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Abstract operations classification is one of the most needed
tasksin the oil & gas industry. It provides the engineers with
detailed information about what is happening on therig site.

In this paper we propose an approach to classify drilling
operations automatically using machine learning techniques.
This approach takes as input the sensors data in a specific time
range, and predictsthedrilling operation.

Our approach is smple but effective, where for each sensor
data (channel) a list of statistical features will be extracted,
then featur es selection algorithms will be used to select the most
informative features, and finally, a classifier will be trained
based on these features.

In this paper many feature weighting and selection algorithms
were tested to find which statistical measures clearly
distinguish between many different rig operations. In addition,
many classification techniques were employed to find the best
onein terms of accuracy and speed.

Experimental evaluation with real data, from five different
drilling scenarios, shows that our approach has ability to
extract and select the best features and build accurate
classifiers. The performance of the classifiers was evaluated by
using the cross-validation method.

Index Terms — Operations classification, Statistideatures,
Features selection.

|. INTRODUCTION

Nowadays, it's very easy to monitor the basic ihgil
actions such as moving the drill string, rotatimg tdrill
string and circulating the drilling mud.

Many mechanical parameters, such as hook load kutt b
position, are continuously measured during drilliigwells.
These parameters are measured by a group of sensors
located around the drilling rig and wired to a meement
system called a mud-logging system. In additiontada
transferring systems and data storing systems oan b
employed to transfer and store the sensors datahang in

the world.

Although these systems are being developed rapttily,
techniques of data interpretation and analysis haot
developed at the same speed, and there is a lagystdms
able to make efficient use of all the data avadablincrease
the efficiency of the drilling process.

Improving the drilling process relies on performaranalysis
that is primarily based on daily activity breakdsth
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Operations recognition systems break the totaliryil
time down into list of well-defined operations likkilling,
rotating, make connection, etc.

Most operations recognition systems take as infat t
sensors data itself, and recognize the drillingraiens.
Paper [2] presents a drilling operations clasdificasystem
using Support Vector Machine (SVM). The input ofsth
system is five sensors values with a specific ttarap, and
the output is one of six predefined operations.

Our approach is based on creating a compacted
representation of the sensors data in a given tange,
using a group of statistical features.

Many statistical features can be included in the
representation. The authors of paper [3] used mean,
variance, skewness, kurtosis and entropy as $tatist
features to classify audio signals.

The final goal of our research was not only to trea
classifier for drilling operations, but also to dinwhich
statistical measures clearly distinguish betweennyma
different rig operations.

This research is a part of comprehensive reseanthgat,

not only classifying normal drilling operation, buatiso
detecting drilling problems by adding a new group o
features (textual features) extracted from dailyrming
reports.

The remainder of the paper is organized as follofsction

Il presents the general framework of the propoggmaach.
Section Ill shows the details of statistical featuextraction
phase. Sections IV, V and VI introduce the detaifs
features ranking and feature selection phasesiogevil
shows the details of classification task, and #s¢ Section
VIII shows the experimental results of the proposed
approach.

Il. THE GENERAL FRAMEWORK

In this section we will introduce the proposed raggh
that aims to recognize drilling operations usingtistical
features. Our operations recognition approach ubes
classical steps of feature extraction, featurectiele and
classifier training, which are sketched in figureaid further
described below.
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Figure 1. The general framework

[ll. STATISTICAL FEATURESEXTRACTION

The first step of the approach is feature extractio
which is the transformation of patterns into featuthat are
regarded as a compacted representation.

Many statistical measures were extracted to measure
different properties of each channel as describddgure2.
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Figure 2. Statictical Features Extraction

In addition to the measures described in Figureasjc
statistical functions were calculated like sum, mirax etc.
Skewness and kurtosis were used to measure
“asymmetry” and "peakedness" respectively, whemse
moment was used to measure the "width".

Percentiles were used to measure the “position’eravh
the ¢" percentile is a value,py such that at most (100.p)%
of the measurements are less than this value amdosat
100(1- p)% are greater. Five percentiles valuesewer
included (p10, p25, p50, p75 and p90). Finallyrapy was
used to measure the impurity.

Overall 22 statistical features were calculated &ach
channel namely: mean, median, mode, variance, atdnd
deviation, interquartile range IRQ, range, skewness

the

kurtosis, second moment, p10, p25, p50, p75, péante
min, max, sum, first, last and entropy.

