows the representative atoms near
the crack tip; Part (b) demonstrates the domain meshed by linear triangular elements. The density of
representative atoms is adjusted to correspond to the variation in the deformation gradient. In order to
calculate the displacement of atom A in part (b), one can use a linear interpolation of the displacements
of the three representative atoms which form the highlighted element.
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Variants of the QC model have been developed and applied in different situations [450,451,460,461].
In general, the QC approach includes three major blocks: (i) the constrained minimization of the
atomistic energy of the system; (ii) the computation of the effective equilibrium equations based on
appropriate summation rules; and (iii) the design of the computational mesh representing the structure
of the system based on proper adaptation criteria. The QC model initially provides a full atomistic
description of the system which is later scaled down to a subset of representative atoms. The positions
of the remaining atoms are obtained by piecewise linear interpolations of the representative atoms.
Afterwards, the effective equilibrium equations are obtained by minimizing the potential energy of the
system based on the scaled-down configuration space. A precise evaluation of the total energy of the
system Etot is often performed over the full collection of atoms as

Etot = ∑
N
i=1 Ei, (60)

in which N is the total number of atoms, and Ei is the energy of the ith atom at its corresponding
position in the system. This comprehensive formula is approximated in QC models benefitting from
the concept of representative atoms with

Etot ≈ ∑
Nr

i=1ωiEi, (61)

where ωi and Ei are the quadrature weight which shows the number of the atoms that a given
representative atom stands for in the definition of the total energy, and the energy of the ith
representative atom, respectively. Here, the summation is only performed over Nr representative
atoms and thus the calculation effort is reduced. The representative atoms are usually adaptively
selected so that an accurate description of the critical positions with larger deformation fields is
obtained. QC approach often incorporates FEM to determine the displacement fields and combines
it with an atomistic technique which is used to determine the energy of a given displacement field.
One can compare it with the standard FEM in which a constitutive law is coupled with it through a
phenomenological model.

The concepts of QC could be extended to include a coupling between atomistic calculations and
QM as well. Such an strategy was initially introduced to study fracture in silicon and the method was
named coupling of length scales (CLS) [437,439,440]. There are small differences between QC and
CLS. Initially CLS method used a small strain approximation to describe the continuum region rather
than the Cauchy-Born rule used in QC [442,462]. However, conceptually the methods are similar since
the original CLS approach could be generalized to provide a nonlinear Cauchy-Born description for
the continuum region. Furthermore, minor differences between the methods exist in the way they
treat the interface. Still, these differences are believed to have slight influences on the error and rate of
convergence [442,463].

QC suffers from the ghost forces like any other energy-based method. An idea to reduce these
forces was initially put forward by introducing a handshake region to the QC models. This idea along
with minor changes in the manipulation of forces at the interface constructed the bridging domain
method (BDM) [464]. At the interface, BDM uses weak compatibility which eliminates the need for
one-to-one correspondence between atoms and nodes. This weak compatibility imposes some loss
of accuracy on BDM. Another approach to correct for ghost forces is the iterative minimization of
two energy functionals used in composite grid atomistic/continuum method (CACM) [465]. CACM
is a highly modular method with weak compatibility and no handshake region. It provides the
possibility to separately solve energy functionals of different regions. However, this could lead to
longer computation times especially for nonlinear problems.

Coarse-Grained Molecular Dynamics

Coarse-grained molecular dynamics (CGMD) was originally developed to model the
nano-electro-mechanical systems (NEMS) [437,452,466]. In this technique, conventional MD is coupled
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with a CG description of the system. The CG regions are modeled on a mesh in a formulation that
generalizes conventional FEM of continuum elasticity. The significant aspect of CGMD is that it is
derived solely from the MD model and has no continuum parameters. In other words, this method is
notably different from the other coupled atomistic/continuum methods presented in this manuscript
in the way that it constructs the continuum model only based on the atomistic information. As a
result, it offers a smooth coupling and provides control of errors that arise at the coupling between the
atomistic and CG regions. A more general version for the dynamics of CGMD is also proposed by
Curtarolo and Ceder [467].

In CGMD the domain is partitioned into cells with variable sizes. This provides the possibility to
assign a mesh node to each atom in important positions whereas in other regions the cells could contain
several atoms and the nodes are not necessarily coincident with atoms. CGMD follows a detailed
statistical coarse-graining prescription which particularly results in scale-dependent constitutive
equations for different regions of the domain [466]. In CGMD, the CG mesh is refined to the atomic
scale where it joins with the MD lattice. This refined mesh with no handshake region as well as the
fact that CGMD adopts an effective field model suggests a strong resemblance to QC. In addition to
the point made earlier on the use of atomistic constitutive equations in CGMD, this method is also
designed for finite-temperature simulations. On the contrary, the classic QC is mainly applicable to
zero-temperature simulations. It is interesting to note that according to Rudd and Broughton [466] the
classic QC is closely related to the zero-temperature rigid approximation of CGMD. It should be noted
that finite-temperature versions of QC are developed in recent years [468–470]. These methods often
benefit from coarse-graining concepts similar to CGMD. Finally, CGMD is free from the ghost forces
which is a desirable feature missing in QC.

Finite-Element/Atomistic Method

The finite-element/atomistic (FEAt) method is a force-based method first introduced by
Kohlhoff et al. [471]. FEAt uses no handshake region and strong compatibility is enforced between the
domains. To compensate for the absence of the handshake region, FEAt incorporates a nonlocal
elasticity formulation in the finite elements and mitigates the abrupt transition from BC to BA.
In general, the forces on every atom α in BA and BP are calculated independently from BC, from
the derivative with respect to atom positions of an energy functional UA∪P of the form

UA∪P = ∑α∈ {BA∪BP} Eα − ∑α∈ {BA∪BP} fα·uα. (62)

This energy functional looks very similar to the one used in energy-based methods, but it is
fundamentally different since it also contains the padding atoms. The energy functional of the
continuum domain is similar to the energy functional of the energy-based methods described in
Equation (56). The forces on the nodes are therefore simply obtained from its derivative with respect
to nodal displacements. Based on these forces, the atoms and nodes are moved and the forces are
re-calculated for the new atom and node positions.

Some variations to FEAt are found in the literature. In the presence of dislocations in the
continuum, one can use discrete dislocation methods in the description of the continuum region.
The resulting continuum region could be coupled with the atomistic region in a force-based algorithm
just like FEAt to yield coupled atomistic and discrete dislocation (CADD) approach [472,473]. In order
to remove the strong compatibility from FEAt and CADD, the hybrid simulation method (HSM) uses
the same approach as BDM by including a handshake region in the system [474]. A variation of HSM
is the concurrent atomistic/continuum (AtC) method in which a blending of forces is performed at the
interface [443,475,476].
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Bridging Scale Method

The bridging scale method (BSM) is an energy-based technique with no handshake region. In this
method, the FE mesh exists throughout the entire domain in order to store a part of the final solution,
see Figure 14. The central idea behind BSM is derived from classical works in decomposing a complete
solution of the total displacement field into fine and coarse scales and solving for the fine scale only in
regions that require it [477–479]. The coarse scale solution is that part of the solution which is normally
represented by a set of FE shape functions. The fine scale solution on the other hand, is defined as the
part of the solution whose projection onto the coarse scale is zero.
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Figure 14. The BSM interfacial region. The interface has no handshake region and the finite elements
cover the entire body which allows to store the coarse scale displacement field.

In BSM framework, the coarse scale solution γrα is taken to be a function of the initial positions of
the atoms rα and is defined by

γrα = ∑i σ
α
i ui, (63)

where σα
i is the shape function of node i evaluated at point rα, and ui is the FE nodal displacement

associated with node i. Using a mass-weighted least-squares fitting of the coarse scale solution to the
total solution, Park and Liu [480] showed that the fine scale solution γ′ can be defined based on a
projection matrix P as

γ′ = γ − Pγ. (64)

Here, γ is the exact solution determined from an underlying atomistic technique such as MD.
Therefore, the total solution can be found by summing up both fine and coarse scale contributions.
Such an approach is sometimes referred to as the projection method in the literature due to the fact
that atomistic and continuum regions are coupled by projecting a fine scale solution onto a finite
dimensional solution space [481].

Applications in Polymeric Materials

In this part of the paper, we give several examples for the applications of coupled atomistic/continuum
models in polymeric systems. In the studies outlined here, one can find applications of the methods
explained so far; either it is directly used, or a modified version is developed to capture the correct
physics involved, or a concept is borrowed to propose new models for polymers. The reader should
note that our goal is not to provide a comprehensive list here but merely to raise attention towards the
opportunities. We hope that the polymer researcher finds it useful in order to navigate through these
multiscale approaches and further develop new strategies for one’s own problem.
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Generally, it is more difficult to model polymers than crystalline materials due to their amorphous
nature. A methodology to solve this problem was formulated by Theodorou and Suter [482,483] in
which a parent chain of atoms is attached to an Amorphous Cell (AC). The AC then experiences
deformations while periodic boundary conditions are applied to all sides. Tan et al. [481] incorporated
the concept of AC and developed it based on the adaptive scaling resolution ideas similar to CGMD
and introduced the Pseudo Amorphous Cell (PAC) multiscale approach for amorphous polymers.
PAC algorithm includes: (i) generating a configuration of polymer chains in the domain; (ii) applying
linear molecular mechanics for regions with small deformations; (iii) reducing the degrees of freedom in
such regions; and (iv) coupling of linear and nonlinear molecular mechanics equations. In their method,
the regions with large deformations are represented with nonlinear molecular mechanics and thus
provide a finer solution. The authors showed that PAC can successfully simulate the nanoindentation
of amorphous polymers and the indentation force was predicted with a good precision comparable to
a full molecular mechanics simulation [481]. Later Su et al. [484] applied the PAC approach to correlate
the movements of atoms of an amorphous material within a representative volume element (RVE) to
the its overall deformation.

The ground idea of projection methods was first introduced in details by Hughes et al. [477] as the
variational multiscale methods (VMS) which allows a complete model to be described by orthogonal
subscale models. Utilizing this property, Codina [485] presented a method to deal with numerical
instability of the Stokes problem due to the incompressibility constraint and convection. He proposed
using orthogonal subscales in FEM through the pressure gradient projection. This approach has been
developed recently by Castillo and Codina [486,487] to present stabilized VMS formulations to solve
the quiescent three-field incompressible flow problems of viscoelastic fluids as well as fluids with
nonlinear viscosity. The authors were able to successfully capture the distributions of streamlines in
a sudden contraction flow for an Oldroyd-B fluid at Re of 1 at various Weissenberg numbers (We).
It was observed that the size of the vortex appearing in the bottom corner decreases as We increases.

In a recent MD study of brittle fracture in epoxy-based thermoset polymers under mechanical
loading, Koo et al. [488] introduced an EM step into the virtual deformation test to maintain the
system temperature at zero. They stated in the paper that this idea was borrowed from QC which
bridges atomistic scale to continuum scale by decoupling temperature effects. The possibilities of
incorporating multiscale approaches to connect MD and FEM such as QC, in investigations of structure
at epoxy-silica interface are also emphasized by Büyüköztürk et al. [489].

Jo and Yang [490] utilized an atomistic/continuum model to predict the mechanical properties of
semicrystalline poly(trimethylene terephthalate) (PTT). Their approach includes an EM process similar
to energy-based methods. The semicrystalline PTT includes an amorphous matrix represented as a
continuum, and the crystalline phase represented by a spherical inclusion modelled in atomistic detail.
The degree of crystallinity of PTT is altered by changing the volume fraction of an inclusion.

In order to model the compressive behavior of carbon nanotube PNCs, Li and Chou [491,492]
developed a multiscale strategy in which the nanotube is modelled at the atomistic scale, and
the matrix deformation is analyzed by the continuum FEM. Their methodology is similar to other
atomistic/continuum coupling themes except for the fact that they adopt a so-called truss rod model
to correctly represent van der Waals interactions at the interface. The multiscale scheme developed
by Li and Chou was later incorporated by Montazeri and Naghdabadi [493] to study the stability of
carbon nanotube PNCs with a viscoelastic matrix. They coupled molecular structural mechanics to
FEM and simulated the buckling behavior of the system.

A multiscale simulation strategy was proposed by De et al. [494] to determine the mesoscopic
velocity development in polymer fluids with large stress relaxation times. The incorporation of
a constitutive viscosity equation is not sufficient in such systems to produce the correct rheology.
The authors introduced a scale bridging concept in which small parts of the system were simulated
with MD. These parts could communicate with each other through a continuum approach. During the
passing of information, the continuum approach provides precise means of interpolating between these
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points. They described the coupling of atomistic and continuum regions in a Lagrangian framework
so that the memory effects are included in the calculations.

3.3. Adaptive Resolution Simulations

It was already discussed in the concurrent multiscale approaches that there is a category of systems
in which the phenomenon of interest is focused in a subregion of the entire domain. Consequently,
it would be computationally efficient if the irrelevant AA representation of molecules far from this
subregion were replaced with an alternative less expensive model. However, the common limitation
in all concurrent methods (introduced so far) is that particle exchange is not allowed in the fixed
regions of the system treated at different resolutions. The relatively new class of multiscale simulation
approaches, i.e., the adaptive resolution simulations, provides this possibility. Several papers have
been devoted to address different aspects of these methods in recent years showing their increasing
popularity [337,495–498]. It should be noted that these methods can be principally considered to be
concurrent since they often couple the simultaneous run of two techniques with different levels of
resolution using a transition region. Furthermore, the transition region usually uses an either force or
energy interpolation criterion to link different resolutions somewhat similar to the concurrent methods.
However, in adaptive resolution simulations, an atom or a molecule is free to smoothly switch its
resolution within the same simulation run depending on its spatial coordinates. Therefore, it allows for
an adaptive modification of the resolution within the coexisting models which promotes the accuracy
where needed and provides the required precision. In concurrent approaches, on the other hand,
different scales are coupled often by a step-wise transfer of information between different methods,
for instance we refer to Youn Park et al. [499]. Therefore, some authors introduce adaptive resolution
simulations as a separate class of multiscale approaches to emphasize these different aspects [32]. Here,
we also follow this notion.

The adaptive resolution simulations often divide a domain into an AA and a CG region and link
them using a transition region, see Figure 15, hence are sometimes referred to as the double-resolution
simulation methods. Examples for the appropriate systems to investigate with such a strategy
include the studies of macromolecules embedded in a solvent (see Figure 16) [500], and liquids
near surfaces [501]. The transition region provides the basis for a smooth interpolation from a
certain structural representation of a molecule to another depending on the properties that have
to be preserved in the CG region. A complete methodology should address the interactions between
the atoms or molecules in different domains as well as the property change in crossing the transition
region. Moreover, it is central to adaptive resolution simulations that the molecules should be able
to diffuse freely between different regions of the simulation box. Other constraints could include
thermal equilibrium and uniform density profile across the entire domain which along with certain
region-specific properties lead to a formulation of an adaptive resolution scheme.

 

Figure 15. Representation of an adaptive resolution simulation in which a high-resolution region
(AA region) is coupled to a low-resolution region (CG region). In the AA region, the structure of
the molecules are described in their full atomistic details. In the CG region, however, a simpler
representation of the structure and interactions of the molecules are utilized. A transition region is
used to connect these regions. The novelty as well as difficulty of adaptive resolution schemes depends
strongly on the properties of the transition region, i.e., the way molecules change their resolution.
Reprinted from Potestio et al. [337] under the terms of the Creative Commons Attribution License.
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Figure 16. A schematic representation of a generic polymer solution. The structural resolution of
the solvent molecules adaptively change based on their distance from the center of the mass of the
polymer chain. The polymer beads are represented smaller than the solvent molecules to preserve
clarity. Reprinted from Praprotnik et al. [500] with the permission of AIP Publishing.

3.3.1. The Adaptive Resolution Scheme

The Adaptive Resolution Scheme (AdResS) was developed by Kremer and co-workers [500,502–507]
to simulate systems in which an AA and a CG model are incorporated to model different subregions
of the simulation domain at the same time. The atoms and molecules are allowed to diffuse freely
from one region to the other using a smooth transition region which links the subregions. AdResS is
principally based on the assumption that Newton’s third law should be satisfied the entire simulation
box. Additionally, the method assumes that a molecule in the CG subregion contains no information
about its atomistic details and interacts with other molecules, either in AA or CG regions, only via its
center of mass. An interpolation scheme for the force field across the domain defining the force fαβ

acting between molecules α and β can be formulated considering the aforementioned assumptions as

fαβ = ψ(Rα) ψ(Rβ) fAA
αβ + (1 − ψ(Rα) ψ(Rβ)) fCG

αβ , (65)

where Rα and Rβ are the center of mass coordinates of molecules α and β, respectively. fAA
αβ and

fCG
αβ are the atomistic and CG forces acting on molecule α due to the interaction with molecule β,

respectively. Here, ψ is a spatial interpolation function that goes from 1 in the AA region to 0 in the
CG region smoothly. In the transition region, atomistic details are explicitly integrated and the CG
force is computed between the centers of mass of the molecules and then redistributed to the atoms
weighted by the ratio of the atom’s mass to the mass of molecule [508]. In the CG region, the CG force is
directly applied to the center of mass coordinates of the molecules and there is no need to conserve the
molecules internal structure. When a molecule enters the CG region its atomistic details are removed
and reintroduced again, through some sort of reservoir of equilibrated atomistic structures, as soon as
it approaches the transition region.

The central requirement of satisfying Newton’s third law in AdResS is demonstrated to rule out
any form of potential energy interpolation and vice versa [509]. Consequently, energy-conserving
simulations in the microcanonical ensemble cannot be performed using AdResS. Due to the
non-conservative nature of the forces in the transition region, molecules receive an unreal excess
energy when crossing this region. This energy can be removed utilizing a local thermostat in order
to keep the temperature constant everywhere in the system. The equilibrium configurations of the
system are then sampled according to Boltzmann distribution [500,502,503,505,510,511].

The different resolution of the utilized models typically results in a pressure difference between
the corresponding regions which further leads to a non-uniform density profile in the system. Kremer
and co-workers [508,512,513] modify the CG potential by introducing a thermodynamic force fth which
counterbalances the high pressure of the CG model. This force is obtained in an iterative procedure as

fth
i+1 = fth

i − ∇ρi(r)
ρ∗kT

, (66)
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where ρ∗ is the reference molecular density, kT is the system’s isothermal compressibility and ρi(r)
is the molecular density profile. This profile is taken as a function of the position in the normal
direction to the CG/AA interface. The iterative procedure converges once the density profile is flat,
i.e., ∇ρ(r) = 0. The resulting thermodynamic force produces a flat density profile and preserves
the thermal compressibility of the system as well as the structure of the system in the CG region.
Principally, this method allows one to use any CG force field. As a result, the AA region exchanges
energy and molecules with a reservoir like an open system. Such an approach yields a relatively small
AA region with the corresponding molecule number fluctuations and all relevant thermodynamic
quantities the same as a large AA simulation [508]. It is only because of the thermodynamic driving
force that this condition can be achieved independent of the CG model used.

AdResS provides the possibility to perform simulations of the spatial extension of correlations in
the system. Particularly, the structural properties of the AA region can be monitored as a function of
its size in order to examine their dependency on the interactions with molecules in the bulk region.
For instance, Lambeth et al. [514] used this notion to study the ordering degree of the hydrogen bond
network of a molecule with hydrophilic and hydrophobic bonds dissolved in water as a function of
the size of the AA region. The extent of spatial correlations in low-temperature para-hydrogen has
also been studied with the same approach [515,516]. In some systems, it is critical to have access to a
large number of particles, for instance, to precisely evaluate the solvation free energies in mixtures.
Thus, a standard AA simulation could lead to extremely costly computations in such cases. Naturally,
AdResS has shown to be a viable candidate for these systems as well, as evidenced in some works on
methanol-water mixtures [517], and triglycine in aqueous urea [513]. Another interesting possibility for
such a case to even further accelerate the simulations was incorporated by Mukherji and Kremer [518]
to study a coil-globule transition of a biomolecule in aqueous methanol. In their simulations, the usual
closed boundary CG reservoir was replaced with a much smaller open boundary CG reservoir in
which particles can be exchanged at the eight corners of the simulation domain, see Figure 17. Through
this particle exchange adaptive resolution scheme (PE-AdResS), the depletion effects were avoided
during the simulations. This type of open system MD simulations have raised attraction in recent years.
We refer to the work of Agarwal et al. [519] for instance. Recently, a variation of AdResS formulation
was developed by Alekseeva et al. [163] which presents a coupling strategy between the stochastic
multiparticle collision dynamics and the deterministic MD methods. In this way, the authors were
able to successfully demonstrate that hydrodynamic properties of the mixed fluid are conserved by a
suitable coupling of the two particle-based methods.

∑ ቄΜ Μ ቅ

Figure 17. Simulations of a biomolecule dissolved in aqueous methanol: (a) Conventional AdResS
approach; (b) PE-AdResS approach; and (c) Mapping scheme of the smooth transition between AA
and CG representations. Reprinted with permission from Mukherji and Kremer [518]. Copyright 2016
American Chemical Society.
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3.3.2. The Hamiltonian Adaptive Resolution Scheme

A theoretical analysis of the AdResS double-resolution scheme can show that with a local
thermostat and the thermodynamic force the atomistic region is equivalent to an open region of
a fully atomistic simulation up to second order correlation functions, i.e., the density profile and radial
distribution functions [520]. Nonetheless, the lack of a global energy function makes it impossible to
perform simulations in the microcanonical ensemble. Consequently, different strategies were employed
to formulate an energy conserving version of adaptive resolution simulations including the healing
region concept with a space-dependent interpolation of the AA and CG potential energies [521], and
the combination schemes for the sum of the Lagrangians of all possible groupings of atomistic and CG
molecules [522,523]. Unfortunately, these methods are either inaccurate or extremely complicated to
be readily used [337,506]. Recently, an energy-based version of the AdResS method was developed
namely the Hamiltonian adaptive resolution scheme (H-AdResS) [524,525]. H-AdResS defines the
total Hamiltonian of each molecule with a position-dependent function Htot as

Htot = K + Uint + ∑α

{
ψαUAA

α + (1 − ψα)U
CG
α

}
, (67)

in which K is the all-atom kinetic energy of the molecules, Uint is the contribution from internal
interactions of the molecules, N is the number of molecules, and

UAA
α =

1
2 ∑

N
β,β 6=α ∑ij UAA(

∣∣rαi − rβj
∣∣), (68)

UCG
α =

1
2 ∑

N
β,β 6=α

UCG(
∣∣Rα − Rβ

∣∣), (69)

ψα = ψ(Rα). (70)

UAA
α and UCG

α represent the potential energies of molecule α in its AA and CG representations,
respectively. The force acting on atom i in molecule α can be obtained through differentiation of this

Hamiltonian function [337,524,525]. The differentiation operation results in a drift force Fdrift
α in the

transition zone which is proportional to the difference between UAA
α and UCG

α , by

Fdrift
α = −

[
UAA

α − UCG
α

]
∇αiψα. (71)

The definition of the drift force implies that the molecules are pushed into one of the regions if
the potentials of the AA and CG regions are different. It is obvious from the mathematical expression
of the drift force that it is not possible to write it as a sum of antisymmetric terms with molecule
label exchange. Consequently, it results in a local breakdown of Newton’s third law at the transition
region. One can deduce that the drift force vanishes if the CG potential perfectly reproduces the
many-body potential of mean force in the AA model. Since this is almost never true, a thermodynamic
imbalance is always to be expected between the two regions in the form of different pressure and
density levels [337,524]. Potestio et al. [524] used a compensation term ∆H(ψα) in the Hamiltonian,
as was done in the AdResS method with the thermodynamic force, to correct for this imbalance.
The Hamiltonian is therefore modified as [524]

Ĥ = Htot − ∑
N
α=1 ∆H(ψα). (72)

The authors then obtained an approximate function ∆H(ψα) to cancel out the drift force on
average, as

∆H(ψα) =
∆F(ψα)

N
, (73)
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in which the suitable compensation term is related to the Kirkwood’s thermodynamic integration for
the free energy difference ∆F(ψα) between a hybrid system with a position-independent coupling
parameter (ψα ≤ 1) and a CG system (ψα = 0) at the reference density ρ∗ [524]. The authors
include a further compensation term to ensure that both the AA and CG subregions coexist at the same
reference density ρ∗ by considering the effect of pressure difference along the interface ∆p(ψα) and
re-formulating ∆H(ψα) in terms of the chemical potential gradient ∆µ(ψα), as [524]

∆H(ψα) = ∆µ(ψα) =
∆F(ψα)

N
+

∆p(ψα)

ρ∗
(74)

The H-AdResS method was utilized with both a free energy and a chemical potential compensation
strategy to study their effects on the density and pressure profiles [524]. The results showed that with
the application of the free energy compensation Equation (73) the pressure profile became flat, but the
density was still higher in the AA region. On the other hand, when the chemical potential compensation
Equation (74) was applied, the densities of the AA and CG regions attained the same value with a small
deviation due to the fluctuations present in the transition region. This was achieved by modifying
pressures in each region to correspond to the desirable reference state of density and temperature.

The existence of a Hamiltonian in H-AdResS allows for the precise formulation of a statistical
physics theory of double-resolution systems, providing a deep insight into the properties of a given
AA model, its CG counterpart and the relation between them. In addition, H-AdResS makes it possible
to perform simulation in the microcanonical ensemble as well. Some simulation techniques such
as MC can also be incorporated in H-AdResS in contrast to AdResS [525]. It should be noted that
H-AdResS along with its compensation strategy can be extended to multicomponent systems. In order
to illustrate the routine, a simple case was outlined by Potestio et al. [337] for a liquid composed of
two types of molecules.

3.4. Extending Atomistic Simulations

Besides the methods that are explicitly designed to link computational techniques from different
realms together, there are some approaches to extend the reaches of a specific technique such as MD.
As it was noted before, MD plays a critical role in the modelling of materials problems because MD
simulations can follow the actual dynamical evolution of the system along its deterministic pathway.
However, MD is strictly limited to very short time scales due to its full atomistic representation of the
molecules. Therefore, some researchers studied different methods to address the time scale problem
including hyperdynamics [526–528], parallel replica dynamics [529], and temperature-accelerated
dynamics [530]. These methods are based on the transition state theory in which the system trajectory
is simulated to find an appropriate pathway to escape from an energy well [528,531]. The simulation
walks through this pathway with a process that takes place much faster than the direct MD.

The hyperdynamics is an accelerating approach for MD simulations which needs no prior
information about the possible state trajectories of the system in the phase space. The method
raises the energy of the system in regions other than at the dividing surfaces of the initial and final
configurations in the phase space by applying a bias potential. Consequently, an accelerated transition
is achieved from one equilibrium state to another equilibrium state [528]. The parallel replica dynamics
method was incorporated for a system with infrequent events in which successive transitions are
uncorrelated [529]. In such a system, running a number of independent MD simulations in parallel
gives the exact dynamical evolution between the states. For a system with correlated crossing events,
the state-to-state transition sequence is still correct. However, the error associated with the simulation
time should be eliminated. Finally, in the temperature-accelerated dynamics method, the state-to-state
transition is accelerated by increasing the temperature followed by filtering out the transitions that
should not have occurred at the original temperature [530]. Consistent with other accelerated dynamics
methods, the trajectory of the system is allowed to wander on its own to find an appropriate escape
path. Consequently, no prior information is required about the nature of the involved phenomena [528].
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The accelerated dynamics methods are formulated in order to find transition pathways between
two known equilibrium states via effective MD simulations. Other approaches to extend atomistic
simulations are also available which often require no preconceived mechanism or transition state.
In order to find the transition pathway, one such method minimizes the average of the potential energy
along the path instead of finding the path with the lowest barrier [532–534]. Another approach utilizes
statistical sampling of the dynamical paths i.e., MC sampling of MD trajectories introducing transition
path-sampling methods [535–539]. In addition to these methods, a finite-temperature string method is
also available which represents the collection of the hyperplanes normal to the pathways of a system by
a string [540–543]. In this method, the string is constantly updated during the simulations to capture
the correct coordinate associated with the phenomenon. Finally, some works try to find dynamical
paths that could connect an initial state to a final state in general terms [544–550]. Such methods often
offer good numerical stability, efficient parallelizability, and high quality trajectories.

