Heißrissanfälligkeit von Aluminiumlegierungen

DI Dr. Salar Bozorgi

DI Dr. Thomas Pabel DI Christian Kneißl DI Katharina Haberl BA Simon Staggl <u>Univ. Prof. DI Dr. Peter Schumacher</u>

Stuttgart, 25.10.2011

Inhalt

- Einleitung
- Einflüsse auf Heissrissneigung
- Thermodynamische Berechnung mit ThermoCalc:
 - Gleichgewichtszustand, Ungleichgewichtszustand Gulliver-Scheil
 - Terminal Freezing Range, Erstarrungsintervall
 - Massenanteil eutektische Phase
- Heissrissanfälligkeitskoeffizient
- Technologische Heissrissprobe:
 - Bewertung Heissrisse
 - Berechnung Warmrisszahl und Warmrissempfindlichkeit
- Ergebnisse:
 - Vergleich mathematischer Modelle und empirischer Modelle
 - Gefügeuntersuchungen
- Zusammenfassung
- Ausblick

Heissrisse – Granulares Material

- Gefüge
 - Chemische Zusammensetzung (Q, P)
 - Korngröße (Q, N(d))
 - Überhitzung der Schmelze (N(d), dT/dt)
 - Erstarrungsintervall (P Morphologie)
 - Terminal Freezing Range (TFR)
 - Eutektischer Anteil im Gefüge ("Schmierung")
 - Volumenausdehnung (Si, Graphit)
 - Intermetallische Phasen ("Sand im Getriebe")
- Geometrie Isothermen
- Verfahren
 - Abkühlrate , Temperaturgradient
 - Nachgiebigkeit der Form (Lagerung und Steifigkeit der Kerne)
 - Forcierte Speisung (Nachdruck)

Heissrisse – Granulares Material

Erstarrungsintervall, P, und Gefüge

Warmrisse – Granulares Material

Erstarrungsverlauf – Festanteil – TFR

Konzentration

Kornfeinung

Aktive Keimbildner (TiB₂, TiC)

Kritische Wachstumsbedingung (Partikelgröße bzw. Verteilung) Wachstumsbehinderung Q $\propto \partial f_s / \partial T$ $\Sigma Q = \Sigma m (k-1) C_o$

Abkühlbedingungen

Motivation

- Vermeidung von Heissrissen in hochfesten AlSiMg-Legierung mit Cu
- Geeignetes Modell f
 ür Heisssrisse auch f
 ür andere Legierungen
- Einflüsse von Mg und Cu sollen simuliert werden (TC)
- Abgleich technologischer Proben mit theoretischen Modellen zur Berechnung der Heissrissempfindlichkeit (Davies und Clyne Modell) und Gegenüberstellung verschiedener Berechnungsmethoden
- Al Si7Mg0,1Cu0,05 Legierungen:
 - Al Si7Mg0,1Cu0,5
 - Al Si7Mg0,3Cu0,05
 - Al Si7Mg0,6Cu0,05
 - Al Si7Mg0,6Cu0,5
- Al Zn6MgCu Legierungen
- Mg Al Zn etc

Thermo-Calc Simulation

- Berechnung von Phasendiagrammen (GG)
- Erstarrungssimulationen auf Basis des Scheil-Gulliver Modells (UGG)
- Verwendete Datenbank TTAI5

Thermo-Calc Simulation

Berechnung der

10/27

-

Thermo-Calc Simulation

TFR und Erstarrungsintervall

12/27

Thermo-Calc Simulation

Eutektischer Phasenanteil

And the second s

Heissrissanfälligkeitskoeffizient (CSC)

Halb-empirisch – CSC

- Cracking Susceptibility Coefficient
- Heissrissneigungskoeffizient nach Davies und Clyne
- Verhältnis von Erstarrungszeit-Intervall mit sehr schlechter Speisung (t_V) zu Erstarrungszeit-Intervall mit guter Speisung (t_R)

$$CSC = \underbrace{t_{V}}_{t_{R}} = \frac{t \, f_{s_{0.90} - mfs_{0.99}}}{t \, f_{s_{0.40} - mfs_{0.90}}} =$$

