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Wafer cleaning

e Important step during the
production of semiconductor
silicon-wafers o

e But the same happens liquid jet
during etching etc

e Two contradicting goals:

e Wafer should be fully wetted
e Minimum amount of liquid

e Goal of this project is to
develop a simulation tool that
helps with the planing of this
process
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Simulation features

Liquid film
e Thin (compared to the size of the geometry)
e On a rotating surface

Liquid jet impinges on the surface

e Not necessarily on the center
e Position and strength change during time

Transport of reactants in the liquid

All this should be achieved in a reasonable time-frame
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Asymptotic solutions

Approximate solution
Published benchmark cases

Ro? < 1, Ro? = (fr)z Rauscher et al. (1973) [RKC73]:
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Ozar et el

co—rotating collar

e Rotating disc
e Inlet at the center

A axis of rotation

e Not by a jet, but through a
r collar
2
) e This allows a good control
7‘ over the flow properties
- e Lots of experimental data
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Fig. 8 Film thickness versus radial location for different flow rates
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Charwat et al

e Impinging jet on the center of
the disc
e Closer to the actual
application
e Still axi-symmetric

e Described in [CKGT72]
e Analytical solution in [KKO09]
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The Volume of Fluid Method

e Multiphase solver for 2 liquids with a high density difference

e Volume fraction of one liquid is solved for
e Implemented in OPENFOAM ™ in the interFoam-family of

solvers
e For details look elsewhere
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Different implementations

Overview
Exploiting rotational symmetry

Dynamic meshing
Summary VoF

e There are 3 schemes to calculate VOF' in FLUENT:
HRIC High resolution interface capturing
QUICK Quick Upwind Interpolation for Convective
Kinematics
PLIC Geometric reconstruction
e “only” one implementation in OPENFOAM ™
~-differencing scheme Implementation in interFoam and
others

e If not otherwise noted the same grid was used in FLUENT and
OPENFOAM™ for all calculations
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Motivation

Both sets of experiments were set up in an axially symmetric
fashion

e Minimizes amount of computational time

e More calculations possible

Of course assumes that all the effects are symmetric

Slightly different implementation:
OpenFOAM Needs a modified mesh and special boundary
conditions
Fluent Modifies all the differential operators but uses a
2D-mesh

bgschaid,pvita,dprieling, hsteiner RoWaFloSim 10/33



Introduction
VoF-approach

Referenc

Overview

Exploiting rotational symmetry
Dynamic meshing

Summary VoF

Comparing a case (200 rpm, 7 I/min)

Instantaneous im thickness after 1=25

Testcase
©=200rpm, Q=7lpm,

10
v, =1x10°

S, o
™, 810080 o anvanaous fim hckness afer =25

5(mm]

5{mm]

W
) ()
Instantaneous i thickess aer (=25 Temporal i ickness variaton, monir at =150
o
035
03
£ o2
H 1
FLUENT QUICK. 0705 o1
OpenFoAM ity
Nusselt solution o1
Asympt Rauscher 1973 0
Exp. Thomes 181
o
% ® ey E i3 15 T

¢ [mm)

bgschaid,pvita,dprieling, hsteiner RoWaFlo! 11/33



Overview

Exploiting rotational symmetry
Dynamic meshing

Summary VoF

VoF-approach

Comparing a case (200 rpm, 7 |/min) - time average

Test case 1b76 5
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Comparing another case (300 rpm, 3 1/min)
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Comparing anothert case (300 rpm, 3 |/min) - time
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Exploiting rotational symmetry

Hydraulic jump on stationary disc (7 |/min)

Hy
Tump
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Comparison impinging jet (Charwat 1)

Film thickness - test case C1
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Comparison impinging jet (Charwat 2)

Film thickness - test case C2
Q=0.18lpm, w=180rpm, Re=694
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MOVIE: Impinging jet

2d Rotating Disc w/Jet
Case c2: 180rpm, Re=694

Time: 0.10
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Motivation and model setup

Dynamic meshing
Summary VoF

e Full 3D was considered
e Large meshes due to different length-scales (wafer diameter vs.

film thickness)
e Grid near the wafer determines the resolution of the film

e The solution: interDyMFoam

e Finer grid resolution at the surface of the liquid
e The Ozar case was calculated

e Coarse blockMesh
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MOVIE: Dynamically meshed case

VoF-approach

Time: 0.280
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Comparison of the VoF-approaches

Dynamic meshing
Summary VoF

o All approaches and solvers give similar time averaged results
which are consistent with the experimental data

e Results are mesh-independent, except for PLIC
e Instantaneous values differ significantly
o Axial-symmetric solution fast, but limited in physical
phenomena it can tackle
e 3D with mesh refinement takes a long time

e Even then the surface film is only 3-5 computational cells
“thick”
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Motivation

e Disadvantages of the VOF-approach:
Axial-symmetric Can not simulate a jet that does not
impinge on the center of the disc
3D-dynamic Takes too long for reasonable grid resolutions
e The simulation should be able to

e Simulate arbitrary processes
e Computational times of months for processes that last in the
order of a minute are unacceptable
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The FiniteAreaMethod

Specialisation of the FVM to flows on surfaces
e Possible applications: wall-films

Implementation by H.Jasak and Z.Tukovic in OPENFOAM ™
e Not in the “official” version. Only in 1.5-dev

Only a demo-solver that models the transport-equation on a
prescribed velocity field available

Equations are solved on a boundary-patch of the volume mesh

e Solution of the volume (impinging jet) can be used as a source
term
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The simplified wafer model

e Based on the shallow-water equations

e The height of the fluid-film takes a dual role as “Density" of
the fluid and Pressure

e Equations are solved using an adapted PISO-approach

e Implemented using the finiteArea-approach
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The modified shallow water equations

e Liquid velocity:

al_j . - | ZP —
T +uVi+gVh— %szh = vV2i+ ﬁ(uwafer — i)

e With added surface tension
e and motion of the wafer
e Liquid height
oh

— +hVi+idVh=0
ot
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Replaying the Ozar case

e Need for validation of the solver:

e Significantly differs from the VoF-approach
e Ozar case chosen for validation because:

e |t is easy to set up and well defined

e Especially the inner boundary condition
e For the Charwat case (and application) the impinging jet is
modelled by a source term in the continuity equation

e Experimental and computational data exists
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Film height and liquid velocity with FAM

h
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Time: 2.000
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Quantative comparison of the approaches

Case 1e: 200rpm, Re=238 (3 Ipm)
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Results

MOVIE: Transient covering of a wafer
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Summary of the results

Results summary

Acknowledgements

Two different solvers were compared

Two well-documented experimental cases were investigated

A variety of different solutions to the cases were taken
e Asymptotic solution
e Axial-symmetric solution using VOF
[ ]
L)

Full 3D-solution of the VOF
A special solver using the FAM

All approaches give similar results

Potentially best results (not surprisingly) would be given by
the full 3D-solution

Usable for the actual application is the FAM-approach
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The End

Thanks for listening!
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