A class of methods attempts to address the systems with a free-energy surface which could
possess several local minima in the free-energy surface. These strategies are generally known as the
methods to escape the free-energy local minima [551]. For instance, a proper combination of CG
dynamics with the adaptive bias potential methods could allow for the system to avoid local minima
in the free-energy surface [551]. At the same time, the system provides a quantitative description of the
free-energy surface through the integrated process. Such an approach has especially found application
in biological systems [552–554].

In a category of systems an inherent dispersity in some characteristic details results in a natural
disparity in time scales. A well-known example of such a case was already discussed in Section 2.1,
i.e., the Born–Oppenheimer approximation [45], in which the electrons move independently from the
nuclei due to their largely different masses. Another scenario which could lead to the separation of time
scales is when a subset of forces is much stronger than the rest of the forces, while the masses of the
constituents are almost equal. In order to deal more efficiently with such systems, various integration
algorithms with multiple time steps have been developed [555]. This idea is particularly useful in
polymers in which the bonds vibrate often much faster than they translate and rotate. Consequently,
the configuration space as well as the forces can be divided into fast and slow components. As a
result of this separation, a set of equations of motion are derived for the development of the fast and
slow processes. This set of equations are solved using the multiple-time-step integration in which
a small time step ∆t to advance the fast processes by n steps while holding the slow variables fixed.
The slow processes are then updated using a time step of n∆t. In the case that an analytic solution of
high-frequency motions is available, this solution can be incorporated into an integration scheme for
the entire system. Therefore, a time step can be defined based on the slow processes and used for the
simulation of entire system with a much smaller number of cycles [555].

In order to extend the time scale of MD simulations, a method was developed based on
optimization of the action functional [534]. The method parametrizes the system trajectory as a
function of length rather than time. In order to achieve this goal, this approach optimizes an action
term defined based on the stochastic time-dependent difference equation rather than solving the
Newton equations in MD simulations. A similar idea was recently proposed in which the trajectories
of the orientation process of weakly-interacting layered silicates were parametrized as a function of
the shear strain instead of the time [196]. The idea of using the applied strain was motivated by the
experimental reports supporting strain-dependent structure developments in such non-Brownian
materials. Benefitting from the notion that the orientation kinetics is principally determined with
respect to strain, the applied strain was selected to pass the orientation parameters to an upper
scale through a simple combination of affine and nonaffine deformations, see Figures 18 and 19.
This methodology could be also incorporated to develop multiscale models of orientation process
provided that the interactions between the components are carefully defined in the unit cell.
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ΌFigure 18. Examples of construction of a large cell for the upper scale simulation benefitting from a
random mixing of unit cells resulting in various average initial orientation angles, θave. The initial
configurations of the unit cells before the flow starts are also given. Reprinted from Gooneie et al. [196].
Copyright 2016, with permission from John Wiley & Sons Inc.

 

·
Figure 19. The orientation process defined by the orientation parameters as a function of the shear
strain, γ. The results are derived from DPD models and strain reduction factor (SRF) model for various
average initial orientation angles of (a) 20.16

◦
; (b) 40.32

◦
; (c) 50.40

◦
; and (d) 70.56

◦
. Reprinted from

Gooneie et al. [196]. Copyright 2016, with permission from John Wiley & Sons Inc.
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4. Conclusions and Outlooks

The development of polymeric materials necessitates a comprehensive understanding of the
phenomena at different time and length scales. This need has significantly accelerated the progress
in theoretical and computational methods to capture the inherent hierarchical phenomena in such
materials. In this field, the development of efficient multiscale approaches could lead to the design
of materials simultaneously on many scales instead of trial-and-error experimentations. The present
review attempted to survey the state-of-the-art of various multiscale simulation approaches as applied
to polymer science.

Within the context of an overall multiscale simulation perspective, various approaches for
modelling relevant processes in polymer science are classified into three major categories, namely
sequential, concurrent, and adaptive resolution approaches. This classification provides the
opportunity to easily examine these methods and the systems to which they have been often applied.
It is fairly clear from this review that different multiscale approaches provide precious insights into the
structure and dynamics of polymeric materials.

In general, the sequential techniques are more popular in polymer science. However, a priori
knowledge of relevant physical quantities is a prerequisite in these methods. The bridging of various
scales in a sequential method is often implicit. A successful sequential modelling depends critically
on the accuracy of the finer scale model as well as the reliability of the message-passing algorithms.
The link between QM data and atomistic models should be further developed to reproduce the correct
structure and thermodynamics. Phenomena which might involve the breaking of bonds require a
reactive force field of MD in combination with QM which further complicates the computations as well
as the derivation of such a force field from the parametrization of QM data in the first place. Moreover,
the construction of CG potentials from atomistic data might necessitate more rigorous strategies
particularly in systems with variant local structures and properties. Systematic coarse-graining and
backmapping schemes were revisited as major routes towards a sequential model generation in
polymers. An inevitable question that arises with the coarse-graining procedure is the question of
transferability of the final CG model. As an advantageous aspect, however, the investigation of
transferability conditions could help to gain insight into fundamental principles that control the
behavior of the system. It is expected that a general prescription for coarse-graining should be
developed which ensures a wide range of transferability. In the context of systematic coarse-graining
methods, it is interesting to extend super CG models to describe phenomena, such as flow birefringence
and systems such as multicomponent mixtures.

The concurrent multiscale methods are a lot more complicated and computationally expensive
than sequential approaches particularly when it comes to simulating flow problems. Nevertheless,
they do not depend on a priori knowledge of relevant physical quantities supplied from smaller-scale
simulations. In concurrent methods, it is significant that the problem is carefully posed to make the
method practical. The common problem in a concurrent approach is usually associated with the
partitioning of domains in the system. More importantly, an appropriate handshaking strategy in a
concurrent approach between different domains, which is both mathematically accurate and physically
consistent, is challenging and critical. There is no general consensus on what a proper coupling of
domains is. Therefore, a general criterion that measures the quality of handshaking between domains
would be extremely beneficial. Additionally, there is plenty of room for innovative research on the
issue of domain coupling. Although many concurrent approaches exist which are very desirable and
appealing in metals and carbon nanomaterials, their use in polymeric systems is still limited to a
large extend. In this paper, we have devoted an entire section to cover the fundamentals of several
concurrent methods and introduce the existing possibilities to polymer scientists. In order to better
illustrate the outlooks, several examples from relevant areas of polymer research are provided so that
the reader is persuaded to follow these highlights.

A third group of multiscale simulation strategies was also noted as the adaptive resolution
schemes in which a molecule can freely move in space and change its resolution depending on
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spatial criteria. There is plenty of room in this class of methods for future innovation, either in
its methodological aspects or its extension to different materials and phenomena. The method is
fundamentally developed for quiescent conditions and the application of flow is yet to be added to
these schemes. Even for the simulation of equilibrium conditions, these schemes show noticeable
discontinuities in pressure and density profiles at the transition region between the high and low
resolutions. Furthermore, the combination of mixed resolution concurrent methods and adaptive
resolution schemes can potentially become an increasingly robust multiscale simulation methodology
for complex polymer systems. Future work in this area appears to be promising.

When dealing with computer simulations, the role of the computer itself should be also noted
including both hardware and software characteristics. Computer technology develops at an astonishing
rate. It is believed that the progress in graphics processing units (GPUs) along with the development
of GPU-oriented molecular simulation algorithms should extend our reach to yet unexplored spatial
and temporal scales in the simulations of polymer systems. Such computational resources along
with advanced simulations schemes can closely mimic the problem at hand on engineering time
scales in a computer experiment. As a possible area for future endeavors, it would be ideal to
compile a combination of atomistic methods with mesoscale and even continuum methods within
one simulation package instead of many scattered codes which are available today, each coming with
its certain advantages and shortcomings. Such a package could ultimately use the strengths from
various individual codes to mitigate for the shortcomings of others. Even more important is the
development and implementation of seamless multiscale modelling techniques in this hypothetical
package. In addition, it is expected that the qualitative description of fundamental processes will
be replaced with the quantitative prediction of material properties with the introduction of exascale
computing. First-principle simulations are expected to play an increasing role in these areas. However,
the availability of increased computing power will not be sufficient on its own and advanced strategies
and techniques are an indispensable part of extreme-scale computing architectures.

Although multiscale methods have brought about substantial developments in the field, the
challenge of bridging the time scale of atomic motions to the typical experimental and engineering
scales is still far from completion. For instance, in a number of polymer systems such as PNCs,
suitable theoretical frameworks are still missing which can provide insights into the nonequilibrium
phenomena and the impact of external fields on the morphology and dynamics of the system. Moreover,
more rigorous and direct quantitative analysis of nonequilibrium atomistic polymeric models and
their CG counterparts is still needed. Various topics still remain to be disclosed in future research
including new emerging possibilities to pass the information from the atomic to macroscopic scale and
back. Multiscale modelling techniques are yet to be applied to characterize many interesting systems
such as polymer flow in dilute and concentrated solutions, characteristics of a polymer layer next to
the surface of nanoparticles in PNCs, the molecular roots of the viscoelasticity in filled elastomers,
dynamics of confined polymers, etc. These examples are just a few among many topics for the future
research on polymer systems. With the progress in theoretical as well as experimental techniques,
finding answers to such challenges shall result in a comprehensive knowledge of various material
properties of polymeric systems across a range of length and time scales. Moreover, it will bring forth
directions to design new systems with desired or yet unexplored properties in the future.

In the framework of multiscale methods, one should not forget that there is also a critical necessity
to design new and improved simulation methods at individual time and length scales. From the
discussions provided in this review, it is clear that multiscale modelling is a heavily active field
in modern science with a multidisciplinary character. The actual power of multiscale strategies
is only truly appreciated by overcoming traditional barriers between various scientific disciplines.
The computational multiscale approaches should eventually fulfill their philosophy which is to enhance
our knowledge of, and ability to control complex processes, even in life sciences. Developing proper
multiscale methods is extremely difficult but undeniably represents the future of polymer science as
well as computer simulation and modelling.
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Appendix A. Acronyms and Nomenclature

Acronyms

Acronym Full phrase
AA All-Atomistic
AC Amorphous Cell method
AdResS Adaptive Resolution Scheme
AIMD Ab Initio Molecular Dynamics
AtC Atomistic/Continuum method
BD Brownian Dynamics
BDM Bridging Domain Method
BGK-LB Bhatnagar, Gross, And Krook LB method
BSM Bridging Scale Method
CACM Composite Grid Atomistic/Continuum Method
CADD Coupled Atomistic and Discrete Dislocation method
CFD Computational Fluid Dynamics
CG Coarse-Grained
CGMD Coarse-Grained Molecular Dynamics
CLS Coupling of Length Scales method
CRW Conditional Reversible Work
D2Q9 2-dimensional lattice with 9 allowed velocities used in LB simulations
D3Q19 3-dimensional lattice with 19 allowed velocities used in LB simulations
DDFT Dynamic Density Functional Theory
DFT Density Functional Theory
DPD Dissipative Particle Dynamics
EFCG Effective Force CG
EM Energy Minimization
FDM Finite Difference Method
FE Finite Element
FEAt Finite-Element/Atomistic method
FEM Finite Element Method
FVM Finite Volume Method
GDM Generalized Differences Methods
GFEM Galerkin Finite Element Method
GPU Graphics Processing Unit
H-AdResS Hamiltonian Adaptive Resolution Scheme
HSM Hybrid Simulation Method
IBI Iterative Boltzmann Inversion
IMC Inverse Monte Carlo
LB Lattice Boltzmann
LGCA Lattice Gas Cellular Automata
LSM Lattice Spring Model
MC Monte Carlo
MD Molecular Dynamics
Na-MMT Sodium Montmorillonite
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NEMS Nano-Electro-Mechanical Systems
OpenFOAM Open Source Field Operation And Manipulation
PA Polyamide
PAC Pseudo Amorphous Cell method
Pe Peclet number
PE Polyethylene
PNC Polymer Nanocomposite
PP Polypropylene
pPMF Pair Potential of Mean Force
PRISM Polymer Reference Interaction Site
PS Polystyrene
PTT Poly(Trimethylene Terephthalate)
QC Quasicontinuum method
QM Quantum Mechanics
QUICK Quadratic Upstream Interpolation for Convective Kinematics
Re Reynolds number
RVE Representative Volume Element
SCFT Self-Consistent Field Theory
SDPD Smoothed Dissipative Particle Dynamics
SEM Spectral Element Method
SPH Smoothed Particle Hydrodynamics
SRF Strain Reduction Factor model
SUPG Streamline-Upwind/Petrov-Galerkin
TB Tight Binding
TDGL Time-Dependent Ginzburg-Landau
VMS Variational Multiscale methods
We Weissenberg number
XRD X-Ray Diffraction

Nomenclature

Symbol Meaning

A A = 6ξkBT in BD method
Aij maximum repulsion between bead i and bead j in DPD method
ai acceleration of ith particle
BA atomistic domain in concurrent simulations
BC continuum domain in concurrent simulations
BH handshake region in concurrent simulations
BI interfacial region in concurrent simulations
BP padding region in concurrent simulations
bi fitting parameter
ci fitting parameter
Dϑ the diffusion term of ϑ
Dcm center-of-mass self-diffusion coefficient
e element

Κ

-
Δ

׏ Κ Κ Κ

ge of -অ aঅ
- Δ

෍ ׏ Κ

-
Δ

෍ ׏ Κ

absolute unit charge of an electron
E f Young’s modulus
Ei energy of atom, particle, or node i
Ei energy of the ith representative atom in QC method
Ek eigenstate of energy
Ekel

eigenstate energy of an electron
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Ekn eigenstate energy of a nucleon
Etot total energy
∆F(ψα) free energy difference in H-AdResS method

FC
ij

conservative force between bead i and its neighboring bead j within the
force cutoff radius rcut

FD
ij

dissipative force between bead i and its neighboring bead j within the
force cutoff radius rcut

FR
ij

random forces between bead i and its neighboring bead j within the force
cutoff radius rcut

Fdrift
α drift force of molecule α

f vector of applied forces in the FE region of a concurrent simulation
fi force acting on the ith atom, particle, or node
fαβ force acting between molecules α and β

fth thermodynamic force
fB
i Brownian random force acting on the ith particle

fAA
αβ

atomistic forces acting on molecule α due to the interaction with
molecule β

fCG
αβ CG forces acting on molecule α due to the interaction with molecule β

G′ storage modulus
G′′ loss modulus
H(Γi) Hamiltonian of the system at system state Γi

Ĥ modified Hamiltonian of the H-AdResS method
∆H(Γi→j) change in the system Hamiltonian for going from system state Γi to Γj

∆H(ψα) compensation term in the Hamiltonian of the H-AdResS method

HFE(uα,
.
uα)

Hamiltonian of the FE region as a function of the nodal displacements uα,
and time rate of nodal displacements

.
uα

HFE/MD(rj, vj, uα,
.
uα)

Hamiltonian of the FE/MD handshake region as a function of the atomic
positions rj, atomic velocities vj, nodal displacements uα, and time rate of
nodal displacements

.
uα

HMD(rj, vj)
Hamiltonian of the MD region as a function of the atomic positions rj,
and atomic velocities vj

HMD/TB(rj, vj)
Hamiltonian of the MD/TB handshake region as a function of the atomic
positions rj, and atomic velocities vj

HTB(rj, vj)
Hamiltonian of the TB region as a function of the atomic positions rj, and
atomic velocities vj

Htot total Hamiltonian
h Planck’s constant
Jϑ,C convection flux term in FVM formulation
Jϑ,D diffusion flux term in FVM formulation
K the all-atom kinetic energy of the molecules
kB Boltzmann’s constant
kT isothermal compressibility
l bond length
M, Mw molecular weight
m mass of an atom or particle
mel mass of an electron
mn mass of a nucleon
N number of atoms, particles, or nodes
Nc number of monomers per chain
Ne number of elements
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Nq number of quadrature points in the numerical integration
Nr number of representative atoms in QC method
P the projection matrix
∆p(ψα) pressure difference along the interface in H-AdResS method

pi→j
probability of accepting a new configuration for going from system state
Γi to Γj

pR probability distribution function
pR

target the target probability distribution function of AA simulations

Qϑ the generation/destruction of ϑwithin the control volume per
unit volume

R(u)
residual form of a partial differential equation in terms of the unknown
function u in FEM scheme

Rg radius of gyration
Ri center of mass coordinates of the ith molecule
r coordinates vector of an atom, or particle, or node
r distance
rcut force cutoff radius
reli

spatial coordinates of an electron
r̂ij unit vector pointing from the center of bead j to that of bead i
rnj spatial coordinates of a nucleon

rcent
e

coordinates of the Gauss point in element e taken at the centroid of the
triangular elements

rq
e position of quadrature point q of element e in the reference configuration

δrB
i (t + ∆t)

random displacement of the ith particle due to the random forces during
time step ∆t

S surface vector
Si ith subregion
{Sρ} set of weighting functions in FEM
sentropy rescaling factor for the entropy change
sfriction rescaling factor for the friction change
T temperature
t time
∆t time step
U(r) potential energy
UA potential energies of the atomistic region

Uatom energy functional of a systems assuming it is entirely modelled
using atoms

UC potential energies of the continuum region
UCG(r, l, θ,Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧

) general form of the CG potential function in IBI method

UFE energy functional of a systems assuming it is entirely modelled
using FEM

UH potential energies of the handshake region
Uint energy of internal interactions
Utot total potential energy of the entire system
UCG

angle (θ) bond angle potential in the blob model

UCG
bond (l) bond potential in the blob model

UCG
nonbonded (r) potential of nonbonded interactions in the blob model

UAA
α potential energy of molecule α in the AA representation

UCG
α potential energy of molecule α in the CG representation

u vector of nodal displacements in the FE region of a concurrent simulation
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u(r) the unknown function in FEM which one needs to find
uh(r) approximation of the function u(r) under consideration in FEM
uα displacements of atom, particle, or node α
.
uα rate of displacements of atom, particle, or node α

un values of the function uh at node n of the mesh
Ve volume of element e
dV volume element of the simulation domain in FEM
∂Ve surfaces surrounding the volume ve of element e
v macroscopic velocity magnitude̚

ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

̚
ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

=
√

3
̚

ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

s in LB method
v(r, t) macroscopic local velocity at node r at time t in LB
∼
v(t + ∆t)

estimated velocity in the next time step using a predictor method in DPD
velocity-Verlet algorithm

δvB
i (t + ∆t)

Random velocity change of the ith particle due to the random forces
during time step ∆t

vi velocity of ith atom, particle, or node
|

̚
ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

i| velocity magnitude in i-direction in LB method

{
̚

ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

k}
set of prescribed velocity vectors connecting the neighboring nodes in LB
method̚

ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

s speed of sound
W a function of deformation gradient ∆

wi weighting constants used in LB method
zn

Κ

-
Δ

׏ Κ Κ Κ

ge of -অ aঅ
- Δ

෍ ׏ Κ

-
Δ

෍ ׏ Κ

positive unit charge of a nucleon
Γi system state in a phase space at position i
γ exact solution in the projection method
.
γ shear-rate
γ(rα) coarse scale solution of a problem in the projection method
γ′ fine scale solution of a problem in the projection method
∆ deformation gradient
δ delta function
∆µ(ψα) chemical potential gradient in H-AdResS method
ε neighboring cells of a specific element in FVM

ζ
random number between 0 and 1 which is to determine the acceptance or
rejection of a new configuration

ζij
a Gaussian random number with zero mean and unit variance used in
the definition of the random forces between beads i and j in DPD method

η viscosity

Θ
a weighting function to link FE and atomistic models in concurrent
simulations

θ bond angle
θave averaged initial orientation angle
Λik collision matrix used in LB method
λ multiplication parameter in in DPD velocity-Verlet algorithm
µ fitting parameter
ν fitting parameter
ϑ a general conserved scalar variable in FVM scheme
ξ friction coefficient between atoms or particles
ξij friction coefficient between bead i and bead j in DPD method
ξm friction coefficient between particles of freely-rotating chains
̟ wave function of electrons
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ρ fluid density in CFD
ρ(r, t) macroscopic local density at node r at time t in LB method

ρi(r)
molecular density profile in the ith iteration step as a function of the
position in the direction perpendicular to the interface, in
AdResS method

ρ∗ reference molecular density
ρi ith weighting function in FEM
σij noise amplitude between bead i and bead j in DPD method
σα

i shape function of node i evaluated at the point with coordinates rα

τ characteristic collision time in LB method
Φ(u) integral form of the weighted residuals in FEM
φ(r)k wave function in Schrödinger’s equation
ϕ wave function of the nuclei

χij
a parameter in DPD formulation which equals 1 for beads with a distance
less than rcut and equals 0 otherwise

Ψi(r, t)
particle distribution function used in LB at node r at time t moving with
velocity

̚
ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

i In the i-direction

Ψ
eq
i (r, t)

equilibrium particle distribution function used in LB at node r at time t
moving with velocity

̚
ty খi ሼখ ሽ

̚
Ε ̚

Εሺ ሻ ∑ ̚

Εሺ ሻ ∑ খ ̚

∆

̚ 	 	খ ∆ 	 ∆ ̚ ∑ Λ ൫̚ - ̚ ൯
̚

Λ
Λ -

Θ
Έ Θ

i In the i-direction
ψ spatial interpolation function in AdResS method
ψn(r) interpolation functions in FEM for node n
ψe

n(r) interpolation functions in FEM for node n in element e
Ω simulation domain in FEM
∂Ω boundaries of the simulation domain in FEM

Ό gle ℧. ሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻሺ Ό ℧ሻ ሺ ሻ	 	 ሺ ሻ	 	 ሺΌሻ	 	 ሺ℧ሻ൫ ൯ ൫ ൯ Ό ℧
dihedral angle

ω Frequency

ωi
quadrature weight signifying how many atoms a given representative
atom stands for in the description of the total energy, in QC method

ωD(rij) dissipative weight function in DPD method
ωq associated Gauss quadrature weights of quadrature point q of element e
ωR(rij) random weight function in DPD method
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111. Tüzel, E.; Kisacikoǧlu, K.B.; Pekcan, Ö. Monitoring diffusion of reptating polymer chains by a direct energy

transfer method: A Monte Carlo simulation. Macromol. Theory Simul. 2002, 11, 678–686. [CrossRef]

112. Mavrantzas, V.G.; Theodorou, D.N. Atomistic simulation of polymer melt elasticity. Macromolecules 1998, 31,

6310–6332. [CrossRef]

113. Baig, C.; Mavrantzas, V.G. Multiscale simulation of polymer melt viscoelasticity. Phys. Rev. B 2009, 79.

[CrossRef]

114. Brindle, D.; Care, C.M. Phase diagram for the lattice model of amphiphile and solvent mixtures by Monte

Carlo simulation. J. Chem. Soc., Faraday Trans. 1992, 88, 2163–2166. [CrossRef]

115. Ivanov, V.A.; Stukan, M.R.; Müller, M.; Paul, W.; Binder, K. Phase diagram of solutions of stiff-chain

macromolecules: A Monte Carlo simulation. J. Chem. Phys. 2003, 118, 10333–10342. [CrossRef]

116. Guevara-Carrion, G.; Hasse, H.; Vrabec, J. Thermodynamic properties for applications in chemical industry

via classical force fields. Top. Curr. Chem. 2012, 307, 201–250. [PubMed]

117. Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones

molecules. Phys. Rev. 1967, 159, 98–103. [CrossRef]

118. Verlet, L. Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 1968,

165, 201–214. [CrossRef]

119. Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation.

J. Chem. Phys. 1990, 92, 5057–5086. [CrossRef]

120. Aoyagi, T.; Doi, M. Molecular dynamics simulation of entangled polymers in shear flow. Comput. Theor.
Polym. Sci. 2000, 10, 317–321. [CrossRef]

121. Durand, M.; Meyer, H.; Benzerara, O.; Baschnagel, J.; Vitrac, O. Molecular dynamics simulations of the chain

dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer

matrix. J. Chem. Phys. 2010, 132. [CrossRef] [PubMed]

122. Harmandaris, V.A.; Mavrantzas, V.G.; Theodorou, D.N.; Kröger, M.; Ramírez, J.; Ottinger, H.C.;

Vlassopoulos, D. Crossover from the rouse to the entangled polymer melt regime: Signals from long,

detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules
2003, 36, 1376–1387. [CrossRef]

123. Likhtman, A.E.; Sukumaran, S.K.; Ramirez, J. Linear viscoelasticity from molecular dynamics simulation of

entangled polymers. Macromolecules 2007, 40, 6748–6757. [CrossRef]

124. Wang, Z.; Larson, R.G. Constraint release in entangled binary blends of linear polymers: A molecular

dynamics study. Macromolecules 2008, 41, 4945–4960. [CrossRef]

125. Harmandaris, V.A.; Daoulas, K.; Mavrantzas, V.G. Molecular dynamics simulation of a polymer melt/solid

interface: Local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite.

Macromolecules 2005, 38, 5796–5809. [CrossRef]

126. Milano, G.; Santangelo, G.; Ragone, F.; Cavallo, L.; Di Matteo, A. Gold nanoparticle/polymer interfaces:

All atom structures from molecular dynamics simulations. J. Phys. Chem. C 2011, 115, 15154–15163.

