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Waring’s problem in finite fields

joint work with Arne Winterhof

Over a ring R, Waring’s problem in degree n asks whether every

element a of R can be written in the form

a =
∑

i

ani (1)

for some ai ∈ R, and whether the number of terms needed can be

uniformly bounded for all a ∈ R.

The problem is best known over Z, but was also much studied

in the case where R is a finite field (see Winterhof (1998) for a

survey).

We define the Waring function g(k, q) as follows: if all a ∈ Fq have

an expansion (1), then g(k, q) is the maximal number of terms

needed for any a; otherwise, g(k, q) is undefined.
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Some results on the Waring function

• We may assume that the exponent k divides q − 1.

• If k2 < q or if q is prime, then g(k, q) exists.

• A counterexample: q nonprime, k = q − 1.

• If g(k, q) exists, then g(k, q) ≤ k (inhomogeneous Chevalley-

Warning); there is then a deterministic polynomial time algo-

rithm to solve

ak1 + . . .+ akk = a.

• If (k − 1)4 < q, then g(k, q) = 1 or 2 (Weil bound).

Assuming this, in fact, whenever abc 6= 0, then

axk + byk = c

is solvable.
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Reduction to the prime field

We have the following nice inequality: if g(k, pn) exists, then

g(k, pn) ≤ ng(d, p),

with d =
k

gcd(k, p
n−1
p−1 )

.

This follows because g(k, pn) exists if and only if

Fpn = Fp(α
k)

for some α ∈ Fpn, so we have

a = a0 + a1α
k + . . .+ an−1α

(n−1)k,

and we write each ai as a sum of dth powers in Fp. Finally, more

elements of Fp may become dth powers in the extension field.

We use this reduction in the sequel.
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Basic setup and results

We have odd primes p and r, with p a primitive root modulo r.

Thus,

Fpr−1 is generated over Fp by ζr.

We let k =
pr−1

r
or

pr−1

2r
, so kth powers are rth or 2rth roots of

unity. We compute g(k, pr−1) for these cases:

Theorem We have
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4



Basic setup and results (extension)

A direct extension was found by Kononen (2010). Take a positive

integer m, and let p be a primitive root modulo rm. Then

F
pϕ(r

m) is generated over Fp by ζrm.

We let k =
pϕ(r

m) − 1

rm
or

pϕ(r
m) − 1

2rm
, so kth powers are rmth or

2rmth roots of unity. We have:

Theorem:

g





pϕ(r
m) − 1

rm
, pϕ(r

m)



 =
ϕ(rm)(p− 1)

2
.

g





pϕ(r
m) − 1

2rm
, pϕ(r

m)



 =































rm−1
⌊

pr

4
−

p

4r

⌋

if r < p;

rm−1

⌊

pr

4
−

r

4p

⌋

if r ≥ p.
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Norm and weight

Let a = a0 + a1ζr + . . . + ar−1ζ
r−1
r be a sum of k’th powers; how

many powers have we used?

Case 1. If ζr generates the k’th powers, then interpret ai as non-

negative integers. So:

|a|1 = “a” for all a ∈ Fp.

In total, we have used ‖a‖1 = |a0|1 + . . .+ |ar−1|1 powers.

Case 2. If −ζr generates the k’th powers, then we may replace ai
by −ai. So:

|a|2 = “min{a, p− a}” for all a ∈ Fp.

This (the “Lee norm”) gives us ‖a‖2 as a measure of quality.
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Tweaking the representations

Again, let a = a0+a1ζr+. . .+ar−1ζ
r−1
r . What would be the optimal

representation of a?

As ζr has prime order, the only nontrivial relation is

1 + ζr + ζ2r + . . .+ ζr−1
r = 0.

So, the only way we may change (a0, . . . , ar−1) without changing

a is by adding multiples of e = (1,1, . . . ,1) to it.

Thus, the weight of the optimal representation of a is equal to

min{‖a+ xe‖ : x ∈ {0,1, . . . , p− 1}}.
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Reformulation of the problem

We can now reformulate the Waring problem for these cases as

follows.

Let V = (Z/mZ)r, let | · | : Z/mZ → Z be some weight function on

Z/mZ, and for a ∈ V , let ‖a‖ = |a0|+ . . .+ |ar−1|.

We say a is admissible if

‖a‖ ≤ ‖a+ xe‖ for all x ∈ Z/mZ.

Now we want to know the maximal norm of an admissible vector.

We use the weights defined earlier, i.e.,

|a|1 is the smallest nonnegative integer representative of a;

|a|2 is the absolute value of the symmetric integer representative of a.
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An upper bound on ‖a‖1

If ‖a‖i ≤ ‖a+ xe‖i for all x, add these and get

m‖a‖i ≤ r
m−1
∑

x=0

|x|i. (2)

Lemma We have

∑

x
|x|1 =

m(m− 1)

2
;

∑

x
|x|2 =







m2

4 if m is even
m2−1

4 if m is odd.

We refine (2) a little bit by noting that

‖a+ xe‖1 ≡ ‖a‖1 + r|x|1 (mod m),

so in fact we have ‖a‖1 ≤ ‖a+ xe‖1 − r|x|1, and get the sharp

‖a‖1 ≤
mr −m− r +gcd(m, r)

2
.
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An aside, with an open problem

In general, assume q is a positive integer and p ≡ 1 (mod q) is

prime. Let ζq be a primitive qth root of unity in Fp, and define

|x|q = min{ |ζix|1 : 0 ≤ i ≤ q − 1}.

Note that this agrees with our earlier definition of | · |2.

Proposition We have for q ≥ 2

∑

x
|x|q =

(

1

q +1
−

Bq

q!

)

p2 +O(p2−ε),

where Bq is the qth Bernoulli number.

Conjecture We have

∑

x
|x|3 =

p2 − 1

4
.

Any takers??
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An upper bound for ‖a‖ (continued)

Recall that a ∈ V = (Z/mZ)r, and |x|2 = min{x,m− x}.

For | · |2, the upper bound on ‖a‖2 for admissible vectors a that we
get is sharp whenever r ≥ m or r is even. If r < m and r is odd,
we consider the norm sequence

Nx = ‖a+ xe‖,

and using symmetry properties of this sequence, we derive a sharp
bound in this case also.

We have, for admissible a ∈ V ,

‖a‖2 ≤
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4 if m and r are even;

⌊mr
4 − 1

2⌋ if m is even, r is odd, and r > m;

⌊mr
4 − r

4m⌋ if m is odd and r ≥ m;

⌊mr
4 − 1

2⌋ if m is odd, r is even, and r < m;

⌊mr
4 − m

4r⌋ if r is odd and r < m.
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Matching up

To show that the given upper bounds are sharp, we need to con-

struct admissible vectors attaining the bound.

If m and r are even, (0, . . . ,0, m2 , . . . ,
m
2 ) is admissible of norm mr/4,

which is maximal.

If m is odd and r is even, we use (0, m−1
2 ) as a building block, with

some cunning.

For odd r, the constructions are rather involved. First, by induction

we reduce to the case that r < 2m. Then, we solve some integer

programming problems with the goal to make the norm sequence,

which has Nx+1 6= Nx for all x, as smooth and as flat as possible.

Finally, the case of odd m is derived from the case of even m.
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Recapitulation

Theorem Let p and r be odd primes, with p a primitive root modulo

r. Then we have

g
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r
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⌋
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Furthermore, there exists an algorithm that shows elements in

Fpr−1 that need this many terms when writing them as sum of kth

powers (KASH 2.5 and KASH 3 code available...).

Note that all bounds are symmetric in p and r!
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