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ABSTRACT 
 The resonance frequencies of a system are the 
frequencies in which it oscillates after external 
excitation. The excited resonance frequencies depend 
on the location of the excitation and on the properties of 
the specimen, which are shape, density defects and 
elastic modulus.  
Corresponding to the excitation different resonance 
frequencies and their harmonics can be observed, which 
are called Eigenmodes. If the shape and density of a 
sample are known E, G and ν can be evaluated from the 
frequency spectrum generated in a laboratory 
experiment. For common shapes the relation between 
linear elastic material properties and resonance 
frequencies is documented in [1]. 
 It seems resonable to use resonance frequencies for 
performing quality control in the production process in 
a non-destructive way. The applicability of this testing 
method can be tested by simulating the influence of 
inhomogenieties.  
 Simulations with ABAQUS have been carried out to 
enhance and expand the evaluation of laboratory 
experiments. Results show high accordance between 
ASTM formulas and simulation results for geometries 
covered by ASTM. For other shapes the simulation can 
provide a relation between elastic properties and the 
resonance frequencies. Further simulations show the 
influence of inhomogeneities on elastic properties, 
densities and cracks on the Eigenmodes and the 
dependency of the sample oscillation from the loading 
point.  
 
EVALUATION OF LABORATORY 
EXPERIMENTS 
 In laboratory experiments the frequency spectrum of 
a sample can be detected after mechanical excitation. 
For instance this can be done with a resonant frequency 
and damping analyser (RFDA) [2]. In figure 1 a typical 
frequency spectrum of a ordinary ceramic refractory 
can be seen [3]. Two peaks were detected with the 
RFDA system and were evaluated. In the current case 
the required relation between resonance frequency and 
Young’s modulus (E) and shear modulus (G) can be 
taken from the ASTM standard [1]. The Young’s 
modulus is determined using the resonant frequency in 
the flexural or longitudinal mode of vibration. The 
shear modulus is found using torsional resonant 
vibrations.  
 

 

Fig. 1. Recorded frequency spectrum from an ordinary 
ceramic refractory 
 
CONTRIBUTION OF THE SIMULATION TO 
THE EVALUATION OF LABORATORY 
EXPERIMENTS 
 In case of evaluating geometries covered by ASTM 
the simulation of resonant frequencies can contribute to 
assign the peaks of the frequency spectrum to 
characteristic modes of flexural, torsional or 
longitudinal oscillation. Therefore a simulation was 
carried out with the testing samples geometry. The 
calculation delivers the resonance frequencies and the 
corresponding deformation of the sample.  
 From the frequency spectrum in fig. 1 the Young’s 
modulus can be calculated using the ASTM formulas. If 
this Young’s modulus is compared with the simulation 
result for the recorded frequencies the difference 
between the Young’s moduli is very low and only 
0,27‰. Observable is a high accordance of the results 
obtained by ASTM and simulation. 
 For specimen geometries which are not within the 
validity of ASTM the relation between elastic 
properties and resonance frequency can be calculated. 
The example shown here is an industrial brick with a 
length and width of 198 and 180 mm and height of 
65mm. On the cold end the height is 78mm.  
 Two reasons prevent the validity of the ASTM 
formulas. One of them is their restriction to rectangular 
cross sections. Moreover they are valid only for a 
length-width ratio greater than five. Both are not 
satisfied here. A simplified geometry with rectangular 



cross section and height of 71,5 mm was evaluated with 
the ASTM formulas. The obtained result is 104,23 
Hz/GPa. For the simplified geometry the simulation 
delivers 99,58 Hz/GPa and for the real geometry 99,62 
Hz/GPa.  
 It can be observed that small deviations of the shape 
from the area of validity of ASTM cause a significant 
difference between the simulated and ASTM results. 
The difference between the real and the simplified case 
is small in the simulation. Therefore the inaccuracy of 
the ASTM formula is more influenced by the smaller 
length/width ratio than by deviation from rectangular 
shape. For a possible evaluation of the spectrum of a 
commercial available brick the relation between elastic 
properties and resonance frequencies have to be 
simulated.  
 
Dependence on location of excitation 
 Additionally to the simulation of the Eigenmodes 
the oscillation amplitude generated by the excitation in 
two points (A, B, fig. 2) was simulated. In this case 
vibrations in the frequency range from 100 to 15000 Hz 
are applied in point A or B on the sample defined in 
table 1. The amplitude of the oscillation in a selected 
point was simulated, and evaluated for point C (fig. 2). 
As result a diagram of amplitude versus frequency is 
obtained and shown in figure 3 for loading point A of 
fig. 2 and figure 4 for loading point B of fig. 2.  
 

 
Figure 2. Geometry with loading points A, B and 
evaluation point C. 
 