[CrossRef]

127. Luo, T.; Lloyd, J.R. Enhancement of thermal energy transport across graphene/graphite and polymer

interfaces: A molecular dynamics study. Adv. Funct. Mater. 2012, 22, 2495–2502. [CrossRef]

128. Neyertz, S.; Brown, D. Molecular dynamics study of carbon dioxide sorption and plasticization at the

interface of a glassy polymer membrane. Macromolecules 2013, 46, 2433–2449. [CrossRef]

129. Lamas, E.J.; Balbuena, P.B. Molecular dynamics studies of a model polymer-catalyst-carbon interface.

Electrochim. Acta 2006, 51, 5904–5911. [CrossRef]

130. Song, Y.; Feng, W.; Liu, K.; Yang, P.; Zhang, W.; Zhang, X. Exploring the folding pattern of a polymer

chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics

simulations. Langmuir 2013, 29, 3853–3857. [CrossRef] [PubMed]

131. Yamamoto, T. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation

in polyethylene-like polymer. J. Chem. Phys. 2008, 129. [CrossRef] [PubMed]

Ali Gooneie Montanuniversitaet Leoben 102

http://dx.doi.org/10.1021/ma1019895
http://dx.doi.org/10.1016/j.polymer.2009.12.018
http://dx.doi.org/10.1002/1521-3919(20020801)11:6&lt;678::AID-MATS678&gt;3.0.CO;2-E
http://dx.doi.org/10.1021/ma9714878
http://dx.doi.org/10.1103/PhysRevB.79.144302
http://dx.doi.org/10.1039/ft9928802163
http://dx.doi.org/10.1063/1.1572812
http://www.ncbi.nlm.nih.gov/pubmed/21678137
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1063/1.458541
http://dx.doi.org/10.1016/S1089-3156(99)00041-0
http://dx.doi.org/10.1063/1.3420646
http://www.ncbi.nlm.nih.gov/pubmed/20499987
http://dx.doi.org/10.1021/ma020009g
http://dx.doi.org/10.1021/ma070843b
http://dx.doi.org/10.1021/ma800680b
http://dx.doi.org/10.1021/ma050177j
http://dx.doi.org/10.1021/jp201374h
http://dx.doi.org/10.1002/adfm.201103048
http://dx.doi.org/10.1021/ma302073u
http://dx.doi.org/10.1016/j.electacta.2006.03.033
http://dx.doi.org/10.1021/la305157p
http://www.ncbi.nlm.nih.gov/pubmed/23461857
http://dx.doi.org/10.1063/1.3009229
http://www.ncbi.nlm.nih.gov/pubmed/19045427


Polymers 2017, 9, 16 63 of 80

132. Yamamoto, T. Molecular dynamics of reversible and irreversible melting in chain-folded crystals of short

polyethylene-like polymer. Macromolecules 2010, 43, 9384–9393. [CrossRef]

133. Hegde, G.A.; Chang, J.-F.; Chen, Y.-L.; Khare, R. Conformation and diffusion behavior of ring polymers

in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice

Boltzmann simulations. J. Chem. Phys. 2011, 135. [CrossRef] [PubMed]

134. Bahlakeh, G.; Nikazar, M.; Hafezi, M.-J.; Dashtimoghadam, E.; Hasani-Sadrabadi, M.M. Molecular dynamics

simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether

ether ketone). Int. J. Hydrog. Energy 2012, 37, 10256–10264. [CrossRef]

135. Liu, J.; Cao, D.; Zhang, L. Molecular dynamics study on nanoparticle diffusion in polymer melts: A test of

the stokes-einstein law. J. Phys. Chem. C 2008, 112, 6653–6661. [CrossRef]

136. Zhao, X.-T.; Yang, H.; Sheng, Y.-Z.; Li, J.-Y.; Sun, M. Molecular dynamics simulation on the effect of the distance

between SWCNTs for short polymers diffusion among single wall carbon nanotubes. Comput. Mater. Sci. 2014,

95, 446–450. [CrossRef]
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6. Development of Suitable Methods for Multiscale 
Simulation of  Polymer / Layered  Silicate 
Nanocomposites Under Shear Flow 

 

This chapter reports the main results of the thesis. The results are given in three papers as 

follows: 

6.1 Coupled Orientation and Stretching of Chains in Mesoscale 

Models of Polydisperse Linear Polymers in Startup of Steady 

Shear Flow Simulations 

[Gooneie A., Schuschnigg S., Holzer C.: Coupled orientation and stretching of chains in 

mesoscale models of polydisperse linear polymers in startup of steady shear flow 

simulations, Macromolecular Theory and Simulations 25 (2), 2016, pp. 170–186] 

In this paper, the orientation of linear polymer chains is studied under applied shear flows. 

 

6.2 Orientation of Anisometric Layered Silicate Particles in 

Uncompatibilized and Compatibilized Polymer Melts Under 

Shear Flow: A Dissipative Particle Dynamics Study 

[Gooneie A., Schuschnigg S., Holzer C.: Orientation of anisometric layered silicate particles in 

uncompatibilized and compatibilized polymer melts under shear flow: A dissipative particle 

dynamics study, Macromolecular Theory and Simulations 25 (1), 2016, pp. 85–98] 

The orientation of layered silicates subject to various shear flows is simulated in this paper. 

The interactions between components are particularly highlighted. 

 

6.3 Dissipative Particle Dynamics Models of Orientation of 

Weakly-Interacting Anisometric Silicate Particles in Polymer 

Melts under Shear Flow: Comparison with the Standard 

Orientation Models 

[Gooneie A., Schuschnigg S., Holzer C.: Dissipative particle dynamics models of orientation 

of weakly-interacting anisometric silicate particles in polymer melts under shear flow: 

comparison with the standard orientation models, Macromolecular Theory and Simulations 

25 (3), 2016, pp. 287–302] 

The strain-dependent upscaling strategy for the orientation process in developed and tested 

against available standard rheological models. 
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behavior of the polymer melt. [ 5 ]  Fujiyama et al. [ 6 ]  provide 
a comprehensive experimental work on the rheological 
properties of poly(propylene)s with different molecular 
weight distributions. According to their results many of 
the rheological properties depend on the polydispersity 
including the end correlation coeffi cient in capillary fl ow, 
the die swell ratio, the critical shear-rate and shear stress 
for the onset of melt fracture, the zero-shear viscosity, the 
characteristic relaxation time, and the oscillatory storage 
and loss moduli. The infl uence of polydispersity is not only 
limited to these properties. It also affects the fl ow patterns 
of the melt even in the simplest geometries. Studies have 
shown that a highly monodisperse sample partitions into 
two fractions with different local shear-rates in a sliding 
plate rheometer. [ 7 ]  The polydisperse sample possesses a 
smooth spatial variation of the local shear-rates in the 
same experimental setup. Other reports on the polydisperse 

 Polydisperse linear polymers are studied in startup of steady shear fl ow simulations using dis-
sipative particle dynamics. The results show that with an increase in polydispersity the stress 
overshoot declines while the steady-state stress increases. Various physical characteristics of 
the systems are studied including frequency of nonbonded interactions, gyration radius data, 
fl ow alignment angles, and average bond lengths. The patterns in the data suggest higher 
forces are necessary to orient and stretch long chain fractions in the fl ow direction. Relaxa-
tion modulus data prove the broad range of relaxation mech-
anisms in polydisperse systems. Linear viscoelasticity theory 
is used to quantify the relaxation spectrum. The results indi-
cate an increase in the longest relaxation time in systems 
with higher polydispersity. The steady-state shear viscosity 
results show higher viscosities with an increase in polydis-
persity at all shear-rates. The good agreement of the char-
acteristic behaviors of modeled polydisperse polymers with 
experiments is encouraging for future work. 
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  1.     Introduction 

 It is well-established that the fi nal properties of extruded 
fi lms and spun fi bers are strongly dependent on the 
molecular characteristics of the polymer. [ 1–4 ]  The orienta-
tion and crystallization during processing are two of the 
most infl uencing phenomena. These features have com-
plicated correlations with melt rheological properties as 
well as molecular variables such as molecular weight and 
molecular weight distribution. It has been shown that the 
molecular weight and its distribution change the fl ow 

Macromol. Theory Simul. 2016, 25, 170−186

Ali Gooneie Montanuniversitaet Leoben 129



171

Coupled Orientation and Stretching of Chains in Mesoscale Models of Polydisperse Linear Polymers . . .

www.mts-journal.de

Macromolecular
Theory and Simulations

 

www.MaterialsViews.com © 2016  WILEY-VCH Verlag GmbH &  Co.  KGaA, Weinheim

samples in cone-plate geometry also show a heterogeneous 
shear fl ow during startup of shear fl ow experiments. [ 8,9 ]  As 
a result, modeling strategies starting from molecules and 
chains up to the processing scale are necessary in order to 
fully understand the phenomena. [ 10–14 ]  Unfortunately, this 
is not a simple procedure and takes plenty of resources to 
achieve. 

 Direct consequences of the polydispersity on the micro-
structure of the processed parts have been an interesting 
topic due to its commercial applications. Bashir et al. [ 4 ]  
performed experimental investigations to study the infl u-
ence of the polydispersity on the microstructural evolu-
tions in melt extruded polyethylene fi bers. Their results 
proved the signifi cance of high molecular weight fractions 
in the formation of extended chain fi brils in row nucle-
ated structures. Studies on the structural development 
and crystallization kinetics of melt spun poly(propylene) 
fi laments have shown the strong infl uence of the poly-
dispersity on such characteristics. For instance, the crys-
tallinity is found to increase with higher polydispersity 
at a constant set of spinning conditions. [ 15 ]  It has been 
suggested that polydispersity infl uences the structure 
and properties of poly(propylene) mainly by the ability 
of high molecular weight fractions to promote stress-
induced crystallization during the processing. Moreover, 
the effect of these long chains on the elongational vis-
cosity is of critical importance. Yu and Wilkes [ 1–3 ]  investi-
gated the structural features in the extruded fi lms of two 
high density polyethylene resins with different molecular 
weight distributions. They suggested that the relaxation 
behavior of an oriented polymer melt is the dominating 
parameter. The presence of fi ber nuclei in the resin with 
the broad molecular weight distribution was evident 
while it was missing in the sample with narrow distri-
bution. These fi ber nuclei were suggested to be due to 
the longer relaxation behavior of the broad sample. They 
further performed melt rheological experiments on the 
resins to understand the effect of the molecular weight 
distribution on the melt relaxation time behavior. The 
results showed that by adjusting the extrusion variables 
one can control the relaxation time behavior. It further 
led to the possibility of processing extruded fi lms from 
each of the resins with and without the presence of fi ber 
nuclei structure. Other authors have also tested polymers 
with a more complex backbone structure. Plog et al. [ 16 ]  
studied blends of methylhydroxyethyl cellulose with 
similar weight-averaged molecular weight but varying 
molecular weight distributions. Utilizing a combination 
of size exclusion chromatography, multiangle laser scat-
tering, and differential refractometery, they determined 
that the relaxation times were dependent on the polydis-
persity. They also found that the longest relaxation time 
of the polymers in uniaxial elongation in capillary break 
extensional rheometer increases with polydispersity. 

 Such studies prove that a deep knowledge of the effects 
of polydispersity on the microstructural evolutions could 
result in achieving favored fi nal properties. However, 
it is not always easy to study the nature of different 
molecular weight fractions in a polydisperse polymer in 
an experimental framework. For this reason, the com-
puter simulation techniques are the best candidates to 
perform detailed studies. However, it is unfortunate that 
no comprehensive work has been devoted to the study of 
polydisperse polymers. There are rare instances found in 
the literature. For instance, Rorrer and Dorgan [ 17 ]  investi-
gate the confi ned polydisperse polymers in a Monte Carlo 
study and revealed profound infl uences of polydispersity 
on the behavior of the systems. 

 Over the past few years, dissipative particle dynamics 
(DPD) has been developed as an attractive numerical tech-
nique capable of capturing both thermodynamics and 
hydrodynamics of complex systems. DPD is a particle-
based coarse-grained mesoscopic method proposed by 
Hoogerbrugge and Koelman [ 18 ]  in which particles interact 
through soft potentials. This will enable access to longer 
time scales. DPD implicitly accounts for hydrodynamic 
interactions by employing velocity-dependent dissipa-
tive forces. With the introduction of the Lees–Edwards 
boundary conditions, DPD has been successfully applied 
to study the dynamic behavior of a variety of complex 
fl uids such as polymer solutions, [ 19 ]  entangled linear 
polymer melts, [ 20–22 ]  surfactant solutions, [ 23 ]  suspensions 
of spherical and nonspherical particles, [ 24–26 ]  etc. The 
agreement between the results of DPD and experiments 
is promising for this broad range of systems. 

 The purpose of this study is to provide detailed analyses 
of characteristic polydisperse linear polymers with tailored 
chain length distributions modeled in a DPD framework. 
We focus on the orientation and stretching of chains of 
different fractions in the bulk and relate it to the transient 
and steady-state shear rheological properties. Further-
more, the contributions of bonded and nonbonded interac-
tions to the overall fl ow characteristics are discussed. The 
formation of the oriented microstructure in the systems is 
investigated. Moreover, the relaxation behaviors of the sys-
tems are studied. Analyses of this kind are extremely hard 
to perform in experiments if not impossible. The results 
of this work will enable us to understand the underlying 
mechanisms of the oriented microstructure formation 
in extruded fi lms, spun fi ber, etc. during processing from 
monodisperse and polydisperse linear polymers.  

  2.     Simulation Details 

  2.1.     Description of the Model 

 In the DPD simulation method, a set of particles 
move according to Newton's equation of motion. [ 27–30 ]  
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These particles, or beads, interact through simplifi ed force 
laws. The forces acting on the beads are pairwise and addi-
tive. They are the conservative force ( Fij

C ), the dissipative 
force (Fij

D), and the random force ( Fij
R ). The conservative 

force is a soft repulsion given by

 rrF a
r

r
1 ˆij

C
ij ij

ij

c

ijχ= −




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  (1) 

 where rij  is the distance between the beads  i  and  j , rr̂ij  is 
the unit vector pointing from the center of bead  j  to that 
of bead  i , ijχ  equals 1 for beads with a distance less than 
the force cutoff radius rc  and equals 0 otherwise. aij  is the 
maximum repulsion between bead  i  and bead  j . The other 
two forces are responsible for the conservation of the total 
momentum in the system and are given by
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 Here, ijγ  and ijσ  are the friction coeffi cient and the noise 
amplitude between bead  i  and bead  j , respectively. Dω  and 

Rω  are rij -dependent weight functions. The system obeys 
the fl uctuation–dissipation theorem in which one of the 
two weight functions fi xes the other one. [ 31 ]  This theory 
necessitates that
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 In our simulations, the weight functions are defi ned as
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 vv i  and vv j are the velocity vectors of the  i th and  j th beads, 
respectively. ijξ  is a Gaussian random number with zero 
mean and unit variance. Recently, some modifi cations 
for standard DPD formulation have been proposed. Pan 
et al. [ 24 ]  developed a new formulation of DPD in the spirit 
of fl uid particle model. They divided the dissipative forces 
explicitly into central and shear components. In this way, 
they could redistribute and balance these forces to obtain 
the correct hydrodynamics in the study of Brownian col-
loidal suspensions. Yamanoi et al. [ 20 ]  used entanglement 
forces instead of conservative forces in order to capture 
the physics of entangled polymer melts. They were able 
to reproduce both static and dynamic properties of linear 
polymer systems. 

 In this work, the standard DPD formulation was incor-
porated in order to run the simulations. Length, mass, 
and energy are in units of the force cutoff radius, mass 
of a single DPD bead, and k TB , respectively, where kB  is 
Boltzmann's constant and  T  is the absolute temperature. 

All of these variables were set to unity in our simulations. 
The maximum repulsion parameter between beads has 
been set to 25 to comply with the compressibility of water 
molecules. [ 27,28 ]  The friction coeffi cients were all set to 4.5 
which is a typical value for polymer systems. Each fl exible 
polymer chain was comprised of a fi nite number of beads 
linked together using harmonic springs with spring con-
stant of 50 and equilibrium length of 1. This setup should 
reduce unphysical bond crossings to some extent. [ 32 ]  
However, they still occur in the models and we were not 
able to completely remove them from the models due to 
the reasons explained later on. 

 Chains with different lengths were mixed together 
to study polydispersity effects in the model systems. 
To characterize polydisperse systems, the number- and 
weight-averaged lengths ( Ln  and Lw, respectively) of a 
system were defi ned using similar formulations to the 
typical number- and weight-averaged molecular weights 

( Mn  and Mw, respectively). They are L
n N

n
n

i i

i

∑
∑

=  and 

L
n N

n N
w

i i
2

i i

∑
∑

=  with  n  i  as the number of chains and  N  i  as 

the number of beads in  i th fraction of chains in a system. 

Polydispersity index (PDI) was defi ned by L

L
PDI= w

n

. The 

length distributions were produced in a way that Ln  and 
the total number of beads should equal to predefi ned 
values. For Ln, the defi ned values of 20, 50, and 100 were 
selected. The total number of beads was set to generate 
a system with a bead number density of 3. At fi rst, beta 
and normal probability distribution functions were incor-
porated to generate length polydispersity. The polydisper-
sity was modifi ed by tuning the parameters of the proba-
bility functions. The produced length distributions in this 
manner are shown in Figures  1 –3. While this approach 
is simple and fast, it is very diffi cult to produce systems 
with high PDI values. Therefore, systems with high PDIs 
were designed manually. The length distributions of the 
resulting systems are depicted in Figure  3 . The nomencla-
ture and specifi c characteristics of all systems are listed 
in Table  1 .     

 The computational domain was set to 20 × 20 × 20 
in DPD length units. The chains were allowed to equili-
brate before starting the fl ow for 5 × 10 4  time steps. The 
shear fl ow was applied by the incorporation of Lees–
Edwards boundary conditions. This boundary condition 
applies a no-slip condition on the walls normal to the 
velocity gradient direction. For the other walls, peri-
odic boundary conditions are set. The stress tensor in 
the form of components is calculated from simulations 
using the virial theorem. [ 33 ]  This method has been suc-
cessfully utilized before in DPD simulations of steady 
shear properties of polymer fl uids with Lees–Edwards 
boundary conditions. [ 34 ]  The applied shear-rates were 
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chosen large enough so that the velocity profi le is not 
signifi cantly infl uenced by thermal fl uctuations. Also, 
it was always noted that this value should not be so 
large to distort the thermostat and alter the tempera-
ture profi le. The shear-rate of 0.08 was found to opti-
mally satisfy these criteria and therefore was utilized 
in most of the simulations. Other shear-rates reported 
in this paper also showed satisfactory results regarding 
these conditions however not as well as 0.08. The max-
imum recorded average temperature in the systems at 
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 Figure 1.    Length distribution in systems with L 20n ≈ : a) 20n and 
b) 20b samples.

 Figure 3.    Length distribution in systems with L 100n ≈ : a) 100n, 
b) 100b, c) 100p3.24, d) 100p4.72, and e) 100p7.41 samples.

 Figure 2.    Length distribution in systems with L 50n ≈ : a) 50n, 
b) 50b, c) 50bl, and d) 50bh samples.
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the highest applied shear-rate was almost 1.36 which is 
fairly close to the set value of 1. 

 The incorporation of periodic boundary conditions 
makes it almost impossible to access true coordinates of 
beads in long runs under fl ow. Indeed, there is always the 
possibility to record trajectories in every time step and 
modify the periodic coordinates knowing their positions 
and the velocity fi eld. However, the benefi t of accelerated 
calculations will be defi nitely suppressed in large sys-
tems such as the models considered here. In this study, 
it was necessary to calculate the size and orientation of 
each chain in time. Fortunately, these parameters are 
based on the true relative coordinates of the beads in each 
individual chain rather than on their actual coordinates 
in time and space. Consequently, the true relative coor-
dinates of beads in each chain were fi rst determined and 
then used in chain size and orientation calculations. To 
do that, it was assumed that the fi rst bead in every chain 
possesses its true relative coordinates at every time step. 
This is an appropriate assumption considering that (i) it 
is only necessary to fi nd the true relative coordinates and 
(ii) the fi rst bead is connected to only one other adjacent 
bead. Based on the periodic coordinates of the fi rst and 
second beads, all possible projections of the second bead 
were found in space. Only one of these projections results 

in a reasonable bond length (with the fi rst bead) which 
would also satisfy the minimum bond energy require-
ment. This projection is set to be the true relative coordi-
nates of the second bead. Other projections lead to a bond 
length in the orders of the side of the simulation box and 
produce unstable bonds due to very large bond potentials. 
In this way, the true relative coordinates of beads in each 
chain were determined and incorporated in mean gyra-
tion radius, nonbonded intramolecular interactions, and 
segmental orientation calculations. 

 The simulations were run for 5 × 10 5  time steps under 
fl ow and the beads trajectories recorded. The fi nal 10 5  
steps were used to calculate the steady-state shear rheo-
logical data. The time step was set to 0.005 in all simula-
tions. In order to provide an estimation of the timescales 
in experiments and simulations according to Fedosov 
et al., [ 34 ]  the relaxation times of the simulated and the 
experimental fl ow curves of a commercial poly(propylene) 
 presented elsewhere [ 35 ]  were compared. The results 
 suggest that 1 [t] in the DPD simulations approximately 
equals 1.2 ms where [t] is the DPD unit of time. 

 Relaxation modulus of the polydisperse systems was 
also calculated. In the calculations, the fl ow was stopped 
at the end of the fl ow simulations and the chains were 
allowed to relax for another 5 × 10 5  time steps. The stress 
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  Table 1.    The nomenclature and specifi c characteristics of all simulated systems.  

Name LLnn PDI Total number of beads Type of distribution

20 20 1.00 24 000 None

20n 20 1.01 24 017 Normal [ σ  a)  = 2]

20b 19 1.08 24 007 Normal [ σ  = 5]

50 50 1.00 24 000 None

50n 50 1.00 24 033 Normal [ σ  = 2]

50b 50 1.01 24 014 Normal [ σ  = 5]

50bl 54 1.01 24 001 Re-scaled b)  beta [ a  c)  = 1.5,  b  d)  = 5]

50bh 44 1.04 24 046 Re-scaled beta [ a  = 5,  b  = 1.5]

100 100 1.00 24 000 None

100n 100 1.00 24 080 Normal [ σ  = 2]

100b 100 1.00 24 081 Normal [ σ  = 5]

100p3.24 100 3.24 24 000 Manual

100p4.72 100 4.72 24 000 Manual

100p7.41 99 7.41 24 000 Manual

300 300 1.00 24 000 None

500 500 1.00 24 000 None

1000 1000 1.00 24 000 None

    a)σ  is the standard deviation;  b) The original beta distribution is nonzero only on the interval (0,1). Therefore, we had to rescale its values 
to our desired chain length interval;  c)  a  is the fi rst shape parameter of a beta distribution; and  d)   b  is the second shape parameter of a 
beta distribution.   
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was recorded meanwhile and divided by the product of 
the shear-rate of the initial fl ow and time to yield the 
relaxation modulus. [ 36 ]  The results were discussed in 
terms of the linear viscoelasticity theory.  

  2.2.     Limitations of the Model 

 It was attempted to construct  effi cient  models in this work 
to present a precise picture of the polydisperse linear 
polymers in a reasonable time window. However, these 
models deviate from a  perfect  model in a few points, which 
are to be explained here for full disclosure. Despite our 
attempts, no solution has been found so far to overcome 
the remaining obstacles to build a more accurate model. 
Although we were skeptical at fi rst about the capability 
of the models to show the effects of polydispersity, satis-
factory qualitative agreement was observed in various 
simulation aspects with several experiments from other 
authors. These surprising agreements motivated us to 
write this paper. 

 The softness of the potentials in DPD method allows 
the polymer chains to slide through each other and 
result in the unphysical phenomena of bond crossings. 
The consequence of these bond crossings is that the DPD 
simulations cannot describe the reptation dynamics of 
the entangled polymer melts. [ 37 ]  Therefore, effort must 
be made to avoid this problem so that the dynamics of 
the long chain fractions in polydisperse systems are cap-
tured correctly. There are mainly three approaches so far 
to prevent the bond crossings in coarse-grained simula-
tions. First approach proposed by Padding and Briels [ 38,39 ]  
introduces an algorithm which prevents bond crossings. 
In their method, a bond is considered as an elastic band 
and the energy minimization conditions are used to 
determine the possible entanglement positions. While 
this approach is very promising, it is computationally 
very intensive. A second strategy was proposed by Pan 
et al. [ 40 ]  who could reduce the frequency of bond crossings 
by adding segmental repulsive forces to the force fi eld. 
This approach also requires heavy calculations. Moreover, 
the length scale of the segmental repulsions is physi-
cally ambiguous. [ 41 ]  Another method was investigated by 
Nikunen et al. [ 32 ]  who used simple topological constraints 
to prevent chain crossings. This way both Rouse and 
reptational dynamics were captured for short and long 
chains, respectively. [ 37 ]  

 Following Nikunen et al. [ 32 ] , various sets of repulsion 
parameters and spring constants were tested in this 
work in order to avoid bond crossings. Unfortunately, 
the simulations became unstable and the results were 
unrealistic when more severe constraints were incorpo-
rated. We believe that the larger number of beads in our 
system compared with the previous study produce strong 
time-dependent variations in the force fi eld when using 

larger force constants. Therefore, smaller time steps could 
solve the problem. According to our investigations the 
instabilities still persist for time steps of 0.0001 (though 
decreased) which is already very small and increases the 
simulation time signifi cantly. Furthermore, the main ben-
efi t of DPD, i.e., access to the longer time scales, would 
be sacrifi ced if very small time steps are incorporated. 
It is noteworthy that the simulations were run utilizing 
DL_MESO_2.5 code package, which has been introduced 
and successfully tested elsewhere. [ 42 ]  This further assures 
the stability of the DPD code. The possibility of reducing 
the number of beads in the simulations was also consid-
ered. However, in the current study, where a wide range 
of chain lengths must be accessible to produce broad 
polydispersity profi les, a low bead number density is 
extremely limiting. Moreover, there are certain reports 
showing the signifi cance of bead number density in the 
simulation results. [ 27,29 ]  Therefore, it was decided not to 
decrease the bead number density. 

 As a consequence of the interplaying factors, it was cur-
rently the only effi cient solution to somewhat reduce the 
possibility of the bond crossings by the method of topo-
logical constraints. To do this, the repulsion parameter 
was set to 25 to comply with other works while the spring 
coeffi cient of the harmonic bonds was set to 50 which is 
much larger than typical values for polymers according 
to literature. [ 43–45 ]  As it will be shown, the bonds stretch 
due to the fl ow and increase their lengths which conse-
quently lead to an increase in the frequency of the bond 
crossings. In order to compare the systems with the geo-
metrical condition proposed by Nikunen et al. [ 32 ]  the 
impenetrable radius of beads rmin  was approximated to 
be 0.6 in the systems from the radial distribution function 
at the start of the fl ow. This value was compared with the 
corresponding maximum average bond length lmax  in the 
systems during the simulations. If r l2 min max> , any two 
bonds cannot cross each other. The stronger this criterion 
is overwhelmed the higher is the possibility of bond cross-
ings. In the start of the simulations, when the lmax  has its 
minimum value of 1.02, this criterion reads 0.85 1.02/>  
which proves that bond crossings exist. Indeed this situ-
ation gets worse throughout the simulations, when the 
bonds are stretched but rmin  remains almost constant. 
Therefore, one can only conclude that the bond crossings 
are slightly decreased due to this setup, but still dominant 
in the models. Consequently, it should be stated that this 
work presents mesoscale models of polymer chains which 
follow a  slightly improved  version of the Rouse model. It 
will be shown in the rest of the paper that these models 
are quite interestingly capable to qualitatively cap-
ture the effects of chain length polydispersity. However, 
the current model cannot provide a precise description 
regarding entanglement density, disentanglement time, 
and other signifi cant aspects of the reptation model. 
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 The box size has been shown to infl uence the response 
of simulated polymer systems. [ 46 ]  Since the longest chains 
in the models are made of 1500 beads, it is necessary to 
build boxes much larger than 20 × 20 × 20. Also, the box 
size in the direction of fl ow is often taken larger than the 
other directions due to the large extensions. However, 
such simulations could take very long times because of 
the sharp increase in the number of beads upon enlarging 
the box. Therefore, it was attempted to compensate for 
this issue by the application of the periodic boundary con-
ditions. This necessitated running heavy postprocessing 
calculations on the simulated periodic coordinates to fi nd 
the true relative coordinates of the beads. Quantifying 
physical characteristics of the models was made pos-
sible only by this true relative coordinates. Such calcula-
tions were almost four times as much time-consuming as 
the simulation itself. Therefore, one can see that gener-
ating an effi cient model was based on several important 
factors. 

 In addition to the results presented here for a 
20 × 20 × 20 box, all of the monodisperse models were 
also simulated in a 10 × 10 × 10 box with the same con-
ditions. The data from this box were almost the same as 
the larger 20 × 20 × 20 box except for the velocity profi le 
which was slightly noisier in the smaller box. This further 
led to noisier stress profi les. However, the averaged stress 
values over several time steps in the boxes showed negli-
gible differences. Repetition of simulations also approved 
the reproducibility of the results in both boxes. It should 
be noted that the results reported in this paper are from a 
single run on a 20 × 20 × 20 box, while separate runs have 
been performed to assure the reproducibility.   

