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Number systems in abelian groups

To define a pre-number system in an abelian group V , we need the following ingredients.� Let φ be an endomorphism of V , that is, a homomorphism

φ : V → V,

which we call the base.� We assume that the image of φ has finite index D in V . In particular, in case V is a finite-dimensional
Z-lattice, we have detφ = |D| 6= 0.� Let D be a finite subset of V containing a system of representatives of V modulo φ(V ). We call this
the digit set.

Now, a pre-number system (V, φ,D) as above is a number system if every v ∈ V has a finite expansion of
the form

v =

ℓ
∑

i=0

φi(di) with the di ∈ D.

This definition was given for the case where V is a finite free Z-module in [9], among others, in the context
of replicating tilings of Rn, and also in [4]. Many previous authors required that 0 ∈ D. We do not require
this.
If we choose a basis for V , then we may assume that V = Z

n, and φ is given by a nonsingular n× n matrix
with integer coefficients.

Basic problems

1. Given a pre-number system (V, φ,D), how can we decide if it is a number system?

2. Given a lattice V and a base (endomorphism) φ, does there exist a valid digit set, i.e., a digit set D
that makes (V, φ,D) into a number system?

3. Given V and φ, can we classify all valid digit sets D?

Examples and motivation� The basic example is V = Z, with φ the map v 7→ bv for a fixed b 6= 0, and D = {0, 1, . . . , |b| − 1}.
For b ≥ 2, this gives the usual b-adic representation of the nonnegative integers.

To satisfy our definition, also negative integers must have a representation. This is only possible, using
the given digits, if b ≤ −2. This was known already in 1885 to Grünwald.� Complex bases of the form a+ bi, where a, b ∈ Z, were already considered by Knuth. The digit set was
taken to be {0, 1, . . . , a2 + b2 − 1}, and it was shown that we get a number system if and only if the
base has the form n± i for some n 6= 0 ∈ Z. Later, this result was generalised for arbitrary quadratic
numbers [3].� Let α be an algebraic integer, with minimal polynomial f =

∑

i aiX
i ∈ Z[X ]. Then take V = Z[α] ∼=

Z[X ]/(f ), and let φ be multiplication by α. It is easy to see that D = {0, 1, . . . , |f (0)| − 1} represents
V/αV .

This is a pre-number system. If every v ∈ Z[α] has a representation of the form v =
∑ℓ

i=0 diα
i, the

resulting number system is called a canonical number system (CNS), because the digits are canonically
chosen. A survey of results on CNS is given in [1].� The previous definition can be extended. If α is algebraic but not necessarily integral, we obtain so-
called rational bases (see [7]). Here, we take the minimal polynomial f to be integral and primitive. In
this case, if f is not monic, then V = Z[X ]/(f ) is no longer a finite-dimensional lattice — in fact, it is
not finitely generated.

A few years ago, there has been a lot of interest for nonstandard digital expansions, with the goal of speeding
up operations in elliptic curve cryptography [2, Chapter III]. An important role is played by the base

τ = 1+
√
−7

2 , an algebraic integer that satisfies the same minimal polynomial of the Frobenius automorphism
of so-called Koblitz elliptic curves, and also by powers of τ .

In another direction, number systems with only nonzero digits were proposed as a means to avoid Side
Channel Attacks on elliptic curve cryptosystems. This leads to the natural question whether the known
results for number systems continue to hold if we do not assume 0 ∈ D.

The assumption 0 6∈ D implies that there exists a special expansion for 0, which we call the zero expansion
of the pre-number system. As an example, with base −2 and digits {1, 2}, we have

0 = 2 · (−2)0 + 1 · (−2)1.

The length of this expansion (2 in the example) becomes an important parameter of the pre-number system.

General structure questions
Together with Ryotaro Okazaki, we have shown the following result, which means that the presence of a
number system on a group V is a quite severe restriction on its structure.

Theorem 1. Suppose V is an abelian group supporting a number system, i.e., suppose there exists
some endomorphism φ of V and some digit set D ⊂ V such that (V, φ,D) is a number system. Then:

1. the torsion of V is a direct summand of V and is a bounded group;

2. the torsion-free rank of V is finite;

3. the torsion-free quotient of V can be p-divisible for only finitely many primes p.

This does not mean that every number system automatically splits into a torsion and a non-torsion part;
this depends on the structure of the digit set, whereas also the torsion-free summands of V need not be
invariant under the endomorphism φ.

These results are to be submitted soon.

