Cycled hydrogen permeation through Armco iron – A joint experimental and modeling approach

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Externe Organisationseinheiten

  • voestalpine Stahl Donawitz GmbH
  • Materials Center Leoben Forschungs GmbH
  • Academy of Sciences of the Czech Republic Brno

Abstract

Understanding hydrogen embrittlement in steels requires research in hydrogen diffusion and trapping at microstructural defects. The present paper deals with hydrogen permeation and trapping at defects in the base material, Armco iron, eliminating effects coupled with alloying and precipitation. Cycled permeation curves are recorded and evaluated by using sound diffusion models to identify hydrogen trap sites as dislocations, grain boundaries and vacancies and assign their trapping energies. Furthermore, trap densities are evaluated and used together with the trapping energies as parameters in an adapted diffusion equation for hydrogen, interpreting the experiments significantly better than simple use of classical Fick's laws.

Details

OriginalspracheEnglisch
Aufsatznummer109017
Seitenumfang11
FachzeitschriftCorrosion science
Jahrgang176.2020
AusgabenummerNovember
DOIs
StatusVeröffentlicht - 23 Sept. 2020