  3.     Results and Discussion 

  3.1.     Startup of Shear Flow Simulations 

 It has been shown by birefringence measurements that 
the segment orientation of entangled polymers results in a 
stress overshoot in startup of shear fl ow. [ 47 ]  Recent molec-
ular dynamics simulations of bead-spring chains showed 
the chain stretch is the reason behind this overshoot 
instead of segment orientation. [ 48 ]  However, further inves-
tigations in primitive path network simulations proved the 
chain stretch to be of limited infl uence on the overshoot 
and supported the experiments that the orientation is the 
dominant parameter. [ 49 ]  On the contrary, other authors 
used the same technique and found that both orientation 
and stretch determine the response of entangled polymers 
in large step shear deformations. [ 50 ]  Recently, Brownian 
dynamics simulations revealed heterogeneous local chain 
stretching, suggesting the coupling between stretching 
and orientation. [ 51 ]  

 The shear stress of various systems is plotted over time 
in Figure  4 . The data are shown for different monodis-
perse and polydisperse systems with various Ln  values. 
The length distribution has almost no effect on the stress 
profi le for systems with Ln  = 20 (20, 20b, 20n samples) 
and Ln  = 50 (50, 50b, 50n samples). However, slight 
changes in the stress overshoot are evident. One might 
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 Figure 4.    Shear stress of systems with a) L 20n ≈ , b) L 50n ≈ , and 
c) L 100n ≈ , in startup of shear fl ow simulations at a constant 
shear-rate of 0.08 in DPD unit.
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assume that this is due to the equal proportions of short 
and long chains in the system. To test this hypothesis, 
systems of Ln  = 50 with an uneven length distribution 
were also simulated utilizing rescaled beta distribution 
functions (50bl and 50bh, see Figure  2 c,d respectively). 
No signifi cant change is observed in the stress profi les of 
any of these systems as shown in Figure  4 b. The average 
chain length of the systems was also altered by simu-
lating normal distributions of systems with Ln  = 100 in 
order to check if the stress profi les would change. It is 
obvious from Figure  4 c that there is almost no change in 
the steady-state stress values of such systems (100, 100b, 
and 100n samples). However, the change in the stress 
overshoot is more pronounced. The PDI was also varied 
in this system to study its effect on the stress profi le. The 
PDI refl ects the relative difference of chain lengths in a 
system. If this value increases, one could expect a more 
pronounced difference between the length and therefore 
the dynamics of different fractions in a system. Systems 
with Ln  = 100 and different PDI values were designed and 
tested (see Figure  4 c). The steady-state stress as well as the 
stress overshoot changed with PDI. It should be pointed 
out that the design of such polydisperse systems was not 
an easy task. It is necessary to have access to a wide range 
of chain lengths in order to be able to reach a high PDI 
value. Moreover, the Ln  should be kept constant. There is 
almost no limit to generate the longer chains. However, it 
is a challenge to satisfy all the prerequisites by designing 
the shorter chains since they can vary in a limited range. 
For systems with Ln  = 20 and 50, this range is the inter-
vals from 2 to 19 and from 2 to 49, respectively. Therefore, 
it was rather impossible to achieve high PDI values for 
these systems and it was only possible to design highly 
polydispersed systems with Ln  = 100.  

 It is observed in the simulations that the stress over-
shoot is decreased with the polydispersity. In a mono-
disperse system, all chains possess a unique relaxation 
behavior due to their similar dynamics. They all move, 
rotate, and orient in the same time scale. Such similar 
chain dynamics is replaced with a broad relaxation spec-
trum of all possible length scales in the polydisperse sys-
tems. At short times after startup of fl ow, short chains 
move fast while only parts of long chains have moved. 
Long chains would take much longer times to respond to 
the applied fl ow fi eld. As a result, the stress overshoots of 
short and long chains do not overlap. Instead, they pro-
duce a range of stress overshoots resulting from different 
fractions. Hence, the sharp stress overshoot becomes 
broader and reduces to some extent depending on how 
much the relaxation modes overlap. Such interpretation 
is in agreement with the coarse-grained molecular simu-
lation results of Hoy et al. [ 52 ]  which indicated that the 
chains contribute independently to the stress in a mix-
ture of chains with different lengths. 

 Experimental data are hard to fi nd on the polydisperse 
systems with molecular characteristics close to our simu-
lated systems due to the limitations in polymerization. 
Most of the available works have used a blending strategy, 
i.e., mixing different molecular weights of the same 
homopolymer, to achieve mixtures with various polydis-
persity profi les. For instance, Boukany and Wang [ 7 ]  inves-
tigated the velocity profi les of sheared polydisperse polyb-
utadiene mixtures. They present their results for startup 
of shear fl ow experiments at a shear-rate of 0.32 s −1  for 
2 mixtures with Mn  = 740 and 810 kg mol −1 , and PDI = 
1.02 and 1.72, respectively. The system with higher poly-
dispersity shows a broader stress profi le and approaches 
the steady-state much slower than the other one. 

 The good qualitative agreement between the observed 
trends in stress profi les of our simulations and these 
experiments encourages further investigations to be 
carried out on the model systems to explain the effects 
of polydispersity. In the rest of this paper, it is intended 
to study different fractions, i.e., chains with different 
lengths, separately and compare them with each other. 
Such detailed analyses are extremely diffi cult to conduct 
in experiments if not impossible. 

 In a DPD model comprised of multiple beads, there is 
a certain amount of energy dissipated due to the friction 
each time two beads interact. By increasing the number 
of bonded beads to generate longer chains, the possibility 
of such nonbonded interactions is reduced. Therefore, the 
energy loss during the fl ow is altered when the polydis-
persity is changed. It should further infl uence the stress 
profi le. The frequency of nonbonded interactions were 
monitored in the systems and plotted in Figure  5 . In these 
calculations, an interaction was defi ned whenever two 
nonbonded beads were distanced less than the force cutoff 
radius. The intramolecular and intermolecular interactions 
were calculated separately. For the intramolecular interac-
tions, the true relative coordinates were used in the calcula-
tions. It should be emphasized that by intramolecular inter-
actions nonbonded bead–bead interactions are intended 
and not the bonded interactions such as bond stretching, 
bond bending, or torsion in the force fi eld. The frequency 
of the intramolecular interactions reduces in early stages 
of the simulation and reaches a steady-state value. The 
intermolecular interactions on the other hand go through 
a maximum and reach a steady-state in samples with low 
PDI values. The results show that the total frequency of all 
nonbonded interactions decreases over time. This decrease 
is more pronounced in polydisperse systems. Therefore, 
the dissipative interactions are not the reason why the 
steady-state stresses in the polydisperse systems are higher 
than their monodisperse counterparts. The characteristic 
behaviors in the frequencies of intramolecular and inter-
molecular interactions are indeed interesting and could be 
explained in an orientation-stretch framework.  

Macromol. Theory Simul. 2016,  25,  170−186
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 With the start of the fl ow, chains gradually move 
and align in the fl ow direction. The orientation of 
the polymers can be characterized by the order tensor 
  S   [  39,53  ] 
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 where nchain  is the total number of chains,  N  is the number 
of beads in the chain, and II  is the unit tensor. RRi ,j repre-
sents the position of the  j th bead on the  i th chain. In an 
anisotropic system, the eigenvector of the largest eigen-
value of the order tensor gives the preferential orientation 
of the bonds. The angle between this eigenvector and the 
fl ow direction is the fl ow alignment angle  χ . It is given by
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SS SS
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xx yy

χ
−   
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 The evolution of fl ow alignment angle with time is 
demonstrated in Figure  6  for the model systems. One can 
see that the bonds orient with time according to the fl ow 
direction. As the orientation progresses, the intramolec-
ular interactions reduce due to the decreased probability 
of two nonbonded beads in the same chain to interact. In 
polydisperse systems with long chain fractions, the intra-
molecular interactions are more frequent in the start of 
the simulations. When the long chains align in the course 
of the fl ow, the intramolecular interactions decrease more 
rapidly than when short chains align. This decrease is 
more important in polydisperse systems since the major 
part of the intramolecular interactions is coming from 
long fractions. Therefore, they show less frequency of 
intramolecular interactions at the steady-state compared 
to the systems with low PDI values even though they 
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 Figure 5.    Frequency of a) intramolecular, b) intermolecular, and 
c) total nonbonded interactions in the systems with L 100n ≈  in 
startup of shear fl ow simulations at a constant shear-rates of 
0.08, in DPD unit. The legends are shown in part a.

 Figure 6.    The evolution of fl ow alignment angle with time in the 
systems with L 100n ≈  in startup of shear fl ow simulations at a 
constant shear-rate of 0.08, in DPD unit.
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have higher values in the beginning. If a chain with 1500 
beads aligns, the probability of two nonbonded beads 
of the same chain to be distanced less than the force 
cutoff radius is reduced the same as for the alignment of 
15 chains of 100 beads. This point states the fact that the 
penalty of alignment of long fractions on the frequency of 
intramolecular interactions is much more severe than the 
short fractions. Such a statistical explanation also applies 
to the intermolecular interactions. Keeping in mind that 
the bead number density is constant in the simulations, a 
chain of 1500 beads can form intermolecular interactions 
with 22500 beads. This number for a chain of 100 beads 
in a monodisperse system is 23900 beads. Hence, for a 
specifi c bead there is a larger number of surrounding 
beads to interact with in the latter system.  

 When systems undergo fl ow, the chains move, orient 
and stretch accordingly. This complex dynamics leads to a 
competition between the construction and destruction of 
interaction sites with different orders. In this paper, the 
order of an interaction site is defi ned as the number of the 
beads participating in that site. The number of sites with 
multiple intermolecular interactions, i.e., orders higher 
than 3, is plotted with time in Figure  7 . In the monodis-
perse system, all orders reach the steady-state. The sites 
with orders higher than 10 show a distinct maximum 
in the early stages of the simulation. This is ascribed to 
the temporary distortions in the local rearrangements of 
the segments due to the applied fl ow. In the polydisperse 
system, the steady-state is not reached. This further sup-
ports the slower dynamics in polydisperse systems as a 
result of the long chain fractions. It is interesting to note 
that the number of low-ordered sites is increasing while 
high-ordered sites are being destroyed gradually by the 
fl ow. The fl ow is removing the beads one by one from 
the high-ordered sites. This results in 10-ordered sites 
to become 9-ordered and so on. Therefore, the destroyed 
high-ordered sites add up to the lower ordered sites thus 
increasing their population. This information provides 
insight into the evolution of an oriented microstructure 
in the systems.  

 Similar behavior is also seen in the nonbonded inter-
action data of monodisperse systems with various 
chain lengths. The data for such systems are plotted in 
Figure  8 . The reduction in the number of interactions 
becomes more distinguished as the length of the chains 
grows. The results clearly support our earlier remarks that 
the length of the chains plays a critical role in the fre-
quency of nonbonded interactions.  

 The overall elongation of a polymer chain can be char-
acterized by the xx component of the mean square gyra-
tion tensor RRgg

2  [ 39,53 ] 
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n

=
1

N
( )( )gg

Nn
2

chain j=1i=1

i ,j i ,c i ,j i ,c

chain

  (10) 

 Here, RR RR
N

=
1

j

N

i ,c i ,j

=1

∑  is the position of the center of mass 

of the  i th chain with  N  beads. Figure  9  shows the time 
dependence of the xx component of the mean square 
gyration tensor for various fractions in polydisperse sys-
tems. It is obvious that the chains stretch and increase 
their size during the fl ow. The kinetics of chain stretching 
is slowed down with increasing the chain length of the 
fraction. In the longest fractions of the polydisperse sys-
tems the steady-state is not achieved in the scope of the 
simulations. It is interesting to note that in the 100p3.24 
system, the longest fraction with 1500 beads in each 
chain does not start to stretch until the very late stages 
of the simulation. However, in the 100p7.41 system the 
longest chains are more infl uenced by the applied fl ow. 
The same behavior was also observed in repetitions. Since 
the velocity profi le was well-developed in all simulations, 
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 Figure 7.    Number of sites with different orders over time in a) 100 
and b) 100p7.41 systems at a constant shear-rate of 0.08 in DPD 
unit. The legends are shown in part a.
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we suspect that this is probably due to the fact that the 
share of longest chains in the total number of beads is 
increased in the 100p7.41 system. The longest chains are 

more infl uenced by the applied fl ow as a consequence 
of this increased share in the melt. The typical confi gu-
rations of two of the longest chains of system 100p7.41 
are given in Figure  10  with time. It further demonstrates 
that the longest fraction of the chains is only partially 
stretched in the fl ow direction. To compare the behavior 
of short fractions, the typical confi gurations of two of 
the short chains of system 100p7.41 are also given with 
time in Figure  11 . It is obvious that the chains are more 
infl uenced by temporary fl ow heterogeneities as they 
can stretch and/or recoil much faster during the fl ow. The 
gyration radius data obviously show the delayed relaxa-
tion mechanism in polydisperse systems. Based on the 
data, the oriented microstructure is still developing very 
slowly in polydisperse systems which is a consequence of 
the long fractions.    

Macromol. Theory Simul. 2016,  25,  170−186

 Figure 8.    Frequency of a) intramolecular, b) intermolecular, and c) total 
nonbonded interactions in the monodisperse systems (chain lengths 
from 20 to 1000) in startup of shear fl ow simulations at a constant 
shear-rate of 0.08, in DPD unit. The legends are shown in part a.

 Figure 9.    The evolution of the xx component of the mean square 
gyration tensor with time for various fractions in a) 100p3.24 
and b) 100p7.41 systems at a constant shear-rates of 0.08 in 
DPD unit. The number of beads in each fraction is shown in the 
legend. The legends are shown in part a.
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 The progress in orientation and stretching of chains 
in fl ow becomes more important especially in fractions 
with longer chains. Moreover, the bonds would also 
orient and stretch according to the fl ow. The average bond 
length is plotted in Figure  12  for various systems with 
L 100n =  over time. According to the results, the bonds 
are stretched and it becomes more intensive as the PDI 
increases. Consequently, the contribution of the bonded 
energy should be also higher in such systems. Figure  13  
shows the contributions from bonded and nonbonded 
energies to the total potential energy of the system over 
time. The bonded energy gradually dominates the total 
potential energy of the system over time (100p3.24, 
100p4.72, and 100p7.41 samples). Thus, it is clear that 
the confi gurational reorganizations, i.e., orientation and 
stretching of the bonds and chains, determine the poten-
tial energy as well as the stress profi le. High stresses are 
necessary in polydisperse systems due to orientation and 
stretching of long fractions as observed in the stress pro-
fi les. Such reorganizations are indeed more energy-con-
suming in polydisperse systems where long fractions are 
present. These results are also in agreement with recent 
Brownian dynamics simulations in an entangled polymer 
melt. Studies have shown that the coupled effects of seg-
ment orientation and chain stretch result in an emerging 
stress overshoot before the Rouse time. [ 51 ]  In contrast, 

substantial chain stretching has been found to persist 
well beyond the Rouse time.    

  3.2.     Relaxation Behavior 

 In order to provide a more accurate insight into the relaxa-
tion behavior, the shear relaxation modulus of various 
systems were calculated, see Figure  14 . The modulus data 
are normalized to the average initial modulus G0  which 
is the average modulus value of the fi rst 4000 steps of the 
simulations. The data are scattered at the largest correla-
tion times where the relaxation modulus is close to zero 
because of the fi nite measuring time. The absolute values 
of the negative data are represented on the logarithmic 
scale with fi lled red circles in order to assess the prox-
imity to zero of the scattered data. The relaxation modulus 
approaches zero when the number of fi lled and unfi lled 
circles are equal. It should be noted that the fi lled circles 
are plotted in front of the unfi lled circles. This may appear 
as if the fi lled circles are dominating the unfi lled circles. 
The results show that the data start to scatter at relatively 
longer times in polydisperse systems as a sign of the slower 
relaxation. The linear viscoelasticity theory is used in order 
to fi nd the relaxation spectrum of the systems. The theory 
suggests that the relaxation modulus can be expresses in 
terms of a discrete relaxation spectrum { g  i , iτ } as

 Figure 10.    The stretching of two chains shown in blue and red colors with 1500 beads in system 100p7.41 at a) 100, b) 200, c) 400, 
d) 1100, e) 1900, and g) 2400 DPD time, at a constant shear-rate of 0.08 in DPD unit. Note that the true relative coordinates are used in the 
fi gures.
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 G g et =
N t

i

i=1

–
i∑( ) τ   (11)  

In this equation,  N  is the number of relaxation modes, 
 g  i  and iτ  are the relaxation modulus and the relaxation 
time of the  i th mode, respectively. The relaxation times 

were estimated for each system by fi tting a relaxation 
spectrum with maximum 5 relaxation modes to the simu-
lation results, see Table  2 . One can see that the relaxation 
spectrum is broader in polydisperse systems. The longest 
relaxation times especially increase in polydisperse sys-
tems compared with their monodisperse counterparts. 
This fi nding is in agreement with measurements of 
other authors. Experimental studies on several polymers 
including polystyrene mixtures, [ 16 ]  methylhydroxyethyl 
cellulose blends, [ 16 ]  and poly(propylene)s  [ 6 ]  have shown 
an increased longest relaxation time with increasing 
polydispersity via different techniques. With the max-
imum relaxation time of the samples at hand, one can 
determine the fl ow strength in terms of the dimension-
less Weissenberg number ( W  i ), ɺW =i 0γ τ  where γɺ  is the 
applied shear-rate and 0τ  is the longest relaxation time. 
For instance in the 100p7.41 sample, the  W  i  at the shear-
rates of 0.023, 0.08, and 0.152 is 9.32, 32.41, and 61.58, 
respectively. These data show that the applied fl ows are 
strong enough to cancel out thermal fl uctuations to a 
large extent.    

  3.3.     Effect of Flow Intensity 

 The applied shear-rate infl uences the stress pro-
fi les in startup of shear fl ow experiments. To test its 
effects, systems with L 100n =  were simulated at different 

 Figure 11.    The stretching of two chains shown in blue and red colors with 70 beads in system 100p7.41 at a) 100, b) 200, c) 400, d) 1100, 
e) 1900, and g) 2400 DPD time, at a constant shear-rate of 0.08 in DPD unit. Note that the true relative coordinates are used in the fi gures.

 Figure 12.    The evolution of the average bond length over time in 
systems with L 100n ≈  in startup of shear fl ow simulations at a 
constant shear-rate of 0.08 in DPD unit.
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shear-rates, see Figure  15 . The systems with high PDI show 
broad stress profi les at all shear-rates tested. Moreover, 
they decline faster at higher shear-rates to the steady-state. 
The accelerated dynamics of the long fractions in stronger 
fl ows leads to this behavior. The steady-state stress is also 
affected by increasing the applied shear-rate and seems to 
approach the limiting value of the monodisperse system.  

 The steady-state shear viscosities are plotted against 
the applied shear-rate in Figure  16 . Polydisperse systems 
show relatively higher viscosities at all shear-rates. The 
difference is more important at smaller shear-rates while 
it becomes less signifi cant as the shear-rate increases. 
This trend is a result of the overwhelming nonbonded 
energy in the system. It has been shown by other authors 
that the DPD simulations suffer from the fact that at high 
shear-rates the increasing dissipated energy distorts the 
thermostat. [ 34 ]  As a result, the nonbonded energy of the 
system is so large that it becomes the dominating factor 
in the total energy of the system. Consequently, the pre-
vious conclusion on the role of bonded energy in poly-
disperse systems is of less signifi cance, yet still valid. 
Moreover, at very low shear-rates the deviations from 
the applied linear velocity profi le leads to local fl ow het-
erogeneities. [ 23,26,34 ]  Such distortions would impose strong 
numerical uncertainties in the calculations. Therefore, it is 
important to note such effects when studying the effects 
of very low and very high shear-rates on the response of 
the systems. At the studied shear-rates, the polydispersity 
leads to higher steady-state shear viscosities due to the 
higher stresses necessary to stretch and orient the longer 
fractions. The results are in agreement with experimental 
data of Gahleitner [ 54 ]  who reported the viscosity data of 
several poly(propylene)s against shear-rate. Among all 
of his samples, two have close molecular characteristics 
to the simulated systems in this work: polymers with (1) 
Mn  = 139.3 kg mol −1  and PDI = 5.5, and (2) Mn  = 129.4 kg 

mol −1  and PDI = 3.5. The fi rst polymer showed higher vis-
cosities at all shear-rates, with an order of magnitude 
larger zero-shear viscosity value than the second polymer.    

  4.     Conclusions 

 Startup of steady shear fl ow properties of polydisperse 
linear polymers were studied in a DPD framework. It was 
shown that the stress overshoot generally decreased with 
the introduction of polydispersity into the models. This 
behavior was ascribed to the broad relaxation response 
of various length scales present in polydisperse sys-
tems. Steady-state stress became larger as polydispersity 
increased due to the higher forces necessary to orient and 
stretch long chain fractions in the fl ow direction. Detailed 
analyses of nonbonded interactions proved a complex 
microstructural evolution because of orientation and 

 Figure 13.    Evolutions of the a) averaged bonded potential energy 
per bond, b) averaged nonbonded potential energy per bead, and 
c) averaged total potential energy with time in systems with 

L 100n ≈  in startup of shear fl ow simulations at a constant shear-
rate of 0.08 in DPD unit. The legends are shown in part a.
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chain stretching during the fl ow. It was evident that the 
orientation of long chain fractions forces more severe pen-
alties on the frequency of nonbonded interactions than 
the short chain fractions. The results support the coupled 
effect of orientation and stretching to infl uence the stress 
profi le in startup of shear fl ow simulations. The orienta-
tions and stretching occurred in the early stages of the 
simulation and led to the appearance of stress overshoot 
in the systems. While the bond orientation became steady 
rather fast, the bond stretching continued in the longer 
times. The gyration radius data also proved the chains to 
increase their size during the fl ow. The larger size and the 

slowed-down elongation dynamics of long fractions were 
evident. 

 Relaxation modulus data proved the broad range of 
relaxation mechanisms in polydisperse systems. The 
relaxation spectrum was quantifi ed benefi ting from 
the linear viscoelasticity theory. The results showed an 
increase in the longest relaxation time in systems with 
higher PDIs. This is in qualitative agreement with the 
available measurements in the literature from a variety 
of polymers. The startup of shear fl ow simulations were 
performed at different shear-rates. The steady-state shear 
viscosity results showed higher viscosities in the polydis-
perse systems at all shear-rates. It was noted that these 
observations are in qualitative agreement with the avail-
able experimental data of different poly(propylene)s. 

 The satisfactory qualitative agreement of the charac-
teristic behaviors of polydisperse polymers with experi-
ments is encouraging. The underlying physical phe-
nomena could be studied in such simulations while it 
stays hardly accessible to experiments. Therefore, the 
results of this work enable us to understand the oriented 
microstructure formation in extruded fi lms, spun fi ber, 
etc. during processing from polydisperse polymers. Fur-
ther challenges still remain for future work including the 
effective incorporation of physical constraints to avoid 
bond crossings and reproduce reptational dynamics, 

 Figure 14.    Shear relaxation modulus  G (t) normalized to the average initial modulus G0  in systems with L 100n ≈  in startup of shear fl ow 
simulations at a constant shear-rate of 0.08 in DPD unit (unfi led markers). The solid lines are the fi tting results from the linear viscoelasticity 
theory. The absolute values of the negative data are represented by fi lled red circles.

  Table 2.    The relaxation times of the systems with L 100n =  
derived from fi tting the linear viscoelastic model to the shear 
relaxation modulus data.  

System
0τ 1τ 2τ 3τ 4τ

100 97.98 28.37

100b 121.74 22.58

100n 98.06 28.30

100p3.24 171.84 66.18 49.15 25.26

100p4.72 281.08 173.67 61.481 42.38 24.43

100p7.41 405.14 283.77 170.36 40.95 23.17
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design of systems with various polydispersity profi les, 
modeling real systems rather than characteristic poly-
mers, and multiscale simulation of fi nal products from 
such analyses.   
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Orientation of Anisometric Layered Silicate

Particles in Uncompatibilized and

Compatibilized Polymer Melts Under Shear

Flow: A Dissipative Particle Dynamics Studya

Ali Gooneie,* Stephan Schuschnigg, Clemens Holzer

The orientation of a three-layered silicate particle in uncompatibilized and compatibilized
polymer melts is studied under shear flows utilizing dissipative particle dynamics (DPD).
Based on trajectories, pair distribution functions are calculated in orthogonal planes.
Regardless of the applied flow direction, it is shown that the layers rearrange themselves so
that their surfaces would be normal to the velocity gradient direction. The maximum shear
stress values fall in numerical uncertainties in
uncompatibilized systems while they show a charac-
teristic overshoot in compatibilized counterparts. This
overshoot is shown to be a result of (i) the large
interfaces between the silicate layers and the matrix
due to the exfoliation, and (ii) the increased energy
dissipation due to friction at the interface.

1. Introduction

The incorporation of non-spherical particles has led to the

development of advanced materials with anisometric

properties. Polymer-layered silicate nanocomposites (PLNs)

are an excellent example of such materials.[1–4] They

particularly exhibit superior improvement in mechanical

properties,[5–10] gas-barrier properties,[11,12] solvent resist-

ance,[3] and reduced flammability[6,13–15] relative to their

unfilled polymer matrices. It should be noted that this is

achieved at very low loadings of the nanoparticle, typically

1–10wt%.[2,4] This allows for the light-weight PLN to

be processed by conventional techniques in much the

same way as unfilled polymers. However, a well-dispersed

microstructure of tactoids, i.e., the exfoliated structure

must be ensured in order to achieve the optimal perform-

ance of PLNs.[2] Unfortunately, it is indeed difficult to

have such structures due to (i) the large aspect ratio of

silicate layers, (ii) slow diffusion kinetics of polymer chains

inside narrow silicate galleries, and (iii) the unfavorable

mixing energy of silicate particles and polymer chains.

Consequently, the fabrication of stable microstructures

in PLNs has been the topic of many experimental and

theoretical studies.

Melt intercalation is a widely used commercial method

of PLN production which relies on the mixing ability of

silicate layers with polymer melt. Many approaches have

been taken in order to promote the intermixing of silicate
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and polymers. This includes modification of the silicate

surface,[9,16,17] changing the molecular structure of the

polymer,[18] and incorporation of compatibilizing mole-

cules in the matrix.[19–21] In compatibilized PLNs, the

silicate layers are usually modified with surfactant

molecules such as alkylammonium. This promotes the

compatibility of the layers with the compatibilizing

molecules. The compatibilizing molecules could be poly-

mers such as maleic anhydride grafted polypropylene

(MA-g-PP). The improved compatibility leads to the

improved dispersion of silicate layers in the polymer

matrix. Such a mechanism is absent in uncompatibilized

PLNs, resulting in the formation of aggregated micro-

structures. The application of dispersive stresses of shear

and/or extensional types is also found to help achieve finer

dispersions.[2,22]Asa result, the evolution ofmicrostructure

under flow has been an intriguing subject and many

researchers have devoted years to understand it.

During the processing of PLNs, the material experiences

a variety of flow deformations which could cause trans-

lation, rotation, bending, and breaking of layered silicates.

