Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- Institute of Physics, Belgrade
Abstract
Excellent elastic properties and good adhesion of graphene to substrate make graphene a promising
candidate for application in various friction and wear protective coatings. In order to investigate the
response of graphene edges on lateral forces, we combine atomic force microscopy (AFM) based experiments
with large scale molecular dynamics (MD) simulations. Exploring movement of AFM tip across
graphene edges, we identify four consecutive processes in the course of manipulation: a small increase of
lateral force across graphene edges, elastic deformation, plastic deformation followed by permanent
wrinkle formation and partial peeling from substrate, and graphene fracture followed by complete
peeling within the scan area. In addition, on apexes of graphene flakes, we observe graphene folding
followed by the formation of defect free edges. They can prevent further wear to some extent. MD
simulations reveal that wrinkles initiated by AFM probe, grow over distance covered by the probe and
they are responsible for the observed increase of the lateral force.
candidate for application in various friction and wear protective coatings. In order to investigate the
response of graphene edges on lateral forces, we combine atomic force microscopy (AFM) based experiments
with large scale molecular dynamics (MD) simulations. Exploring movement of AFM tip across
graphene edges, we identify four consecutive processes in the course of manipulation: a small increase of
lateral force across graphene edges, elastic deformation, plastic deformation followed by permanent
wrinkle formation and partial peeling from substrate, and graphene fracture followed by complete
peeling within the scan area. In addition, on apexes of graphene flakes, we observe graphene folding
followed by the formation of defect free edges. They can prevent further wear to some extent. MD
simulations reveal that wrinkles initiated by AFM probe, grow over distance covered by the probe and
they are responsible for the observed increase of the lateral force.
Details
Original language | English |
---|---|
Article number | 723-732 |
Pages (from-to) | 723-732 |
Number of pages | 9 |
Journal | Carbon |
Volume | 107 |
DOIs | |
Publication status | Published - 23 Jun 2017 |