Data Channels

The aforementioned features were calculated for ife
commonly used data channels described in Tablel.

Some of these channels were normalized by divibinghe
total depth of the selected well. In addition, oeetra
channel was generated which is the difference hketwe
mdbit and mdhole divided by the total depth.

Channels Description
flowinav Average mud flow-rate
hkidav Average hook load
mdbit Measured depth of the
mdhole Measured depth of the hi
posblock Block position
prespumpav | Average pump pressure
ropav average rate of penetration
rpmay Average drill string revolutior
tgav Average torqu
wobav Average weight on bit

Table 1. Standard Data Channels

The total number of calculated features equals: bamof
channels x Number of features = 11 x 22 = 242 featlAll
these features were calculated using simple saftwaitten

in Matlab. This software takes as input a list ledirenels and

a time range (start timestamp and end timestamp) an
returns the mentioned statistical measures.

IV. FEATURE RANKING & SELECTION

High dimensional data, like our dataset, which has
hundreds of features, can contain high degreerefeirant
and redundant information which may greatly degrtue
performance of learning algorithmi8. Therefore, feature
selection becomes very necessary in our approach.

In the feature selection step, we seek to selettbaet
of relevant features with high predictive value.atee
selection was implemented to improve the perforraaoic
our learning models by increasing the accuracy haf t
classifiers and speeding up learning and classifica
processes. In addition, feature selection improveatiel
interpretability because it is much easier to &sllengineer
that from hundreds of features these 10 are impbttathe
classification task than to explain the influendethe 242"
features.

In many applications, the best features can betselaising
brute-force search, also known as exhaustive seBorha
dataset with n features, exhaustive search neeWiq) (2
possibilities. In our case we have 242 featurelliyig 2**

1 = 7.06x1072 possibilities to combine all the deas.
That means using exhaustive search is not feasilfiaite
time, and others selection algorithms should besicened.



Although many feature selections algorithms will
remove the correlated features automatically, wefepred
to start by removing these features in a separétialistep
to drop the dimensionality of the data and incretse
computational efficiency.

A correlation matrix (242x242) was calculated tedhthe
correlation strength between features, then weckedrfor
highly correlated ones and removed one of them.

V. FEATURE RANKING

The fastest way for feature selection, is rankihg t
features with some statistical test and selectiegktfeatures
with the highest score or those with a score gretian
some threshold t. Such univariate filters do ndetanto
account feature interaction, but they allow a finspection
of the data and most probably provide reasonalslgte®".

We tested 10 different feature ranking algorithms
(described in table2) and measured the performehttem.

Algorithm Description
Calculates a weight according to "Significance Asil
SAM . "
for Microarrays
PCA Uses the factors of one of the principal components
analysis as feature weig
Uses the coefficients of the normal vector of aedin
SVM . -
support vetor machine as feature weig
Chi Calculates the relevance of a feature by computing
each attribute the value of the chi-squared statisith
Squared .
respect to the class attribute
Measures the relevance of features by sampling jebesn
Relief and comparing the value of the current featuretifar
nearest example of the same and of a differeng
. Calculates the relevance of the attributes basedhen
Gini Index e L
Gini impurity index
Information | Calculates the relevance of the attributes basedher
Gain information gain
Calculates the correlation of each attribute with tabel
Correlation | attribute and returns the absolute or squared vaduis
weight
Maximum Selects Pearson correlation, mutual informatiori-oest
Relevance | depending on feature and label type (numerical/nafpi
. Calculates the relevance of an attribute by meagutie
Uncertainty - . .
symmetrical uncertainty with respect to the class

Table 2. Feature Ranking Algorithms

Although the aforementioned algorithms did not sl
identical results, there was about 70% of simiali¢tween
these results. For example most algorithms putifige®0,
wobav-skewness, rpm-variance and prespumpav-range
features in the top of the ranking list.