These phenomena influence the properties of the final

part which are highly dependent on the microstructural

characteristics and particles orientation. The modeling of

spherical[22,23] and non-spherical suspensions such as

fibers[24,25] and sheets,[26,27] has been the subject of many

publications over the past few decades. The mesoscopic

standard orientation model is based on the Jeffery’s

equation for the motion of a single fiber in an infinite

Newtonian matrix.[28] Later, it was modified by Folgar

and Tucker to account for fiber–fiber interactions.[29] After-

ward, Advani and Tucker improved it by the introduction

of the second-order moment tensor of the probability

density function for orientation.[30] More recently, various

versions of this model have been developed to account

for phenomena such as slow orientation kinetics,[31] semi-

flexibility of the fibers,[32] etc.

In recent years, the rapid development of the computer

technology has made complicated numerical simulations

possible.[33,34]Computer simulationshavemadesignificant

contributions to our understanding of shear-induced

microstructural evolutions within the limitation of the

model complexity and the accessible time and length

scales.[35,36] Detailed molecular simulations have shown

great potential to model complex phenomena at an

atomistic level.[37–41] Coarse-graining technique has

been successfully applied to molecular dynamics method

in order to access longer time and length scales.[42–44]

Anderson et al.[45] utilized coarse-grained molecular

dynamics (CGMD) to explore the intermolecular interac-

tions that influence mesoscale morphology development

in PLNs. Sinsawat et al.[46] also used CGMD to investigate

aspects of the polymer matrix that promote the formation

of intercalated or exfoliated structures.More recently, Kalra

et al.[47] incorporatedCGMDtostudy spherical nanoparticle

dispersions in polymer melts under shear flows. Such

studies have shown the capability of computer simulations

to help distinguish the phenomena involved in the

formation of microstructures in polymer nanocomposites.

A relatively newmesoscopic particle simulationmethod

is dissipative particle dynamics (DPD) proposed by Hooger-

brugge and Koelman in 1992.[48] In its core, DPD is similar

to molecular dynamics except that the individual DPD

particles (beads) represent the collective dynamic behavior

of several molecules.[49] This coarse-graining approach as

well as softer interaction potentials between DPD beads

allows for the simulation of dynamic phenomena over

longer time scales. Benefiting from this advantage, Kim

et al.[50] incorporated DPD in order to investigate the

conformational behavior of a pH-responsive polymer and

its effect on the permeability in clay-polymer nano-

composites. By the implementation of plane Couette flow

with the Lees–Edwards periodic boundary conditions into

DPD, the method has been widely used as the standard

virtual rheometer in particle simulations to obtain steady-

state shear properties. It has beenutilized inmanyworks to

study the rheology of different systems including polymer

solutions,[51] surfactant solutions,[52] entangled polymer

melts,[53] and suspensions.[54–56] While the method has

proved promising inmany systems, it still suffers from the

intrinsic instabilities at very low or very high shear-rates

and needs further improvements.[52,57]

The rheology of dispersed particles in solutions or

polymer melts has already been treated with DPD.[54–56,58]

The presence of non-spherical solid particles with

complex geometries in the matrix usually leads to more

difficult and time-consuming calculations. A common

method to overcome such problems, the freezing techni-

que, has been employed in several works.[55] In the

freezing technique, a large solid particle is constructed out

of smaller spherical particles by aggregating them as a

rigid entity. While this approach has been shown to

entail significant savings in computational costs, it loses

an important physical characteristic of non-spherical

particles with high aspect ratios, i.e., semiflexibility and

bending of the particles.

In thiswork,wehave constructed a three-layered silicate

particle out of spherical beads by defining interaction

potentials for bonds, bond angles, and bond dihedrals. In

this manner, the layers of silicate could show controlled

semiflexibility and, therefore, represent a more realistic

description of the particles. These particles were added to

a polymer melt and imposed to shear flows with different

directions and shear-rates. The rearrangement of the

layers was followed to study the orientation of the particle

under flow. Pair distribution functions were calculated

in three orthogonal planes in order to provide a better

perspective over the orientation process. Finally, the effects
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of silicate surface modification and compatibilizing agents

were explored. It was achieved by replacing some of the

polymer chains with compatibilizer molecules as well as

changing the interaction coefficients between the beads.

2. Simulation Details

DPDwas first introduced byHoogerbrugge and Koelman to

study the colloidal suspensions.[48] In standard DPD, each

particle (bead) is subject to the sum of three central,

pairwise, additive forces: the conservative force (FCij), the

dissipative force (FDij ), and the random force (FRij).
[49] The

definitions of these forces are:

FCij ¼ aijxij 1"
rij

rC

! "
r̂ij ð1Þ

FDij ¼ "g ijv
Drij vi " vj

# $
%brij&brij

&
ð2Þ

FRij ¼ sijv
Rrijjijbrij ð3Þ

Here, rij is the distance between the beads i and j, brij is the
unit vector pointing from the center of bead j to that of

bead i, xij equals one for beads with a distance less than

the force cutoff radius rc and equals 0 otherwise. aij is the

maximum repulsion between bead i and bead j. gij and

sij are the friction coefficient and the noise amplitude

between bead i and bead j, respectively. v
D and v

R

are rij-dependent weight functions. The system obeys

the fluctuation-dissipation theorem in which one of the

two weight functions fixes the other one.[59] This theory

necessitates that

vD rij
# $

¼ vR rij
# $& '2

ð4Þ

s2
ij ¼ 2g ijkBT ð5Þ

In our simulations, the weight functions are defined as

vD rij
# $

¼ vR rij
# $& '2

¼ xij 1"
rij

rC

! "2

ð6Þ

vi and vj are the velocity vectors of the ith and jth beads,

respectively. jij is a Gaussian random number with zero

mean and unit variance. Recently, some modifications for

standardDPDformulationhavebeenproposed. Panetal.[56]

developed a new formulation of DPD in the spirit of fluid

particle model in such a way that the dissipative forces

were explicitly divided into central and shear components.

It allowed them to redistribute and balance these forces

to obtain the correct hydrodynamics in the study of

Brownian colloidal suspensions. In order to capture the

physics of entangled polymermelts, Yamanoi et al.[53] used

entanglement forces instead of conservative forces and

were able to reproduce both static and dynamic properties

of linear polymer systems.

In this work, the standard DPD formulation was

incorporated in order to run the simulations. Nikunen

et al.[60] have shown that for short polymer chains (such as

this study) the standard DPD formulation is accurate

enough to capture the dynamics of the polymer chains. The

short chains perfectly depict Rouse-like dynamics utilizing

the standard DPD.[61] If longer chains were incorporated in

the simulations, it would be necessary to modify the DPD

formulation in order to capture the reptation dynamics as

well.[43,44,53] However, the model in this work is based on

short chains and it is not necessary to introduce any

changes to the standard DPD formulation. Length, mass

and energy are in units of force cutoff radius, mass of a

single DPD bead, and kBT, respectively. Here, kB is the

Boltzmann’s constant andT is the absolute temperature. All

of these variables are set to unity in our simulations. In

the simulations, DPD thermostat is utilized to control the

temperature. Table 1 gives the maximum repulsion

parameters that have been used to characterize the PLN

systems. It is important to note that in this paper all the

values are in DPD units unless noted otherwise. For

uncompatibilized systems with no silicate surface treat-

ment, the repulsion parameters for polymer–silicate and

silicate–silicate pairs were taken from theworks of Scocchi

et al.[62] and Pereira et al.[63] They had used a multiscale

method to evaluate rescaled self and mixed DPD energies

from binding and non-binding energies of molecular

dynamics simulations. In this manner, they were able to

reproduce the maximum repulsion parameters for DPD

simulations of PA 6-Clay and PP-Clay nanocomposites.

With the addition of the third species, i.e., the compatibil-

izer, to the PLNs and treatment of the silicate surfaces,

the parameters were changed accordingly. Surface treat-

ment is usually performed by the addition of aliphatic

molecules to the surface of the layers.[2] Based on detailed

DPD simulations (see Supporting Information for more

details), we decided that the surface treatment could

be simply incorporated in the simulations by changing

the surface energy of the silicate beads without actually

adding them to the simulation system. This assumption

excludes the physical effects of these molecules such as

steric hindrance against polymer penetration and reduc-

tion of gallery distance. Nevertheless, it is justified by the

simplifying nature of the coarse-graining approach used

to model silicate layers in DPD. The repulsion parameters

in compatibilized systems were obtained from (i) the

theoretical Flory–Huggins parameters of sample poly-

ethylene-g-maleic anhydride mixtures,[18] and (ii) the

rescaled molecular dynamics energies of alkylammonium

surfactant molecules with short aliphatic tails.[62,63]

Yildirim and Yurtsever [18] have reported the variations
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of the Flory–Huggins interaction parameter (x) with

temperature between polyethylene and polyethylene

grafted maleic anhydride. According to their results,

x' 2 at 190 8C. By incorporating the equation x¼ (0.286

( 0.002) (aij – 25) proposed by Groot and Warren,[49] one

can estimate aij¼ 32 for polymer–compatibilizer inter-

actions Pereira et al.[63] have reported repulsion param-

eters between aliphatic tails of alkylammonium mole-

cules in a variety of PLNs to vary in the range from 30.2 to

32.8. Since the polyolefin-based compatibilizer molecules

closely resemble such aliphatic tails a value of aij¼32 was

chosen to represent the compatibilizer–compatibilizer

interactions.[62] In compatibilized systems, the coarse-

grained silicate beads are assumed to include surfactant

molecules and therefore the interactions of such beads

with other components should be similar to that of the

surfactant. This is indeed a valid assumption considering

that in practice the surfactant molecules are supposed

to alter the interactions between silicate layers and

other components.[2] Consequently, the polymer–silicate

and silicate–silicate interactions were represented by

aij¼30 and 32.8, respectively.[62,63] Finally, the repulsion

parameter of compatibilizer–silicate interactions was

set to 10 which is in the orders of silicate–silicate

interactions.[63] This value is based on the fact that in a

compatibilized system the compatibilizer beads should

exhibit weak repulsion with the silicate beads in order

to promote their dispersion. A comparatively detailed

system was also simulated where the silicate layers

were covered with aliphatic surfactants (see Supporting

Information). In these detailed simulations the repulsion

parameters were taken from the work of Scocchi et al.[62]

and used without any change. The results from the

simulations were in good agreement with the results

from the constructed system here. Therefore, it justifies

utilizing coarse-grained silicate beads including surfac-

tant aliphatic tails and correcting the repulsion param-

eters. Indeed, a careful modification of the repulsion

parameters is crucial to achieve accurate results. The

friction coefficients were set to 5.6 for interactions of all

types with silicate beads and 4.5 for other pairs. These

typical values have been used in many works by other

authors.[49,50,55,57,64–67]

The flexible polymer and compatibilizer molecules

were modeled as linear chains of 20 and 5 beads linked

together using harmonic springs with spring constants of

20 and 5, respectively. A three-layered silicate molecule

of 21) 21 beads in each layer was constructed to represent

the nanoparticle, see Figure 1. The beads of the layered

silicate were connected with bead-spring harmonic poten-

tials with a spring constant of 500.[50] By the introduction

of harmonic potentials for bond angles and dihedrals,

each layer was allowed to experience limited bending and

curvature in order to provide an accurate representation of

semiflexible silicate layers. The coefficients of harmonic

Table 1. The maximum repulsion parameters used to characterize the PLN systems.

Polymer Layered silicate Compatibilizer

Without compatibilizer and surface treatment

Polymer 25 33 –

Layered silicate 33 15 –

Compatibilizer – – –

With compatibilizer and surface treatment

Polymer 25 30 32

Layered silicate 30 32.8 10

Compatibilizer 32 10 32

Figure 1. A snapshot of a compatibilized system, with the three-
layered silicate in the center of the box. The compatibilizer
molecules are shown in red and the polymer chains are
transparent to preserve clarity.
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bond angles and dihedrals were all set to 1000. This value

has been successfully incorporated before in CGMD

simulations to define the stiffness of each sheet in terms

of Lennard Jones energy unit.[45,46]However, it is necessary

to use rather smaller time steps than conventional in order

toassurestructural stabilityof themolecules.Here, thetime

step for all simulations was set to 0.001.

The molecules were allowed to equilibrate before

starting the flow. The computational domain was set

to 10) 10) 10 in DPD units. Each side of the

simulation box represents approximately

200nm in actual dimensions. Initially, it

was filled with polymer (and compatibilizer)

chains to have a bead number density of 3.

Then, the layered silicate was added to the

center of the box. All of the chains which

were fully or partially inside the galleries

were deleted. It resulted in 2742 polymer

(and compatibilizer) beads and 1323 silicate

beads, giving a bead number density of

almost 4 for the simulations. Systems with 0

and 10 vol% of compatibilizer were studied

in this work. By the incorporation of Lees–

Edwards boundary condition, the system

was sheared in different directions (with

respect to the initial orientation of the layers).

Besides, different shear-rates were applied in

order to study the orientation of the particle.

In this paper, the applied shear flows are

defined by their velocity and velocity gradient

directions. For instance, a shear flow defined

by Vx"Gyis representative of a flow with the

velocity in x-direction and the velocity gra-

dient in y-direction. The applied shear-rates

were 0.001, 0.0176, and 0.148 in DPD units.

Utilizing the method proposed by Fedosov

et al.,[57] these values are approximately

equal to actual shear-rates of 0.817, 14.38,

and 120.92 s"1, respectively, in an equivalent

experimental setup. The nondimensional

Peclet number (Pe) is also evaluated in the

simulations. The Pe number could provide

the possibility to compare our simulations

with other simulations and even with experi-

ments. The Pe number can be calculated

using[68]

Pe ¼ 6ph
_g l3P
kBT

ð7Þ

In this equation, h is the viscosity of the

polymer, _g is the applied shear-rate in the

simulations, and lp is the characteristic length

of the layered silicate particles. This length

equals 5 in DPD length unit in our simulations correspond-

ing to the length of a silicate layer. Here, kBT equals 1. Since

the polymer chains follow the Rouse dynamics in our

simulations, the Rouse model is utilized to estimate h

assuming that it does not depend on the shear-rate. This

model predicts the viscosity as[69]

h ¼
jra2MN0

36M2
0

ð8Þ

Figure 2. Trajectories of the layered silicate in DPD time at different shear-rates
in uncompatibilized systems. The flow is defined by Vx"Gz and the shear-rate of
each row is given in the figure. The beads are allowed to go out and come back in
the simulation box by the application of the periodic boundary conditions.

Figure 3. Trajectories of the layered silicate in DPD time under different flow
directions in uncompatibilized systems. The shear-rate is 0.148 and the flow of
each row is defined in the figure. The beads are allowed to go out and come back
in the simulation box by the application of the periodic boundary conditions.
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where j is the bead–bead friction coefficient, and r is the

beadnumberdensitywhich is2.74 inoursimulations.aand

M0are thecharacteristic lengthandthemolecularweightof

each beadwhich both equal 1.M is themolecularweight of

a chain which is 20 in our simulations. rN0

M is the number

density of the chains in the simulation box and equals

0.137. By incorporating these equations, the Pe number is

approximately 16.15, 284.27, and 2390.45 at the applied

shear-rates of 0.001, 0.0176, and 0.148 in DPD units,

respectively.

The simulations were run for 106 time steps and the

beads trajectories recorded.Basedonthetrajectorydata, the

pair distribution functions of the simulated silicate beads

were calculated according to Morris and

Katyal[70] in three orthogonal planes, i.e., the

flow plane, the shear plane, and the neutral

plane. Such data help visualize the orientation

of the layered silicate in space. The average

normal vectors of the silicate layers were also

calculated. These vectors were used to find the

angle of the sheets with the flow and/or the

velocity gradient directions.

3. Results and Discussion

3.1. Uncompatibilized Systems

Shear flow fields were applied to the model

uncompatibilized systems to study the orien-

tation phenomena. The evolution of the

particle orientation under flow is demon-

strated in Figure 2 at different shear-rates. In

this figure, the applied shear flow is defined

by Vx"Gz. The beads are allowed to travel

through the walls (if not normal to the velocity gradient

direction) of the simulation box by the application of

the well-known periodic boundary conditions. One can

see that the layers rearrange in space with time. At low

shear-rates, the layers show some deviations from the

complete alignment, and therefore there might be snap-

shots with no preferred orientation whatsoever. However,

the orientation gets more prominent with an increase

in shear-rate and the distorted orientation of the layers

is suppressed to a great deal. The shear-rate dependency

of orientation is also observed experimentally for aniso-

metric particles such as fibers,[31,32,71,72] carbon nano-

tubes,[1] clays,[73–78] etc. It should be noted that the

Figure 4. Pair distribution function in orthogonal planes at different time and
shear-rates in uncompatibilized systems. The flow is defined by Vx"Gz. The
shear-rates and times are given in the figure. The time of each row is shown in
front of it.

Figure 5. Time-averaged values of the velocity magnitude in the simulation box in uncompatibilized systems. The box is viewed from the
xz-plane for a shear-rate of (a) 0.001 and (b) 0.148 in DPD unites. The applied flow is Vx"Gz.
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semiflexible nature of the simulated layered silicate is

reflected in the trajectory data.

It is interesting to perform the same analysis when the

flow direction is changed. Figure 3 shows the trajectory of

the layers in space for differentflowdirections at a constant

shear-rate. The results explicitly indicate that the silicate

layers rotate and rearrange themselves in respect to the

flow direction. From these trajectories, it appears as if

in the preferred orientation the layers are normal to the

applied velocity gradient direction. This observation is in

agreement with the small angle X-ray scattering measure-

ments of Bihannic et al.[79] and Philippe et al.[68] They

reported that natural clay particles tend to align with

their surface normal to the velocity gradient direction and

partly rotate around flow streamlines.

In order to provide a three-dimensional overview of

themicrostructure evolution in time, the pair distribution

function was calculated in three orthogonal planes. The

results are shown in Figure 4 for two different shear-

rates. The data perfectly reflect the orientation of the

layers under flow in different planes. Some deviations in

alignment are present at low shear-rates as inherited

from their corresponding trajectories. The origin of such

deviations could be discussed based on the nature of DPD

simulations. It has been shown before that the applied

velocity gradient in the Lees–Edwards boundary con-

ditions loses its linearity at very low shear-rates.[52,57]

Therefore, it results in local flow heterogeneities in the

simulation box. These heterogeneities would impact the

local force field around the beads and temporarily alter

the direction of the force field. As a consequence of such

distortions, the movements of the beads would depict

a more random path and contribute to the apparent

oscillations in the generated trajectories.

Figure 5 shows the time-averaged velocity magnitude

distribution in the simulation box for low and high

shear-rates. In this simulation, the applied shear flow

is defined by Vx"Gz. It is evident that the velocity field is

quitedistortedat lowshear-rates (Figure5a)while it iswell-

developed at high shear-rates (Figure 5b). It is noteworthy

that theorientationfield is knowntobe stronglydependent

on the Pe number.[68] This number characterizes the ratio

of the viscous to thermal stresses. If Pe is small (usually

the case at low shear-rates), the thermal fluctuations

become more important. Thus, at low shear-rates the

microstructure is controlled more by Brownian motions

rather than shear forces. This crucial issue not only

dominates the DPD simulations, but also influences

experimentalmeasurements.[68,79] Regardless of the devia-

tions at low shear-rates, for high Pe numbers the layers

reorganize themselves to benormal to the velocity gradient

direction. Figure 6plots the pair distribution function at the

end of the simulations in different planes. As expected, the

orientation has completed at high shear-rates.

Figure 6. Pair distribution function in orthogonal planes at
different shear-rates at the end of the simulations in
uncompatibilized systems. The flow is defined for each row
and the shear-rates are given in the figure.
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During the course of orientation, the imposed flow is

supposed to provide the anisometric silicate layers with

the necessary energy to rotate in space. This phenomenon

is shown in many works to appear with an overshoot in

the stress profile with time.[31,72,75,77,78] The shear stress

in the simulations was recorded with time and plotted in

Figure 7 for different setups. The states of the layers at

different stages are also included in Figure 7a. One can see

that the stress increases slightly with the progress of

orientation until it completes. Then, it declines and

reaches a steady value. However, the attained

maximum stress values are not very distinct

and are in the range of numerical uncertain-

ties of the simulations producing the noises

in the stress signal, see Figure 7b. From the

stress data, it appears as if the orientation of

the layers is not a very energy-consuming

process. Apparently, more powerful flows only

accelerate this process while balancing out

thermal fluctuations and keeping the align-

ment of the layers intact. More discussion will

be provided on this issue throughout the rest

of the paper.

3.2. Compatibilized Systems

With the compatibilizer molecules present in

the system and the silicate layers treated, the

shear flow is expected to orient the layers and

separate them from one another.[2,4,7,21] In

the equilibrium run prior to the startup of the

flow simulations, the galleries opened up to

some extent and the interlayer distance was

increased. Figure 8 demonstrates the evolutions of the

microstructure under flow for compatibilized systems. In

the frames, the flow is defined byVx"Gz, and the beads are

allowed to go out and come back inside the simulation

box through the application of periodic boundary con-

ditions. In this way, the separation of the layers could

be visualized more easily. As anticipated, the layers are

separated to a higher extent. At high shear-rates the

layers disperse along the flow direction while all of them

almost keep their surface normal to the velocity gradient

Figure 7. The evolution of the shear stress with simulation time in uncompatibilized systems; The stress plots are shown in (a) for the flow
Vz"Gy and shear-rate of 0.148, and in (b) for various systems. The trajectories of the layered silicate are shown on the stress plot in (a).

Figure 8. Trajectories of the layered silicate in DPD time at different shear-rates
in compatibilized systems. The flow is defined by Vx"Gz and the shear-rate of
each row is given in the figure. The beads are allowed to go out and come back in
the simulation box by the application of the periodic boundary conditions.
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direction. Evidently, the microstructure changes from

tightly packed oriented layers to the exfoliated oriented

layers under the flow by surface treatment of the silicate

layers and introduction of the compatibilizer molecules.

The layers are expanded to some extent in comparison

with uncompatibilized systems. This suggests improved

thermodynamic affinity between the components due to

the lower repulsion coefficients.[62,65] It should be noted

that high exfoliation degrees are only achieved at high

shear-rates. The reason is that at high shear-rates, the

larger velocity difference between the adjacent layers

results in increased exfoliation degrees along

the flow direction.

To further investigate the microstructure,

pair distribution functions in different planes

are plotted in Figure 9. It is clear that the layers

align with their surfaces almost normal to the

velocity gradient direction as in the uncompa-

tibilized systems. The results approve this idea

that the orientation process occurs more stably

in compatibilized systems, even though it may

not complete in the simulation time at low

shear-rates. The slowed-down kinetics of ori-

entation points to the increased resistance

against translation and rotation of the silicate

layers. To explain this observation, shear stress

of the systems is plotted against time in

Figure 10. A sudden increase in the stress is

apparent when the layers start to align in

respect to the applied shear flow. According to

the trajectories, the stress decays gradually to

complete the orientation of compatibilized

systems as a sign of reaching a stable microstructure. By

comparing the stress profiles in the uncompatibilized and

compatibilized systems, one might ascribe the significant

increase in the stress to the larger interfacial area of the

silicate in the compatibilized systems. For tightly packed

silicate layers, matrix molecules and silicate can interact

through two effective interfaces while this number

increases to six as a result of exfoliation. Therefore, more

resistance against the silicate mobility is expected from

the matrix molecules. In order to investigate this hypoth-

esis, uncompatibilized and compatibilized single-layered

Figure 9. Pair distribution function in orthogonal planes at different time and
shear-rates in compatibilized systems. The flow is defined by Vx"Gz. The shear-
rates and times are given in the figure. The time of each row is shown in front
of it.

Figure 10. The evolution of the shear stress with simulation time in compatibilized systems; The stress plots are shown in (a) for the flow
Vz"Gy and shear-rate of 0.148, and in (b) for various systems. The trajectories of the layered silicate are shown on the stress plot in (a).
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silicate nanocomposites were simulated with the same

conditionsas theirmultilayer counterparts. In thisway, one

makes sure that the effective interface is the same in both

systems. The stress profiles of the corresponding systems

are shown in Figure 11. To compare the results for all

systems, the maximum shear stress values in each setup is

plotted in Figure 12. It includes results of all flowdirections,

applied shear-rates, single- and three-layered silicate

simulations. One can see that the maximum stress values

reachedare reduced in the single-layered silicate samples in

all systems. However, there is still a pronouncedmaximum

in the stress values of compatibilized systems with

orientation while it is not distinct in the uncompatibilized

systems (see Figure 11; notice the different y-scales).

Consequently, while the interacting interface of the silicate

is of critical importance in the development of resisting

forces against orientation, it is not for sure the only

reason for such a sharp increase in stress. Otherwise,

the uncompatibilized and compatibilized systems with a

single-layered silicate should almost behave in the same

way.

With a closer look at the interface of the simulated

nanocomposites, one notices the close contacts of polymer

and compatibilizer beads with the silicate beads in the

compatibilized systems, see Figure 13. Such contacts

are significantly reduced in the uncompatibilized

Figure 11. The evolution of the shear stress with simulation time in (a) uncompatibilized and (b) compatibilized systems for different flows.
A single-layered silicate is used in these simulations.

Figure 12. The maximum shear stress values for different
simulation setups in uncompatibilized and compatibilized
systems. Single- and three-layered silicate simulations are
included for comparison. Note that some data points are
overlapping.

Figure 13. A snapshot of the interface of the layered silicate in
(a) uncompatibilized and (b) compatibilized systems. The silicate,
compatibilizer, and polymer beads are shown in gray, red, and
green, respectively. The bonds are not shown for clarity.
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nanocomposites due to the higher repulsion parameters

present.[2,62,63] Themore contacts occur at the interface, the

more energy is dissipated due to the friction. Such energy-

consuming contacts increase the overall viscosity of the

nanocomposites. Consequently, it requires higher stresses

and longer times to complete the orientation as evidenced

by results. In Figure 14, the number of bead–bead contacts

between polymer–silicate, compatibilizer–silicate, and the

sum of these contacts are plotted for the uncompatibilized

and compatibilized systems of a single-layered silicate PLN.

The contact between two beads is defined when their

centers are distanced equal or shorter than the cutoff radius

from each other. The results clearly show that the total

number of contacts at the silicate interface for the

compatibilized system is more than two times of the

contacts in the uncompatibilized counterpart. Moreover,

one can also observe that the compatibilizer beads

gradually replace the polymer beads at the interface of

silicate layers. This phenomenon is simply a result of the

lower repulsion parameter between silicate and compati-

bilizer beads. These contacts contribute tomore than75%of

total contacts leading to increased friction forces at the

interface. Such higher dissipated energy values should be

provided by the shear forces as it is seen in the shear stress

data. Therefore, the significant increase in the shear stress

with theorientationprogress in compatibilized systems is a

result of both the available interacting interface and

number of contacts between the silicate and matrix beads

(including the compatibilizer) through such interfaces.

In order to provide a comparative analysis of the

orientation state with time for uncompatibilized and

compatibilized systems, the average orientation angles of

the systems were calculated. For this purpose, the

orientation angle was calculated as the complement of

the angle between the normal vector of the silicate layer

and the flow direction. For a three-dimensional micro-

structure comparison, the complement of the angle

between the normal vector of the silicate layer and the

velocity gradient direction was also evaluated. The results

are shown in Figure 15 and 16. The final microstructure of

the compatibilized systems under flows with different

directions show the preferred orientation of the silicate

layers according to the flow direction in all setups. The

oscillations in the orientation angle are obvious in

Figure 14. Number of contacts between the beads of (a) polymer-
layered silicate, (b) compatibilizer-layered silicate, and (c) the
total contacts in uncompatibilized (filled blue markers) and
compatibilized (empty red markers) systems. A single-layered
silicate is used in these calculations.