Existence results

As a partial converse to the above theorem and in generalisation of previous results, we have

Theorem 2. Let V be finite-dimensional Z-lattice. Suppose (V, φ,D) is a pre-number system such
that all eigenvalues α of φ satisfy |α| > 2. Let ‖ · ‖ be a norm on V such that we have ‖φ−1‖ < 1

2
for the induced operator norm, and suppose that every d ∈ D has minimal norm in its coset modulo
φ(V ). Then (V, φ,D) is a number system.
Furthermore, the same result holds if every d is a smallest nonzero element in its coset.

If D satisfies the hypotheses, it is called a set of shortest (nonzero) digits.
It is not known if this result is optimal. To investigate this matter, we project to show that if V has dimension
2 and φ is expanding with at least one eigenvalue between 1 and 2 in absolute value, there exists some valid
digit set as well.

In cooperation with Okazaki, we are working to make this result work for more general groups V .

Relation with Chinese Remainder Theorem

In the case where V is a lattice, obviously the classification of number systems depends on a suitable
classification of lattices-with-endomorphism. However, such a classification is far from complete. For example,
it is clear that if V has an endomorphism φ, then V becomes a module over the subring R = Z[φ] of its
endomorphism ring. This subring is commutative, and it is in fact isomorphic to Z[X ]/(f ), where f is the
minimal polynomial of φ.
Now if f is squarefree, the Jordan-Zassenhaus theorem tells us that there are only finitely many indecompos-
able R-modules that are Z-torsion-free, up to isomorphism. On the other hand,if f has square factors, there
are examples that show that R may have infinitely many non-isomorphic indecomposable modules over it.
If we assume that the minimal polynomial f is equal to the characteristic polynomial of f , then it is easy
to show that V is isomorphic to an ideal of R. To avoid unnecessary complications, for the time being we
restrict ourselves to this case.
Then, a natural question is whether we can reduce to the case where f is irreducible. Unfortunately, this is
in general impossible, as the next result shows (the second condition may be impossible to satisfy).

Theorem 3. For i = 1, 2, let fi ∈ Z[X ] be coprime, monic and expanding, let (Vi, X,Di) be a pre-
number system, where Vi is a full-rank ideal of Z[X ]/(fi), let Li be the length of the zero expansion of
this number system. Let ψ be defined by

ψ : Z[X ]/(f1f2) → Z[X ]/(f1)× Z[X ]/(f2) : a 7→ (a mod f1, a mod f2).

Let R12 = Z[X ]/(f1, f2), and define the sequence (Si)i≥0 ⊆ R12 by si =
∑i

j=0X
j. Because R12 is finite,

the sequence (si) is periodic; we let S be the period length. Then

(

ψ−1(V1 ×R12
V2), X, ψ

−1(D1 ×D2)
)

is a number system if and only if the following conditions are satisfied:

(i) (V1, X,D1) and (V2, X,D2) are actually number systems;

(ii) all digits in D1 ∪ D2 are pairwise congruent modulo (f1, f2), and

(iii) we have gcd(L1, L2) = S.

A paper containing a proof of this result will be submitted soon.

Classification results

We have obtained some results towards the classification problem mentioned above. These first results are
limited to the case V = Z, where we may assume that the base is itself simply an integer, and have appeared
as [8].

Theorem 4.Let b ∈ Z with |b| ≥ 2.

(i) If b = 2, there are no valid digit sets.

(ii) If b = −2, and D = {d,D} is a digit set with d < D, then {d,D} is valid if and only if

a) one of {d,D} is even and one is odd;

b) neither d nor D is divisible by 3, except that the even digit can be 0;

c) we have 2d ≤ D and 2D ≥ d;

d) D − d = 3i for some i ≥ 0.

(iii) If b = ±3, then there exist infinitely many valid digit sets containing 0.

(iv) If |b| ≥ 4, then there exist infinitely many valid digit sets both with and without 0.

Here (iii) is taken from [6], whereas (iv) is a generalisation of [5].
We hope to extend the result for |b| = 2 to higher dimensions, subject to the condition that V is an ideal of
Z[X ]/(f ), as mentioned above.

Digit sets for −2

On the right, we show the collection of
all valid digit sets {d0, d1} in V = Z for
basis −2, with 0 ≤ |d0|, |d1| ≤ 200. The
exponential structure, which doubles it-
self every time, is clearly visible.

In general, we conjecture that in every
binary number system on a lattice, the
difference of the digits is made up only
of prime factors that divide α−1, if the
basis is α. Here we allow finitely many
exceptions where the difference of the
digits is small.
A binary number system is one that
needs just two digits, i.e., |V/φ(V )| = 2.
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