Tab. 1: Shape and properties of investigated specimen 

Height [mm] 12,5 
Length [mm] 140 
Width [mm] 25 

Young’s modulus E [GPa] 50 
Poisson ratio ν 0,2 

Density ρ [kg/m3] 3000 

Fig. 3. Amplitudes in point C in dependence of 
excitation frequency for loading point A 

 
Fig. 4. Amplitudes in point C in dependence of 
excitation frequency for loading point B 
 
For interpretation of results the Eigenmodes in table 2 
can be applied. In both diagrams (fig. 3, 4) the peak for 
the first Eigenmode can be observed, which is assigned 
to the out of plane flexure. The in plane flexure 
(Eigenmode 2, 5) and the longitudinal wave are not 
excited in both cases. Eigenmode 4 is the lowest 
torsional resionant frequency and can only be observed 
in case of loading point B because this loading point is 
not in the samples symmetry axis. 
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Table 2. Eigenmodes of the sample described in table 3. 
Eigen-
mode 

Frequency 
[Hz] 

  

1 2518,5 Out of plane 
flexure  

2 4859,4 In plane flexure 
 

3 6661,2 Out of plane 
flexure 

 

4 6834 torsion 
 

5 11709 In plane flexure 
 

6 12378 Out of plane 
flexure  

7 13707 torsion 
 

8 14571 Longitudinal 
 

9 19726 Out of plane 
flexure  

 
THE EIGENMODES IN DEPENDENCE OF 
MATERIAL INHOMOGENIETIES 
 From the ASTM formulas [1] it can be observed 
that the square of the resonance frequency increases 
with the Young’s modulus and decreases with the 
density. For prediction of the selectivity of the method 
for industrial quality control simulations of materials 
with heterogeneous densities and Young’s modulus 
have been performed.  
 The shape of the models is the same as described in 
table 1. The Young’s modulus and the density are 
reduced by 25 % in 1/2 and 1/8 of the sample volume. 
The volume with the reduced material property is 
situated at one end of the sample. The border between 
the two material definitions is perpendicular to the 
sample length.  
 In table 2 and 3 the results for the simulation with 
Young’s modulus and density reduction of 25 % are 
listed. Noticeable is the very low influence on the 
reduction of the Eigenmodes if the Young’s modulus 
reduction is only in an eighth of the sample. 
Furthermore the influence on the reduction of the 
Eigenmodes depends on the location of the reduction. 
If, as simulated, the volume with the reduced Young’s 
modulus is on one end of the sample the Eigenmode 9 
will show the highest decrease, because in Eigenmode 9 
this volume has the highest stresses. If the whole 
samples Young’s modulus and density are decreased by 

25% the frequencies decrease by 13,4%  in case for the 
Young’s modulus reduction and increase by 15,4% in 
case of the density reduction, respectively.  
 
Tab. 2. Results for the simulation of lower Young’s 
modulus 

 Fraction with lower Young’s modulus 
Eigenmode 1/8 1/2 1 

1 -0,06% -7,51% -13,4% 
2 -0,12% -7,52% -13,4% 
3 -0,32% -6,84% -13,4% 
4 -0,26% -7,61% -13,4% 
5 -0,47% -7,00% -13,4% 
6 -0,79% -7,30% -13,4% 
7 -0,93% -6,76% -13,4% 
8 -0,21% -7,65% -13,4% 
9 -1,30% -6,97% -13,4% 

 
The result for the simulation with reduced density can 
be seen in table 3.  
 
Tab. 3. Results for the simulation of lower density 

 Fraction with lower density 
Eigenmode 1/8 1/2 1 

1 3,84% 7,07% 15,4% 
2 3,73% 7,07% 15,4% 
3 2,59% 7,63% 15,4% 
4 3,14% 7,71% 15,4% 
5 2,56% 7,60% 15,4% 
6 1,94% 6,95% 15,4% 
7 2,88% 6,65% 15,4% 
8 3,12% 7,73% 15,4% 
9 1,72% 7,54% 15,4% 

 
Influence of cracks 
 The influence of cracks on the frequency was 
simulated for cracks with a length of 5 and 10 mm, 
respectively. The samples geometry is the same as in 
the investigations described before. The distance of the 
crack from the end surface is denoted by x (x = 0-
70 mm) (fig. 5). The cracks are modelled as two 
parallel faces without any interaction between the crack 
faces.  
 
 
 
 
 
 
 
Fig. 5. Position of the crack  
 
 In fig. 6 the frequency reduction of the Eigenmodes 
2, 5 and 9 in % can be seen in dependence of  x in case 
of crack length of 5mm. The Eigenmodes 2, 5 and 9 are 

x 



chosen because they show the highest decrease with 
increasing x. Up to approximately x=25mm Eigenmode 
9 shows the highest decrease. From 25 mm to 50 mm 
Eigenmode 5 and for x > 50 mm Eigenmode 2 has the 
highest decrease. The frequencies for Eigenmodes 5 
and 9 show an increase after minimum. This can be 
explained with the crack position and deformation in 
different Eigenmodes. If the cracked region shows 
relatively low stresses influence on the frequency will 
be low. This is especially the case for Eigenmode 2 and 
low values of x.  

 
Fig. 6. Frequency dependence from the crack distance x 
in case of 5 mm crack length 
 
In case of 10 mm crack length the reduction of the 
Eigenmodes is higher (fig. 7). 

 
Fig. 7. Frequency dependence from the crack distance x 
in case of 10 mm crack length 
 
Summary 
 The simulation of resonance frequencies can support 
the evaluation of laboratory experiments by forecasting 
the Eigenmodes. Furthermore the oscillation amplitude 
in each sample point can be simulated for arbitrary 
location and direction of excitation. This facilitates the 
selection of an hammer impact point for the laboratory 
investigations. 

The sensitivity of the Eigenmodes on material 
inhomogeneities was also simulated. The location of the 
inhomogenieties determines the effect on the single 
Eigenmodes.  
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