Figure 15. The evolution of the orientation angle (filled bluemarkers) and the angle with the velocity gradient direction (empty redmarkers)
in uncompatibilized systems. The flow type is Vx"Gz in (a, d), Vx"Gy in (b, e), and Vz"Gy in (c, g). The applied shear-rate is 0.001 in (a, b, c)
and 0.148 in (d, e, g).
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uncompatibilized systems, both at low and high shear-

rates.However, theyare significantly reducedby increasing

the applied shear-rate. In compatibilized systems, the

evolution of orientation angle is more stable in all shear-

rates. One might explain, it as a result of the increased

Pe number due to higher shear stress values.[68] This

increase is also responsible for incomplete orientation in

some samples at low shear-rates during the time scope of

the simulation. At high shear-rates, however, the orienta-

tion process is stable and reaches the completely oriented

microstructure within the simulation time. The results

clearly support that the stability of the orientation process

increases in compatibilized systemsandhigher shear-rates.

4. Conclusion

The orientation of layered silicate particles in polymer

melts under different shearflowswas studiedutilizingDPD

method. Ananisometric semiflexibile three-layered silicate

particle was inserted in a simulation box filled with

polymer chains. The system was imposed to shear flows

with different directions as well as shear-rates. The

trajectorieswere recorded in order to follow the orientation

process with time. Moreover, pair distribution functions

were calculated in three orthogonal planes in order to

provide a three-dimensional view over the orientation

process. Regardless of the applied flow direction, it was

shown that the layers rearrange themselves so that their

surfaceswouldbenormal to thevelocity gradient direction.

Some deviations from a completely oriented microstruc-

ture were evidenced at low shear-rates. It was ascribed to

the local flow heterogeneities as well as the small Pe

number at low shear-rates. The comparison of the time-

averaged velocitymagnitude profiles in the systems at low

and high shear-rates proved the existence of such hetero-

geneities. Furthermore, the small Pe number at low shear-

rates was found responsible for the dominating thermal

fluctuations disturbing the completely oriented micro-

structure. These observationswere in good agreementwith

previous publications.

The effects of silicate surface treatment and compatibi-

lizing molecules were studied by introducing compatibil-

izer molecules and modifying the repulsion parameters

between the beads. Higher exfoliation degrees were

evidenced in such compatibilized systems at high shear-

rates while none was seen in uncompatibilized counter-

parts. In compatibilized systems, the pair distribution

functions and trajectory data showed that the silicate

layers alignperpendicular to thevelocity gradient direction

the same as the uncompatibilized systems. However, it

was demonstrated that the orientation process becomes

more stable in these systems even at low shear-rates. The

calculations of the orientation angle as well as the angle

with the velocity gradient direction also showed this

behavior.

The shear stress was plotted with time for uncompati-

bilized and compatibilized systems. The stress profile falls

in numerical uncertainties in uncompatibilized systems

while it shows a characteristic overshoot in compatibilized

systems. This overshoot was shown to be a result of (i) the

large interfaces between the silicate layers and the

matrix due to the exfoliation and (ii) the increased number

of bead–bead contacts between the matrix and the layers

leading to higher energy dissipations. This idea also

explains why the orientation process becomesmore stable

in compatibilized systems even at low shear-rates. In

compatibilized systems, higher energy dissipations lead to

an increase in the overall viscosity (as reflected in the shear

stress data) and therefore Pe number. The contribution of

Figure 16. The evolution of the orientation angle (filled bluemarkers) and the angle with the velocity gradient direction (empty redmarkers)
in compatibilized systems. The flow type is Vx"Gz in (a, d), Vx"Gy in (b, e), and Vz"Gy in (c, g). The applied shear-rate is 0.001 in (a, b, c) and
0.148 in (d, e, g).
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thermal fluctuations to the overall response of the system

becomes less significant compared with the shear stresses.

Thus, the orientation process is less controlled by such

distortions.
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A detailed system was constructed and simulated in order to verify the coarse-graining 

approach of the silicate layers in the compatibilized systems. Aliphatic surfactant tails were 

attached to one in every five silicate beads on both sides of the layers. Each surfactant 

molecule was composed of 2 beads connected with harmonic springs of with a spring constant 

of 50, see Figure 1. The system was allowed to equilibrate before the flow starts. 

 

Figure 1. A snapshot of a compatibilized system, with the 3-layered silicate in the center of 

the box. The polymer and compatibilizer molecules are not shown to preserve clarity. The 

aliphatic surfactants are shown in yellow. 
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The repulsion parameters between the pairs are all taken from the works of Pereira et al.
[1]

 and 

Scocchi et al.
[2]

 to make sure that the simulation results are in tally with previous works. Table 

1 summarizes the repulsion parameters used. A shear-rate of 0.148 was applied in the 

simulations. The shear flows were defined by their velocity and velocity gradient directions. 

For instance, a shear flow defined by Vx-Gy is representative of a flow with the velocity in x-

direction and the velocity gradient in y-direction. All other simulation parameters were the 

same as the original paper. 

Table 1. The Maximum Repulsion Parameters Used to Characterize the Compatibilized PLN 

Systems 

 Polymer 
Layered 

Silicate 
Compatibilizer Surfactant 

Polymer 25 33 32 32.5 

Layered 

Silicate 
33 15 30.7 

30.7 

Compatibilizer 32 30.7 32 32 

Surfactant 32.5 30.7 32 32 

 

The orientation process was monitored by calculating the average orientation angle as well as 

the average angle with the velocity gradient direction. The results are shown in Figure 2. The 

simulation results from our proposed coarse-graining approach used in the paper are also 

included for comparison. One can see that there is a good agreement between the evolutions 

of orientation in both setups. The results encourage the coarse-graining approach utilized in 

this study. The possibility to design both uncompatibilized and compatibilized systems with 

the same bead number density is a critical advantage of the proposed coarse-grained system. 

This fact makes it much easier to compare the stress levels in these two types of systems. 

Consequently, we have decided to perform the simulations on the coarse-grained systems. 
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Figure 2. The evolution of the orientation angle (a,b,c) and the angle with the velocity 

gradient direction (d,e,g) in compatibilized systems. The flow type is Vx-Gz in (a,d), Vx-Gy in 

(b,e), and Vz-Gy in (c,g). The applied shear-rate is 0.148. 
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 Dissipative particle dynamics (DPD) models of orientation of weakly-interacting silicate parti-
cles in a polymer matrix are presented. To examine the DPD models, the evolution of orienta-
tion under shear fl ow is compared with the predictions of the standard orientation models, 
namely, the Folgar–Tucker (FT) and the strain reduction factor (SRF) models. While the orien-
tation patterns are the same in all models, the slow orientation kinetics observed in previous 
experiments is only predicted in the DPD and SRF models. Since the coeffi cients of the SRF 
model are in good agreement with the experiments, the good tally between the DPD and SRF 
models supports the capability of DPD to successfully simulate the orientation process. The 
orientation in a large cell constructed from unit cells with 
various averaged initial orientation angles is evaluated from 
evolutions in the unit cells based on the affi ne deformation 
assumption. The good agreement between such calculations 
and SRF model predictions supports that the affi ne deforma-
tion assumption in the large cell is reasonable. It is argued 
that the nonaffi ne deformation originated from the particle-
based nature of DPD models at the lower scale could be com-
bined with the affi ne deformation at the upper scale to yield 
appropriate estimations of the orientation state. 

 Dissipative Particle Dynamics Models of 

Orientation of Weakly-Interacting Anisometric 

Silicate Particles in Polymer Melts under 

Shear Flow: Comparison with the Standard 

Orientation Models 

   Ali    Gooneie     ,   *        Stephan    Schuschnigg     ,        Clemens    Holzer   

  A. Gooneie, S. Schuschnigg, Prof. C. Holzer 
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 Department of Polymer Engineering and Science  

  Montanuniversität Leoben

    Otto Glöckel-Straße 2,    8700    Leoben  ,   Austria  

E-mail:   ali.gooneie@unileoben.ac.at   

  1.     Introduction 

 It is a well-known fact that the local orientation of ani-

sometric particles determines the local mechanical and 

physical properties in a reinforced composite material. [ 1–4 ]  

Thus, any useful prediction of the structural performance 

or dimensional accuracy of the fi nal part necessitates a 

precise prediction of the fl ow-induced particle orientation. 

Consequently, it is of great signifi cance to be able to predict 

the orientation patterns that arise during processing of 

such complex materials. For this reason, several particle 

orientation models have been developed and combined 

with traditional continuum calculations to simulate injec-

tion molding, [ 5–8 ]  compression molding, [ 9–11 ]  and extrusion 

processes. [ 12 ]  

 The standard orientation model is based on Jeffery’s 

equation for the motion of an ellipsoid in an infi nite 

Macromol. Theory Simul. 2016, 25, 287−302
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Newtonian matrix. [ 13 ]  Folgar and Tucker [ 14 ]  incorpo-

rated this model to represent fl ow effects and added an 

isotropic rotary diffusion term to represent fi ber–fi ber 

interactions. The rotary diffusion term results in devia-

tions from a perfect alignment at steady state which 

is consistent with experimental results. A widely used 

method to represent the average orientation state is 

with the second- and fourth-order orientation tensors 

developed by Advani and Tucker. [ 15 ]  These tensors are 

defi ned as the second and fourth moments of the ori-

entation distribution function. The resulting model 

has been utilized to predict the fl ow-induced orienta-

tion of various anisometric particles including short 

fi bers, [ 5,16 ]  layered silicates, [ 17–19 ]  and carbon nano-

tubes. [ 20 ]  Other authors have also investigated different 

approaches such as nonequilibrium thermodynamics 

in order to derive constitutive equations that could 

describe polymer nanocomposites with nanofi bers and 

nanosheets. [ 21–24 ]  

 The Folgar–Tucker (FT) model has been later modifi ed 

by Huynh [ 25 ]  to account for the reduced strain in con-

centrated suspensions by the introduction of a strain 

reduction factor (SRF). The slower orientation kinetics 

was also manifested by Sepehr et al. [ 26 ]  who introduced 

a slip coeffi cient to slow down the rate of particle ori-

entation. In order to objectively account for the reduced 

strain during orientation in any coordinates system, 

Wang et al. [ 27 ]  developed the so-called reduced-strain 

closure (RSC) model based on the idea of reducing the 

growth rates of the eigenvalues of the orientation tensor 

while using the same expressions for eigenvector rota-

tion. They show that their model successfully predicts 

the transient shear stress data in a shear-reversal experi-

ment for a polybutylene terephthalate resin fi lled with 

30 wt% glass fi bers. 

 Although these models have proven to be effi cient in 

the prediction of particle orientation, they cannot pro-

vide a detailed description of the system microstructure 

but only an average evaluation. Detailed computer simu-

lations have shown great potential to model complex 

phenomena at an atomistic level. Benefi ting from the 

vast capabilities of such methods, Rissanou et al. [ 28 ]  per-

formed detailed atomistic molecular dynamics (MD) sim-

ulations of graphene-based polyethylene nanocompos-

ites. They found that chain segmental dynamics slowed 

down at the polyethylene/graphene interface by a factor 

of at least fi ve compared with the bulk. Indeed, there are 

many instances like this in the literature. Various systems 

have been studied before by these approaches including 

unentangled and entangled polymer melts, [ 29–36 ]  polymer 

solutions, [ 37 ]  suspensions, [ 38–43 ]  etc. Anderson et al. [ 44 ]  

and Sinsawat et al. [ 45 ]  utilized coarse-grained molec-

ular dynamics (CGMD) to study the microstructure for-

mation in polymer-layered silicate nanocomposites. 

Moreover, shear-induced microstructure evolutions 

have been treated before in such frameworks including 

CGMD and dissipative particle dynamics (DPD) methods. 

For instance, Kalra et al. [ 46 ]  utilized CGMD to study how 

shear fl ow affects the kinetics of particle aggregation at 

the initial stages in systems with polymers of different 

chain lengths. Meng et al. [ 47 ]  incorporated DPD to inves-

tigate the rheology of surfactant solutions. They found 

that under shear fl ow the worm-like micelles formed by 

surfactant molecules are fi rst oriented along the fl ow 

direction and then are broken up into small spherical 

micelles. Also, the rheological properties of colloidal sus-

pensions of spheres, rods, and disks were investigated by 

Boek et al. [ 39 ]  utilizing DPD. These works all approve that 

the detailed simulation techniques are able to provide 

fresh insights into complex systems. 

 Since it was proposed, DPD has received tremendous 

attention from the research community due to its coarse-

grained nature and the fact that it incorporates soft dis-

sipative potentials. [ 48,49 ]  Attempts have been made to 

improve DPD to represent a more accurate physical model 

of polymer chains, forces of the DPD particles, and even 

the applied shear fl ow. Some reports are briefl y noted 

here. Yamanoi et al. [ 50 ]  introduced entanglement forces 

instead of conservative forces and were able to reproduce 

both static and dynamic properties of linear polymer sys-

tems. Pan et al. [ 40 ]  divided the dissipative forces into cen-

tral and shear components which allowed them to obtain 

the correct hydrodynamics in the study of Brownian col-

loidal suspensions. Fedosov et al. [ 51 ]  used the reverse 

Poiseuille fl ow in order to investigate the steady shear 

rheology of polymer chains. It was shown that the reverse 

Poiseuille fl ow yields more complete rheograms than 

those computed from conventional Lees–Edwards Cou-

ette fl ow particularly near the zero-shear-rate plateaus. 

In spite of these attempts, DPD still suffers from the 

intrinsic instabilities at very low or very high shear-rates 

and needs further improvements. [ 51,52 ]  In order to capture 

reptational dynamics of long polymer chains [ 53 ]  in DPD, 

Nikunen et al. [ 32 ]  used simple topological constraints to 

prevent bond crossings. This way scalings of the longest 

relaxation time and the diffusion coeffi cient with the 

chain length were predicted correctly. In a similar study, 

Sirk et al. [ 54 ]  introduced the modifi ed segmental repulsive 

potential to prevent unphysical bond crossings in DPD 

polymer models. Their method was shown to be able to 

capture entanglements in the mechanical behavior of 

polymers. 

 Various aspects of DPD simulations have been 

addressed in the literature. A few instances are reviewed 

here. For simulating fl ows at extreme dissipation rates, 

Chatterjee [ 55 ]  showed that Lees–Edwards boundary con-

dition in conjunction with the velocity-dependent DPD 

thermostat could result in nonphysical jumps in the 
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velocity profi les. Consequently, a modifi ed version of 

this boundary condition was introduced to correct this 

error unconditionally. Thermodynamic, hydrodynamic, 

and rheological responses of model DPD fl uids under 

extreme shears were simulated utilizing the modifi ed 

Lees–Edwards boundary condition. [ 56,57 ]  The results sug-

gest that this modifi cation facilitates momentum fl ow 

from shear boundaries to the system bulk. However, 

there exist upper thresholds for imposing shear on the 

system beyond which temperature cannot be controlled 

properly and nonphysical jumps reappear. A number 

of studies are devoted to evaluate different thermo-

stats in nonequilibrium DPD simulations. For instance, 

Pastorino et al. [ 58 ]  characterized the Langevin and DPD 

thermostats in a broad range of nonequilibrium DPD 

simulations of polymeric systems. Khani et al. [ 59 ]  tested 

the Lowe–Andersen thermostat [ 60,61 ]  as an alternative 

to the DPD thermostat in the mesoscopic simulation of 

entangled polymers. These studies conclude that great 

care is needed in nonequilibrium DPD simulations of 

soft matter systems in order to ensure that the simula-

tions are free of artifacts due to an inappropriate choice 

of the thermostat. The systematic coarse-graining proce-

dure in DPD models has also been treated in the works of 

Fu et al. [ 62,63 ]  who evaluate the limits and conditions of 

coarse-graining based on thermodynamic and transport 

properties. 

 In a recent study, we incorporated DPD models to pre-

dict the orientation of semifl exible-layered silicate par-

ticles in uncompatibilized and compatibilized polymer 

melts under various shear fl ows. [ 52 ]  The model could 

successfully capture the orientation of such anisometric 

particles. It was shown that regardless of the applied 

fl ow direction, the layered silicates would rearrange 

themselves so that their surfaces would be normal to 

the velocity gradient direction. This was noted to be in 

agreement with certain experimental results. [ 64,65 ]  Here, 

we aim to test the creditability of such models by com-

parison with the widely-used FT and SRF models. To do 

this, the development of orientation is modeled using 

both methods. Two cases are considered: (i) a unit cell 

including four silicate particles embedded in a polymer 

matrix and (ii) an accumulation of such unit cells in a 

large cell with various initial orientation states. The 

details are explained in Section  2 . It will be shown that 

the FT and SRF models with coeffi cients either derived 

from or close to previous experimental results are in 

tally with the DPD simulations thus confi rming their 

capability. The large cell is then modeled with the affi ne 

deformation assumption which is again validated by 

the FT and SRF models. It is argued that this assump-

tion could provide the opportunity of a multiscale data 

transfer in materials with such weakly-interacting 

particles.  

  2.     Theory 

  2.1.     The Standard Orientation Model 

 The standard orientation model is based on Jeffery’s equa-

tion for the motion of an ellipsoid. [ 13 ]  This model is appli-

cable to dilute suspensions and has been used in most 

orientation models to account for the hydrodynamic con-

tributions in orientation. If the unit vector directed along 

the fi ber axis,  p , is used to denote the fi ber orientation, the 

time derivative of this vector,  ṗ , following the particle can 

be written as

 = + – :p W p D p D pppλ ( )⋅ ⋅
•

 
 (1) 

 where =
1

2
( – )W L LT  is the vorticity tensor and =

1

2
( + )D L LT  

is the rate-of-deformation tensor.  L  represents the velocity 

gradient tensor with components 
∂
∂

L
v

x
=ij

i

j

 where  v i   is the 

component of velocity in the  x j   direction. λ r r=( – 1)/ ( + 1)2 2  

is a constant that depends on the particle aspect ratio,  r . 

For prolate and oblate spheroids of large aspect ratio λ  is 1 

and −1, respectively. In Jeffery’s model, the fi rst term corre-

sponds to the fi ber rotation due to the vorticity of the fl ow. 

The second term represents a rotation of the fi ber axis 

toward the direction of maximum elongation rate. 

 Orientation calculations often use the second- and 

fourth-order orientation tensors, AA2  and AA4, respectively, 

introduced by Advani and Tucker. [ 15 ]  These tensors are 

given by

 
= ( ) d2A pp p pr ψ

 
 (2)  

 

= ( ) d4A pppp p pr ψ
 
 (3)   

 Here, ψ(p) is the probability density function for fi ber 

orientation and the integral is performed over all orienta-

tion states. In order to model concentrated suspensions of 

non-Brownian particles, Folgar and Tucker [ 14 ]  added the 

diffusion term to the Jeffery’s equation. The FT model for 

the orientation change in terms of the orientation tensors 

can be written as

 A W A A W D A A D A D I A+ ( + 2 : ) + 2C ( 3 )2 4 I ɺλ γ= ⋅ − ⋅ ⋅ ⋅ − −
•

 
 (4)   

 In this equation,  Ȧ  2  is the material derivative of the 

second-order orientation tensor. CI  is a phenomenolo-

gical coeffi cient called the interaction coeffi cient which 

models the randomization effect of interactions between 

particles. D D(2 : )
1
2ɺγ =  is the scalar magnitude of  D  typi-

cally known as the shear-rate in simple shear fl ows. The 

last term in this equation represents an isotropic rotary 

diffusion which models the effect of particle–particle 
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interactions on the orientation. A consequence of adding 

this term to the orientation model is that the steady ori-

entation state for large strains does not necessarily depict 

a perfect alignment. 

 It has been shown that the kinetics of orientation in 

materials with anisometric particles such as fi bers or lay-

ered silicates is signifi cantly slower than FT model pre-

dicts. [ 26 ]  To overcome this problem and provide a better 

prediction for the experimental results, a simple strategy 

is to modify the right-hand side of Equation  ( 4)   by some 

factor  k  < 1 [ 25 ] 

 A W A A W D A A D A D I Ak C= [ + ( + 2 : ) + 2 ( 3 )]2 4 I ɺλ γ⋅ − ⋅ ⋅ ⋅ − −
•

  (5)   

 In this model, the 1/ k  is often referred to as the “strain 

reduction factor.” The idea behind this model, known as 

the SRF model, was also proved by the work of Sepehr 

et al. [ 26 ]  who proposed the slip coeffi cient  k  to empirically 

modify the FT model. They suggest that the shear strain 

applied on the fi bers γs  after time  t  is

 ɺγ γ=k ts   (6)   

 For short fi bers in a polypropylene matrix, they report 

slip coeffi cient values in the range of 0.33–0.38. It has 

been suggested that the SRF model can be safely used for 

the prediction of orientation in simple fl ows like in this 

study. 

 On a mesoscopic level, Rajabian et al. [ 23,24,66 ]  developed 

a rheological model for ellipsoid particles in viscoelastic 

polymeric fl uids by adding a dissipation function to the 

Jeffery’s model. They described such dissipations as a 

function of the overall free energy with respect to the 

conformation tensors A2
ΦΦ  and  Φ C  . The conformation ten-

sors are further formulated utilizing two second-order 

symmetric structure tensors AA2 and  C , i.e., the orientation 

tensor of the particles (same as Equation  ( 2)   by Advani 

and Tucker [ 15 ] ) and the tensor describing the extension 

of polymer molecules, respectively. The evolutions of the 

components of these structure tensors with time are then 

given by

 

A = A W W A (A D +D A 2D A )

2
3

(D D ) (A A )
4
9

(D D ) A

ij ik kj ik kj ik kj ik kj kl ijk

lm ml il A lj A lm ml ij

l

1
2

p

1
2

p Alj il kk

ɺ λ− + −

− Λ Φ + Φ + Λ Φ
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 The components of the conformation tensors are
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 In these equations, 
φ

n
d l

=
4

p 2
 and φ ρ

n
N

M
=(1 – )m

0

w

 where 

φ ,  l , and  d  are the volume fraction, length, and diameter of 

the particles, respectively. Mw  and ρ  are the molecular 

weight and density of the polymer and N0  is the Avoga-

dro’s number. Bpm  and Bpp  are phenomenological param-

eters determined by experiments which denote the inter-

actions between particle–macromolecule and particle–

particle pairs, respectively. Λ p  and Λ m  are the mobility 

parameters for the particles and macromolecules. The 

parameter  b  is defi ned by b
HR

k T
=

2 0
2

B

 where  H  is the spring 

constant and R0  is the maximum spring length for the 

modeled polymer chains utilizing the fi nitely extensible 

nonlinear elastic springs. Here, kB  is the Boltzmann’s 

constant and  T  is the absolute temperature. In the evolu-

tion equations, the initial conditions are the equilibrium 

solutions obtained by solving 0Cij
Φ =  and 0Aij

Φ = . The 

governing equations of this mesoscopic model (MM) can 

be readily solved in the case of an imposed fl ow. More-

over, the model is adaptable to nano-sized particles con-

sidering the fact that the model addresses the particle–

macromolecule interactions in both the free energy and 

mobility coeffi cients. 

 In order to solve the evolution equations of AA2  

according to any of these models, a closure approxima-

tion is necessary to calculate  A  4 . Kagarise et al. [ 18 ]  have 

compared various closure approximations, i.e., quadratic, 

hybrid, and linear closure approximations, for nanorod 

(carbon nanofi bers) and nanoplatelet (nanoclays) polymer 

nanocomposites in a range of 0.01–10 s −1  of shear-rates. 

Their results proved that the quadratic closure approxi-

mation predicts the steady-state viscosity with the least 

error. Therefore, the quadratic closure approximation was 

also used in this work. [ 15 ]   

  2.2.     Simulation Details 

 DPD was introduced to simulate the hydrodynamic 

behavior of fl uids and colloidal suspensions. [ 48,49 ]  In DPD, 

each elementary unit called “bead” represents several 

atoms or molecules. The dynamics of these beads is gov-

erned by Newton’s law supplemented by friction and 

random forces to provide the thermostat of the system. 

Two beads at positions  r   i   and  r   j   in space with a separation 

vector of  r   ij   =  r   i   –  r   j   and a unit vector of ɵ /| |ij ij ijr r r=  experi-

ence three central, additive forces: the conservative force

 

ɵF a
r

r
1 ,ij ij ij

ij
ij

C

c

rχ= −




  

 (11) 
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 the dissipative force

 
ɵ ɵγ ω= − − ⋅F r [( ) ] ,ij ij ij i j ij ij

D D v v r r
  (12) 

 and the random force

 
rF rij ij ij ij ij

R R ɵσ ω ξ=
 
 (13) 

 in which  r ij   is the distance between the beads  i  and  j .  χ ij   

equals 1 for beads distanced less than the force cutoff 

radius  r  c  and equals 0 otherwise.  v   i   and  v   j   are the velocity 

vectors of the  i th and  j th beads, respectively.  ζ ij   is a 

Gaussian random number with zero mean and unit vari-

ance. aij , ijγ , and ijσ  are the maximum repulsion, the fric-

tion coeffi cient, and the noise amplitude between bead  i  

and bead  j , respectively. ωD  and ωR  are the  r ij   -dependent 

weight functions. Utilizing the fl uctuation–dissipation 

theorem, [ 67 ]  one can write 

 

r r
r

r
= = 1 –ij ij ij

ijD R
2

c

2

ω ω χ( ) ( ) 




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 (14)  

 
σ γ k T=2ij ij

2
B  

 (15)   

 Mass, length, and energy are in units of mass of a 

single bead,  r  c , and  k  B   T , respectively. All of these variables 

are set to unity in our simulations. The volume fraction 

of the layered silicates in the simulations is defi ned as 

φ =
n

n + n
ls

ls p

 where nls  and np  are the number of layered 

silicate and polymer beads, respectively. In the simula-

tions, DPD thermostat is utilized to control the tempera-

ture. It should be emphasized that in this paper all of 

the values are in DPD units unless noted otherwise. We 

simulate a system consisting of polymer chains and sili-

cate layers. The maximum repulsion parameter between 

polymer–polymer was set to 25. [ 49 ]  For polymer–silicate 

and silicate–silicate pairs, the maximum repulsions were 

taken from the works of Scocchi et al. [ 68 ]  and Pereira 

et al. [ 69 ]  who used the rescaled binding and non-binding 

molecular dynamics energies to determine the self and 

mixed DPD energies in a multiscale strategy. In this 

way, they were able to predict the structure of a number 

of polymer–clay nanocomposites which were in excel-

lent agreement with previous experimental and atom-

istic simulation results. These values were 33 and 15 for 

polymer–silicate and silicate–silicate, respectively. We 

showed before that these values can provide an accurate 

representation of the orientation in such systems. [ 52 ]  The 

friction coeffi cients were 5.6 for interactions between 

polymer–silicate and silicate–silicate pairs, and 4.5 for 

polymer–polymer pairs. [ 38,51 ,   70–72 ]  

 The polymer molecules were modeled as linear fl ex-

ible chains of 50 beads connected together by harmonic 

springs with a spring constant of 50. It has been shown 

before by Nikunen et al. [ 32 ]  that for short polymer chains 

like here the standard DPD formulation is accurate enough 

to perfectly capture the dynamics of the polymer chains, 

i.e., the Rouse-like dynamics. [ 73 ]  Therefore, the standard 

DPD model is used to model the polymers. It is noteworthy 

that the dynamics of the comparatively larger silicate 

particles deviate from the Rouse behavior and therefore 

underline the role of hydrodynamic interactions. This 

issue will be dealt with later in the paper. A silicate par-

ticle is modeled with a 21 × 21 bead connected together 

by harmonic springs with a spring constant of 500 [ 70 ]  and 

an equilibrium length of 0.25 which yields layers with 

an equilibrium length of 5. The changes in the length are 

limited between 5 and 6 under the fl ow conditions con-

sidering the strong spring constant used to describe the 

bonds of the layered silicates. Moreover, harmonic poten-

tials are used to describe the bond angles which allow for 

the precise representation of the semi-fl exibility of silicate 

layers. The coeffi cient of harmonic bond angles was set to 

1000 with respect to certain CGMD simulations. [ 44,45 ]  

 Four silicate layers were inserted inside a cube fi lled 

with equilibrated polymer chains. The chains that were 

completely or partially crossing with the silicate layers 

were all removed from the system to avoid unphysical ini-

tial confi gurations. This led to a system with 25 polymer 

chains surrounding the silicate layers. The bead number 

density of the resulting system was 3. The silicate layers 

were all parallel to each other in the initial confi gura-

tion setups. Figure  1  shows the simulated system. This 

system will be referred to as the “unit cell” in the rest of 

the paper. The system was equilibrated for 2 × 10 5  steps 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 1.    Snapshot of the system with four semifl exible silicate 
particles in the box. The polymer chains are transparent to pre-
serve clarity.
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before running the simulations. A time step of 0.001 was 

used in the simulations. This time step is rather small 

compared to what is often expected in DPD simulations. 