Feature number optimization
The resulting question now is: How many features

should be used to get the best model in terms afracy?
To answer this question, many tests were perforriiée.
generated many models with different number of uiest
and calculated the accuracy for each one. We dtavith

the top 150 features and then reduced this nurobE0Q, 50
and 25. Table 3 shows the results. For most algost
models trained with 50 features have the best acgur

. Accuracy [%]
Algorithm 150F | 100F | 50F 5F
SAM 80.29 81.19 75.12 66.06
PCA 83.29 81.38 85.72 80.74
SVM 80.5¢ 81.0¢ 76.3: 66.0¢
Chi Square 82.31 82.41 83.1¢ 79.6¢
Relief 81.29 82.2 83.19 78.57
Gini Index 80.89 80.69 81.59 80.08|
Information Gail 81.€ 81.1¢ 81.8€ 80.3¢
Correlatiot 80.8¢ 84.2: 83.2 80.21
Maximum Relevance 80.69 82 79.31 79.58
Uncertainty 80.89 82.61 85.51 82.91

Table 3. Feature Ranking Comparison (150, 100, 50 ande2fufres)

To select the best number of features accuratelgtauted
with the top feature, and each time we added the tog
feature until we finished all features. Figure 3wk the
accuracy curve as a function of the features numiver
clear that with 38 features we will get the mostuaate
classifier, but also with only 5 features we wilttgan
acceptable result.
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Figure 3. Accuracy curve as a function of the features numbe

VI. FORWARD SELECTION METHODS

Forward selection method was used to bridge the gap

between fast, but univariate filters, on the onadhaand
slow, but multivariate exhaustive search, on theiohand.
Forward regression starts with creating modelsgusikactly
one feature. So we trained in the first step sévertworks
using only the first feature as input, then the sgmocedure
using the second feature as input and continuatthetlast
feature was used as single model iffufrhe feature which
yields the lowest error (ropav-p90) will be consitbas the
feature that has the most impact to the model.

In the second step we made new training runs waigav-
p90 as fixed input and adding exactly one of thmaieing
features as second input. We performed that proeeditil
all features were used as model input.

Many networks were trained to obtain as resultrtrking
of the input with respect to the model error. IguFe 4 the
results are sketched, ropav-p90 has the leadingadtnp
followed by wobav-skewness, mdhole-p75, etc.

The first error values in Figure 4 give us the mogheors
using only ropav-p90 as input, the second valuesetinors
using ropav-p90 & wobav-skewness as input, thedthir



values the errors using ropav-p90 & wobav-skewngss
mdhole-p75, etc.
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Figure 4. Forward Selection

VIl. CLASSIFIERS TRAINING

After extracting the features and selecting thestmo
informative ones, we are ready to start classificeprocess.
Four classification techniques were constructed and
employed in this study. These techniques are: igixif
Neural Network (ANN), Rule Induction (RI), Decisidiree
(DT) and Naive Bayes (NB).

Each one of these classifiers contains some paeasnttat
can be tuned to improve the output of these classifMany
values and options of these parameters were tesiget the
best results.

The performance of the classifiers was evaluatedising
the cross-validation method. We found that the wors
classifier —in most cases — is Naive Bayes, anthéisé on is
Rule Induction.

VIIl. EXPERIMENTAL RESULTS

To evaluate our approach, we collected data fromr fo
different drilling scenarios described in table4e \&pplied
our approach to construct the features space, wieensed
RapidMiner* (an open-source system for data mining) to
train the classifiers.

Scenarit Instance Duration [day Depth [m Classe
#1 991 95 7825 5
#2 1250 190 4402 9
#3 77C 87 4862 7
#4 47C 41 400/ 4

Table 4. Four drilling scenarios

1 http://rapid-i.com/

At the beginning we discovered and pre-processed th
data, then the classifiers were trained using th®lev
features set, Table 4 shows the results.

Scenarios Accuracy [%]
ANN RI NB DT
#1 78.2 79.08 65.02 72.51
#2 72.05 68.37 60.33 55.09
#3 78.12 78.90 63.95 75.2
#4 76.75 | 7856 | 64.3¢ | 75.0f

Table 4. Classification Results (all features)

After feature selection, we retrained the classsfigith only

38 features. Table 5 shows the results. The acgurac
improvement rate is about 10%, and the classiticatind
training process become much faster.

Scenarios Accuracy [%
ANN RI NB DT
#1 8251 | 85.45| 67.78§ 76.7%
#2 70.84 70.51 63.33 54.12
#3 80.52 | 86.41 | 66.74 | 79.34
#4 8190 | 85.9€ | 6745 | 78.5¢

Table5. Classification Results (38 features)
IX. FURTHERWORK

Our aim for future work is to extend this approdmh
adding a new group of features extracted from daibyning
reports, and then using the whole features spadriitd a
comprehensive classification and learning systeahdan be
used not only for normal drilling operation recdgm, but
also for drilling problems detection and extractthg steps
that have been taken to solve these problems.
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