 $t_{\rm V}$... vulnerable time $t_{\rm R}$... time for stress relive process

Heissrissanfälligkeitskoeffizient (CSC)

Halb-empirisch – CSC

Heissrissprobe

- Tatur-Stern
- Erstarrungssimulation, Formfüllungssimulation (MAGMASOFT®)
- Heissrisskokille
- Heissrisssandform
 - Gussteil

Warmrisszahl (WRZ)

- Vollkommen abgerissene Stäbe x Gewichtungsfaktor 1,00
- Umlaufende breite Risse x Gewichtungsfaktor 0,75
- Gut sichtbare Risse
 x Gewichtungsfaktor 0,50

Haarrisse (Stereomikroskop) x Gewichtungsfaktor 0,25

Warmrisszahl (WRZ) **Definition WRZ** $WRZ = \frac{\Sigma * Gewichtung sfaktor}{\Sigma + Gewichtung sfaktor}$ Anzahl der Abgüsse **Definition WRE** Warmrissempfindlichkeit WRE Warmrisszahl WRZ 0 ≤ 0,5 keine WRE geringe WRE 0,5 ≤ 1,25 1,25 ≤ 2,25 mittlere WRE 2,25 ≤ 3,5 hohe WRE >3,5 sehr hohe WRE

Kokille

Ergebnisse - WRZ

-

(5 Warmrissproben pro Legierung bewertet)

Ergebnisse - CSC

20/27

21/27

Ergebnisse - Gefügeanalyse

- Kokille: wenig Mg-haltige Phasen
- Sand: vergleichsweise mehr Mg-haltige Phasen
- z.B. AlSi7Mg0,6Cu0,5
 - Kokille: Al₂CuMg, AlSiMg
 - Sand: Al₅Cu₂Si₆Mg₈, AlSiMg, Mg₂Si

REM

Ergebnisse – AlZn6

MONTA

Intergranularer Brückenbildung bestimmt Endpunkt der Massenspeisung:

- Brückenbildung ist abhängig von Isothermenwinkel, Θ , und D(t) TFR-Brückenbildung abhängig von interner Reibung μ d.h. λ /d
- zu speisendes Volumen ΔV entlang der Korngrenzen
- Speisungsrate Steigung

TFR Terminal Freezing Range

TFR Terminal Freezing Range bei intergranularer Brückenbildung bestimmt:

- zu speisendes Volumen ∆V entlang der Korngrenzen
- Speisungsrate Steigung
- TFR-Brückenbildung abhängig von interner Reibung d.h. λ/d

Eutektischer Anteil bestimmt

- Intergranulare Reibung
- Letzt Speisung (Carman-Kozeny) entlang Korngrenzen

Zusammenfassung

- ◆ ThermoCalc gibt TFR und ausgebildete eutektische Phasen an → Vorhersage Warmrissneigung möglich
- Ergebnisse theoretischer Modelle (ThermoCalc und CSC) stimmen mit technologischer Heissrissprobe überein
- Cu erhöht die Heissrissempfindlichkeit:
 - TFR, CSC, WRZ und das Erstarrungsintervall steigen
 - Ausscheidungen von eutektischen Phasen (Al₂Cu, Al₂CuMg, Al₅Cu₂Si₆Mg₈)
 - Achtung: Anteil eutektischer Phase steigt
- Magnesium senkt die Heissrissempfindlichkeit:
 - CSC, WRZ, TFR und Erstarrungsintervall sinken
 - Ausscheidungen von Phasen (AlSiMg, Mg₂Si)
 - Anteil eutektischer Phase steigt
- Brückenbildung beendet Massenspeisung (TFR)
- Volumenfestanteil gibt Restvolumen und notwendige Speisungsrate vor
- Heissrisse müssen als ein granulares Problem gesehen werden.

Danke für Ihre Aufmerksamkeit

Die Autoren bedanken sich bei der Österreichischen Forschungsförderungsgesellschaft (FFG) für die finanzielle Unterstützung im Rahmen des Programms

FFG