There are two main reasons for this choice: (i) This small 

time step allows us to export trajectory data of the par-

ticles at short intervals during the simulations. In this 

way, we were able to compare the simulation results with 

the standard orientation models more carefully, espe-

cially at the small strains where the orientation kinetics 

shows a pronounced transition. (ii) The incorporation 

of semifl exibility in the layered silicates necessitates 

smaller time steps to be taken in order to preserve the 

stability of the numerical procedure. It should be noted 

that such small time steps can be found in other DPD sim-

ulations too. For instance, Pan et al. [ 40 ]  used a time step 

between 0.0002 and 0.0005 in their simulations. Another 

example is the work of Fedosov et al. [ 51 ]  who used a time 

step of 0.005. The total number of steps was 10 6  to ensure 

reaching the steady state.  

 The computational domain was set to 10 × 10 × 10 in 

DPD units. Recently, Moreira et al. [ 74 ]  have shown that 

the box-size effects can be safely ignored for polymer sys-

tems if the gyration radius of the chains is smaller than 

or equal to the box size. In a recent paper, [ 75 ]  the gyration 

radius of polymer chains with 50 beads in each chain was 

simulated. According to the results, the gyration radius 

increases to values larger than 10 only at applied shear 

strains, γ , larger than 32. Therefore, it is safe to assume 

that the box-size effects are negligible for polymers in the 

strains below 30 used in this study. However, due to the 

presence of relatively larger silicate layers in the current 

system, simulations were also carried out in larger boxes 

of 20 × 20 × 20 and 30 × 30 × 30 size to study the box-size 

effects. The Less–Edwards boundary condition was incor-

porated to shear the system in different directions. The 

system was sheared either parallel or normal to the ini-

tial orientation of the silicate layers. The shear-rate was 

set to 0.1 (in DPD units) in all simulations. This value was 

selected to avoid thermal fl uctuations that could distort 

the velocity profi le at very low shear-rates, and the over-

whelming of the thermostat at very high shear-rates due 

to the energy dissipations. [ 51,52 ]  

 The orientation state of a silicate layer at a time step 

was modeled utilizing the average normal unit vector  p  to 

the layer. Knowing  p , one can fi nd the average angle of the 

layer with the fl ow direction, i.e., the orientation angle θ
. The orientation state in the shear plane was used for the 

evaluation of orientation state in different models in this 

work. Previous simulations as well as experiments have 

shown that the orientation state of such particles can be 

well described in the shear plane and only minor oscil-

lations are observed along the third dimension. [ 52,64,65 ]  

Therefore, the unit vector  p  in the shear plane with 

components  p i   and  p j   was used to model the orientation 

state. The orientation tensor was defi ned in 2D after Fan 

and Advani [ 76 ]  as π θ






p =sin

2
+1  and 

π θ






p =cos

2
+2 . The 

components of the second-order orientation tensor for a 

system composed of  N  particles are

 

A
N

p pA =
1

ij i
k

k

N

j
k

2

= 1

∑⇔
 

 (16)   

 One should note that AA2  is symmetric (A  ij   = A  ji  ) and the 

main diagonal components are normalized (A 11  + A 22  = 1). 

In order to provide a graphical representation of the orien-

tation state, the orientation ellipse was drawn. The axes 

of the ellipse are the eigenvalues of AA2  and the major 

axis of the ellipse is rotated anticlockwise equal to θ  

from the horizontal  x -axis. [ 76 ]  The major axis of the orien-

tation ellipse represents the preferred orientation of lay-

ered silicates. An elongated ellipse shows higher degree 

of alignment in the direction of the major axis, whereas a 

circle shows no particular preference of orientation. 

 In order to estimate the interaction coeffi cient CI  in FT 

and SRF models, the relationship proposed by Phan-Thien 

et al. [ 77 ]  was used. Assuming isotropic particle diffusion, 

one can write

 ɺγ=D Cr I  
 (17) 

 where Dr  is the rotational diffusivity coeffi cient. For 2D 

anisometric particles, Dr  is given by [ 65 ] 

 η
D

k T

l
=

3

32
r

B

0 p
3

 

 
(18)

   

 Here, k TB  is 1 and  l  p  is the characteristic length of the 

particles. This length equals 5 in DPD length unit in our 

simulations corresponding to the length of a silicate layer 

under fl ow. η0  is the viscosity of the suspending fl uid. 

Since the polymer chains follow the Rouse dynamics in 

this work, the Rouse model was used to estimate η0. This 

model predicts the viscosity as [ 73 ] 

 
η ξρa MN

M
=

36
0

2
0

0
2

 
 (19) 

 where  ξ  is the bead–bead friction coeffi cient and  ρ  is the 

bead number density of polymer chains which is 1.25 in 

our simulations. This value is calculated only for polymer 

chains in the simulated nanocomposite models by hypo-

thetically removing all silicate beads from the system.  a  

and  M  0  are the characteristic length (equals  r c   in the pre-

sent model systems) and the molecular weight of each 

bead which both equal 1.  M  is the molecular weight of a 

chain which is 50 here. ρN
M

0  is the number density of the 

chains in the simulation box and equals 0.025. Utilizing 

these data one fi nds C I  = 9.6 × 10 –4 . This value is in good 

agreement with the FT model predictions of experimental 
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results for polypropylene/layered silicate nanocomposites 

at a shear-rate of 0.1 s −1  with C I  ≈ 8.3 × 10 −4 . [ 17 ]  The good 

correspondence with experiments ensures that the DPD 

results are in fact compared with solid experimental 

studies rather than only phenomenological models with 

unresolved coeffi cients. Therefore, by comparing DPD 

simulations with FT and SRF models the orientation pat-

terns of DPD results are tested not only against accepted 

models but also against experimental data since the 

coeffi cients used in these models are very close to the 

experimental results. It should be noted that such a small 

particle–particle interaction coeffi cient depicts a system 

with weakly-interacting particles in which the steady ori-

entation state is expected to be very close to the perfect 

alignment of the particles. [14,15]  It will be shown that the 

DPD simulations as well as the FT and SRF models predict 

such a behavior. 

 Following our previous paper, the nondimensional 

Peclet number (Pe) is also evaluated. [ 52 ]  The corresponding 

Pe number to the applied shear-rate is 1840.8. This rather 

large value ensures that thermal fl uctuations are of 

minor signifi cance in the simulations. Moreover, it shows 

that the simulated system is experiencing shear-thinning 

effects mainly due to the orientation of its components, 

i.e., polymer chains and silicate layers. Recently, the orien-

tation and stretching of polymer chains was addressed in 

a paper. [ 75 ]  Here, we attempt to focus more on the orienta-

tion of layered silicates. Lastly, it is noteworthy that the 

error bars of the simulated data were not added to the fi g-

ures. The error bars were not noticeable since they were 

comparatively small with regard to the scales of the fi g-

ures. Therefore, they only resulted in losing the clarity of 

the fi gures considering that various data points collapse 

on each other in most of the fi gures. As a judgment call, 

we decided not to include them in the fi gures.   

  3.     Results and Discussion 

 Center of mass mean square displacements (MSD) of the 

silicate layers have been measured according to the rela-

tion 0RR RRMSD = [ (t) ( )]i i
2〈 − 〉  during the simulations in the 

20 × 20 × 20 box. In this equation, RR (t)i  and 0RR ( )i  are the 

position vectors of the center of mass of the  i th silicate 

layer at the start of the simulation and at time  t , respec-

tively. The results are plotted in Figure  2 . The dynamics of 

the silicate layers deviate from the Rouse-like dynamics 

with a relationship of ∝MSD t0.5 . [ 33,78 ]  This observation 

proves the signifi cance of surrounding constraints limiting 

the movements of the particles. Therefore, the hydrody-

namic interactions play an important role in the dynamics 

of the silicate particles in the system. This justifi es uti-

lizing a DPD model to simulate the current system instead 

of faster approaches such as the Langevin dynamics.  

 In order to ensure that box-size effects are negligible 

in the orientation results, the simulations were run in 

orthogonal cubic boxes with sides of 10, 20, and 30. The 

evolutions of the orientation parameters are plotted in 

Figure  3  as a function of the applied shear strain, γ , given 

by t ɺγγ =  where  t  and ɺγ  are the time and the applied 

shear-rate, respectively. The infl uence of the box size 

on the orientation parameters is within the range of 

numerical uncertainties. Consequently, one can utilize 

the smallest box which provides an optimum condition 

in both the accuracy of the data and the computation 

costs. In the rest of the paper, the simulation data of the 

smallest box are reported. The results are presented in 

two parts. In the fi rst part, the orientation process in the 

unit cell described in Section  2  is followed as a function 

of the applied shear strain. The results are compared with 

the FT and SRF models. Thereafter, a simple approach is 

developed by which one can transfer the orientation data 

from the unit cell to a large cell composed of several unit 

cells. This multiscale approach is tested against the orien-

tation models to ensure its capability.  

  3.1.     Orientation Process in the Unit Cell 

 In a simple shear fl ow, the particles with an initial 

random alignment rotate and gradually align to reach a 

steady orientation state in which they are aligned close 

to the fl ow direction. Figure  4  shows the evolution of ori-

entation parameters from DPD simulations and compares 

them with the FT model predictions for the normal initial 

orientation of the particles with respect to the fl ow direc-

tion. The results of both methods depict the same pat-

tern for the orientation of silicate particles. The steady 

orientation state shows an almost perfect orientation 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 2.    Center of mass mean square displacements (MSD) 
of the silicate layers measured during the simulations in the 
20 × 20 × 20 box. The solid and dashed lines represent MSD t1∝  
and MSD t0.5∝  scaling relations with time  t , respectively.
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state where all particles are parallel to the fl ow direction. 

This characteristic behavior is ascribed to the suspensions 

of weakly-interacting particles also refl ected in the esti-

mated CI  value. In the initial stages of the orientation 

process (0 10< γ < ), the FT model depicts faster kinetics 

than the simulations. This issue has been discussed by 

other authors to be a disadvantage of the FT model since 

experiments have shown slower orientation kinetics in 

shear fl ows. [ 25,27,79 ]  In this regard, DPD models might be 

appropriate candidates to predict such slow kinetics as it 

will be discussed in further details. The orientation ellipse 

is drawn at several strains in Figure  5  in order to pro-

vide a graphical representation of the orientation states. 

From the data it is obvious that the DPD model predicts 

a more perfectly aligned steady orientation state. One 

should note that the ellipse based on DPD simulations 

closely resembles a straight line since all of the particles 

possess almost the same orientation state at all strains. 

Since the particles are the same, such a uniform orienta-

tion evolution in the simulations proves that the velocity 

profi le is highly linear which is critical to the validity of 

the simulations. [ 52 ]    

 It is obvious from the data presented in Figures  4  and  5  

that the DPD model shows a slower kinetics for the orien-

tation than the FT model does. It has also been shown in 

experiments that the kinetics of orientation is somewhat 

slower than the FT model predicts and therefore several 

approaches have been proposed to modify it. Here, the 

SRF model is used to account for the slow orientation 

kinetics. It should be noted that this model can be used 

in simple fl ow fi elds. In general fl ow fi elds however one 

needs to utilize an objective model such as the RSC model 

developed by Wang et al. [ 27 ]  The SRF model incorporates a 

factor of  k  to reduce the strain which is transferred to the 

particles from the bulk. 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 4.    The evolution of orientation parameters against the 
applied shear strain, γ , from DPD simulations and FT model for 
the normal initial orientation of the particles with respect to the 
fl ow direction. Note that the number of plotted simulated data 
points is decreased for 10γ >  to preserve clarity.

 Figure 3.    The evolution of orientation parameters in orthogonal cubic boxes with sides of 10, 20, and 30 as a function of the applied shear 
strain, γ . Parts (a)–(c) and (d)–(f) are simulations results for the normal and parallel initial orientation of the particles with respect to the 
fl ow direction, respectively. The legends are shown in part (a). Note that the  y -scales are not the same in different parts.
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 Certain studies on polypropylene/organoclay nano-

composites have shown that the onset of the stress 

overshoot in startup of steady shear fl ow experiments 

depends on the applied shear strain rather than the 

time after the fl ow has been imposed. [ 17,19,80,81 ]  These 

experiments have proven that the stress overshoot occurs 

at approximately the same absolute strain range of 
1 to 3γ ≈  regardless of the applied shear-rate indicating 

that the shear stress scales with strain. Such a character-

istic behavior has also been observed in non-Brownian 

suspensions and liquid crystalline polymers. [ 82 ]  The stress 

profi les in these experiments have been quantitatively 

corresponded to the hydrodynamic stresses caused by 

the rotation and alignment of ellipsoidal particles. [ 83 ]  The 

hydrodynamic stresses are calculated based on the rota-

tional movements of the particles which can be estimated 

from Jeffery’s equation or its modifi ed versions such as FT 

and SRF models. A constitutive equation for suspensions 

of ellipsoidal particles was proposed by Lipscomb et al. [ 83 ]  

and has been used to predict the hydrodynamic stresses 

and orientation tensors in experiments ever since. [ 17,26 ]  

For very thin disk-like particles this equations is

 
I D D A D A A DP= + 2 + : + 2 +0 0 2 4 3 2 2σσ φ µ µ µ ( )− ⋅ ⋅   

 (20)   

 Here, r= =8 /(3 )0 3 0µ µ η π−  and r= 20 /(3 )2 0µ η π  where 

η0  is the matrix viscosity which can be taken from 

Equation  ( 19)  , φ  is the particle volume fraction, and  r  is 

the aspect ratio of the particles which we estimate from 

the number of beads in each silicate to be 0.04762. By cou-

pling the SRF model with Equation  ( 20)  , the only unknown 

parameter is  k . We adjust  k  so that the stress overshoot 

appears at γ ≈ 3 . The initial values of the A2  components 

in SRF model were set to correspond to a random orien-

tation state to conform to experimental measurements. 

In this way  k  is approximated to be 0.35. The simulation 

results are compared with SRF model in Figure  6 . The 

agreement between DPD and SRF models is signifi cantly 

improved compared with FT model after the introduction 

of the strain reduction factor in the calculations.  

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 5.    The orientation ellipse at absolute shear strains, γ , according to DPD simulations (red) and FT model (blue) for the normal initial 
orientation of the particles (green) with respect to the fl ow direction. The velocity and velocity gradient directions are along the horizontal 
and vertical axes, respectively. The horizontal and vertical axes of the plots are transformed eigenvalues of 2A  with respect to the average 
orientation angle of the layered silicates.

 Figure 6.    The evolution of orientation parameters against the 
applied shear strain, γ , from DPD simulations and SRF model for 
the normal initial orientation of the particles with respect to the 
fl ow direction. Note that the number of plotted simulated data 
points is decreased for 10γ >  to preserve clarity.
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 The orientation kinetics in the system with a par-

allel initial orientation of silicate particles is plotted in 

Figure  7 . As expected, the particles preserve their align-

ment. One should note that the agreement between the 

DPD results and the SRF model is rather poor for A 12  com-

ponent in comparison with the other orientation parame-

ters. This behavior is simply due to the fact that according 

to Equation  ( 16)   in the vicinity of small and large orienta-

tion angles the changes in the A 12  component are abrupt 

for small changes in the orientation angle. Therefore, 

the mathematical formulation of A 12  results in more 

pronounced oscillations for a parallel initial orientation 

state with very small orientation angles. The fact that 

the almost perfectly oriented silicates oscillate under 

the fl ow is not limited only to the DPD simulation here. 

Small angle X-ray scattering measurements of a colloidal 

dispersion consisting of anisometric natural clay parti-

cles have shown that the particles tend to align along the 

fl ow direction with their surface normal to the velocity 

gradient direction, and partly rotate around fl ow stream-

lines. [ 64 ]  Consequently, the oscillations observed could be 

possibly an advantage of DPD models in comparison with 

the SRF model. However, further studies must be con-

ducted in order to prove or disprove this hypothesis.  

 The system simulated in this work represents an 

uncompatibilized polymer nanocomposite. In such sys-

tems the frequency of bead–bead contacts between 

polymer chains and silicate layers is relatively limited in 

comparison with compatibilized systems. [ 52 ]  The orien-

tation process could be slightly slowed down if the com-

patibility of the polymer molecules and silicate layers 

increases. With the improved compatibility, the number 

of dissipative bead–bead interactions at the interfaces 

between the polymer chains and silicate layers increases. 

Therefore, in more compatible systems the slower kinetics 

may be ascribed to the increased resistance against the 

movements and rotations of the layered silicates. Further 

information can be found elsewhere. [ 52 ]  

 As a result of the analyses provided so far, it can be 

stated that the DPD models depict the same orientation 

patterns as the FT and especially SRF models. Since the 

coeffi cients of these models are in good agreement with 

the experimental measurements, the good tally between 

them supports the creditability of DPD models. This 

ensures the conclusion that DPD models are capable to 

predict the orientation of weakly-interacting silicate par-

ticles in a polymer matrix with a good accuracy. Consid-

ering this encouraging capability, further studies could 

be conducted to investigate various aspects of molecular 

architecture on the orientation kinetics of layered sili-

cates. These aspects can include (but not limited to) vari-

ations in the length of polymer chains, polydispersity in 

the length of polymer chains, altering the polymer type 

and shape, fl exibility and aspect ratio of silicate layers, 

surface functionalization of layered silicates, etc. Such 

characteristics are directly accessible to DPD models 

while are merely indirectly controlled in standard orien-

tation models. Flow conditions may also be varied in DPD 

simulations by changing the simulation temperature, the 

applied shear-rate, and the type of fl ow. These parame-

ters can also be controlled in standard orientation models 

in a rather more straightforward fashion than in DPD 

simulations. Furthermore, the effects of the concentration 

of the layered silicate particles on the orientation kinetics 

could be explored. However, it could be necessary to 

adopt larger simulation boxes in this case which obliges 

more computation power and time. In sum, the capability 

of DPD models opens up many routes for future work on 

this academically and commercially interesting class of 

materials.  

  3.2.     Scaleup of Orientation Evolution 

 The simulations discussed so far are presenting the orien-

tation behavior of four silicate particles in a unit cell with 

an initial orientation state of either parallel or normal to 

the fl ow direction. One way to change the initial orienta-

tion state of the system without risking instability in the 

simulations and preserving the highly anisometric nature 

of the silicate particles is to build a large cell which each 

side of it could be several times the size of the unit cell. 

However, it is too time-consuming to simulate this large 

system. Therefore, a simple strategy to model such a large 

cell based on the unit cell is developed here. 

 A large cell is set up from 5 × 5 × 5 unit cells. By mixing 

unit cells with different initial orientation states, i.e., 

parallel and normal to the fl ow, in the large cell, one can 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 7.    The evolution of orientation parameters against the 
applied shear strain, γ , from DPD simulations and SRF model for 
the parallel initial orientation of the particles with respect to the 
fl ow direction. Note that the number of plotted simulated data 
points is decreased for 10γ >  to preserve clarity.
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achieve a variety of averaged initial orientation angles 

in the large cell as shown in Figure  8 . The idea of using 

only two types of fundamental unit cells to construct 

different systems provides the opportunity to signifi -

cantly reduce the amount of simulations. We assume an 

affi ne deformation in the large cell. Consequently, if the 

strain imposed on the large cell is γ , the strain imposed 

on each unit cell is also γ . It is noteworthy to emphasize 

that the deformation in each unit cell is nonaffi ne due to 

the particle-based nature of DPD models. If each side of 

the unit cell is equivalent to 200 nm in tally with the pre-

vious report, [ 52 ]  then the large cell has a side of 1 µm. Con-

sequently, one can see that at a length scale where the 

polymer chains and particles sizes become important, the 

nonaffi ne deformations are dominant in the calculations. 

In order to calculate the average orientation angles in the 

large cell versus the applied strain, the orientation angles 

of the layered silicates in the constructing unit cells were 

taken at the corresponding applied strain from the DPD 

simulations of the unit cells. These values were then uti-

lized to fi nd the averaged second-order orientation tensor 

of the large cell. The average was performed over the total 

number of the layered silicate particles in the large cell 

based on its number of constructing unit cells of each 

type, i.e., parallel or normal to the fl ow.  

 The assumption of affi ne deformation in the large 

cell is promising since all of the unit cells are identical 

in every aspect except for their initial orientation. It has 

been shown before in biological systems that for fi brous 

tissues the underlying fi ber orientation infl uences the 

macroscale to microscale strain transfer. [ 84 ]  Moreover, it 

has been reported that local structural heterogeneities 

in polymer hydrogels could lead to nonaffi ne deforma-

tions. [ 85,86 ]  However, it has also been stated that the impor-

tance of nonaffi ne deformations is strongly dependent on 

the scale of the deformation. Hatami-Marbini and Picu [ 87 ]  

studied the mechanics of random fi ber networks above 

the rigidity percolation threshold and observed that they 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 8.    Examples of random mixing of unit cells in the large cell to produce different averaged initial orientation angles, aveθ . The initial 
orientation of each constructing unit cell prior to the fl ow is manifested.
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deform nonaffi nely at all scales. They also found that 

as the scale of observation decreased, the nonaffi nity 

increased following a power law scaling with exponent of 

≈1.6. This simply means that if the length scale of the sim-

ulation is increased to fi ve times its initial value, the non-

affi nity of deformations decreases by a factor of 13. These 

experimental observations suggest that the coupling 

of nonaffi ne deformations at the DPD unit cell with the 

affi ne deformation at the large cell could provide results 

with reasonable precision. In order to test this assump-

tion, the orientation parameters of such large cells were 

evaluated with strain based on the affi ne deformation in 

the large cell and compared with the predictions of SRF 

model. 

 The orientation parameters of large cells with various 

averaged initial orientation angles are plotted versus the 

applied strain in Figure  9 . The good agreement between 

the SRF model and the DPD results coupled with the 

affi ne deformation assumption in the large cells supports 

the earlier hypothesis that the combination of affi ne and 

nonaffi ne deformations at different scales can give rea-

sonable predictions of a system. One should note that the 

coeffi cients used in the SRF model are the same as those 

derived in the previous section. It is interesting to observe 

that in the systems with a more random averaged initial 

orientation state (see Figure  9 b,c) the agreement between 

the SRF model and the simulations is much better than 

the systems with a more pronounced preferred initial 

orientation state (see Figure  9 a,d). This is ascribed to the 

fact that the strain reduction factor in SRF model was 

determined based on the A2  corresponding to a random 

initial orientation tensor. It should be emphasized again 

that the calculation of A 12  component is trickier than the 

other orientation parameters due to the strong instabili-

ties at very small or large orientation angles inherited 

from its mathematical expression. Experiments suggest 

that some oscillations are also present in actual systems 

which could be possibly an advantage of DPD models. [ 64 ]  

Further simulations need to be done in order to prove or 

disprove this hypothesis. The orientation ellipse is shown 

Macromol. Theory Simul. 2016,  25,  287−302

 Figure 9.    The evolution of orientation parameters against the applied shear strain, γ , from DPD simulations and SRF model for the systems 
with averaged initial orientation angles of a) 20.16°, b) 40.32°, c) 50.40°, and d) 70.56°. Note that the number of plotted simulated data 
points is decreased for  γ  > 10 to preserve clarity.
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in Figure  10  for the large cell with the averaged initial 

orientation angle of 50.4°. Both methods predict the pre-

ferred orientation of the silicate layers in the fl ow direc-

tion typical of weakly-interacting particles.   

 It can be simply shown that for any initial orientation 

state in the large cell, the second-order orientation tensor 

AA2
lc at any specifi c strain of γ  follows the mixture law of 

the constructing unit cells, i.e., AA AA AA= + (1 – )2
lc

2
p, uc

2
n, ucα α . In 

this equation, AA2
p, uc  and AA2

n, uc  are the second-order orienta-

tion tensors of the constructing unit cells with parallel and 

normal initial orientation states, respectively, at the strain 

of γ . α  is the fraction of the unit cells with parallel initial 

orientation state which must be included in the large cell 

to produce the desired initial orientation state. This simple 

formula is a result of detailed simulations presented here 

and is capable to reproduce the experimental predictions 

of SRF model based on published literature. Considering 

that the deformation can be often assumed affi ne unless 

the characteristic length of heterogeneity is comparable to 

the simulation length scale, this formula can produce rea-

sonable results in the orientation calculations. 

 The possibility to transfer the orientation data from the 

unit cells to the large cell incorporating the applied strain 

as the linking parameter encourages a multiscale strategy 

to simulate the orientation process. The incorporation of 

the dimensionless strain parameter makes it possible to 

simplify the scaleup rules due to the coarse-graining nature 

of the DPD method when transferring the orientation 

data to the upper scale. [ 88 ]  Furthermore, it has been shown 

experimentally that such non-Brownian systems exhibit 

strain-dependent microstructural reorganizations rather 

than time-dependent evolutions. [ 19,80 ]  Moreover, as stated 

by Wang et al. [ 27 ]  for non-Brownian particles the overall 

evolution of orientation process depends on the accumu-

lated strain independent of the deformation rate. For fi ber 

suspensions, they emphasize that “in the orientation mod-

eling, kinetics means the rate of change of orientation 

with respect to strain, rather than the rate with respect to 

time.” [ 27 ]  As a result of all these arguments, it seems rea-

sonable to use the applied strain to transfer the orientation 

data between different scales. 

