Non-isothermal flow in porous media and reactive transport

Research output: ThesisDoctoral Thesis

Standard

Non-isothermal flow in porous media and reactive transport. / Yapparova, Alina.
2016.

Research output: ThesisDoctoral Thesis

Bibtex - Download

@phdthesis{bc0b89bcfbf048d3a4c0d3016ebe4b21,
title = "Non-isothermal flow in porous media and reactive transport",
abstract = "This thesis presents the mathematical models, numerical solution methods and simulation examples of non-isothermal single phase flow in porous media and reactive transport. The Pressure-Temperature-Enthalpy finite element – finite volume scheme for the single phase flow in porous media and heat transport was implemented in CSMP++ software library and applied to the simulation of an underground hot water storage. Application of this scheme to the energy storage simulations is preferable to the classic Boussinesq approximation, as it uses a full equation of state/viscosity treatment for water. In order to study the controls of hydrothermal dolomitisation by means of reactive transport modelling (RTM) with mineral dissolution/precipitation kinetics and on realistic geometries, the new CSMP++GEM coupled code was developed, tested and benchmarked against TOUGHREACT. The prototype implementation of the RTM simulator used the Law of Mass Action approach for the chemical equilibrium calculations, but was subsequently replaced by the Gibbs Energy Minimisation method due to its numerous advantages. The new coupled code uses a mass conservative transport scheme, an accurate equation of state for the saline water and a feedback on the fluid properties from chemical reactions, taking into account the alteration of porosity and permeability due to mineral dissolution/precipitation. Unstructured grids and explicit faults/fractures representation allow for the RTM simulations of fault-controlled dolomitisation. CSMP++GEM was used to simulate the hydrothermal dolomite formation at the Benicassim outcrop analogue and was able to reproduce major features of the dolomitisation process.",
author = "Alina Yapparova",
note = "embargoed until null",
year = "2016",
language = "English",

}

RIS (suitable for import to EndNote) - Download

TY - BOOK

T1 - Non-isothermal flow in porous media and reactive transport

AU - Yapparova, Alina

N1 - embargoed until null

PY - 2016

Y1 - 2016

N2 - This thesis presents the mathematical models, numerical solution methods and simulation examples of non-isothermal single phase flow in porous media and reactive transport. The Pressure-Temperature-Enthalpy finite element – finite volume scheme for the single phase flow in porous media and heat transport was implemented in CSMP++ software library and applied to the simulation of an underground hot water storage. Application of this scheme to the energy storage simulations is preferable to the classic Boussinesq approximation, as it uses a full equation of state/viscosity treatment for water. In order to study the controls of hydrothermal dolomitisation by means of reactive transport modelling (RTM) with mineral dissolution/precipitation kinetics and on realistic geometries, the new CSMP++GEM coupled code was developed, tested and benchmarked against TOUGHREACT. The prototype implementation of the RTM simulator used the Law of Mass Action approach for the chemical equilibrium calculations, but was subsequently replaced by the Gibbs Energy Minimisation method due to its numerous advantages. The new coupled code uses a mass conservative transport scheme, an accurate equation of state for the saline water and a feedback on the fluid properties from chemical reactions, taking into account the alteration of porosity and permeability due to mineral dissolution/precipitation. Unstructured grids and explicit faults/fractures representation allow for the RTM simulations of fault-controlled dolomitisation. CSMP++GEM was used to simulate the hydrothermal dolomite formation at the Benicassim outcrop analogue and was able to reproduce major features of the dolomitisation process.

AB - This thesis presents the mathematical models, numerical solution methods and simulation examples of non-isothermal single phase flow in porous media and reactive transport. The Pressure-Temperature-Enthalpy finite element – finite volume scheme for the single phase flow in porous media and heat transport was implemented in CSMP++ software library and applied to the simulation of an underground hot water storage. Application of this scheme to the energy storage simulations is preferable to the classic Boussinesq approximation, as it uses a full equation of state/viscosity treatment for water. In order to study the controls of hydrothermal dolomitisation by means of reactive transport modelling (RTM) with mineral dissolution/precipitation kinetics and on realistic geometries, the new CSMP++GEM coupled code was developed, tested and benchmarked against TOUGHREACT. The prototype implementation of the RTM simulator used the Law of Mass Action approach for the chemical equilibrium calculations, but was subsequently replaced by the Gibbs Energy Minimisation method due to its numerous advantages. The new coupled code uses a mass conservative transport scheme, an accurate equation of state for the saline water and a feedback on the fluid properties from chemical reactions, taking into account the alteration of porosity and permeability due to mineral dissolution/precipitation. Unstructured grids and explicit faults/fractures representation allow for the RTM simulations of fault-controlled dolomitisation. CSMP++GEM was used to simulate the hydrothermal dolomite formation at the Benicassim outcrop analogue and was able to reproduce major features of the dolomitisation process.

M3 - Doctoral Thesis

ER -