

PIMPLE Algorithm and Partitioned FSI Solvers

Motivation Hydrodynamic Bearing Simulation

- Kingsbury tilting pad hydrodynamic thrust bearing
- Bearing submerged in the lubricant pool
- Support is provided by a thin film of lubricant above pads
- Pads tilt and thus form a wedge of lubricant that carries the thrust

Heinrichson, N., & Santos, I. (2007)

Motivation (2) Hydrodynamic Bearing Simulation

- Interest in film thickness, pressure, temperature, friction losses etc.
- Software typically used for numerical investigations is limited
- Steady-state solutions, transient start-up scenarios usually not possible
- Investigations are focused on a single pad without its surrounding

Heinrichson, N., & Santos, I. (2007)

Motivation (3) Hydrodynamic Bearing Simulation

- Problem is hiding many extreme parameters
- Pad length about half metre
- Lubricant wedge height in order of 10-100μm
- Laminar and turbulent flow
- Pressures up to 10-20MPa
- Temperature differences up to 50°C due to viscous dissipation

FSI Solver Basic Info

- Developed solver was a partitioned FSI solver based on an historical icoFsiElasticNonLinSolidFoam
- Flow solver used was an adapted rhoPisoFoam with a modified thermophysical model for customer's lubricants
- Solid solver in total and updated Lagrangian formulation
- Explicit coupling with Aitken adaptive under-relaxation
- Conjugate heat transfer between fluid and solid
- Additional bearing model (tilting, mirrored runner floating, material model, boundary condition for the pad support, etc.)

FSI Solver (2) Stability Problems

- The length scales differences complicated grid modelling, mesh motion, time stepping and generally solution stability
- Extreme value changes where gap displacement of 10μm would induce pressure differences of up to 1 MPa
- Mesh distortions especially around the gap area
- Aitken under-relaxation stabilized solution during interface search inside a single time step
- Transient time advance eventually always crashed

FSI Solver (3) PISO Algorithm

- Used flow solver, rhoPisoFoam, was unfortunately unstable for given meshes and time steps
- Minimal Courant number of 10 on the graded grid in the gap
- Lowering the cell size leads to the cells count explosion
- Lowering the time step leads to instability of the solid solver and/or excessively long simulation times
- We tried separate fluid and solid time steps with a limited success, but the idea pointed us into right direction...

PIMPLE Algorithm Basics

dpe per petroleum engineering

- Merged PISO and SIMPLE algs.
- PIMPLE allows transient solutions of higher Courant numbers
- PIMPLE iterates and under-relaxes the solution of pressure-velocity coupling within a time step

Residual Control solutionControl classes

- OpenFOAM Extend project code base lacks the option to prematurely end the PIMPLE-loop using solution residuals
- OpenFOAM Foundation version does have residual control
- src/finiteVolume/cfdTools/general/solutionControl
- solutionControl classes do a bit more as just residual control and are connected to some additional API changes
- We distilled the mechanism itself and created a stand-alone light-weight class compatible with OpenFOAM Extend code

Residual Control (2) residual Control Class

- Reads residualControl dictionary from the fvSolution-file
- Dictionary format is fully compatible with OpenFOAM Foundation version of solution control
- Registers solution residuals

```
void registerPerf(const word& fieldName,
   const lduMatrix::solverPerformance& perf);
void reset();
```

Checks the solution convergence

```
bool converged() const;
```


Residual Control (3) pimpleFoam

```
createFields.H:
residualControl residuals(
  mesh, "PIMPLE"
UEqn.H:
residuals.registerPerf(
  U.name(),
  solve(UEqn() ==
     -fvc::grad(p))
23.06.2016
         Page 11
```


pimpleFoam.C:

```
int oCorr=0;
do {
  #include "UEqn.H"
  for(...) {
    #include "pEqn.H"
  turbulence->correct();
  oCorr++;
  while (oCorr<nOuterCorr</pre>
  && !residuals.converged());
```


PIMPLE-FSI Solver PIMPLE-FSI-loop

 We reworked the FSI solver replacing the flow solver, originally rhoPisoFoam, with rhoPimpleFoam

Iterate until FSI error is low

Solve fluid, PIMPLE-loop, until error is low

Apply fluid forces

Solve solid displacement until error is low

Move fluid mesh using Aitken under-relaxation

Move solid mesh

Time and iteration management

PIMPLE-FSI Solver (2) pimpleFsiElasticNonLinULSolidFoam


```
label oCorr=0, oFSICorr=0;
bool moveFluid=false;
do // PIMPLE-FSI-loop
 if (moveFluid) {
   ... // fluid mesh movement
   moveFluid=false;
  #include "solveFluid.H"
  if (fluidResiduals.converged()
```

```
(cont.)
    ... // apply forces, solve solid
    moveFluid=true;
    oFSICorr++; // FSI iterations
    oCorr=-1; // recalculate fluid
    fluidResiduals.reset();
  oCorr++; // PIMPLE iterations
} while (
  (fsiResidualNorm>oCorrTolerance)
  && (oFSICorr<nOFSICorr));</pre>
```


PIMPLE-FSI Solver (3) Behaviour

de per petroleum engineering

- PIMPLE-FSI solver shows much higher stability
- PIMPLE flow solver better deal with meshes of low and/or deteriorated quality
- PIMPLE flow solver naturally stabilizes fluid-solid interaction

PIMPLE-FSI Solver (4) Hydrodynamic Bearing Simulation

- Stability by higherCourant numbers
- Courant of 100+
- Transient bearing start-up possible
- Unthinkable before due to fluid-structure interaction

References and Discussion

Heinrichson, N., & Santos, I. (2007). On the Design of Tilting-Pad Thrust Bearings. Ph.D. thesis. Retrieved June 22, 2016, from http://orbit.dtu.dk/.