 Attention must be paid that in systems with inter-

acting particles such a scaleup strategy could not be 

applied unless the fundamental unit cell of DPD model 

is large enough to correctly account for particle–particle 
interactions. In order to highlight this issue, the MM 

model is incorporated to evaluate accurate estimations 

of the evolutions of orientation parameters with time 

in Cloisite/polypropylene nanocomposites. Rajabian 

et al. [ 24 ]  performed startup of simple shear fl ow experi-

ments on such nanocomposites containing 3–7 vol% of nan-

oparticles. They proposed the following set of parameters 

to best fi t the experimental data: l = 1 nm, d = 100 nm , 

Λ ×= 0.5 10p
–5 , Λ ×= 5.9 10m

–5
,  b  = 1, B = 1.5pm − , B = 5pp − , 

M =8 10
g

mol
w

5× , ρ = 760
kg

m3
, and  T  = 473.2 K. Utilizing 

these values and benefi ting from the proposed mixing 

strategy, one can compare the large cell orientation data 

 Figure 10.    The orientation ellipse at absolute shear strains,  γ , according to DPD simulations (red) and SRF model (blue) for the averaged 
initial orientation angle of 50.40° (green) with respect to the fl ow direction. The velocity and velocity gradient directions are along the 
horizontal and vertical axes, respectively. The horizontal and vertical axes of the plots are transformed eigenvalues of  A  2  with respect to 
the average orientation angle of the layered silicates.
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with the MM model predictions of Cloisite/polypropylene 

nanocomposites (see Figure  11 ). It is clear from the data 

that even though the kinetics of orientation in both 

methods manifests a reasonable agreement, the steady 

orientation state in the MM model is less perfect than the 

DPD simulations. This imperfect steady orientation state 

denotes strong interactions between the particles in the 

Cloisite/polypropylene systems. Consequently, one has to 

build a unit cell for DPD simulations which can include 

particle–particle interactions in order to correct for such 

effects in real nanocomposite materials.    

  4.     Conclusions 

 This study focused on DPD models of weakly-interacting 

anisometric silicate particles embedded in a polymer 

matrix. The orientation process of silicate particles was 

investigated after the application of either parallel or 

normal shear fl ows. It was observed that the particles 

would reorganize themselves so that their surfaces would 

be normal to the velocity gradient direction. The steady 

orientation state showed an almost complete alignment 

along the fl ow typical of suspensions of weakly-interacting 

particles. In order to test the DPD models, the evolution 

of orientation under the shear fl ow was also modeled 

utilizing the widely used FT model. The particle–particle 

interaction coeffi cient in FT model was estimated from the 

simulated DPD system and was found to be very close to 

experimental measurements of polypropylene/organoclay 

nanocomposites. This coeffi cient was very small in value 

which approved the weak interactions among the silicate 

particles. The overall agreement between DPD results and 

FT model was good and both could predict the steady per-

fect alignment of the particles. However, the orientation 

kinetics was slower in DPD simulations rather than FT pre-

dictions. This was noted to be in agreement with experi-

ments which propose slower orientation kinetics than FT 

predictions due to the reduced strains transferred to the 

particles from the bulk. To compensate for this problem, 

SRF model was incorporated. The strain reduction factor 

in this model was estimated based on experimental meas-

urements, which suggest that the stress overshoot in such 

non-Brownian materials should occur at almost the same 

strain regardless of the applied shear-rate. The predic-

tions from the SRF model were in good agreement with 

the DPD results. It was noted that both coeffi cients in the 

SRF model, i.e., the particle–particle interaction coeffi cient 

and the strain reduction factor, were determined either 

from solid experimental measurements or found to be 

very close to them. This encourages that the DPD models 

are not only compared with a valid model but also with 

actual measurements from the literature. Therefore, the 

good tally between the DPD and SRF models supports the 

capability of DPD to successfully simulate the orientation 

process of silicate particles in a polymer matrix. 

 A large cell was then constructed from unit cells with 

various averaged initial orientation angles. The evolution 

of orientation in the large cell was evaluated from evo-

lutions in the unit cells based on the affi ne deformation 

assumption. The good agreement between such calcula-

tions and SRF model predictions supports that the affi ne 

deformation assumption in the large cell is reasonable. 

It was argued that the nonaffi ne deformation originated 

from the particle-based nature of DPD models at the 

lower scale, i.e., unit cells, could be combined with the 

affi ne deformation at the upper scale, i.e., the large cell, 

to yield appropriate estimations of the orientation state. 

The idea of using the dimensionless strain parameter to 

transfer orientation data to the upper scale was based 

on (i) the experiments which propose strain-dependent 

rather than time-dependent structural evolutions in such 

non-Brownian materials, (ii) the feasibility of scaling in 

these coarse-grained models, and (iii) that the orienta-

tion kinetics is simply the rate of change with respect to 

strain rather than time. It was noted that this strategy 

could be used to perform multiscale simulations of ori-

entation process provided that the unit cell represents 

a precise description of the interactions between the 

components.   

 Received:  November 19, 2015  ;   Revised:  March 11, 2016    ;  
 Published online:  April 14, 2016  ;   DOI: 10.1002/mats.201500086 
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 silicate particles  ;   standard orientation models   

 Figure 11.    The evolution of orientation parameters against the 
applied shear strain,  γ , from DPD simulations and mesoscopic 
model (MM) for the averaged initial orientation angle of 45° of 
the particles with respect to the fl ow direction. Note that the 
number of plotted simulated data points is decreased for  γ  > 10 
to preserve clarity.
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7. Conclusions and Research Outlooks 

In this final chapter, I review the main conclusions of this thesis briefly. Also, major research 

directions are discussed for future endeavors. 

In their molten state, polymer nanocomposites (PNCs) are often categorized as non-

Brownian suspensions. This is a consequence of the high viscosity of the matrix polymer as 

well as the physical characteristics of the suspended nanoparticles [73, 109]. It is well-

known that the strong van der Waals interactions between nanoparticles lead to the 

formation of aggregated microstructures in PNCs, which significantly influences thermal, 

electrical, rheological, and mechanical properties of these materials [103, 184]. Therefore, a 

multitude of studies has been devoted to address these issues from both experimental and 

theoretical viewpoints [30, 37, 67, 73 - 75, 103, 119, 122, 136, 229]. It is generally accepted 

that the microstructure developments are controlled significantly by the applied flow fields on 

the PNCs [184]. This notion has led to numerous rheological investigations, which provide an 

indirect yet online knowledge about the microstructural evolutions due to different flow fields 

[112, 133, 189, 205]. 

In order to predict the microstructure, rheology offers a number of (mostly) mesoscopic 

models which can be coupled with macroscopic models once their coefficients are evaluated 

in measurements [76]. Such models often fail to provide detailed molecular information of 

the PNCs and are limited to averaged descriptions of the overall microstructure. 

Furthermore, a new set of measurements is necessary every time either the material or the 

flow change. 

Consequently, the multiscale modelling approaches were incorporated which enabled the 

passing of information between the hierarchy of length/time scales inherent in PNCs [229]. 

These methods can provide an ab initio approach which rules out (or at least minimizes) any 

necessity for experimentation. Various aspects of PNCs have been treated before with 

different types of multiscale methods [6, 75, 229]. 

Despite all efforts, a framework for dynamic bridging of microstructure evolutions to 

macroscopic models has been hindered so far since it often necessitates millions of steps of 

simulation at the mesoscopic scale to account for a small portion of a macroscopic flow [66]. 

Therefore, a single-step sequential message-passing approach is often used in the multiscale 

simulation of PNCs rather than a dynamic microstructure development [22, 23, 183, 188, 

203, 207, 232]. In this PhD research, a theoretical framework was developed based on well-

credited mesoscopic dissipative particle dynamics (DPD) models in order to propose a 

solution to this problem. 

Firstly, startup of steady shear flow properties of polydisperse linear polymers were studied 

using DPD. It was shown that the stress overshoot generally decreased with the introduction 

of polydispersity into the models due to the broad relaxation response of various length 

scales present in polydisperse systems. Steady-state stress became larger as polydispersity 

increased due to the higher forces necessary to orient and stretch long chain fractions in the 

flow direction. Detailed analyses of nonbonded interactions proved a complex microstructural 

evolution because of orientation and chain stretching during the flow. It was evident that the 

orientation of long chain fractions forces more severe penalties on the frequency of 
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nonbonded interactions than the short chain fractions. The results support the coupled effect 

of orientation and stretching to influence the stress profile in startup of shear flow 

simulations. The gyration radius data also proved that the chains increase their size during 

the flow. The larger size and the slowed-down elongation dynamics of long fractions were 

evident. Moreover, the startup of shear flow simulations were performed at different shear-

rates. The steady-state shear viscosity results showed higher viscosities in the polydisperse 

systems at all shear-rates. It was noted that these observations are in qualitative agreement 

with the available experimental data of different PP samples. 

Secondly, the orientation of layered silicate particles in polymer melts under different shear 

flows was studied utilizing DPD method. An anisometric semiflexible three-layered silicate 

particle was embedded in uncompatibilized and/or compatibilized polymer matrices. The 

system was imposed to shear flows with different directions as well as shear-rates. Pair 

distribution functions in three orthogonal planes proved that regardless of the applied flow 

direction, the layers rearrange themselves so that their surfaces would be normal to the 

velocity gradient direction. Some deviations from a completely oriented microstructure were 

evidenced at low shear-rates due to the dominating thermal fluctuations at small Peclet 

numbers. These observations were in good agreement with previous publications. 

Furthermore, the effects of silicate surface treatment and compatibilizing molecules were 

studied by introducing compatibilizer molecules and modifying the repulsion parameters 

between the beads. Higher exfoliation degrees were evidenced in such compatibilized 

systems at high shear-rates while none was seen in uncompatibilized counterparts. In 

compatibilized systems, the pair distribution functions and trajectory data showed that the 

silicate layers align perpendicular to the velocity gradient direction the same as the 

uncompatibilized systems. However, it was demonstrated that the orientation process 

becomes more stable in these systems even at low shear-rates. The calculations of the 

orientation angle as well as the angle with the velocity gradient direction also showed this 

behavior. The shear stress was plotted with time for uncompatibilized and compatibilized 

systems. The stress profile falls in numerical uncertainties in uncompatibilized systems while 

it shows a characteristic overshoot in compatibilized systems. This overshoot was shown to 

be a result of (i) the large interfaces between the silicate layers and the matrix due to the 

exfoliation and (ii) the increased number of bead–bead contacts between the matrix and the 

layers leading to higher energy dissipations. This idea also explains why the orientation 

process becomes more stable in compatibilized systems even at low shear-rates. In 

compatibilized systems, higher energy dissipations lead to an increase in the overall viscosity 

(as reflected in the shear stress data) and therefore results in larger Peclet numbers. The 

contribution of thermal fluctuations to the overall response of the system becomes less 

significant compared with the shear stresses. Thus, the orientation process is less controlled 

by such distortions. 

Finally, the orientation process of weakly-interacting silicate particles was compared with the 

predictions of the frequently-used orientation models, i.e. the Folgar-Tucker model (FT), the 

strain reduction factor model (SRF), and the more elaborate model of Rajabian et al. [168, 

169]. It was shown that DPD model could successfully predict the slowed-down orientation 

kinetics (due to the reduced strains transferred to the particles from the bulk) in agreement 

with experiments while FT fails to predict such effects. On the other hand, the predictions of 
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the SRF model and DPD simulations were in good agreement. It was noted that both 

coefficients in the SRF model, i.e., the nanoparticle–nanoparticle interaction coefficient and 

the strain reduction factor, were determined either from solid experimental measurements or 

found to be very close to them. This encourages that the DPD models are not only compared 

with a valid model but also with actual measurements from the literature. Therefore, the 

good tally between the DPD and SRF models further supports the capability of DPD to 

successfully simulate the orientation process of silicate particles in a polymer matrix. 

The conclusions presented so far prove the main hypothesis of this research to be true: DPD 

is capable to capture the orientation process in PNCs correctly during an applied flow field. In 

order to construct the multiscale strategy, a large cell was constructed from unit cells with 

various averaged initial orientation angles. The evolution of orientation in the large cell was 

evaluated from evolutions in the unit cells based on the affine deformation assumption. The 

good agreement between such calculations and SRF model predictions supports that the 

affine deformation assumption in the large cell is reasonable. It was argued that the 

nonaffine deformation originated from the particle-based nature of DPD models at the lower 

scale, i.e., unit cells, could be combined with the affine deformation at the upper scale, i.e., 

the large cell, to yield appropriate estimations of the orientation state. The idea of using the 

dimensionless strain parameter to transfer orientation data to the upper scale was based on 

(i) the experiments which propose strain-dependent rather than time-dependent structural 

evolutions in such non-Brownian materials, (ii) the feasibility of scaling in these coarse-

grained models, and (iii) that the orientation kinetics is simply the rate of change with 

respect to strain rather than time. It was noted that this strategy could be used to perform 

multiscale simulations of orientation process provided that the unit cell represents a precise 

description of the interactions between the components. Therefore, the other main 

hypothesis of this research, i.e. the orientation process in non-Brownian PNCs are strain-

dependent rather than time-dependent, was verified successfully for layered silicate 

nanoparticles. 

My efforts in this field have resulted in a strain-bridging algorithm which allows for an 

accelerated passing of the microstructure information to the macroscopic models [76]. 

Indeed, a determining outlook would be to investigate the physical foundation of the strain-

dependent microstructure evolutions under flow and to further develop the strain-bridging 

algorithm. While the strain-dependent microstructure evolution is experimentally observed 

for non-Brownian suspensions under flow [109, 112, 133, 189], it has not received much 

theoretical investigation yet. Therefore, it should be addressed in more details in order to 

build the multiscale theory upon it. 

Moreover, one can consider the strain-bridging algorithm in its current form incomplete since 

it has been only used to develop the orientation patterns of weakly-interacting layered 

silicate particles in a generic polymer under shear flows [76]. In addition to polymer/layered 

silicate nanocomposites, the strain-bridging algorithm must also be tested for other non-

Brownian PNCs with spherical, disk-like, and rod-like nanoparticles of both weakly- and 

strongly-interacting types. It is a fascinating outlook to extend this methodology to materials 

other than PNCs as well provided that their microstructural evolution under flow is proved to 

be strain-dependent rather than time-dependent. For instance, the flow of biological fluids in 

body could be envisioned in the strain-dependent multiscale scheme [57]. The formation and 
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destruction of instantaneous structures due to various inclusions such as drugs are suitable 

targets for further investigations utilizing the new methodology. It is a remaining challenge 

for future research to improve, extend, and generalize this algorithm. 

It is a significant topic for further investigation to not only focus on the formation of 

anisotropic (preferentially oriented) structures of nanoparticles within the polymer matrix, 

but also to consider the interplay of the flow-induced large- and small-scale dispersion 

mechanisms of nanoparticles (e.g. the intercalation and exfoliation processes in the case of 

layered silicates, respectively) with the orientation process. Only after such a generalization, 

the strain-bridging algorithm can truly serve to predict the microstructure evolutions of 

advanced materials under flow using a hierarchy of scales. 

The upscaling methodology developed in this study should be linked to atomistic models 

(e.g. molecular dynamics) on the lower hand, and to appropriate macroscopic models (e.g. 

smoothed particle hydrodynamics) on the upper hand, to result in a complete multiscale 

model. The results of this PhD work are expected to be at the heart of this multiscale model 

where an accelerated, dynamic passing of microstructure/flow information is most needed 

between the meso and macro scales. 

The outcome of these efforts will be eventually a theoretical framework for multiscale 

modelling of (at least) non-Brownian PNCs experiencing shear flows. This framework should 

allow for a detailed atomistic modelling of PNCs, followed by a dynamic passing of 

microstructure information to macroscopic models. This dynamic self-developing multiscale 

strategy will certainly push the rheological theories forward. 
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8. Acronyms and Nomenclature 

The present list of acronyms and nomenclature is reproduced from our review paper 

(Gooneie A., Schuschnigg S., Holzer C.: A Review of Multiscale Computational Methods in 

Polymeric Materials, Polymers 9 (1), 2017, pp. 16). If any abbreviation or parameter is 

different from the definitions in this table, it is clearly pointed in the text. 

Acronyms 

Acronym Full phrase 

AA All-Atomistic 

AC Amorphous Cell method 

AdResS Adaptive Resolution Scheme 

AIMD Ab Initio Molecular Dynamics 

AtC Atomistic/Continuum method 

BD Brownian Dynamics 

BDM Bridging Domain Method 

BGK-LB Bhatnagar, Gross, And Krook LB method 

BSM Bridging Scale Method 

CACM Composite Grid Atomistic/Continuum Method 

CADD Coupled Atomistic and Discrete Dislocation method 

CFD Computational Fluid Dynamics 

CG Coarse-Grained 

CGMD Coarse-Grained Molecular Dynamics 

CLS Coupling of Length Scales method 

CRW Conditional Reversible Work 

D2Q9 2-dimensional lattice with 9 allowed velocities used in LB simulations 

D3Q19 3-dimensional lattice with 19 allowed velocities used in LB simulations 

DDFT Dynamic Density Functional Theory 

DFT Density Functional Theory 

DPD Dissipative Particle Dynamics 

EFCG Effective Force CG 

EM Energy Minimization 

FDM Finite Difference Method 

FE Finite Element 
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FEAt Finite-Element/Atomistic method 

FEM Finite Element Method 

FVM Finite Volume Method 

GDM Generalized Differences Methods 

GFEM Galerkin Finite Element Method 

GPU Graphics Processing Unit 

H-AdResS Hamiltonian Adaptive Resolution Scheme 

HSM Hybrid Simulation Method 

IBI Iterative Boltzmann Inversion 

IMC Inverse Monte Carlo 

LB Lattice Boltzmann 

LGCA Lattice Gas Cellular Automata 

LSM Lattice Spring Model 

MC Monte Carlo 

MD Molecular Dynamics 

Na-MMT Sodium Montmorillonite 

NEMS Nano-Electro-Mechanical Systems 

OpenFOAM Open Source Field Operation And Manipulation 

PA Polyamide 

PAC Pseudo Amorphous Cell method 

Pe Peclet number 

PE Polyethylene 

PNC Polymer Nanocomposite 

PP Polypropylene 

pPMF Pair Potential of Mean Force 

PS Polystyrene 

PTT Poly(Trimethylene Terephthalate) 

QC Quasicontinuum method 

QM Quantum Mechanics 

QUICK Quadratic Upstream Interpolation for Convective Kinematics 

Re Reynolds number 

RVE Representative Volume Element 



‎8. Acronyms and Nomenclature 

Ali Gooneie Montanuniversitaet Leoben 185 

SDPD Smoothed Dissipative Particle Dynamics 

SPH Smoothed Particle Hydrodynamics 

SRF Strain Reduction Factor model 

SUPG Streamline-Upwind/Petrov-Galerkin 

TB Tight Binding 

TDGL Time-Dependent Ginzburg-Landau 

VMS Variational Multiscale methods 

We Weissenberg number 

XRD X-Ray Diffraction 

 

Nomenclature 

Symbol Meaning 

A A = 6ΒkBT in BD method �ij maximum repulsion between bead i and bead j in DPD method 

ai acceleration of ith particle 

BA atomistic domain in concurrent simulations 

BC continuum domain in concurrent simulations 

BH handshake region in concurrent simulations 

BI interfacial region in concurrent simulations 

BP padding region in concurrent simulations 

ηi fitting parameter 

θi fitting parameter 

Γϑ
 the diffusion term of ϑ 

Dcm center-of-mass self-diffusion coefficient 

e element � absolute unit charge of an electron 

Ef Young’s modulus 

Ei energy of atom, particle, or node i 

Ei̅ energy of the ith representative atom in QC method 

Ek eigenstate of energy 

Ekel eigenstate energy of an electron 
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Ekn eigenstate energy of a nucleon 

Etot total energy 

ΔFǻΜ΅Ǽ free energy difference in H-AdResS method 

FijC conservative force between bead i and its neighboring bead j within the 

force cutoff radius rcut 

FijD dissipative force between bead i and its neighboring bead j within the 

force cutoff radius rcut 

FijR random forces between bead i and its neighboring bead j within the 

force cutoff radius rcut 

F΅
drift

 drift force of molecule ΅ 

f̅ vector of applied forces in the FE region of a concurrent simulation 

fi force acting on the ith atom, particle, or node 

f΅Ά force acting between molecules ΅ and Ά 

fth thermodynamic force 

fi
B
 Brownian random force acting on the ith particle 

f΅Ά
AA

 atomistic forces acting on molecule ΅ due to the interaction with 

molecule Ά 

 f΅Ά
CG

 CG forces acting on molecule ΅ due to the interaction with molecule Ά 

G' storage modulus 

G'' loss modulus 

Hǻ̆iǼ Hamiltonian of the system at system state ̆i 

Ĥ modified Hamiltonian of the H-AdResS method 

ΔHǻ̆i→jǼ change in the system Hamiltonian for going from system state ̆i to ̆j 

ΔHǻΜ΅Ǽ compensation term in the Hamiltonian of the H-AdResS method 

HFEሺu΅,u̇΅ሻ Hamiltonian of the FE region as a function of the nodal displacements 

u΅, and time rate of nodal displacements u̇΅ 

HFE/MD(rj,vj,u΅,u̇΅) Hamiltonian of the FE/MD handshake region as a function of the atomic 

positions rj, atomic velocities vj, nodal displacements u΅, and time rate 

of nodal displacements u̇΅ 

HMD(rj,vj) Hamiltonian of the MD region as a function of the atomic positions rj, 
and atomic velocities vj 

HMD/TB(rj,vj) Hamiltonian of the MD/TB handshake region as a function of the atomic 

positions rj, and atomic velocities vj 
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HTB(rj,vj) Hamiltonian of the TB region as a function of the atomic positions rj, 
and atomic velocities vj 

Htot total Hamiltonian 

ν Planck’s constant 

Jϑ,C
 convection flux term in FVM formulation 

Jϑ,D
 diffusion flux term in FVM formulation 

K the all-atom kinetic energy of the molecules 

kB Boltzmann’s constant 

kT isothermal compressibility 

l bond length 

M, Mw molecular weight 

ς mass of an atom or particle 

ςel mass of an electron 

ςn mass of a nucleon 

N number of atoms, particles, or nodes 

Nc number of monomers per chain 

Ne number of elements 

Nq number of quadrature points in the numerical integration 

Nr number of representative atoms in QC method 

P the projection matrix 

ΔpǻΜ΅Ǽ pressure difference along the interface in H-AdResS method  

pi→j probability of  accepting a new configuration for going from system 

state ̆i to ̆j 

pR
 probability distribution function 

ptarget
R

 the target probability distribution function of AA simulations 

Qϑ
 the generation/destruction of ϑ within the control volume per unit 

volume  

Rሺuሻ residual form of a partial differential equation in terms of the unknown 

function u in FEM scheme 

Rg radius of gyration 

Ri center of mass coordinates of the ith molecule 

r coordinates vector of an atom, or particle, or node 
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χ distance 

rcut force cutoff radius 

reli spatial coordinates of an electron 

r̂ij unit vector pointing from the center of bead j to that of bead i 

rnj spatial coordinates of a nucleon 

recent coordinates of the Gauss point in element e taken at the centroid of the 

triangular elements 

re
q
 position of quadrature point q of element e in the reference 

configuration 

ΈriBǻω+ΔωǼ random displacement of the ith particle due to the random forces 

during time step Δω 

S surface vector 

Si ith subregion {Sϱ} set of weighting functions in FEM 

ψentropy rescaling factor for the entropy change 

ψfriction rescaling factor for the friction change 

T temperature 

ω time 

∆ω time step 

UǻrǼ potential energy 

UA
 potential energies of the atomistic region 

Uatom
 energy functional  of a systems assuming it is entirely modelled using 

atoms 

UC
 potential energies of the continuum region 

UCGሺχ,l,Ό,℧ሻ general form of the CG potential function in IBI method 

UFE
 energy functional  of a systems assuming it is entirely modelled using 

FEM 

UH
 potential energies of the handshake region 

Uint
 energy of internal interactions 

Utot
 total potential energy of the entire system 

Uangle 
CG ǻΌǼ bond angle potential in the blob model 

Ubond 
CG ǻlǼ bond potential in the blob model 
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Unonbonded 
CG ǻχǼ potential of nonbonded interactions in the blob model 

U΅
AA

 potential energy of molecule ΅ in the AA representation 

U΅
CG

 potential energy of molecule ΅ in the CG representation 

u vector of nodal displacements in the FE region of a concurrent 

simulation 

uǻrǼ the unknown function in FEM which one needs to find 

uhǻrǼ approximation of the function uǻrǼ under consideration in FEM 

u΅ displacements of atom, particle, or node ΅ 

u̇΅ rate of displacements of atom, particle, or node ΅ 

un values of the function uh at node n of the mesh 

Ve volume of element e 

dV volume element of the simulation domain in FEM 

∂Ve surfaces surrounding the volume Ve of element e 

v macroscopic velocity magnitude � � = √3 �s in LB method 

vǻr,ωǼ macroscopic local velocity at node r at time ω in LB 

ṽiሺω+∆ωሻ estimated velocity in the next time step using a predictor method in 

DPD velocity-Verlet algorithm 

ΈviBǻω+ΔωǼ Random velocity change of the ith particle due to the random forces 

during time step Δω 

vi velocity of ith atom, particle, or node |�i| velocity magnitude in i-direction in LB method {�k} set of prescribed velocity vectors connecting the neighboring nodes in 

LB method �s speed of sound 

W a function of deformation gradient ̇ 

wi weighting constants used in LB method 

zn� positive unit charge of a nucleon 

̆i system state in a phase space at position i  

γ exact solution in the projection method 

·̇ shear-rate 

γ̅ሺr΅ሻ coarse scale solution of a problem in the projection method 

γ' fine scale solution of a problem in the projection method 
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̇ deformation gradient 

Έ delta function 

∆ΐ(Μ΅) chemical potential gradient in H-AdResS method 

ε neighboring cells of a specific element in FVM 

Ί random number between 0 and 1 which is to determine the acceptance 

or rejection of a new configuration 

Ίij a Gaussian random number with zero mean and unit variance used in 

the definition of the random forces between beads i and j in DPD 

method 

΋ viscosity 

Θ a weighting function to link FE and atomistic models in concurrent 

simulations 

Ό bond angle 

Όζve averaged initial orientation angle 

Λik collision matrix used in LB method 

Ώ multiplication parameter in in DPD velocity-Verlet algorithm 

ΐ fitting parameter 

Α fitting parameter 

ϑ a general conserved scalar variable in FVM scheme 

Β friction coefficient between atoms or particles  Βij friction coefficient between bead i and bead j in DPD method 

Βm friction coefficient between particles of freely-rotating chains 

ϖ wave function of electrons 

Ε fluid density in CFD 

Εǻr,ωǼ macroscopic local density at node r at time ω in LB method 

ΕiǻχǼ molecular density profile in the ith iteration step as a function of the 

position in the direction perpendicular to the interface, in AdResS 

method 

Ε*
 reference molecular density 

ϱi ith weighting function in FEM 

Ηij noise amplitude between bead i and bead j in DPD method 

Ζi
΅
 shape function of node i evaluated at the point with coordinates r΅ 

Θ characteristic collision time in LB method 
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Φሺuሻ integral form of the weighted residuals in FEM 

φǻrǼk wave function in Schrödinger’s equation 

ϕ wave function of the nuclei 

Λij a parameter in DPD formulation which equals 1 for beads with a 

distance less than rcut and equals 0 otherwise 

̚iǻr,ωǼ particle distribution function used in LB at node r at time t moving with 

velocity �i In the i-direction 

̚i
eqǻr,ωǼ equilibrium particle distribution function used in LB at node r at time ω 

moving with velocity �i In the i-direction 

Μ spatial interpolation function in AdResS method 

ΜnǻrǼ interpolation functions in FEM for node n 

Μn
e ሺrሻ interpolation functions in FEM for node n in element e 

̛ simulation domain in FEM 

∂̛ boundaries of the simulation domain in FEM 

℧ dihedral angle 

Ν frequency 

Νi quadrature weight signifying how many atoms a given representative 

atom stands for in the description of the total energy, in QC method 

ΝD(χij) dissipative weight function in DPD method 

Νq
 associated Gauss quadrature weights of quadrature point q of element e 

ΝR(χij) random weight function in DPD method 
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